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Abstract

The credibility of mobile ad hoc network simulations depends on accurate char-

acterisations of user behaviour, e.g., mobility and application usage. If simulated

nodes communicate at different rates to real nodes, or move in an unrealistic fash-

ion, this may have a large impact on the network protocols being simulated and

tested.

Many future mobile network protocols, however, may also depend on future

mobile applications. Different applications may be used at different rates or in

different manners. But how can we determine realistic user behaviour for such

applications that do not yet exist? One common solution is again simulation, but

this time simulation of these future applications.

This paper examines differences in user behaviour between a real and simu-

lated mobile social networking application through a user study (n=80). We show

that there are distinct differences in privacy behaviour between the real and simu-

lated groups. We then simulate a mobile opportunistic network application using

two real-world traces to demonstrate the impact of using real and simulated ap-

plications. We find large differences between using real and synthetic models of

privacy behaviour, but smaller differences between models derived from the real

and simulated applications.
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1. Introduction

Simulation is vital for the research and development of future mobile network

protocols. It can be impractical to deploy new protocols and systems on a large-

scale basis under realistic conditions, especially if constant refinement and devel-

opment of the systems are required. But the credibility of mobile network sim-

ulations depend on accurate characterisations of user behaviour, such as mobility

and application usage. If the users being simulated use applications at a different

rate to real users, or move in an unrealistic fashion, this can have an impact on the

network protocols being simulated and tested.

Many of the future mobile network protocols being researched and developed,

however, may also depend on future mobile applications. For instance, a disruption-

tolerant mobile ad hoc network protocol might be used by future disruption-tolerant

applications. How can we determine realistic user behaviour for such applications

that do not yet exist? One solution is to measure user behaviour in such appli-

cations by simulating the applications themselves. But this might have a further

impact on the network simulations, if behaviour in simulated applications is not

the same as that in real applications.

In previous work we have conducted preliminary investigations of the differ-

ence between real and simulated applications [1], and the impact of user behaviour

on mobile network performance [2]. In this paper we extend and combine this

analysis, to examine differences in user behaviour between real and simulated ap-

plications and study the impact of these differences on mobile network simulation.

We conduct a user study with 80 participants, half of whom used a simulated mo-

bile social network application, while the other half used the real mobile social

network application Facebook. We show that there are distinct differences in pri-

vacy behaviour between the real and simulated groups, with users of the simulated

application being more willing to share data than real users. Using the results of

this user study, we then simulate a set of mobile ad hoc opportunistic network rout-

ing protocols to demonstrate the impact of using real and simulated applications.

Finally, we study the effects of real and simulated privacy models by comparing a

synthetic privacy model to one generated from the user study results.

This paper makes the following contributions:

• We conduct, what is to our knowledge, the first study of the impact of

application-layer simulations on network-layer simulations in a mobile net-
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work. Our results indicate that it may be possible to use simulated applica-

tions as a substitute for real applications.

• We demonstrate that the use of synthetic privacy models can have a large

impact on mobile ad hoc network simulations.

• We demonstrate that considering user behaviour, such as privacy prefer-

ences, can have a large impact on mobile ad hoc network protocol perfor-

mance.

This paper is outlined as follows. Next, we characterise some of the related

work. We then describe a location-privacy user study using both real and simulated

users in Sections 4 and 5. Section 6 describes a privacy model based on the results

of this user study. In Section 7 we use this privacy model in a set of trace-driven

simulations of a mobile opportunistic network. We then discuss the implications

of our results, suggest some guidelines for future simulations are research, and

conclude in Section 8.

2. Related Work

Our goal is to understand the accuracy, or the credibility, of network simulation

given assumptions about real-world behaviour. Many researchers have examined

simulation credibility, and a good survey of research into the credibility of wireless

network simulation is provided by Andel and Yasinsac [3]. Newport et al. study as-

sumptions about radio propagation in wireless network simulations [4] by compar-

ing simulated and real-world wireless experiments. They demonstrate that many

commonly-held assumptions, such as circular transmission range, symmetric trans-

mission capabilities, and signal strength being proportional to distance, do not

hold, and this can have an impact on any simulations that make these assump-

tions. Tan et. al. extend this to indoor and outdoor wireless mesh networks, finding

that simulations often make inaccurate assumptions about antenna diversity and

path loss [5]. Torres et. al. study IEEE 802.11e wireless networks by deploying a

real testbed and comparing the results to those from the ns-2 simulator [6].

More broadly, Kurkowski et al. study 114 wireless ad hoc networking papers

from the ACM MobiHoc conference that employ network simulation [7]. They find

that many of the papers are not credible, in that the experiments are not repeatable,

are biased, or are not rigorous or statistically sound.

