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Abstract. Given a compact subset F of R2, the visible part VθF of F from
direction θ is the set of x in F such that the half-line from x in direction θ
intersects F only at x. It is suggested that if dimH F ≥ 1, then dimH VθF = 1
for almost all θ, where dimH denotes Hausdorff dimension. We confirm this
when F is a self-similar set satisfying the convex open set condition and such
that the orthogonal projection of F onto every line is an interval. In particular
the underlying similarities may involve arbitrary rotations and F need not be
connected.

1. Introduction

The concept of ‘visibility’ has been studied for many years. Nikodým [8] con-
structed a remarkable ‘linearly accessible set’, that is, a plane Lebesgue measurable
subset F of the unit square of full measure 1 such that for each x ∈ F there is
a straight line L with F ∩ L = {x}; in other words, each point of F is visible
from two (diametrically opposite) directions. In the realm of convex geometry,
Krasnosel′skii’s theorem provides an elegant criterion for the entire boundary of a
compact subset of R2 to be visible by direct line of sight from an interior point;
see [2] for a survey of this area. More recently, the nature of the visible parts of
fractals has been considered, with the question of the Hausdorff dimension of the
visible parts attracting particular interest [1, 5, 9, 10].

There are two (related) approaches: given a set F ⊂ R
2 one can consider the

subset of F that is visible from a point x (that is, the subset of F that may be
joined to x by a line segment intersecting F at no other points). Alternatively, the
visible part may be considered with respect to a direction θ. In this case the visible
set of F is the subset of F from which the half-line in direction θ does not intersect
F in any other points. We adopt the latter approach here.

The relationship between the Hausdorff dimension of F and its visible subsets
from various points or directions is of particular interest. It has been suggested
that if F has Hausdorff dimension greater than 1, then the Hausdorff dimension of
the visible subset is 1 from almost all points and from almost all directions. This
has been established for certain classes of sets, and here we address this question
for a class of self-similar subsets of the plane.
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2 KENNETH J. FALCONER AND JONATHAN M. FRASER

For a unit vector θ ∈ R
2 we define lθ to be the half-line from the origin in the

direction θ:

lθ = {rθ : r ≥ 0}.

Let Πθ = {x : x ·θ = 0} be the linear subspace perpendicular to θ and projθ : R2 →
Πθ be the orthogonal projection onto Πθ.

Definition 1.1. For a compact set F ⊂ R
2 the visible part of F from the direction

θ is

VθF =
{
x ∈ F : (x+ lθ) ∩ F = {x}

}
.

There are natural generalisations of visibility to higher dimensions, but we do not
discuss these here; see [5].

The Hausdorff dimensions of projections of sets are summarised in Marstrand’s
projection theorem; see [3, 7]. We write dimH and dimB to denote Hausdorff and
box-counting dimension.

Theorem 1.2. Let F ⊂ R
2 be a Borel set.

(a) If dimH F ≤ 1, then dimH projθF = dimH F for Lebesgue almost all θ.
(b) If dimH F > 1, then dimH projθF = 1 for Lebesgue almost all θ.

Since dimH projθF ≤ dimH VθF ≤ dimH F for all θ, part (a) implies that if
dimH F ≤ 1, then dimH VθF = dimH F for Lebesgue almost all θ. If dimH F > 1,
then (b) implies that dimH VθF ≥ 1 for almost all θ and in many cases there is
equality here for almost all θ. Thus one is tempted to make the following conjecture.

Conjecture 1.3. If F is a compact subset of R2 and dimH F ≥ 1, then dimH VθF =
1 for Lebesgue almost all θ.

This has been verified for several classes of fractals. Simple arguments, for exam-
ple using rectifiability (see [5]), show that graphs of functions satisfy Conjecture 1.3
with the only exceptional direction being perpendicular to the x-axis. The conjec-
ture holds for quasi-circles; see [5]. The paper [5] also addresses certain connected
self-similar sets for which the group generated by the rotational part of the simi-
larity transformations is finite, as well as some disconnected sets, for example for
four-corner Cantor sets with contraction ratios between 1

3 and 1
2 . In [1] it is shown

that if F is the random set obtained from the fractal percolation process, then
the conjecture holds almost surely. For an upper dimension bound, the part of a
compact connected set F that is visible from a point x has Hausdorff dimension at

most 1
2 +

√
dimH F − 3

4 for almost all x ∈ R
2; see [9].

