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Abstract

The delivery of biomolecules into living cells is an important methodology in cell

and molecular biology. Optical methods using lasers are attractive tools for such

application. However, the interaction of the laser with the cell depends on the

laser type and the parameters used. Hence, in this thesis, optical transfection and

injection of both mammalian and embryonic cells is demonstrated using a variety

of laser sources. Furthermore, some key issues are addressed by demonstrating

alternative configurations of optoinjection and transfection systems to develop a

robust, user-friendly device with potential for commercialisation.

Most optical methods for the delivery of molecules rely on complex and expensive

laser systems that occupy a large footprint. In order for the system to be accessible

to end-users, transient transfection of plasmid DNA into mammalian cells using an

inexpensive continuous wave 405 nm diode laser is demonstrated. In this work,

the laser parameters are varied in order to optimise the transfection efficiency. By

calculating the temperature change upon irradiation of the focused violet light, the

mechanism of violet diode laser transfection is elucidated. Furthermore, the system

is used to deliver small interfering RNA molecules to specifically knock down a

particular protein within the cell. This work is a major step towards an inexpensive

and portable optical transfection system.

The critical issue of accurate targeting of the cell membrane is also addressed in

conventional near-infrared femtosecond optical transfection systems. A near-infrared

femtosecond holographic system is built utilising a spatial light modulator in order

to provide fast three dimensional beam translation. Computer control of dosage

and targeting allows us to explore the potential of different targeting modalities.

An enhanced optoinjection and transfection on mammalian cells is demonstrated.

Furthermore, the system is applied to optically manipulate a developing Pomato-

ceros lamarckii embryo. The holographic system can be employed to optoinject a

variety of macromolecules into the embryo, as well as orient and position the em-

bryo by switching to the continuous wave mode of the laser. Such development of

optical techniques to deliver biomolecules and orient embryos will benefit the field

of developmental biology.

Lastly, to achieve controlled cavitation, limiting the mechanical effects of a nanosec-

ond laser source, an optically trapped microsphere undergoes laser induced break-

down in the presence of a cell monolayer. Laser induced breakdown of a trapped

microsphere allows control over several parameters, such as the microsphere mate-

rial, position of the breakdown from the monolayer and the size of the microsphere.

Optimising these parameters provide limited mechanical effects, particularly suited

for cell transfection. This technique is an excellent tool for plasmid-DNA trans-
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fection of multiples of cells with both reduced energy requirements and cell lysis

compared to previously reported approaches.

Demonstrating optimised and successful delivery of macromolecules with the va-

riety of laser sources used in this thesis will advance the applicability of optical

injection and transfection and allow more potential users to access the technique.

This thesis advances optical injection and transfection for optimised delivery of

macromolecules to both mammalian cells and a developing embryo.
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1
Introduction

”... the one thing that I think is extremely important, is that anyone can do it, if

given a chance, if given the opportunity.”—Mario Capecchi, interview with the Nobel

prize committee

1.1 Laser applications in the biomedical field

Light allows one to see and understand the physical world. With light, things of

varying sizes and distances can be appreciated, from a tiny living creature to the very

far stars in the galaxy. With the invention of light microscopes, the field of biology

and medicine progressed very rapidly. Robert Hooke first reported his illustrations of

diverse biological objects in his book, Micrografia, using a compound microscope. He

was followed by Anton Van Leuwenhoek, who built a simple inverted microscope and

examined a variety of substances including muscles, insects and detailed structures of

plants. During the first part of the 19th century, major advancements in microscopy

occured which involved the development of high numerical aperture (NA) objectives.

Ernst Abbe and Carl Zeiss contributed immensely improving the theory of lens

design. Armed with innovations in optics and well crafted lenses, light has become

a powerful tool which allows us to see from the astronomical to the microscopic.

With a powerful laser source, one can alter the biological, chemical and mechanistic

processes of transparent and non-transparent materials.
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1 Introduction

The use of lasers as surgical instruments with microscopes gave birth to the pro-

gessive field termed as laser scissors or laser nanosurgery. Laser nanosurgery

is defined as the use of lasers to microscopically alter subcellular, cellular or tissue

samples by ablation. Although nowadays the process of microscopic dissection is

attributed to lasers, the idea of laser nanosurgery started almost 50 years before

the invention of the laser. Russian born Sergej Tschachotin first built an ultraviolet

(UV) light microscope, which used a magnesium spark to generate a wavelength (λ)

of 280 nm focused by a quartz objective [1]. A standard microscope objective was

used to view the sample from above and the UV beam was utilised as a probe to

study the functions of a variety of subcellular organelles from the eggs of sea urchins,

protozoans, paramecium and euglena.

The advent of the ruby laser in 1960 paved the way for applications of lasers in

studying both mammalian and plant cells. Amy et al. observed changes on a single

cell’s mitochondria using a focused pulsed ruby laser [2]. Ruby lasers were replaced

by the more versatile argon-ion lasers, which have several laser lines spanning the

blue spectral region. Due to the high absorbance of cellular and tissue substances

at these wavelengths, argon-ion lasers were adopted as the workhorse for cellular

microdissections. Michael Berns spear-headed a series of successful nanosurgery

experiments using an argon-ion laser demonstrating selective DNA deletion on ho-

mologous chromosomes in living cells [3].

In laser nanosurgery, the laser is incident to a powerful objective (high NA) that

allows light to be focused very tightly. In this configuration, light can have enough

intensity to ablate microscopic materials with a precision of less than a micron. This

is an exciting prospect in cell biology since the functionalities of a particular cellular

organelle can be investigated in a specific event in a cell’s life while retaining its nor-

mal mechanistic processes. Such a powerful technique has led to the understanding

of specific aspects of fundamental cell biology. For example, by laser ablation of the

centrosome, the microtubule organising centre in a mammalian cell, it was found

that a neuronal axon extension is independent of the presence of the centrosome

nucleation [4]. On the other hand, following the ablation of the centrosome via laser

nanosurgery, a cell loses its ability to maintain its polarisation during cell migration

[5].

Hence, the field of cell biology has benefited from the employment of lasers. Single

mammalian cells can now be probed, analysed, dissected, sorted and manipulated

using laser light. Cells can be optically trapped and passively sorted using laser

light with sculptured wavefronts [6]. Calcium waves within a cell can be generated

in a controlled fashion using a femtosecond (fs) laser by inducing the production of

reactive oxygen species (ROS) [7]. Fast cell lysis for immediate analysis of intracel-
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1.2 Optical delivery methods for cell transfection

lular contents has also been demonstrated [8]. Imaging has been revolutionised with

the development of laser-based microscopy systems such as confocal, multiphoton

and single-molecule fluorescence, allowing long-term imaging of in vitro and in vivo

samples but as well as resolving structures beyond the diffraction limit [9].

With the development of a variety of laser sources, laser light is utilised to explore

other possible therapeutic treatments for certain medical conditions. Lasers have

been extensively employed in applications such as laser-assisted in situ keratomileu-

sis (LASIK), a procedure wherein, a flap on top of the cornea is created and the

stroma tissue is remodeled by vaporising tissue material using a laser [10]. With the

topical application or injection of a photosensitiser, laser light can effectively target

and destroy cancer cells with minimal effects on the surrounding tissues [11]. Kid-

ney stones can be ablated and fragmented using focused laser light in a procedure

called laser lithotripsy [12]. Furthermore, dental carries can be removed using laser

sources [13]. From these examples, it is clear that lasers have had a huge impact on

both basic and applied biological research.

The applications of lasers in the biomedical field continue to grow. Collabora-

tions in laser engineering, physics, biology and medicine must be fostered in order

to push advances in laser application. Currently, the challenge in laser engineering

remains to be producing reliable, portable, yet inexpensive laser systems. Biologists

and medical practitioners must be open to testing new laser devices and seeking

out solutions using advanced technologies for their investigations. Physicists are

encouraged to understand the phenomenon occurring and determine optimised pa-

rameters for each application. This interdisciplinary approach will lead to more

breakthroughs in the biomedical field and so bring about useful technologies to aid

the diagnosis and treatment of diseases.

1.2 Optical delivery methods for cell transfection

In contrast to previously mentioned laser nanosurgery applications which lead to cut-

ting and ablation of cells or subcellular organelles, this thesis utilises laser nanosurgery

to introduce a transient wound in the plasma membrane for the introduction of for-

eign membrane impermeable macromolecules into living cells. The technique has

been described in many names, however, I will specify two nomenclatures for laser-

mediated delivery technique based on the type of molecules delivered. The following

terms will be used extensively throughout this thesis,

• Optical injection (Optoinjection) - an overall general term describing the

introduction macromolecules such as fluorescently labelled dextrans and dyes
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1 Introduction

into cells and an embryo using a tightly focused laser beam [14, 15]. The de-

livery is mediated by the formation of short-lived transient pore, with lifetime

in the order of ms, and confirmed visually by the presence of residual bubbles

on the membrane. Individual cells or each subcellular component of the cell

has to be individually targeted.

• Optical transfection - describes a technique particular for the purpose of

delivery of genetic materials such as DNA, messenger RNA (mRNA) and small

interfering RNA (siRNA) into cells [16]. It has a configuration similar to

optoinjection and the two terms are sometimes use interchangeably. But in

this thesis, the results on transfection of cells will be described strictly using

this term. Also popularly known as phototransfection [17, 18], the technique

has been used for genetic modification of cells and protein expression in specific

subcellular location within a cell.

Transfection is the general term referring to the procedure of delivering genetic

material into living cells. Mainly, it is employed as a means to transform a cell by

manipulating its genetic properties. In order to provide a direct read-out, a protein

encoding for the gene of interest can be tagged with a fluorescent protein (e.g. green

fluorescent protein (GFP)). Genetic modification via transfection is a ubiquitous and

indispensible technology with applications stemming from basic science research to

applied and industrial developments. To name a few such applications, recombi-

nant DNA, mRNA or interference RNA (iRNA) technologies can greatly advance

agricultural biotechnology, biopharmaceuticals, genetic therapy and cell biology [16].

Several methodologies have been developed in order to perform transfection.

Cationic mediated transfection is a procedure that encloses a genetic material in

hydrophobic liposome to ease the passage of the genetic material into the cell mem-

brane. Viral methods using adenovirus, retrovirus and lentivirus have been used

to enclosed the genetic material to infect the cell. Electrical pulses have been also

utilised to introduce small electropores on the plasma membrane. Another tech-

nique called sonoporation employs ultrasound in order to induce cavitation for

membrane permeabilisation. These procedures are non-selective and affect all cells

in an in vitro sample. However, these technologies are not applicable for single

cell manipulation, wherein a single cell within a population is transfected. In order

to perform single cell manipulation, microinjection has previously been employed,

which requires a mechanical probe such as a capillary glass tube in order to pierce

through the cell membane and inject minuscule amounts of genetic material into

the cellular cytosol. However, this technique is invasive and laborious, leading to

inconsistencies in success rates and viable injection.
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1.2 Optical delivery methods for cell transfection

Armed with the concept that a laser can perform nanosurgery on a cell and

ablate its subcellular components, the concept of optoinjection for the purposes of

transfection has evolved. Although currently still in its infancy as a robust method

of transfection, the first published work on optical transfection was reported more

than 25 years ago. In 1984, Tsukakoshi et al., demonstrated DNA transfection using

an UV light from an Nd:YAG laser on normal rat kidney cells [19]. Similarly, Tao et

al, reportedly used the same laser to successfully transfected human fibrosarcoma

cells [20]. They reported that the method can be performed faster and can achieve

ten-fold higher efficiency than microinjection [19].

But what are the advantages of this optical delivery technique over other method-

ologies of transfection? The key advantage of using optical transfection is its flexibil-

ity, allowing single cell or multi-cell manipulation. Also, as lasers require no physical

contact with cells, the technique is aseptic, reducing the possibility of contamination

in an in vitro sample. Optical transfection is relatively easy to use, since an end-user

with a working knowledge of microscopy can perform the experiment in an exist-

ing system. Furthermore, the technology is flexible and can be used in conjunction

with other lab-on-a-chip platforms, such as microfluidic chips [15] for non-adherent

transfection or adherent patterned culture. By toggling between continuous wave

(CW) and a mode-locked fs pulsed mode, a single cell can be optically trapped and

transfected, allowing a pure optical methodology for single cell manipulation [21].

In recent years, various laser based systems have been used for optical transfection.

Wavelengths in the UV [19, 20], visible (VIS) [22, 23, 24] and near-infrared (NIR) [25,

26, 17, 27, 18] in both pulsed (nanosecond (ns) or femtosecond (fs)) and CW mode,

have all been used for cell transfection. Pulsed laser systems seemed to be the

obvious choice for both optoinjection and optical transfection as these systems can

achieve high peak power at a very short duration, minimising the energy deposited

to the sample. To date, fs optical transfection has emerged as the most consistent

method, but this system requires the use of expensive lasers with a typically large

footprint (e.g. the Ti:sapphire fs laser oscillator). On the other hand, pulsed ns

systems were demonstrated to target multiple cells via a mechanism called laser

induced breakdown (LIB) to create shock waves and cavitation bubbles [28, 29,

30]. In terms of CW lasers in the visible light region, the first laser used for cell

transfection was the 488 nm output line of an argon-ion laser, which again has a large

footprint [23]. However, in 2005, Paterson et al. used a low-cost CW violet diode

laser for cell transfection, which was the simplest and most inexpensive method of

laser-mediated transfection to date [31].

In order to push the technology towards wider usage and commercialisation, there

is a need to optimise the delivery efficiency by optoinjection and the transfection
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efficiency of each laser system. It is important to note that the mechanism for

poration is dependent upon the type of laser used and its pulse duration [16]. Hence,

the mechanism of laser-cell interaction for each laser system needs to be understood

and the parameters and conditions require systematic investigation in order for the

technique to be optimised. Also, optical injection and transfection can be further

applied to many biological problems by coupling it to other modalities of imaging,

such as fluorescence and time-lapse imaging. Thus, these techniques should be

developed in tandem with other existing imaging approaches.

1.3 Objectives of this thesis

This thesis involves interdisciplinary work with several aspects focusing on cell bi-

ology, optics and physics. It aims to build up methodologies and optimise the

techniques of optoinjection and transfection using a variety of laser devices in differ-

ent pulsed regimes from a CW and pulsed laser sources (ns and fs). Although, these

laser systems have been demonstrated for delivery of biomolecules into cells, each

laser device has a specific disadvantage that limits the number of viably treated

cells. Specifically, several key issues will be addressed in this thesis such as, the

novelty of performing transient transfection using a violet diode laser, precise tar-

geting enhancement with NIR fs lasers and controlled cavitation and limited lysis

zone using ns laser devices. This work improves the current methodologies in optical

transfection by testing alternative configurations of the laser devices and developing

the technology in order to achieve a user-friendly optical transfection system with

potential for commercialisation.

The first part of this thesis details the foundations of the concept of cellular per-

meabilisation using lasers. Chapter 2 discusses the different biological barriers that

prevent successful transfection. Two types of transfection are distinguished - stable

and transient transfection. Furthermore, the different methodologies of transfection

are discussed. Finally, the concepts of cell resealing and wound healing are explained

based on studies in mammalian cells and sea urchin oocytes. Chapter 3 presents a

discussion on the probable mechanism of optical nanosurgery and poration. The two

mechanism between CW laser nanosurgery via heating and a photochemical effect

and pulsed laser mechanisms such as multiphoton ionisation and electron avalanche

or cascade process will be discussed. This chapter sets the basic foundations for

experimental results presented in Chapters 4–7.

The second part of this thesis presents the experimental aspects of the work.

The thesis presents three different techniques for optical transfection. Chapter 4

demonstrates the use of a 405 nm CW laser for optical transfection. In this chapter, a

6



1.3 Objectives of this thesis

protocol is developed to allow transient expression of a plasmid expressing the Mito-

DsRed protein in both Chinese hamster ovary (CHO-K1) cells and human embryonic

kidney (HEK293) cells. The system and the parameters used for the experiments

are reported. A discussion is also dedicated on the viability study performed using a

trypan blue dye-exclusion assay as a function of power and exposure time of the laser

on the cells. Furthermore, to elucidate the mechanism of the procedure, calculations

on the temperature increase during optical transfection using a violet diode laser is

presented.

Chapter 5 and 6 detail the experimental device built in order to demonstrate en-

hanced optoinjection and transfection of mammalian and embryonic cells using a fs

NIR laser. In Chapter 5, a fs holographic system is described employing a fs laser

in tandem with a spatial light modulator (SLM). It has an incorporated fluores-

cence module that enables targeted two-step selective optical transfection. Different

modalities of targeting are reported by changing the computer generated hologram

encoded in the SLM. With a piezo-driven mirror, the field of view is enlarged for

wider field of view cell targeting. The system is assembled with the aim towards

a more consistent, robust and user-friendly “point and shoot” device for optical

transfection. In Chapter 6, the system is utilised for optoinjection of variety of

biomolecules in a newly emerging evolutionary model, Pomatoceros lamarckii. The

chapter details the experimental parameters employed to successfully optoinject in-

dividual blastomeres of the embryo at various stages in its development. In addition,

the same system is employed for optical manipulation of single-celled embryos. The

work presents a step towards an all-optical approach for the manipulation of living

and developing embryos.

Meanwhile, in Chapter 7, a new methodology to control the mechanical side effects

of LIB is presented in a pulsed ns laser mediated permeabilisation. By optically

tweezing a polymer microsphere, the energy deposited to the sample is much lower

compared to inducing LIB in water or on glass coverslips as previously described [32,

30, 28]. This controls the mechanical effects due to LIB, such as shockwave and

cavitation bubble expansion and collapse, thereby limiting the affected region to

3–6 cells. The events during LIB of a single trapped microsphere are discussed

in detail. This work is a step towards a more controlled LIB with regional cell

selectivity using ns laser devices.

Finally, Chapter 8 summarises the results obtained in the experimental chapters.

The merits of the work are discussed and its contribution to the ongoing research in

this field is highlighted. Specifically, the chapter highlights some of the key future

work in optical transfection and the next steps required to translate the technology

to biologists and medics as potential end-users.
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2
Crossing the membrane barrier -

mechanical techniques for cell

transfection

In this chapter, a description is given on the different mechanical techniques for

cell transfection. Aside from the membrane barrier, the intracellular obstacles for

protein expression to occur is described. Furthermore, an explanation of the two

different types of transfection assay is provided.

2.1 Introduction

Therapeutic approaches in medical treatment are leading towards the use of molec-

ular biology to create or modify genetic makeup in order to cure disease. However,

the plasma membrane, which is considered a protective barrier, hinders the sponta-

neous transport of large molecules into the cell cytoplasm. This thin phospholipid

bilayer is semiporous in nature allowing only the transport of small hydrophobic

molecules (non polar) (e.g. oxygen, carbon dioxide and hydrocarbons) without the

aid of membrane proteins and permits only certain exchanges of materials with the

extracellular environment [33]. Transport proteins embedded in the lipid bilayer per-

mits specific molecules or ions only to translocate through the membrane. Hence,
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Figure 2.1: A schematic illustration of the mechanism of DNA chemical transfection in

eukaryotic cells. See text for details.

it becomes challenging to deliver effectively therapeutic agents inside the cell. Up

until now, there remains a need to develop a safe, consistent and reliable technology

to bypass the membrane barrier of the cell.

Since the plasma membrane is made up of a hydrophobic phospholipid bilayer,

several approaches have been developed in order to deliver the genetic material via

a carrier vehicle. A carrier vehicle can be in the form of a lipid or a virus. Chemical

means of transfection is performed by mixing plasmid DNA with polycations or

cationic lipids. A schematic illustration of the mechanism of chemical transfection

is shown in Fig. 2.1. In commercially available chemical transfection systems, DNA

is enclosed in cationic lipids, forming a lipid-DNA complex which fuses into the

membrane and intaken by the cells via endocytosis [34]. However, the efficiency of

transfection and viability of transfected cells remains relatively low especially for

primary cells and expression levels of protein vary with cell type. Viral means of

transfection using a retrovirus or adenovirus have been a method of choice for many

researchers due to their high transfection efficiencies and expression levels. However,

this technique has an inherent toxicity and high probability of host immunotoxicity,

making it difficult to translate this technology into humans. An additional drawback

of both chemical and viral technique is that they have little or no specificity, treating

all cells in a sample globally.
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Mechanical methods are a promising avenue towards the introduction of naked ge-

netic material into a living cell. At therapeutic dosages, they can have low toxicity,

and are generally non-immunogenic and non-pathogenic. These methods are based

on the concepts of wounding and resealing. The cell membrane can be wounded,

leading to ”pore formation” that allows passive uptake of exogenous materials into

the intracellular environment. Due to the fluidity of the membrane and other bio-

chemical processes which will be discussed later on, the cell has the ability to reseal

itself and maintain its membrane retain its integrity. The means to generate this

pore include applying electrical pulses, ultrasonic waves in conjunction with bub-

bles, particle bombardment using gene gun, direct injection using capillary needles

and laser-mediated cell permeabilisation.

2.2 Mechanical methods in cell transfection

In this section, I will discuss several mechanical methods in which a physical per-

turbation to the membrane of a cell is performed to achieve cell transfection. Over

the years, different mechanical methods have been investigated to provide a means

of transiently permeabilising the cell membrane and allowing therapeutic agents to

be taken up by the cells. The following subsections describe such techniques.

2.2.1 Microinjection

The first physical method employed to inject a material into a cell is akin to using

a needle to inject or remove blood in a person. A fine glass capillary needle with

the genetic material, controlled with a micromanipulator, is inserted into a cell.

After puncture, the membrane rapidly creates a seal enclosing the capillary needle,

preventing loss of intracellular material. Picolitre amounts of concentrated mate-

rial (50–100 ng/µL) are delivered inside the cell or animal by hydrostatic pressure,

after which the needle is pulled out and the cell or embryo carries on its normal

physiological processes. The schematic diagram of the procedure is shown in Fig.

2.2(A). Mario Capecchi first demonstrated microinjection by injecting the Herpes

simplex virus thymidine kinase (TK) gene into cultured mammalian cells with very

high efficiency [36]. Injection directly into the nucleus, increases the transfection

efficiency of the technique as it bypasses the endonucleases present in the cytoplasm

[37]. In 1980, Gordon et al. demonstrated genetic transformation of mouse embryo

[38], which led on to the production of the first transgenic mouse [39]. Since then,

the technique has been employed to deliver a variety of DNA constructs into single

cells and embryos. It has been extensively employed for iRNA technologies in C.
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Figure 2.2: (A) Schematic diagram of DNA transfection by microinjection. A needle

made up of glass capillary filled with the material to be injected is pushed through the

plasma membrane of the cell. Picolitre volumes of solution are injected into the cytoplasm

by applying pressure. (B) Top image shows a cultured primary hippocampal neurons

under phase contrast showing the tip of the needle above the cell layer. At the bottom

image, the tip of the needle slightly touches the cell surface.- Reprinted from Journal of

Neuroscience Methods with permission from Elsevier [35].
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elegans, delivery of dyes (dextrans) for the purposes of cell lineage mapping and gap

junctional communication studies.

