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Abstract

This paper introduces a classification of DSGEs from a Markovian perspective,

and positions the class of POMDP (Partially Observable Markov Decision Process) to

the center of a generalization of linear rational expectations models. The analysis of

the POMDP class builds on the previous development in dynamic controls for linear

system, and derives a solution algorithm by formulating the equilibrium as a fixed

point of an operator that maps what we observe into what we believe.
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1 Introduction

Research in economic dynamics has gone through a remarkable transformation over the

last three decades, with flourishing theories that explicitly deal with economic agents

operating through time in stochastic environments. Among these theories, a particular

collection of the models that are being developed and solved within a general equilibrium

framework is often called ‘Dynamic Stochastic General Equilibrium’ (DSGE). The DSGE

models share one common structure: the Markov, which we economists call recursive

structure.
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Table 1: A Classification of the Markov Structure: Cassandra (2005)

Most of the Markovian DSGEs build on one restrictive assumption that economic

agents are able to see through the true state of a world. However, under almost all

dynamic stochastic environments, the true state of a world neither completely reveals itself

nor evolves in isolation of optimizing agents’ decisions. A few examples of such recursive

structure would assure that it is everywhere. Example 1 : Investors often face trouble in

valuation of the current fundamentals, while their current investment decisions determine

the true value of the future fundamentals. Example 2 : People cannot see through the

state of ecosystem (linked to the accumulation of carbon dioxide and other greenhouse

gases), while their current consumption decisions influence the future state of ecosystem.

Example 3 : A robot cannot penetrate its current position, while its current movement

decisions lead to its next position.

In the artificial intelligence literature, the recursive structure common in all the three

examples above is classified as ‘Partially Observable Markov Decision Process’ (POMDP).

As presented in Table 1, the classification of the Markov structure is made by looking at (i)

whether a robot can observe the state of a world and (ii) whether the robot can influence

the state transition.1 Mapping the DSGE models onto the classification of the Markov

structure, this paper positions the class of POMDP to the center of a generalization of

linear rational expectations models, and derives a solution algorithm by formulating the
1In the words of Kendrick and Amman (2006), the classification system shown in Table 1 and 2 takes

‘stochastic elements’ for granted, and then focuses on two attributes; (1) whether the stochastic elements
are about additive noisy terms or unknown states, and (2) whether the stochastic elements require feedback
rules (closed loop) as a part of optimal solution to address endogeneity between forward-looking variables
and beliefs about the states.
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Table 2: A Classification of the DSGE Models

equilibrium as a fixed point of an operator that maps what agents observe into what agents

believe. With the proposed solution algorithm, we will also discuss how one can use the

POMDP class to address the issue of “trouble in capital valuation” which recent research

has been attempting to incorporate into the DSGE framework in the wake of the 2007

financial crisis.

Toward the goal, we first review several well-known DSGE models (listed in Table 2)

upon the classification of the Markov structure, and find clues to the solution concept for

the DSGE models that fall into the POMDP class.

First, a recursive structure in which the state of a world is observable and the state

transition is endogenous falls into a class of ‘Markov Decision Process’ (MDP). In fact,

the majority of the Markovian DSGEs is of the MDP class. Early examples of the ‘MDP-

class DSGEs’ include Lucas (1978) consumption-based capital asset pricing model. In his

model, a single consumer robot decides the next period asset holdings (MDP; endogenous

and observable state transition), while output production follows a ‘Markov Chain’ (MC;

entirely exogenous and observable).2 Many New Keynesian DSGE models also fall into

this MDP class. An interesting recent example from the New Keynesian DSGE literature

is Blanchard and Gali (2007). In their model, the state of an economy is summarized in

employment-unemployment whose transition is governed by optimized search mechanism

of labor market flow. Another notable example of the MDP class is the Dynamic Integrated

Climate Economy (DICE) pioneered by Nordhaus (1992) and recently resumed by Per
2Almost all the DSGEs today contain the MC blocks within the framework. So in mapping the DSGEs

onto the Markov structure, we do not need to classify pure “MC-DSGEs”.
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Krusell in collaboration with natural scientists. It assumes that the endogenous state of

ecosystem is observable, in terms of the accumulation of accountable greenhouse gases.

Another class of the DSGEs admits the presence of noises around the neighborhood of

the state of a world, but still assumes that the state surrounded by such noises follows an

exogenous process. Under the environments, estimation and controls become dissociable,

and therefore a signal extraction problem can be solved outside actual decision process

of a robot. The DSGEs with this recursive structure fall into a class of Hidden Markov

Model (HMM). Kydland and Prescott (1982) is an early example of the ‘HMM-class

DSGEs’, in which they describe the state of aggregate technology as a combination of

transitory and permanent and noisy components (all exogenously given). Consequently,

the estimation problem facing a robot under the HMM environments is about how to

untangle multiple sources. Indeed, the source separation problem has been extensively

used in the modern macroeconomic literature. Just to mention a few, Cagetti et al. (2002)

look at the role of jump variables in asset pricing when their infrequent movements are not

perfectly distinguishable from small gradual shocks. Lorenzoni (2009) facilitates the source

separation problem to give rise to noise-driven business cycles in a many-heterogeneous-

agent world.3

Smets and Wouters (2003) is another interesting example for both classes of the DS-

GEs; MDP and HMM. Agents live in and optimize in the MDP environments. Thus the

theoretical side of their model falls into the MDP class. Ironically though, the modellers

Smets and Wouters live in the HMM environments and work as (Bayesian) econometri-

cian since the modellers themselves cannot observe what they assume their agents observe.

Nevertheless, neither classes can represent dynamic stochastic environments well in which

our chosen actions influence the transition of the states that are not completely observable.

Control problems under such dynamic stochastic environments have been classified as

POMDP (as opposed to MDP) in the artificial intelligence literature since Sondik (1971)’s

pioneering work. In the POMDP world, it is not only exogenous random events that make

a world uncertain, but also a robot’s inability to see through the past and the present of

the world.

Such view about the world is not new in economics. Pigou (1927) understood indus-
3Contrary to those recent examples of HMM-DSGEs, Kydland and Prescott (1982) facilitate the HMM

information structure to justify their pioneering development of calibration approach: “Our approach is
to focus on certain statistics for which the noise introduced by approximations and measurement errors is
likely to be small relative to the statistic”(Kydland and Prescott, 1982, p.1360). It is this approach that
Geweke (1999) calls a weak econometric interpretation of DSGEs.
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trial fluctuations as an outcome arising when the current production decision is based on

forecasts of the future market condition, which will be in part determined by the current

production decision. Townsend (1983) and Sargent (1991) formalize this idea by modelling

each agent’s action to be a function of his own beliefs formation (a robot’s inner state)

about all the other agents’ beliefs (hidden state), of which aggregation in turn determines

the transition of the market condition (the true state of a world). More recent examples

of the ‘POMDP-class DSGEs’ include Svensson and Woodford (2003, 2004): A central

bank conducts monetary policy without perfect information about the state of an econ-

omy (production potential), and influences the state transition (the next period output

gap) within a New Keynesian framework.

