McClintock, Brett T., R. King, L. Thomas, J. Matthiopoulos, B. J. McConnell, and Juan M. Morales. 2012. A general discrete-time modeling framework for animal movement using multistate random walks. Ecological Monographs.

APPENDIX B

Reversible jump Markov chain Monte Carlo algorithm for the multi-state random walk model.

Movement process model parameter updates

The multi-state biased correlated random walk model is particularly well suited to a Bayesian analysis utilizing Markov chain Monte Carlo (MCMC) methods. With c centers of attraction and h exploratory states, one can implement a MCMC algorithm for the parameters of the movement process model as follows:
(1) Initialize all parameters (including the latent state vector z). Start the chain at iteration $g=1$.
(2) For each iteration g, use a Gibbs step to update $z_{t}^{(g)}=1, \ldots, c+h$ for $t=1, \ldots, T$ by drawing a categorical random variable from the full conditional distribution. For the simplest model assuming independence, the full conditional distribution (given all other parameters and random variables) is

$$
\left[z_{t}^{(g+1)} \mid \cdot\right] \sim \text { Categorical }\left(p_{1}, \ldots, p_{c+h}\right)
$$

where

$$
p_{i}=\frac{\psi_{i}^{(g)} f\left(\phi_{t}, s_{t} \mid \cdot, z_{t}=i\right)}{\sum_{j=1}^{c+h} \psi_{j}^{(g)} f\left(\phi_{t}, s_{t} \mid \cdot, z_{t}=j\right)}
$$

For a first-order Markov switching model, an initial latent state z_{0} must also be included.

Assuming each state is equally likely a priori, $z_{0}{ }^{g}$ is first updated from its full conditional distribution

$$
\left[z_{0}^{g+1} \mid \cdot, z_{1}^{g}=m\right] \sim \text { Categorial } \pi_{1, m}, \ldots, \pi_{c+h, m}
$$

where

$$
\pi_{i, m}=\frac{\psi_{i, m}^{(g)}}{\sum_{j=1}^{c+h} \psi_{j, m}^{(g)}}
$$

The full conditional distribution for $t=1, \ldots, T$ is

$$
\left[z_{t}^{(g+1)} \mid \cdot, z_{t-1}^{g+1}=k, z_{t+1}^{g}=m\right] \sim \operatorname{Categorical}\left(p_{k, 1, m}, \ldots, p_{k, c+h, m}\right)
$$

where

$$
p_{k, i, m}=\frac{\psi_{k, i}^{(g)} f\left(\phi_{t}, s_{t} \mid \cdot, z_{t}=i\right) \psi_{i, m}^{(g)}}{\sum_{j=1}^{c+h} \psi_{k, j}^{(g)} f\left(\phi_{t}, s_{t} \mid \cdot, z_{t}=j\right) \psi_{j, m}^{(g)}}
$$

(3) Update the state transition probabilities ψ^{g} using a Gibbs step. With prior distribution $\psi \sim$ Dirichlet $\alpha_{1}, \ldots, \alpha_{c+h}$ for the simplest model assuming independence,

$$
\left[\psi^{(g+1)} \mid \cdot, \boldsymbol{v}\right] \sim \text { Dirichlet } \alpha_{1}+v_{1}, \ldots, \alpha_{c+h}+v_{c+h}
$$

where

$$
v_{i}=\sum_{t=1}^{T} I_{z_{t}^{(g+1)}=i}
$$

With prior distribution $\psi_{k} \sim$ Dirichlet $\alpha_{k, 1}, \ldots, \alpha_{k, c+h}$ for a first-order Markov switching model,

$$
\left[\psi_{k}^{(g+1)} \mid \cdot, \boldsymbol{v}_{k}\right] \sim \text { Dirichlet } \alpha_{k, 1}+v_{k, 1}, \ldots, \alpha_{k, c+h}+v_{k, c+h},
$$

for $k=1, \ldots, c+h$ where $v_{k, i}=\sum_{i=1}^{T} I_{z_{t-1}^{(g+1)}=k, z_{i}^{(g+1)}=i}$.
(4) Update $r_{z}{ }^{g}$ for $z=1, \ldots, c$ using a random walk Metropolis-Hastings (MH) step. Propose a new value r_{z}^{*} from some distribution with probability density function $q r_{z}^{*} \mid r_{z}^{(g)}$ and accept the proposed value with probability:

$$
R=\min \left\{1, \left.\frac{f \phi, s\left|\cdot, r_{z}^{*} \quad p r_{z}^{*} q r_{z}^{(g)}\right| r_{z}^{*}}{f \phi, s \mid \cdot, r_{z}^{(g)}} \mathrm{p} r_{z}^{(g)} q r_{z}^{*} \right\rvert\, r_{z}^{(g)}\right\},
$$

where $p r_{z}$ is the prior distribution density for r_{z}. If the proposed value is accepted, set $r_{z}^{(g+1)}=r_{z}^{*}$. Otherwise, set $r_{z}^{(g+1)}=r_{z}{ }^{g}$. If applicable, use a similar random walk MH step for intercept m_{z}, quadratic q_{z}, or higher-order terms.
(5) Update the center of attraction correlation parameter η_{z} for $z=1, \ldots, c$ using a random walk MH step.
(6) Update the exploratory state correlation parameters v_{z} for $z=c+1, \ldots, c+h$ using a random walk MH step.
(7) Update the initial movement direction parameter ϕ_{0} using a random walk MH step.
(8) Update the locations for each of the c centers of attraction X_{z}^{*}, Y_{z}^{*} for $z=1, \ldots, c$ using a random walk MH step. Propose new location for center of attraction z
$X_{z}^{* *}, Y_{z}^{* *}$ from some distribution with probability density function $q X_{z}^{* *}, Y_{z}^{* * *} \mid X_{z}^{*(g)}, Y_{z}^{*(g)}$.

Propose $z_{t}^{*}=1, \ldots, c+h$ for $t=1, \ldots, T$ using the full conditional distribution from step 2) above, and accept the proposed values with probability:

$$
R=\min \left\{1, \frac{f \boldsymbol{\phi}, \boldsymbol{s}\left|\cdot, X_{z}^{* *}, Y_{z}^{* *}, z^{*} p X_{z}^{* *}, Y_{z}^{* *} p z^{*} q X_{z}^{*(g)}, Y_{z}^{*(g)}\right| X_{z}^{* *}, Y_{z}^{* *} q z^{(g)}}{f \boldsymbol{\phi}, \boldsymbol{s}\left|\cdot, X_{z}^{*(g)}, Y_{z}^{*(g)}, \boldsymbol{z}^{(g)} p X_{z}^{*(g)}, Y_{z}^{*(g)} p z^{(g)} q X_{z}^{* *}, Y_{z}^{* *}\right| X_{z}^{*(g)}, Y_{z}^{*(g)} q z^{*}}\right\},
$$

where $p z$ and $q z$ are the respective prior and proposal densities for z. If the proposed
values are accepted, set $X_{z}^{*(g+1)}, Y_{z}^{*(g+1)}=X_{z}^{* *}, Y_{z}^{* *}$ and $z_{t}^{(g+1)}=z_{t}^{*}$ for $t=1, \ldots, T$.

Otherwise, set $X_{z}^{*(g+1)}, Y_{z}^{*(g+1)}=X_{z}^{*(g)}, Y_{z}^{*(g)}$ and $z_{t}^{(g+1)}=z_{t}^{(g)}$ for $t=1, \ldots, T$.
(9) Block update scale a_{z} and shape b_{z} parameters for $z=1, \ldots, c+h$ and step length changepoint distance d_{z} parameters for $z=1, \ldots, c$ using a random walk MH step.
(10) Increment g by 1 and return to step 2 .

Observation model parameter updates

When using a state-space formulation, one can implement a MCMC algorithm for the observation model parameters as follows:
(1) Initialize all parameters. Start the chain at iteration $g=1$.
(2) Block update coordinates of regular locations $X_{t}{ }^{g}, Y_{t}{ }^{g}$ for $t=0, \ldots, T$ using a random walk

