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Abstract
We investigated the electronic structure of the two nematic materials Sr3Ru2O7 and
Ca(Fe0.97Co0.03As)2 using spectroscopic – imaging scanning tunneling microscopy
(SI-STM) and angle resolved photoemission spectroscopy (ARPES). – – – Sr3Ru2O7

is an itinerant metamagnet that shows a putative quantum critical endpoint at 8 Tesla,
submersed by the formation of a nematic electronic phase. Using ARPES, we identified at
least 5 Fermi pockets in agreement with quantum oscillation measurements. Surprisingly,
we found Fermi velocities up to an order of magnitude lower than in single layer Sr2RuO4

and up to 35 times lower than predicted by ab initio calculations. Many bands are
confined in an energy range of only ∼10 meV below the Fermi level. This, as well as
distinct peak-dip-hump shapes of the spectra with a characteristic energy of around
∼5 meV indicate strong correlations and a possible nontrivial mechanism that is absent
in single layer Sr2RuO4 and connected to the nematicity. The quasiparticle interference
of one of the bands was detected by SI-STM, which was also used to measure subatomic
features with the symmetries of the relevant Ru d orbitals. – – – In the second mate-
rial, the iron-based high-temperature superconductor Ca(Fe1−xCoxAs)2, we discovered
electronic nematic nano-pattern in its under-doped ‘parent’ state. We spectroscopically
imaged this state in real space over large areas and across domain boundaries that change
the directionality of the nano-pattern by 90°. We propose that oriented, dimer-shaped
electronic nematogens are responsible for this pattern, in striking contrast to what has
been expected and observed in electronic nematic materials. The dimers consist of two
Gaussian conductance peaks separated by about 8 aFeFe. Unidirectionality also shows in
the quasiparticle interference pattern of the delocalized electrons. The dispersion is in
agreement with scattering from the α2 band discovered by ARPES but has distinct C2

symmetry, not inconsistent with a C4-symmetric band scattered by the proposed dimers.
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Chapter 1

Introduction

This thesis discusses the effect of strong electronic correlations and the emer-
gence of electronic nematicity, studied in Ca(Fe0.97Co0.03As)2 and Sr3Ru2O7.
The following sections aim to motivate our research, to give some background
information, and to survey some of the results.

Note that it is assumed that the reader of this thesis has a knowledge of
condensed matter physics. The basic concepts such as Fermi liquid theory
are assumed. The basic techniques are only briefly reviewed in chapter 2,
and the materials studied are introduced in chapters 3 and 7, respectively.

1.1 Motivation

Even though the fundamental rule that governs the motion of electrons in
solids, the Schrödinger equation, is known, many of us are again and again
surprised by the fascinating, unexpected, and complex behavior that can
emerge from electrons obeying this simple rule. Perhaps this is due to two
reasons: First, the emergence of complexity from simple rules is often strongly
dependent on weak tuning of the constituents and slight differences in the
governing rules. The path from the initial parts to the emergent phenomenon
is, if present, often not accessible to our intuition. Theories adapted to the
level of complexity are needed. Specifically, even though we understand the
the equations that govern the motion of one electron in a solid, we do not
understand the emerging solutions of the associated many-body problem.
Second, even if it is possible to reduce complex behavior to simple rules, the
opposite is usually impossible. It is not likely that any physicist would have
derived superconductivity, or biology, from quantum mechanics before seeing
the experimental evidence thereof.

Emerging phenomena are abundant in nature, and include different sys-
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tems such as ant-hives, neural networks, and in our case, electrons in a solid.1
In the latter, electron can, e.g. form spatially ordered or superconducting
phases. Understanding these complex states, their microscopic origin, and
their interplay and competition has been a major challenge to solid state
physics in the past decades.

This thesis deals with materials ideal to study the phenomena mentioned
above. Sr3Ru2O7, discussed in chapters 3 to 6, shows a directional electronic
ordering in a magnetic field of 8 Tesla. We investigated its ground-state
electronic structure that has many indications of strong electronic correla-
tions. CaFe2As2, discussed in in chapters 7 and 8 is found to form a very
special short-range correlated nematic state. Lastly, we want to mention
here that even though our primary motivation is to understand the fascinat-
ing underlying concepts, the examples of emerging electronic states having a
profound impact on technology are plentiful — superconductivity or giant-
magnetoresistance are examples.

1.2 Strongly correlated electronic states in solids
Electrons are charged, and thus naturally interact with each other. How-
ever, in many solids, such as gold, copper, and silver, the interaction can be
elegantly included by describing, instead of electrons, quasiparticles, which
behave like free electrons with renormalized characteristic properties such as
mass, velocity, etc. scaled by a factor. This concept is part of the Landau
theory of electronic liquids [5]. The strength of the renormalization factors
is a rough measure on how strong the electron-electron interactions are.

On the (111) surface of copper, the surface state has a Fermi vector of
vF = 0.22 Å−1 and Fermi velocity vF of almost 3000 meVÅ. These values
are close to those of a free electron Fermi gas: The electrons are only lightly
correlated [6, 7, 8]. Fig. 4.4 in chapter 4 will illustrate that for electrons in the
δ band in Sr3Ru2O7, the Fermi wave vector is only about half, but the value
of the Fermi velocity is much lower, vF ≈ 50 meVÅ. This is almost a factor
of 60: Sr3Ru2O7 is, at low temperature and zero field, a strongly correlated
electron system. Another indication for strong correlations in Sr3Ru2O7 is
the high Wilson ratio. In a weakly correlated system, the Wilson ratio can
be estimated by the susceptibility of a single electron, when it is higher,
quasiparticles interact to enhance the spin response.

The nematic electronic states imaged in Ca(Fe0.97Co0.03As)2 described in
chapters 7 and 8 are perhaps even more correlated. SI-STM images show

1Many people from different fields have discussed the subject of emergence, we cite
Refs. [1, 2, 3, 4] as examples.



1.3 Directional order 3

highly inhomogeneous states, in disagreement which simple Bloch states.
We will explain this inhomogeneity with a disordered set of oriented nemato-
gens, forming an electronic nematic, with parallels to the ‘liquid crystals’
introduced in the next section.

1.3 Directional order

In this section we will introduce some definitions for different forms of direc-
tional order that we will later use to describe nematic electronic states. We
start from the well-established field of liquid crystals, which are compounds
made of anisotropic molecules with various degrees of directional order. We
will then discuss the comparison with unidirectional electronic systems and
port some of the concepts and definitions.

A liquid/solid of anisotropic molecules can have fascinating properties.
To use the historic language, there can be several different ‘melting points’
where solids can change to cloudy, ‘half crystalline’ ordered liquids which
then turn into clear liquids. It is now known that this is a consequence
of the anisotropic molecules having directional order without translational
order – the material becomes liquid, yet it maintains more order than a
conventional liquid. A liquid in which the molecules have no translational
symmetry but directional order is called ‘nematic’. If the order is maintained
in one direction only, it is called ‘smectic’. The mentioned cloudiness of a
liquid crystal derives from the ability of the ordered molecules to change the
polarization of light depending on their order — a phenomenon that can have
technological use, as will be discussed later. The anisotropic molecules, or
other constituents whose microscopic orientation induces directional order,
are commonly called ‘nematogens’. Fig. 1.1 shows schematically images of
crystalline, smectic, and nematic order. The left column shows schematic
images of nematogens, while the images in the right column show the relevant
orders purely schematic using lines.

The reason for the technological importance of liquid crystals lies in the
fact that it is possible to steer liquid crystal phases by electrical fields and
that liquid crystals change the polarization of light depending on their order,
allowing the construction of displays. Arrays of transparent capacitors with
liquid crystals between the plates can be used to direct individual pixels to
well-defined liquid crystal phases. Polarized light is then shone through the
array, and each pixel rotates the polarized light according to its particular
liquid crystals phase. A linear polarization filter, rotated 90° relative to the
incident polarization converts the rotation angle of the polarization in a light
intensity, such that light going through liquid crystal regions that do not
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affect its polarization does not pass while light with its polarization changed
can pass. Consequently, it becomes possible to steer the grayscale of the
array by the voltages across the capacitances. This and similar devices are
called ‘liquid crystal displays’, or short LCDs, and are projected to make a
100 billion market in 2010 [9].

On the other hand, electrons in a solid such as the high-temperature su-
perconductors are very different from anisotropic molecules in classical liquid
crystals. Nevertheless, they can also form liquid-like states (e.g. Fermi liq-
uids) in proximity to solid-like states (e.g. Mott-insulators). In between, dif-
ferent unidirectional arrangements have been proposed [10] and measured [11,
12]. The comparison to liquid crystals comes naturally. Kivelson et al. [10]
termed this unidirectional states between insulator and Fermi liquid (or su-
perconductor) ‘electronic liquid crystals’, and proposed that nematic, smec-
tic, and isotropic electronic phases can exist.

However, in the electronic analogue to a liquid crystal, the definitions
for ‘smectic’ and ‘nematic’ can not be used in exactly the same way. Two
challenges are present: (i), there is not necessarily any obvious analogue to
the nematogens in liquid crystals where they are anisotropic molecules, and
(ii), the directional symmetry is already broken by the atomic lattice.

Problem (i) can be avoided by making the definitions of ‘nematic’ and
‘smectic’ without explicitly referring to the nematogens, emphasizing the
order. In fact, no electronic nematogens have yet been imagined by any
probe – chapter 8 will report on a possible first exception.

To deal with (ii), the definition of electronic directional order is phrased
relative to the underlying lattice, e.g. we could say a system is smectic or
nematic if the electronic structure has lower symmetry than the underlaying
lattice. Physically, however, this is almost impossible, electron-lattice cou-
pling will not allow a unidirectional electronic structure without at least a
tiny subsequent distortion of the lattice. For that reason, we will use a defi-
nition somewhat softer, and call a system an ‘electronic smectic/nematic’ if
the electronic structure shows an unidirectionality far greater than could be
expected from some possible minuscule lattice distortion.

More precisely, we will use the following definitions:

• A system is in an electronic nematic state if the electronic structure
shows unidirectionality far greater than what can be expected from
the lattice symmetry, and if there is no translational symmetry in any
direction.

• A system is in an electronic smectic state if the electronic structure
shows unidirectionality far greater than what can be expected from the
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lattice symmetry, and if there is translational symmetry in one direction
only, as indicated by a Bragg peak.

Finally, we will call an electronic structure that holds to either definition an
electronic liquid crystal.
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Figure 1.1: Schematic illustration of directional order. (A,B), ‘Crystal’ of rod-shaped
nematogens or dashed lines. (C,D,E,F), Smectic order: There exists directional order
but translational symmetry in one direction only. (G,H), Nematic order: There exist
only directional order, no long range spatial periodicity. (I-P), The respective auto-
correlations reflect the order. In case of the rod-shaped nematogens in nematic order,
the autocorrelation closely reflects the shape of the nematogens. (Q-X), The Fourier
transforms show Bragg peaks in case of spatial periodicity (marked my red arrows),
or broad peaks for spatial short-range correlation (blue arrow). (I-X) are not to scale.
Note that all the pictures are schematic illustrations without physical meaning.



Chapter 2

Experimental techniques

The subject of this thesis is the electronic structure of Sr3Ru2O7 and
Ca(Fe1−xCoxAs)2 investigated by two techniques, angle resolved photoemis-
sion spectroscopy (ARPES) and spectroscopic imaging - scanning tunneling
spectroscopy (SI-STM). Here, it is not our aim to give a full review of either,
but just to briefly survey the two techniques and to give references to more
in depth treatment.

2.1 Angle resolved photoemission spectroscopy
More comprehensive descriptions of angle resolved photoemission spectroscopy
(ARPES) are available elsewhere, e.g. Hüfner [13] or Damascelli et al. [14],
which reviews ARPES on cuprates.

2.1.1 Physical background

When one irradiates a solid with light, an electron can absorb a photon and
be emitted from the surface if the energy from the photon (hν) is greater than
the potential barrier at the surface (φ, termed ‘workfunction’). This is the so-
called ‘photoelectric effect’. The kinetic energy of the emitted photoelectron
is

Ekin = hν − φ− EBinding,

with EBinding the binding energy of the electron in the solid. Translation
invariance on the surface implies crystal momentum conservation, and this
connects the momentum of the photoelectron ~|k‖| emitted at polar angle ϑ
with its parallel wavevector in the solid:

~|k‖| =
√

2Ekin · sinϑ.
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Note that throughout this chapter we assume that the materials studied
are sufficiently two-dimensional to assume negligible kz dispersion. The two
equations above relate the measurable quantities Ekin and p‖ of the photo-
electron with important physical quantities it had in the solid, Ebinding and
k‖ — this is the basic principle of ARPES.

Let us now take a slightly more detailed look at what happens in real
experiments in order to calculate the photocurrent I(k, ω) measured by the
analyzer. We will use the so called three-step model, approximating the
photoeffect as three independent processes (Fig. 2.1A) : (i), the photon hits
the sample and excites an electron, that evolves with probability wf,i from the
initial state into the f inal one. In the so-called ’sudden approximation’, the
solid instantly adapts to the missing electron, i.e. there is no post-excitation
interaction between the photoelectron and the sample. Second, (ii), the
photoelectron travels inside the solid to the surface. Since the mean free path
of electrons with typical energies in our ARPES experiments (14 to 50 eV) is
around 5 Å, only electrons close to the surface have to be considered. Lastly,
(iii), the photoelectron overcomes the potential barrier φ at the surface and
is emitted. We can neglect this step since it only affects kz.

The photocurent I(k, ω) is proportional to the sum of the transition prob-
abilities Σ{f,i}wf,i. Follwing Refs. [15, 13], we calculate them using Fermi’s
golden rule,

wf,i ∝ |〈ΨN
f | Hint | ΨN

f 〉|2 δ(EN
f − EN

i − hν). (2.1)

The delta function guarantees energy conservation for photon energy and
initial/final state energy, EN

i = EN−1
i − Ek

binding and EN
f = EN−1

f + Ek
kin.

In the sudden approximation, the final state can be written as a product
of photoelectron state and the excited state left behind,

ΨN
f = Aφk

fΨN−1
f ,

where A is the total antisymmetric operator, φk
f it the state of the photo-

electron, and ΨN−1
f is the final N − 1 electron state that we assume to be

one of the excited states ΨN−1
ex of the system. Then,

wf,i ∝ |〈φk
f | Hint | φk

i 〉|2 |〈ΨN−1
ex | ak | ΨN

i 〉|2 δ(EN
f − EN

i − hν).

Here, we assumed that the initial state can also be writen as a product of
an one-electron state and the N − 1 initial state, ΨN

i = Aφk
i ΨN−1

i . Hint is
the interaction Hamiltonian for photon and electron. ak is the annihilation
operator, akΨN

i = ΨN−1
i .
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Figure 2.1: Typical ARPES experiment. (A), Schematic illustration of the three step
process: (i), a photon hits the sample, (ii) excites an electron, and (iii), the photo-
electron leaves the surface and its kinetic energy and polar and azimuthal angle are
measured by the analyzer. (B), Representative graduate student at the Stanford Syn-
chrotron Radiation Laboratory, beamline 5.4. (C), Incoming light, sample, and analyzer
at the beamline.

The total photocurrent is then the sum over all excited states ΨN−1
ex in

eq. 2.1,

Iphoto(k, ω) ∝
∑
{f,i}

|Mf,i(k)|2
∑
ex

|〈ΨN−1
ex | ak | ΨN

i 〉|2 δ(EN
f − EN

i − hν),

where |Mf,i(k)|2 = |〈φk
f | Hint | φk

i 〉|2 is the one-electron matrix element,
and the term

∑
ex |〈ΨN−1

ex | ak | ΨN
i 〉|2 is identified with the spectral function

A(k, ω). In summary, we have

Iphoto(k, ω) = fFD(ω)|Mf,i(k)|2A(k, ω),

with fFD(ω) the Fermi-Dirac function. A(k, ω), the one-particle spectral
function, is the quantity of interest. Intuitively, it gives the density of one-
particle excitations in (k, ω)-space. It can be separated in bare bandstructure
ε(k) and correlation/coupling effects added through a complex self-energy
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Σ = Σre + iΣim,

A(k, ω) = − 1

π

Σim(k, ω)(
ω − ε(k)− Σre(k, ω)

)2
+
(
Σim(k, ω)

)2 . (2.2)

The real part of the self energy gives the strength and shape renormalization,
and the imaginary part gives the broadening of the quasiparticle peak.