Although microinjection is the simplest technique to inject biomolecules into living

cells or embryos, it is considered to be the most difficult to implement. The technique

requires months of training and experience to perform a successful injection. This

makes the efficiency of the technique variable from one researcher to another. Several

approaches had been performed in order to automatise the procedure. For example,

automated [40] and robotic systems [41] or microelectromechanical based devices

[42] have been implemented to provide high throughput microinjection. However,

the technique is still an invasive procedure as the injection of capillary needles is a

direct physical insult to a cell, which may lead to loss of cell viability. The success

of injection largely depends as well on the size and the properties of the sample. In

addition, with small embryos, the injection procedure may lead to bursting and loss

of fluid material after injection.

2.2.2 Biolistic particle delivery system

Biolistic particle delivery is a technique in which high-speed small tungsten mi-

croparticles, called microprojectiles, coated with biomolecules penetrate through

cell walls and membranes [43]. Propelling these microprojectiles is performed using

a device called a gene gun, whereby high pressure helium is used to accelerate the

microprojectiles to a high speed. It was first developed to perform plant cell trans-

formation by coating the microprojectiles with a plasmid encoding for the gene of

interest to allow transient expression of the gene. The microprojectiles were used to

bombard sections of intact A. cepa epidermal tissue [43]. Although this technique

has been used for both plant and animal tissue, the penetration of larger size mi-

croparticles may exhibit adverse effects. Recently, Lian et al., developed a technique

in which biomolecules of interest are bombarded into the samples without conjugat-

ing them to a microparticle [44]. They demonstrated delivery of macromolecules of

varying sizes such as Hoechst with molecular weight (MW): 623.96, Lucifer yellow

(MW: 491.57), dextrans (MW: 70 kDa and 500 kDa) into CHO-K1 cells. Successful

DNA transfection of CHO with the GFP-tubulin encoding gene and proteins was

achieved but efficiency was found to be a function of the size of the molecule and its

concentration. The achievable DNA transfection efficiency ranged from 9% to 70%.

Meanwhile, the group of Groisman developed a smaller biolistic delivery device

using a pneumatic capillary gun [45]. Compared to the commercially available gene

gun called helios (BioRad), the device provides a larger penetration depth and can

selectively target smaller sample areas. Using this device, localised delivery of iRNA

was performed on live embryos of the leech, Hirudo medicinalis [46]. Also, specific
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iRNA-mediated silencing of the expression of axon guidance factor, netrin, was

achieved in leech in a localised manner. Furthermore, they demonstrated delivery

of two or more biomolecules to specific tissue regions, allowing multiple expression

of different genes.

2.2.3 Electroporation

Electroporation is a technique that uses an externally applied electric field in order

to increase significantly the permeability, conductivity and in some cases mechanical

rupture of the negatively charged plasma membrane. Hydrophilic molecules, which

are normally membrane impermeant, gain access to the cytosol. Neumann et al.,

first demonstrated using intense electric pulses (8 KV/cm, 5 µs) to create stable

transformant mouse cell lines expressing TK gene. They proposed that a structural

change on the lipid bilayer occurred which allowed the opening of a pore providing

a means for DNA to enter into the cell [47]. Subsequently, several reports have

shown reliable transformation of plant cells such as maize [48], carrot protoplasts

and tobacco [49], showing the ability of the technique to permeabilize the hard cell

wall of plant cells. Electroporation has been applied to a wide variety of biological

samples such as postmitotic neuronal cells [50], gametes of zebrafish, channel catfish

and common carp [51], as well as mouse [52] and chick embryos [53]. In vivo targeting

of mouse tibialis interior muscles using electroporation was also demonstrated [54].

Electroporation instruments are commercially available. Its common configura-

tion includes a cuvette with aluminum electrodes on either side which contains the

sample suspension. Electrodes are attached to the holder and connected to a pulse

generator to control the amplitude voltage and its pulse characteristics. This tech-

nology has several strong features, such as high expression of fluorescent reporter

genes and its ability to transfect multiple cells at a time. All cells in the sam-

ple are treated with the electric field. This multiple-cell transfection procedure is

particularly useful for large scale genomic screenings.

Currently, there is rapidly developing research on designing single cell electropo-

ration. Single cell electroporation in a micropipette tip has been demonstrated on

a single rat hippocampal neurons [55]. Recently, a novel injection based device for

electroporation for animal tissue has been developed [56]. Due to the nature of elec-

troporation, wherein, only the regions of the cell facing the electrodes experiences

transmembrane potential beyond a threshold value, the efficiency of the technique

can be limited. Hence, in order to enhance the efficiency without the need to in-

crease the voltage amplitude, a spiral type microfluidic channel, taking advantage of

the hydrodynamic focusing allows the cells to swirl around the channel in between

the cathode and anode electrodes [57].
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Figure 2.3: Schematic diagram of mechanics of electroporation transfection. Plasmid

DNA is normally impermeable to the plasma membrane of the cell. After application of

the electric field, a binding event occurs wherein the plasmid DNA binds to the surface of

the plasma membrane [60]. After several minutes, the DNA translocates to the cytoplasm

and to the nucleus.

The resulting transport of the plasmid DNA across the membrane is primarily at-

tributed to the formation of electropores, which allow the plasmid to tunnel across

the membrane [47, 58]. Volcano crater like structures on the membrane surface of

red blood cells with pore diameters ranging from 20–120 nm were observed post

electroporation by rapid freezing followed by electron microscopy [59]. The mecha-

nism of electroporation has been a subject of many studies but recent experiments

have confirmed that a binding step occurs at the cell membrane surface [60] as il-

lustrated in Fig. 2.3. Golzio et al. confirmed by single-molecule fluorescence studies

that DNA plasmids tagged with nucleic acid fluorescent stain, TOTO, bind to the

surface of the cell membrane observed 10 min post electroporation. After 30 min,

some of the fluorescence still remains in the membrane but are mostly expressed in

the cytoplasm.

There are various parameters that play a role in viable electroporation and suc-

cessful transfection of cells. The voltage amplitude, which controls the strength of

the field and the duration of applied electric field to the cells are the main parameters

controlling the efficiency of uptake of molecules. Different combinations of electric

field amplitude and duration of exposure have been implemented inorder to optimise

the parameters for transfection by electroporation. Direct current of high electric

fields in the order of KV/cm with short µs exposure has been implemented [47].

Similarly, low AC voltages with peak to peak amplitude of 50–200 V/cm, frequency

range of 0.1 Hz–1 MHz and longer duration of exposure (1–100 s) in different wave-
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forms (square wave, triangle wave and sine wave) has also been shown to successfully

transfect E. coli [61]. It has been proposed that at lower amplitudes and longer ex-

posure, the dielectric breakdown of the membrane is not achieved and the cells

recover quicker after treatment leading to higher rates of survival.

In transfection, several biological factors are key aspects to consider in achieving

high transfection rates. The concentration of plasmid DNA in the solution and the

cell type greatly affects the transfection efficiency. Particularly, primary cells are

known to be sensitive to any physical disturbance and may yield low transfection

rates. Optimal electric field strength and pulse durations may also vary as a func-

tion of the biomolecule size to be delivered. In addition, only the side of the cells

facing the cathodes binds to the plasmid DNA leading to transfection [60]. It was

hypothesised that the electrophoretic force, propels the DNA plasmid towards the

membrane leading to enhanced transport of the DNA plasmid across the cellular

membrane [62, 63]. Hence, the geometry of the system and the orientation of cells

with respect to the electrode is an important parameter in optimising transfection

for each cell type.

2.2.4 Sonoporation

Sound waves at certain frequencies beyond human hearing can be used to perme-

abilise cells. Sonoporation is such a technique and employs MHz frequency ultra-

sound (US) to enhance or permit the uptake of macromolecules into cells. Loading

of macromolecules such as dextrans [37] and DNA [64] had been demonstrated using

this technique. During US propagation, the main biological effects are heating and

cavitation. Heating is important to consider, particularly at MHz frequency, as the

rapid heating of cells and tissues can cause cell lysis. In vivo studies show that

sonoporation operated beyond clinical parameters can cause capillary rupture and

hemorrhaging [65].

Initial studies on sonoporation used pure US for cell permeabilisation [64]. More

recently, its efficiency for gene delivery was observed to be enhanced by the presence

of ultrasound contrast microagents (USCM), gas-filled microbubbles that oscillate

with the exposure of ultrasound [66]. Delivery of biomolecules to cells using USCM

can be achieved by the destruction of microbubbles, which leads to the release of its

contents to surrounding cells or via cavitation effects leading to pore formation and

the uptake of exogenous materials. The latter is more relevant to DNA transfec-

tion for in vitro applications, wherein cells are incubated with USCM and the DNA

is present in the surrounding medium. Above a certain threshold frequency, the

application of US can cause microbubble disruption. The sudden and violent col-

lapse of microbubbles can also produce cavitation effects such as high-velocity fluid
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Figure 2.4: Schematic diagram of sonoporation with USCM (microbubbles). During

the application of ultrasound at certain amplitude and frequency, the microbubbles are

destroyed leading to cavitation effects that induces pore formation on cells and allow intake

of plasmid DNA.

microjets that may produce pores on the cell membrane [67, 68]. An illustration

of this phenomenon is shown in Fig. 2.4. Electron microscopy images show that

the exposure of microbubbles to US leading to their destruction causes transient

membrane pores on surrounding cells [69], which may facilitate the uptake of DNA.

Furthermore, secondary effects such as shear stress [70] or shockwaves [71] may also

play a role in membrane permeabilisation by US.

DNA delivery by sonoporation has been an active research area due to its com-

patibility with animal and human gene therapies. Ultrasound machines are readily

available in hospitals and clinics. Furthermore, the technique has been extensively

applied to in vivo applications. For example, Shimamura et al. demonstated a

10-fold increase in luciferase expression with microbubble enhanced-US on male

Wistar rats central nervous system [72]. Microbubbles with naked plasmid DNA

were injected into the rat’s cisterna magna and bioluminescence was detected in its

cerebellum and brainstem. Application of US to microbubble injected rats showed

an increase in luciferase activity compared to rats without US but injected with

microbubbles and also with US but in the absence of microbubbles. Meanwhile,

Taniyama et al. performed sonoporation on cultured human vascular smooth mus-

cle cells, endothelial cells and the rat artery [73]. Sonoporation with microbubbles

was performed on a rat carotid artery with wild-type p53 encoding plasmid, an onco-

gene, without any apparent inflammation and toxicity on the blood vessels. In this
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work, they showed that using mechanical methods for transfection, such as sonopo-

ration, could provide an alternative safe clinical gene therapy without requiring a

potentially toxic viral vector system.

2.3 Membrane repair

Generally, the mechanical techniques presented in this chapter involve a physical

disruption in the cell membrane in the form of structural defects on the membrane

where exogenous biomolecules can be injected, endocytosed by the cell or diffused

through. However, without the capacity of the cell membrane to reseal or heal

itself, it would lead to loss of intracellular material and cell death. Hence, membrane

resealing is an important issue in transfection methodologies to allow cells to survive

after the physical injury.

In nature, it is a common event that the plasma membrane is disrupted and then

rapidly reseals in order to maintain cellular or a tissue’s physiological state. The

capacity to reseal has been demonstrated particularly in sea urchin eggs, wherein a

physical wound can be healed and restored within 5 s, maintaining the eggs viabil-

ity. The egg can then be further fertilised and developed into an embryo [74, 75].

The rapid resealing process has been found to limit the influx of potential toxins.

Heilbrunn presented a model of cell repair for wounds of less than a micron in size

in which the presence of extracellular Ca2+ is necessary in order to allow mem-

brane resealing and prevent loss of cytosolic material [76]. Furthermore, Steinhardt

et al. showed that extracellular Ca2+ is necessary to induce a lysosome mediated

dependent exocytotic response [77].

Exocytotic delivery of cytosolic material is necessary in pore healing [74]. At

local disruption sites, exocytosis is stimulated and its amount is correlated to the

wound size [78, 79]. The hypothesis is that the rapid flow of extracellular Ca2+ into

the disrupted site causes vesicle-plasma membrane fusion events via exocytosis of

intracellular lysosome particles. For small disruption sites, exocytosis enables lipid

flow over the wounded region lessening the tension due to the damage in the surface

of the plasma membrane [80, 81]. Meanwhile, for larger disruptions, resealing can

occur by vesicle-vesicle and vesicle-plasma membrane fusion events, more commonly

known as the patch hypothesis [74, 75]. By these fusion events, the wound gets

patched by intracellular material.

In the context of gene delivery and cell transfection, there must be a balance with

the influx of material and the time scale of membrane resealing. The amount of

material entering into the cytoplasm should be enough for successful transfection

but the outflow of the intracellular material should be low in order to maintain cell
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viability. Interestingly, the extracellular concentration of Ca2+ seems to be a key

component in membrane resealing. This is particularly important in mechanical

methods for transfection such as electroporation, sonoporation and optical transfec-

tion, wherein the cells are bathed in a buffer medium containing the genetic material.

Ca2+ in the buffer medium should be at a concentation that it allows membrane re-

sealing. For example, in sonoporation of Xenopus oocytes, complete resealing occurs

at concentrations above 0.54 mM. Furthermore, the rate of resealing was found to

be a function of extracellular Ca2+ concentration. A lower concentration of Ca2+

has a slower rate of resealing and vice versa [82]. However, at present, there are no

systematic studies correlating extracellular Ca2+ with transfection efficiency.

2.4 Other biological barriers: cytosol and the nuclear

envelope

Using the discussed mechanical methods for cell transfection allows direct delivery

of genetic material into the cell’s cytoplasm. After bypassing the membrane barrier,

there are still several biological barriers that genetic material (i.e. plasmid DNA,

mRNA or siRNA) has to overcome. Enclosed within the membrane is the cytoplasm

which is made up of compartmentalised organelles separated from other cellular

components. Also, within the cytoplasm is the cytosol, which is the space filled

with cytoskeletal filaments such as actin, microtubules and intermediate filaments

as well as nutrients and other molecules essential for cell survival. Although, the

cytosol is mainly comprised of water, which makes up more than half the cellular

volume, it is considered more like a gel made up of a fiber network [83]. This

complex array of macromolecules and cytoskeletal filaments may impose restrictions

on the diffusion of extracellular molecules such as dextrans or plasmid DNA into

the cytoplasm. Previously, it was found that macromolecule solutes of < 500 kDa

can rapidly diffuse into the cytoplasm, but mobility is greatly impeded for larger

molecules [83]. Similarly, due to molecular crowding and binding of nucleic acids to

cytoplasmic proteins, the mobility of DNA in the cytoplasm drastically decreases

with increasing DNA size > 100 base pairs (bp) [84]. Slower diffusion of DNA

fragments was observed in the cytoplasm compared to their diffusion in water [84,

85]. Furthermore, after microinjection of plasmid DNA in the cytoplasm, cytosolic

nucleases can cause rapid degradation of plasmid DNA [86]. Hence, naked plasmid

DNA is more metabolically unstable in the cytosol as compared to lipid enclosed

DNA endocytosed during chemical transfection [86].

However, the cytosol is not the last barrier to effective gene expression by injec-

tion of plasmid DNA. Plasmid DNA needs to travel to the nucleus and bypass the
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nuclear envelope. It was observed that up to only 0.1% of cytosolic injected DNA

could be transcribed [36]. In an attempt to enhance translocation of the plasmid

DNA through the nuclear envelope, nuclear localisation peptides have been created

in order to efficiently transport the plasmid DNA into the nucleus [87]. The nuclear

envelope is clearly a factor in successful gene expression as the expression levels of

transfected cells were found to be dependent on the cell cycle phase and particularly

the mitotic activity of the cell [88]. For example, dividing cells can be transfected at

higher rates compared to quiescent or postmitotic cells which suggests that plasmid

DNA enters the nucleus upon disassembly of the nuclear envelope during mitotic

cell division [88, 89]. Furthermore, initially synchronised cells in mitotic and syn-

thesis phase resulted in enhanced transfection rates compared to cells that were

unsynchronised [18].

2.5 Stable vs. transient transfection

There are two approaches to perform transfection analysis: stable and transient

transfection. Stable transfection refers to the generation of a cell population that

has integrated the transfected gene into the host DNA and allowed the expression of

the protein several generations after cell division. A schematic diagram of creating

stable cell lines is shown in Fig. 2.5. In order to perform this procedure, cells

that have integrated the DNA into its host genome are isolated by the addition

of a selective marker. Current plasmids have an incorporated gene for resistance

to certain antibitotics. With this resistance, cells that have integrated the plasmid

DNA into their genome survive in the presence of the antibiotic, allowing individual

cell with antibiotic resistance and hence the gene of interest to multiply and create

stable colonies. Stable transfection is a useful approach as cells with a gene of interest

can be repeatedly used for several experiments. However, it is a time consuming

process which may take weeks to create a pure stable cell line expressing the protein.

Transient transfection relies on the introduction of DNA and its immediate pro-

tein expression within 24–72 hours. The advantage of this approach is that it is a

relatively fast assay to check for protein activity in transfected cells. However, its

disadvantages are its inconsistency in the levels of protein expression and the trans-

fection efficiency, which is affected by cell culture preparation. However, in contrast

to stable transfection, wherein, the cells are required to be cultured for several weeks,

transient transfection does not require this lengthy procedure. Hence, the technique

is particularly useful for cells that cannot last in culture for long periods of time,

such as post-mitotic or primary cell lines.
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Figure 2.5: Schematic diagram of stable DNA transfection. Plasmid DNA is a circular

double stranded DNA which incorporates an antibiotic resistance gene in addition to the

gene of interest. After transfection of the plasmid DNA into cells, an antibiotic (selection

pressure) is added to the transfected cells. Cells that have been successfully transfected

and expressed the gene of interest also have the antibiotic resistance. Hence, cells which

have not been transfected will die and only cells transfected will proliferate, creating stable

colonies. With continuous cell culture with the selection pressure, the culture will only be

comprised of cells with the gene of interest.
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2.6 Conclusion

In this chapter, the different methods of mechanical means for transfection were

discussed. Each method has its own merits and disadvantages. The mechanical

techniques for cell transfection such as microinjection, biolistics, electroporation and

sonoporation were discussed in detail. Furthermore, we detailed how the membrane

reseals after injury and the other biological barriers that may impede translocation

of plasmid DNA into the nucleus. Finally, the two types of transfection, stable and

transient, were differentiated.

Aside from the plasma membrane, DNA plasmid still has to bypass the endonucle-

ases in the cytoplasm and the nuclear envelope before finally reaching the nucleus.

For iRNA and mRNA wherein its translation occurs in the cytoplasm, the restric-

tions in successful expression maybe solely due to the degradation of these materials

by the endonucleases. In general, macromolecular solutes such as dextrans up to

a certain size are generally mobile within the cytoplasm. In contrast, rapid degra-

dation of microinjected DNA in the cytoplasm has been observed [86]. Compared

to dextran molecules, the mobility of DNA fragments drastically decreases at sizes

around 250 bp and only a small amount of genetic materials reach the nucleus [84].

This is an interesting aspect as this implies that there is a biochemical limit in the

achievable transfection efficiency of these mechanical methods. It also shows the dif-

fering mechanism between transporting macromolecules such as dextrans or dyes as

opposed to transfection with plasmid DNA. In addition, successful delivery into the

cytoplasm does not necessarily imply successful transfection leading to expression

of protein of interest.

Developing mechanical techniques for cell transfection are important as they do

not require any viral vector system that may impose toxic effects on the host cells.

Microinjection, which is the simplest technique to date, requires skills and man-

ual dexterity in order to inject successfully genetic material without compromising

cellular viability. Compared to other techniques such as electroporation and sonopo-

ration, only a small number of cells (≈ 100) can be injected at a time, which limits

its application for large in vitro assays. Hence, developing automated microinjection

for rapid implementation of delivery of biomolecules is still in progress.

The biolistic method that evolved from utilising tungsten particles to bombard-

ment of the aerosolised genetic particles were both found to be an effective means

to deliver genetic materials into mammalian cells. Both application of electric fields

for electroporation and ultrasound for sonoporation are capable of membrane per-

meabilisation. Although, electroporation is being re-engineered to generate electro-

pores to single mammalian cells among the techniques discussed in this chapter, at

present, only microinjection is being routinely utilised for single cell or embryo in-
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jection of genetic material. Notably, sonoporation and biolistic delivery systems do

not have the cell selectivity which is important for single-cell genetic manipulation

studies or injecting genetic material into a specific blastomere of a developing em-

bryo. As such, there is still a niche for developing mechanical methods for effective

transfection allowing single-cell manipulation.

Having discussed the variety of mechanical techniques available for transfection,

the probable mechanisms of membrane wounding using lasers will be discussed in

the following chapter. The mechanism of pore formation in optical injection and

transfection rely on the mode of laser operation as well as the parameters (i.e.

power and exposure time) employed for an application. Furthermore, I will discuss

the current state of the art in this field, using laser sources such as CW, NIR fs and

ns laser systems and how the technique has been applied to target both single and

multiple cells as well as a living embryo.
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3
Optical transfection and injection -

review and mechanism

The mechanism of pore formation in optical injection and transfection is dependent

on the type of laser and parameters employed. In this chapter, the different mech-

anisms of laser nanosurgery in cells and tissues will be explained. A review of the

current state-of-the-art laser-based cell transfection techniques will be discussed, pro-

viding an overview of the differences between laser sources used for optical injection

and transfection.

3.1 Mechanisms of laser nanosurgery in cells and

tissues

The interaction of a laser light with a biological material is a complex phenomenon

often leading to chain of events that may induce physical, thermal, chemical and

mechanical effects [90]. When a laser is incident to a biological sample, it can be

absorbed, reflected, refracted, transmitted or scattered depending on the properties

of the material. The parameters controlled by laser irradiation are equally impor-

tant and determine the type of interaction occurring during the irradiation. The

dependence of laser-induced processes on the laser wavelength, spot size, pulse dura-

tion, exposure time and repetition rate are important parameters to understand as
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3 Optical transfection and injection - review and mechanism

Figure 3.1: An illustration of laser-tissue interactions against power density and exposure

time. The circles provide the approximate range of laser irradiation parameters at which

each process occur.-With kind permission from Springer Science+Business Media [91].

these control the effects on the biological sample. A summary of the laser-induced

processes occurring with cells and tissues is shown in Fig. 3.1. A log-log plot is

shown of power density and exposure time, with dashed lines corresponding to 1

and 103 J/cm2. From this chart, several processes are shown to result from the

interaction of lasers with cells and tissues. These processes include photochemical,

photothermal, photoablation, plasma-induced ablation and photodisruption.

3.1.1 Linear laser-tissue interaction

For long irradiation exposure, ranging from seconds to minutes, and relatively low

power density, ≈ 1 W/cm2, the interaction between laser and the biological material

is mainly attributed to photochemical effect. A photochemical mechanism occurs

when light incident to a macromolecule within the cell or tissue is irradiated leading

to an excited state reaction. In biophotonics, this interaction is mainly used in pho-
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todynamic therapy, wherein photosensitisers which specifically absorb at a certain

wavelength are excited by light and release highly reactive free radicals. Tissue oxy-

gen interacts with the free radicals, leading to cell death [92]. Similarly, a technique

called chromophore assisted light inactivation (CALI) inactivates a specific protein

by introducing a dye within a cell, conjugated to an antibody against the protein

of interest. In CALI, a short-pulsed laser is irradiated in a specific area within the

cell leading to generation of reactive oxygen species (ROS), which inactivate the

specific proteins. Due to the short-lived nature of ROS, the damage is localised to

the adjacent protein of the irradiated chromophore [93, 94].