Here we give another class of sets for which Conjecture 1.3 holds. We show that
if a compact set F is self-similar and satisfies the convex open set condition and if
projθF is an interval for all θ, then the Hausdorff and box-counting dimensions of
the visible part VθF equal 1 for all θ. In particular, we allow the group generated
by the rotational part of the similarity transformations to be infinite and we do
not require F to be connected (although the projection condition is automatically
satisfied when F is connected and not a line segment).
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2. Main results

Let {Si}Ni=1 be an iterated function system (IFS) consisting of contracting simi-
larity transformations of R2. The well-known result of Hutchinson (see [3, 4]) states
that there exists a unique non-empty compact set F satisfying

F =
N⋃
i=1

Si(F ).

The set F is termed the attractor of the IFS and in our case, where the {Si} are
similarity transformations, F is termed self-similar. We write H for the convex hull
of F ; clearly H is compact.

Recall that the IFS satisfies the open set condition if there exists a non-empty
open set O such that

(2.1)

N⋃
i=1

Si(O) ⊆ O

with the union disjoint. (The open set condition guarantees that the Hausdorff
dimension of the attractor F equals its similarity dimension; see [3, 4].) If we can
find a convex open set satisfying (2.1) we say that the IFS satisfies the convex open
set condition; it is easy to see that if this is the case, we can always take the open
set O to be the interior of the convex hull of F (provided F is not a subset of a
line), so that (2.1) becomes

(2.2)

N⋃
i=1

Si(intH) ⊆ intH

with the union disjoint. Indeed, since the inclusion in (2.2) is automatic when H is
the convex hull of the attractor F , the convex open set condition is equivalent to
the sets {Si(intH)}Ni=1 being disjoint.

Theorem 2.1. Let {Si}Ni=1 be an IFS of similarity transformations on R
2 which

satisfy the convex open set condition, with attractor F . Suppose that projθF is an
interval for all θ. Then

dimH VθF = dimB VθF = 1

for all θ.

If F is connected, then projθF is always an interval, so the following corollary is
immediate.

Corollary 2.2. For every connected self-similar set F ⊂ R
2 for which the convex

open set condition holds,

dimH VθF = dimB VθF = 1

for all θ.

If we are only interested in visibility from certain directions; the condition that
projθF is an interval can be weakened if the group generated by the rotational
part of the similarity transformations is finite. Let G be the subgroup of the
orthogonal group O(2) generated by the rotational or reflectional components of
{Si}Ni=1 (regarding each similarity Si as a composition of a homothety (i.e. a
similarity with no rotational component) and a rotation or reflection).
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Theorem 2.3. Let {Si}Ni=1 be an IFS of similarity transformations on R
2 which

satisfy the convex open set condition, with attractor F . Suppose that the subgroup
G is finite. Let θ be a given direction and suppose that projg(θ)F is an interval for
all g ∈ G. Then

dimH VθF = dimB VθF = 1.

In particular, if each Si is a homothety so that G is the trivial group, we only need
projθF to be an interval for the direction θ of the projection under consideration.

3. Proofs

We may assume throughout that F is not a subset of a straight line. Write
{ri}Ni=1 for the contraction ratios of {Si}Ni=1 and let rmin = mini ri and rmax =
maxi ri. We index sets in the construction of F and the points in F in the usual
way. We write Σ∞ to denote the sequence space defined by

Σ∞ = {(i1, i2, i3, . . . ) : 1 ≤ ij ≤ N for all j}

and Σk to denote the corresponding sequences of length k:

Σk = {(i1, i2, . . . , ik) : 1 ≤ ij ≤ N for all j = 1, . . . , k},

and

Σ =
⋃
k∈N

Σk

for the set of all finite sequences.
For i = (i1, . . . , ik) ∈ Σk we write Hi = Si(H) ≡ Si1 ◦ · · · ◦ Sik(H), so that

{Hi}i∈Σk are the kth-level sets in the usual construction of F from the iterated
images of H. Then the map x : Σ∞ → F ,

x(i1, i2, i3, . . . ) =
∞⋂
k=1

Si1 ◦ · · · ◦ Sik(H),

is surjective but not necessarily bijective.

Lemma 3.1. For all i ∈ Σk and all directions θ,

(3.1) projθHi = projθ

N⋃
j=1

Hij .