Through different models for the self energy, or trough predictions for the
bare bandstructure by ab initio calculations, this often allows us to back-
calculate the bare-bandstructure ε(k) and separate it from effects such as
phonon coupling and correlations [16, 17, 18, 19].

2.1.2 Experimental setup

Figure 2.2: Typical ARPES measurements. (A), Schematic view of the A(k, ω) cube.
The blue plane marks the k, E location of a high symmetry cut that can be efficiently
measured by modern analyzers. (B), False color plot of the photocurrent intensity in
such a measurement in Sr3Ru2O7. (C), To map the whole A(k, ω) cube, one takes
many parallel cuts and interpolates the values to a new grid spanning the whole cube.
(D) is an example of the resulting data set, the top surface is a mapping of the Fermi
surface. For details about this particular measurement, see chapter 4.

Fig. 2.1 is an illustration of a typical ARPES experimental setup. A
light source, usually a He-discharge lamp or a synchrotron radiation source,
irradiates a sample, prepared in situ in ultra-high-vacuum. Electrons are
emitted, travel through a hemispherical analyzer and are detected on a CCD
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screen. The analyzer filters the kinetic energy of the photoelectron; the polar
and azimuthal angle are scanned by changing the sample orientation.

Due to the electron-optical properties of most state-of-the-art analyzers,
most experiments measure slices of A(k, ω) in the k, ω space. Typically, we
either measure high resolution, high S/N slices along high symmetry direc-
tions, or many slices covering the whole Brillouin zone, from which we then
extract the Fermi surface. The two measurements are illustrated in Fig. 2.2.

Most ARPES experiments described in this thesis were performed at the
instrument built by the group of Z.X. Shen at Stanford University that uses
a monochromatized He-discarge lamp with 21.2 eV photons, and a Scienta
SES2002 analyzer. We used an energy and momentum resolution of 4.2 meV
and 0.3°, respectively. Some additional experiments were performed at the
beamline 5.4 at Stanford Syncrotron Radiation Labratory (SSRL), part of
SLAC National labratory, Menlo Park, CA. There, we used a Scienta R4000
analyzer with resolution 8 meV, 0.3°. Unless stated otherwise, all data from
the SSRL beamline was taken using 21.2 eV photons. Temperatures on the
sample were always between 5 and 9 K, the cleaves were prepared in situ and
measured at a pressure below 5 · 10−11 mbar.
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2.2 Spectroscopic imaging - scanning tunneling
microscopy

Figure 2.3: Schematic drawing of the density-of-states of sample (with bias VB) and
tip. Figure reproduced from Ref. [20].

Macroscopic tunneling experiments can measure the density-of-states of a
solid, and are associated with milestones in understanding condensed matter
physics such as the observation of the excitation gap in superconductors [21].
On the other hand, scanning tunneling microscopy (STM) is a well explored
technique to image surfaces on the Ångstrom scale [22]. It seems natural
to combine the two techniques, i.e. to use a STM and perform a tunneling
experiment at every location on the surface, with the goal to measure the local
density-of-states, LDOS(r, E). This technique goes under differnt names,
we will call it ‘spectroscopic imaging - scanning tunneling microscopy’ (SI-
STM). It was pioneered on metal surfaces [23, 24] and is nowadays also
successfully used for high-temperature superconductors, strongly correlated
electron systems, and heavy-fermion compounds [25, 26, 27, 28].

2.2.1 Complete mapping of the local density-of-states

In SI-STM, the tip height is adjusted by a feedback circuit until a given
setpoint current Iset flows at a given set-point bias voltage Vset. This is the
same as in the so-called constant-current imaging mode with conventional
STMs [22], and is intended to keep the tip at a constant height above the
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Figure 2.4: Typical SI-STM experiments map the conductance and current in the three-
dimensional Ebias, r cube. The data is typically displayed as spectra at fixed location,
or as a conductance image at fixed bias voltage.

sample, since the tunneling current is approximately proportional to the ex-
ponential of the distance, I(d) ∝ e−

d
α . Then at every point of a predefined

grid, the tip halts, the feedback loop is turned off, and at constant height
a tunneling experiment is performed, i.e. a current I(Ebias) and a conduc-
tance g(Ebias) = d

dV
I(Ebias) curve are measured. All together, this yields

the conductance and current as a function of r and EB, yielding the three-
dimensional datasets g(r, E) and I(r, E), as illustrated in Fig. 2.4. Simulta-
neously, a topographic image of the surface is taken.

Excellent descriptions of the tunneling process in SI-STM can be found in
the thesis by A. R. Schmidt [29]. Here, we will merely give a brief illustration
of the process.

Consider the situation of a STM tip at fixed tunneling distance to a
sample with a bias of −V . In a simple picture, this raises the Fermi level in
the tip with respect to the Fermi level in the sample, and a current flows.
According to Fermi’s golden rule, the total current is proportional to the
number of filled states in the tip available for tunneling, the number of empty
states in the sample available, and the distance-dependent tunneling matrix
element |M(d)|2, as illustrated in Fig. 2.3. This leads to

Itunnel(eV ) ∝
∫
dε

{
|M(d)|2·

{
fFD(ε)ρsample(ε)

}
·
{(

1−fFD(ε)
)
ρtip(ε+eVbias)

}}
,
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with ρ(ε) the respective density-of-states, d the tip-sample distance, and
fFD(ε) the Fermi-Dirac function.

All experiments discussed in this thesis were done at 4.2 K, where the
Fermi-Dirac function changes over a range of only ∼1 meV. Consequently,
we simplify the integral and limit the integration range by approximating
fFD(ε) with a step function:

Itunnel(eV ) ∝
∫ 0

−eV
dε
{
|M(d)|2ρsample(ε) ρtip(ε+ eVbias)

}
. (2.3)

The conductance g = dI/dV is then proportional to the density-of-states
of the sample,

g(eV ) =
d

dV
Itunnel(eV ) ∝ d

dV

∫ 0

−eV
dε
{
|M(d)|2ρtip(0) ρsample(ε)

}
= |M(d)|2ρtip(0) ρsample(eV ). (2.4)

Here we assumed that the density-of-states of the tip is constant, an ap-
proximation that is tested on a gold surface before every experiment. Further,
we neglect the possibility of any forbidden transition from tip to sample.

Since the conductance is approximately proportional to the density-of-
states, the conductance images are proportional to the local density-of-states,
g(r, Ebias) ∼ LDOS(r, E).

As noted above, we want to keep the tip-sample distance d constant by
adjusting the tip height to obtain a predefined (Iset, Vset)-set-point, i.e. a
constant current Iset at a given bias Vset. We have seen, however, that the
tunneling current is not only proportional to e−

d
α , but also to the integrated

density-of-states up to the bias voltage: topographic structure and electronic
density both influence the tip height. It is often not possible to separate
the two, and the differences in height induced by different electronic densi-
ties influences the conductance images. This often undesired phenomena is
commonly called ‘set-point-effect’ or ‘set-up-effect’. More explicitly, one can
substitute |M(d)|2 ∝ e−

d
α in equation (2.4) by using equation (2.3), leading

to

g(eV, r) ∝ ρs(eV, r)∫ 0

−eV0 dε ρs(ε, r)
, (2.5)

for a junction set up at V0.
Ways to minimize the set-point-effect are taking ratio-maps [12], choosing

the set-point in a range with spatially homogenous density-of-states [30], or
looking for strong features in the spectra that are not influenced by the effect,
such as excitation gaps [31]. Details can be found in Refs. [29, 20, 32].
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2.2.2 Quasiparticle interference

A key advantage of SI-STM is the ability to simultaneously obtain informa-
tion about r- and k-space. The latter is done by measuring the interference
of scattered quasiparticles and is termed ‘quasiparticle interference’ (QPI).

In an ideal metal where the electrons are Bloch states, Ψk(r) = eikruk(r),
the local density-of-states is homogenous, ρ(ω, r) = Σk|Ψk(r)|δ

(
ε(k) − ω

)
(except for modulations with the periodicity of the atomic lattice). Imagine
now a material with elastic scatterers. This will mix states on the same ε(k)-
contour, leading to Ψk(r) = a1Ψk1(r) + a2Ψk2(r), with k1, k2 arbitrary such
that ε(k1)

!
= ε(k2). The resulting density is

|Ψks(r)| =
∣∣a1Ψk1(r) + a2Ψk2(r)

∣∣
= |a1uk1(r)|2 + |a2uk2(r)|2

+a1a
∗
2uk1(r)u∗k2

(r)ei(k1−k2)r + a∗1a2u
∗
k1

(r)uk2(r)e−i(k1−k2)r.

It is the last two terms that give us a modulation with wavevector q = k1−k2,
i.e. the difference between two vectors on the same energy contour.

Consequently, the Fourier transform of conductance images yields max-
ima at q-vectors connecting constant energy ε(k) contours. This lets us
access information about the bandstructure and the scattering process of a
material. Again, more details can be found in the thesis of A. R. Schmidt [29],
and in Refs. [33, 34].

2.2.3 Experimental considerations

For an experiment as described, one measures typically ∼50 energy points,
on a ∼300x300 point r-grid, in total that is 4.5 millions datapoints that have
to be taken in a low temperature cryostat and in ultra-high vacuum. Thus,
measuring the individual spectra in short time and with a high signal to
noise ratio is imperative. The technical detail to achieve this are described
C. Taylors thesis [32]. In short, a rigid head design and a thorough vibration
insulation as well as well-designed electronics are a necessity (Fig. 2.6, 2.5).

The experiments described in this thesis were conducted at STM1 at Cor-
nell University [35]. A typical map consisting of 256x256 pixel and 61 layers
took three days to measure. All data was taken at 4.2 K. Samples were
inserted in the cryogenic ultra high vacuum, and cleaved in situ below 15 K.
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Figure 2.5: Vibration insulation. Figure reproduced from Ref. [32]. For details, see
reference.
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Figure 2.6: STM head and cryostat. (A,B), Schematic drawing of the STM head
(CAD drawing by C. Taylor [32]). (C,D) Photograph of the cryostat and head. For
instrumental details, see Refs. [35, 32]



Chapter 3

The bilayer ruthenate Sr3Ru2O7

The first part of this thesis, the electronic structure of Sr3Ru2O7, is covered
in chapters 3 to 6. Here, we will give a short introduction to the material. We
will first survey the family of strontium ruthenate perovskites, then discuss
the geometric and electronic structure, and finally review the particular phase
diagram and theoretical models thereof.

3.1 The strontium ruthenate family

The perovskite Sr3Ru2O7 is the n = 2 bilayer member of the strontium
ruthenate family with Ruddlesden-Popper structure, Srn+1RunO3n+1. The
parameter n is equal to the number of RuO6 octahedra layers in-between
SrO spacer layers. Since the electronic structure is dominated by the former,
this also changes the resistivity anisotropy: the ratio Rin−plane/Rout−of−plane

for the single-layer n = 1 compound is above 1000 [37], for the n = 2 bilayer
material it is around 300 [36], and n =∞ has three-dimensional conductance
behavior. Fig. 3.1 shows a schematic picture of different strontium ruthenates
listed here:

The single layer Sr2RuO4 (n = 1) is famous for its unconventional, most
likely p-wave superconductivity. It is isostructural to the high Tc su-
perconductor La2−xSrxCuO4, consisting of RuO6 octahedra layers with
SrO layers in-between, leading to a very two dimensional electronic
structure [38].

The bilayer Sr3Ru2O7 (n = 2) is a paramagnet with RuO6 octahedra bi-
layers, spaced by SrO layers. It shows metamagnetic transitions and
associated criticality, and it undergoes a nematic phase transition; more
about Sr3Ru2O7 follows in the following sections.
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Figure 3.1: Schematic representation of the Ruddlesden-Popper series Srn+1RunO3n+1.
Showing from left to right Sr2RuO4 (n = 1), Sr3Ru2O7 (n = 2), Sr4Ru3O10 (n = 3)
and SrRuO3 (n = ∞). The yellow octahedra represent the RuO6 octahedra with the
Ru atoms in its centers, and the blue spheres represent the Sr ions. The crystallographic
axes are given in the top right corner. Figure reproduced from Ref. [36].

From the trilayer layer Sr4Ru3O10 (n = 3) to SrRuO3 (n =∞), the ruthen-
ates have mostly three dimensional electronic properties. SrRuO3 is an
itinerant ferromagnet with a Curie temperature Tc = 160 K [39].

3.2 Crystalline structure and synthesis

Sr3Ru2O7 consist of RuO6 octahedra, arranged in bilayers, with SrO spacer
layers in-between (Fig. 3.2). The nearest Ru-Ru distance is 3.87 Å [40, 41].
Every RuO6 octahedron is rotated by 6.8° around the c-axis, with opposite
directions for neighboring octahedra. This doubles the unit-cell (Fig. 3.2,
left), but every bilayer still possesses C4-symmetry. However, since every
bilayer has an opposite rotating pattern, the C4 symmetry for the whole
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Figure 3.2: Schematic representation of the octahedron rotation in Sr3Ru2O7. Left, In-
plane representation of the octahedra before rotation, top, and after, bottom. The basal
unit cell is shown in blue. Middle, Undistorted lattice unit cells. Right, Distorted unit
cell. Yellow octahedra are not rotated, the green are rotated clockwise in the ab-plane,
and the red counter-clockwise. The respective crystallographic axes are represented,
the ones for the distorted lattice rotated by 45° around the c-axis. Figure reproduced
from Ref. [36].

crystal is lost, as can be seen from Fig. 3.2, right. It is noteworthy that even
though the octahedra in single layer Sr2RuO4 are not rotated in the bulk
under ambient conditions, they will do so at the surface [42, 43].

The first Sr3Ru2O7 crystals were grown in Pt-crucibles using self-flux [44],
and were thought to be ferromagnetic, most likely due to ferromagnetic
Sr4Ru3O10 intergrowth [45]. Later, Ikeda et al. [45] and Perry, Maneo, et
al. [46, 47] observed paramagnetic behavior after they used an image fur-
nace to grow samples with significantly higher purity. This method uses
focused light from halogen bulbs to melt rods prepared from powder that
subsequently crystalize to single crystal Sr3Ru2O7. It is important to have
perfect sociometric ratios of constituents in the end product, but due to un-
even loss during the process, one has to use different nominal concentrations
to begin with – one of the many parameters that decide over the quality of
the crystals.
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State–of–the–art Sr3Ru2O7 crystals have residual resistivities below
0.5 µΩcm, and are almost defect and impurity free, as can be seen by SI-
STM ([48], chapter 5) and dHvA [36] — it is in those crystals that one can
observe the nematic phase introduced in section 3.3. The main challenge is
now to suppress the formation of any intergrowth phase, such as Sr4Ru3O10

or SrRuO3. In Ti-doped crystals they can make up molar fractions of sev-
eral percentages, while high-quality pure crystals have values below one per-
cent [49] . Recent scanning electron microscopy by L. Fitting Kourkoutis et
al. confirmed the existence of missing layers and intergrowth phases [50].

The crystals used for this thesis were grown by A. Gibbs, R. S. Perry
and J. Farrell from the Mackenzie group in St. Andrews. The crystals were
characterized by J.-F. Mercure.