A significant increase in temperature leads to thermal effects. Thermal effects in

tissues are characterised either as coagulation, vaporisation, carbonisation or melt-

ing, depending on the tissue structure, peak temperature and the length of exposure

of the laser [91, 90]. Cell hyperthermia was found to occur for temperatures exceed-

ing 44 oC [95]. Importantly, for single cell studies, membrane phase transitions were

found at temperatures between 42–45 oC, leading to changes in membrane perme-

ability [96]. Interestingly, within the range of 42–45 oC, the percentage of surviving

and recovering cells depends on the length of exposure in that temperature [95].

Beyond 50 oC, enzymatic activities decrease, leading to further reduction in the

proportion of surviving cells. Irreversible necrosis occurs at 60 oC for several sec-

onds. Vaporisation of water occurs at 100 oC, forming microbubbles and mechanical

ruptures on cells and tissues. In CW laser based optical transfection, thermal effect

is conjectured to be the primary mechanism for membrane permeability, leading to

uptake of molecules [23, 22]. However, there is limited study of the actual cellular

perturbation necessary to achieve successful transfection.

3.1.2 Nonlinear laser-tissue interaction

Photoablation is the removal or etching of tissue material. Often pulsed UV lasers

are used to perform photoablation. A single UV photon is enough to reach the

molecule’s excited state and exceed its bond energy [91]. A certain threshold inten-

sity must be achieved in order to perform ablation. The process involves absorption

of photons, leading to excitation to a repulsive state wherein the kinetic energy gain

is sufficient to dissociate molecules. Photoablated tissues are ejected or vaporised

from the irradiated site leaving a clean etched surface with minimal cell necrosis and

minimum collateral damage wherein the etch depth is proportional to the number

of pulses applied to the tissue [91].

The latter two laser-tissue processes, plasma-mediated ablation and photodis-

ruption, are best discussed in the context of multiphoton absorption and cascade

ionisation. Both processes result from a phenomenon called optical breakdown or
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laser induced breakdown (LIB). Plasma-mediated ablation and photodisruption oc-

cur at very high power density around 10 11 W/cm2, and an exposure duration from

ns to fs. Of the two processes, plasma-mediated ablation is more precise, leading to

a well defined and localised ablation without mechanical effects on the surrounding

tissue. Photodisruption, on the other hand, is associated with mechanical side ef-

fects such as shockwave propagation, cavitation bubble expansion and jet formation.

Plasma-mediated ablation mostly occurs when using ultra-short pulses from ps to

fs, due to the very high peak power achieved with minimum energy deposited to the

material. The operation of a tissue using ns lasers often lead to photodisruption, as

the pulse energies are high even at threshold intensity.

Among the laser processes described in this section, photochemical and thermal

operate in linear absorption regime often using CW lasers. This implies that the

absorption characteristics of tissue or dye (in the case of photodynamic therapy and

CALI) are important in determining the range of laser parameters to achieve such

processes. Photoablation, plasma-mediated ablation and photodisruption occur via

nonlinear absorption, requiring intense pulsed lasers in order to achieve such effects.

However, photochemical and thermal also occur in nonlinear regimes. Individual

fs pulses may not induce significant heating of cells and tissues, but the successive

application of pulses, especially with high repetition rate laser, leads to a cumu-

lative effect which achieves significant heating [97]. Furthermore, photochemical

effects such as generation of free radicals forming ROS are also observed in NIR fs

nanosurgery [98].

3.2 Laser induced breakdown

Nonlinear modification of material using a laser can result from LIB of the material

by applying highly intense pulses. LIB has been demonstrated in a variety of samples

including solids, such as glass or silica, in liquid or tissue/cells and in the gas phase.

It has been shown that LIB in water is similar to breakdown in ocular or biological

media [99]. Hence, LIB for the purposes of laser nanosurgery and optical transfection

will be described based on LIB in water. In order to model the breakdown process,

water will be treated as an amorphous semiconductor as performed by Sacchi [100]

and Vogel et al. [97]. As the band gap energy of water is ∆= 6.5 eV, a laser

wavelength of 800 nm, with a corresponding photon energy of 1.56 eV, requires five

photons to overcome this band gap energy. The initiation of LIB can occur through

either of the two mechanisms: direct ionisation by multiphoton absorption or via

thermionic processes. Kennedy et al. [101] and Vogel et al. [97] provided an excellent

review of these concepts. I will summarise them in the following subsection.
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3.2 Laser induced breakdown

Figure 3.2: An illustration of plasma formation whereby water is assumed to be an

amorphous semiconductor material. Multiphoton absorption leads to photoionisation of

bound electron, inverse Bremsstrahlung, and impact ionisation. Repeated sequence of the

latter two events could generate a huge growth in the number of free electrons present in

the medium.-With kind permission from Springer Science+Business Media [97].

3.2.1 Multiphoton absorption and cascade ionisation

Essentially, a plasma is generated during the process of LIB. Plasma forms when

the applied electric field is sufficient to cause ionisation of molecules and atoms.

The occurrence of LIB in liquid and gas are characterised by the presence of plasma

which strongly absorbs UV, VIS and IR light. A schematic diagram of sequence

of events during LIB is shown in Fig. 3.2. Multiphoton ionisation occurs when a

bound electron in the valence band absorbs several photons to allow photoionisation.

Photoionisation is manifested when the electron is promoted to the conduction band.

For ultra-short pulses with large irradiance to achieve LIB, the ionisation potential,

∆̃ needs to account for the oscillation of the electron with the laser excitation field

given by the expression [102],

∆̃ = ∆ +
e2F 2

4m′ω2
(3.1)

where ω and F denote the frequency and amplitude of the laser field respectively,

e is the electron charge, 1/m′= 1/mc +1/mv is the reduced mass that is given by the

effective masses, mc, of the quasi-free electron in the conduction band and mv of the

hole in the valence band [97]. When quasi-free electrons are formed in the conduction

band, they can act as seed electrons for avalanche or cascade ionisation. In order

for impact ionisation to take effect, the electron’s kinetic energy must supersede ∆̃.

Quasi-free electrons created during impact ionisation may also proceed to cascade

ionisation.
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For cascade ionisation to arise, initial seed electrons or impurities must be present

within the laser’s focal volume. These are formed either by multiphoton absorption

or by thermal ionisation in the medium. At high irradiances, the seed electrons

absorb laser photons in a process called inverse Bremsstrahlung. When the

seed electron is promoted to a higher energy than the ionisation potential, it can

initiate impact ionisation of a bound electron, thereby producing two free electrons.

This repeated events of inverse Bremsstrahlung and formation of free electrons can

acquire a huge growth in the number of free electrons in the medium. Cascade

ionisation is dependent on the laser irradiance, which is defined as the energy per

unit area per unit time and requires the excitation laser to overcome a threshold

irradiance value.

Multiphoton absorption leading to LIB requires coherent absorption of several

photons to achieve the threshold for ∆̃, requiring fs or ps pulses to initiate the

phenomenon [91]. Q-switched ns pulsed lasers have higher threshold energies for

LIB. With longer ns pulses, cascade ionisation occurs through thermionic processes

leading to defects and impurities in the material, which act as seed electrons for

cascade ionisation.

3.2.2 Plasma-mediated nanosurgery

In mode-locked fs laser mediated nanosurgery, the laser repetition rate is an impor-

tant parameter in the extent of damage in the biological sample. Fig. 3.3 shows a

schematic illustration of the interval of pulses for an amplified and oscillator-only

fs laser system. Regeneratively amplified fs laser systems operate at typically kHz

repetition rates and individual pulses are emitted with ms time interval. Meanwhile,

oscillator-only mode-locked fs devices work at higher MHz repetition rates and have

pulses separated tens of ns apart.

Although individual fs pulses may not induce significant heating in the sample [97],

at sufficient pulse energy, the time between each pulses relative to the time for heat

to diffuse away in the sample is an important parameter in the amount of damage

on the biological sample. In fs laser waveguide writing technology, it has been

observed that repetition rates of ≥ 200 kHz induce accumulation of energy leading

to increase in melted volume on the glass [103]. Thermal confinement of the laser

energy deposited is characterised by the the thermal diffusion time, Td. Considering

the thermal diffusion of water, κ= 0.7 µm2/µs, Td for λ= 800 nm and NA=1.2 can

be obtained using the following expression [104],

Td =
0.124λ2

κNA
(3.2)
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Figure 3.3: Illustration of the difference between 1 kHz and 76 MHz repetition rate fs

lasers. In a kHz repetition rate laser, the deposited energy is dissipated before the next

pulse arrives. Meanwhile, in high repetition rate fs lasers, there is accumulation of energy

at the focal volume due to the successive application of pulses before the thermal relaxation

of the sample.

which provide a Td of 40 µs. Hence, high-repetition rate systems (≥ 25 kHz) may

induce cumulative heating due to the successive pulses applied, which arrive before

the complete diffusion of heat out of the focal volume. For water, heat diffuses out

at a rate of 0.7 µm2/µs and 40 µs after the application of the first pulse. Hence,

subsequent pulses from an amplified fs laser device with pulses arriving at 1 ms

interval will not lead to any cumulative effects and each pulse will interact with the

material independently.

In laser nanosurgery, a certain critical quasi-free electron density, Ncrit, must be

achieved at the conduction band in order to sustain plasma growth and compensate

for any losses through electron-ion recombination and normal diffusion out of the

focal volume. Ncrit is a criterion for breakdown threshold, particularly for laser

pulses in ps or fs, where plasma luminescence cannot be observed. Ncrit is given by

the expression,

Ncrit =
εomc

e2
ω2 (3.3)

where ω is the oscillation frequency of the incident light, εo= 8.854×10−12 C2 N−1 m−2

is the vacuum dielectric permitivitty, mc= 9.1×10−31 kg is the mass of the electron

and e= 1.6×10−19 C is the charge of electron [91].

From Eq. 3.3, the breakdown threshold is achieved when Ncrit= 1021 cm−3 [97].

For λ= 800 nm, the Ncrit = 1.8×1021 cm−3. However, typical laser nanosurgery

experiments with MHz repetition rate fs lasers were performed at much lower irra-

diances compared to the breakdown threshold. Plasma-mediated effects due to NIR

fs pulses with MHz repetition rate occur at parameters well below this Ncrit [97].

For example, damage was induced on unstained male rat kangaroo kidney epithelial

cells (PtK2) using MHz repetition rate fs laser at considerably low average power
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Figure 3.4: An image of an endothelial cell with stained YFP-labeled actin (a) before

and (b) after laser dissection of an actin fiber bundle using a regeneratively amplified

Ti:sapphire laser operating at kHz repetition rate. The triangles point to the cut ends of

the actin bundles, pulling away from each other.—Reprinted from Medical Laser Applica-

tion, with permission from Elsevier [108].

(80 MHz, 170 fs laser, P≥ 7 mW, NA = 1.3, spot size =0.4 µm) [98]. The damage

was attributed mainly to generation of ROS such as H2O2 as confirmed by cytochem-

ical analysis [98]. Similarly, chromosome intranuclear dissection was demonstrated

by König et al., using the same laser at a laser power of 30 mW and irradiation

time of 500 µs [105]. Furthermore, cell permeabilisation leading to transfection was

demonstrated with fs lasers operating at MHz repetition rate using 50–100 mW with

tens of ms exposure [25, 26]. With the parameters specified for the above-mentioned

experiments, the calculated irradiance based on a diffraction limited laser beam have

irradiances much lower than the breakdown threshold irradiance [97].

Hence, for MHz repetition rate fs laser systems, highly precise nanosurgery can

be more accurately attributed to low density plasma-mediated effects which leads to

cumulative photochemical effects [97]. These photochemical effects bring about the

formation of ROS such as OH− and H2O2 that interacts with biomolecules leading

to either transient or permanent dissection. Recently, specific and localised DNA

specific strand breaks were investigated using high-repetition rate lasers which in-

volves the generation of highly-reactive oxygen radicals [106]. From their studies,

aside from ROS generation, direct photochemical processes also occur, forming UV

photo-products upon irradiation. Using oscillator-only fs lasers, at higher irradiances

beyond breakdown threshold irradiance, cavitation formation occurs and tempera-

ture greater than 100 oC is attained [97, 107]. It was suggested that for highly precise

nanosurgery applications, the presence of gas bubbles which displaces neighbouring

cell or tissue material must be avoided.
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Meanwhile, for amplifier based fs lasers operating at kHz repetition rate, the

ablation of biological samples were performed at higher pulse energies, leading to

thermoelastic stresses and formation of short-lived transient cavitation bubbles [97].

These effects bring about mechanical disruptions used for dissections. Although kHz

repetition rate fs lasers have been effectively used for precise nanosurgery, there is

an abrupt transition from weak to strong damage as a function of pulse energy and

number of pulses using these laser sources [109]. Inspite of this, kHz repetition rate

fs lasers have been used as effectively as MHz repetition rate fs lasers for specific

applications in nanosurgery such as mitochondria ablation [108] and nanoaxotonomy

for neuron regeneration studies of C. elegans [110]. As an example, Fig. 3.4 shows

a fluorescence image of an actin network before and after laser dissection with a

fs laser operating at kHz repetition rate. The image shows precise and very fine

cutting of actin fiber bundles, without damaging other organelles within the cell.

3.3 Photodisruption

Using Q-switched lasers with relatively long ns pulses, laser interaction via LIB with

soft tissues and cells results in generation of mechanical effects such as shockwave

propagation, cavitation bubble and jetting. In this scenario, photodisruption occurs,

leading to significant cell and tissue displacement. During photodisruption, the me-

chanical forces induce high amounts of thermoelastic stresses on the sample causing

it to crack or split. In comparison to low density plasma-mediated nanosurgery,

which provides spatially confined cutting of subcellular structures, photodisruption

always results in cavitation and shockwave that limits the localisation of the inter-

action zone [91]. Due to this, adjacent cells or tissues are often affected.

Photodisruption leads to mechanical effects that scale to the amount of energy

deposited in the sample. The threshold irradiance can be lowered using materials

with large absorption coefficients. The mechanical effects occur in an ultra-fast

manner often investigated using time-resolved imaging techniques. The sequence of

events during photodisruption occurs with the propagation of the laser pulse and

formation of a plasma. The plasma formed by LIB can produce extremely high

temperatures and pressures. In liquid or biological material, the plasma created are

typically very small and localised. Thermal effects within the plasma are limited and

its subsequent expansion occurs adiabatically [111]. As the laser pulse propagates

through the medium, the plasma continues to expand with very high velocities

leading to shockwave propagation. It will also vaporise the surrounding media,

creating a cavitation bubble which is filled with water vapour and gas associated with

the medium [101]. As the plasma cools and the interior pressure of the cavitation
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bubble decreases, the bubble will collapse. The bubble expansion and collapse have

been shown to occur in the order of µs after the LIB event [112, 32]. This process

repeats itself, resulting in secondary cavitation effects. The final collapse of the

bubble creates residual bubbles that are formed by diffusion of dissolved gases in

the focal volume [101]. Residual bubbles can persist ms to s after LIB and are visible

under brightfield imaging which can experimentally determine photodisruption in

cell nanosurgery experiments.

As the damage associated with photodisruption of tissue and cellular nanosurgery

is often associated with cavitation bubble expansion and collapse [113, 32, 30], I will

provide a background on cavitation bubble theory in the following subsection. An

extensive discussion on shockwave propagation can be found in excellent reviews by

Kennedy et al [101] and Niemz [91].

3.3.1 Cavitation bubble theory

Cavitation is the formation of water vapour and gas-filled bubble in soft tissues or

liquid [101] and plays an important role in biomedical applications. It is often the

main cause of damage to substrates as well as affecting tissue and cell membrane

integrity. The bubbles provide a significant source of energy that have been har-

nessed for intraocular surgery and cell lysis. As a resulting mechanical effect of LIB,

cavitation leads to disintegration of kidney stones by laser lithropsy [114], as well as

many other medical applications.

Cavitation bubbles are interesting due to their violent and destructive actions

when they encounter a boundary. It has been shown that the size of the bubble

formed and its distance from the boundary determines the magnitude of fluid flow

velocity and the presence of microjetting and counterjets [115]. The theory of cavi-

tation bubble and collapse has been investigated since the start of 20th century due

to its destructive effects on solid materials, particularly in mechanical parts exposed

to liquid cavitation bubbles such as ship propellers and hydraulic machineries [101].

Lord Rayleigh in 1917 first described the pressure changes due to the collapse of a

cavitation bubble. The collapse time, Tc, as a function of the maximum gas bubble

radius, RB, is given by

Tc = 0.915RB

√
ρ/Po (3.4)

where ρ is the density of the liquid (1000 kg/m3) and Po = P∞ - Pv. P∞ is the

static pressure of the liquid and Pv is the vapour pressure of the liquid (2330 Pa at

20 oC). When the bubble collapses, the energy of the bubble can be derived from

the work done of the surrounding fluid to the bubble wall boundary, which is given

by the expression,
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EB =
4π

3
PoR

3
B (3.5)

Substituting Eq. 3.4 into Eq. 3.5 provides the bubble energy as a function of

measurable cavitation bubble parameters and can be written as

EB =
4πρ

3

(
0.915

TC

)2

R5
B (3.6)

The cavitation bubble energy provides an estimate of the laser pulse energy con-

version to mechanical effects. Experiments determining cavitation bubble energy

using ns and ps pulsed lasers show that 72% of the ns laser energy is converted

to mechanical effects compared to only 18% for ps pulses. This demonstrates that

shorter pulsed laser sources, i.e. ps and fs laser pulses, provide finer nanosurgery

effects compared to ns laser pulses [116].

3.4 Optical transfection and injection techniques

Having discussed the various mechanical techniques employed for cell membrane

permeabilisation in Chapter 2 and the relevant mechanism for laser nanosurgery,

in Section 3.1, I will now focus on describing laser-assisted techniques to deliver

macromolecules into cells and embryos. Optical injection and transfection has been

demonstrated using a variety of laser sources with differing modes of operation

such as CW or pulsed mode with ns and fs pulse duration. CW based lasers have

been employed for single-cell targeted delivery. In a pulsed laser operation, MHz

repetition rate fs lasers, which interact with cells via low-density plasma, provide

precise single-cell targeted delivery. Longer ns pulses generate a plasma leading to

mechanical effects such as cavitation bubbles and thermoelastic stresses. Pulsed ns

lasers are often employed for large-scale transfections where, the laser beam allows

therapeutic treatment of many cells at a time. In the following sections, I will discuss

the different optical delivery techniques using a variety of laser sources.

3.4.1 Single cell targeted delivery using continuous wave lasers

Single cell optical transfection with CW lasers is often performed using high NA

objectives, dosing individual cells one at a time. The treatment is limited to the

targeted cell and neighbouring cells remain unaffected. CW laser mediated optical

transfection has been typically performed using argon ion lasers at 488 nm [23,

22, 24]. Palumbo et al. first demonstrated optical transfection using this laser

source to transfect DNA plasmid constructs of β-galactosidase and chloramphenicol
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acetyltransferase genes into murine fibroblasts cells [23]. Their results showed an

increase in the β-galactosidase and chloramphenicol acetyltransferase activity in

transfected cells compared to non-irradiated cells. Similarly, Schneckenburger et

al. demonstrated with the same laser, 30% and 10% transfection efficiencies for

young and aged CHO-K1 cell cultures, respectively [22]. Meanwhile, Nikolskaya et

al. used an argon ion laser with laser parameters of 17 mW and 2 s, to transfect

human neonatal cardiac cells, achieving 5% efficiency.

Recently, Paterson et al. demonstrated transfection using an inexpensive 405 nm

diode laser to create stable cell colonies of CHO-K1 cells expressing GFP and Mito-

DsRed protein. As argon laser systems have large footprint and occupy large table

space, employing diode lasers would increase the portability of the device, providing

inexpensive means for cell transfection. With CW lasers, optical transfection relies

on linear absorption wherein photochemical and thermal interactions are the domi-

nant effects. CW laser wavelengths employed were in VIS (i.e. 405 nm and 488 nm)

while other laser wavelengths in CW mode have not been used for such applications.

Importantly, several cell chromophores have absorption at these laser wavelengths,

which may induce deleterious effects due to ROS generation [117]. Irradiation up to

2 s does not significantly reduce the cell viability [24]. CW lasers were focused on

the cell at different focusing conditions (NA=0.4–1.25) with a range of laser ener-

gies (12–34000 µJ) to achieve successful transfection. Phenol red with typical final

concentration of 15 mg/L was added to the buffer medium to aid absorption of the

laser wavelength. It was conjectured that phenol red molecules absorb the laser

wavelength resulting in heating and melting of the phospholipid bilayer [23, 22].

However, few studies have been conducted to understand membrane permeability

changes during CW laser irradiation at this wavelength.

3.4.2 Optical transfection and injection using near-infrared

femtosecond lasers

NIR fs laser based optoinjection and transfection are more mature systems compared

to their CW counterparts. The difference between using the two laser sources can

be understood in terms of the interaction of the lasers with the biological material.

Fig. 3.5 shows a schematic diagram of single and multi-photon excitation in a sample.

As mentioned previously, fs interaction with cell or tissue occurs through low density

plasma-mediated process. Due to its nonlinear nature, the rate of photoionisation

due to multiphoton absorption, P(IMP ) is given by the following expression [118],

P (IMP ) = σkI
k (3.7)
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Figure 3.5: Schematic illustration of single-photon and multi-photon excitation in a

sample. The pulsed and CW laser is denoted by red and blue lines, respectively with the

fluorescence resulting from excitation is denoted by green. Due to the nonlinear nature

of absorption using pulsed laser sources, the plasma-mediated effect only occurs at the

focus. Whereas, with single photon interaction, the excitation is linear in nature, hence

out-of-focus light may contribute to the effect on the biological sample.

where I is the intensity of the laser and σk is the multiphoton absorption coefficient

for k - number of photons absorbed. Due to the Gaussian nature of the beam profile

of the laser after the objective, the plasma-mediated effects only occur at the focus

where the intensity is highest. In contrast to traditional CW lasers, the linear

absorption occurs all throughout the beam and even the out of focus light may have

an effect on the sample.

Using NIR fs lasers for cell transfection were first demonstrated by Tirlapur and

König in 2002 [25]. Since then, fs lasers have been utilised with a variety of cell lines

and biological systems. The system can provide high transfection rates and viabil-

ity [26]. I will highlight a few studies on NIR fs laser-mediated optical transfection

in this subsection. An excellent review on single-cell optical transfection is given by

Stevenson et al. [16].

Targeted delivery using an NIR fs laser is versatile, allowing single cell and even

sub-cellular poration to introduce important biomolecules into the cell. For example,

Barrett et al. demonstrated the ability of NIR fs laser to deliver mRNA transcription
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Figure 3.6: (a) Optoinjection of a membrane impermeable dye, Lucifer Yellow into living

intact neurons. (b) Optical transfection of GFP mRNA into primary rat hippocampal

neurons and observed up to 180 min after transfection. Scale bars, 20 µm.—Reprinted by

permission from Macmillan Publishers Ltd: Nature Methods; [17] Copyright (2006).

factors to specific subcellular regions in an intact primary rat neuron, particularly

the soma and the dendrites [17]. E-26-like protein 1 (Elk1) is a transcription factor

that is localised in the dendrites [119]. In dendritic studies, it was hypothesised

that mRNA activity maybe different when it is translated at different locations in

the cell [17]. However, to understand how it functions during translation, spatially

directed delivery must be performed in order to assess its activity. Fig. 3.6(a)

shows an example of successful optoinjection of membrane impermeable dye, Lucifer

Yellow into living intact neurons. A fluorescence signal is immediately detected,

milliseconds after poration and delivery was localised as shown by the absence of

signal from neighbouring cells. Also, GFP mRNA was optically transfected into

primary rat hippocampal neurons. GFP mRNA was detected 30 min post treatment

and like optoinjection with Lucifer Yellow, only the treated cell was transfected.