The problem of credible network simulations reaches beyond mobile and wire-

less network simulations. Pawlikowski et al. consider over 2,200 telecommuni-

cation network research papers and focus on two particular factors that might af-

fect credibility: pseudo-random number generation and statistical analysis of the
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outputted simulation data [8]. Floyd and Paxson describe strategies for attempt-

ing to simulate the global Internet [9]. Chertov and Fahmy build a measurement-

based model for Internet routers and validate this model using Cisco and Juniper

routers [10].

An alternative research method to simulation is to emulate a networked envi-

ronment instead, by collecting traces in one real environment, and using the traces

to drive experimental runs in a different testbed environment. Kim et al. describe

a system for doing so and examine the benefits of using emulation [11].

In addition to understanding how physical and network layer assumptions may

impact the credibility of a simulation experiment, it is also necessary to understand

the effect of simulating a user-facing application. Tsai et al. [12] examine the

effect of feedback in a real (i.e., non-simulated) location-sharing application tied

to the Facebook social networking site (SNS).2 Feedback — in the form of a list

of viewers of who had viewed each published location — was found to influence

disclosure choices. Although they do not investigate a simulated application, the

fact that real feedback has an effect may mean that simulated feedback (e.g., using

a randomly-generated list of viewers) may affect behaviour in a different way.

Consolvo et al. [13] investigate privacy concerns in a simulated social location-

tracking application, employing the Experience Sampling Method to query partici-

pants in situ [14]. They also note problems with simulation in the post-experiment

debriefings: unrealistic, “out-of-character” simulated location requests were re-

jected by at least one participant.

Stutzman and Kramer-Duffield [15] examine real-world privacy settings of

Facebook users employing the site’s relatively restrictive “friends-only” option.

More generally, Young and Quan-Haase [16] present Facebook as a case study for

privacy concerns on online social network sites. Toch et al. [17] develop empirical

models of privacy from a user study, as we do here, but do not apply this model to

simulations as in our work.

Another factor in the credibility of a social network simulation is the realism

of the social network itself. Orman and Labatut look at a preferential-attachment-

based method for generating “realistic” networks, and study the impact of realism

on community detection in social networks [18].

While numerous researchers have studied credibility of network simulations,

and have leveraged simulated applications for user studies, to the best of our knowl-

edge no-one has studied the impact on network simulation credibility of application

simulation. In this paper we attempt to study this problem in a mobile opportunistic

ad hoc networking scenario.

2http://www.facebook.com/

4

http://www.facebook.com/


3. Privacy threats in mobile opportunistic networks

To investigate the impact of a simulated network application on network sim-

ulations, we choose to study user behaviour in a mobile opportunistic social net-

working application. The proposed application acts as other common online so-

cial networks such as Facebook or Twitter3, where users share information with

other members of their social network, but information is transmitted over an op-

portunistic network, as has been proposed in such research applications as Mobi-

Clique [19]. In order for such information to be transmitted, users must actively

cooperate and share information with other members of the network. With this

in mind, the particular user behaviour that we choose to examine relates to user

privacy; in particular, users’ willingness to disclose their location, which may be

private, to other users: friends, family or the public at large. To be able to model

and study this behaviour, it is necessary first to understand the privacy threats in

such an environment, to measure users’ privacy concerns and to then model these

concerns.

3.1. Opportunistic networks

Opportunistic networks [20] form a popular area of current research in mobile

ad hoc networking. An opportunistic network can be viewed as a mobile ad hoc

network that is completely disconnected, where nodes can send messages in the ab-

sence of any knowledge of network topology. Nodes opportunistically exploit any

nodes that they encounter to help messages reach their destinations. For example,

users with mobile phones who encounter other users with mobile phones can ex-

change messages using Bluetooth, and messages could subsequently be forwarded

using other encounters or other available network interfaces such as 3G. Such net-

works can be used to enable new applications, e.g., for social media or information

dissemination [21], in the absence of any network infrastructure. In our simulated

application, an opportunistic network would allow users to participate and generate

or share content in a online social network even when accessing an infrastructure

network is impractical, e.g., due to cost, political interference or lack of coverage.

3.2. Privacy threats in an opportunistic network

Forwarding data in an opportunistic network relies on participation by nodes

in the network to route messages for each other. But if all such nodes are expected

to act as routers, and some of these nodes may be untrusted, many possible privacy

threats are introduced that may not exist in a traditional infrastructure network. For

instance:

3http://www.twitter.com/
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• Message contents may be disclosed, enabling them to be read by unintended

parties. This threat may be mitigated with encryption, if the sender and

destination are able to agree on encryption keys [22].

• Messages may be traced as they progress through the opportunistic network,

allowing an attacker to infer communication patterns [23]. The attacker

would not necessarily need to be able to read the plaintext messsage body to

perform this attack: eavesdropping on multiple encounters, and being able

to detect that the same message was transmitted during each encounter (e.g.,

with transmission of the same encrypted text, or through matching headers),

would be sufficient.