3.3 The phase diagram: magnetism, criticality,
and nematicity

Let us first review the low temperature, zero magnetic field properties of
Sr3Ru2O7. Under these conditions, it is a paramagnetic metal. The electronic
structure follows Fermi-liquid theory and is mainly two dimensional, the re-
sistivity anisotropy between transport along/perpendicular to the bilayers is
around 300 at 0.3 K [36] [46, 52, 51]. The magnetic properties of Sr3Ru2O7

are characterized by a tendency towards ferromagnetism, as shown by its high
Wilson ratio R = 10 [56]. Further, Sr3Ru2O7 becomes ferromagnetic under
uniaxial pressures of around 1 GP [56]. At very high temperatures (> 200 K),
Sr3Ru2O7 shows a Curie-Weiss behavior [56]. Another noteworthy thermody-
namic property is the high value of specific heat, γ = 110 mJ molRu−1 K−2,
indicative of a high density of states at the Fermi level, and very different to
single layer Sr2RuO4 where γ = 38 mJ molRu−1 K−2 has been reported [37].

The reason Sr3Ru2O7 has attracted so much attention lies in its partic-
ular phase diagram. The high Wilson ratio is indicative of a proximity to a
ferromagnetic instability, and indeed, a metamagnetic transition is found at
low temperature and a field of ∼7.8 T along the c-axis, becoming broader
with higher temperature [46, 47] (Fig. 3.3). Grigera et al. [52, 51] studied
the metamagnetic properties by measuring the AC magnetic susceptibility
as a function of magnitude and angle of the magnetic field, and tempera-
ture. They discovered that at certain angles and temperatures, the crossover
becomes a first order phase transition, as shown by a dissipative peak in
the imaginary part of the magnetic susceptibility. Further, by varying angle
and magnitude of the field, one can suppress the highest temperature of the
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Figure 3.3: Thermodynamic measurements leading to discovery and characterization
of the particular phase diagram of Sr3Ru2O7. (A), Metamagnetism with B ‖ ab. The
crossover gets smoother with higher temperature. (B), The first order phase transition
sheet leading to a putative quantum critical endpoint at 8 T, 90°. (C), The resistivity
shows the typical cone of non-quadratic behavior above the putative quantum critical
endpoint. (D), Boundary of the novel phase. The shape of the phase boundaries have
been confirmed by various techniques. (E), Anisotropic resistivity in the nematic phase.
(F), Entropy landscape showing the higher entropy in the nematic phase (white line).
Panels reproduced from Refs. [46, 51, 52, 53, 54, 55], respectively. For details, see
references.

phase transition sheet towards zero at 8 T and a field direction close to the
c-axis. Note that this is the endpoint of a line of critical endpoints that
can be tuned towards zero, and not the phase transition line itself, as in the
case of ‘conventional’ quantum critical points [57]. Consequently, Grigera et
al. called this a ‘quantum critical endpoint’. Fig. 3.3B shows the fist order
transition sheet and the quantum critical endpoint.

Criticality is also observed in transport measurements. In zero magnetic
field, there is a crossover from Fermi-liquid like T 2 resistivity to non-Fermi-
liquid like linear resistivity. This transition is suppressed with increased
magnetic field, until it goes towards zero at a field of ∼8 T parallel to the
c-axis, close to the quantum critical endpoint. There is the typical cone
of non-Fermi liquid behavior above the putative quantum critical endpoint
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made visible by plotting the exponent α of the resistivity, ρ ∼ Tα, as a
function of temperature and field (Fig. 3.3C).

Perry et al. were later able to increase the sample quality so that the
residual resistivity was below 0.4 µΩcm. Grigera et al. [53] found that in
such ultra-pure samples, the putative quantum critical point is hidden by
the formation of a novel phase that exists in a small, muffin-shaped region
below 1 K. Borzi et al. [54] and Rost et al. [55] characterized this phase
(Fig. 3.3) and found that this phase exhibits a transport anisotropy without
a significant distortion of the underlying lattice, a characteristic of a nematic
electronic liquid phase. This phase has higher entropy than the surrounding
phases [55] (Fig. 3.3D,E), different than one could naively expect for a liquid
exhibiting additional directional order.

Sr3Ru2O7 seems to be an ideal system to study the criticality and the
related nematicity: the magnetic field is a relatively easy parameter to tune
(other than e.g. doping or pressure), and due to the layered structure and
the possibility of cleaving the sample in situ to reveal pristine, atomically
flat surfaces, the material is accessible for various experimental techniques.
Not surprisingly then, Sr3Ru2O7 has attracted much attention from both
experimentalists and theorists (e.g. Refs. [58, 59, 60, 61, 62, 63, 64]).

3.4 Theoretical models

Before the nematicity was experimentally discovered, early theoretical models
of the Sr3Ru2O7 phase diagram concentrated on metamagnetism and criti-
cality. Binz and Sigrist [58] discovered that a strong enough maxima in
the density-of-states near the chemical potential, e.g. a van Hove singularity,
induces a first order metamagnetic phase transition and qualitatively repro-
duces the experimental phase diagram [58]. This is still the starting point
for many models [59, 60, 61], and the existence of a van Hove singularity has
been confirmed by ARPES [65]. Later, an Hamiltonian that favors forward
scattering was introduced to qualitatively reproduce the experimental phase
diagram. Puetter et al. [66] and Fischer et al. [64] used this method with
mainly dxy derived bandstructure models. A different route is taken in recent
work from Raghu et al. [62] and Lee et al. [63] who concentrate on the quasi
one-dimensional Ru dxz, dyz orbitals and the related α1, α2 bands and pro-
posed different coulomb repulsion for electrons at the same site in the same
orbital (U) versus electrons at the same site but in different orbitals (V ). In
the magnetic field, this leads to an uneven occupation of the orbitals with
orthogonal directionality and thus nematicity. Common to all recent work
is the use of spin orbit coupling to explain the dependence of the nematicity
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on the magnetic field angle.
Despite the apparent success of these models, many questions remain

open. First, the differences to single layer Sr2RuO4, which does not exhibit
nematicity, are not always addressed. Second, in some models, the param-
eters have to be tuned very precisely and to unexpected values in order to
get the the metamagnetic transition at the right magnetic field. Third, it is
often not clear to what degree the bandstructure assumed and/or predicted
matches the experimental data. As we will present in chapter 4, there is
an unusual renormalization of the bandstructure that cannot be predicted
by simple tight binding models, and is not yet included in any theoretical
models of Sr3Ru2O7. Perhaps some of these questions will be answered when
it becomes possible to microscopically image the electronic states in the ne-
matic phase by orbital imaging or k-space Fermi surface distortion [27].



Chapter 4

The electronic structure of
Sr3Ru2O7 seen by ARPES

Figure 4.1: (A), The relevant Ru dxy, dxz,yz orbitals, as well as their dispersions E(k)
and Fermi surfaces that can be expected from tight binding models using Sr2RuO4 hop-
ping parameters. The following simplified arguments lead to an approximation for the
Sr3Ru2O7 Fermi surface: Adding the Fermi surfaces from the three mentioned orbitals
together (B), introducing a bilayer splitting in the dxz,yz derived bands (C), hybridizing
(D), and back-folding. This bandstructure is, despite the simplified model, similar to
the LDA+SO bandstructure (F) and ARPES (panel reproduced from Ref. [65]). Later,
we will show that this is not the case for the Fermi velocities.

The low energy electronic states of Sr3Ru2O7 are mainly composed of
Ru t2g dxy, dxz,yz and O px,y,z orbitals. In a simple tight binding model,
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the dxy orbitals give a circular Fermi surface, while the dxz,yz orbitals give
one-dimensional sheets orthogonal to each other. Fig. 4.1 shows the relevant
orbitals and their respective tight binding Fermi-surfaces. These three bands
give, after hybridization, a Fermi surface very close to the one measured
for single layer Sr2RuO4 [67]. In bilayer Sr3Ru2O7, one has to duplicate
the bands due to bilayer splitting and then backfold the bands due to the
smaller Brillouin zone (c.f. Fig. 3.2). Fig. 4.1A-E show a cartoon illustrating
this set of very simplified arguments that lead to a Fermi surface that looks
surprisingly similar to LDA+SO calculations (Fig. 4.1F).

4.1 Fermi surface mapping

Figure 4.2: (A), Raw ARPES data taken on Sr3Ru2O7 with photocurrent intensity
integrated over an energy range of ±2 meV, plotted in gray scale. The black box marks
the first Brillouin zone of the orthorhombic lattice. X denotes the surface projection
of R and M that of a midpoint between two Γ points (Z or S). (B), We symmetrized
the data across the a-, b-axis and the diagonal to suppress direction dependent matrix
element effects. ((A) and (B) are measurements from different samples.)

1Fig. 4.2 shows the ARPES photocurrent intensity integrated over an
energy window of ±2 meV around EFermi plotted in a false-color image to map
the Fermi surface. Fig. 4.2A shows the raw data, Fig. 4.2B is symmetrized
to suppress direction dependent matrix element effects.

1We published some of the results discussed here in Ref. [65]. Parts of this chapter
follow closely the published manuscript.
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Possibly due to surface effects, different samples show slightly (up to
1 meV) different Fermi levels. This effect is not observable with most pho-
toelectron detectors due to the limited resolution, and for most other com-
pounds, it would be irrelevant due to the high Fermi velocities. For Sr3Ru2O7

however, we have to take this into account. We will note this possible un-
certainty of ±1 meV whenever we give exact energy levels of bandstructure
features measured by ARPES.

Analyzing the Fermi surface and some high symmetry direction cuts, it is
possible to identify at least 5 Fermi pockets, marked and labeled in Fig. 4.3B.
They agree well with LDA calculations (Fig. 4.3C), allowing us to identify the
orbital character of the sheets through comparison with the corresponding
LDA+SO bands (c.f. section 4.2.4). We will briefly describe the individual
bands below, starting with the innermost pocket.

The δ pocket is almost circular. It is the only pocket that stems from
the dx2−y2 orbital of the e2g manifold, with some additional dxy con-
tribution. (All other bands crossing the Fermi level stem from the t2g
manifold.) This band is above the Fermi level in single-layer Sr2RuO4.
The δ pocket has a very low Fermi velocity and hybridizes with the α1

band above EFermi (Fig. 4.9).

The α1 and α2 bands stem from the dxz,yz orbitals, which are highly one-
dimensional (Fig. 4.1A). Bilayer splitting and subsequent hybridization
leads to the cross- and square-shaped, hole-like α1, α2 bands. We will
call the α1 band, which is lower in energy, ‘bonding’ and the α2 band
‘antibonding’, in loose reference to two-atom-molecules .

The γ1 band is an electron pocket. It has mostly dxy character (on the arc)
and some dxz,yz character. A shoulder in the photocurrent intensity
along ΓM (Fig. 4.5, [65]) shows that there is a small bilayer splitting
of this pocket, consistent with LDA+SO results.

The β band is an small, lens-shaped electron pocket at the zone boundary
around the M point. Its main orbital character is dxy.

The γ2 band has its maxima slightly below the Fermi level, at around
−1± 1 meV. However since different samples yield a shift in the Fermi-
level of around ±1 meV, we can not unambiguously decide whether this
band crosses the Fermi-level.

We compared the areas of these pockets with dHvA result [47, 68, 69, 70],
and the agreement of surface sensitive ARPES with this bulk-sensitive probe
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proves that the data shown here is bulk-representative. More about dHvA
will follow in section 4.4.

It is possible that some bands create too weak photocurrent to be detected
by ARPES and are therefore missed. An indication on whether one measures
the complete Fermi surface is to test Luttingers theorem, which, in this case,
states that the total area of electron pockets minus the total area of hole
pockets is an even integer. (Of course this does not exclude that there might
be several additional pockets that add up to zero, or additional but very small
pockets). To calculate the Luttinger area, one has to take into account the
bilayer splitting. For the splitting leading to the α2, α1 bands, the energy
difference is large, and ARPES can easily resolve the bands. For the γ1

band, a shoulder in the data indicates a small bilayer splitting (Fig. 4.5).
The ARPES data for the δ, γ2, β bands does not show any bilayer splitting,
however, comparison with LDA+SO indicates that only the first of these has
a small bilayer splitting. Further, we assumed a small bilayer splitting of the
γ2 band to match the value of the specific heat, as outlined below. Adding
the areas the pockets, with a sign according to their electron/hole character,
counted with the number of times with which they occur in the Brillouin
zone, and including an additional factor 2 for the bilayer-split bands, we get
2(−Aα1−Aα2 +2Aβ+2·4Aγ1 +2·4Aγ2 +2·Aδ) = 0.24(25) electrons/RuO2, or
−0.06(6)+2n, n ∈ N [65]. This is in accordance with the Luttinger theorem.

Using the same assumptions, one can calculate the electronic specific heat.
The sum of masses Σm∗ = 171me, and consequently γ = 127 mJmolRu−1 K−2

[65]. This agrees well with the specific heat measured by direct probe, 110 mJ
molRu−1 K−2 [56]. If one would assume that the γ2 band did not cross the
Fermi level, the calculated specific heat would be 67 mJ molRu−1 K−2. This
indicates that the γ2 band indeed crosses the Fermi level.
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Figure 4.3: Fermi surface of Sr3Ru2O7. (a) shows the experimental data taken in the
first quadrant of the larger tetragonal Brioullin zone and symmetrized with respect
to the Ru-Ru nearest neighbor directions. The white square marks the orthorhombic
Brillouin zone. (b), Fermi surface contours extracted from the data shown in (a). (c),
LDA calculation for the basal plane (kz = 0, black) and mid-plane (kz = 1

4 , blue).
(d), Schematic structure of a single RuO2 plane illustrating the unit-cell doubling due
to a 6.8° rotation of the RuO6 octahedra [20]. at denotes the Ru-Ru nearest neighbor
distance and ao the in-plane lattice constant of the orthorhombic unit cell, respectively.
Figure reproduced from Ref. [65].
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4.2 Strong k- and orbital dependent quasipar-
ticle renormalization

Figure 4.4: Comparison of the surface state of Cu(111) as an example of nearly-free
electron system, and the δ band in Sr3Ru2O7, a highly correlated electron system.
(B), ARPES photocurrent plot of the Cu(111) surface state. The gray box shows the
area that is magnified in (A). The Cu(111) is shown again in (A), with the Sr3Ru2O7

δ band plotted in the same axis. Its bandwidth is around 60 times smaller. (C,D),
Photocurrent spectra from the Γ point. The copper band has a the spectral weight
concentrated in a clear peak, while the spectral weight of the δ band is distributed
between a quasiparticle peak and an incoherent part (‘peak-dip-hump’ shape).

Fig. 4.4(A) is a false color plot of the flat δ band in Sr3Ru2O7. In the
same axis, the free-electron like surface state on Cu(111) is displayed. It
is immediately clear that they have very different band-widths; the band
minima differ by a factor of around 100 while the Fermi vectors are sim-
ilar. This extremely strong renormalization shows that the quasiparticles
in Sr3Ru2O7 are far from being ‘nearly-free’ electrons in a Fermi gas. The
spectra of Cu(111) and Sr3Ru2O7 underline the difference between the two
systems: while the free-electron-like band in Cu shows a narrow peak at the
band energy, the spectra of the δ-band in Sr3Ru2O7 show a peak-dip-hump
shape typical for strongly correlated electron systems [14].

From this, it is evident that the quasiparticles in Sr3Ru2O7 differ greatly
from free electrons that can be treated independently without any interac-
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tions. In the following sections we will describe the strong renormalization
of Sr3Ru2O7 quasiparticles in more detail and will discuss the physical im-
plications thereof.