Hence, the technique was used to inject Elk1 mRNA into individual cells at partic-

ular regions within the neurons, specifically, the soma and the nucleus. It was found

that delivery and direct translation of Elk1 in the dendrites initiated immediate cell

death. In contrast, delivery of Elk1 and its subsequent translation in the soma did

not alter the viability of the neuron. Understanding the mechanism of Elk1 role in

cell death when delivered in the dendrites is still under further study but this result

highlights the importance of subcellular delivery technique in understanding protein

functionality within a cell. It opens up further investigations on how a single cell re-

acts at the molecular level with the introduction of small biomolecules to regionally

directed sites within the cell.

The uniqueness of an NIR fs laser also stems from its ability to target and ablate

in deep tissue. As explained earlier, with NIR fs lasers, the low-density plasma medi-

ated effects only occurs at the focus with localised targeting. In addition, compared
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Figure 3.7: (a) Fluorescence and (b) brightfield images of a dechorionated embryo at

16-cell stage that was optoinjected in the blastomere cells to introduce FITC dye. Scale

bar represents 200 µm.—Reprinted by permission from John Wiley & Sons: Biotechnology

and Bioengineering [120].

to UV and VIS laser wavelengths, NIR light has deeper tissue penetration with less

scattering. This coupled characteristic of NIR fs laser makes it an indispensible tool

for optoinjecting deep within tissue without damaging the outer layers.

This was demonstrated by Kohli et al. on zebrafish embryos [120]. Zebrafish em-

bryos are enclosed within a membrane called chorion which creates an outermem-

brane protecting the development of the embryo into a larva. Hence, techniques

to deliver exogenous materials intracellularly are impeded. Methods to inject and

deliver genetic constructs within individual cells in an embryo, without removing

the chorion are desirable in the field of embryology. In this work, Kohli and co-

workers demonstrated intracellular delivery of FITC dye and a DNA construct into

the blastomere of a zebrafish embryo without removing the chorion. Fig. 3.7 shows

brightfield and fluorescence image of an embryo optoinjected with FITC dye into

its blastomere. This work demonstrates the unique application of NIR fs laser for

intracellular delivery and does not require dechorionation of the embryos.

3.4.3 Multi-cell treatment using pulsed nanosecond lasers

Pulsed ns laser sources are effectively employed for multi-cell injection and transfec-

tion. As previously described, the interaction of long pulsed ns laser systems with

a biological material is characterised by mechanical side effects such as cavitation

bubble, shock wave propagation and microjetting. Hence, interaction with a pulsed
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ns laser is often non-localised, treating large population of cells at a time. Currently,

there are three relevant techniques using ns pulses for the purposes of cell transfec-

tion: laser-induced stress wave (LISW), optoporation and the LEAPTM system. The

laser-induced stress wave technique, pioneered by Terakawa et al, uses an Nd:YAG

laser to irradiate a black rubber disk bonded with a transparent polyethylene tereph-

thalate sheet attached to the bottom of a dish containing the cell monolayer [121].

With a single pulse of the Nd:YAG laser, a pressure wave with a µs timescale propa-

gates in the medium. However, the efficiency of mammalian cell transfection is fairly

low, less than 10% [122]. In this method, there is no direct interaction with the cells

and the laser, and only the mechanical effect, specifically, the shock wave induced

by the impact of the laser to the rubber sheet causes membrane permeabilisation.

Soughayer et al. focused the pulsed ns laser directly into the glass coverslip

where the cells are attached [28]. Meanwhile, Hellman et al. focused the laser

beam into the buffer medium of the cell to create LIB [30]. Both methods are

categorised as optoporation technique. Optoporation via LIB in the glass or buffer

medium creates cavitation bubble that expands and collapses within microseconds

after the breakdown. A large zone of cell lysis (greater than 60 µm) and necrosis

is created in the centre of the breakdown and surrounding cells are permeabilised

in the process [30]. Fig. 3.8 shows brightfield (A,B) and fluorescence images (C,D)

of cells before and after LIB on glass coverslip [28]. After the breakdown, some

cells intake Texas Red dextran but remained viable, with visible Oregon Green

signal, marked with a #. However, some cells (marked by a ∧) are loaded but have

compromised viability, observed by the absence of Oregon Green signal. The level

of uptake characteristically decreases as a function of distance from the breakdown

site.

The commercially available system called laser-enabled analysis and processing

(LEAPTM) uses a weakly focused pulsed ns laser beam to irradiate a popula-

tion of cells to allow intake of exogenous biomolecules. A broad range of macro-

molecules from small molecules, dextrans, siRNA, plasmids, proteins, and semicon-

ductor nanocrystals has been delivered to individual cells [29]. As the parameters

used for transfection with the LEAPTM system are lower than the threshold for

LIB, the mechanism for delivery is conjectured to be photochemical in nature [123].

As such, this technique requires more investigation to fully optimise it for high

throughput applications.
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Figure 3.8: Brightfield (A, B) and fluorescence (C, D) images of cells before (A) and

after (B, D) optoporation. ∗ marks where the laser beam is focused on the glass slide

(B). The fluorescence of Texas Red and Oregon Green is displayed in parts C and D,

respectively. Some cells (marked by a ∧) are loaded but have compromised viability,

observed by the absence of Oregon Green signal. Several cells that were loaded with

Texas Red and have remain viable, with visible Oregon Green signal are marked with a

#. Scale bar represents 20 µm.—Reprinted with permission from [28]. Copyright, 2000

American Chemical Society.

3.5 Summary

In summary, I have described different mechanisms for the purposes of laser nanosurgery.

These laser-tissue and cell interaction can be classified into two regimes, linear medi-

ated interaction which includes thermal and photochemical, and nonlinear mediated

which includes photoablation, plasma-mediated and photodisruption. Importantly,

the concept behind plasma-mediated and photodisruption was discussed by under-

standing LIB in water. The mechanical side effects of photodisruption were detailed

focusing on cavitation bubble, the primary mechanism behind cell and tissue dis-

placement surrounding the site of LIB.

The interaction of a laser with cells and tissues in the presence of strongly ab-

sorbing dye or photosensitisers are primarly mediated by photochemical effect. The

highly reactive oxygen radicals interact with oxygen in tissue or cells causing damage

or protein inactivation. Meanwhile, the temperature achieved during laser interac-
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tion affects the specific thermal effects experienced by the biological samples. For

single cell transfection studies, the notable temperature to consider is the gel-sol

membrane transition which occurs between 42–45 oC, leading to membrane perme-

ability changes [96]. Irreversible necrosis happens at 60 oC when cells are exposed

at this temperature for several seconds.

With pulsed lasers above a certain threshold irradiance, their interaction with

biological matter occurs via LIB, creating a plasma. LIB occurs through interplay of

events such as multiphoton ionisation, inverse Bremsstrahlung and avalanche growth

of free electrons. For ultra-short laser pulses such as fs and ps lasers, the initiation of

LIB is mediated by multiphoton ionisation. However, for longer ns pulses, LIB arises

due to thermionic process leading to defects in the media which acts as seed electrons

for photoionisation. Femtosecond pulse-mediated nanosurgery is very precise and

can ablate subcellular components within a cell. The precision of the technique is

due to the interaction of the laser with the biological material, which occurs via low

density plasma. Meanwhile, photodisruption is mediated by longer pulsed ns lasers.

Mechanical side effects accompany photodisruption, particularly the formation of

cavitation bubble, shockwave propagation and jetting when cavitation occurs near

the boundary.

The interaction of lasers with cells and tissues discussed in this chapter provide

us with the foundation to understand the different optical injection and transfec-

tion techniques using variety of laser sources. The mechanism behind CW laser

based single-cell transfection may be due to thermal or photochemical effect but

remains poorly understood. Meanwhile, targeted single-cell transfection using high-

repetition rate NIR fs laser was conjectured to be due to low-density plasma, provid-

ing delicate pore formation with minimum damage on other subcellular structures.

Pulsed ns lasers operate destructively due to the large threshold energy required

to generate LIB. Hence, transfection based on these lasers have large zone of lysis,

interacting with multiple cells at a time.

This chapter provides the foundation for the subsequent experimental work pre-

sented in this thesis. Applications of this technique for subcellular and embryo

delivery would lead to great advancement in our understanding in cell and molecu-

lar biology as well as embryology. However, as each laser system has its advantages

and disadvantages, further experiments should be performed in order to optimise

the operation of each technique.
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4
Transient transfection of mammalian

cells using a violet diode laser

The main objective in this chapter is to build an inexpensive system for laser based

cell transfection. Optical transfection techniques are often implemented using pulsed

laser systems such as mode-locked Ti:sapphire laser with MHz repetition rate because

of its high peak power allowing delivery of subnanojoule energy. However for optical

transfection technology to be attainable and accessible, the cost has to be affordable

and the system must have a smaller footprint. Hence, the possibility of using a

simple and portable CW diode laser was explored and the mechanism for CW laser

mediated transient cell transfection was elucidated.

4.1 Introduction

Previous reports of using CW lasers for cell transfection are based on argon-ion

laser systems which emit multiple discrete laser lines spanning the violet to green

wavelengths. Its wavelength component of 488 nm is most commonly employed

for biological experiments particularly for confocal imaging. In recent years, bulky

argon-ion systems have been replaced by inexpensive and compact diode lasers with

good beam quality and laser stability for biophotonics application. Diode lasers have

been utilised as a laser source for applications such as selective fluorescence [124],
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holographic photolysis of caged compounds within neurons [125], photodynamic

theraphy [126], photothermolysis [127] and confocal imaging [128].

Paterson and co-workers first demonstrated the use of 405 nm diode laser as

a means to optically transfect CHO-K1 with plasmid DNA and generate stable

cell colonies [31]. In this previous work, only stable transfection and not transient

transfection was observed which maybe attributed to the limited amount of DNA

material delivered to the cell. Although the generation of stable colonies is a routine

procedure in cellular biology, as discussed in Chapter 2, this procedure can take up

to weeks and can be time consuming and laborious. The generation of transient

expressing cell lines allows us to circumvent the long process of selecting for stable

colonies and therefore enable us to examine immediately the expression of a protein

24–72 h after transfection. This is desirable especially for pharmaceutical purposes,

wherein large scale screening occurs for a particular disease. It is also important

for mRNA and iRNA transfection technologies, which rely on the translation of the

protein and its transient expression.

In this chapter, this transient transfection was implemented using a violet diode

laser. CHO-K1 and HEK293 cells were chosen as the model systems as they are eas-

ily transfectable by other methods and are straightforward to culture. By varying

the laser parameters and exposure time, a window of laser parameters was found

wherein reliable transient transfection could be performed. By observing the viabil-

ity of the cells at various laser parameters and calculating the temperature change

during irradiation, I propose a mechanism for CW laser transfection at 405 nm in

mammalian cells.

Furthermore, the technology has been applied to an important biological experi-

ment by introducing small interfering RNA (siRNA) into cells thereby subsequently

knocking down the expression of a particular protein. To demonstrate this, a modi-

fied HEK293 cell-line, which expresses the newly identified gene, willin/FRMD6 [129],

was utilised for the experiments. This gene is under the control of an antibitotic

inducible promoter, tetracycline. Optically transfecting a particular siRNA against

willin into cells blocks the expression of the willin gene product. Although, siRNA

delivery to mammalian cells has been reported for large scale mass optical transfec-

tion using an Nd:YAG laser [29], it has never been reported using CW lasers.

This work in this chapter is collaborative in nature and the significant contri-

bution of several people should be acknowledged. The TRex-willin-GFP-HEK cell

line used in the gene knockdown experiments was created by Dr. Liselotte Angus

(PhD student, School of Biology). The calculation of temperature increase was

done in collaboration with Martin Ploschner (PhD student, School of Physics and

Astronomy). The author built the system, performed all experiments and analysis
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presented in this chapter.

4.2 Materials and Methodology

4.2.1 Violet diode optical transfection system

Fig. 4.1 shows the schematic diagram of the system. The laser source was a com-

mercially available 405 nm diode laser (Toptica, IBEAM-405-1V1) with an M2 < 1.2

and maximum power of 40 mW. A telescope consisted of lenses L1 and L2 magnifies

the beam. A half-wave plate and a polarising beam splitter in tandem were used

to attenuate the beam power. A dichroic mirror at 45o reflects the beam to the

rear entrance pupil of a high numerical aperture water immersion, violet corrected

microscope objective (Nikon Plan Apo; magnification = 63x NA =1.20).

The laser was focused to a diffraction limited spot of approximately 0.4 µm in

diameter. The power at the sample plane was obtained by taking the power trans-

mission measurements through the optics. The maximum laser power dosage for

each cell was first characterised by empirically observing the cell for any signs of

granulation, blebbing or necrosis. A beam shutter (Newport, UK model 845 HP-02)

in front of the laser controlled the exposure setting. An exposure time of 1 s was

used to observe the transfection efficiency for each power level employed. Bright

field in Köhler configuration uniformly illuminates the sample. The image plane

and laser plane were made coincident by changing the positions of lenses L1 and L2

and observing the image and laser focus. An xyz stage allowed us to vary the sam-

ple position. A neutral density filter was used to attenuate the beam after the tube

lens. Finally, a color CCD camera (WATEC 250D) is used to capture the videos

of the process. A photograph of the experimental setup is shown in Fig. 4.2(A).

Meanwhile, a newly designed violet diode laser delivery system that can be fitted

into one of the ports of a microscope is shown in Fig. 4.2(B).

4.2.2 Viability studies using Trypan blue Assay

For viability studies, Trypan blue is utilised to detect necrotic cells. Trypan blue

is an indicator of cell membrane permeability. In the state of necrosis, the cell’s

protective membrane is compromised, leading to intake of extracellular material.

HEK293 cells were plated on 35 mm diameter glass bottomed dishes and prepared

similarly to transfection experiments except that no DNA was added. Cells were

exposed to 2.1 mW and 3.4 mW laser power at exposure times from 80 ms–5 s.

After laser exposure, cells are returned to the incubator for an hour, after which

time 60 µL of 0.3% Trypan blue was added. Dead cells stained blue were counted
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Figure 4.1: Schematic of an optical transfection system using a 405 nm diode laser. L

-plano-convex lenses (L1= 50 mm and L2= 100 mm); PBS- polarising beam splitter; λ/2 -

half-wave plate; M- mirrors; DM- dichroic mirror; LWD- long working distance objective.

The whole system is mounted on a 60 × 90 cm optical breadboard. (B) The inset shows

a schematic layout of a prepared sample in a petri dish showing the laser beam focused

on a cell bathed in DNA and phenol red solution [130].

and the viability was calculated by obtaining the percentile ratio of dead cells with

irradiated cells. Each data point is an average of 3 dishes, each containing 50 cells

which were exposed to the laser.

4.2.3 Transmission measurement of the objective

The laser powers described in this chapter are based on the laser power delivered to

the sample. Ideally, the transmission of the objective is measured by using a dual

objective method. Taking the square root of the power loss provides the transmission

of the light through the objective while taking into account the loss through the

sample and immersion fluid used. However, since only a single objective is available,

the transmission of the objective is measured by replacing the dichroic mirror with

a 50:50 beamsplitter. A dielectric mirror with a drop of water on top is placed

46



4.2 Materials and Methodology

Figure 4.2: (A) Photograph of the experimental system used for the experiments. Shown

is the laser beam (blue line) directed into the microscope objective and the illumination

(yellow line) coming from above. (B) A newly designed violet diode laser delivery system

that can be fitted into one of the ports of a microscope.

on the sample plane. After being reflected by the dielectric mirror, the beam has

traversed the objective twice and the power loss can be obtained based on the

incident and output power. Based on this measurement, the objective used in this

experiment has a transmission efficiency of 84±1% at 405 nm laser wavelength. Each

optical component reflection/transmission characteristic is accounted for and that

the dielectric mirror used has a flat reflectivity (99 %) covering a range of angles.

4.2.4 Sample preparation for DNA optical transfection

All cell culture methods are discussed in the Appendix. 60-70 µL of CHO-K1 and

HEK293 cells were seeded at a density of 2.4 x104 cells per mL onto 35 mm diameter

glass-bottomed culture grade dishes (World Precision Instruments) to achieve 40-

50% confluency. The cells were incubated at 37 oC for 24 h to allow cell attachment

to the bottom of the glass dishes. Meanwhile, TRex-willin-GFP-HEK cells were

plated 48 h prior to the experiment onto 35 mm culture dishes coated with Laminin

(Invitrogen, UK) to improve their adherence on the dishes.

For each optical transfection experiment, individual CHO-K1 and HEK293 cells

were exposed to up to 3.4 mW of laser power for 1 s at the focus. Before exposure, the

cell monolayer was washed twice with OptiMEM (Invitrogen, UK) and then bathed

with 30 µL solution containing 10 µg/mL plasmid DNA encoding for Mito-DsRed

(Clontech) and 42.2 µM of phenol red (Sigma) in OptiMEM. Phenol red is a dye

commonly used with cell culture medium to detect changes in pH. The absorption of
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the solution used in the optical transfection experiments was measured and a molar

coefficient cross section of 1.4 x 104 cm−1 M −1 at 405 nm was obtained.

A Type 0, 22 mm diameter coverslip was placed on top of the cell monolayer and

a region of interest of approximately 1 cm in diameter was marked in the bottom

of the dish in order to identify the region of dosed cells. The position of the laser

was marked on the screen and by adjusting the position of the sample using the

xyz stage, each cell was moved one by one to this location. On average, 50 healthy

looking cells per dish were irradiated on the plasma membrane in a region 1–3 µm

away from (and not directly above) the nucleus. The sample was always moved

in a unidirectional pattern and always downwards upon reaching the edge of the

marked region to ensure that each cell is irradiated only once. After dosage, the

coverslip was removed with OptiMEM and phenol red solution, and then the cells

were subsequently washed twice with the same medium. The cells were further

incubated in fresh medium for up to 72 h after optical transfection. Control cells

were prepared in the same manner but were not exposed to the laser.

The transfected cells were observed under a fluorescent microscope for expression

of the Mito-DsRed gene. For each laser power and for each exposure time, 9 exper-

iments were performed irradiating 50 cells per dish in the process. In calculating

the transfection efficiency, the number of fluorescent cells 72 h after transfection

was counted and the percentile ratio of this with the number of irradiated cells was

obtained. This may result in an overestimate as cells continually divide and pro-

liferate. A more accurate assessment would be to obtain the average growth rate

of successfully transfected cells over 72 h and the number of fluorescent cells with

this factor. However, this is not straightforward process as the rate of cell division

depends on many factors and might be variable depending on differences in sample

preparation. For simplicity purposes, I obtained a relative figure as a representation

of our efficiency. In total, for n= 9 experiments, ≈5000 cells (including irradiated

cells on control dishes without DNA) were treated allowing us to accumulate reliable

statistics of the process.

4.3 Experimental Results

4.3.1 Viability tests with varying laser power and exposure time

The state of cellular viability is an important criterion to consider in order to achieve

optical transfection. Viability is defined as the ability of a cell to perform its normal

and physiological processes, resulting in mitosis. There are several methods available

to assess cellular viability. The most obvious and most commonly employed method
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Figure 4.3: Time lapse imaging of an irradiated CHO-K1 cell with a 405 nm focused

diode laser at P= 18 mW . A cell was irradiated starting at t=0 s. A strong backscattered

signal was observed after ≈3 s of irradiation, afterwhich a visible bubble gas bubble was

produced on the cell. A black mark is left on the irradiated part of the cell after 5 s of

laser exposure.

is observing any morphological changes to the cell by detecting presence of cell

blebbing and granulation, which is physical evidence of necrosis. On the other

hand, to quantify the percentage of cell viability in a population, the exclusion of

membrane dyes are employed. In this section, the parameters for optical transfection

were narrowed down by determining the parameters that would provide a good

percentage of viable cells.

Several experiments were performed to characterize the power (P) and exposure

time (T) required to retain viable cells after irradiation with the focused violet

laser. CHO-K1 and HEK293 cells were irradiated with the focused violet laser with

varying laser power and exposure time. The laser power was measured using a

sensitive broadband power and energy meter system (CVI, Melles Griot, 13 PEM

001/J) capable of measuring laser powers between 10 µW–2 W. Power measurements

were taken at the backaperture of the objective. The corresponding power at the

sample plane was calculated by multiplying the transmission of the objective with

the measured power.

For irradiated cells, the cellular morphology was observed for signs of necrosis. At

a P= 18 mW, after a few seconds of irradiation, backscattered light was observed at

the irradiated site and a gas bubble was created on the membrane which collapsed

when the laser was cut-off (shown in Fig. 4.3). After exposure to the laser, the cell

irradiated at this laser dosage showed granulation and nuclear condensation.

Hence, lower P were tested for varying T. At P= 3.4 mW and T= 10 s, the

presence of plasma membrane blebs was observed followed by the cytoplasm be-

came increasingly granulated and the nuclear envelope becoming more pronounced.

Membrane blebs are spherical extensions in the membrane which are characteristics

of early stage apoptosis [131]. There is evidence that at the onset of bleb formation,

the cytoplasm completely separates itself from the cytoskeleton [131]. During me-
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Figure 4.4: (A) Image of a cell before irradiation and (B) after irradiation. Membrane

blebs are formed after irradiation of focused violet diode laser using P= 3.4 mW and

T= 10 s on CHO-K1 cell.

chanical and chemical induced stress, blebs can grow as large as the cell’s diameter

and sometimes are nonretractable. Due to the overextension of plasma membrane,

it exceeds the tensile stress allowance for the membrane, thus the cell fails to recover

contributing to its lysis.

The exposure time was shortened incrementally by 2 s and the morphological

changes on the cell was further observed. Shorter T, delayed the signs of membrane

damage instead of immediate cell death after irradiation. Notably, membrane blebs

were not only found on the irradiated area but were also found all over the cell.

This may imply that the photodamage on the cell due to the focused violet laser

encompassed the whole cell and not just the site of irradiation.

Based on these morphological changes at the laser powers mentioned, the pos-

sible laser dosage parameters for optical transfection were further constrained by

performing a dye exclusion assay on HEK293 cells exposed to focused violet laser.

The parameters P= 2.1 mW and 3.4 mW were chosen for the viability experiments.

All cells exposed to 2.1 mW and 3.4 mW for T= 6–10 s immediately showed bleb-

bing and granulation which was interpreted as compromised viability. This further

narrow down the potential optical transfection exposure settings to T < 6 s. Hence,

cells were treated with shorter exposure to the laser (T= 80 ms to 5 s). Fig. 4.5(A)

shows the percentage of cells that remained viable after exposure to the laser.