We borrow the solution concept from the POMDP literature where modellers treat a

robot’s beliefs about the state of a world as another state (the robot’s inner state) and

derive the robot’s optimal action as a function of its inner state.4 Applying the solution

concept to linear rational expectations models, we establish an optimal action rule as a

function of agent’s inner state (beliefs) about the state of a world, and obtain an optimal

transition rule of the inner state (beliefs) that is consistent with the optimal action rule.

So the complete set of solution consists of (i) optimal action and (ii) optimal sequential

beliefs about the state of a world whose true transition depends on chosen actions.

With respect to derivation of solution, we take a strategic idea from Sargent (1991)’s

approach: Sargent (1991) starts with conjecture about perceived laws of motion and de-

rives an equilibrium as a fixed point of mapping between perceived (forecasting) and actual

laws of motion. In contrast, we derive an equilibrium as a fixed point of instantaneous

mapping from observables to beliefs. And thereby, the solution algorithm proposed here

does not require that the entire perceived and actual laws of motion, both predictable

parts and residuals, are identical at a fixed point. With respect to the filtering properties,

the present paper precisely replicates those obtained by Svensson and Woodford (2003,

2004) and Baxter, Graham, and Wright (2011), since the baseline reasoning in their works

and the present paper is the same in a Bayesian direction and the environments considered

are all linear and Gaussian. So it is not surprising to see a modification of the Kalman

filter from both their works and here, because it is already known that the Kalman filter is
4For example, Kaelbling, Littman, and Cassandra (1998) discretize the belief state space and develop

a computation algorithm under a simplified nonlinear environments for a robot navigation problem like
Example 3 told above. Littman (2009) expounds their solution concept for the audience of behavioral
scientists.
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optimal under linear environments with the Gaussian distribution. However, the context

used here differs much from theirs.5

The rest of this paper is organized as follows: Section 2 uses a simple Neoclassical

growth model as a prototype of MDP and creates its two variants; HMM and POMDP.

We use the familiar textbook model to see how the proposed classification works, and

how three different classes of DSGEs are related with each other. Section 3 considers

a general state-space representation of linear rational expectations models. To find a

POMDP solution for the system of structural equations, we follow a conjecture-verification

procedure in two stages and show a transparent analytic derivation of the complete set of

solution. Section 4 provides quantitative examples using the Neoclassical growth model

and its variants. It also performs some quantitative experiments to address the issue of

“trouble in capital valuation”. Section 5 makes some concluding remarks.

2 The Markovian DSGEs

In this section, we consider a simple Neoclassical growth model as a prototype example of

MDP, and creates its two variants by applying the classification of the Markov structure

we have previously discussed.

2.1 Prototype Model: A Neoclassical Growth Model

Agents are infinitely-lived and all identical. A representative agent maximizes

E0

[ ∞∑
t=0

βt {lnCt + γ ln(1−Nt)}
]

subject to 

Yt = ZtK
α
t N

1−α
t

Kt+1 = (1− δ)Kt + It

lnZt+1 = ρ lnZt + ωt+1

Yt = Ct + It,

5As classified and briefed above, Svensson and Woodford (2003, 2004) address the optimal formation
of monetary policy with imperfect indicators about the state of an economy. Baxter, Graham, and Wright
(2011)’s concerns are under which conditions observable variables continue to remain as imperfect indicators
about the state of an economy and its implications for the time series properties.
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where Ct denotes consumption for period t, Nt worked hours, Yt output, Kt predetermined

capital stock, It investment, and Zt the level of production technology. Regarding the

stochastic base of the model, ωt is technical innovation to Zt and subject to an i.i.d.

normal with mean zero and standard deviation σ. All variables are in per person. All the

parameters {α, β, γ, δ, ρ} lie on the surface that guarantees stability of the system. This

textbook model as it is falls into a class of MDP.

After briefly looking at the equilibrium conditions for this MDP version, we turn to

two more variants of the model one after the other. As we proceed, we will relax the

assumption of complete observation for each state variable. But, throughout the paper,

we maintain the assumption that output Yt is observable.

2.2 The Classification of the Markovian DSGEs

Markov Decision Process (MDP)

If both exogenous and endogenous states (Zt, Kt) are observable, we have an MDP econ-

omy in which the transition of capital stock Kt is determined by the current investment

decision. The equilibrium conditions for this textbook model are given by



optimality conditions:


C−1
t = βEt[C−1

t+1{αZt+1K
α−1
t+1 N

1−α
t+1 + (1− δ)}]

γ(1−Nt)−1 = (1− α)C−1
t ZtK

α
t N
−α
t

transition equation (endg. state): Kt+1 = (1− δ)Kt + (ZtKα
t N
−α
t − Ct)

transition equation (exog. state): lnZt+1 = ρ lnZt + ωt+1.

(1)

Hidden Markov Model (HMM)

If we can observe the endogenous state Kt but not the exogenous state Zt, we now have

an HMM version of the Neoclassical growth model. Agents have to extract signal about

the exogenous state Zt from the history of output Yt and worked hours Nt. As far as the

agents can observe the true value of capital stock without noises, they would able to make

perfect inference about Zt based on the production function Yt = ZtK
α
t N

1−α
t .

To make the HMM environments non-trivial, let us introduce a transitory component of

aggregate technology following Kydland and Prescott (1982).6 To be specific, we assume
6One common practice mostly performed in this direction is to have many noises (for example, news

shock and sampling shock in Lorenzoni, 2009), or to have an exogenous state as the sum of multiple sources
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Zt = Z1tZ2t, where Z1t replaces the role of Zt in the MDP version and Z2t is a pure

transitory shock. Accordingly, we have the equilibrium conditions (1) modified to




C−1
t = βEt[C−1

t+1{αZ1t+1Z2t+1K
α−1
t+1 N

1−α
t+1 + (1− δ)}]

γ(1−Nt)−1 = (1− α)C−1
t Et[Z1tZ2t]Kα

t N
−α
t

Kt+1 = (1− δ)Kt + (Z1tZ2tK
α
t N

1−α
t − Ct)

lnZ1t+1 = ρ lnZ1t + ω1t+1

lnZ2t = ω2t,

(2)

where ω1t are ω2t are orthogonal, and both subject to an i.i.d. normal with mean zero and

standard deviation σ1 and σ2, respectively. Notice that the second optimality condition

(intratemporal) takes conditional expectations operator over the exogenous states Z1t and

Z2t, because neither sources of shocks (ω1t, ω2t) are observable. To set up inference

problem for this version of the model, we now have to specify observation channels. As

the production function connects the state variables to the level of output observable, we

use the production function as an observation channel, and in addition assume that the

agents know the true value of capital:

observation channel :


Yt = Z1tZ2tK

α
t N

1−α
t

Kt = Et[Kt].
(3)

As emphasized by the second equation in (3), the agents in this HMM version of the

model observe the true value of capital stock Kt. From the observables, the agent extracts

signal on permanent shock Z1t and transitory shock Z2t.—This is a typical example of

source separation problem. Since the transition of Z1t and Z2t is independent of the

action the agent takes, the signal extraction problem will be solvable in isolation from the

optimization problem. If the HMM environments are linear, the Kalman filter (a linear

Bayesian inference algorithm) is known optimal.