4.2.1 Renormalization factors in Sr3Ru2O7

Fig. 4.5 shows the quasiparticle dispersion in Sr3Ru2O7 along two high-
symmetry directions. The most striking observation is the extremely flat
bandstructure with bands confined to a narrow energy range of only ∼ 5 meV
around EFermi, present mostly along the ΓX direction. Some bands exhibit
Fermi velocities more than an order of magnitude lower than those of the
single layer compound Sr2RuO4, and more than 30 times lower than the
non-interacting Fermi-velocities we calculated by ab-initio calculations. This
set of strongly renormalized bands coexists with a set of much weaker renor-
malized bands, observed mostly at high energies and along ΓM. The extent
of the renormalization is ‘binary’ in the sense that bands are either strongly
(vexp/vLDA ≈ 19 to 32) or weakly (vexp/vLDA ≈ 6 to 11) renormalized, but
not in between. The bands in Fig. 4.5 are labeled in orange (yellow) for
strong (weak) renormalization. Further, the energy scale on which the bands
become incoherent and quasi-vertical (blue arrow in Fig. 4.5(b)) is around
20 meV, much lower than in the cuprates [71].

To gauge the strength of the renormalization, we compare the electronic
structure of Sr3Ru2O7 with its single-layer sister compound Sr2RuO4 (Fig. 4.5(c)).
The bandstructure of the former differs due to the lack band-splitting and
back-folding induced by the bilayer and octahedron rotation [70, 66]. How-
ever, the Fermi velocities should not be strongly affected by either. Thus we
expect values similar to single layer Sr2RuO4, where the bands have electron
masses of 3 to 6 me, and renormalization factors of m∗/mLDA ≈ 2.7 for the
α214-, β214-sheets and m∗/mLDA ≈ 6 for the γ214-sheet. Here, the renormal-
ization is constant over a larger energy range, and has been attributed to
electron–electron interactions [67, 72, 73]. Fig. 4.5 compares the single and
bilayer compounds illustrating that the dispersion in the former is similar
to the weakly renormalized bands in the latter, but that there is a striking
difference to the strongly renormalized bands. This suggests that there are
additional non-trivial mechanisms in Sr3Ru2O7 that have a strong effect at
low binding energies and for some bands only, possibly the same mechanisms
that lead to the electronic nematic liquid observed in Sr3Ru2O7 but not in
Sr2RuO4.

The different Fermi velocities are very notable along the ΓX direction,
where the the α2 band hybridizes with the γ2 band and disperses very weakly
up to the X point. The dispersion of this sheet spans over more than half
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Figure 4.5: (a, b) Quasiparticle dispersion along the ΓM and ΓX high symmetry di-
rections (defined in the insets). The white lines are guides to the eye. Bands with
renormalization factors in the range of 19 to 32 (6 to 11) are labeled with red (yellow)
font. Two van Hove singularities are labeled. Note the peak-dip-hump shape of the
spectra (inset) characteristic for strong correlations. The blue arrow in (b) marks the
energy scale at which the bands become quasi-vertical. (c) The γ214 band of Sr2RuO4.
Despite manageable differences in atomic structure, the renormalization is about an or-
der of magnitude lower than some of the corresponding bands in Sr3Ru2O7. (d) Sketch
of the complete low-energy band structure in Sr3Ru2O7 up to EFermi. Note that in this
sketch we shifted the γ2 band slightly above the Fermi level for better visibility.
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of the Brillouin zone and stays confined well above the −10 meV level. It
is more than ∼25 times flatter than the non-interacting band we calculated
by LDA+SO and some sections are almost horizontal. The band includes
two van Hove singularities, c.f. section 4.3 and Fig. 4.5(a). In contrast, we
find that the α1 sheet, which is in close proximity, exhibits much weaker
renormalization, as do most of the bands at higher energies or along ΓM.

The binary character of the renormalization is more obvious when the
ARPES bandstructure is compared to the LDA+SO bandstructure. Fig. 4.6
is a false-color intensity plot of the ARPES photocurrent with LDA+SO
overlaid. LDA+SO is plotted twice: once globally renormalized by a fac-
tor of 4, and a second time globally renormalized by a factor of 20. Some
bands follow the former, some bands the latter, illustrating again the binary
character of the renormalization.

Figure 4.6: Comparison between the ARPES bandstructure and LDA calculation. (A,B)
are ARPES intensity plots in the ΓX, ΓM direction, respectively. LDA+SO calculations
are overlaid; the red curves are renormalized by a factor of 5 and track the ‘light’
bands, the yellow curves are renormalized by a factor of 20 and track the heavy bands.
LDA+SO calculations by E. Rozbicki [74].
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4.2.2 Direction dependent renormalization

Unexpected is also the contrast between the two high-symmetry directions.
Along ΓX, the data mostly show the discussed coexistence of strongly and
lightly renormalized low-energy quasiparticle excitations. Along ΓM, the
quasiparticles generally remain lighter. Notably, this direction dependence
can even be observed in a single sheet. Fig. 4.7 shows the Fermi surface con-
tour of the α2 band, which dominates the quasiparticle scattering interference
seen in SI-STM [27], plays a vital role in recent theoretical models [62, 75],
and undergoes the largest volume change in the metamagnetic transition [76].
Our LDA calculations suggest that this sheet has quasi-one-dimensional dxz,yz

character and a nearly isotropic bare Fermi velocity, the same holds for the
bandstructure used in recent theoretical models [62, 75]. ARPES, however,
measures a striking anisotropy of the renormalization (Fig. 4.7). This be-
comes clear from the dispersion plots shown in Fig. 4.7(b,c), where we overlay
an LDA+SO dispersion, globally compressed by a factor of 6 as seen in sin-
gle layer Sr2RuO4. The LDA+SO band reproduces the Fermi velocity along
ΓM but strongly overestimates it along ΓX. In order to correlate the velocity
renormalization with the shape of the Fermi surface we analyzed a large num-
ber of cuts extracted from a three-dimensional data-set. The result is given
in Fig. 4.7(a) by red arrows with lengths proportional to the inverse Fermi
velocity. This shows that the strongly renormalized sections stem from the
dxz,yz orbitals with higher bilayer split energy level (antibonding), while the
weakly renormalized sections that stem from the lower bilayer split energy
level (bonding); both are drawn in the background. Similarly, the α1 band
that also stems from the bonding band also exhibits weak renormalization.
Intriguingly, the high renormalization also tracks sections of the bands that
stem from electrons that are concentrated less in the RuO plane and more at
the apical O in-between bilayers (Fig. 4.10). We will comment on that later
in section 4.2.4.

4.2.3 Low energy kink in the α1-band

At the same energy scale of ∼5 meV noted above, we observe a kink in the
dispersion of the α1 sheet (see Fig. 4.8). Fits to momentum distribution
curves show the canonical s-shaped dispersion with high- and low-energy
parts extrapolating to the same Fermi wave vector, the behavior expected
for coupling of electronic quasiparticle to a bosonic mode [16, 17, 78]. The
coupling parameter λ′ = vhigh/vlow − 1 ≈ 1 − 2 is of intermediate strengths,
though the data do not allow us to give a precise value. Note that a mode
energy around 5 meV is approximately an order of magnitude lower than seen
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Figure 4.7: (a) Renormalization map for the α2 Fermi surface sheet. The length
of the red arrows is proportional to the ratio vLDA/vF, i.e. longer arrows indicate
a higher renormalization. The bilayer-split bands from the one-dimensional dxz, dyz

orbitals before hybridization are drawn in the background in blue (bonding) and pink
(anti-bonding). Note that the strong renormalization is mainly on the anti-bonding
band and vice versa. (b,c), Image plots comparing the quasiparticle dispersion with
a globally renormalized LDA+SO calculation, using a factor similar to the one used
in Sr2RuO4. The Brillouin zone locations of the cuts (b,c) are marked by green lines
in (a).

in various ARPES studies on cuprates [18, 79]. We confirmed through sim-
ulations that the finite energy resolution and temperature of the experiment
cause only a minor distortion of the extracted dispersion, and reproduced
the kink-feature on multiple cleaves from different growth batches. However,
its precise strengths appears to depend on the surface quality of individual
cleaves and its measurement is further complicated by a hybridization be-
tween the δ and α1 pockets above the Fermi level. Cuts along ΓX, with the
intensity above EFermi made visible by normalization [80] show clearly that
the δ- and α1-bands connect at around +3 meV (Fig. 4.9). Note that this
can lead to an flattening of the α1-band towards the Fermi level, but not to
a pronounced kink. We thus believe that there is a low energy kink in the
α1band, but caution to give precise values about the strength and energy.
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Figure 4.8: Low-energy kink in the dispersion of the α1 band. (a), Dispersion plot
along ΓX. The energy scale of the kink coincides with the characteristic energy scale
below which we find highly renormalized quasiparticles. (b), Dispersion extracted from
fits to momentum distribution curves and (c), the corresponding real part of the self
energy for two different samples. The strength and shape of the kink is found to depend
highly on the quality of individual cleaves but its energy of ∼ 5 meV is reproducible.
The dotted line shows a model of the coupling to an Einstein phonon [77].

4.2.4 Orbital character and renormalization

The orbital character of the different bands was briefly discussed in section 4.
From tight-binding models, one can deduce that most straight sections on
the Fermi surface that make up the α1, α2, and part of the other bands stem
from the one dimensional dxz,yz orbitals, and the rest mainly from the dxy

orbital.
LDA calculations provide a more quantitative estimate of the distribu-

tion of orbital character on the various Fermi sheets. Fig. 4.10A shows the
LDA - Fermi surface in the first Brillouin zone with the different orbital con-
tributions of the dxz,yz, dxy, dx2−y2 orbitals (the innermost δ band only has
significant dx2−y2 (e2g) contribution) colored in blue, red and yellow, respec-
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Figure 4.9: Hybridization of the δ and α1 bands. (A), ARPES photocurrent intensities,
divided by a Fermi-Dirac function to make data around and above EFermi visible. The
δ and α1 bands connect, in agreement with LDA+SO calculations (red line). (B), Raw
data.

tively.

Labeling different sheets of the Fermi surface depending on their orbital
character gives information about the spatial location that the electrons have.
One can follow this route further by investigating how much of the contribu-
tions stem from which oxygen atom in the unit cell. We divide the atoms in
three types, as defined in Fig. 4.10B: the ones in RuO layers (IL), the ones
between the RuO layer within a bilayer (BL, red arrow), or on top/bottom
of a bilayer (TB, blue arrows). Then, we analyze the contribution of these
types to the different bands. The most striking observation is visible for the
α1 (bonding) and α2 (anti-bonding) bands; while the former mainly stems
from O p from IL oxygens, the latter stems from orbitals from BL atoms,
in accordance with our naive picture of bonding and anti-bonding states.
This is particularly intriguing since those bands also exhibit a very different
renormalization.
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Figure 4.10: Orbital character of the different Fermi sheets. (A), Fermi surface in
the first Brillouin zone calculated by LDA+SO with the different orbital contributions
of the dxz,yz, dxy, dx2−y2 orbitals colored in blue, red and yellow, respectively. (B),
Schematic illustration of a bilayer of Sr3Ru2O7, with Ru, O, and Sr atoms in blue, red,
and green, respectively. The blue arrow indicate the oxygen atoms outside of the bilayer
that contribute much to the anti-bonding α1, while the red arrow points to the oxygen
atoms within a bilayer that contribute much to the bonding α2 band. (C), LDA+SO
Fermi surfaces with the different bands drawn with different thickness, proportional to
which oxygen layer gives most contribution (‘Between Layers’, ‘Between Bi-layers’ and
‘Inplane’, refer to BL, TB, and IL in our nomenclature, respectively; panel reproduced
from Ref. [74]). LDA+SO calculations by E. Rozbicki [74].

4.3 Van Hove singularities and density of states

In two dimensions, van Hove singularities arise at saddle points of the band-
structure that lead to logarithmic divergences in the density of states. Van
Hove singularities play an important role in many theoretical models of the
metamagnetism, the criticality, and the nematicity in Sr3Ru2O7, and ARPES
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Figure 4.11: Van Hove singularities and density of states. (A), Sketch of the
parametrized bandstructure. Two saddle points that correspond to van Hove singu-
larities are visible. (B), Density of states obtained from the histogram of the band-
parameterization (for details, see text).

is potentially an ideal technique to detect such band structure features.
In the low-energy bandstructure as plotted in Fig. 4.11A, two van Hove

singularities are apparent. In the ΓX cut (Fig. 4.5(a)) they are visible as local
band minima at around −2 and −6 meV, respectively.2 To confirm that they
are indeed saddle points, we took cuts in orthogonal directions (not shown),
and indeed, these show band-maxima.

The low energy density of states in Sr3Ru2O7 is not only dominated by
van Hove singularities, but also by a wealth of flat bands with blunt maxima
that strongly influence the density of states. We thus need not only to find
the position of the van Hove singularities, but also obtain the full density of
states from our data. It is not possible to just k-integrate the spectral weight
measured by ARPES to obtain this, since this would be strongly influenced
by the matrix elements. To avoid this, we obtained the peaks of the relevant
bands in numerous cuts and fitted a surface for each band through the points,
shown in Fig. 4.11. Since DOS(ε) =

∫
dk δ(ε− ε(k)), the ε-histogram of the

parametrized bands is equal to the density of states. The result is displayed
in Fig. 4.11B. Two maxima correspond to the van Hove singularities. Another
maxima corresponds to the flattened maxima of the γ2 band.

The maxima we report in the density of states are at an energy scale that

2As noted in section 4.1, ARPES can only determine the position of the singularities
and the γ2 maxima up to an uncertainty of ±1 meV.
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corresponds to magnetic field strengths that govern the metamagnetism in
Sr3Ru2O7. It is thus not inconsistent with many theoretical approaches (c.f.
section 3.4). Further, the density-of-states again highlights the energy scale
of ∼5 meV at which much of the spectral weight is confined.
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4.4 Concluding remarks

Detailed comparison with de-Haas-van-Alphen data

To compare ARPES data with dHvA data [47, 68, 69, 70], we calculated
the cyclotron masses m∗ = ~2

2π
· (∂A/∂ε)kF by averaging the Fermi velocities

along the contours of the Fermi sheets. Note that due to the anisotropy of
the sheets, the masses one gets are not as high as one might expect given the
renormalization factors along ΓX.

Table 4.1 compares ARPES data with dHvA. The areas as well as the
masses are equal within experimental error, showing that the ARPES data
is bulk representative. The γ2 band is not seen in dHvA, but this is most
likely due to the small area.

α1 (h+) α2 (h+) γ1 (e−) β (e−) γ2 (h+) δ (e−)
ARPES AFS (% BZ) 14.1±2 31.5±3 8.0±2 2.6±1 < 1 2.1±1
ARPES m∗ (me) 8.6±3 18±8 9.6±3 4.3±2 10± 4 8.6±3
dHvA AFS (% BZ) 13.2±1.0 32.1±1.1 7.0±0.9 1.1±0.2 3.2±0.3
dHvA m∗ (me) 6.8±0.5 10.4±1 8±0.5 6±3 8.5±1.0

Table 4.1: Fermi surface volumes and cyclotron masses of Sr3Ru2O7 obtained from
ARPES and dHvA. The polarity of the pockets is indicated in brackets. Errors are
estimated from the statistical accuracy of the analysis and the reproducibility of the
experiments. The mass of γ3 is estimated from parabolic fits to the dispersion. Table
reproduced from Ref. [65].