Necrotic cells stained with Trypan blue are shown in Fig. 4.5(B). In general,

viability was observed to decrease with increasing laser exposure time. For a 1 s

exposure, viability was found to be 96.4±1.2 and 95.4± 1.2% for laser powers 2.1 mW

and 3.4 mW respectively. The viability marginally decreased from 86.7±1.2 to

65.3±4.2% with 3.4 mW at 2 s respectively. This small increase in laser power from

2.1 mW to 3.4 mW resulted in a sharp 6-fold decline in viability at 3 s exposure times
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Figure 4.5: (A) Viability of HEK293 cells exposed to laser at 2.1 mW and 3.4 mW

at the focus at varying exposure time. Error bars represent ± standard deviation (n=3

experiments of 50 dosed cells). (B) Bright field image of laser exposed HEK293 cells. Cells

pointed by the red arrows were irradiated with the laser and have taken up the Trypan

blue dye, a sign of cellular necrosis [130].

from 72±9.2 to 11.3±12.1%. LD50, defined as dosage entailing 50% cell viability

occured at an energy density of 6.3 MJ/cm2.

In order to further understand the relationship between the viability and the laser

parameters, the normalised viability in log scale was plotted as a function of laser

energy (E), wherein E=P×T. For energies < 10 mJ, the log of viability follows an

exponential curve as a function of energy dose as shown in Fig. 4.6 and follows the
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Figure 4.6: Log of viability (V) as a function of energy dosage (E). Data points below

E= 10 mJ follow a survival function given by Eq. 4.1.

relationship [132],

V (E) = e−αE−βE
2

(4.1)

where α= -0.005 and β= 0.01. The exponential decay depicts a low-dose rate re-

sponse at E<10 mJ wherein single-strand breaks often occur with surviving fraction

of cells still managing to repair itself after irradiation. However, beyond 10 mJ, the

data fit follows a faster rate of decay (α= -0.005 and β= 0.025) which may imply,

a threshold laser energy dose leading to more direct cell necrosis such as double-

strand breaks with minimal surviving fraction of cells (0-10 %). The viability study

demonstrates the sensitivity of the mammalian cells to violet-blue light irradiation

at even modest laser energy.

The toxicity of violet-blue laser in mammalian cells has been previously investi-

gated. It has been shown that at certain levels of irradiation of violet-blue light,

the interaction induces photodamage through absorption by cellular endogenous

photosensitisers [117] which subsequently leads to adverse chemical reactions. Pos-

sible cellular chromophores absorbing in the violet-blue region include porphyrin
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ring structures and flavins [133, 134, 135]. In addition, Hockberger and co-workers

reported induced damage by violet light (400-410 nm) from a xenon arc mercury

lamp on mammalian cells. This damage was thought to be due to the stimulated

production of H2O2 by photoreduction of flavins and/or flavins containing oxidases

located within the mitochondria and peroxisomes [135]. ROS production was also

observed using an NIR fs laser pulses which they attribute to 2-photon absorption.

Oxidative stress may lead to several structural deformations such as: fragmentation

and condensation of nuclei; DNA strand breaks and loss of membrane protective

functionality leading to cell apoptosis [25]. Despite this, good viability of 90% to

100% was obtained with optimal laser power and exposure time (P= 2.1 mW and

T ≤ 1 s; P= 3.4 and T ≤ 1 s) of the focused violet diode laser.

4.3.2 Optimisation of optical transfection efficiency

Successful transient expression was achieved with the Mito-DsRed DNA plasmid for

both cell lines as shown in Fig. 4.7(A and B). In contrast to previous work [23, 22]

which reported small dark circular spots on the cell that disappeared several minutes

after laser irradiation, these dark spots were not observed during our experiments.

More conclusively, these dark circular spots repeatedly appeared for cells irradiated

with laser parameters beyond a therapeutic dosage. No visible reaction, hole or

cavitation bubble from the cell was observed using the laser and exposure times

described in this chapter for successful transfection. Whether DNA transfection

using CW lasers necessitates a nano-size hole is not yet confirmed, but the increase

in membrane permeability may be enough to allow circular DNA plasmid to enter

inside the cell through the cell membrane. Further studies will be needed in order to

discover the changes within the membrane structure at the site of laser irradiation.

The transfection efficiency after 72 h as a function of laser power, using a 1 s

exposure time for HEK293 cells, is shown in Fig. 4.7(C). Each power level results in a

transfection efficinecy that is significantly different from the control group (p<0.05)

with the exception of 0.8 mW, as determined by One-Way Analysis of Variance

(ANOVA) followed by Dunnett’s statistical test. The start and tail of the plot

were significantly different from each other as determined from ANOVA followed

by Fischer’s pairwise test (p<0.05). As indicated in Figure 4.7(C), an enhanced

transfection efficiency was observed upon increasing the laser power from 0.8 mW

to 1.3 mW with efficiencies of 3.4±3.4 to 28.6±6.3%, respectively; showing a power

dependence on the probability of cell poration and subsequently transfection. The

optimum laser power was found to range from 1.3 mW to 2.5 mW which yielded

transfection efficiencies between 28.1±5.8 and 36.6±4.8 %. Within this range of

power level, the efficiencies were not significantly different from each other but were
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Figure 4.7: Fluorescence images of (A) CHO-K1 and (B) HEK293 cells transfected with

Mito-DsRed plasmid. (C) Transfection efficiency of HEK293 cells as a function of laser

power at the focus using 1 s exposure time. (D) Transfection efficiency of HEK293 cells

as a function of laser exposure time at 2.1 mW. The error bars represent ± standard

deviation. (n=9 experiments of 50 dosed cells) [130].
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significantly different from 0.8 mW and 3.4 mW (p<0.05). Since the mitochondria

were tagged for transfected cells, it was possible to observe their streaming, which

is an indicator of the overall health of the treated cells.

The transfection efficiency of HEK293 cells was also determined as a function

of laser exposure time for a fixed laser power of 2.1 mW. Fig. 4.7 (D) shows the

transfection efficiency as a function of irradiation time from 80 ms-2 s. ANOVA

followed by Dunnett’s statistical test showed that transfection efficiencies obtained

from different exposure times were significantly different compared to the control

(p<0.05). Though significant transfection efficiency can already be obtained at

80 ms exposure, 1.0 s and 1.5 s appeared to be optimal for transfection at this laser

power. Increasing the exposure time from 1.5 s to 2 s, resulted in the decline of the

average transfection efficiency from 36.5±6.6 to 23±4.7%, respectively.

The parameters represented here are not exhaustive and optimal settings may

still vary depending on the type of cell and environmental conditions. Each cell line,

due to its differing chemical functions and properties can have diverse reactions to

irradiation from a given laser. For example, the maximum transfection efficiency

obtained for CHO-K1 at 2.1 mW and 1 s exposure time was only 23±1.5% compared

to 36.6±4.8 % for HEK293 cells. Hence, application of this technology to different

cell types may require further optimisation.

Along with transfection experiments, control experiments were performed by

preparing dishes of cells in DNA solution but without laser irradiation. Control

dishes were prepared and treated in the exact same manner as the experimental

samples. 72 h after the experiment, the control dishes were also checked for fluores-

cence and expression of Mito-DsRed protein. The level of spontaneous transfection

was found to be consistently very low (0-3 cells per dish) and negligible in compar-

ison to the transfection efficiencies achieved. Spontaneous transfection is defined as

cells expressing the protein without exposure to the laser irradiation.

From the transiently transfected cells, it was also possible to select cells with

integrated DNA in their nuclear genome using the antibiotic, Geneticin/G418, and

thus enables generation of stable colonies from the transiently transfected cell lines,

as shown in Fig. 4.8. Two days after optical transfection, fresh medium was added

with 0.5 mg/mL G418 (Invitrogen). Over time, cells that have not integrated the

DNA in their genome die. Over the period of two weeks, colonies expressing the

Mito-DsRed protein started to grow.

In comparison to previous studies, the laser energy used in this present work

was of the order of 2000 µJ, compared to only 12 µJ used by Paterson et.al [31].

Successful transient transfection using our CW focused 405 nm laser required an

energy density of 1.5 MJ/cm2 which is in close agreement with the energy density
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4 Transient transfection of mammalian cells using a violet diode laser

Figure 4.8: Brightfield (LEFT) and fluorescence (RIGHT) images of stable cell colonies

obtained by transiently transfecting CHO-K1 cells at laser power of 2.1 mW and 1 s

exposure time.

reported using focused 488 nm argon-ion laser (1 MJ/cm2) [22].

4.3.3 Gene knockdown using the violet diode laser

RNA interference (iRNA) is a technology developed by Fire and Mello in 1998 [136],

which allows the knockdown in expression of a specific gene. Small interference

RNA (siRNA) interferes with new protein expression, resulting in silencing of the

gene. siRNA are short oligonucleotides with lengths of 20-25 nucleotides which bind

specifically to the mRNA of the protein of interest. This leads to the formation

of a siRNA complex, which results in mRNA cleavage and its subsequent degrada-

tion [137]. The applications of this widely used gene silencing technology include

studying a gene’s function, but also the potential therapeutic modification of gene

expression in human diseases. Hence, the application of the violet laser transfection

by demonstrating its feasibility to deliver siRNA into mammalian cells and knock-

down a particular protein called willin [129]. The sequence of this protein is found

in Appendix.

Modified HEK293 cells with the tetracycline inducible protein, willin-GFP, which I

refer to as TRex willin-GFP-HEK cells were utilised for this experiment. The expres-

sion of willin can be induced with the addition of 1 µg/mL tetracycline to activate

willin-GFP expression. Willin knockdown was performed using siRNA with a final

concentration of 5 nM, specifically targeting the protein (GACAGAGCAGCAA-

GAUACUAUUAUU, CACAGACUAUAUGUCGGAAACCAAA, GCCUCUAUAU-

GAAUCUGCAGCCUGU; Invitrogen). The protocol for chemical transfection and

corresponding western blot is found in Appendix. Western blot analysis shows
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that willin-GFP expression is significantly reduced after 48-72 h of siRNA transfec-

tion [130]. This therefore indicated that the siRNA used were specific and effective

in decreasing willin expression.

Therefore, for the gene knockdown experiments, 5 nM stock of the siRNA duplexes

with the Mito-DsRed encoding plasmid was added to the transfection medium.

10 µg/mL of Mito-DsRed was also added in order to identify cells that had been

successfully transfected. Cells were targeted using 3.4 mW laser power at the focus

and a 1 s exposure time. Control dishes included: (a) cells with Mito-DsRed plasmid

and siRNA, without laser treatment, (b) cells without Mito-DsRed plasmid but with

siRNA, without laser treatment (c) cells without both the Mito-DsRed and siRNA

with laser treatment. Expression of willin-GFP was then induced by the addition

of tetracycline and cells were monitored for fluorescence over the next 2 days. For

all control dishes, spontaneous DNA transfection or knockdown was not observed.

Fig. 4.9 shows images of optically transfected TRex willin-GFP-HEK cells in the

presence of the willin specific siRNA and the Mito-DsRed plasmid. In the left panel

of Fig. 4.9(A) is a successfully transfected TRex willin-GFP-HEK cell, as shown by

the expression of mitochondrial targeted red fluorescent protein. The center image

(Fig. 4.9(B)) is the same field of view but under bright-field imaging. The right

hand panel (Fig. 4.9(C)), shows the green fluorescent cells. Blue and red arrows are

cells which exhibit clear knockdown of willin-GFP expression as indicated by the

absence of green fluorescence. For one cell, indicated by the red arrow point is a cell

which was co-transfected with Mito-DsRed encoded plasmid and siRNA. The laser’s

specificity of action is indicated by the fact that untreated cells have neither been

knocked down nor transfected with Mito-DsRed, as observed by lack of fluorescence

in all control dishes checked under fluorescence microscope.

Interestingly, there were more occurrences of gene knockdown with the siRNA

than of DNA transfection as shown in Fig. 4.9(C) where cells (blue arrows) had

knockdown of willin-GFP expression but were not expressing Mito-DsRed. It can

be deduced that the efficiency for gene knockdown will be higher compared to DNA

transfection as smaller siRNA molecules are more mobile than DNA plasmids (i.e.

25 bp versus 5000–6000 bp). To understand this, it was assumed that there is a

simple passive diffusion event for DNA or siRNA from the extracellular medium to

the cytosol during optical transfection. Based on this model, one can compare the

rate of diffusion of plasmid DNA and siRNA. The diffusion coefficient, Df [138] is

obtained using the equation,

Df =
kBTp

6πηvRG

(4.2)

where kB is Boltzmann’s constant, ηv is the viscosity of the medium and Tp is
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Figure 4.9: Gene knockdown using a violet diode system. (A) A TREX-willin-GFP-

HEK cell fluorescing red due to the expression of the Mito-DsRed and (B) under brightfield

imaging. (C) Image of the same field of view showing GFP fluorescence and non-fluorescing

cells. Red arrow points to a cell which has been co-transfected with Mito-DsRed and

willin specific siRNA. Blue arrows point to cells that have been transfected with siRNA

only [130].

the temperature in Kelvin. Meanwhile, Prazeres provided an estimation of RG for

super-coiled DNA plasmids described by [139],

RG = 0.402×N (4.3)

where N is the number of base pairs. For siRNA, the Flory scaling law applies

and the radius of gyration is given by

RG = 5.5×N1/3 (4.4)

Based on these equations, 25 bp siRNA diffuses approximately 100x faster than a

5600 bp plasmid DNA allowing more siRNA molecules to diffuse into the irradiated

site.

4.4 Mechanism of violet diode laser poration

Based on previous studies using the 488 nm argon-ion laser for cell transfection, it

was conjectured that a melting of the phospholipid bilayer occurs due to the light

absorption of phenol red molecules in the medium causing localised thermal effect

on the irradiated site [23, 22]. To elucidate the mechanistic process of poration, an

estimate of the temperature at the beam focus was calculated based on modeling

the phenol red as a sphere of radius, r, immersed in a non-absorbing medium. Since

the absorption and the consequential increase in temperature occur only in close

proximity at the focus, one can assume that the laser energy is absorbed only by
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the phenol red sphere. The radius, r of the sphere can be made equivalent to the

radius of the beam spot by,

r =
0.61λ

NA
(4.5)

where λ = 405 nm and NA= 1.2. Since most of the incident power of the laser

goes through the sphere of radius, r, we can assume that the substitution of a

focused Gaussian beam with a plane wave of incident intensity where P is the power

of the laser at the focal plane going through the geometrical cross-section of the

sphere, will not introduce any significant error to our estimate. The Mie scattering

problem may be solved for the phenol red sphere surrounded by the non-absorbing

medium [130]. The imaginary part of the index of refraction of the phenol red sphere

was determined by the equation,

n̂ = n

(
1 + i

αλ

4πn

)
(4.6)

based on the measured absorption coefficient, α= 0.6 cm−1, noting that the change

in real part of the index of refraction, n is negligible. This yielded an expression for

the index of refraction given by

n̂ = 1.33 + i1.93× 10−6 (4.7)

The solution provided the absorption cross section of the phenol red sphere which

is σ= 2×10−18m2. Hence, the heat absorbed, Q by the phenol red can be obtained,

wherein

Q = Iσ = 3× 10−8W (4.8)

During CW irradiation, one has to take into account the considerable heat loss

due to heat flow into surrounding medium. The heat flow, jQ is proportional to

temperature gradient, ∇Tp given by the diffusion equation [91],

jQ = −ko∇Tp (4.9)

where ko is the thermal conductivity. Since the CW laser is focused at a very

small volume (1×10−20 m3), the temperature diffuses and achieves steady state very

rapidly. The steady state temperature increase, ∆Tp can be characterised by the

thermal diffusion of the absorbed heat to the surroundings and is mainly dependent

on thermal conductivity of the surrounding medium. Considering that the steady

state temperature is achieved within several µs [97] and the irradiation settings used

in the experiments were of the order of ms to s, one needs only to consider the ∆Tp
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for the calculated heat absorbed Q. To obtain ∆Tp, Q can be equated to the integral

of Eq. 4.9 over the sphere boundary, which is given by the expression [140],

∆Tp =
1

4π

Q

kor
(4.10)

where ko= 0.6 W/mK is the thermal conductivity of water. From this, the calcu-

lated ∆Tp is 0.02 K or 0.02 oC.

The temperature calculation at the focus in the phenol red medium revealed that

the gradient temperature is very small ≈ 0.02 oC. Since the experiments were per-

formed at 25oC, the calculated temperature change is insufficient to achieve the

reported temperatures of 42–45oC, which are necessary for a membrane phase tran-

sition [96] and is certainly well short of the required temperature rise required for

microbubble formation [97]. Interestingly, the experiments revealed that cell pora-

tion was dose dependent, varying as a function of both exposure time and average

power. If photothermal effect is minimal then this result suggest that a dose de-

pendent photochemical reaction dominates during irradiation of a focused 405 nm

laser, affecting membrane integrity.

Photochemical reactions leading to cell membrane permeability changes may arise

from production of reactive oxygen species (ROS) such as O2−, OH∗ and H2O2 rad-

icals. These radicals induce oxidative stress and are known to be elicited by the

irradiation of light at this wavelength region [133, 134, 135], which may lead to

subsequent lipid peroxidation, closely related to possible impairment of the phos-

pholipid bilayer [141]. At the site of irradiation, localised generation of ROS and

its interaction with the lipid bilayer may cause changes in the permeability state of

the cell. The involvement of oxidative stress in optical transfection remains poorly

understood and requires sophisticated time-resolved fluorescence imaging which is

beyond the scope of this chapter.

However, the involvement of ROS in this process was confirmed as the addition of

phenol red in the medium was observed enhanced the overall transfection efficiency

as shown in Fig. 4.10. Phenol red has been shown to protect cells against the harmful

effects of ROS [142]. At the site of irradiation, the intracellular ROS diffusing

locally impairs the cellular membrane leading to the uptake of the DNA. It can

be presumed that although the phenol red molecules will not inhibit the localised

formation of intracellular ROS at the membrane, it will deactivate the extracellular

ROS that diffuse far from the irradiation site and compromises the overall viability

of transfected cells.
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Figure 4.10: A comparison of transfection efficiencies obtained for HEK293 cells using

2.1 mW at 1 s exposure time for cells in transfected in with and without phenol red. Error

bars represent ± standard deviation. (n=9 experiments of 50 dosed cells)

4.5 Conclusion and Future Work

In this chapter, a compact and cost-effective optical transfection system was built

using a violet diode laser. With this technique, mammalian cell lines such as CHO-

K1 and HEK293 cells can be robustly and reliably transfected with an efficiency of

up to 40%. Furthermore, the chapter reports results on the transfection efficiency as

a function of parameters, laser power and exposure time. The mechanism of optical

transfection using a CW violet diode laser was elucidated by calculating the change

in temperature at the focus.

Prior to transfection experiments, the parameters in which cells remain viable

after irradiation of focused violet diode laser were determined based on morphology

and Trypan blue viability assay. Morphological changes on the cell showing blebbing

and granulation of the cytoplasm provided the initial upper limit at which viable

irradiation could occur. Furthermore, a systematic viability study after irradiation

using P= 2.1 and 3.4 mW for T= 80 ms–5 s. An exponential decay of viable cells

were obtained with increasing P and T. For P= 2.1 and 3.4 mW for T ≤ 1 s, a high

percentage of viability of 90–100% was obtained.

Hence, optical transfection of plasmid DNA using focused violet diode laser was

performed for P= 2.1 mW with varying T= 80 ms–2 s as well as fixed T= 1 s
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and varying P= 0.8 mW–3.4 mW. The results showed that the efficiency of CW

optical transfection strongly depends on laser power and exposure time. A dose

dependent curve was obtained with varying laser parameters. Even a short exposure

of 80 ms yielded a transfection efficiency of 20% but increasing the exposure to 1.5 s

further increased the efficiency. With longer exposure time, ≥ 2 s, and higher power

≥ 2.1 mW the efficiency decreased, which can be attributed to the loss of significant

viability of the irradiated cells. The maximum achievable transfection efficiency

using this technique is around 40%.

To extend the biological application of optical transfection, gene knockdown ex-

periments were performed on TRex-willin-GFP-HEK cell line to silence the gene,

willin with an siRNA. A specific and targeted successful knockdown was demon-

strated with the absence of green fluorescence on the transfected cells. More cells

were knock down compared to transfected with DNA, showing a size-dependence

efficiency which maybe due to diffusion difference, as well as, the biological barriers

that plasmid DNA has to go through prior expression as discussed in Chapter 2.

In addition, based on the parameters obtained for transfection, the mechanism

for membrane permeability changes using the violet diode laser was elucidated by

calculating the change in temperature at the focus. The parameters are signifi-

cantly lower compared to published reports using pulsed fs and ns laser sources,

hence, membrane disruption based on plasma formation can be disregarded as the

mechanism for cell transfection using this laser source. Based on Chapter 3, the two

dominant mechanisms at these laser parameters and exposure time are photother-

mal and photochemical. The temperature calculations using the parameters used

for cell transfection were performed by obtaining the absorption coefficient of a phe-

nol red sphere using Mie scattering theory. Based on this temperature calculation,

which showed that the change in temperature is not enough to induce changes in

membrane fluidity, I proposed an ROS-mediated effect that impairs the membrane

and allows DNA plasmid to enter the cytosol.

Hence, further experiments will be required to understand the exact mechanism for

poration events caused by violet diode laser light. This may entail measuring ROS

level using cell permeant fluorecarboxy-H2DCFDA, which is sensitive to changes in

concentration of the radical, hydrogen peroxide. To detect the presence of ROS

levels, the fluorescence level must be monitored during the irradiation requiring fast

and sensitive imaging system. Furthermore, fast response probes can be utilised to

detect changes in membrane potential or Ca2+ gradients during cell poration which

can be related to the viability and membrane permeability. This would allow one to

detect biochemical perturbation on the cell with the localised exposure to the violet

laser.
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Advance application of the technique can be demonstrated with its capability to

transfect cell lines such as post-mitotic neurons or quiescent cells which are difficult

to transfect using conventional chemical based transfection. Initial work has been

performed on optical transfection and optoinjection of exogenous materials into

mammary epithelial cells, MCF10-A, using a violet diode laser. These cell lines can

be efficiently transfected only by retroviral means. Up to 30% transfection efficiency

of Mito-DsRed plasmid was achieved on this cell line. Further work is necessary in

order to optimise the parameters for each cell line in order to demonstrate the

capability of the technique to transfect a variety of samples in an in vitro culture.

The advantages of using a violet diode laser for optical transfection is two-fold.

Firstly, it is inexpensive compared to fs and ns systems which are more commonly

employed for optical transfection. Secondly, it is portable and both the laser and

optics can be engineered within a small box that can be retrofitted in any microscope

system. Demonstrating cell transfection using this laser is an essential step towards

commercialisation allowing biology laboratories to access the technology for future

significant single-cell transfection experiments.

In the following chapter, I will discuss the developments on optical injection and

transfection technique using an NIR fs laser. A versatile and reconfigurable SLM

incorporated in the system which addresses the crucial requirement for targeting

and precise pore formation on the membrane using this laser. Furthermore, I will

present our results on enhanced optoinjection and transfection by employing differ-

ent targeting modalities.

Part of this work was published in Journal of Biomedical Optics,15, 2010 [130].
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Femtosecond (fs) holographic system

for optical injection and cell

transfection

A spatial light modulator is a versatile diffractive optical element for beam steering

via wavefront modulation. This chapter demonstrates an implementation of spatial

light modulator on an NIR fs optical transfection system for enhanced optoinjection

and transfection. In this work, different modalities of poration are presented provid-

ing control over dosage with “point and shoot” capability providing a user-friendly

device for optoinjection and cell transfection.