Partially Observable Markov Decision Process (POMDP)

In reality, the true value of capital itself may not be easily observable. Indeed, recent

research in the DSGE literature has drawn more attention to the issue of “trouble in
of hidden shock (for example, infrequent jump shock and frequent gradual shock in Cagetti et al., 2002).
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capital valuation”. See, for example, “capital-quality shock” (Gertler and Karadi, 2009)

and “perception shock” (Curdia, 2008).

Let us directly address this issue, by simply relaxing the assumption that agents are

able to observe the true value of aggregate capital. As should be clear to the readers by

now, this version of the model with “unobservable endogenous state” falls into a class of

the POMDP. With the prototype model, the equilibrium conditions under the POMDP

environments appears to remain the same with the HMM’s (2) and (3) other than the

second observation channel. That is, the observation channel this time reduces to

observation channel : Yt = Z1tZ2tK
α
t N

1−α
t . (4)

However, the two variants of the model fundamentally differ in inference and optimization

procedure.—If the true value of capital is unobservable, the consumption-investment de-

cision cannot be made in isolation of signal extraction on the current capital, neither in

isolation of forecasts of the next period capital.

One common feature between the HMM and the POMDP is that the dimension of

the observation channel is less than the number of state variables. To check with the

prototype model, the agents in the HMM variant extract signals on three unobservables

(Z1t, Z2t, Kt) from the two observation channels in (3). In effect, they extract signals

on two unobservables (Z1t, Z2t) from one observation channel, the first in (3). And the

agents in the POMDP variant extract signals on three unobservables (Z1t, Z2t, Kt) from

the single observation channel (4).

Upon the common feature between the two variants and our existing knowledge that

the Kalman filter is optimal in linear HMM environments, we configure the complete

solution for both HMM and POMDP class as a set of (i) optimal action and (ii) opti-

mal beliefs about the state. In turn, the optimal transition equation is obtained where

sequential action and beliefs are at the optimal path.

To utilize our existing knowledge about the linear filtering properties, we linearize each

variant of the prototype model at the steady state. However, rather than herein listing up

the log-linearization of all three variants of the prototype model, in the next section we will

map them into a generalized linear rational expectations models and the optimal solution

for each class. Henceforth, following the convention in the literature, we use lowercase

variables denote log-deviations from their steady state.
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3 Solution to the POMDP Class DSGEs

In this section, we consider a general state-space representation of linear rational expecta-

tions models, brief the solution for the standard MDP class, and then direct a full attention

toward derivation of an optimal solution algorithm for the POMDP class.

3.1 MDP Class

A General State-Space Representation Consider the following structural form of

linear rational expectations models:

0 = AccEt[ct+1] +Ackkt+1 +AczEt[zt+1] +Bccct +Bckkt +Bczzt (5)

0 = Akkkt+1 +Bkcct +Bkkkt +Bkzzt (6)

0 = Azzzt+1 +Azωωt+1 +Bzzzt, (7)

where ct is a rc × 1 vector of non-predetermined choice variables, kt a rk × 1 vector of

predetermined variables, and zt a rz × 1 vector of exogenous variables (including noises)

whose stochastic base lies on shocks ωt of the same dimension. ωt is i.i.d. with mean

zero and variance-covariance matrix σ2Irz , where σ is a scalar. {Aij} and {Bij} are the

system coefficient matrix. Throughout the paper, we reserve the letter A for notation of

system coefficients associated with the next period, and the letter B for system coefficients

associated with the current period. Each 0 on the left-hand side of equations denotes a

zero matrix conformable to the dimension of each given equation.

Notations for variables and system coefficients are all consistent with the linearized

system of the Neoclassical growth example (1). The control vector ct is like the consump-

tion choice in the model (1); the predetermined vector kt is like the capital stock in the

example; the exogenous state vector zt is like the exogenous technologies. So the coefficient

matrices Aij and Bij are a function of parameters {α, β, γ, δ, ρ} and steady state values of

the Neoclassical growth model.

Also, the arrangement of equations remains parallel between the generalized state space

system and the prototype model: Equation (5) is the optimality condition like the first

two equations in (1). Similarly, (6) and (7) are the transition equations for endogenous

and exogenous state variables, like those in the Neoclassical growth model (1).

A number of solution algorithms to linear rational expectations models with observable
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ωt have been developed since Blanchard and Kahn (1980).7 Assuming the existence of

the unique solution to the system {(5), (6), (7)}, we have the optimal control function as

follows;

ct = Hckkt +Hczzt.

Hij denotes the optimal solution coefficient matrix for ‘variable vector i’ with respect to

‘variable vector j’. For instance, Hck is the optimal control coefficient for c with respect to

the endogenous state vector k. Throughout the paper, we reserve the letter H for notation

of the optimal solution coefficients.

Stacked System Let θt denote the state vector of size rθ = rk + rz;

θt =

 kt

zt

 .
Consistently, we rewrite the system {(5), (6), (7)} as follows;

0 = AccEt[ct+1] +AcθEt[θt+1] +Bccct +Bcθθt, (8)

0 = Aθθθt+1 +Bθcct +Bθθθt +Aθωωt+1, (9)

where

Aθθ =

 Akk 0

0 Azz

 , Acθ = [ Bck Bcz ], Aθω =

 0

Azω

 ,

Bθθ =

 Bkk Bkz

0 Bzz

 , Bcθ = [ Bck Bcz ], Bθc =

 Bkc

0

 .
Equation (8) stacks endogenous and exogenous state vectors [ kt zt ]′ into θt. Equation

(9) stacks the two transition equations (6) and (7). We have the optimal solution in the

minimal state variable (MSV) form as in McCallum (1998);

MDP


optimal action rule : ct = Hcθθt,

optimal state transition : θt+1 = Hθθθt +Hθωωt+1,

(10)

7An incomplete list includes Binder and Pesaran (1995), King and Watson (1998), and Klein (2000),
each of which facilitates a different method— matrix polynomial, system reduction (eigenvalue), and the
QZ method (Schur form).
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where

Hcθ = [ Hck Hcz ], Hθθ = −A−1
θθ {BθcHcθ +Bθθ} , Hθω = −A−1

θθ Aθω,

provided that Aθθ is of a full rank.

3.2 The Observation Channel

Observables and Unobservables Suppose now that the state vector θt is unobserv-

able. As a consequence, we have to infer it from what we observe. Let yt be a ry×1 vector

of the observable variables subject to the following observation channel;8

0 = Byyyt +Bycct +Byθθt. (11)

This observation channel (11) is like the production function (4) of the Neoclassical growth

example.