Magnetic Fluctuations

Here, we want to elaborate on the possibility of strong antiferromagnetic fluc-
tuations being responsible for observed heavy bands and the kink. Inelastic
neutron scattering at energies . 5 meV observed strong antiferromagnetic
fluctuations in ΓX direction, at wave vectors of |q1| = 0.18 π

at
and |q2| = 0.5 π

at
,

where at is the shortest Ru-Ru distance [81, 82, 83]. These q vectors con-
nect parallel lines of various ARPES Fermi surface sheets stemming from
the quasi one-dimensional dxz,yz orbitals. Clearly, various nesting vectors
agree very well with the inelastic neutron scattering peak positions, such as
qδ−δ = 0.18 π

at
, qα1−α1 = 0.45 π

at
, qα1−α2 = 0.15 π

at
. We thus believe that the

antiferromagnetic fluctuations and the nesting vectors are intimately related,
but it remains open whether those fluctuations are a mere consequence of the
particular bandstructure, or if they are connected to the physics of criticality
and nematicity in Sr3Ru2O7.
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Similarities with heavy fermion materials

We would now like to briefly compare the heavy quasiparticles in Sr3Ru2O7

to these in the so called ‘heavy Fermion’ compounds associated with Kondo
lattice physics. The possibility of a connection between Kondo physics and
(La-doped) Sr3Ru2O7 has been mentioned by Ref. [84]. This is intriguing,
given the high Sommerfeld coefficient, the Curie-Weiss dependence of the
magnetization at high temperature [56], the tendency for similar compounds
to form localized spins [85], and the kink in the resistivity at 40 K [84], all of
which are characteristics of Kondo-type f -electron heavy Fermion systems.
This comparison can now be extended further by noting that the coexistence
of heavy and ‘light’ electrons are also expected in Kondo physics, and that
our results are very similar to a recent ARPES study on the heavy Fermion
compound URu2Si2 [86]. According to the same ARPES study, a band mass
(∼22 me) similar to Sr3Ru2O7 was measured. We want to note here, how-
ever, that the heavy bands in the compound studied here do not ‘naturally’
originate from localized electrons, such as the f -electrons in URu2Si2, and
the connection to Kondo-type physics is thus, if present, not simple.

We hope that further, possibly temperature dependent, ARPES and other
studies on Sr3Ru2O7 will bring some light to this issue.
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Real-space orbital imaging of
(Sr0.99Ti0.01)3Ru2O7

1In this chapter, we will discuss SI-STM real space orbital imaging of
(Sr0.99Ti0.01)3Ru2O7

2. Fig. 5.1A shows a 36x36 nm2 FOV topographic im-
age of the cleaved surface, in agreement with previous studies [48]. The
strontium atoms are individually resolved and visible as small bright dots.
Note that every other atom, marked by red circles, is brighter, due to the oc-
tahedral rotation and the resulting

√
2 superstructure (chapter 3). The most

noticeable features are the dark and light spots scattered randomly over the
surface. We identify them with Ti atoms that were intentionally inserted in
the crystal. There are 170 such spots in this image, in agreement with 188
Ti atoms we would expect in a bilayer of this FOV in (Sr1−xTix)3Ru2O7 with
x = 1%. Further confirmation stems from studies on samples with other
doping ratios. Since SI-STM only probes the top few layers, this tells us
that we cleave between two bilayers, otherwise, since the next Ru layer were
>10 Å away, one would only see half the dopants. When comparing with SI-
STM studies on single layer Sr2RuO4 [87], one notes that the dark signatures
visible on the Sr3Ru2O7 surface are very similar to what has been identified
as Ti dopants in Sr2RuO4. Therefore the dark signatures stem from upper
sheet of the bilayer, and the white spots stem from lower sheet of the bilayer.

Careful examination of the white spots reveal that they occur in two
different orientations (Fig. 5.1C,D). Each orientation occurs on one of the two
disjoint sub-lattices and can be attributed to one of the different orientations

1We published some of the results discussed here in Ref. [27]. Parts of this chapter
follow closely the published manuscript.

2In order to be able to perform simultaneous k-space measurements (chapter 6), we
used samples with 1% of the Ru atoms replaced with titanium, (Sr0.99Ti0.01)3Ru2O7. This
changes the transport properties only slightly, refer to Ref. [49] for a discussion.
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of the RuO6 octahedra.

Figure 5.1: (A) Topographic image of the Sr3Ru2O7 surface, taken at VB=−100 meV
and 10 GΩ. Ti dopants substituting Ru in the top and bottom sheet of the surface-
bilayer are visible as black and white spots, respectively. (B), schematic view of the
top layer (panel reproduced from Ref. [65]). The RuO6 octahedra are alternatively
rotated by ±6.8°. This leads to an orthorhombic symmetry and doubles the unit cell
(orthorhombic: dashed, tetragonal: orange). (C,D), Detail of the white Ti-dopant site.
Two different orientations of octahedra are visible, corresponding to the two rotations
of the RuO6, marked by α and β.

This kind of atomically flat surface is well suited for SI-STM studies.
And while the shown topographs display signatures with atomic resolution,
surprisingly, the simultaneously taken low junction resistance conductance



45

images show subatomic features.
Fig. 5.2A shows such a g(r, E) image with EB = −13 meV, taken at

unusually low junction resistance, RJR =300 MΩ, and far away from the
nearest Ti impurity. At these resistances, weak subatomic features become
visible. To increase S/N, we ‘unit-cell-average’ this and all other g(r, E)
images; a procedure that we will describe in the next paragraph.

The Sr3Ru2O7 surface forms a square Bravais lattice, i.e. every point
(xi, yi) is equivalent to any other point (xj, yj) = (xi + n

√
2a0, yi + m

√
2a0)

where n, m are integers, a0 is the shortest inter Ru distance and the
√

2
factor accounts for in-plane superstructure induced by the rotations of the
RuO6 octahedra. Given our ability to image large, flat areas of the Sr3Ru2O7

surface, we can use the translational invariance to increase the S/N ratio by
averaging over many of these Bravais lattice sites. First, we have to pinpoint
the center of each unit cell (some marked in red in Fig. 5.2). For this purpose,
we use the simultaneously taken topographic image, where Sr atoms appear
as peaks. We determine the position of each Sr atom with an accuracy of
less than 0.2 Å by fitting topographic peaks to a two dimensional Gaussian
function. This way, we can precisely locate the position of every unit cell
of the Ru-Ru lattice. To include the

√
2 superstructure of the lattice, we

only use every other Ru atom. Second, we crop a ∼15x15 Å2 window around
every unit cell center (some marked as red boxes). We now have a set of maps
which are ∼15x15 Å2 in size, centered about a crystallographically equivalent
site. Finally, we add all the equivalent points in these maps together, and
divide the resulting sum by the number of maps, to arrive at an unit-cell
averaged map with enhanced S/N. The sub-atomic resolution maps presented
in Fig. 5.2B and Fig. 5.3 are the result of averaging over 28 such unit cells.

These maps show clear subatomic features. Since g(r, E) ∼ LDOS(r, E),
this means that electrons retain local probability densities that change on a
subatomic scale, and they do so in accordance with the symmetry of the
relevant dxy, dxz,yz orbitals, as shown in Fig. 5.3. Such orbital-imaging by
STM has thus far only been reported in cuprates, where non-dispersive, Cu-
Cu bond-centered, locally C2 pattern have been observed [12]. In Sr3Ru2O7,
the pattern are locally C4 and change quickly with energy, perhaps due to
the strong renormalization that the quasiparticle undergo in this compound
(c.f. chapters 3, 4 and 6).

The interpretation of the reported pattern is non-trivial. Theoretical
models of orbital ordering have been proposed [62, 63], but thus far, no ex-
plicit calculations of the signatures we measure have been made. We hope
that measurements of these structures in an external magnetic field can pos-
sibly help understand them better and reveal the microscopic mechanisms
associated with nematicity.
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Figure 5.2: Schematic image showing the ’unit-cell-averaging’ described in the text.
(A), Conductance image at E = −6 meV, and (B), the unit cell averaged image. The
red squares in (A) show some of the cropped areas that are summed to produce the
unit-cell-averaged image.
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Figure 5.3: The top left-hand panel shows a topographic image with the locations of
Ru atoms and their dxz,yz orbitals in blue. Red and green circles mark the positions of
Sr, and O atoms, respectively. Each subsequent panel shows g(r, E) maps resolving
sub-unit-cell spatial features in the same field of view. Whereas some g(r, E) show high
intensity mainly at the positions of the Sr atoms, others clearly resolve sub-unit-cell
features with the symmetry and location of the dxz, dyz, dxy orbitals.



Chapter 6

Quasiparticle interference of the
α2-band

1SI-STM can image both real and reciprocal space [34, 33] — in this sec-
tion we will discuss quasiparticle interference (QPI) in Sr3Ru2O7. Note that
the g(r, E) conductance images we show in this chapter are optimized to
study the long wavelength oscillations caused by QPI, i.e. typically ∼30 nm
and ∼256 pixel and thus obviating the visibility of any small-scale pattern
discussed in chapter 5.

6.1 Fourier transform SI-STM data

So far, QPI signals have been detected either for surface states of metals,
where one meets little renormalization and high density of states [23, 24],
or on the superconducting gap in high-temperature superconductors, where
the density of states has extremely sharp peaks at certain k-space locations
as a consequence of the d-wave gap [34, 33]. Both conditions are extremely
favorable for QPI measurements. It was thus previously unclear if QPI ex-
periments are possible in a strongly correlated material with such a complex
bandstructure as Sr3Ru2O7.

Fig. 6.1 shows a sequence of conductance images on (Sr1−xTix)3Ru2O7.
The spots identified as Ti atoms on topographic images now appear as dark
or light spots, depending on the energy. More interesting though are the
interference fringes that are visible around them. These pattern are rather
complex and change quickly with changing energy. The Fourier transforms

1We published some of the results discussed here in Ref. [27]. Parts of this chapter
follow closely the published manuscript.



6.2 Quasiparticle interference from the model α2-band 49

of those images, g(q, E), reflect this and show rapidly dispersing complex
pattern in the range of -14 to -9 meV.

Unfortunately, these images (e.g. E = −9 meV) also reveal that the shape
of the tip with which the experiment was conducted is not perfectly isotropic.
This was confirmed by examining the autocorrelation of topographic images.
To neutralize this effect, we ’octet-symmetrized’ the data: We only took 1/4
of the image (x > 0 ∧ x ≤ y), symmetrize it, and repeated it to the whole
q-space, leading to the images shown in Fig. 6.2. The analysis described in
the next section uses the octet-symmetrized images.

6.2 Quasiparticle interference from the model
α2-band

To identify the bands responsible for the observed QPI pattern, we considered
the bands calculated by LDA and measured by ARPES (chapter 4). This
complex bandstructure would produce an even more complex QPI pattern,
consisting of many lines and peaks. Surprisingly, careful examination shows
that all the peaks observed in the measured g(q, E) data can be explained
with only one band: the cross-shaped hole pocket around Γ, named ‘α2’ (c.f.
chapter 4). To test this hypothesis, we modeled the α2 band to best fit our
QPI data.

Fig. 6.3A shows a contour of our model α2 band compared with LDA
calculations [65], B shows the simulated spectral weight A(k, ω = −11 meV)
stemming from it. To calculate A(k, ω), we used equation 2.2, with an imag-
inary part of the self energy of Σim ≈3 meV. High QPI signal is expected at
q vectors that connect points of high A(k, ω = const) regions. A measure
thereof is the joint-density of states JDOS(q, E) that is calculated by tak-
ing the k-autocorrelation of the A(k, ω) images, more information about this
procedure can be found in Refs. [88, 89]. 10 maxima can be extracted from
the JDOS(q, E) displayed in Fig. 6.3C, they are marked by colored vectors
q1...10. The same vectors are also overlaid on the simulated A(k, ω) images,
where they connect regions with high value. When comparing the 10 vectors
with the maxima in the real g(q, E) data in Fig. 6.3D, one can see that those
10 vectors account for all dispersing maxima.

To test the hypothesis that the α2 band is indeed responsible for the
measured QPI pattern, we followed the dispersion of the QPI and the sim-
ulated JDOS(q, E), and indeed they agree over an energy range of −13 to
−7 meV. This shows that the QPI data can be self-consistently explained
using scattering from the α2 band only.
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This poses the question as to why one band dominates the QPI signal.
Could it be that other bands produce maxima at similar locations, making
it impossible to differentiate their signal? Or could it be that other bands
produce such low JDOS(q, E) that their contribution is negligible? We
determined this through simulations. We calculated the response that one
would expect for the different bands observed by ARPES. Based on this,
the answer is that we can exclude significant contributions from all other
bands expect perhaps for the α1 band. All other bands would produce peaks
that were clearly visible, but the α1 band produces peaks at similar k-space
locations than the α2 band.

Consequently, there must be other reasons why the α2 band dominates
the scattering process. One possible explanation is that the Ti atoms only
couple to this band, and thus selectively produce QPI scattering signal from
it. Likely an influence has also the different spacial locations of the electrons
in the different bands (c.f. section 4.2.4). It is natural to assume that electrons
located closer to the tip are more likely to tunnel into it and consequently
they produce a stronger signal. Since the α2 band has far more weight at the
apical oxygens on top of the bilayer than the other bands, it would also give
a stronger signal, in agreement with our data.
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Figure 6.1: Left column, A sequence of g(r, E) images taken in a 27x27 nm2 FOV. The
dark or light features (depending on EB) are Ti-dopants substituting Ru. Interference
fringes can be seen around them. Right column, The corresponding Fourier transforms.
The bright spots (red arrow in top panel) stem from the Sr lattice. Clearly visible are also
the
√

2 reconstruction spots (blue arrow). Dispersing QPI patters are visible, especially
in the energy range −14 meV to −9 meV. In the following, we will concentrate on this
energy range.
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Figure 6.2: (A-F), A sequence of g(r, E) maps taken at +100 mV, 1GΩ, all taken in
the same 28-nm-square FOV. Each Ti scatterer exhibits energy-dispersive QPI fringes
around it. (G-L), The corresponding two-dimensional Fourier-transform image g(q, E),
revealing heavy d-electron QPI directly. The dark area near q=(0, 0) is where spectral
weight has been reduced to allow for clearer viewing of the g(q, E) contrast and the
images are octet-symmetrized (original data in Fig. 6.1). A complex and fast-dispersing
set of wave vectors qi is seen in these g(q, E). This q-space complexity and dispersion
can be explained by scattering between states in only one very simple band of Sr3Ru2O7.
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Figure 6.3: The local-density-approximation band structure in the first Brillouin zone
(top right and bottom left quadrants) compared with the α2 band of our model. (B),
The model A(k, ω) of the α2 band in the extended zone scheme at E = −9 meV. The
full set of inequivalent scattering vectors qi=1...10 is shown as colored arrows (same
arrows in (C,D)). (C), The autocorrelation of the model α2 shown in (B). This pro-
cess picks out the regions of high JDOS(q), which should dominate the quasiparticle
scattering process. (D), By overlaying as open circles the tip positions of these same
qi on g(q, E=−9meV), we see that all inequivalent maxima can be accounted for by
α2 band scattering interference. (E), Measured dispersions of q1 and q2 from data
in Fig. 6.2(G-L). They agree well with the model α2 band (solid line). The error bars
indicate the standard deviation widths of q1 and q2 peaks along the dispersion lines
after fitting them to Gaussian curves at each energy.
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6.3 Agreement between the model α2 band and
ARPES

Figure 6.4: Agreement between the model α2 band and photoemission data. (A)
Comparison of Fermi surface (panel reproduced from Ref. [65]). The red contour
marks the model α2 Fermi surface. (B, C) Comparison of band dispersion along ΓM
and ΓX, respectively. The red line from the model α2 band follows regions of high
photocurrent intensity.

The α2 band topology described in this paper has been constructed pri-
marily to model the QPI data. To this end, we started from two strongly
unidirectional bands Ex(k), Ey(k) described by the empirical formula

Ex,(y)(k) =
{

1222 sin6(kx,(y)a0/2)− 26.4 sin4(ky,(x)a0/2) + 1.37
}

meV,

where a0 is the Ru-Ru nearest neighbor distance. Ex(k), and Ey(k) corre-
sponds to the bands of ruthenium dxz, and dyz orbital character respectively.
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The α2 band is then obtained by hybridizing these hypothetical bands:

Eα2(k) =
Ex(k)− Ey(k)

2
−
√(

Ex(k)− Ey(k)
)2

+ V 2,

with V = 2 meV. In Fig. 6.4, the model Fermi surface is overlaid on the
experimental ARPES data. Its size and shape closely resemble the cross-
shaped experimental Fermi surface contour of α2 band derived from the out
of plane dxz, dyz orbitals [65]. The best agreement is observed after shifting
the model band by 3 meV towards higher energies. This shift is probably
due to small energy uncertainty as well as momentum uncertainty of both
techniques, not due to possible different doping level since Ti impurities are
not charged. The agreement between the model and ARPES extends to
other energies: the dispersion plot along ΓM (Fig. 6.4) shows that the model
α2 band has the same Fermi velocity as the corresponding band measured
by ARPES. Hence our QPI result is in very good agreement with the band
structure measured by ARPES over the entire energy range investigated in
this paper.