MH step. Propose new values X_{t}^{*} and Y_{t}^{*} from some distributions with respective probability density functions $q X_{t}^{*} \mid X_{t}^{(g)}$ and $q Y_{t}^{*} \mid Y_{t}^{(g)}$, and accept with probability

$$
\begin{aligned}
& R=
\end{aligned}
$$

where $f \boldsymbol{x}, \boldsymbol{y} \mid \cdot, X_{t}, Y_{t}$ is the likelihood function for the observation model
and $p X_{t}, Y_{t}$ is the joint prior distribution for X_{t} and Y_{t}. If the proposal is
accepted, set $X_{t}{ }^{g+1}, Y_{t}{ }^{g+1}=X_{t}{ }^{*}, Y_{t}^{*}$. Otherwise, set $X_{t}{ }^{g+1}, Y_{t}{ }^{g+1}=X_{t}{ }^{g}, Y_{t}{ }^{g}$.
(3) Update measurement error parameters (e.g., σ_{x}^{2} and σ_{y}^{2}) using single update random walk MH steps.
(4) Increment g by 1 and return to step 2.

Movement process model updates

Switching from one movement process model to another generally involves adding or removing parameters within each iteration of the Markov chain. This can be achieved using a reversible jump Markov chain Monte Carlo algorithm (e.g., Green 1995, Richardson and Green 1997). Within each iteration of the Markov chain, three different movement model updates are proposed. These correspond to the quadratic bias towards centers of attraction q_{z} for $z=1, \ldots, c$, the correlations between successive movements for center of attraction states
η_{z} for $z=1, \ldots, c$, and the correlation between successive movements for exploratory states v_{z} for $z=c+1, \ldots, c+h$.

We cycle through the center of attraction and exploratory parameters in turn, performing each RJMCMC update as single steps. For center of attraction states $z=1, \ldots, c$, if q_{z} is present in the current model M^{g}, we simply propose to remove it from proposed model M^{*}. If q_{z} is not present in M^{g}, we propose to add it to M^{*}. Similarly, if η_{z} is present in M^{g}, we propose to remove it from M^{*}. If η_{z} is not present in M^{g}, we propose to add it to M^{*}. For exploratory states $z=c+1, \ldots, c+h$, if v_{z} is present in M^{g}, we propose to remove it from model M^{*}. If v_{z} is not present in M^{g}, we propose to add it to M^{*}.

For illustration, suppose we are updating the bias relating to center of attraction 1, and that the current model, M^{g}, only has the linear term r_{1} present. We then propose to add the
quadratic term to model M^{*} and propose a new value q_{1}^{*} using the $N 0, \tau^{2}$ prior distribution as the proposal distribution. This model move is accepted with probability,

$$
R=\min \left\{1, \left.\frac{f \phi, s \mid \cdot, r_{1}^{g}, q_{1}^{*}}{} \quad \frac{p}{} q_{1}^{*} q M^{g} \right\rvert\, M^{*},\right.
$$

where $q M^{*} \mid M^{g}$ denotes the probability (=1) of proposing the quadratic model M^{*} given in linear model M^{g}, and $q M^{g} \mid M^{*}$ denotes the probability (=1) of proposing the linear model M^{g} given in quadratic model M^{*}. If the model move is accepted, set $M^{g+1}=M^{*}$. Otherwise, set $M^{g+1}=M^{g}$. For the reverse model move, we propose to remove the quadratic term from model M^{*}. We accept this move with probability

$$
R=\min \left\{1, \left.\frac{f \boldsymbol{\phi}, \boldsymbol{s}\left|\cdot, r_{1}^{g} \quad q q_{1}^{g} \quad q M^{g}\right| M^{*}}{f \boldsymbol{\phi}, \boldsymbol{s} \mid \cdot, r_{1}{ }^{g}, q_{1}{ }^{g} \quad p \quad q_{1}{ }^{g}} \quad q M^{*} \right\rvert\, M^{g}\right\},
$$

where $q M^{g} \mid M^{*}=1$ and $q M^{*} \mid M^{g}=1$. We use the analogous reversible jump updates on the correlation terms for center of attraction η_{z} and exploratory v_{z} states by using the $\operatorname{Unif}(0,1)$ priors as proposal distributions when proposing to add or remove these parameters.

By performing these model updates at each iteration, posterior model probabilities can be estimated as the proportion of iterations the Markov chain spends in each of the possible models. Monte Carlo estimates (including model-averaged estimates) may also be obtained for each of the parameters from this single Markov chain.

LITERATURE CITED

Green, P. J. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711-732.

Richardson, S., and P. J. Green. 1997. On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society B 59: 731-792.