Proof. Since projθF is an interval,

projθH = projθF = projθ

N⋃
j=1

SjF ⊆ projθ

N⋃
j=1

SjH ⊆ projθH,

taking the closure of (2.2). Taking similar images under Si gives (3.1). �

In particular, Lemma 3.1 means that once a point x ∈ F is ‘obscured’ when
viewed from the direction θ by some set Hi, it can never become ‘visible’ at a later
stage in the construction and hence cannot belong to VθF .

We now introduce the notion of (k, θ)-visibility to indicate which kth level sets
are visible from the direction θ.
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Definition 3.2. Let i = (i1, i2, . . . , ik) ∈ Σk and let θ be a direction. The kth-level
set Hi is (k, θ)-visible if there exists a point x ∈ Hi such that

(x+ lθ) ∩
⋃

j∈Σk

Hj = {x}.

For k = 0, 1, 2, . . . define V k
θ = {i ∈ Σk : Hi is (k, θ)-visible}.

The sets indexed by V k
θ provide covers for the VθF which will eventually give

the upper bounds for the dimensions.

Lemma 3.3. For all θ,

(3.2) VθF ⊆
∞⋂
k=1

⋃
i∈V k

θ

Hi.

Proof. For each k, if x ∈
⋃

i∈Σk\V k
θ
Hi for some k, it follows using Definition 3.2

and applying Lemma 3.1 repeatedly that x /∈ VθF . �

The following lemma relates the visibility of the Hi to the visibility of their
inverse iterates.

Lemma 3.4. Let θ1 be a direction, let k ∈ N and let i = (i1, . . . , ik) ∈ Σk. If Hi

is (k, θ1)-visible, then S−1
i1

Hi is (k − 1, θ2)-visible, where θ2 is the direction of the

half-line S−1
i1

lθ1 .

Proof. Let i = (i1, . . . , ik) ∈ Σk and suppose that Hi is (k, θ1)-visible. By definition
there exists a point x ∈ Hi such that

(x+ lθ1) ∩
⋃

j∈Σk

Hj = {x}.

Suppose

y ∈ (S−1
i1

x+ lθ2) ∩
⋃

j∈Σk−1

Hj .

Then

Si1y ∈ (x+ lθ1) ∩
⋃

j∈Σk

Hj ,

so Si1y = x and

y = S−1
i1

x ∈ S−1
i1

Hi

satisfies

(y + lθ2) ∩
⋃

j∈Σk−1

Hj = {y};

hence S−1
i1

Hi = Hi2,...,ik is (k − 1, θ2)-visible. �

For every line L in the plane and ε > 0, let Lε = {x ∈ R
2 : dist(x, L) ≤ ε} be

the infinite strip centered on L and of width 2ε. The following lemma bounds the
number of components {Si(H)} that overlap such strips.
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6 KENNETH J. FALCONER AND JONATHAN M. FRASER

Lemma 3.5. Let the convex set H contain a disc of radius a1 and be contained in
a disc of radius a2. For all ε > 0 let

(3.3) q(ε) =
|H|(2ε+ 4a2rmax)

π(a1rmin)2
,

where |H| is the diameter of H. Then for all lines L, the strip Lε intersects at most
q(ε) of the sets {Si(H) : 1 ≤ i ≤ N}.

Proof. Since the {Si} are similarity transformations, each Si(H) contains a disc of
radius a1ri ≥ a1rmin and is contained in a disc of radius a2ri ≤ a2rmax. If the strip
Lε intersects Si(H), then Si(H) ⊆ Lε+2a2rmax

. Thus if Lε intersects q of the sets
{Si(H) : 1 ≤ i ≤ N}, then, by comparing the areas of Lε ∩H with the areas of the
disjoint discs contained in each Si(H),

qπ(a1rmin)
2 ≤ |H|(2ε+ 4a2rmax). �

We now estimate the number of sets Hi that are (k, θ)-visible from intervals I
of lengths |I| = a contained in the linear space Πθ. For each k ∈ N, a > 0 and
direction θ, let

Nθ(k, a) = sup
I⊂Πθ:|I|=a

#
{
i ∈ Σk : there exists x ∈ Hi such that

(x+ lθ) ∩
⋃

j∈Σk

Hj = {x} and projθx ∈ I
}

and set

(3.4) N(k, a) = sup
θ

Nθ(k, a).