Given the optimal action rule in (10) and with Byy of a full rank, the observation

channel (11) can be understood as

yt = −{B−1
yy BycHcθ +B−1

yy Byθ}θt.

Alternatively,

yt = Hyθθt,

with Hyθ = −{B−1
yy BycHcθ + B−1

yy Byθ}. We can think of Hyθ as an optimal observation

coefficient in that it connects unobservables to observables when the agents follow the

optimal action rule in (10).

MDP-Equivalent POMDP It is clear that when the dimension of the observation

channel (ry) equals the dimension of the state vector (rθ), Hyθ is a square matrix of the

exactly same size with Hθθ. Provided that Hyθ is of a full rank, then

θt = H−1
yθ yt.

8To avoid redundancy in expressions, the observation dimension ry herein does not take in account the
control dimension rc. If wanted, one may do so by adding expression for the controls, ct = Et[ct], to the
observation channel, and accordingly redefining observation vector yt and the observation condition. The
issue of partially observable controls (a trembling-hand story) goes beyond the scope of the present paper.
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Here are two notable points: First, the state variables can be correctly identified if ry = rθ

and Hyθ is of a full rank.—As an implication, noisiness of noises depends on the relative

size of dimensions between the observables and the unobservables in a given observation

channel. Second, all the past data {yt−1, yt−2, · · · } have no informational role in identifying

the current states.—Data yt instantaneously unveils the temporal state of the economy

θt in the aid of invertible structural knowledge Hyθ.9 As far as Hyθ is of rank ry = rθ,

the optimal solution (10) under the MDP environments remains unchanged even when we

cannot observe directly the true state θt. In this sense, we can think of the MDP class as

a special case of the POMDP.

3.3 POMDP Class

Let us turn to the partially observable linear rational expectations models. If the dimension

of the observation channel is less than the dimension of the state vector θt, we find ourselves

in either the HMM or the POMDP environments. Recall that Hyθ = −{B−1
yy BycHcθ +

B−1
yy Byθ} and that it connects unobservables to observables at optimum. So the matrix

is at the center of the classification of the Markovian DSGEs. Just like that we have

an MDP-equivalent POMDP-DSGE model when Hyθ is of a rank ry = rθ, we would say

that we have an HMM-equivalent POMDP-DSGE model when rk ≤ ry < rθ with kt all

observable. Since we can treat the HMM class as a special case of the POMDP where all

endogenous states are observable, our focus is on non-trivial cases of the POMDP class in

which some or all endogenous states are unobservable.

The POMDP class of linear rational expectations models takes the following structural

form;

optimality condition: 0 = AccEt[ct+1] +AcθEt[θt+1] +Bccct +BcθEt[θt] (12)

transition equation: 0 = Aθθθt+1 +Bθcct +Bθθθt +Aθωωt+1 (13)

observation channel: 0 = Byyyt +Bycct +Byθθt. (14)

Equation (12) takes conditional expectations operator to the current state vector θt, since

we can no longer observe it. So the observation channel (14) now becomes an essential

part of the system. On the other hand, the transition equation (13) is a kind of natural

law and thus remains the same as in the MDP class.
9Even when ry < rθ but provided that ry = rz, the state may be ‘asymptotically invertible’ from the

observables (in the sense used by Baxter, Graham, and Wright, 2011) under some regularity conditions.
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We strategically divide-and-conquer the procedure of solving the system into two steps.

In the first step, we suppose that optimal sequential inference problem has been solved,

and focus on the first two equations (12) and (13). We start with conjecture that optimal

choice is linear in optimal point beliefs, and then verify the existence of the optimal action

rule that satisfies the conjecture. In the second step, taking the established optimal action

rule as given, we look at the last two equations (13) and (14), apply the principle of mean

squared error minimization, and find a sequence of optimal point beliefs about the true

state. To achieve this, we again take the route of conjecture-then-verification on the basis

of our existing knowledge about probability update.

3.3.1 Solution Step 1: Optimal Action Rule

Conjecture Let xt+s|t denote conditional expectations of xt+s on date t-information set

Yt = {ys, cs}ts=0. Et[xt+s] = xt+s|t. Following a standard practice in solving linear rational

expectations models, we consider the certainty-equivalent of optimal action rule in (10),

and make conjecture that optimal action is linear in conditional expectations;

ct = HcθEt[θt] = Hcθθt|t. (15)

In the context of the Neoclassical growth example, this conjecture means that the

agent makes consumption decision in a proportion to his beliefs as to how valuable capital

he owns, and in a proportion to his beliefs as to how productive technology he accesses.

Given the conjecture (15), we understand the first two equations (12) and (13) as

follows

0 = {AccHcθ +Acθ} θt+1|t + {BccHcθ +Bcθ} θt|t (16)

0 = Aθθθt+1 +BθcHcθθt|t +Bθθθt +Aθωωt+1, (17)

respectively. To obtain the first term in (16), we take one period forward iteration of the

conjectured optimal action rule (ct+1 = Hcθθt+1|t+1), and take conditional expectations

on date t information, and use the law of iterated expectations (ct+1|t = Hcθθt+1|t). The

transition equation (17) states that, besides exogenous forces, the present state and beliefs

about the present state jointly determine the future state. It is noteworthy that the auto-

regressive coefficient for the transition of the state θt is now −A−1
θθ Bθθ under the optimal

action rule (15) in contrast to the case of the MDP. In the MDP version of the model, we
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have the auto-regressive transition coefficient Hθθ = −A−1
θθ {BθcHcθ +Bθθ} as shown by

the optimal transition equation in (10).

Verification To verify our conjecture about the optimal action rule (15) under the

POMDP environments, take first conditional expectations operator to the transition equa-

tion (13) and rearrange it as θt+1|t = −A−1
θθ {BθcHcθ +Bθθ} θt|t. By assumption, ωt+1|t =

0.

Substitute it back into the optimality condition (16). Then,

0 =
{
−{AccHcθ +Acθ}A−1

θθ {BθcHcθ +Bθθ}+ {BccHcθ +Bcθ}
}
θt|t.

By the reasoning of undetermined coefficients, it should hold that

{AccHcθ +Acθ}A−1
θθ {BθcHcθ +Bθθ} = {BccHcθ +Bcθ} .

As far as there exists an MDP solution (10) such that it satisfies the Blanchard and Kahn

(1980) conditions or Klein (2000), there will be a root to the above quadratic equation

with respect to matrix Hcθ.

3.3.2 Solution Step 2: Optimal Sequential Beliefs

Conjecture In the second step, we stick to the principle of mean squared error (MSE)

minimization and derive optimal recursive inference formula. Given the optimal policy

function found in Step 1, the observation channel (14) will be understood as

yt = −B−1
yy BycHcθθt|t −B−1

yy Byθθt.