• Social network information is commonly used in opportunistic networks to

inform routing decisions [24, 25, 26]. This social network information may

be leaked via the routing scheme [27]. Learning the messages’ header infor-

mation, rather than the potentially end-to-end encrypted message bodies, is

the target of this privacy threat.

• Locations of the participants may be inferred from the messages which their

mobile devices carry — whether in absolute terms (“Alice is at the super-

market”), or relative terms (“Alice and Bob were in the same location this

afternoon”) [27].

Some of these privacy concerns may be mitigated by technical measures, such

as encryption. Even though a public key infrastructure may not be well-suited

to opportunistic communications [28], decentralised mechanisms such as identity-

based cryptography [22] — where the identity of each node acts as a key — may

allow cryptographic solutions to some of the privacy risks. For example, if all

pairs of nodes can communicate securely, then reading the contents of messages,

or tracing message progression through the network by eavesdropping multiple

encounters, becomes much more challenging.

But even identity-based cryptography requires a global trusted third party to

vouch for new nodes entering the network (by generating the necessary private

keys). This may not be feasible for certain types of opportunistic network such as

those in rural or challenged environments, as access to the wider Internet may not

be possible before encountering a new node. In such scenarios, it may be possible

to employ simpler decentralised techniques, such as obfuscating information at the

routing protocol or application layer [27], or utilising trusted social contacts [28].

3.3. Location privacy

In addition to the privacy threats caused by opportunistic networking, the use

of location-based services over such a network introduces additional privacy con-
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cerns. Location privacy has been studied in various contexts, such as sensor net-

works [29]; pervasive computing applications [30, 31]; and indeed opportunistic

networks [32]. The focus of this research, however, has been on investigating

the trade-offs involved in the protocols which work to preserve privacy, rather than

considering how users’ own privacy-preserving behaviours may affect network per-

formance, as we study in this paper.

Many user studies have been conducted to collect real-world data about users’

location privacy preferences [13, 33, 34]. More recently, the website “Please Rob

Me”4 gathered publicly-available information from the social network sites Twit-

ter and FourSquare in order to infer whether or not a person was at their home

address [35] — further raising awareness of these potential privacy threats.

In the context of publishing sensed location information, various obfuscation

techniques have been proposed [36, 37, 38]. User studies have also been performed

to determine how users respond to various types of obfuscation [39]. But the focus

has been on anonymity, rather than the performance of a distributed system.

4. User study methodology

To simulate mobile network performance in environments where users are sub-

ject to the potential privacy threats outlined in Section 3, we require a model of

users’ privacy behaviour. There are two ways to obtain such a model. First, sim-

ilarly to the commonly-used random waypoint mobility model [40], we could use

a synthetic model generated according to mathematical properties. Such synthetic

models are useful for simulation since they may be easy and tractable to generate,

but may have limitations or rely on unrealistic assumptions, as outlined in Sec-

tion 2. A second option, therefore, is to build a model based on measurements of

actual user behaviour. To develop such a model, we measured privacy behaviour

by performing a user study which investigated the location-sharing privacy prefer-

ences of 80 users of the popular Facebook SNS.

The overall purpose of our user study was to determine how widely participants

would accept their current locations being broadcast to their friends online. Would

a participant be happy to share some locations to the whole world, while others

to selected friends only or to nobody at all? Are some participants more inclined

to share their locations than other participants? Can we quantify location-sharing

behaviours? Our second goal was to investigate the differences between a real and

simulated network application, and so participants were divided into two groups,

4http://pleaserobme.com/
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one of whom actually shared their locations with their Facebook friends, and one

of whom did not.

Participants in the experiment carried a location-sensing mobile phone for one

week of their day-to-day lives. Due to resource constraints — we had 20 mo-

bile phones available, but 80 participants — the user study took place over four

one-week runs, each with 20 participants. Two of the runs were conducted in St

Andrews, a small town in the United Kingdom, and to ensure against bias from lo-

cale size, the other two runs were in London, the largest city in the UK. Participants

were drawn from the undergraduate student population in both towns. We delib-

erately selected students who were not studying Computer Science (so that they

would not be known by us), and who self-reported themselves as daily Facebook

users. Further experimental details can be found in [41, 42].

Each participant was prompted up to 20 times per day to choose how widely

their current location could be published on Facebook — to everyone, to some or

all of their Facebook social contacts (“friends”), or to nobody at all. Optionally,

they could ignore the prompts. A total of 4,334 prompts were sent, which resulted

in 2,064 replies (a 47.6% response rate).

During each of the runs, half of the participants (10/20) were assigned at ran-

dom to the real group, and half to the simulation group. Participants in the real

group had their locations published to Facebook, visible to their social contacts ac-

cording to their chosen preferences. Participants in the simulation group were able

to see on Facebook the information which would have been published, but this was

not disclosed to any of their social contacts.