The following lemma gives an upper bound on the growth of N(k, a) with k.
Although we will ultimately only apply this result in the case a = |projθH|, the
inductive argument requires that we estimate N(k, a) for all a > 0.

Lemma 3.6. For all ε > 0 there exists a constant c such that

(3.5) N(k, a) ≡ sup
θ

Nθ(k, a) ≤ c(1 +Nε−1ka)λ(ε)k

for all a > 0 and all k ∈ N, where

(3.6) λ(ε) = max{q(ε), r−1
min}.

Proof. Fix ε > 0. We will proceed by induction on k. Note that (3.5) is trivially
true when k = 1 by taking a sufficiently large c. Assume (3.5) for k − 1 for some
k ≥ 2. We will show that (3.5) holds for k by considering two cases.

Case 1: a ≤ ε. Fix θ and let I ⊂ Πθ be an interval of length a ≤ ε. By
Lemma 3.5 no more than q(ε) first level sets contribute to Nθ(1, a). Denote these
sets by Si1(H), . . . , Siq(ε)(H) and suppose that the lengths of the orthogonal pro-
jections of the visible part of each of these sets onto Πθ are ai1 , . . . , aiq(ε) with

ai1 + · · ·+aiq(ε) = a. By transforming these first level sets back to H under S−1
ij

for

each j and scaling everything accordingly, we see that the number of kth level sets
that are visible in direction θ from I is no more than the sum of the numbers of
(k−1)th level sets visible from intervals of lengths aij/rij ≤ a/rmin in directions θij ,
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the direction of the half-line S−1
ij

lθ, using Lemma 3.4. Thus applying the inductive
assumption,

Nθ(k, a) ≤
q(ε)∑
j=1

Nθij
(k − 1, aij/rij )

≤
q(ε)∑
j=1

sup
θ′

Nθ′(k − 1, aij/rij )

≤
q(ε)∑
j=1

c

(
1 +Nε−1(k − 1)

aij
rij

)
λ(ε)k−1

≤ c
(
q(ε) +Nε−1(k − 1)

a

rmin

)
λ(ε)k−1

≤ c
(
1 +Nε−1(k − 1)a

)
λ(ε)k

≤ c(1 +Nε−1ka)λ(ε)k.

Taking the supremum over θ gives (3.5) when a ≤ ε.

Case 2: a > ε. Fix θ and let I ⊂ Πθ be an interval of length a > ε. Then
no more than N first level sets contribute to Nθ(1, a). Denote these sets by
Si1(H), . . . , Sis(H), where s ≤ N , and suppose that the lengths of the orthogo-
nal projections of the visible part of each of these sets onto Πθ are ai1 , . . . , ais
with ai1 + · · · + ais = a. Transforming these first level sets back to H and scaling
everything accordingly we have, as in Case 1,

Nθ(k, a) ≤
q(ε)∑
j=1

Nθij
(k − 1, aij/rij )

≤
s∑

j=1

sup
θ′

Nθ′(k − 1, aij/rij )

≤
s∑

j=1

c

(
1 +Nε−1(k − 1)

aij
rij

)
λ(ε)k−1

≤ c
(
s+Nε−1(k − 1)

a

rmin

)
λ(ε)k−1

≤ c
(
Nε−1a+Nε−1(k − 1)a

)
λ(ε)k since 1 < ε−1a

≤ c(1 +Nε−1ka)λ(ε)k.

Taking the supremum over θ gives (3.5) when a > ε. �

Thus the asymptotic growth of N(k, a) is at most of order λ(ε)k. This enables
us to obtain an upper bound for the dimension of the visible sets.

Lemma 3.7. Given ε > 0, for all θ,

dimH VθF ≤ dimBVθF ≤ log λ(ε)

− log rmax
.
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8 KENNETH J. FALCONER AND JONATHAN M. FRASER

Proof. By Lemma 3.3, for all k ∈ N we can find a cover of VθF by no more than
#V k

θ = Nθ(k, |projθH|) ≤ N(k, |projθH|) sets of diameter at most |H|rkmax. Using
Lemma 3.6 and the definition of upper box dimension,

dimBVθF ≤ lim sup
k→∞

logN(k, |projθH|)
− log|H|rkmax

≤ lim sup
k→∞

log
(
c(1 +Nε−1k|projθH|)λ(ε)k

)
− log|H|rkmax

=
log λ(ε)

− log rmax
.