For visibility and tractable operation, let us write it to

yt︸︷︷︸
what we observe

= BỹcHcθθt|t︸ ︷︷ ︸
what we believe

+ Bỹθθt︸ ︷︷ ︸
what truly is

(18)

where Bỹc = −B−1
yy Byc and Bỹθ = −B−1

yy Byθ. Equation (18) says that ‘what we observe’

is a combination of ‘what we believe’ and ‘what truly is’. So the basic idea toward a

plausible conjecture is to reverse the direction of (18) and to instantaneously connect

‘what we observe’ to ‘what we believe’ in a Bayesian direction.

15



In the context of the Neoclassical growth example, we have Bỹc = [ 0 1− α ] with

respect to the control vector [consumption ct, worked hours nt], andBỹθ = [ α 1 1 ] over

the state vector [capital kt, permanent technology z1t, transitory technology z2t]. Mapping

Equation (18) to the prototype model tells us that once the agent makes consumption

and leisure decisions based on his beliefs about the state of the economy, the level of

production depends on in part his beliefs about the productivity of capital and technologies

(permanent and transitory), and in part the true productivity. So we can conjecture that

an optimal inference rule held by the agent will instantaneously connect the actual level

of production and labor input to the valuation of capital and technologies.

To implement the basic idea about an optimal inference rule in a sequential manner,

suppose that we stand in date t− 1 and try to forecast yt one period ahead. Conditional

on the history of observables Yt−1, forecast of yt directly follows from the formation of

conditional expectations about (18);

yt|t−1 = E[yt | Yt−1] = {BỹcHcθ +Bỹθ} θt|t−1.

Therefore, the one-period ahead forecast error of date t-observation yt consists of (i)

revision in conditional expectations about date t-state and (ii) the one-period forecast

error of date t-state;

yt − yt|t−1 = BỹcHcθ(θt|t − θt|t−1) +Bỹθ(θt − θt|t−1). (19)

To deal with the expectations-revision term in (19), we make conjecture that there

exists a matrix M̃t of the size rθ × ry such that it extracts optimal signal for revision out

of the forecast error about the observables;

(θt|t − θt|t−1)︸ ︷︷ ︸
updating beliefs

= M̃t(yt − yt|t−1︸ ︷︷ ︸)
forecast errors

. (20)

This conjecture follows the standard algorithm of sequential Bayesian inferences, in which

posterior emerges from both new observations and prior. Again in the context of the

Neoclassical growth example, the conjecture (20) means that any errors in output forecast

must serve to improve the valuation of capital and technologies in some proportion specified

by M̃t.

We will verify this conjecture by finding and establishing M̃t as a fixed point of a

16



function that minimizes mean squared error (MSE). As Lucas (1978, p.1431)’s rational

expectations assumption directs, the solution concept of closed loop is central here as well

to obtain optimal recursive inference solution. In what follows, we will introduce three

more functions (D, G, M), and will go through some tedious procedural derivation. To

make it as transparent as possible, readers are advised to have a look at the following road

map:

M̃t → D(M̃t) → G(Dt)

m ↓

Mt ⇐⇒ M(Gt)

To brief it, we will now define D, G, and M as a function of conjectured matrix M̃t

such that it satisfies (20), and show that M̃t is a fixed point of function M(·). That is,

M(Gt) = M(G(D(M̃t))) = M̃t.

Least MSE Given the conjecture (20), we can rewrite (19) to

yt − yt|t−1 = BỹcHcθM̃t(yt − yt|t−1) +Bỹθ(θt − θt|t−1). (21)

Define a function D of a full rank ry such that Dt = Iry − BỹcHcθM̃t, where Iry stands

for ry-dimensional identity matrix. In turn, define a function G such that G′t = D−1
t Bỹθ.

Then, we have (21) in terms of the function G as follows;

yt − yt|t−1 = G′t(θt − θt|t−1). (22)

Let Σ̂t = E[(θt−θt|t−1)(θt−θt|t−1)′ | Yt−1], the MSE associated with one-period ahead

state forecast; and Σt = E[(θt−θt|t)(θt−θt|t)′ | Yt], the MSE associated with the inference

of date t-state. Using the well-known formula for least square forecast with finite sample

(Hamilton, 1994: p.99, p.379), we have that

θt|t = θt|t−1 +Mt(yt − yt|t−1), (23)

Σt =
{
Irθ −MtG

′
t

}
Σ̂t, (24)

where Mt is defined as a gain matrix following the conventional practice of the Kalman
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filter;

Mt = Σ̂tGt{G′tΣ̂tGt}−1. (25)

See Appendix for a full derivation of (23) and (24).

Verification The early conjecture (20) and the equation (23) derived from the least

MSE principle jointly give rise to M̃t = Mt, which is the closed loop requirement to obtain

the solution to optimal recursive inference problem for partially observed dynamic system.

Note that M̃t transforms ‘what we observe’ to ‘what we believe’. Given the conjecture, Gt
connects ‘what truly is’ to ‘what we observe’ in terms of structural parameters Bỹc, Hcθ,

and Bỹθ. But then, by requirement that M̃t = Mt,

G′t = D−1
t Bỹθ = {Iry −BỹcHcθMt}−1Bỹθ.

So with (25), Gt and Mt define each other. Henceforth, obtaining a closed form of Gt
(and thus Mt) in terms of the knowns Bỹc, Hcθ, and Bỹθ is equivalent to find M̃t and thus

verify the early conjecture made in (20). Indeed, we obtain a closed form solution Gt as

a function of Bỹc and Bỹθ (parameters from observational structure) and Hcθ (optimal

reaction parameters) and Σ̂t (covariance of forecast error), as follows;

G′t =
{
Iry +BỹcHcθΣ̂tB

′
ỹθ{BỹθΣ̂tB

′
ỹθ}−1

}
Bỹθ. (26)

See Appendix for a full derivation of (26). Here Σ̂t will be discovered from where recursion

starts and continues; {θ1|0, Σ̂1}, {θ2|1, Σ̂2}, {θ3|2, Σ̂3}, · · · . So we complete Step 2 by

obtaining the recursion formula for the covariance of forecast error.

Recursion Suppose we want to forecast the future state of the system. Forecast of θt+1

directly follows from the transition equation (17);

θt+1|t = {Bθ̃cHcθ +Bθ̃θ}θt|t,

where Bθ̃c = −A−1
θθ Bθc and Bθ̃θ = −A−1

θθ Bθθ. It is straightforward to obtain the forecast

errors

θt+1 − θt+1|t = Bθ̃θ(θt − θt|t) +Hθωωt+1, (27)
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where Hθω = −A−1
θθ Aθω. Also we obtain the associated covariance as follows;

Σ̂t+1 = Bθ̃θΣtB
′
θ̃θ

+HθωΣωH
′
θω, (28)

where Σω is the (time-invariant) variance matrix of i.i.d. shocks ωt. See Appendix.