Chapter 7

The ferropnictides: a second
family of high-temperature
superconductors

Figure 7.1: Hideo Hosono from the Tokyo Institute of Technology, and excerpt of the
paper announcing superconductivity in FxLa1−xOFeAs [90]

In February 2008, Hideo Hosono (Fig. 7.1) and his group from the Tokyo
Institute of Technology published an article about superconductivity below
Tc = 26 K in an electron doped, layered iron arsenide material, FxLa1−xOFeAs
[90]. This discovery lead to great excitement, for a number of reasons:

• The material contains iron, an element that is not known to be super-
conducting and was, due to its ferromagnetism, assumed to be unfa-
vorable to it [5].
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• The atomic structure and the phase diagram have similarities with the
cuprates, a class of materials that have at least touched the careers of
most condensed matter physicists, and that still spark their interest
and curiosity. The new materials show striking similarities with the
cuprates, yet are different enough to be classified as a ‘second fam-
ily’ [91, 92].

• More than 20 years after the discovery of the high-temperature super-
conducting cuprates [93], there is still no consensus about the micro-
scopic mechanisms leading to superconductivity, and technical applica-
tions, albeit present, are more challenging than perhaps expected [94].
The discovery of a second family of high-temperature superconductors
brings hope to both these areas.

In this chapter, we will first introduce the atomic structure of the different
families of ‘ferropnictides’, as the new family was termed, and then give an
overview of the magnetic and electronic structure. This is not intended to
be a complete review, but rather a short introduction to this fast changing
subject. Most of the time, we will use CaFe2As2, the compound we performed
SI-STM experiments on, as an example. Later, we will quickly summarize
the results of STM experiments on ferropnictides thus far.

7.1 The different families
Most ferropnictides are commonly divided into four families with structural
similarities, called ‘1111’, ‘111’, ‘11’ and ‘122’, loosely referring to the number
of different atoms in the unit cell. Fig. 7.2 depicts the generic structure of
each family that will be introduced here briefly.

The ‘1111’ family (e.g. LaFeAsO)

The first discovered ferropnictide was FxLa1−xOFeAs [90]. More generally,
the 1111 family consists of compounds of the form RFeAsO, R = Ce, Pr, Sm,
Nd, etc. These consist of two dimensional FeAs layers, with structurally sim-
ilar RO layers in between (Fig. 7.2A). The parent compound is metallic and
has a tetragonal to orthorhombic and a paramagnetic to antiferromagnetic
transition that occur around 100 K and 150 K, respectively [90].1 Supercon-
ductivity is induced by electron doping2 the parent compound, such as by
replacing oxygen with fluorine, or by inducing oxygen deficiency [96].

1Newer work suggests that this difference is very dependent on sample quality [95].
2Recent experiments suggest that the doping in the ferropnictides is qualitatively dif-

ferent than in the naive picture with the introduced atoms inducing additional charge
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Figure 7.2: Schematic structure of the different ferropnictide families introduced in the
text, (a) 1111, (b) 122, (c), 111, (d), 11. Figure reproduced from Ref. [91].

The ‘122’ family (e.g. CaFe2As2)

The 122 family consist of materials of the form RFe2As2, with the so called
ThCr2Si2-structure (Fig. 7.2B). It has an FeAs layer like the 1111 compounds,
but with R layers in between. The valence of the FeAs layer is 1–/Fe (as
it is in the 1111 compounds), and thus charge neutral cleaving between the
layers is impossible. To make it superconducting, RFe2As2 can be hole doped
through substitution of R2+ with A+ (e.g. K for Ba, Na for Ca [97, 98]),
or electron doped by replacing Fe with Co (e.g. Ca(Fe1−xCoxAs)2 [99]).
The parent state of 122 compounds has a tetragonal to orthorhombic and
paramagnetic to antiferromagnetic transition that occur simultaneous around

carriers. Theoretical models as well as the possibility to introduce superconductivity by
‘doping’ with isovalent atoms indicate that effects like chemical pressure might have an
effect, and that the ‘dopants’ do in fact not induce charge carriers. Consistent which
large parts of the literature, we will for now continue to use the word ‘dopant’ to describe
intentionally introduced atoms to alter the electronic structure.
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130 to 220 K [100].

The ‘111’ family (e.g. LiFeAs)

The 111 compounds are possibly the least studied ones. These RFeAs com-
pounds have the Cu2Sb type crystal structure (Fig. 7.2C), with R = Li, Na,
e.g. [101]. Superconductivity in LiFeAs can be up to 18 K with Li defi-
ciency [101] or up to 33 K in NaFeAs0.8P0.2 [102].

The ‘11’ family (e.g. FeSe)

The 11 family has the simplest structure among the ferropnictide families
(Fig. 7.2D). It consists of 2d FeR layers, such as FeTe, FeSe. Technically,
these compounds are not ‘pnictides’, but ‘chalcogenides’. Superconductivity
can be induced by inducing R deficiency (∼8 K in FeTe, or up to 27 K under
pressure [103]) or by replacing Te with Se.

Recent multilayer systems

Recently, more complex ferropnictide structures were discovered. These in-
clude Sr4V2O6Fe2As2 (Tc = 39 K), and Sr3Sc2O5Fe2As2 [104, 105]. The
former has charge neutral, mirror-symmetric cleaving planes, and is thus
potentially well suited for SI-STM experiments. Unfortunately, no single
crystals have been reported at the time of writing. [106]

7.2 Ground state electronic structure

Ferropnictides are bad metals in their parent state, i.e. at zero doping. All
have the same main features in their band structure (depicted in Fig. 7.4),
but the details are compound specific and complicated. This is mainly due
to possible opening of spin-density-wave gaps around the Fermi level, and to
the back-folding due to smaller Brillouin cells with the coming of magnetic
order — section 7.3 talks about this more and Fig. 7.3 is an illustration of
the different real space unit cells on the top layer.

We will first concentrate on the general bandstructure characteristics that
are observed in most ferropnictides of the 1111 and 122 families. The states
that stem from the FeAs layer are almost solely responsible for the states
around the Fermi level [107]. Fig. 7.4A shows the bandstructure in a hy-
pothetical Fe-Fe Brillouin zone, but since the unit cell of the crystal con-
tains two Fe atoms, the actual Brillouin zone is only half as big, and the
bandstructure has to be back-folded. This gives two hole pockets around
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Γ and two electron pockets around M (Fig. 7.4B). In the antiferromagnetic
phase (c.f. section 7.3), the effective Brillouin zone is divided in half, lead-
ing to further back-folding. The exact way in which bands hybridize then
is still under discussion, and ARPES results are not yet conclusive (e.g.
Refs. [108, 109, 110, 111, 112, 113, 114]).

Figure 7.3: Top view of the atomic structure of CaFe2As2. The FeAs layer and one
adjoint Ca layer is drawn. The dotted red, green, and gray square mark the FeFe,
CaCa, and antiferromagnetic unit cell, respectively.

7.3 The phase diagram
As mentioned, members of the 122 family show a structural phase transi-
tion, in the case of CaFe2As2 this occurs at around TS = 170 K [99]. The
structural transition is a change from tetragonal, a = b, to orthorhombic,
a−b
a+b
≈ 1% [117]. Further, there is a magnetic phase transition that occurs at

the roughly the same temperature in 122 systems, or at significantly lower
temperatures in 1111 systems3. The material changes from paramagnetic to
a state that is ordered anti-ferromagnetically along the a-axis and ferromag-
netically along the b-axis, with every other spin being the same, i.e. period
2aFeFe, aFeFe being the shortest iron-iron disctance. This particular order is
sometimes (sloppily) called ‘spin-density-wave phase’ or ‘antiferromagnetic
phase’, we will use the latter nomenclature. Fig. 7.5 is a plot of the strength
of the staggered magnetic moment as a function of temperature in LaFeAsO,

3Recent work suggests that this difference is very dependent on sample quality [95].
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Figure 7.4: The bandstructure of CaFe2As2. (a), Effective Brillouin zone for Fe-Fe
tight-binding model. The dashed line indicates the Brillouin zone of the crystallographic
unit cell (Fig. 7.3). (b), Back-folding of the bands lead to two hole pockets around Γ
and two electron pockets around M. Figure reproduced from Ref. [107].

the inset is a schematic of the ordering of the spins. The phase transition
reflects itself also in nuclear magnetic resonance, Mössbauer, and resistivity
measurements. Upon doping, the temperature of the phase transitions is
lowered until it goes towards zero (∼4% to 8% in BaFe2As2). After some
threshold doping, the sample becomes superconducting; the transition tem-
perature marks usually roughly the shape of a dome in the phase diagram.
In 122 samples, the structural and magnetic transition lines hit the super-
conductivity dome, and there exists coexistence of superconductivity and
antiferromagnetic ordering [118]. In 1111 samples, the magnetic phase tran-
sition temperature goes to zero at lower doping where no superconductivity
takes place while the structural phase transition hits the superconductivity
dome. Fig. 7.6 shows representative phase diagrams.

7.4 Similarities with the cuprates
The phase diagrams of the ferropnictides have clear similarities with the
ones of the cuprates (and with some organic superconductors, for that mat-
ter [119]): An antiferromagnetic parent state that becomes superconducting
upon carrier doping (Fig. 7.6), and an anti-ferromagneic (or Mott insulator)
phase transition line that is suppressed to zero with doping. Both are layered
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Figure 7.5: Temperature dependence of the square of the magnetic moment in
FxLa1−xOFeAs, measured by neutron scattering. The inset shows schematically
how the spins are arranged in the antiferromagnetic phase. Figure reproduced from
Ref. [115]. For details, see reference.

compounds, both have to a large extent d-electron carriers. Differences in-
clude the bandstructure that is more complicated in the ferropnictides than
in the cuprates, and the insulating parent state of the cuprate parent state
compared to the metallic parent state in the ferropnictides. A more detailed
comparison can be found in Ref. [120].

7.5 STM experiments on the ferropnictides

The first single crystals of 122 ferropnictides were grown in mid-2008, and
immediately, ARPES and SI-STM experiments were performed. Unfortu-
nately, the latter proved to be very challenging. The cleaved surfaces showed
mostly disordered structures without atomic resolution, sometimes patches
of atoms appeared but mostly with much scattered debris on them, render-
ing most classic SI-STM experiments impossible. Fig. 7.7K shows a typical
topographic image of BaFe2As2: no atomically flat surface is visible. Even



7.5 STM experiments on the ferropnictides 63

Figure 7.6: Phase diagram of various Ba(RxFe1−x)2As2 compounds with transition
temperatures for antiferromagnetic, structural, and superconducting phase transition
(see labels). The generic shape includes lines of structural and magnetic phase tran-
sitions that are, upon doping, suppressed towards zero temperature, and a dome of
superconductivity. Figure reproduced from Ref. [116]. For details, see reference.

though it can be expected that cleaving is more violent in the ferropnictides
than in the cuprates - due to the lack charge neutral cleaving planes and
mirror planes in between layers of atoms - it is unclear why one observes
these disordered surfaces. Could it be that parts of the spacer layer, such as
Ba and Ca in 122 systems, stays scattered on the surface? This question is
under debate (c.f. chapter 8).

We take an practical approach to this challenge and display an overview
of cleaved surfaces from the literature and from our lab in Fig. 7.7. Only two
materials seem to give the atomically flat, debris-free surfaces suitable for SI-
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STM experiments: CaFe2As2, and members of the 11 family. We concentrate
on CaFe2As2.

Figure 7.7: Various STM images of different ferropnictide surfaces. Most surfaces show
either disordered structures or much debris on the surface (A-H,K). The FeSexTe1−x (J)
and the Ca(Fe1−xCoxAs)2 (Fig. 8.2) compounds show surfaces well suited for SI-STM.
Images reproduced from Refs. [121, 122, 123, 124, 125, 126, 123, 19], respectively. For
details, see references.
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SI-STM of the nematic electronic
state in Ca(Fe0.97Co0.03As)2

In Fig. 8.2, one can see that cleaving Ca(Fe1−xCoxAs)2 crystals reveals atom-
ically flat surfaces suitable for SI-STM, thus we now concentrate our experi-
ments on this material.

Ca(Fe1−xCoxAs)2 is representative of the 122 family of structurally similar
compounds. LDA calculations as well as ARPES measurements show Fermi
surfaces in fair agreement with other 122-compounds [127, 128, 108, 109, 110,
111, 112, 113] – the details of back-folding and hybridizations are, as often
in the ferropnictides, complicated and not well understood. Transport and
X-ray measurements confirmed the typical 122 phase diagram qualitatively
similar to BaFe2As2 and SrFe2As2, with simultaneous magnetic and struc-
tural transitions at ∼ 170 K [99, 117, 129] (Fig. 8.1). Surprisingly however,
neutron scattering showed a clear difference between the coupling constants
J1a, J1b in CaFe2As2, much larger than what is expected from the miniscule
lattice asymmetry [130, 131].

In this chapter, we discuss Ca(Fe1−xCoxAs)2, with x = 3±0.5%.1 This is
well on the underdoped side and, as will be shown later, in the orthorhom-
bic regime. Fig. 8.2 shows a topograph of Ca(Fe0.97Co0.03As)2. Immediately
visible is the mostly debris free, atomically flat surface with a 1x2 surface
reconstruction (blue and red arrows in inset), also observed in LEED ex-
periments [126, 132]. This surface reconstruction is prevalent on 122 sur-
faces [121, 122, 133, 123, 124, 125, 126]. For reasons not yet clear, it is very
hard to image single atoms on the Ca(Fe1−xCoxAs)2 surface, and for that
matter, on most 122 surfaces. Only very low junction resistance topographs
show atomic resolution, and even there, not single atoms but rather dimers

1The doping is rather inhomogeneous, we will discuss this on page 8.
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are visible (Fig. 8.2, inset). Perhaps for this reason, it is not absolutely
clear what the cleaving surface is and how the atoms on the top-layer ar-
range themselves. Given that the covalent bonds between iron and arsenic
are very strong, the two possibilities are FeAs or Ca terminated surfaces (c.f.
Fig. 7.3). Based on various arguments, most of the literature seems to favor
the FeAs terminated picture; discussed is also the possibility that about half
the Ca atoms stay on the surface and are involved in the formation of the
2x1 superstructure [123, 132, 125, 126, 134, 122]. Some STM images indicate
a possible dimerization of the surface [126].

Figure 8.1: Schematic phase diagram of R(Fe1−xCox)2As2 (here R = Ca, Sr, or Ba)
as function of doping concentration x [99, 100, 117, 129]. Red, blue, and green curves
show the transition temperature for structure (TS), antiferromagnetism (TAF ), and
superconductivity (Tc), respectively. The red arrows indicate the spin orientation for
each Fe atom in the antiferromagnetic-orthorhombic phase. Upper right, FeAs layer
showing the unit cell in tetragonal (blue dashed lines) and orthorhombic (black dashed
lines) phases. The orientation and periodicity of the surface reconstruction in the
topographic images in Fig. 8.2 is indicated by gray lines.