5.1 Introduction

In the previous chapter, transient transfection was demonstrated using a CW violet

diode laser. However, with increasing advancement in engineering of laser designs

especially for pulsed laser sources, ultra-short NIR fs lasers became more mature

systems for optical transfection. In this technique, a tightly focused NIR fs laser

irradiates a femtolitre volume of the cellular membrane producing a site-specific

transient opening on the membrane allowing genetic materials to enter the cell [25,

26]. Targeted single cell fs-based optical transfection has been unrivalled in terms of
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its post-treatment viability and efficiency. Transfection efficiencies up to 80% and

cellular viability as high as 90% have been achieved using this technique [16].

The use of a fs pulsed NIR has been a popular choice for most optical cell trans-

fection applications due to its localised irradiation leading to precise ablation and

significantly low toxicity. A Ti:sapphire laser operating at a wavelength of 800 nm

and pulse duration of ≈ 100 fs is often employed creating a sub-micron pore gener-

ated by multiphoton absorption. The highly localised technique has been applied not

only to conventional cell lines but also to a variety of biological systems. Fs pulsed

NIR laser has been used to optically transfect undifferentiated stem cells [18]. It has

been applied to challenging transfection experiments such as localised delivery of a

transcription factor Elk1 mRNA into the soma or the dendrites of rat hippocampal

neurons [17]. Irradiation of fs pulses in vivo to mouse tibia muscle enabled prolonged

gene expression with minimal toxicity [143]. Furthermore, a zebrafish embryo en-

closed in a chorion can be optically transfected without apparent damage to the

developed larva [120].

However, for the system to be a consistent and reliable cell transfection tool,

several challenges are yet to be overcome. As the technique relies on multiphoton

absorption, as described in Chapter 3, it requires precise alignment of the laser focal

beam to the membrane. Very small axial misalignment can lead to a decrease in

efficiency of up to 30% [144]. Hence, a NIR fs Bessel beam (BB) generated with

an axicon lens is used for cell transfection [144]. Bessel beams are non-diffracting

modes of light which can be visualised as an optical syringe, extending the range at

which multiphoton absorption could occur. Endoscopic applications are envisaged

by fabricating a micro-axicon at the tip of an optical fibre [145] as well as an inte-

grated system consisting of a lens fibre and microfluidic delivery for poration [146]

which may progress in vivo optical transfection in living animals.

Improvement of the engineering and design of laser-mediated drug and gene deliv-

ery methods will enable the technology to be accessible and transferred to advanced

molecular and biology research laboratories. Further advancement towards easy to

use systems that does not necessitate an experienced experimentalist would lead to

their wider application and commercialisation. Hence, in this chapter, a fs holo-

graphic system was developed employing a fs system for high-throughput and

user friendly optical transfection and injection. A spatial light modulator (SLM)

was integrated into an fs optical transfection system that permits “point and shoot”

targeting, providing full control over the lateral and axial positioning of the beam.

This enhances the accuracy of targeting which is an important step towards the

laser treatment of large number of adherent cells. In addition, enhanced optoinjec-

tion and optical transfection was demonstrated with varying targeting modalities.
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In combination with a piezo-driven scanning mirror, the laser could be deflected

over a wider 140 µm field of view which permits dosing of multiple cells at a time.

In the future, the aim of this work is to build the same system using a violet diode

laser. However, at present, higher efficiency for commercially available SLM can be

obtained for wavelengths in the NIR.

The work presented in this chapter was performed in collaboration with Dr. Ma-

ciej Antkowiak (SULSA Technologist, University of St. Andrews). The experimental

setup was designed and aligned by both the author and Dr. Maciej Antkowiak. The

controlling software was authored by Dr. Maciej Antkowiak. A LabView program

authored by Dr. Tômas Ciẑmár (Medical Research Fellow, University of St. An-

drews) was used to correct for aberrations. The author performed all the cell work,

contributed significantly in developing the protocol for optoinjection and performed

the optical transfection experiments presented in this chapter.

5.2 Optical beam steering using a spatial light

modulator

Beam steering of the focal spot in a field of view is advantageous for optical ma-

nipulation techniques. In optical trapping, the focal spot position can be laterally

translated with the use of a mirror situated at the conjugate plane of the back-

aperture of the objective. The displacement of the focal beam is related to the

reflection angle of the mirror. In more advanced systems, either a galvo or piezo

mirror is incorporated to the system, providing fast lateral control of the focal beam.

In a scanning configuration, galvanometer (galvo) mirrors with feedback loop can

rapidly translate the beam up to 2 kHz. Alternatively, piezo mirrors which have

slower milli-seconds reconfiguration times but are superior in “step and hold” posi-

tioning applications wherein the beam is desired to be fixed in a precise location for

a certain period. In other applications, acousto-optical deflectors (AOD) have been

implemented for fast MHz scanning rate for time-shared beam multiplexing.

However, applications such as optical transfection and optoinjection, not only re-

quire lateral displacement of the focal beam but also precise axial positioning. For

galvo, piezo and AOD systems, if an axial displacement of the focal spot is required,

an additional lens is needed or the objective itself, has to be translated which sig-

nificantly slows down the process and allows time-shared beam multiplexing in one

plane only. A much faster and more flexible two- or three dimensional positioning

of multiple foci was achieved using a configuration of four AOD [147]. However this

was obtained at a price of a significant increase in pulse duration from 200 fs to

1.8 ps, which is detrimental to the multiphoton efficiency of the system.
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On the other hand, an SLM in a Fourier configuration can provide flexible and

fast lateral and axial positioning of the beam in the sample plane. Hence, wavefront

modulation in the Fourier space provides an advantage over other beam steering

techniques as it can provide beam steering, axial control and beam shaping all at

the same time. This permits full three dimensional control on the focal spot at the

sample plane providing user-control and flexibility over the desired experimental

parameters.

5.2.1 Optically-addressed parallel aligned spatial light modulator

A liquid crystal (LC) spatial light modulator (SLM) is a versatile tool for dynamic

wavefront modulation. An SLM can be visualised as a 2-dimensional periodic pixel

array with LC components sandwiched in between two conducting plates. Nematic

LC can be distinguished from other types of LC used in SLM as they have parallel

molecules throughout the LC cell with randomly located centres [148]. The LC cell

thickness is adjusted based on the incident light wavelength. Each pixel in the LC-

SLM can be electronically or optically addressed thereby allowing modulation of the

phase of an incident beam. In electronically addressed SLM, a localised and defined

voltage is applied to the LC layer. In this configuration, the molecules of the LC align

themselves in response to the voltage which modulates their characteristics [149].

Meanwhile, an optically addressed SLM utilises a laser diode module for writing

and an amorphous silicon layer which reads the write light intensity. The write light

changes the impedance of the amorphous silicon layer and subsequently applies a

voltage change on the LC layer [150]. A computer generated hologram (CGH)

determines the information to be encoded to the write light. The bitmap of a CGH

is an image made up of an 8-bit per pixel in grey scale wherein zero value (black)

represents zero phase and 255 (white) represents a phase of 2π. Table 5.1 shows the

specification of the optically addressed parallel aligned (PAL)-SLM utilised in this

chapter.

Properties Hamamatsu PPM X8267-13

Number of pixels ≈ 590,000 pixels

Effective image area 20 × 20 mm

Phase modulation level more than 2π radian

Maximum spatial display resolution 19 lp/mm

Wavelength 700–800 nm

Table 5.1: Specifications of the optically addressed PAL-SLM (Hamamatsu, PPM X8267-

13) utilised in the fs holographic system.
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5.2.2 Computer generated hologram for beam steering

To calculate the CGH to be displayed in the SLM for optical beam steering, the

fastest way is to obtain the linear superposition of the desired beams using phases

corresponding to prisms and lenses. This simple approach of superposing prisms

and lenses gives full control over the three dimensional positioning of the focal spot.

Let us consider ζ,η and x, y to be the transverse coordinates of the SLM and the

imaging plane respectively. The appropriate wavefront modulation corresponding

to lateral translation of the focused spot can be obtained by calculating the CGH

for a linear blazed diffraction grating given by the equation [151]

φ(ζ, η) =

(
2π

Λx

ζ +
2π

Λy

η

)
mod2π (5.1)

where Λx= λf/∆x and Λy= λf/∆y are the period of the grating in the x and y, ∆x

and ∆y are the desired translation in x and y respectively while λ is the wavelength

of light and f is the focal length of the lenses and objectives used.

On the other hand, if the desired focus spot is intended to be located a distance

∆z away from its original position, adding a quadratic phase which mimics a Fresnel

lens can shift the focus spot up and down parallel to its optical axis [151] as written

in the following equation.

φ(ζ, η) =

(
π∆z

λf 2
(ζ2 + η2)

)
mod2π (5.2)

The phase corresponding to both lateral position and focal spot translation is

given by the sum of Eq. 5.1 and Eq. 5.2 written as,

φ(ζ, η) =

(
2π

Λx

ζ +
2π

Λy

η +
π∆z

λf 2
(ζ2 + η2)

)
mod2π (5.3)

Hence, the creation of multiple spots with arbitrary position and power is pos-

sible by summing up the individual complex functions, eiφj(ζ,η) and calculating the

argument of the sum of the complex functions, φtotal(ζ, η) given by the following

expression,

φtotal(ζ, η) = arg

∑
j

eiφj(ζ,η)

 (5.4)

An example of CGH used for the experiment are shown in Fig. 5.1 (A–C). Fig.

5.1 (A) shows the CGH to laterally displace the spot in x,y. Fig. 5.1 (B) is the

CGH to displace the focus along the axial direction. The corresponding CGH to

be displayed in the SLM to both translate and axially displace the focal spot is the
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Figure 5.1: Example of computer generated holograms to (A) laterally translate the

beam along the x,y, (B) displace the focus along the axial direction (C) and combination

of lateral translation and displacement of the focus.

sum of Fig. 5.1 (A) and (B), shown in Fig. 5.1 (C). For our purposes, the amplitude

variation was neglected. This results in the creation of ghost images and higher

order diffraction orders [152]. Hence, a slit is positioned at the intermediate plane

after the SLM as shown in Figure 5.2 to block the zeroth order and the ghost images

allowing only the modulated spot (1st order diffraction) to pass through the rest of

the optical train.

There are several pre-existing algorithms that had been utilised to create multiple

optical traps such as iterative schemes based on Gerchberg-Saxton and adaptive

additive algorithms which improves the hologram performance albeit the increase

in computational cost. However, for the purposes of the fs holographic system, the

linear superposition method is adequate for the desired application.

5.3 Experimental Design

The fs holographic system consists of two components, (1) a fs holographic poration

system capable of fast lateral and axial positioning of the beam for enhanced op-

toinjection and cell transfection and (2) a microscopy system capable of brightfield,

epifluorescence, phase contrast, differential interference microscopy and time-lapse

imaging. The experimental design is shown in Figure 5.2. The system is built

around a Nikon TE-2000 inverted microscope. An additional scanning head can

also be utilised for confocal imaging. The poration beam is from a Ti:sapphire fs

laser (Coherent Mira 900 pumped by Verdi-V5) with wavelength centred at 800 nm,
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pulse width of approximately 180 fs and 80 MHz repetition rate directed to the

upper fluorescence turret of the microscope.

The laser passes through a polarising beam splitter (PBS) and half-wave plate

(λ/2) for power attenuation. An electronic shutter triggered through a data acqui-

sition (DAQ) card controls the exposure of the laser on the sample. The beam is

first expanded and collimated by a pair of lenses (L1 and L2) with focal lengths of

f1= 50 mm and f2= 1000 mm respectively. With a series of mirrors with reflection

coatings specific for 800 nm, the beam is directed into a SLM (Hamamatsu PPM

X8267-13) with 768 by 768 control pixels. The beam expansion served two purposes,

firstly, to overfill the 20 × 20 mm active area of the SLM and secondly, distribute

the power of the beam over a larger area which avoids damaging the liquid crystal.

The incident angle of the laser beam to the SLM is kept at less than 10 degrees to

maintain phase modulation linearity. A half-wave plate (λ/2) before the telescope

rotated the polarisation of the laser to maximise the power diffracted into the first

order.

The beam is demagnified by a pair of lenses L3 and L4 with focal lengths f3= 500 mm

and f4= 200 mm. A demagnification factor of ×2.5 is chosen to just slightly overfill

the backaperture of the microscope objective (Nikon, 0.8 NA) and achieve a diffrac-

tion limited spot. L5 (f5= 200mm) and L6 (f6= 200 mm) relays the image on the

SLM to the backaperture of the objective. The transmission of the microscope ob-

jective is measured to be 66±1% by a dual objective method. A slit is positioned at

the focal plane of L3 (intermediate plane) to block the unmodulated zeroth order

and ghost spots shown in Fig. 5.3 (A). However, blocking the zero and negative

orders limits the available targeting field of view to half (70 µm) as shown in Fig.

5.3 (B).

5.3.1 Aberration correction

Optical aberrations are present in any optical system which degrade its imaging

capabilities leading to blurring of images. The aberration in an optical system

prevents the beam from focusing to its ideal diffraction-limited spot, leading to

spreading of its beam profile. Hence, in optical transfection systems, aberrations

decrease the power density at the focus and the efficiency for multiphoton absorption

affecting the efficiency of poration. Furthermore, with a reflective type SLM, such

as the one utilised for this experiment, its slight nonunformity causes significant

aberration to the input light beam [148]. However, an advantage of incorporating

an SLM is it can correct for the summative aberration in the optical system by

displaying a corrective CGH on the SLM. Fig. 5.4(A) illustrates the CGH imposed

on the SLM for aberration correction. In the fs holographic system, a technique
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Figure 5.2: Schematic diagram of the fs holographic system for targeted and accurate fs

cell transfection. L-lenses; M-mirrors; PBS-polarising beam splitter; λ/2- half wave plate;

SLM-spatial light modulator. The fs laser beam is expanded by a telescope system (L1

and L2) passing through an electronic shutter. The beam is directed to an SLM which is

used for beam steering and additional wavefront modulation to control the axial position

of the laser beam. A dichroic mirror deflects the fs laser to the back aperture of a 0.8 NA,

60× Nikon, microscope objective. Imaging is performed using an EMCCD camera. L1

and L2 with focal lengths f1= 50 mm and f2= 1000 mm respectively expands the beam to

fill the active area of the SLM. L3 (f3= 500 mm) and L4 (f4= 200 mm) demagnifies the

beam to ensure that the backaperture is overfilled. L5 (f5= 200 mm) and L6 (f6= 200 mm)

relays the image on the SLM to the backaperture of the objective.
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Figure 5.3: (A) Diffraction orders obtained upon imposing a blazed CGH on the SLM.

The 1st order diffraction was used for cell transfection and optoinjection. (B) An image

showing the full field of view using 60× objective and the useful field of view due to the

necessary blocking of other diffraction orders.
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Figure 5.4: (A) The CGH imposed on the SLM to correct the aberrations of the laser

beam. The laser beam was corrected by visual inspection of the image of the focused beam

while simultaneously adjusting the Zernike polynomial coefficients thereby changing the

CGH imposed on the SLM to achieve a symmetrical beam profile. (B) TOP and BOTTOM

- Image of corrected and uncorrected beam respectively and their corresponding x and y

intensity profile.

based on the expansion of the wavefront on a circular pupil in Zernike polynomials

is utilised. The first six radial orders (24 modes) correspond to the most significant

aberrations such as astigmatism, coma and spherical aberration. The individual

polynomial coefficients can be adjusted accordingly, changing the CGH displayed

on the SLM in order to correct for the aberrations of the laser beam. By visual

inspection and subsequent adjustment of the polynomial coefficients, a symmetrical

focus laser spot can be obtained. Bottom image in Fig.5.4(B) shows the uncorrected

beam which exhibits intense astigmatism, coma and spherical aberrations. Coma

and spherical aberrations are observable when the beam is defocused. The top image

shows the corrected beam. When the corrective CGH (Fig. 5.4(A)) was encoded in

the SLM, a circularly symmetrical beam profile was obtained.
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5.3.2 Calibration characteristics

Based on previous independent investigations, the efficiency of poration is depen-

dent on the power at the focal spot [26]. As discussed in Subsection 5.2.2, lateral

positioning can be achieved by imposing a blazed linear grating CGH, where the

period of the grating is inversely proportional to the desired translation. However,

the modulation efficiency of the SLM is also dependent on the period of the phase

impose on it. With decreasing period on the blazed phase, the efficiency to the

translated beam decreases and more power is directed to the unmodulated zeroth

order. For consistency, it is crucial to calibrate the power of the translated beam as

a function of its position over the available field of view. Hence, the power at the

sample plane was characterised as a function of the position of the translated beam

relative to the zeroth order beam in the field of view.

The laser power was measured using a high peak power thermopile sensor (Coher-

ent, PM10V1) with a digital readout (Coherent, FieldMaxII-TO). Using a LabView

program, the CGH was changed incrementally to deflect the beam to a given x and y

position and subsequently the power was measured at this position. Since the zeroth

order and the other diffraction orders were blocked, they have negligible contribu-

tions to the power delivered to the sample plane and only the first order diffracted

beam was measured. Figure 5.5(a) shows the experimentally measured efficiency of

the first order diffraction at different positions in the sample plane. The diffraction

efficiency of the translated beam dramatically decreases with its lateral displacement

from the zeroth order. Furthermore, at 50 µm away from the position of the zeroth

order, the corresponding normalised power efficiency left at the translated beam is

only 0.2.

In order to achieve a uniform power over the field of view, a coefficient factor A

is imposed to control the fraction of power at the poration spot and the final form

of the complex field will become [14]

M(ζ, η) = Ae
2πi
λf

(ζ∆x+η∆y)e
−πi∆z
λf2 (ζ2+η2)

+ (1− A)e
2πi
λf

(ζ∆x0+η∆y0) (5.5)

The first part of the Eq. 5.5 refers to the modulated 1st order beam used for

optoinjection and optical transfection while the second part indicates the unwanted

fraction of light. Since the SLM only modulates the phase, unwanted ghost spots will

be created. This is minimised by positioning the unwanted fraction of light vertically

above the zeroth order. With a slit in place to block the ghost spots and the zeroth

order, the unwanted amount of light is kept at a minimum. Furthermore, to ensure

a precise power control, the power left at the poration spot was experimentally

measured as a function of the coefficient A at various points within the field of view

shown in Figure 5.5(b). It was found that the power for poration at a specific value
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Figure 5.5: Calibration characteristics of (a) diffraction efficiency of the SLM and the

distance of the first order from the zeroth order measured by placing a thermopile sensor

at the sample plane to measure the power at the first order as a function of position in

the field of view. Image in (b) shows the fraction of total power left in the poration spot

as a function of coefficient A in Eq. 5.5 [14].

of A does not vary more than 1–2%.

5.3.3 Controlling software and camera

The system is controlled by a custom-made LabView 8.5 (National Instruments) soft-

ware providing user control over the mode of poration, shutter duration, number of

doses and camera settings. Image is acquired using an Electron Multiplying Charge

Coupled Device (EMCCD, Andor iXon+). An EMCCD differs to normal CCD cam-

era due to an additional Electron Multiplying register (EM) allowing weak signals

to be multiplied before any readout noise is added by the output amplifier [153].

The EMCCD camera allows us to detect very faint signals often observed in

optoinjection experiments with propidium iodide. An EM gain of 5 is used with

1 s exposure setting of the camera to capture the raw images of the optoinjection

experiments. In order to reduce any background noise, the camera is cooled down

to -75oC to minimise the presence of dark current. The CGH displayed on the

SLM is an 8-bit grey-scale bitmap image. By pointing the mouse on the screen and

the software registering the pixel position in x and y, the program correspondingly

calculate the CGH to deflect the beam at this position which allows “point and

shoot” in any position in the field of view with single pixel precision, providing

a targeting accuracy of 133 nm using a ×60 objective. The electronic shutter is
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triggered through a DAQ card wherein the shutter duration and the delay between

shutter exposure can be controlled for multiple laser exposure configuration.

5.3.4 Sample preparation for optoinjection experiments

CHO-K1 and HEK293 cells were utilised for this experiment. Cell culture methods

are discussed in Appendix. For the fluorophore optoinjection experiments, the cell

monolayer was washed twice with 1 mL OptiMEM (Invitrogen) before addition of

3 µM of Propidium iodide (PI, Invitrogen) in OptiMEM to the cells. The fluorescent

signal from PI was captured, 5 min after irradiation. Afterwards, cells were washed

twice with 1 mL of OptiMEM and fresh medium was added before incubating the

cells for at least 90 min.

Prior to fluorescence imaging for cell viability, cells were washed twice with 1 mL

of Hanks’ Balanced Salt Solution (HBSS, Sigma). After which, 2 µM of Calcein AM

(CAM, Invitrogen) in HBSS solution was added prior incubation for 15 min. The

non-fluorescent CAM is cell membrane permeant and is converted to green fluores-

cent Calcein after hydrolysis of intracellular cell esterases. Once inside, it is retained

by the cells that have perfectly intact plasma membranes. However, in damaged or

dead cells both unhydrolysed and fluorescent products immediately leak out of the

cell with little or no esterase activity. Healthy cells have a characteristically bright

green fluorescence while minimal or punctate signal is indicative of cell death or

compromised viability. All experiments were performed at 37 oC. The DNA trans-

fection efficiency was calculated as the number of fluorescent cells after 48 h over

the number of irradiated cells.

5.4 Experimental Results

5.4.1 Different modalities of optoinjection

Independent studies on fs optical transfection reported the dependence of the effi-

ciency of the technique on the combination of laser parameters, pulse energy and

exposure time [26, 27] but few studies had been conducted on the effect of accu-

rate positioning of the focus spot with respect to the cell membrane. The common

practice for fs optical transfection [26, 18] is that the laser beam’s position (x,y)

and it’s focal position(z) is fixed at the sample plane. By using a micrometer pre-

cision, xyz translation stage, each cell is positioned spatially with respect to the

beam. With this practice, the lateral positioning could be accurate enough as the

focal beam spot (≈ 1.2 µm) is one-order magnitude smaller than the size of the cell.

However, the axial positioning may not be as accurate to precisely target the cell
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membrane (thickness of ≈ 5 nm) and not damage any of the intracellular cytosolic

compartments within the cell.

Moving the cell axially with respect to the focus of the laser by defocusing and

refocusing the image of the cell allows the operator to determine approximately the

location of the membrane. At certain laser threshold intensity, a visible gas bubble

is obtained in response to the laser when the focal spot hits the membrane. By

looking for this adverse response from the cell, one could approximate where the

membrane is with respect to the focus spot. However, because of the variation

in cell’s thickness and degree of curvature, this varies from cell to cell, leading to

inconsistencies on the positioning of laser focus with respect to the cell membrane.

It has been shown that the Bessel beam (BB), with its characteristic nondiffract-

ing syringe of light, can improve the transfection efficiency over a longer range of

axial positioning [144]. Previously, an SLM system enabled beam steering and mul-

tiplexing of a BB [154]. However, as the creation of BB results to concentric rings

which do not contribute to multiphoton absorption [144] and the phase modulation

in the SLM results in a significantly loss in power due to limited diffraction efficiency,

incorporating a BB to the system imposes a limitation to the available power at the

sample.

