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APPENDIX B   

Reversible jump Markov chain Monte Carlo algorithm for the multi-state random walk model. 

Movement process model parameter updates 

The multi-state biased correlated random walk model is particularly well suited to a Bayesian 

analysis utilizing Markov chain Monte Carlo (MCMC) methods.  With c centers of attraction and 

h exploratory states, one can implement a MCMC algorithm for the parameters of the movement 

process model as follows:   

(1) Initialize all parameters (including the latent state vector z ).  Start the chain at iteration g = 1. 

(2) For each iteration g, use a Gibbs step to update ( ) 1, ,g

tz c h  for 1, ,t T  by drawing 

a categorical random variable from the full conditional distribution.  For the simplest model 

assuming independence, the full conditional distribution (given all other parameters and 

random variables) is 
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For a first-order Markov switching model, an initial latent state 0z  must also be included.  

Assuming each state is equally likely a priori, 0

g
z is first updated from its full conditional 

distribution 
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The full conditional distribution for 1, ,t T  is 

1( 1)
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(3) Update the state transition probabilities 
g

 using a Gibbs step.  With prior distribution 

1~ Dirichlet , , c h for the simplest model assuming independence, 

( 1)

1 1|  , ~ Dirichlet ,..., ,g

c h c h  

 where  

( 1)
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With prior distribution ,1 ,~ Dirichlet , ,k k k c h  for a first-order Markov switching 

model, 

( 1)

,1 ,1 , ,|  , ~ Dirichlet ,...,g

k k k k k c h k c h , 

for 1, ,k c h  where ( 1) ( 1)
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(4) Update 
g

zr  for 1, ,z c using a random walk Metropolis-Hastings (MH) step. Propose a 

new value 
*

zr  from some distribution with probability density function 
* ( )| g

z zq r r and accept 

the proposed value with probability: 

* * ( ) *

( ) ( ) * ( )

, |  , |
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R
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s

s
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where zp r  is the prior distribution density for zr .  If the proposed value is accepted, set  

( 1) *g

z zr r .  Otherwise, set ( 1) gg

z zr r .  If applicable, use a similar random walk  

MH step for intercept zm , quadratic zq , or higher-order terms. 

(5) Update the center of attraction correlation parameter z  for 1, ,z c using a  

random walk MH step. 

(6) Update the exploratory state correlation parameters z  for 1, ,z c c h using  

a random walk MH step. 

(7) Update the initial movement direction parameter 0 using a random walk MH step. 

(8) Update the locations for each of the c centers of attraction 
* *,z zX Y  for  

1, ,z c using a random walk MH step.  Propose new location for center of attraction z  

** **,z zX Y from some distribution with probability density function 
** ** *( ) *( ), | , .g g

z z z zq X Y X Y
   

Propose * 1, ,tz c h  for 1, ,t T  using the full conditional distribution from step 2)  

above, and accept the proposed values with probability: 

** ** * ** ** * *( ) *( ) ** ** ( )

*( ) *( ) ( ) *( ) *( ) ( ) ** ** *( ) *( ) *

, |  , , , , , | ,
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, |  , , , , , | ,
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z z z z z z z z
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R
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s z z z

s z z z
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where p z and q z are the respective prior and proposal densities for z .  If the proposed  

values are accepted, set *( 1) *( 1) ** **, ,g g

z z z zX Y X Y and 
( 1) *g

t tz z for 1, ,t T .   

Otherwise, set *( 1) *( 1) *( ) *( ), ,g g g g

z z z zX Y X Y and 
( 1) ( )g g

t tz z for 1, ,t T .   

(9) Block update scale za  and shape zb  parameters for 1, ,z c h and step length change-

point distance zd parameters for 1, ,z c using a random walk MH step. 

(10) Increment g by 1 and return to step 2. 

Observation model parameter updates 

When using a state-space formulation, one can implement a MCMC algorithm for the 

observation model parameters as follows:   

(1) Initialize all parameters.  Start the chain at iteration g = 1. 

(2) Block update coordinates of regular locations ,
g g

t tX Y for 0, ,t T using a random walk 

MH step.  Propose new values 
*

tX  and 
*

tY from some distributions with respective probability 

density functions 
* ( )| g

t tq X X and 
* ( )| g

t tq Y Y , and accept with probability 

* * * * * * ( ) * ( ) *

( ) ( ) ( ) ( ) ( ) * ( ) * ( )

, |  , , , |  , , , | |
min 1,
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g g
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where , |  , ,t tf X Yx y  is the likelihood function for the observation model  

and ,t tp X Y  is the joint prior distribution for tX and .tY   If the proposal is  

accepted, set 
1 1 * *, ,

g g

t t t tX Y X Y .  Otherwise, set 
1 1

, ,
g g g g

t t t tX Y X Y .   
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(3) Update measurement error parameters (e.g., 
2

x  and 2

y
) using single update random walk 

MH steps. 

(4) Increment g by 1 and return to step 2. 

Movement process model updates 

Switching from one movement process model to another generally involves adding or removing 

parameters within each iteration of the Markov chain.  This can be achieved using a reversible 

jump Markov chain Monte Carlo algorithm (e.g., Green 1995, Richardson and Green 1997).  

Within each iteration of the Markov chain, three different movement model updates are 

proposed.  These correspond to the quadratic bias towards centers of attraction zq  for 

1, ,z c , the correlations between successive movements for center of attraction states 

z for 1, ,z c , and the correlation between successive movements for exploratory states 

z for 1, ,z c c h .  

 We cycle through the center of attraction and exploratory parameters in turn, performing 

each RJMCMC update as single steps.  For center of attraction states 1, ,z c , if zq  is 

present in the current model
g

M , we simply propose to remove it from proposed model *M .  If 

zq  is not present in
g

M , we propose to add it to *M .   Similarly, if z  is present in
g

M , we 

propose to remove it from *M .  If z  is not present in
g

M , we propose to add it to *M .  For 

exploratory states 1, ,z c c h , if z  is present in
g

M , we propose to remove it from 

model *M .  If z  is not present in
g

M , we propose to add it to *M .   

 For illustration, suppose we are updating the bias relating to center of attraction 1, and 

that the current model,
g

M , only has the linear term 1r  present.  We then propose to add the 
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quadratic term to model *M  and propose a new value 
*

1q  using the 
20,N prior distribution as 

the proposal distribution.  This model move is accepted with probability, 

* * *

1 1 1

* *

1 1

, |  , , |
min 1,

, |  , |

g g

g g

f r q p q q M M
R

f r q q q M M

s

s
, 

where * |
g

q M M denotes the probability (= 1) of proposing the quadratic model *M  given in 

linear model
g

M , and *|
g

q M M  denotes the probability (= 1) of proposing the linear 

model
g

M  given in quadratic model *M .  If the model move is accepted, set
1 *.

g
M M   

Otherwise, set
1

.
g g

M M   For the reverse model move, we propose to remove the quadratic 

term from model *M .  We accept this move with probability 

*

1 1

*

1 1 1

, |  , |
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g g g

g g g g
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R

f r q p q q M M

s

s
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where *| 1
g

q M M  and * | 1
g

q M M .  We use the analogous reversible jump updates on 

the correlation terms for center of attraction z  and exploratory z  states by using the 

Unif(0,1) priors as proposal distributions when proposing to add or remove these parameters. 

 By performing these model updates at each iteration, posterior model probabilities can be 

estimated as the proportion of iterations the Markov chain spends in each of the possible models.  

Monte Carlo estimates (including model-averaged estimates) may also be obtained for each of 

the parameters from this single Markov chain. 
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