We now want to turn our attention towards the underlying atomic struc-
ture. At low doping, Ca(Fe1−xCoxAs)2 is an orthorhombic material, and as
such it has, albeit a and b are less than 1% different, a 180°-symmetic (C2)
crystal structure [117]. It is thus important to know if the sample studied
is in the orthorhombic or tetragonal phase. Although the qualitative phase
diagram is known to be similar to those reported for BaFe2As2, the hetero-
geneity of doping so far prevents the measurement of the exact doping at
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Figure 8.2: Constant-current topographic image of Ca(Fe1−xCoxAs)2 taken at VB=-
50 mV and I0=10 pA on a 71x71 nm2 FOV. Inset: a high resolution topograph in
a smaller FOV (4.2nm-square) taken at VB=-5 mV and I0=100 pA. The white box
marks the 1x2 surface reconstruction. The orange arrows indicate the first indications
of unidirectional electronic nano-pattern.

which the low temperature structural phase transition occurs.
A standard method to measure doping concentration is wavelength disper-

sive X-ray spectroscopy. This technique uses the fact that, when irradiated
with X-ray light, different atoms emit electrons at different, atom-specific
energies, allowing us to measure their relative molar concentrations (for a re-
view, c.f. Ref. [135]). We performed X-ray spectroscopy experiments on our
samples, and obtained very inhomogeneous dopings. On the sample studies
in this thesis, we measured with a spot size of 200 µm, and obtained 3.63%,
3.49%, 2.74%, 2.66%, 2.67%, 2.98%, 2.90%, 2.47% and 3.03% doping at dif-
ferent random locations, i.e. 3±0.4% on average. On different samples of the
same batch, we obtained 4.6±1%. Obviously, this cannot answer the question
about the exact location in the phase diagram, but tells us that we measure
samples well on the underdoped, orthorhombic and antiferromagnetic side.
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8.1 Static nematic pattern in Ca(Fe0.97Co0.03As)2

Detailed examination of topographic images of Ca(Fe1−xCoxAs)2 surface re-
veals a surprising fact: it appears to show faint unidirectional structures
(Fig. 8.2, orange arrows). When two identical atomically registered to-
pographs, taken at VB= ±50 meV, are subtracted to cancel the signal of the
surface reconstruction and topographic disorder, unidirectional nano-pattern
are seen. Since topographs represent a logarithmic measure of the integrated
density of states [22], this means there exists some form of non-dispersive
electronic unidirectionality. To get a clearer picture of any such electronic
nano-pattern, we image the energy-resolved LDOS(r,EB) in the same FOV.
Unidirectional electronic nano-pattern with different magnitude are detected
in all low energy g(r, E) images in a ∼ ±100meV range. These nano-pattern
are non-dispersive in the sense that they change very little over the energy
range in which they are visible (c.f. section 8.2).

The C2 unidirectionality exhibits itself very clearly in the autocorrela-
tion AC

(
g(r, E)

)
: Apart from the central peak, there are two clear peaks

along the same direction as the unidirectional electronic structure is observed
(Fig. 8.3E,F). This not only shows a clear unidirectionality, but also a char-
acteristic distance of ∼8aFeFe at which a self-similarity is present. This self-
similarity is short-ranged, there are no peaks in the Fourier transform in-
dicative of long-range order. In this thesis, we will refer to the conductance
pattern causing this unidirectionality as ‘static nematic pattern’ (SNP).

Note that the directionality of the SNP is independent of the surface
reconstruction that is aligned at a relative angle of ±45°. Fig. 8.4A shows
a topographic image of the Ca(Fe0.97Co0.03As)2 surface with surface recon-
structions in two different directions. Clearly, the unidirectional nano-pattern
(Fig. 8.4B) is not influenced by the boundary of the surface reconstruction.
This shows that the SNP is indeed a bulk property unaffected by the recon-
struction at the surface.

8.1.1 Domain boundaries

In the orthorhombic phase, there is a structural directionality in Ca(Fe1−xCoxAs)2,
and since our crystal is not de-twinned, different orthorhombic domains exist.
Consequently, it might be expected that there are domains of the electronic
directionality too. We searched for such domain boundaries, i.e. areas where
the directionality of the electronic structure rotates by 90°, and indeed, we
have found such areas where there are SNP domain boundary. Fig. 8.5 is
a g(r, E=−37meV) conductance image on an area where the directionality
of the unidirectional nano-pattern rotates by 90°. The boundary is straight
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Figure 8.3: Unidirectionality in Ca(Fe0.97Co0.03As)2. (A,B) Topographic images taken
at VB= +50,−50 meV, respectively. (C), The subtraction removes topographic fea-
tures and reveals electronic unidirectionality. (D), The same pattern can be seen in
g(r, E=−37meV) (for clarity we Fourier-filtered the 2x1 surface superstructure out, as
we did in all following g(r, E) images). (E,F), The autocorrelation of g(r, E=−37meV)
shows that the unidirectionality stems from a ∼8 aFeFe self-similarity.
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Figure 8.4: (A), Topographic image that spans a FOV with two different directions of
surface reconstructions. (B), The conductance image g(r, E=−37meV). The SNP is
not influenced by the surface reconstruction.

Figure 8.5: (A), Topographic image of a FOV spanning two different domains (the
boundary marked by black arrows). (B), The conductance image g(r, E=−37meV).
Clearly the the directionality of the electronic structure rotates by 90°. The insets show
the autocorrelations from the respective domains.

and aligned along the As-As direction, it is only weakly visible in the topo-
graphic image (Fig. 8.5A, arrows). We cannot yet conclusively determine if
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a simultaneous twin boundary of the orthorhombic lattice induces the SNP
to change directionality.

This observation of the SNP domain boundary is also very important for
the following reason: Unidirectional signals in SI-STM are often a conse-
quence of horizontally elongated or double tips, since the measured signal is
always a function – approximately a convolution – of the tip and the sample.
It is therefore important to exclude such an effect, and this is done here by
showing different directionalities measured by the same tip.

8.1.2 Changes in the nematic pattern with varying en-
ergy

The Ca(Fe0.97Co0.03As)2 surface is very sensitive to high (|VB| & 100 mV)
bias voltages. Consequently, most experiments were done at ± 50 to 70 mV.
Since the SNP gives a strong signal in most of this range, the set-point effect
(c.f. chapter 2) plays an important role.

Let us illustrate this with an example: Let us assumed that the SNP
contrast is entirely ‘present’ at negative binding energies, and that the local
density-of-states at positive binding energies is constant. Then, according to
Eq. 2.5, the SNP contrast would be entirely normalized out at all negative
conductance layers. However, at positive energies the SNP would appear.

This makes it very challenging to obtain information about particle-hole
symmetry, a characteristic that is expected for e.g. polarons.

One way to track this problem is to look for the SNP signal in the autocor-
relation of the topographs. Since topographic images represent a logarithmic
measure of the integrated local density-of-states up to the bias voltage, this
is unaffected by the set-point effect. However, topographic features shadow
the SNP contrast. Only in the autocorrelation the nematic pattern is clearly
visible. Based on this analysis (not shown), we can say that the SNP signal
is mostly present at binding energies between –50 and 0 meV. On the posi-
tive side, the SNP is present too, but weaker. Lastly, from cross-correlation
analysis, we can say that the contrast of the SNP inverts somewhere between
0 and 10 meV.

In summary, our analysis points towards a particle-hole antisymmetric
SNP contrast that is much stronger on the negative side. We plan to do
further work on this subject.
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8.2 Dimer-shaped nematogens

We have seen that the electronic structure in Ca(Fe0.97Co0.03As)2 is highly
unidirectional, with a self-similarity on a characteristic length-scale of∼8aFeFe.
This is consistent with neutron scattering experiments that measure a degree
of magnetic anisotropy that cannot be explained with the miniscule lattice
anisotropy [130, 131].

From these facts, some questions naturally arise: What is microscopic
source of this unidirectionality? What possible electronic structures can
lead to such an autocorrelation pattern? Are there any nematogens, i.e.
can we deepen the comparison with liquid crystals, where the nematogens
are anisotropic molecules? And finally, are there any stripes, as proposed by
countless theoretical models?

We will try to answer some of these questions in the following section.
First, we reexamine the autocorrelation images (Fig. 8.3E,F). The triple

peak indicates unidirectionality. Further, the absence of peaks in the Fourier
transform indicates that there is no long-range order. The unidirectionality
can therefore be categorized as nematic, and not as e.g. smectic or periodic
(‘stripy’). Almost as striking as the C2-triple peak is the absence of any other
strong structure in the autocorrelation. This indicates that there is, other
than the mentioned unidirectional self-similarity, no other electronic short-
range correlation visible in the data. The only persistent length is ∼ 8aFeFe.
This sets strong constraints on the nematogens leading to our pattern.

For example, if the nematogens were to be long objects, such as the
proposed and measured [136, 137, 11] stripes in YBa2Cu3O6+x, one would
obviously see a very different autocorrelation. Even in the case that there
exist different stripes which are only 8aFeFe long, even in the case that they
are curved, the autocorrelation would show an elongated single object, not a
triple-peak, as illustrated in Fig. 8.6. Or, let us assume that the nematogens
are some complicated object. This too would be reflected in the shape of the
autocorrelation (Fig. 8.6, Chapter 1).

Let us now investigate what kind of conductance pattern could lead to
the observed autocorrelation. The simplest solution is a random field of
nematogens consisting of dimers of Gaussians, N (r) = Gσ(r−d/2) + Gσ(r+
d/2), with displacement |d| ≈8aFeFe. Fig. 8.7 is a schematic illustration of
such a dimer compared with the atomic lattice. Obviously, if these dimers
are randomly scattered, there would be no signature in the autocorrelation
except for the side-peaks, in agreement with the SI-STM data. Note that
this is not only the simplest, but – if one assumes that all nematogens are
equal and oriented – also the only possible set of nematogens resulting in
such an autocorrelation pattern. Consequently, we want to investigate this
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case in more detail.

Figure 8.6: Schematic illustration on how different nematic pattern influence the auto-
correlation. (A-C), ‘Real space’ pattern, either with elongated objects or nematogens.
Their shape is clearly reflected in the autocorrelation pattern (D-F). None of the shown
pattern show clear unidirectional double peaks as observed on Ca(Fe0.97Co0.03As)2.
The insets show the respective Fourier transforms with polynomial peaks indicating
correlation.
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Figure 8.7: Schematic illustration of the proposed dimer-shaped nematogens N (r) =
Gσ(r−d/2)+Gσ(r+d/2). Top, a cut through one dimer. Bottom, the atomic lattice
for comparison, with one dimer overlaid in grayscale. Note that the spacing of ∼8aFeFe

is large compared with the lattice spacings.

8.2.1 Simulations

Even though our hypothesis of dimer-shaped nematogens produces the right
autocorrelation, at first sight, the g(r, E) images seem not indicative of such
nematogens; by eye, no dimers are distinguishable. Could it be that many
overlapping dimers make make it impossible for the eye to pinpoint and
identify single ones? To test this, we performed simulations. Fig. 8.8A-D
show a 48x48 nm2 FOV with N = 1, 12, 220, 2000 nematogens as proposed,
respectively. They obviously yield the correct autocorrelation (insets) by
design. While one can distinguish single dimers at N=1, 12, it becomes
harder at N ≈ 200, and almost impossible at N ≈ 2000. We emphasize that
the dimers are randomly scattered; the apparent ‘stripe’ like features (orange
arrow) are nothing but random accumulations of nematogens misguiding the
eye of the observer.

Clearly, the simulated images are qualitatively similar to our g(r, E=−37meV)
data, as long as N

Area
&0.2 nm−2 (Fig. 8.9A,B show a comparison of the same

FOV). The same holds for the autocorrelation (Fig. 8.9E,F) and for the
Fourier transform (Fig. 8.9C,D). While this is trivial for the former (by de-
sign) it might not be obvious for the latter. We thus want to elaborate the
Fourier transform one can expect from our proposed nematogene-generated
g(r, E) above.
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Figure 8.8: Simulations of randomly scattered dimers (N = Gσ(r−d/2)+Gσ(r+d/2),
|d| ≈ 8 aFeFe) on a 40x40 nm2 FOV, with N the number of dimers, N=1, 12, 220,
2000, respectively. The insets show the respective autocorrelations. Note that already
at N = 220 it is not possible to distinguish every single dimer, at N = 2000 one can
hardly distinguish any dimers.

8.2.2 Fourier transform of dimer-shaped nematogens

According to our hypothesis, the conductance consists of the sum of randomly
scattered, dimer-shaped nematogens,

g(r) =
∑
Rj∈R

N (r−Rj),

where R is a set of random locations and N (r) is one nematogene consisting
of a dimer of conductance maxima in the shape of two Gaussians peaks,

N (r) = Gσ(r) + Gσ(r + d),

Gσ(r) =
{
a · e−

|r|2

σ2
}

mS,
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Figure 8.9: Comparison between the simulations shown in Fig. 8.8 and
g(r, E=−37meV) data from a FOV with the same size (40x40nm2). The conduc-
tance (A,B), Fourier transform (C,D), and autocorrelation (E,F) look qualitatively sim-
ilar. Again, the surface reconstruction in g(r, E=−37meV) image (A) is removed by
Fourier filtering, also visible in (C).
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and |d| is the distance between the Gaussians within a dimer. Then we can
rewrite g(r) as a sum of two shifted function,

g(r) = f(r + d) + f(r),

with f(r) the field of randomly scattered single Gaussians,

f(r) =
∑
Rj∈R

Gσ(r−Rj).

The Fourier transform of such a function can be simplified as

F
{
g(r
}

= F
{
f(r + d)

}
+ F

{
f(r)

}
=

∫
dr eir.qf(r) +

∫
dr eir.qf(r + d)

=

∫
dr eir.qf(r) +

∫
dr ei(r+d).qf(r)

=
(
1 + eid.q

) ∫
dr eir.qf(r)

=
(
1 + eid.q

)
F{f(r)}.

The last term can be explicitly calculated since

F
{
f(r)

}
= F

{ ∑
Rj∈R

Gσ(r−Rj)
}

=

∫
dr
{ ∑

Rj∈R

eir.qGσ(r−Rj)
}

=
∑
Rj∈R

{∫
dr e−iRj.q eir.q Gσ(r)

}
≈ G1/σ(q).

In the last step, we assumed the limit of many nematogens and a large
FOV. The last term is real, and thus we measure∣∣F{g(r)}

∣∣ =
∣∣eid.q + 1

∣∣ · G1/σ(q)

=
√

1 + eid.q + e−id.q + 1 · G1/σ(q)

=
√

2 + 2 cos(d.q) · G1/σ(q)

=
√

4 cos2(d.q/2) · G1/σ(q)

= 2
∣∣ cos(d.q/2)

∣∣ · G1/σ(q).
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This is a Gaussian peak modulated by | cos | with frequency |d|/2. This
not only explains the particular shape of the Fourier transform of the SNP,
but also gives a way to extract the intra-dimer-distance from the data. One
has to keep in mind that the q-space resolution in our experiment is lim-
ited, influencing especially the sharp features from the | cos | term. This can
be overcome by introducing a q-resolution constant Λq. The final result is
then obtained by convoluting

∣∣F{g(r)}
∣∣ as calculated with an instrumental

response function that limits the resolution, GΛq(q), leading to∣∣F{g(r)}
∣∣ =

(∣∣ cos(d.q/2)
∣∣ · G1/σ(q)

)
∗ GΛq(q),

where ∗ denotes the convolution.

Figure 8.10: Two-dimensional fit (right) of the Fourier transform of g(q, E=−37meV)
(left) using

∣∣F{g(r)}
∣∣ =

(
| cos(d.q/2)| · G1/σ(q)

)
∗ GΛq(q), yielding (σ, Λq, |d|)=

(1/6.1 Å−1, 1/16 Å−1, 21.8 Å). More details are given in the text and in Fig. 8.12.

Using above formula, we performed two-dimensional fitting on the Fourier
transform of the SNP, with parameters σ, Λq, d, as well as a constant factor
and constant background. Fig. 8.10 shows an example, the obtained fitting
parameters are (σ, Λq, |d|)= (1/6.1 Å−1, 1/16 Å−1, 21.8 Å). We did this for
all g(r, E) layers showing the SNP.