To sum up, the optimal inference-forecast formula in recursion is given by the following

set of equations;



point beliefs recursion


θt+1|t = {Bθ̃cHcθ +Bθ̃θ}θt|t

θt|t = θt|t−1 +Mt(yt − yt|t−1)

covariance recursion


Σ̂t+1 = Bθ̃θΣtB

′
θ̃θ

+HθωΣωH
′
θω

Σt = {Irθ −MtG
′
t} Σ̂t

(29)

where

Mt = mt
{
Iry +BỹcHcθmt

}−1
,

G′t =
{
Iry +BỹcHcθmt

}
Bỹθ,

with a briefing variable mt such that

mt = Σ̂tB
′
ỹθ{BỹθΣ̂tB

′
ỹθ}−1. (30)

Convergence Notice that the convergences of Σt, Σ̂t, and Mt are all seen in the con-

vergence of mt, since MtG
′
t = mtBỹθ and Σt = {Irθ −MtG

′
t} Σ̂t. In turn, the convergence

of mt depends on the observation coefficients, Bỹθ = −B−1
yy Byθ, by structure of the ob-

servation channel (14). One trivial requirement for convergence is to have the observation

channel with Byy of a full rank ry and Byθ of non-zero matrix. In other words, the system

should not completely black out.

On the other hand, inspection of the expression for mt (30) shows that the convergence

of the covariance matrix, Σ̂t, is crucial. In fact, unless the system blacks out, we will see it

converging as far as the transition equation (13) satisfies the standard stability conditions

as assumed in the DSGE literature. Formally, once the first trivial requirement holds, we

find from (24), (25), and (28), that recursion of Σ̂t is governed only by those structural

parameters in the transition equation (13); that is, {Aθθ, Bθθ, Aθω} with the unconditional
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covariance of exogenous shock Σω.

However, the assumed convergence in recursion would be problematic, especially when

a world has not long been in the same structure since its birth. One striking example

in support for such concerns is found from the literature of equity premium puzzle (and

riskfree interest rate puzzle). Weitzman (2007) demonstrates how the assumed convergence

to the normal distribution misleads to believe ‘a particular form of puzzle’, which either

should not be a puzzle or could be ‘a different form of puzzle’.10 Nevertheless, there is an

important practical reason why most theoretical examination of dynamical system tends

to focus on the behavior of a system around convergence and steady state.—Having an

initial condition is no less ad hoc than assuming convergence. So in theoretical simulation

of a dynamic model, we see it as a robust practice to drop data generated over the first few

hundreds period of pseudo time within the system. And the analysis of impulse responses,

a particular form of theoretical simulation, is also carried out in the same manner.

Later, in Section 4, we will revisit this issue by contrasting the three variants of the

Neoclassical growth example in terms of convergence, and show how we can use the class

of the POMDP-DSGEs to address the same issue from an alternative perspective.

3.4 Generalized System, Generalized Solution

From POMDP To the class of POMDP-DSGEs, we have a complete solution that

consists of (15), (17), and (29). Let us have it comparable to the solution to the MDP

class, (10), as follows;

POMDP


optimal action rule : ct = Hcθθt|t

optimal state transition : θt+1 = Bθ̃cHcθθt|t +Bθ̃θθt +Hθωωt+1

optimal sequential beliefs : θt|t = Hθθθt−1|t−1 +Mt(yt − yt|t−1),

(31)

where

Hcθ = [ Hck Hcz ], Hθω = −A−1
θθ Aθω,

Hθθ = Bθ̃cHcθ +Bθ̃θ.

10Geweke (2001) shows in general that expectations condition with the usual CRRA (constant relative
risk aversion) utility function can easily break down when we relax the distributional assumption.
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To MDP If the agents could completely observe the state vector θt, the solution reduces

to the case in which θt = θt|t holds. And the optimal state transition equation and the

optimal sequential beliefs rule become redundant, which implies that Mt(yt − yt|t−1) =

Hθωωt. It is straightforward to verity this implied relationship.—Note first that Σ̂t =

HθωΣωH
′
θω and Σt = 0 for all t, and therefore MtG

′
t = Irθ . It follows then from (22) that

θt − θt|t−1 = Hθωωt. Obviously, if the agents fully observe the true state of an economy,

the only source for forecast errors is of exogenous stochastic shock ωt.

To HMM The solution to the class of POMPD replicate also the standard optimal

solution to the class of HMM. Under the HMM environments, we can write the optimal

action rule in (31) to

ct = Hckkt +Hczzt|t.

It is then straightforward to divide the optimal state transition shown in (31) into


kt+1 = Hkkkt +Bk̃cHczzt|t +Bk̃zzt

zt+1 = Bz̃zzt +Hzωωt+1,

(32)

upon (6) and (7), the transition equations for endogenous and exogenous state variables.

Here Hkk = −A−1
kk {BkcHck +Bkk}, Bk̃c = −A−1

kkBkc, Bk̃z = −A−1
kkBkz, Bz̃z = −A−1

zz Bzz

and Hzω = −A−1
zz Azω.—All are defined in line with Hθθ, Bθ̃c, Bθ̃θ and Hθω. And the

optimal beliefs updating is subject to the standard Kalman filter

zt|t = Bz̃zzt−1|t−1 +Mz,t(yt − yt|t−1),

where Mz,t is the standard Kalman gain jointly defined with the covariance matrix of

measurement errors Σz,t = E[(zt − zt|t)(zt − zt|t)′ | Yt]. We see the optimal solution to the

class of HMM-DSGEs as a special case of the POMDP solution (31).

4 Quantitative Example

4.1 Numerical Solution to Each Class of the Model

Back to the textbook model in Section 2, we linearize and calibrate the model at the

business cycle frequency (i.e., quarterly) with typical parameter values (α = 0.36, β = 0.99,
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N = 1/3 or γ = 1.7214, δ = 0.025, ρ = 0.99).11 Table 3 summarizes the solution for each

of three different classes of the model. In particular, the top panel of Table 3 shows the

solution to the MDP version with the transitory component z2t by itself, for clarity in

comparison with the other two variants of the model. All the solution coefficient matrices

in the table are defined as in Section 3, except that Bθ̃θ̃ (shown in the last column for the

HMM version) concatenates Hkk, Bk̃z, and Bz̃z over the true state vector [ kt z1t z2t ]′.

That is, the optimal state transition for the HMM version shown in Table 3 is based on

the following reexpression of (32);

θt+1 = Bk̃cHczzt|t +Bθ̃θ̃θt +Hθωωt+1

with

Bθ̃θ =

 Hkk Bk̃z

0 Bz̃z

 ,
so that we can compare the solution of different variants in parallel.