Another solution is to introduce a controlled sequential dosage at different spatial

and axial positions within the cell. Computer control of both the SLM and the

shutter provides precise delivery of sequential fs pulses. The improvement of the

controlled sequential dosage on cell membrane poration is tested by optoinjection

of freely diffusing fluorescing dye, PI. The delivery of the dye provides a more di-

rect confirmation that an opening in the membrane has been made allowing small

molecules to enter the cell. PI was chosen due to its small size (668.4 Da) and

provides a distinct fluorescence signal when the dye has intercalated with the DNA

and mRNA within the cell. For both drug and gene delivery, the viability of the cell

after treatment is a primary concern for such applications. Hence, CAM was added

90 min after poration to determine the percentage of viably optoinjected cells.

Hence, different targeting modalities in poration were implemented using the fs

holographic system. Laser parameters used were laser power (P) = 70 mW and ex-

posure time (T) = 40 ms. These parameters were chosen based on prior experiments

allowing successful optoinjection and similar parameters employed in independent

studies [27]. The beam focus was positioned 7 µm above the bottom substrate of

the dish wherein repeatedly a visible gas bubble was obtained for CHO-K1 cells.

Each dose is given 700 ms apart which did not lead to cumulative effects.

Fig. 5.6 shows typical images acquired during the experiment. As shown in Fig.

5.6(a), cells that became necrotic after optoinjection obtained a very intense PI
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Figure 5.6: Images acquired during optoinjection efficiency and viability experiments.

(a) PI signal 5 min after irradiation, (b) phase contrast image of the field of view (c) CAM

fluorescence image 90 min after irradiation. The necrotic cells are pointed out by solid

arrows and the viable cells are pointed out by dashed arrows [14].

signal in the nucleus (solid arrows). Meanwhile, successfully optoinjected cells that

remained viable have a weak but almost uniform fluorescence in the cytoplasm

(broken arrows). Notably, necrotic cells (see Fig. 5.6(b)), have distinct granular

features on the cytoplasm and the outline of the nucleus is clearly visible. CAM

fluorescence image (see Fig. 5.6(c)) confirmed that these cells are necrotic, as they

have either punctate or absent CAM signal which implies compromised cell viability

due to the lack of esterase activity. On the other hand, optoinjected cells with

uniform PI signal on its cytoplasm have very bright CAM signal which signifies that

the treated cell is both optoinjected and viable.

In this experiment, three types of targeting were implemented for cell optoinjec-

tion: “single” dose on a single axial and lateral position on the cell, “triple axial”

providing three sequential doses on separate axial planes 1 µm apart and “triple lat-

eral” which allows three sequential doses on separate lateral positions, 2 µm apart

forming an equilateral targeted dosage points. Triple axial allows dosing of three

individual axial positions in the cell membrane. In this experiment, dosing with this

configuration leads to a single visible gas bubble located at the second dose which

corresponds to the membrane. On the other hand, triple lateral leads to two or

three individual visible gas bubbles which often lead to abrupt cell necrosis and its

lysis.

The percentage of optoinjected, viably optoinjected and viable was determined

within all the irradiated cells for the three different modalities of poration using
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Figure 5.7: Optoinjection efficiency using different modalities of dosage, single, triple

axial and triple lateral dose. Error bars represent the standard error of the mean with

n=3 experiments with 40 dosed cells,*—significant data sets in unpaired two tailed t-

test(p< 0.05) [14].

.

P= 70 mW and T= 40 ms was obtained. Each data point comprised of n= 3

experiments each with 40 dosed cells. Fig. 5.7 shows the percentage of optoinjected,

viable and viably optoinjected cells after treatment. Triple axial dose provided

the best performance as it allowed 40% viable optoinjection and 72% successful

injection of cells. This showed a marked improvement in optoinjection efficiency

compared to 45% obtained for a single dose. Hence, enhance precise targeting of

the membrane is crucial to achieve successful optoinjection. Meanwhile, although

the dosage using triple lateral provided an improvement over the single dose on

optoinjection efficiency, the generation of multiple gas bubbles on the membrane

led to compromised cell viability at this laser parameter leading to lowest viable

optoinjection efficiency percentage of less than 20%.

The poration effects via laser-material interaction are due to the expansion and

collapse of short-lived cavitation bubbles produced within a couple of microseconds

after irradiation [97]. At sufficiently high laser intensity, long lasting residual gas
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bubbles lasting from milliseconds to seconds are visible using brightfield imaging.

It is conjectured that they arise due to dissociation of biomolecules into volatile

and non-condensable fragments [97]. In this study, optoinjection in the absence of

visible gas bubbles was not observed similar to observations by independent stud-

ies [27]. However, the presence of gas bubbles did not always guarantee a successful

optoinjection. For example in Fig. 5.7 wherein triple axial dose led to 90% of the

cells with gas bubble, among the treated cells, only 70% actually showed successful

optoinjection.

5.4.2 Optical transfection with the fs holographic system

The attractiveness of the technology stems not only from viable delivery of molecules

but also to perform genetic modification via optical transfection. Similar to the

optoinjection experiments, the transfection efficiency was determined as a function of

the different targeting modalities presented. Optical transfection experiments were

conducted on CHO-K1 and HEK293 cells using the different modalities of poration.

For single, triple axial, triple lateral and untargeted raster scan, the laser parameters

used were P= 60 mW and T= 40 ms. This combination of parameters was proven

to show successful cell transfection in previous independent studies [25, 26]. In

contrast to optoinjection, for the parameters used for successful optical transfection,

the presence of visible gas bubbles was not observed.

Successful transfection of Mito-DsRed plasmid into HEK293 cells was obtained

for each modality of poration. A representative image of successfully transfected

HEK293 cells is shown in Fig. 5.8(A). The transfection efficiency for various modes

of poration for HEK293 cells is shown in Fig. 5.8(B) for n=4 samples each with 50–

100 targeted cells. With a single dose on individual HEK293 cells, the transfection

efficiency obtained was 34%. It was found that the increase in efficiency is not

significantly different for single, triple axial and triple lateral. However, the plot

shows an increase in the average transfection efficiency with increasing number of

doses on the membrane. For example, compared to single dose, an increase in

average transfection efficiency from 34% to 45% was obtained with triple lateral

dose. Thus, multiple doses was further investigated to observe if it would enhance

the transfection efficiency.

The delivery of 16 shots of fs pulses in a 4 × 4 pattern in a single axial plane (×
16 raster) was implemented at lower laser parameters, P = 30 mW and T = 40 ms

compared to earlier targeting schemes. A lower laser parameter was chosen as in-

creasing the number of doses would increase the total energy delivered to the sample

which may induce cell necrosis. From Fig. 5.8(B), the 16 shots in a 4 × 4 pattern

dosage within the cell’s cytoplasm provided the highest transfection efficiency of
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Figure 5.8: (A) Fluorescent image of HEK293 cells successfully transfected with a plasmid

expressing Mito-DsRed. (B) Optical transfection efficiency of HEK293 cells for different

modalities of poration. Laser parameters of P= 60 mW and T= 40 ms was employed

for untargeted raster scan, single, triple axial and triple lateral. Laser parameters of

P= 30 mW and T= 40 ms was used for ×16 raster (4 × 4 dosage) on the cell membrane.

Each data is comprised of n=4 samples, with 50–100 dosed cells. Error bars represent ±
standard deviation.

55% which was found to be significantly different from a single dose. In these exper-

iments, lower laser power was not necessarily detrimental to the efficiency. Instead,

increasing the number of laser shots to the cell membrane can compensate for lower

P. Similarly, lower laser powers at 30–35 mW and even shorter exposure time 5 ms

with 16 random shots was also employed in transfecting rat hippocampal neurons

[17, 155]. The effectiveness of increasing laser doses at lower laser parameters can

be understood in terms of enhanced number of poration sites where DNA material

can enter, increasing the probability for transfection. Laser parameters on previous

independent investigations on fs optical transfection utilised three doses of P= 50–

100 mW and T= 16–40 ms [26, 144, 18] applied to a range of cell lines. These

parameters are within the range where substantial heating already occurs on top of

free-electron mediated chemical effects [97] which may affect the viability of the cell

and reduce the efficiency of transfection.

Furthermore, the efficiency of the system was tested to provide unassisted and

untargeted raster scan for high-throughput transfection. This is desirable for exper-

iments requiring large number of transfected cells. In the presented SLM fs holo-
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Figure 5.9: Schematic diagram of the raster scan irradiation wherein each point is set at

10 µm [14].

graphic system, the beam could be moved from spot to spot rather than scanning

the beam along the sample in a continuous manner. In this configuration, length of

laser exposure is precisely controlled which is crucial to the success of poration and

maintaining cellular viability.

Based on the typical cell diameter of CHO-K1 which is 15–20 µm, the grid spacing

was set at 10 µm (see Fig. 5.9). In a typical sub-confluent monolayer of CHO-K1

cells, 750 cells populate a substrate area of 1 mm2. Hence, the time it requires

to perform an unassisted raster scan of this area, considering an exposure time of

40 ms and a delay time of 50 ms to reconfigure the SLM corresponds to a total

time of 900 s. Therefore, the throughput of the system can be estimated to be

around 1 cell/second. Depending on the cell density on the sample dish, each cell

could be dosed with the laser more than once. There are also instances when the

fs laser is delivered to an empty space (see Fig. 5.8). With this configuration, the

achievable DNA transfection efficiency of CHO-K1 and HEK293 cells is around 24%

comparable to single dose with transfection efficiency of 34%. Alternatively, an

automated targeted fs pulse delivery on each cell within a field of view could be

performed with an appropriate image processing algorithm.

5.4.3 Selective co-transfection

Many studies in molecular biology require the expression of two or more unrelated

genetic material in a two-step manner for protein functionality studies. Although,
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Figure 5.10: A green fluorescent protein (GFP) expressing CHO-K1 cell selectively pho-

totransfected with a plasmid expressing Mito-DsRed [14].

co-transfection in one step is also possible, it is less efficient in maintaining high

levels of expression for both proteins transfected within the cell. It is often better to

transfect the cell with one gene at a time then screen for the cells with high level of

expression. If the gene of interest is tagged with a fluorescent marker, epi-fluorescent

imaging can aid in identifying already transfected cells to be targeted.

To demonstrate the capability of the system to perform selective co-transfection,

CHO-K1 cells were chemically transfected with pCS2mt-GFP plasmid developed by

Klymkowski and co-workers [156] using Lipofectamine 2000 (Invitrogen) according

to manufacturer’s specification. 24 h after chemical transfection, cells were washed

twice with complete medium, after which, fresh complete medium was added before

further incubation. A mixed population of fluorescing and non-fluorescing cells were

obtained.

Cells expressing pCS2mt-GFP plasmid were observed by the characteristic ex-

pression of uniform fluorescence within the cell’s cytoplasm and its absence from

the nucleus. Epi-fluorescent imaging was performed using FITC HYQ Nikon filter

cube (excitation: 460–500 nm, emission: 510–560 nm). 27 h after chemical transfec-

tion, fluorescence image was capture for the sample and individual cells that were
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expressing GFP were transfected with Mito-DsRed plasmid which yielded a pop-

ulation of cells expressing both plasmids (see Fig. 5.10). This experiment opens

up the possibility for a precise and selective, step by step transfection for treating

cells based on earlier expression of a particular protein. For example, this technique

maybe useful for differentiation of pluripotent stem cells into specialised cell types

which may necessitate repeated and gradual transfection. Furthermore, the ability

to track therapeutic transplanted single cells in vivo is an important aspect in stem

cell biology [157]. The flexibility of single-cell optical transfection may allow tar-

geting of earlier transfected cells in vivo and tracking them within a very dynamic

microenvironment.

5.5 Fs holographic system combined with a

piezo-driven scanning mirror

In the previous sections, a fs holographic system was presented for enhanced cell

transfection. With this system, a ”point and shoot” capability is demonstrated

with flexible targeting modalities for fs irradiation of mammalian cells. Significant

improvement in optoinjection efficiency was achieved with precise targeting of the

membrane using a triple axial dosage, applying sequential fs pulses at different axial

positions. On the other hand, 16 shots on the membrane enhanced the transfec-

tion efficiency of mammalian cells. However, the system targeting capabilities is

constrained by its small 70 µm field of view. The system’s versatility could be fur-

ther enhanced with a wider field of view allowing optical transfection of single or

multiple cells in an array on a tissue and observing for the subsequent effect on its

neighbouring cells. Furthermore, a wider-field targeting capability accommodates

beam multiplexing allowing several cells to be targeted at a time in a single field of

view increasing the throughput of the system.

An additional platform that could increase the field of view for targeting is to in-

corporate a piezo-driven scanning mirror in the setup. With a piezo-driven scanning

mirror in tandem with a SLM, a full-field of view targeting with full axial control

could be achieved. The scanning mirror is utilised to laterally translate the beam,

meanwhile, the SLM could enable axial positioning and beam shaping by wavefront

modulation of the laser beam. Decoupling the lateral and axial control provided

more flexibility on the system by having a more uniform power when the beam is

translated over the whole field of view, removing the need for amplitude correction

for “point and shoot” targeting.

The modified optical train is shown in Fig. 5.11. Similar to Fig. 5.2, the fs

laser beam passes through an electronic shutter and a λ/2 waveplate and PBS
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Figure 5.11: (A) Modified optical train with the scanning mirror (SM) in place. L-

lenses; M-mirrors; PBS-polarising beam splitter; λ/2- half wave plate; SLM-spatial light

modulator. Lenses: f1= 50 mm, f2= 1000 mm, f3= 500 mm, f4= 125 mm, f5= 200 mm,

f6= 200 mm, f7= 150 mm and f8= 300 mm. In this configuration, each cell in the field of

view can be irradiated with uniform power for optical injection and transfection.
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pair for power attenuation. Lenses, L1 and L2 with focal lengths, f1= 50 mm and

f2= 1000 mm respectively, expands the beam to overfill the SLM active area. At the

SLM, a fixed CGH of a linear blazed grating is imposed to separate the 1st order from

the rest of the diffraction orders. All the other orders are blocked at the intermediate

plane. The 1st order beam from the SLM is demagnified using lenses L3 and L4 with

focal lengths f3= 500 mm and f6= 125 mm respectively. In order to avoid loss of

power, the beam incident into the 12.5 mm (diameter) of the scanning mirror (SM-

S334, Precision Instruments) was made smaller (≈ 5 mm) than the mirror aperture.

The piezo-paired driven scanning mirror has a milliseconds response time and can

provide a tip-tilt range of 60 mrad. It has a reflectivity of 98% over the wavelength

range 500 nm–2 µm. L7 and L8 (f7 = 150 mm and f8 = 300 mm) expands the beam

to twice its size in order to overfill the backaperture of the objective. In order to

optimise the scanning feature of the mirror over the whole field of view and to ensure

that any wavefront modulation at the SLM is imaged to the sample plane, the SM

should be at a conjugate plane with the SLM. Hence, lenses L3 and L4 are in 4-f

configuration with the SLM and SM. The distance between L3 and L4 is the sum of

their focal lengths.

Steering the beam with the SM ensured that the power was maintained all through-

out the field of view. A slight defocusing was observed when the beam was scanned

at the edges due to the curvature of the plano-convex lens used after the SM. To

improve this, an F-theta lens should replace L7 in the system inorder to ensure a

flat image field at the sample plane during the beam steering.

Fig. 5.12(A) is a still image of a video showing a touch-screen interface whereby

remote operation of the femtosecond holographic system is possible allowing “point

and shoot” over the wireless internet. A LabView program allows remote access by

linking the transfection software with the touch-screen interface of a laptop. This

technology could be particularly useful for studies requiring cell transfection in the

presence of highly-dangerous mutagens which requires the microscope to be enclosed

in a laboratory hence, control of the system may only be performed through remote

access. Furthermore, in order to show the system’s wider-field targeting capability,

optoinjection of fluorescent dye in mammalian cells were performed in a patterned

manner. A dish with a confluent monolayer of CHO-K1 cells was bathed with a

3 µM solution of PI. In order to provide precise and accurate control of the field of

view to be targeted, the microscope was fitted with a motorized stage (Marzhauser

Scan, IM 120x100) that can be computer-controlled as well. A predefined checker-

board pattern was created, requiring four fields of view each with an area ≈ 140 µm

by 140 µm of cells to be targeted. After targeting all the cells, the stage is moved

towards the next predefined field of view. Fig. 5.12 (B) shows an image of of optoin-
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Figure 5.12: (A) A still image of a video of the system showing a touch-screen interface

which allows remote operation of the femtosecond holographic system allowing point and

shoot of cells over the wireless internet. (B) An image of CHO-K1 cells optoinjected with

PI in a checkerboard pattern.

jected cells with PI in a checkerboard pattern. Hence, the system could be used to

create optoinjected cells in a user-defined arrangement which could be employed to

target specific cells cultured on chemically micro-patterned surfaces. The technique

enables targeted gene delivery of cells in a pattern for applications studying cell

behaviour, wound healing and cellular interactions.
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5.6 Discussion and Conclusions

This chapter presented a fs holographic system for enhanced optoinjection and cell

transfection. It utilised a dynamic and reconfigurable spatial light modulator that

allows fast lateral translation and axial positioning of the laser beam with respect

to the cell membrane. Wavefront modulation enabled fast beam steering to provide

“point and shoot” and precise axial control which is crucial to the efficiency of

optoinjection and cell transfection.

Computer control of the femtosecond holographic system provided flexible and

accurate sequential dosage enabling different poration modalities. Targeting modal-

ities such as “single”, “triple axial” and “triple lateral” dosage were tested at laser

parameters P= 70 mW and T= 40 ms inorder to determine the percentage of optoin-

jected and viable cells. Significant improvement was achieved with triple axial dose

over a single dose on the optoinjection of PI into CHO-K1 cells, showing an increase

of the percentage of optoinjected from 45% to 72%. Hence, precise targeting of the

membrane is crucial for optoinjection of molecules. For fs optical transfection, at

laser parameters P= 60 mW and T= 40 ms, increasing number of membrane pores

increased the average optical transfection efficiency compared to a single dose. Fur-

thermore, a significant improvement was achieved over single dose when 16 shots

of 4 by 4 pattern of dosage was created on the membrane using laser parameters,

P= 30 mW and T= 40 ms. With this poration modality the average efficiency

almost doubled from 34% to 60% compared to single dose.

In comparison to optoinjection, wherein a visible gas bubble is a precursor to

successful optoinjection, at the combination of parameters for successful optical

transfection experiments, visible gas bubbles were not observed in all modes of po-

ration. In fact, a combination of laser parameters in the absence of visible gas

bubbles was found to be effective for optical transfection, previously mentioned as

well by other independent studies [158, 159]. In contrast to optoinjection wherein a

considerable size (greater than 500 nm) of a pore maybe required for a significant

amount of fluorophore to diffuse in the cytoplasm, optical transfection may require

less mechanical disruption and small-size and short-lived changes on the membrane

not resolved by our current microscopy system is sufficient for DNA to enter the

cytoplasm. As discussed in Chapter 3, precise dissections performed using NIR fs

lasers are due to photochemical reaction arising from low-density plasma during

laser interaction with the subcellular organelle. In the same way, changes in mem-

brane permeability during optical transfection maybe governed by ROS species that

interacts with the membrane which are present during fs irradiation. In contrast

to optoinjection, wherein its success can be purely attributed to the diffusion of

the fluorophore in the cytoplasm, the transport of the DNA during optical trans-
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fection maybe different. The entry of the DNA into the cytoplasm maybe due as

well to a binding mechanism wherein the subtle changes during irradiation of the

cell membrane enables the plasmid DNA to bind to the outer leaflet of the plasma

membrane similar to electroporation as discussed in Chapter 2. Future work should

include mechanistic studies of the transport of DNA in the cytoplasm during laser

irradiation which to my knowledge has not yet been fully investigated. I recommend

on using single-molecule fluorescence microscopy by tagging DNA fragments with

nucleic acid stains such as TOTO or YOYO (Invitrogen) in combination with mem-

brane stains for future studies to allow imaging and understanding of the delivery

of DNA plasmids into cells by optical transfection. Further understanding of the

mechanism of optical transfection will enable improvement on the efficiency of the

system especially for high-throughput applications.

The presented optical system provides an avenue for automated, high-throughput

targeting of adherent cells. This chapter showed that a raster scan mode of po-

ration could provide an average transfection efficiency of around 24 %. As a next

step, an appropriate image algorithm could be utilised in order to identify the cells

in a field of view and perform automated targeting to individual cells. Automa-

tion in microscopy has been applied particularly for high-throughput automated

genome and chemical analysis [160], fluorescence based viability asssays [161] and

high-throughtput iRNA screening [162]. In this chapter, selective two-step optical

transfection was also demonstrated by creating a mixed population of fluorescing and

non-fluorescing cells. In this experiment, I showed that cells which were tagged with

GFP can be specifically targeted and transfected with a different plasmid yielding a

population of cells expressing both GFP and Mito-DsRed protein. In combination

with image segmentation and epi-fluorescent imaging, the system opens the way to

automated multi-step gene therapy based on earlier delivery and expression of one

of the genes.

To improve the range of beam steering of the system, a piezo-driven scanning

mirror was inserted in the system. This provided a full field of view “point and

shoot” capability allowing more cells to be targeted, increasing the applicability of

the system to target complex biological samples. CHO-K1 cells were optoinjected

or optically transfected in a pattern. In this chapter, the capability of the sys-

tem to optoinject large number of cells in a user-desired pattern was demonstrated

with a monolayer of CHO-K1 cells optoinjected with PI in a checkerboard manner.

Furthermore, the system could also be remotely accessed over the wireless internet

which opens the possibility for remote “point and shoot” of cells for optoinjection

and optical transfection.

One aspect of the system that is not fully described here is the potential to use the
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same fs laser holographic system to perform nonlinear imaging and specific targeting

of cells in a tissue for delivery of genes in vivo. Previously, a multiphoton imaging

system has been employed for image sectioning of a thick samples as well as precise

deep tissue ablation [163]. In the same manner, the fs holographic system could

be used for multiphoton imaging, identification of cells to be transfected, optical

transfection of specific cells and tracking of the fate of transfected cell. The fs

holographic system is a versatile, user-friendly system for optoinjection and optical

transfection with the potential for commercialisation. At present, the device is still

bulky, occupying large optical table space which may limit its portability. A similar

design using the violet diode laser presented in Chapter 4 maybe the future prospect

in order to build a small box design with the same functionalities.

In the following chapter, the NIR fs holographic system described here will be

utilised to perform optical injection and manipulation of developing P. lamarckii

embryos. Employment of NIR fs holographic system for optical manipulation of

embryos provides an advancement in the embryology field as they could be an al-

ternative to conventional microinjection technique.

Part of this work was published in Journal of Biophotonics, 3, 2010 [14].
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6
Integrated optical approach for the

manipulation of developing embryos

In this chapter, a complete optical approach for the manipulation of a developing

embryo will be presented. Optical manipulation in this context, is broadly defined as

a means to orient, trapped a biological sample using a laser. Similarly, this chapter

demonstrates successful intracellular delivery of a range of impermeable molecules

into individual blastomeres of the annelid Pomatoceros lamarckii embryo by optoin-

jection, even when the embryo is still enclosed in a chorion using the fs holographic

system. By switching to the continuous wave mode of the Ti:sapphire laser, the same

system can be employed to optically trap and orient a single embryo whilst main-

taining its viability. Hence, a full all-optical manipulation platform is demonstrated

paving the way towards single-cell genetic modification and cell lineage mapping in

emerging developmental biology model species.