We informed participants to which group they were assigned at the beginning

of each run. Although we considered running a blind experiment, where partici-

pants would not be told to which group they were assigned, we decided to make

the group explicit to participants. This is in order to allow comparison of the sim-

ulation group participants’ behaviour with that of participants in prior simulation-

only studies, such as [13], where all participants used a simulated system, and were

aware of this fact throughout.

By analogy to existing location-sharing applications, and the publicity sur-

rounding information leakage (see Section 3.3), we believe that privacy choices

for location-sharing behaviour when broadcasting locations via Facebook will not

be dissimilar to those for an opportunistic network participant. As outlined in Sec-

tion 3.2, one of the privacy risks associated with participation in an opportunistic

network is the loss of location privacy. Should privacy threats due to informa-

tion leakage in a real opportunistic network deployment receive similar publicity

to similar threats in extant systems, then we believe that these location-sharing

choices will converge to those for location broadcast, as we have measured in this

user study. We can therefore use the results of this study to develop our privacy
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model for opportunistic network behaviour.

5. A synthetic privacy model

As discussed in the previous section, we are interested in simulating privacy

behaviour in mobile opportunistic networks. To first do this, we consider a syn-

thetic privacy model. Such synthetic models are widely used in mobile networking

research, such as the random waypoint mobility model. In this section, we ex-

tend the epidemic routing protocol [43] for opportunistic networks with a simple

synthetic privacy model.

In epidemic routing the network is flooded with messages, by nodes exchang-

ing messages in the message buffers of other nodes that they encounter, during each

and every such encounter. We introduce a synthetic privacy model to this by as-

suming that nodes do not always exchange messages in every encounter, but would

rather exchange messages during an encounter only with some fixed probability;

this probability is a parameter of the synthetic privacy model. For example, with

the probability parameter of 40%, in a given encounter two nodes would exchange

the contents of their message buffers with one another with probability 40%; else

no messages would be exchanged. Similarly, if the probability parameter was set

to 0%, this would imply that nodes cared so much about their privacy that they

refused to share data with any other nodes.

To evaluate the performance of opportunistic networks employing this syn-

thetic privacy model with varying probability parameter, we use trace-driven sim-

ulation.

5.1. Datasets

We use two real-world datasets:

1. The LocShare dataset [44]. As described in Section 4, we collected the lo-

cations of 80 participants during four one-week runs of 20 participants. By

defining an encounter as occurring when two participants are within 10 me-

tres — selected as this is the approximate average Bluetooth range — we

obtain a trace of encounters between participants. We use the Facebook lists

of friends, as provided by participants, to determine a social network for each

participant.

2. The Reality Mining dataset [45]. In this well-known dataset collected at

MIT, 97 university members carried mobile phones during their daily lives

over the course of an academic year. The phones recorded the results of peri-

odic Bluetooth scans. As in [2, 27], we define Bluetooth encounters between
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participant devices as opportunities for message exchange in an opportunis-

tic network, and use each mobile phone’s address book to determine a social

network for each user.

5.2. Simulation parameters

In line with our previous work [2], we use the following set of parameters for

our simulations:

• Confidence intervals plotted based on 100 runs per data point.

• 100 messages per run.

• Unicast messages, sent from a sender node to one of the sender’s social net-

work neighbours (friends). Note that although messages are unicast (des-

tined for one particular recipient), the messages may follow multiple paths

through the network in order to reach that destination.

• A message time-to-live (TTL) of one day.

• One week per simulation.5

• Infinite buffers and infinitely-fast transmission.6

We consider probability parameters for the synthetic model from 0% to 100%,

in steps of 20%.

5.3. Results

Figures 1–2 show the performance of the network, as measured by two commonly-

used metrics [24]:

• Delivery ratio: proportion of delivered messages, out of the total number of

unique messages generated.

• Delivery delay: time taken for a message to first reach its destination.

5For LocShare, there are four one-week parts to the dataset; we therefore simulate 25 runs with

each of the four one-week parts to make up the 100 runs for each datapoint. For Reality Mining, we

pick a random one-week interval for each of the 100 runs — but, following [2, 27], we select only

one-week intervals where there are sufficient numbers of nodes present for non-trivial routing to be

possible.
6Our goal is to investigate the performance impact of privacy, so we do not set arbitrary con-

straints on buffer size or transmission rate, as these may confound the results.
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Figure 1: Delivery ratio and delay for the LocShare dataset under the synthetic privacy

model. Delivery ratio varies widely based on the chosen probability parameter. Paradox-

ically, delivery delay is reduced when data are less likely to be exchanged during each

encounter; successfully-delivered messages necessarily take shorter paths to their destina-

tion, since message exchange is unlikely during each encounter.

Figure 1a shows that routing performance, as measured by delivery ratio, for

the LocShare dataset is significantly dependent on the probability parameter of the

synthetic privacy model. As we might expect, when the probability parameter

is 0%, messages are never exchanged during encounters, so the delivery delay

falls to zero. Conversely, at 100%, performance is as for epidemic routing, since

all possible messages are shared. Between these two extremes, there is a wide

variation in the delivery ratio based on the parameter chosen, although it takes a

value of 40% before any substantial message delivery is achieved.