In the first column of Table 3, we find the optimal control matrix Hcθ remains identical

across the three variants of the model, because we have assumed certainty equivalent

in derivation. However, we have to read the optimal controls in the MDP w.r.t. the

true state vector [ kt z1t z2t ]′; whereas in the HMM w.r.t. the true capial and the

beliefs about technologies [ kt z1t|t z2t|t ]′; and in the POMDP w.r.t. the beliefs vector

[ kt|t z1t|t z2t|t ]′. So the table reads, for instance, the optimal control for the MDP

version  ct

nt

 =

 0.5691 0.5845 0.0934

−0.2431 0.4813 1.0542



kt

z1t

z2t

 ,
from which one sees the labor adjustment highly sensitive to transitory component of

aggregate technology. This issue concerns some well-known limitations of the textbook

Neoclassical model. However, such features are not of interest of this paper.

The second column labeled with ‘Optimal Beliefs Rule’ shows the optimal sequential

beliefs rules for each of variants. The number in the parenthesis of the gain matrixMz and

M indicates the number of iterations made to satisfy the standard converging criterion

10−7 with Σω = 0.0025Irz , starting from Σ̂0 = Σ0 = 0.1Irz for the HMM version, and
11We obtain the numerical solution in Section 4 from Schmitt-Grohe and Uribe (2004)’s first-order

approximation algorithm.
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Σ̂0 = Σ0 = 0.1Irθ for the POMDP version. As contrasted in the middle and the top panel

of the column, the optimal beliefs rule for the POMDP differs from the one for the HMM

in two aspects. First, for the POMDP, a valuation of the capital matters in formation

of beliefs and thus the future state. Second, the speed of convergence (measured in the

number of iterations) is far slower in the POMDP than in the HMM. Another convergence

property of the textbook model is that the HMM serves well as a shortcut to the POMDP

in the sense that at a full convergence, M replicates Mz. In terms of the limit of mt,

we find m(221) = [ 0 0.6159 0.3841 ]′ and mz(12) = [ 0.6159 0.3841 ]′. This implies

that once the system stays at a full convergence, the agents attribute a surprise in the level

of production (forecast errors in production) to permanent and transitory technologies at

the proportion of 61.6% and 38.4%, respectively, and nil to inference errors crept in their

previous capital valuation. As per the limit of the covariance matrices, we find

Σ̂(221) =


0 0 0

0 0.0040 0

0 0 0.0025

 , and Σ(221) =


0 0 0

0 0.0015 −0.0015

0 −0.0015 0.0015


for the covariance of forecast errors and the covariance of inference errors, respectively.

First, the off-diagonal of Σ̂(221) shows the orthogonality between ω1t and ω2t, and the

diagonal reflects their difference in persistence. Second, the symmetry of Σ(221) captures

the symmetric position between z1t and z2t imposed by the intratemporal observation

channel (production function). So we find Kydland and Prescott (1982)’s assertion well

justifiable with the present prototype Neoclassical model.—“Our approach is to focus

on certain statistics for which the noise introduced by approximations and measurement

errors is likely to be small relative to the statistic”(Kydland and Prescott, 1982, p.1360).

The third column labeled with ‘Optimal State Transition’ looks at the transition of

the true state vector for each class of the model. Observe how the optimal transition

solution Hθθ for the MDP is divided between Bk̃cHcz and Bθ̃θ̃ in the HMM, and between

Bθ̃cHcθ and Bθ̃θ in the POMDP. Now observe backward from the bottom panel to the

top, how the solution coefficients merge one after another as we change the observation

structure.—Again we find that the solution to the HMM version is obtained as a special

case of the POMDP solution when kt = kt|t. Similarly, the solution to the MDP version

is obtained as a special case of the HMM version when z1t = z1t|t and z2t = z2t|t. In what

follows, we focus on the POMDP version, carry out the analysis of impulse responses by
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performing some shock experiments, and briefly discuss about the results.

4.2 Perception Shocks

In this textbook Neoclassical model, once the agents discover the steady state filter at a

complete convergence, one variant of the model seems to replicate well the behavior of the

other variant. Nevertheless, we have also found that the speed of convergence far differs

between the variants. In the present quantitative example, the HMM version requires 12

iterations, and the POMDP version requires 221. And by assumption, the MDP requires

zero iteration. So the assumed convergence in recursion for the POMDP version of the

model would be problematic, as previously discussed in Section 3.3. At the same time,

imposing an arbitrary condition for initial period or in the mid of convergence is no less

ad hoc than assuming convergence. Bearing this in mind, we take an alternative route to

address the issue within the POMDP framework.

To be present in pre-converging periods essentially means that the inferences made by

the agents living in the model are incomplete or suboptimal. In other words, there will

remain a room for some erratic ‘estimator’ (not estimate) until the agents have the steady

state filter. In the current numerical experiments, we can capture it as a ‘perception shock’

used in Curdia (2008). Let us think about a process of perception shock. By definition,

a rational agent will not be able to perceive his misperception.—In terms of the first

requirement for convergence we have discussed at the end of Section 3.3, this means that an

observation channel for such perception shock totally blacks out. As a result, the optimal

sequential beliefs rule summarized in Mt cannot incorporate unperceived misperception

into its convergence Mt →M .

We have six variables to examine; consumption, worked hours, production, capital,

permanent and transitory technologies. Figure 1 looks at their behaviors in response to

1% inference error (positive perception shock) in valuation of capital. The focus of this

experiment is to examine how the true trajectory of the model economy would departure

from where the agents believe it currently be. In Figure 1, we use solid (blue) line to

denote the true trajectory, and dotted (red) line to denote the agent’s beliefs about the

state. It is important to note that we modellers are omniscient within the model.—We

see through the true state of the world we create, but our creatures (the agents in the

model) cannot. So the true value depicted here is not of the MDP version, but from the

optimal responses of our creatures that cannot see through the true state.
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Figure 1: Impulse Responses to Perception Shock in Capital

In Figure 1, the upper panel shows impulse responses of the observables; consump-

tion, worked hours, and production. Because of misperceived wealth effect, consumption

immediately rises by 0.57% and then gradually falls. By the same reason, worked hours

immediately fall and hit the trough (-0.49%) in two periods and gradually recover toward

steady state. As the shock is about beliefs about the value of capital rather than directly

to the true productivity of capital, the early periods of output loss are mainly due to this

fall in worked hours.

However, within the time horizon of 40 periods, we find consumption falling even

below the steady state level, which means inverted hump-shaped responses of consumption.

To see its complete return to the steady state, Figure 2 spans out time horizon up to

200 periods. It shows that consumption takes more than 100 periods to return to the

steady state in the absence of other shocks. So the costs arising from the early periods

of consumption spree (until the 15th period) due to misperceived wealth value tend to

spread over a long period of time.