�

We complete the proof of Theorem 2.1 by applying Lemma 3.7 to F regarded
as the attractor of an alternative IFS {Si : i ∈ Tδ}, where Tδ is a suitable ‘stopping’.

Proof of Theorem 2.1. For δ > 0 define the stopping Tδ by

Tδ =
{
i = i1 . . . ik ∈ Σ : ri1 . . . rik < δ ≤ ri1 . . . rik−1

}
.

Then the IFS {Si}i∈Tδ
has F as its attractor. Taking ε = δ and writing ri =

ri1 . . . rik for i = (i1, . . . , ik), Lemma 3.5 gives

(3.7) q(δ) =
|H|(2δ + 4a2maxi∈Tδ

ri)

π(a1mini∈Tδ
ri)2

≤ |H|(2δ + 4a2δ)

π(a1δrmin)2
≡ δ−1K,

for some constant K independent of δ. Applying Lemma 3.7, (3.6) and (3.7) to the
IFS {Si}i∈Tδ

we obtain

1 ≤ dimH VθF ≤ dimBVθF ≤ log λ(δ)

− log(maxi∈Tδ
ri)

≤ max

{
log q(δ)

− log(maxi∈Tδ
ri)

,
log(mini∈Tδ

ri)
−1

− log(maxi∈Tδ
ri)

}

≤ max

{
log δ−1K

− log δ
,
log δ−1r−1

min

− log δ

}

= max

{
1− logK

log δ
, 1 +

log rmin

log δ

}
.

This is true for all δ > 0, so

dimH VθF = dimB VθF = 1.

�
The proof of Theorem 2.3 is very similar to the proof of Theorem 2.1. The

difference is found in the definition of N(k, a); instead of taking the supremum over
all directions we need only consider the set of directions {g(θ) : g ∈ G}. Hence, we
replace (3.4) by

N(k, a) = max
g∈G

Ng(θ)(k, a)

for each k ∈ N and a > 0, and the proof proceeds in the same way.
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Figure 1. Two self-similar sets with visible sets from all directions
having dimension 1

4. Examples

A large range of self-similar sets satisfy the convex open set condition and project
onto intervals in all directions and so satisfy the conditions of Theorem 2.1.

Let H be a convex set and {Si}Ni=1 be similarities such that H is the convex

hull of
⋃N

i=1 Si(H) and such that every straight line that intersects H intersects at
least one of the Si(H) (such sets need not be connected). Then the hypotheses and
conclusion of Theorem 2.1 hold. In particular, if F is a self-similar carpet so that
H is a unit square divided into n× n subsquares of side 1/n where n ≥ 2 and the
Si(H) are a subcollection of these subsquares such that every line that intersects H
intersects at least one of the Si(H) (the Si(H) will include the four corner squares),
then we can conclude that the visible sets from all directions have dimension 1.

Many self-similar fractals constructed by the ‘initiator-generator’ procedure (see
[3, 6]) satisfy the conditions of Theorem 2.1 (this procedure generalises the usual
von Koch curve construction by repeated substitution of an open polygon in itself).
The generator is an open polygon K consisting of the union of a finite number
of line segments. A self-similar curve is constructed by repeatedly replacing line
segments by similar copies ofK scaled so that the endpoints ofK are mapped to the
ends of each of the line segments. Thus the generator codes a family of similarity
transformations {Si} that map the ends of K onto its component line segments.
Theorem 2.1 applies provided that the convex hull of K is mapped into itself by
these similarities with the images of the interiors disjoint. Particular instances
include the generalised von Koch curves, where the generator consists of four equal
line segments with angles −(π2 + α), 2α, π2 + α between consecutive segments, for
some 0 < α < π

2 (α = π
6 gives the usual von Koch curve). Topologically more

complicated examples can easily be obtained using generators other than curves.
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[5] E. Järvenpää, M. Järvenpää, P. MacManus and T. C. O’Neil, Visible parts and dimensions,
Nonlinearity, 16 (2003), 803–818. MR1975783 (2004d:28019)

[6] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, 1982. MR0665254
(84h:00021)

[7] J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimen-

sion, Proc. London Math. Soc.(3), 4 (1954), 257-302. MR0063439 (16,121g)
[8] O. Nikodým, Sur la mesure des ensembles plans dont tous les points sont rectilinéairement
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