Figure 1b shows that delivery delay is, paradoxically, reduced when messages

are less likely to be exchanged during each encounter. By comparing with Fig-

ure 1a, we believe that this may be an artifact of the low delivery ratio: delivery de-

lay is only considered for those messages which are successfully delivered. When

the number of messages delivered is low, there is a survivor bias: the successfully-

delivered messages necessarily take a shorter path to the destination, when message

exchange is unlikely during each encounter.

A similar delivery ratio result holds for the Reality Mining dataset, as shown in

Figure 2a. There is again a wide variation in delivery ratio, between the extremes

of zero and epidemic routing’s performance, based on the probability parameter.
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Figure 2: Delivery ratio and delay for the Reality Mining dataset under the synthetic model.

Similarly to the LocShare dataset (Figure 1), there is a wide difference in delivery ratio

based on the chosen probability parameter. Delivery delay does not significantly change.

This may be an artifact of the sparse encounter trace: any successfully-delivered message

will necessarily take approximately the same, small, number of hops.

The delivery delay, however, appears from Figure 2b to be independent of the

probability parameter. A possible explanation is the sparseness of the Reality Min-

ing dataset. Any successfully-delivered message would necessarily take approxi-

mately the same, small, number of hops — and so all messages would be delivered

with similar delays. This may thus be a survivor bias, similar to Figure 1a, but as

exhibited by a sparse dataset.

Since there is wide variation in the performance of the network based on the

probability parameter for the synthetic model, what would be the performance of

a real network? A limitation of the synthetic model is that there is no obvious cri-

terion for choosing the probability parameter to use; delivery performance is not

an intrinsic property of the dataset, but dependent on users’ propensity to share.

In other words, performance will depend on how we model users’ privacy prefer-

ences. We therefore now consider a more realistic privacy model derived from our

real-world user study.

6. An empirical privacy model

To obtain a privacy model that is more realistic than the simple synthetic model

explored in Section 5, we use privacy preferences determined from real users dur-
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Category Proportion in category
Location sharing choice

Nobody Friends Everyone

Open 18% (7/40) 5.2% 7.7% 87.1%

Social 45% (18/40) 9.7% 80.5% 9.7%

Closed 28% (11/40) 72.1% 20.3% 7.6%

Variable 10% (4/40) 33.3% 29.6% 37.2%

Table 1: Real group (n = 40). Rows may not add up to 100% due to rounding.

Category Proportion in category
Location sharing choice

Nobody Friends Everyone

Open 20% (8/40) 10.0% 3.9% 86.1%

Social 53% (21/40) 5.8% 75.4% 18.8%

Closed 18% (7/40) 67.0% 20.5% 12.6%

Variable 10% (4/40) 32.2% 36.4% 31.4%

Table 2: Simulation group (n = 40). Rows may not add up to 100% due to rounding.

ing the user study discussed in Section 4 to create an empirical privacy model. To

study the differences between simulated and real applications, we further consider

the participants in the real and simulation groups separately.

As is common in other privacy models [46], we segment the participants of

each group into categories according to their privacy behaviour, i.e., their responses

to the prompted questions (see Tables 1–2). We define four categories:

• Open: Participants usually shared their location publicly with everyone, in

over 50% of responses.

• Social: Participants usually shared their location with some or all of their

Facebook friends, in over 50% of responses.

• Closed: Participants usually did not share their location to anybody at all, in

over 50% of responses.

• Variable: Participants did not have consistent location-sharing behaviour.

They would sometimes share with nobody, with friends, and with everyone.

Note that, to a certain extent, all of our users had “variable” behaviour in that

they did not act consistently at every location (we explore the implications of this

further in [47]). Thus for the Open, Social and Closed groups, we consider a
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Figure 3: Proportion of participants in each category of the privacy model.

participant to be a member of this group if their behaviour is consistent with this

group in over 50% of their sharing activity, i.e., their responses to questions.

For each of the four categories, we calculate the mean of the users’ location

sharing choice proportions (nobody, friends or everyone) by user, in order to obtain

Tables 1–2. Using these statistics, we can construct privacy models for users’

location sharing preferences, for each of the two groups of users. These privacy

models are dataset-independent, and so may be applied to a variety of datasets for

opportunistic network routing simulations. While it may be possible to construct

more sophisticated models [17], our purpose here is to examine the differences

in models between real and simulated applications, and so we limit ourselves to

simple statistical models for now.

Figure 3 shows a visualisation of the relative number of participants in each

of the four categories, for the real and simulation groups. The distribution of par-

ticipants across the categories is generally similar between the real and simulation

groups. As one might expect, most of our social network users were indeed social,

and were willing to share with some or all of their Facebook friends. Smaller pro-

portions were either more open or closed than this, or acted in a variable fashion.