The key mechanism underlying this prolonged consumption adjustment can be seen

from the behavior of the unobservables; capital, permanent and transitory technologies, as

presented in the bottom panel of each Figure 1 and 2. It is clear that over the consumption
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Figure 2: Impulse Responses to Perception Shock in Capital (extended periods)

spree periods, the agents disinvest and decummulate their capital stock. In turn the de-

cummulation in capital lowers subsequent production levels, which would lower investment

again in the next round, everything else equals. So the earlier decummulation in capital

tends to have a long-lasting effect on the economy, even after the consumption spree peri-

ods end and the agents start to resume investment above the steady state level. Another,

more important, reason behind the prolonged adjustment is that such decummulation in

capital is initially caused by an unduly valuation of capital.

Indeed, we see the capital overvalued for a protracted period of time. Such overval-

uation of the aggregate capital comes hand in hand with protracted undervaluation of

permanent technology. In contrast, transitory technology has little role in this propaga-

tion mechanism. If there are markets where we trade physical capital in separation of

intangible technologies, this result implies that the market price system could persistently

misallocate resources between physical capital and intangible technologies. In so far as the

engine for economic growth is exogenous technology shocks like in this prototype model,

the resource misallocation would not be of measure. However, we will see the issue tran-

scend to another dimension if the engine for economic growth is shaped as an endogenous

market outcome.
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5 Concluding Remarks

In this paper, we have introduced a classification of DSGEs from a Markovian perspective,

and have positioned the class of POMDP to the center of a generalized solution concept

for linear rational expectations models. Building on the previous developments in dynamic

controls in stochastic environments, we have formulated an equilibrium of the POMDP as

a fixed point of an operator that maps what we observe into what we believe, and have

derived an optimal solution algorithm that embeds the MDP and the HMM as a special

case.

Research potential contained in the POMDP framework is considerable. First, we

can employ the POMDP framework to rationalize those shocks recently introduced in

macroeconomics in the wake of the 2007 financial crisis, and to address the issue of “trouble

in capital valuation” in financial sector and propagation mechanism to the other parts of

the economy. In the same line, the POMDP can also be extended to include “time-varying”

parameters (regime switching or structural changes) to examine animal-spirit-like causes

underlying aggregate fluctuations within a full rational expectations framework.

Second, we can bring the POMDP with the endogenous growth theories. Agents make

investment decisions between physical capital accumulation and intangible knowledge de-

velopment. Not all assets are observable. As the agents trade assets, the market price

system will reflect their optimal beliefs about the true values of those assets. However,

when assessed from the omniscient modeller’s viewpoint (as we did in the previous sec-

tion), the price system could persistently misallocate resources between different assets

and between different sectors. So we can use the POMDP to inspect the important issues

in the modern endogenous growth theories, such as unbalanced growth, market failures in

development, and government intervention at the sectoral level.

Third, within the POMDP framework, we can better describe the feedback mechanism

through which the ecosystem interacts with the human kind activities, thereby find a

natural platform for the study of global climate change in a DSGE context. In fact, the

transition equation of the endogenous state (for example, the carbon cycle) is unknown

itself.
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Appendix

Derivation of (23) and (24): Notice first that

E[(yt − yt|t−1)(yt − yt|t−1)′ | Yt−1] = G′tΣ̂tGt,

and

E[(θt − θt|t−1)(yt − yt|t−1)′ | Yt−1] = Σ̂tGt,

following (22).

Next, we use the well-known formula for least square forecast with finite sample (Hamil-

ton, 1994: p.99, p.379). It implies that for update of the state vector θt,

θt|t = θt|t−1 + E[(θt − θt|t−1)(yt − yt|t−1)′ | Yt−1]

×{E[(yt − yt|t−1)(yt − yt|t−1)′ | Yt−1]}−1 × (yt − yt|t−1).

So we can rewrite it in terms of Σ̂t and Gt;

θt|t = θt|t−1 + Σ̂tGt{G′tΣ̂tGt}−1(yt − yt|t−1).

By definition of Mt from (25), we now have

θt|t = θt|t−1 +Mt(yt − yt|t−1),

as in (23).

Lastly, following Hamilton (1994, p.99, p.379), we obtain the covariance matrix asso-

ciated with the inference of θt as follows;

Σt = E[(θt − θt|t)(θt − θt|t)′ | Yt]

= E[(θt − θt|t−1)(θt − θt|t−1)′ | Yt−1]

−
{
E[(θt − θt|t−1)(yt − yt|t−1)′ | Yt−1]

×
(
E[(yt − yt|t−1)(yt − yt|t−1)′ | Yt−1]

)−1

× E[(yt − yt|t−1)(θt − θt|t−1)′ | Yt−1]
}
.
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Again we rewrite it in terms of Σ̂t and Gt;

Σt = Σ̂t − Σ̂tGt{G′tΣ̂tGt}−1G′tΣ̂t

=
{
Irθ − Σ̂tGt{G′tΣ̂tGt}−1G′t

}
Σ̂t.

By definition (25) for Mt, we have it

Σt =
{
Irθ −MtG

′
t

}
Σ̂t

exactly as in (24).

Derivation of the Closed Form for Gt in (26): Post-multiply (25) by G′t, we obtain

MtG
′
t = Σ̂tGt{G′tΣ̂tGt}−1G′t.

Substitute then G′t by D−1
t Bỹθ;

MtG
′
t = Σ̂tB

′
ỹθD

′−1
t {D−1

t ByθΣ̂tB
′
ỹθD

′−1
t }−1D−1

t Bỹθ (33)

= Σ̂tB
′
ỹθD

′−1
t D′t{BỹθΣ̂tB

′
ỹθ}−1DtD

−1
t Bỹθ

= Σ̂tB
′
ỹθ{BỹθΣ̂tB

′
ỹθ}−1Bỹθ.

Meanwhile, from definition of Dt and Gt, we know that

Bỹθ = DtG
′
t

= {Iry −BỹcHcθMt}G′t

= G′t −BỹcHcθMtGt

= G′t −BỹcHcθΣ̂tB
′
ỹθ{BỹθΣ̂tB

′
ỹθ}−1Bỹθ,

where the last equality follows from the result (33). By rearrangement, we obtain

G′t = Bỹθ +BỹcHcθΣ̂tB
′
ỹθ{BỹθΣ̂tB

′
ỹθ}−1Bỹθ

=
{
Iry +BỹcHcθΣ̂tB

′
ỹθ{BỹθΣ̂tB

′
ỹθ}−1

}
Bỹθ.

Derivation of Recursion Formula (28): By definition of the covariance of forecast

errors,
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Σ̂t+1 = E[(θt+1 − θt+1|t)(θt+1 − θt+1|t)′ | Yt].

Plugging (27) into the above expression, we have

Σ̂t+1 = E[(θt+1 − θt+1|t)(θt+1 − θt+1|t)′ | Yt]

= Bθ̃θE[(θt − θt|t)(θt − θt|t)′ | Yt]B′θ̃θ +HθωE[ωt+1ω
′
t+1 | Yt]H ′θω.

Finally, by definition of Σt and Σω, we have

Σ̂t+1 = Bθ̃θΣtB
′
θ̃θ

+HθωΣωH
′
θω,

as in (28).
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