A more direct way to obtain the intra-dimer-distance is to fit the auto-
correlation of the SNP with three Gaussians. This directly yields the char-
acteristic distance of self-similarity. The fit in Fig. 8.11 gives the parameters
(σ, |d|)= (6.7 Å, 19.1 Å), Fig. 8.12A shows fits for different g(r, E) energy
layers. Fig. 8.12C compares the results for the autocorrelation and Fourier
transform fits. The intra-dimer-distances agree well. The distance is weakly
varying between 7 and 9 aFeFe as a function of energy.

8.2.3 Impurity imaging

The conductance g(r, E) images at energies of 100 meV to 200 meV show local
maxima (Fig. 8.13), similar to the ones observed at oxygen dopant location
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Figure 8.11: Fit of a cut trough the autocorrelation that shows the central peak as
well as the two side-peaks. The shape can be fitted to three Gaussians; the distance
between them gives the intra-dimer-distance, c.f. Fig. 8.12.

in Bi2Sr2CaCu2O8+δ [33]. We identify these maxima to be some sort of
impurity. Averaging all spectra at such peak locations leads to a peak in the
LDOS(r = rimp, E), indicating some form of impurity state. Intriguingly,
this peak is at the same energy as the impurity peak predicted by LDA
calculations for Co doping in BaFe2As2 [128]. To test if these peaks stem
from cobalt dopants, we checked for their signature in pure CaFe2As2, and
in fact, it was absent. We thus identify the conductance peak at ∼120 meV
with cobalt.

The total number of impurity atoms in the 64x64 nm2 FOV shown in
Fig. 8.13A is ∼260, much less than the ∼1600 expected from 3% Co doping.
The inhomogeneous doping of the sample cannot explain this, the wavelength
dispersion spectroscopy measurements consistently yielded higher values than
all the doping counts, and this explanation is thus statistically highly unlikely.
The reason for the discrepancy in doping values is so far unknown, one can
speculate about the Co dopants being in different electronic states with only
one state detectable by our method.

Next, we would like to elaborate a possible connection between the ne-
matogens and the impurity locations. The standard procedure is to cross-
correlate the image of the impurity locations, Co(r), with the relevant g(r, E)
image [33]. However, this is not a suitable method in this case, since even if
every Co location would pin down a nematogene, the cross-correlation would
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Figure 8.12: Extracting the intra-dimer-distance. (A), Cuts through the autocorre-
lation at various binding energies. The inset shows the location of the cuts in the
autocorrelation. The three peaks fit well to a triplet of Gaussians, yielding the intra-
dimer-distance. Alternatively, one can 2d-fit the Fourier transform F{g(E)} using a
Gaussian modulated by | cos | (c.f. text). Fig. 8.10 shows such a two-dimensional fit;
(B) shows a cut along the axis of the dimers. The inset shows the location of the
cuts in the Fourier transform. (C), The two methods agree well and show that the
intra-dimer-distance |d| is fairly constant with changing binding energy.

not yield a high value, since there are much more dimers than dopants. We
take another route: Cropping the local environment around each impurity
(Fig. 8.14A) and summing up all these local patches, one can average out
background noise and overlapping signatures. The resulting image is shown
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Figure 8.13: (A), The conductance peaks at the impurity locations ri at EB=120 meV.
(B), schematic representations of the impurity locations extracted from (A). (C), SNP
at g(r, E=−37meV) and (D), the same with impurity locations marked as yellow spots.
The impurity state shows up as a peak in the conductance around 150 meV (F) or as a
higher slope in the current (E). In (F), we subtracted the average conductance spectrum
for clarity.

in Fig. 8.14B. Clearly there is C2 symmetry present, and two peaks with
the expected ∼8aFeFe separation. The image is, however, not as clear as one
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would expect. We therefore think that there is some degree of pinning, but
are unsure about the extent of it.

Figure 8.14: Averaging over impurity locations. (A), g(r, E=−37meV) with the im-
purity locations from Fig. 8.13 overlaid. Taking the the local environment around each
dopants and summing up all these local patches, one can average out background noise
and overlapping signatures. The dopants are marked by yellow dots in (A), and some
of the local patches that are cropped are marked by red boxes. (B), The resulting
‘impurity-averaged’ image shows a weak circle around the impurity and a dimer of
peaks like the one proposed as nematogens.
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8.3 C2-quasiparticle interference
One of the great advantages of SI-STM is the possibility to simultaneously
image the localized states (r-space) and itinerant (k-space) quasiparticles. In
this section we discuss the dynamic electronic states detected in Ca(Fe1−xCoxAs)2

by QPI and their relation to the nematogens and to other probes.
As explained in chapter 2, a QPI signal is best viewed in the Fourier

transform of the conductance g(q, E). In the case of Ca(Fe0.97Co0.03As)2, the
Fourier transform includes not only the QPI signal, but also a non-dispersive
signal from the SNP, which is strong enough to shadow the QPI. Since the
spectroscopy experiments discussed in this section are set-up at positive bias,
the SNP signal is suppressed on positive layers, but not on negative (c.f.
chapter 2). To avoid SNP signatures oppressing the QPI signal, we subtract
the former from the latter, i.e.

gQPI(r, E) = graw(r, E)− gSNP(r, E)

= graw(r, E)− 0.6graw(r, E = −37meV).

The factor of 0.6 is chosen to maximize the QPI signal. (This is done to
increase the visibility of the peaks, their dispersion is independent of this.)

Fig. 8.15 shows a sequence of conductance images prepared like this at
different energies. Dispersing pattern are visible with increasing wavelength
for increasing energies. The Fourier transforms, g(q, E), show 6 peaks at the
corresponding q-vectors that disperse with energy.

Before further analysis, we perform three steps to enhance the visibility of
the raw QPI data (Fig. 8.15) and to obtain the images shown in Fig. 8.16A-J.
First, we symmetrize the data along the symmetry axes of the orthorhombic
lattice, i.e. the a- and b- axes. Second, we deal with the center peak around
q=(0,0). This peak stems from long range spatial variations of the surface
and from randomly scattered defects; it is not related to quasiparticle scat-
tering. We thus suppress the intensity of very small q-vectors around the
center, explicitly QPI = QPIraw ·

(
1 − 0.97Gσ(q)

)
, with the width of the

Gaussian Gσ chosen to only suppress the intensity of q-vectors smaller than
the dispersing peaks discussed in this section. Last, we low-pass-filter the
g(q, E) images to reduce the high frequency noise.

Fig. 8.16A-J show the resulting images processed that way. The wave-
length of the QPI peaks is long compared to 2π/a0 (Fig. 8.16K), and increases
with increasing energy. We extract the 6 peak positions in g(q, E) from
Fig. 8.16A-J and plot them versus EB in Fig. 8.16L. The two center peaks
show hole-like dispersion towards the center, and their trajectory q(E) is
mimicked by two pairs of side-peaks. Intriguingly, they are 2π/(8aFeFe) apart
from the center peak; we will discuss this later.
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Figure 8.15: Left columns, A sequence of gQPI(E) = graw(E)−0.6graw(E = −37meV)
images from E = −30 meV to 10 meV on a 94x94 nm2 FOV. The patterns in each image
disperse vertically and to longer wavelength with increasing energy. Right columns,
The Fourier transforms of the images reveal the C2-symmetric structure of the QPI
patterns. Six dispersing peaks are clearly visible. The two center peaks disperse in a
hole-like fashion and along one axis only. Pairs of side peaks mimic their dispersion at
q± ≈ 2π/(8aFeFe). The peaks in two diagonal corners of each image stem from the
q-space locations of the 1x2 reconstruction.

In Fig. 8.17, we compare the k(E) = q(E)/2 trajectories with the dis-
persion of the α2 band measured by ARPES by Kondo et al. [127]. For this,
we shift the QPI data points by 12.5 meV to account for the possible shift in
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EFermi induced by Co-doping (the ARPES data stem from pure CaFe2As2).
The QPI and ARPES data agree for the Fermi vector and Fermi velocity.

One obvious question is why we see a set of 6 peaks with a C2-dispersion,
and not a C4 symmetric image as measured by ARPES. Here, one has to
note that the spot-size for ARPES is much larger than typical orthorhombic
domain sizes in Ca(Fe1−xCoxAs)2, so all experiments reported in the litera-
ture average over several domains. Furthermore, possible C2 signatures from
ARPES have to be taken with caution, since these experiments often show a
directionality for geometric reasons, because the scattering plane (defined by
incoming beam and photoelectron) breaks rotational symmetry. Often, C4

is further broken by the polarization of the incoming photons. Thus, if one
wants to study nematicity with ARPES on non-detwinned crystals, one has
to design the experiment very carefully [13, 138].2

Even if the apparent disagreement with ARPES is perhaps not so sur-
prising, one has to wonder why we measure such particular dispersion. One
could perhaps speculate that the 6 peaks stem from enhanced density of
states at certain k-points due to back-folding of the bands according to the
new ∼8aFeFe ‘quasi-periodicity’. This leads to the right location for the peaks
and would further explain the unidirectional dispersion.

Let us alternatively assume that the QPI actually stem from a C4 band
that is unaffected by the nematic pattern, but is scattered by the discussed
dimers. What signal would one expect? Capriotti et al. calculated the ex-
pected difference in the density-of-states δN for a two-dimensional metal:

δN(r, ω) = − 1

π
Im

∫
dr′G0(r− r′, ω)V(r)G0(r− r′, ω).

G0(r) is the Green’s function of the unperturbed system, and V (r) is the
scattering potential. Assuming a weak potential, this leads to the following
QPI pattern:

∣∣δN(r, ω)
∣∣2 ∝ ∣∣∣∣ 1πIm

∫
dr′ eiq.rG0(r, ω)V(r)G0(−r, ω)

∣∣∣∣2∣∣V(q)
∣∣2.

The first term describes the bare quasiparticle interference and the last term
is the structure factor of the scattering potential. In most cases, the spatial
dimension of the scattering potential is small compared to the wavelength,
and the scattering potential is nearly constant, in case of a perfect point
scatterer it is even exactly a constant. In our case, we assume the scatterer
to be a dimer, with spacial dimensions larger than the QPI wavelength,

2Recently, ARPES work on de-twinned crystals confirmed strong electronic unidirec-
tionality and measured the shape of the C2 symmetric Fermi pockets.
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and consequently, we have to take the structure factor into account. The
calculation is similar to section 8.2.2; the basic shape is a Gaussians with
| cos(d.q/2)| modulation. Thus the C4 signal from a C4-α2 band will be
multiplied by a C2 structure factor proportional to | cos(d.q/2)|. This is
consistent with our data.

An important test of the proposed picture is to check the change of QPI
directionality over the domain boundary observed in the SNP. This is shown
in Fig. 8.18 where QPI pattern at E = −10 meV of the respective domains
are plotted, and indeed, the directionality rotates by 90°.
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Figure 8.16: (A to J), The enhanced Fourier transform images g(q, E) from a
94x94 nm2 FOV conductance images reveal the highly C2-symmetric structure of the
QPI patterns. Six dispersing peaks are clearly visible. The two center peaks disperse
in a hole-like fashion along one axis only. Pairs of side peaks mimic their dispersion
at q± ≈ 2π/(8aFeFe). The open circles at two corners of each image represent the
q-space locations of the 2x1 reconstruction. Red arrows indicate the three parallel
dispersion trajectories. (K), Overview of the different directions and length scales in
q-space. The dispersing QPI vectors are short compared with the 2π/aFeFe box that
spans all scattering vectors in the first Fe-Fe Brillouin zone (the large black box). The
small gray box indicates the first As-As reciprocal unit cell. (L) The hole-like dispersion
of QPI, plotted in (qa, qb, E) space. Circles mark the positions of the six dispersion
peaks extracted from each g(q, E) image; the blue lines are the parabolic fit for QPI.
Projections to the (qa, qb) plane emphasize how unidirectional the dispersions are.
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Figure 8.17: The comparison between QPI (red circles filled in white) and angle resolved
photoemission spectroscopy (ARPES) data (background) of α2 band (adopted from
Ref. [127] by the courtesy of Adam Kaminski). Here, the ARPES data is measured on
pure CaFe2As2 at T=40 K with photon energy=105 eV and our QPI data is measured
on underdoped Ca(Fe0.97Co0.03As)2 at T=4.3 K with energy range between +27 meV
and −27 meV. Possibly due to the difference in doping level, the chemical potential of
the QPI data is shifted by +12.5 meV to fit the α2 band observed by ARPES.

Figure 8.18: (A), Topographic image of a FOV spanning two different domains (the
boundaries marked by black arrows). (B), The conductance layer g(r, E = −10meV),
and the Fourier transform of the respective domains (inset). The directionalities of the
QPI dispersion rotate by 90°.
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8.4 Concluding remarks

Glassy character of the nematic electronic state

After having proposed dimer-shaped nematogens as a source of the SNP, we
would like to briefly discuss the consequences this has to the analogy to liquid
crystals that is sometimes suggested in this thesis. That there is directional
order without translations symmetry is clear. However, the term ‘liquid’ has
to be used with more care. The nematogens we observe are, on the time
scales of SI-STM, static in time. In case of a liquid crystal, this would be
like a ‘photograph’ of the liquid of anisotropic molecules. Our case is thus
more glass-like than liquid-like. Of course the static pattern could arise from
scattering of itinerant quasiparticles, it might come from ‘nano-domains’ of
itinerant quasiparticles, an so on. As of now, however, our data point towards
a glassy state.

Intriguingly, recent neutron scattering groups reported a spin glass regime
in a small region of the underdoped state of Fe1+ySexTe1−x. We hope further
investigations will show possible connections to the nematogens in Ca(Fe0.97Co0.03As)2.

Physical origin of the nematogens / future work

Future work will likely concentrate on the physical origin of the nematogens.
We would like to briefly speculate about some possibilities here:

• Ideas of preformed singlets that condense into the superconducting
state are widespread. If these are pinned down, one might be able to
see them in a conductance map. Their shape would depend much on
the pairing symmetry.

• We mentioned the possible pinning of dimer-shaped nematogens by the
Co-signatures, and the discrepancy of observed impurity states and the
expected number of Co-atoms (section 8.2.3). Looking at the spatially
extended impurity states that Zn atoms have in Bi2Sr2CaCu2O8+δ [139],
one can speculate that the nematogens actually are such impurity
states of the Co-atoms, and that we only image some of them at
the discussed 120 meV feature. However, it is unlikely that such an
impurity state is has a shape that is non-dispersive.

• A dimer-shaped charge distribution might also stem from polarons
or bi-polarons. In that case, we would expect a particle-hole anti-
symmetric contrast, since the probability of injecting a charge is nega-
tive to the probability of extracting one.
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Of course, a combination of above explanation is also possible. We hope
that future experiments will bring some light into this. Better crystals of all
ferropnictide families and the possibility to de-twinn orthorhombic crystals,
which opens the field to many new techniques, will likely bring more access
to the physics of underdoped ferropnictides.

Recent experimental evidence for C2-symmetric electronic struc-
ture

At the time of finishing this thesis, different experiments on de-twinned
Ca(Fe1−xCoxAs)2 crystals have been performed, many concentrating on the
C2 symmetry of the electronic structure. Most of then have not been pub-
lished at the time of writing. Still, we want to try to give a brief overview
for the sake of completeness:

• ARPES measurements indicate a strongly C2 symmetric bandstruc-
ture and lead to the conclusion that we have strong correlation. It
is the shape of the Fermi pockets that exhibit C2 symmetry, not the
photocurrent intensity (which is mainly governed by matrix elements).
Experiments have been performed e.g. in the groups of Z.X. Shen and
D. S. Dessau.

• Transport measurement showed strong resistivity anisotropy. Intrigu-
ingly this it is strongest at around 3% doping. The ratio between %b
and %a is up to two [140].

• Neutron scattering experiments reported a anisotropy of the electronic
structure before [130]. Now several groups report a ‘glassy’ state at the
corresponding doping in the 11 family [141].
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