Note, however, that participants in the real group seemed more privacy-concerned

than those in the simulation group: more participants in the real group were as-

signed to the privacy-concerned Closed category, and fewer to the less-privacy-

concerned Open and Social categories, than in the simulation group. This might

also be expected; participants might have taken more care about sharing their in-
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formation if they knew that information was actually being shared on Facebook,

and so acted in a more privacy-conscious, and perhaps more realistic, fashion.

We can now apply these privacy models for the two groups to opportunistic

network simulations, in order to examine to what extent these differences in privacy

behaviour affect routing performance.

7. Simulation results

To study the impact of simulated and real social networking applications on

opportunistic network routing, we perform trace-driven simulations with the em-

pirical privacy models, using the same datasets and simulation parameters as in

Section 5.

At the start of each simulation run, each node (i.e., simulated participant) is

allocated to one of the categories (open, social, closed, variable) for the duration

of the run. We perform simulation for three methods of category allocation:

• Central nodes closed: Similarly to [48], we make use of the finding that

the altruism (i.e., willingness to participate in message forwarding) of high-

degree nodes is most important for network performance [49], to highlight

any performance impact from the privacy models in our simulations. We

rank nodes from highest to lowest degree-centrality in the encounter graph,

and assign nodes in order to the closed, social, variable and open categories

— with the number of nodes in each category according to the proportional

size of the category in the privacy model. Higher-degree nodes are therefore

less likely to forward messages, since they are assigned to the less open

categories — which is analogous to behaving less altruistically — and so

any performance impact due to the privacy model is maximised.

• Central nodes open: As a baseline, we perform simulations with the opposite

allocation strategy to central nodes open. The nodes are ranked from lowest

to highest degree-centrality (the reverse ordering to Central nodes closed),

and then allocated to categories as before. The lowest-degree nodes are then

less likely to forward messages, while the highest-degree nodes are more

likely to do so.

• Random category allocation: As a further baseline, nodes are assigned ran-

domly to categories, with allocation probability proportional to the size of

each category. Centrality is not considered in the allocation process.

Algorithm 1 shows pseudocode for these three category allocation methods.
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Algorithm 1 Nodes’ category allocation

1: if allocation scheme == ‘random’ then

2: for all node in nodes do

3: node category← random category (weighted by category size)

4: else

5: ordered nodes stack← []
6: if allocation scheme == ‘central nodes closed’ then

7: ordered nodes stack← [nodes ordered by descending centrality]

8: else if allocation scheme == ‘central nodes open’ then

9: ordered nodes stack← [nodes ordered by ascending centrality]

10: for all category in categories do

11: wanted category size[category]←
num nodes∗ proportional size[category]

12: while node← pop ordered nodes do

13: for all category in [closed, social, variable, open] do

14: if num in category[category]< wanted category size[category]
&& node category is unassigned then

15: node category← category

Following [2], we define two modes of privacy behaviour to apply the privacy

models for the real and simulation groups to our opportunistic network simula-

tions. While it is possible to think of many more behaviours, we believe that two

modes are sufficient for investigating the impact of privacy. Previous work has

also demonstrated that a constrained number of privacy choices is a usable com-

promise for privacy policies for ubiquitous computing environments [50]. Our

chosen modes are:

• Friendly (F): Nodes are modelled as being willing to share with their social

network friends. If the overall privacy choice is everyone, then the nodes

behave as in the default case; if nobody, then messages are not exchanged;

if friends, then as the default case only if the two nodes involved in this

encounter are friends (otherwise messages are not exchanged).

• PubPriv (PP): Nodes are modelled as either being fully public (no privacy

concerns), or fully private (any privacy concerns result in disregarding the

encounter) — with nothing in-between. If the overall privacy behaviour dur-

ing an encounter is everyone, then messages are exchanged as in the default

case. Otherwise (i.e., if the overall privacy behaviour is friends or nobody),

messages are not exchanged.
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During each encounter between a pair of nodes, each of the two nodes ran-

domly picks a privacy behaviour of {nobody, f riends,everyone}, weighted ac-

cording to the location-sharing proportions associated with that node’s category.

Messages are then exchanged depending on the chosen privacy behaviours for that

encounter. The overriding choice is the more restrictive of the two nodes’ privacy

behaviours. For example, if one node picks nobody and the other picks everyone,

then the overall choice is the more restrictive nobody.

Algorithm 2 shows pseudocode for the logic behind choosing whether mes-

sages are exchanged between nodes during each encounter, for each of the privacy

modes.

Algorithm 2 Decision: exchange messages during encounter

procedure Encounter(nodeA, nodeB)

1: {The weighting of the privacy behaviour random choice is specified by the

privacy model. Random weighting according to each node’s previously allo-

cated category.}
2: privacy behaviour[nodeA]← random choice of {nobody, friends, everyone}

weighted by weightings for node category[nodeA]
3: privacy behaviour[nodeB]← random choice of {nobody, friends, everyone}

weighted by weightings for node category[nodeB]
4: overall privacy behaviour ← more restrictive privacy choice of nodeA or

nodeB

5: if mode == Friendly then

6: if (overall privacy behaviour == everyone) ||
(overall privacy behaviour == friends && are f riends(nodeA,nodeB))
then

7: messages are exchanged

8: else if mode == PubPriv then

9: if overall privacy behaviour == everyone then

10: messages are exchanged

Figure 4a shows that, when magnifying differences between privacy models

with the Central nodes closed allocation scheme, the Friendly mode delivery ra-

tio for the real group model is significantly lower than for the simulation group’s

model (0.5% vs 3.5%).7 For the stricter PubPriv mode, the median delivery ratio

7Note that these low delivery ratios, in absolute terms, are typical of opportunistic network routing

simulations: the datasets used, while collected from real-world users, are from experimental settings

that are not as highly-connected or dense as we would expect in a real large-scale deployment.
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Figure 4: LocShare dataset: Delivery ratios for the real group and the simulated group,

for two privacy models under three allocation methods. When magnifying differences (the

Central nodes closed allocation scheme), under the Friendly mode, the delivery ratio for the

real group model is significantly lower than for the simulation group model (0.5% vs 3.5%).

Under the stricter PubPriv model, the delivery ratio for both groups is zero. As expected,

when central nodes act increasingly openly in the baseline simulations, absolute delivery

ratios increase. For these baseline simulations, delivery ratios are generally similar across

real and simulation groups’ models — except for the PubPriv mode under the Random

allocation, where a similar trend is visible (0.0% vs 2.0%).
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Figure 5: LocShare dataset: Delivery delay comparison between the privacy models of the

real and simulated groups. The trend is similar across all three category allocation methods:

there is no significant difference in delivery delay between the real and simulation group

privacy models, with wide overlap between the bars. Since delivery delay is only measured

for the few messages that arrive, paradoxically the delay may be lower for the PubPriv

mode than the Friendly mode for both groups’ privacy models, but is similar between

models.
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Figure 6: Reality Mining dataset: Delivery ratio comparison between the privacy models

of the real and simulated groups. Performance is generally similar between the real and

simulation groups’ privacy models, with large overlap between the boxes. A difference is

pronounced only for the PubPriv dataset in the Random allocation scheme, as seen with

the LocShare dataset.
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Figure 7: Reality Mining dataset: Delivery delay comparison between the privacy models

of the real and simulated groups. As for the LocShare dataset, the delivery delay is not

significantly changed between the real and simulation groups, for either mode across any

of the three allocation methods — with the exception of the paradoxically low PubPriv

delivery delay for the real group under the Central nodes closed allocation scheme, due to

the low delivery ratios.
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under both models is zero. As would be expected, when central nodes act in-

creasingly openly in the baseline simulations (Figures 4b–4c), the absolute deliv-

ery ratios increase. For these baseline simulations, the delivery ratios are generally

similar across real and simulation groups’ models — except for the PubPriv mode

under the Random allocation, where a similar trend is visible (0.0% vs 2.0%).

There is a wide variation in delivery delay, as shown in Figures 5a–5c. But

performance is not significantly different between the real and simulation group

privacy models, with wide overlap between the bars for each privacy mode and al-

location scheme. Only when magnifying differences, in Figure 5a, is performance

is again poorer under this metric for the simulations utilising the real group’s pri-

vacy model: under the Friendly privacy mode, median delivery delay rises from

3 hours for the simulation group to 6 hours for the real group. For the PubPriv

privacy mode the delivery ratios are so low that, as for Figure 3, the corresponding

delivery delays are paradoxically low.

For the Reality Mining dataset, Figure 6a shows that the differences in deliv-

ery ratio between corresponding simulations utilising the real group and simulation

groups’ privacy models are relatively smaller: the boxes overlap. As for the Loc-

Share dataset, however, the median delivery ratio under the Friendly mode is lower

for the real group as compared to the simulation group (3% vs 5%), and for the

PubPriv mode is zero in both cases. The baseline simulations (Figures 6b–6c) dis-

play the same trend, with similar performance for the real and simulation groups’

privacy modes. Only for the PubPriv dataset in the Random allocation scheme is

there a significant difference (1.0% vs 4.0%), as for the LocShare dataset.

Correspondingly, delivery delay is not significantly changed between the real

and simulation group models: Figures 7a–7c show that the median delivery delay

is constant at approximately four hours for each of the real and simulation groups’

privacy models, for each privacy mode and category allocation scheme. The one

seemingly significant difference, for the PubPriv mode in Figure 7a, is, as for the

LocShare dataset, an artifact of the low delivery ratios.

8. Conclusions and future work

Simulation is a useful method for developing future network protocols where

the construction and modification of such networks may prove impractical. But

future networks may also used by future applications, which may similarly not

exist and therefore also need simulation. If assumptions about user behaviour in

these applications are unrealistic, then this may have an impact on the credibility

of any simulation results.

In this paper we have studied the interplay between real and simulated applica-

tions in user studies and their effect on simulations at the network layer, in partic-
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ular in a mobile opportunistic network. First, we find that assumptions about user

behaviour do indeed have a huge impact on network performance. If we consider

privacy behaviour, performance (as measured by delivery ratio) in an opportunistic

network can fall to zero, implying that the network is useless. Second, different

assumptions about behaviour can also have an impact. When we compare a syn-

thetic privacy model to a empirically-determined privacy model derived from real

user behaviour in a user study, we find dramatically different levels of network

performance. Finally, we find that models derived from real and simulated ap-

plications do not seem to differ greatly in their impact on network performance.

When performing simulations without magnifying any differences between these

privacy models by choosing well-connected nodes with high degrees to act more

privacy-concerned, we did not observe any significant different in network perfor-

mance across the real and simulation group models. We did, however, observe

differences based on the privacy model, and the allocation scheme for which nodes

should be considered privacy-concerned. We believe that simulated applications

may thus be used as a reasonable predictor of how users’ privacy behaviour may

affect networks.

Our results suggest some simple guidelines for researchers who wish to con-

duct realistic network simulations:

• First, use models based on real user behaviour to drive application-layer be-

haviour in network-layer simulations.

• Second, if real applications do not exist or are impractical, use simulated

applications to obtain information about user behaviour.

The empirical privacy models that we present have been developed to be dataset-

independent, and we have applied them to two real-world traces. That said, we have

not tested whether our results generalise and so our guidelines should be taken with

caution. In fact, it may not be possible to exhaustively test whether our results

generalise, as this would involve a huge number of user studies with a variety of

applications in a variety of real-world scenarios.

In this paper we present results for one routing protocol, epidemic, with added

privacy models. We have also performed similar simulations with another routing

protocol, simple social network routing [2], and observed the same trends, but due

to space constraints, we have not included the plots in this paper.

We have studied a particular application (a mobile social location-sharing ap-

plication), and a particular type of network (a mobile ad hoc opportunistic net-

work). Future work will be needed to conduct user studies in other types of real

and simulated applications, and models compared and applied to different network

types.
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In addition to further applications and types of network, our existing dataset

requires further investigation. We plan to investigate more sophisticated privacy

models. For instance, is there a correlation between privacy preferences and the lo-

cation of an encounter? We have also assumed that the privacy behaviour of heavy

Facebook users corresponds to that of (potentially-pseudonymous) opportunistic

network users. Future work needs to be conducted to test whether this assumption

holds. At the same time, more complex scenarios might also change behaviour; for

example, other privacy modes beyond the two that we identified. Moreover, more

complex privacy-preserving protocols, which may alleviate users’ location privacy

concerns (and hence reduce the impact on performance from user behaviour) by

preserving privacy, but potentially at a performance cost from the protocol itself,

might also change user’s privacy behaviour.

Future work may also consider performance of the network, on adding privacy

modes, under metrics other than delivery ratio and delay. Since delivery ratios were

so low, we found that — paradoxically — reduced performance under the metric

of delivery ratio may lead to seemingly-improved performance under the metric of

delivery delay.

A potential limitation of our privacy models is that we asked users for their

preferences to disclose their exact location — to the accuracy of a GPS sensor.

Should location information be leaked via participation in opportunistic networks,

then perhaps only coarser locations may be discoverable by other users. Since

coarse locations introduce a degree of obfuscation, thus implicitly providing users

with increased privacy [39], we would like to investigate how user preferences may

vary depending on the granularity of their shared location, within the context of an

opportunistic networking application.

On the other hand, a strength of our privacy models is that they are dataset-

independent, and so may be applied to other datasets, or scenarios beyond op-

portunistic network routing. So it would be possible for researchers to use these

models as input to other performance evaluations, to build upon our evaluation.

If users’ location privacy concerns can have such an impact on opportunis-

tic network performance, might other privacy concerns (for example, about some

malicious node gathering and broadcasting information, or the possibility of the

revelation of users’ friends lists [27]) also have a performance impact? To find

out, we need to obtain reliable data on other types of privacy concerns in these

networks. More data on encounters would also be useful: existing datasets used to

evaluate opportunistic network protocols are relatively small-scale compared to the

population of a town or city; perhaps evaluation against a larger-scale (and hence

perhaps more-highly-connected) dataset would yield new insights. We are search-

ing for such datasets. We are sharing the dataset used here through the CRAWDAD

wireless data archive [44] and encourage other researchers to do the same so that
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we can further evaluate our protocols.
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