6.1 Introduction

Optical manipulation allows contact-free handling of microscopic biological sam-

ples [164]. Using light, a microscopic species can be probed, trapped, sorted and

optoinjected in order to understand its physiological properties and its response to

mechanical, chemical or environmental stimuli. Importantly, optical manipulation
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of biological samples is fully sterile, compatible with microscopic imaging and can be

easily automated for high throughput image-based processing. Often it also causes

less stress and collateral damage when compared to traditional mechanical tech-

niques, which provides much better long-term viability of manipulated samples. A

focused laser beam can exert sufficient force to tweeze and orient a cell or subcellular

organelle [165]. Optical manipulation of biological samples such as cells, bacteria

and DNA molecules have been extensively employed as a tool for holding, stretch-

ing and characterising samples [165]. At the same time a pulsed focused laser beam

of sufficient intensity can porate the membrane of a single cell leading to optical

injection of molecules and genetic material [16, 18].

An important advantage of optical tools for manipulation is their easy reconfig-

urability, which provides much needed versatility in a multi-modal operation on a

variety of samples. For example, a multiphoton system can be utilised for both

subsequent imaging and laser ablation [166]. Similarly, a single fs laser system can

be toggled between continuous wave (CW) and fs operation for optical trapping

of cells and intracellular delivery of macromolecules [21]. Since optical manipula-

tion systems are often built around microscopes, subsequent long-term imaging is

possible without disturbing the sample on the stage, maintaining the physiological

environment of the sample.

This work demonstrates optical manipulation of a complex biological sample, such

as a developing embryo. Although optical trapping of single cells has been employed

in many applications, such as Raman spectroscopy [167], optical stretching [168] and

microrheology measurements [169], there were very few studies on optically orient-

ing and trapping embryos, which are tens of microns in size. Optical trapping of

single cells has been employed in model systems such as CHO cells [170, 171], fibrob-

lasts [172] and E.coli bacteria [173] with a maximum optically trapped size of 20 µm.

Optical trapping of larger specimens has often been demonstrated using optoelec-

tronic tweezerss (OET) for the orienting and trapping of motile specimens such as

Tetrahymena pyriformis [174]. OET of mouse embryos has also been demonstrated

for the purposes of embryo sorting prior to implantation [175]. Recently, optical

trapping of a variety of swimming motile specimens was reported using a dual beam

mirror trap [164]. These results show that a non-contact automated optical method

to move, orient and hold developing embryos would provide an alternative over the

commonly used intrusive glass capillaries, which cause unnecessary stress in the

sample and require manual dexterity.

At the same time, there is significant interest in finding alternatives to microinjec-

tion based delivery of DNA, mRNA or siRNA into single cells of developing embryos

for the purposes of their cell selective genetic modification. In recent years, optoin-
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jection by NIR fs laser pulses has been found to be an effective tool in delivering

different types of biomolecules into single cells with high post-treatment viability.

Focused NIR fs lasers create a transient pore due to membrane interaction with a low

density plasma created by multiphoton ionisation [97]. The focused NIR fs pulses

interaction with tissue or cells relies on nonlinear absorption; hence, the affected

area is limited to the focal volume of the laser beam enabling a highly targeted and

precise ablation in vivo with limited collateral damage in the surrounding cells. To

date, utilising NIR fs pulses for optoinjection of an embryo has only been reported

on large (1 mm) zebrafish [120] and (1.5 mm) Xenopus laevis [176] . However, the

absorption, structure and size properties may be completely different with embryos

of different species.

In this study, two modes of Ti:sapphire laser operation were used in a combined

system for optical manipulation and injection of small developing embryos. By tog-

gling between CW and pulsed mode-locked operation, I demonstrate independently

optical trapping of the 60 µm sized embryos of Pomatoceros lamarckii and optical

injection of macromolecules into its individual blastomeres. In this work, I show

how the holographic system based on a spatial light modulator (SLM) presented in

Chapter 5 can be used as a highly flexible tool for stable trapping of an embryo and

enhanced targeting of its individual blastomeres. By changing the light wavefront

modulation encoded on the SLM, three dimensional beam steering and multiplex-

ing can be achieved. Using this system, individual embryos can be positioned and

oriented in three dimensions using a low NA objective, allowing optical orientation

and manipulation within a large field of view. At the same time, as demonstrated

in Chapter 5, an SLM can be used to enhance viable optoinjection of single cells

by more precise multiple targeting of their membranes. The versatility and ease-

of-use offered by this combined system opens new avenues in flexible and dynamic

manipulation of developing embryos.

The samples were obtained from Dr. David EK Ferrier (Scottish Ocean Institute,

University of St. Andrews). Dr. Hana Cizmarova contributed towards sample

preparation. The optical trapping work was performed in collaboration with Dr.

Maciej Antkowiak. The author performed all the experiments presented in this

chapter.

6.2 Pomatoceros lamarckii

The specific interest in this chapter is to perform orientation and trapping of develop-

ing 60 µm sized embryos of Pomatoceros lamarckii as well as as well as optoinjection

of fluorescent dyes of varying sizes into its individual blastomeres. P. lamarckii is a
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marine organism, abundant in intertidal and shallow sub-littoral zones. They form

calcareous habitation tubes attached to stones, shellfish and ship hulls. P. lamarckii

is found to be a significant biofouling agent and causes considerable economic loss

particularly for mussel farming [177]. P.lamarckii has also been considered a de-

pendable resource of mitotic cells and can spawn naturally almost all year long with

a temporary stoppage for 1-2 months [178]. They have been studied for ecotoxi-

cology research, assaying larval survival and anaphase aberration for detection of

mutagens in the marine environment [178].

In the literature, P. lamarckii has been reported to be found in various coastal

areas in the UK and Ireland such as Tinside, Plymouth [179, 180, 181, 178], Bantry

Bay, Ireland [177], the south coast of Cornwall [178] and France [182]. Initially,

there were thought to be the same species as Pomatoceros triqueter [183] but mor-

phological differences in their operculum structure confirmed that they are separate

species [182]. In P. triqueter, the operculum is mounted obliquely on the pedun-

cle and characteristically convex, cone-shaped. On the other hand, P. lamarckii is

mounted centrally on its stalk and concave in shape [181]. Currently, the two species

of Pomatoceros can be distinguished by their depth preference and habitation tubes.

P. triqueter exists subtidally up to depths of 70 m and has a habitation tube with a

single central keel visible with a semicircular opening [184]. While P. lamarckii has

three keels and has sharper, almost triangular, opening.

P. lamarckii is a member of the Lophotrochozoa clade of bilaterian animals, which

are relatively poorly represented in terms of our understanding of animal devel-

opment [180, 179]. These polychaete annelids have relatively conserved gene se-

quences and complements, as well as gene and genome organisation [179, 185, 186].

Due to their conservative evolution and retention of many ancestral characteris-

tics, P. lamarckii is considered to be a promising model for understanding animal

evolution [187, 188]. However, at present there is no technology that has been

demonstrated to allow successful and viable manipulation of the embryo of this

species. Hence, developing optical methods to manipulate the embryos of this species

would significantly improve our capabilities in understanding the development of

P. lamarckii and open the way to manipulate other small embryos.

6.3 Optical trapping

In order to implement the confinement and three dimensional positioning of an

embryo, one needs to understand how light acts on a particle in an optical trap.

Optical trapping was pioneered by Arthur Ashkin and presented in his seminal

paper published in 1970 which states...”if a beam with milliwatts of power hits a
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2.68 µm sphere off center, the sphere is simultaneously drawn into the beam axis

and accelerated in the direction of the light” [189]. Since then, optical trapping has

become a powerful tool to manipulate and control particles of a variety of sizes.

This technique is based on the concept that light itself carries momentum given by

the relationship,

p =
E

c
=
hν

c
=
h

λ
(6.1)

where E = hν provides the energy of the photon and λ is the wavelength of the

light. The interaction of light with an object causes a change in the direction of light,

either by being reflected or refracted. This induces a transfer of its momentum

which consequently results to an applied force on the object due to Newton 2nd

law, F=∂p
∂t

. Light exerts a force in the range of pico to femto Newton that may

feel insignificant for macroscopic objects but has the capability to propel, guide and

tweeze microscopic objects.

An optical trap may be visualised as a potential well wherein the trapped object

oscillates in the vicinity of the lowest energy potential. It is also equivalent to a

mass-spring system where the force on the particle is given by F= kx, the stiffness

or the quality of the trap is characterised by k given a displacement, x from the

equilibrium position. Due to the transfer of momentum of light to the particle, the

particle will experience a force which attracts it to the highest intensity of light.

The force exerted by light is conventionally decomposed into two components, a

scattering force which acts to push the particle along the direction of the light while

the gradient force which acts to pull it at the position of highest intensity. In order to

obtain a stable optical trap in three dimensions, the axial gradient component must

exceed the scattering component in order to counteract the push on the particle

away from the highest intensity region. The condition necessitates the use of high

NA objectives (NA>1) to achieve a very steep gradient in intensity. There is a small

offset due to the balance of the scattering and gradient force, hence the equilibrium

position of the trap is located a few microns downstream the focus.

The size of the optically trapped object with respect to the wavelength of light

dictates which mathematical treatment one use to understand an experimental sce-

nario. Firstly, if a particle has a radius (r) smaller than the wavelength of light

(r << λ), then the particle can be considered as an electromagnetic dipole in the

Rayleigh regime. On the other hand, when the particle’s radius exceeds the wave-

length of light (r >> λ), geometric optics can be used to analyse the optical forces

from refraction and reflection. For completeness of discussion, I will detail optical

trapping for both size regimes. However, as the size of material employed in this

work is tens of microns in size, the geometric optics trapping will be sufficient to
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explain the forces on the object for this chapter.

6.3.1 Geometric optics

In this regime, where in the particle size is much larger than the wavelength such

as r>10 λ, geometric ray optics is suffice to explain the interaction of light with the

particle. In geometric optics, the optical forces are independent to the particle size

[190]. In the following scenario, let us consider a particle with an index of refraction

greater than the surrounding medium. The particle will cause the refraction of an

impinging light ray. Based on Newton’s 3rd law, this will cause the particle to be

pushed in the direction opposite to the refracted ray direction. Let us consider a

laser focused by a lens with a Gaussian profile as shown in Fig. 6.1. An axial gradient

force acts to confine the particle along the axial direction shown in Fig. 6.1(A). The

scattering force (Fscat) is directed along the direction of the light. However, due to

the refraction of light pointing in the direction of Fscat, the gradient force (Fgrad)

component opposite the direction of light propagation will pull the particle towards

the region of highest intensity. When the ratio of Fgrad and Fscat is greater or equal

to 1, a three dimensional optical trap can be obtained.

A particle acted upon by intense ray and a dim ray is shown in Fig. 6.1(B). In this

case, the action and reaction force pair due to refraction of light and the net force

on the particle can be understood more clearly. The intense ray signifying a higher

intensity compared to dim ray is refracted by the particle towards the left. However,

the light will push the particle with equal and opposite force towards the right.

Considering the rays acting on the particle are symmetrical but having a Gaussian

in intensity profile, the particle will always be pushed towards the center, where the

highest intensity occurs. Although simplistic in nature, the geometric optics is a

good basic foundation in understanding the forces and the concept of confinement

of a particle in an optical trap. A more thorough and detailed calculation of the

forces on a dielectric particle using geometric ray optics is presented by Ashkin [191].

However, the geometric optics treatment is only limited to relatively large particles.

But in scenarios where very small particles are optically trapped wherein light is

scattered elastically and the index of refraction of the particle with respect to its

environment is considered, the Rayleigh regime provides a more accurate assessment

on the forces on the particle.

6.3.2 Rayleigh optical trapping

In this regime, the incident electromagnetic field is constant over the entire particle

and the scattering force is due to absorption and re-irradiation of light by the par-
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Figure 6.1: A schematic diagram of optical trapping force using geometric optics. (A)

shows rays a and b being refracted as it impinges on a particle. The scattering force is

directed downwards but the net gradient force propels the particle towards the focus of

the beam. (B) shows an intense ray on a particle thereby changing its direction. By action

and reaction, light will push the particle in the opposite direction, pushing the particle

towards the highest intensity region of the beam.

ticle. The total force can be decomposed into its components, the Fgrad and Fscat
[190] as shown below

Fscat =
Ioσnm
c

(6.2)

wherein

σ =
128π5r6

3λ4

(
m2 − 1

m2 + 2

)2

(6.3)

where Io is the intensity of the incident light, σ is the scattering cross-section of

the sphere, nm is the index of refraction of the medium, m is the ratio of the index

of refraction of the particle (np) and the medium. Meanwhile, the time-averaged

Fgrad can be obtained using the following equation [190]

Fgrad =
2παp
cn2

m

∇Io (6.4)

wherein
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α = n2
mr

3

(
m2 − 1

m2 + 2

)2

(6.5)

where αp is the polarisability of the sphere.

From Eq. 6.2 and 6.4, simply increasing the intensity of the incident light will not

create a three-dimensional optical trap. Clearly, a strong factor is the scattering

cross section and the polarisability of the particle which depends mainly on the

ratio of the index of refraction of the particle with respect to its environment. This

imposes a limitation on the particles that can be optically trapped to only high index

of refraction materials (np ≈ 1.5) such as polymer or silica. The optical wavefront of

a laser beam have to be modified to a Laguerre-Gaussian [192, 68] or vortices [193]

in order to trap low index materials.

The theoretical treatment of the forces acting on a particle in an optical trap is

progressing towards a more generalised and complete theory ranging over varying

sizes of particles. Notably, the majority of sizes of particles optically trapped falls

between the sizes of 0.2-5 µm wherein the geometric optics and the Rayleigh regime

fails. Rayleigh regime provides a more accurate force calculation compared to geo-

metric optics and is often extended to increase its applicability to larger particles.

Chaumet and Nieto-Vesperinas derived an expression for the total time averaged

force on a sphere in Rayleigh regime but may also be applied to larger particles us-

ing coupled dipole method [194]. A more complete overview of current approaches

for calculating trapping forces are presented elsewhere [190].

6.3.3 Optical trapping configurations

Based on the concept that light can induce a momentum change and thereby can

exert a force on a particle led to the development of the field of optical trapping.

The most common configuration is a single-gradient laser trap shown in Fig. 6.2(A),

more commonly known as an optical tweezers. It has a similar configuration with

most optical transfection systems shown in this thesis, wherein a single laser beam

is focused very tightly using a high NA objective. This technique has been em-

ployed for handling and orienting a variety of particles such as microparticles [189],

nanoparticles [195], living cells [167] and small-sized ultra-cold atoms [196].

In some applications, a single-beam gradient laser trap can be used to levitate ob-

jects [197]. In this case, a single beam is weakly focused providing a more dominant

Fscat component, pushing the particle along the direction of beam’s propagation axis

(Fig. 6.2(B)). Low index refraction particles are often propelled in this type of trap-

ping configuration such as hollow glass spheres which sometimes necessitates the

use of donut mode beams [198]. For trapping of microparticles in air, at some point
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Figure 6.2: A schematic illustration of different trapping configurations. (A) shows a

single beam-gradient trap more commonly known as optical tweezers in which a particle

is trapped at the region of highest intensity of a tightly focused laser beam. (B) shows a

diagram of levitation trap wherein a particle is pushed along the direction of the laser beam

and is stably confined at the position wherein gravity (Fg) is equal with the scattering

force (Fscat) for trapping in air. In water, the additional buoyant force (Fb) contributes

to the upward scattering force. (C) shows a dual-beam trap in which two beams in a

counter-propagating manner are used to confine the particle.

along its propagation axis, the Fscat component will cancel with gravity, Fg= mg.

In water, the buoyant force (Fb) will contribute to the upward Fscat. In both cases,

a stable region along the propagation axis can be found at which the object can be

confined and move accordingly.

In a more sophisticated manner, an object can be trapped using two beams in

a counter-propagating manner as shown in Fig. 6.2(C). In this configuration, the

confinement is due to the balance of scattering force components from both beams.

The particle is confined at the position where the Fscat component from each beam

cancels. The confinement transverse to the propagation is provided by the Fgrad due

to the Gaussian profile of the beam. Dual beam traps are often employed using two

independent optical fibres. This technique has been used for stretching cells [168],

as well as, combined confinement and Raman spectroscopy of single cells [199].
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6.4 Materials and Methods

6.4.1 Experimental Setup

The experimental setup was fully discussed in Chapter 5 and shown in Fig. 5.2.

For optoinjection experiments, the laser, a diode pumped (Coherent, Verdi V-5)

Ti:sapphire fs laser (Coherent, MIRA900) operating at 180 fs, 80 MHz with its

wavelength centered at 800 nm was operated in mode-locked configuration. For

optical trapping experiments, the Ti:sapphire laser was switched to CW mode oper-

ation with an output wavelength at 800 nm. The beam was directed through a 0.5

NA, ×20 air objective (Nikon). The shutter was open throughout the experiment.

The three dimensional position of the focal spot within the sample was controlled

by a combination of a blazed grating and a Fresnel lens displayed on the SLM, as

described before in Chapter 5. At the same time, the beam could be multiplexed

by displaying a complex superposition of multiple modulations.

The system was fully equipped with differential interference contrast (DIC) and

epi-fluorescence imaging based on an EMCCD camera (Andor iXon+) used to moni-

tor dye optoinjection and perform long-term imaging. All components of the system,

such as the SLM, shutter and EMCCD camera, were controlled by a user-friendly

software (Labview 8.5) for sequential doses performed in the optoinjection experi-

ments as well as for optical trapping experiments. The multi-modal platform was

developed with a ”point and shoot” functionality for optoinjection or in the case of

optical trapping ”point and trap” for ease of use. It was also capable of automated

pre-defined displacement of the focal spot allowing a sequenced computer controlled

dosage of laser in multiple spatial locations on the blastomere surface, providing

enhanced optoinjection efficiency as shown in Chapter 5.

6.4.2 Animal collection

This study was conducted during the period of May–December 2010. Adult worms

were collected at East Sands, St. Andrews and maintained in natural sea water at

ambient temperature (approximately 15 oC during summer). Habitation tubes were

attached to rocks and collected during low-tide periods. Although the rocks collected

were abundantly populated by P. lamarckii tubes, there were a few instances were

we found rocks with co-habiting species of Pomatoceros. Hence, prior to detubing,

the tubes were distinguished from each other.

Adult worms (Fig. 6.3(A)) were removed from their calcified tubes by breaking

open the posterior portion of the tubes and forcing the animals backward. Fol-

lowing de-tubing, fertile animals release their gametes. Fertile male worms have
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cream-colored abdomen and emit a white or cream sperm material during detub-

ing. Meanwhile, fertile female P. lamarckii have pink or orange abdomen and are

larger in size than male worms. During the summer (May–July), large number of

fertile animals were obtained; fewer specimens were collected during autumn to win-

ter months (October–December). During the unreproductive stage of these worms,

female worms tend to generate immature eggs, which are smaller (≈ 24 µm) than

mature eggs (≈ 55–60 µm) (see Fig. 6.3(B)). Male worms tend to dominate the pop-

ulation. Male and female worms were transferred into separate petri dishes. In some

cases, worms with no apparent gametes were obtained. These visual observations

were in agreement with the study performed by Cotter and co-workers [200].

Figure 6.3: (A) Adult detubed Pomatoceros lamarckii. (B) Eggs obtained from a fertile

P.lamarckii female worm.

Eggs were rinsed through a 100 µm sieve and then collected into a 40 µm sieve.

1.4 mL of water containing sperm were then added and left for 15 min to allow

fertilization to occur. The embryos were washed and then transferred to a dish of

fresh sea water. The embryos were kept in a Styrofoam box with an ice pack at one

end to maintain the temperature between 14 and 18 oC.

6.4.3 Sample preparation

P. lamarckii embryos immersed in seawater were placed into 10 mm glass bottom

petri dishes (World Precision Instruments). For optical trapping experiments, the

glass-bottom petri dish was treated with 20 mg/mL poly-2-hydroxyethylmethacrylate

(Sigma-Aldrich) in 95% ethanol and the solvent was allowed to evaporate, to prevent

the embryos from adhering to the bottom of the dish. Optoinjection experiments
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were performed with Texas red and Fluorescein fluorescently labeled dextrans of

molecular weight 3 kDa, 10 kDa, 70 kDa and 500 kDa (Invitrogen) and propidium

iodide (PI, Invitrogen) diluted in filtered seawater to a final concentration of 10 µM.

6.5 Experimental Results

6.5.1 Proper development of embryo is temperature dependent

Prior to optoinjection experiments, the conditions at which embryos will result into

a proper developed embryos develop normally in the absence of laser treatment were

first optimised. This requires counting the number of properly developed larvae in

the population. A critical factor in the development of the embryos is the environ-

mental temperature. In this subsection, the development of the P. lamarckii embryo

was described and the optimal environment temperature which leads to normal body

plan.

Two to three hours after fertilization, P. lamarckii embryos undergo equal spiral

cleavage and subsequent divisions occur at 30 min to 1.5 h intervals at normal room

temperatures of 20oC. Incubating the embryos at cooler temperature (14oC) slows

down their development by up to 1 h. Six to seven hours after fertilization, embryos

form a slit like opening called blastopore, after which the embryo/larva will start to

rotate about the dish. Within 24 h after fertilization, the embryo will develop into

a swimming diamond shaped larva called trochophore (see Fig. 6.4 (A)).

Three thousand embryos were monitored during the peak fertile season (June–

August) to determine the percentage of population that developed into properly

developed larva. The development of the embryo is severely affected by the room

temperature, hence the number of properly developed embryos was determined for

two conditions. An average of 100 embryos were placed in a dish and left inside

a styrofoam box with an ice pack on one end which maintained the temperature

around 14–18 oC. Another 100 embryos were placed in a dish and left at room

temperature which during summer can reach up to 25oC.

Representative images of normal juvenile trochophore larvae, 24 h post fertiliza-

tion are shown in Fig. 6.4 (A). A properly developed trochophore can be charac-

terised by a diamond-shaped normal body plan, with visible prototrochal cilia. The

trochophore larva swims actively around the dish. Meanwhile, an abnormally de-

veloped larva is indicated in Fig. 6.4(A). Abnormal trochophore often swim in its

place or does not move about around the dish. Embryos with an arrested growth

are also counted as abnormally developed.

Fig. 6.4(B) shows the percentage of properly developed larvae for the two tem-
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Figure 6.4: Images of (A) juvenile trochophore larvae after 24 h indicating abnormal

larva. (B) Plot shows temperature dependence of properly formed juvenile trochophore

larvae. Each data is n= 11 samples each containing 100 embryos. Error bar represents ±
standard deviation.

perature conditions. With room temperatures reaching up to 25o C, the percentage

of properly developed larvae were only 20 ± 10%. With temperatures maintained

between 14 and 18 oC, the percentage of properly developed larvae, increased four-

fold to 85 ± 13%. Each data point is comprised of n= 11 samples containing an

average of 100 embryos. Within 48 h, a complete trochophore larva develops with

an apical tuft (At) situated at the apex, a visible rounded stomach (S), intestine

(In) and protoctrochal cilia (pt). The mouth is found posterior to the pt while the

anus is located posteriorly at the dorsal side (see Fig. 6.5) [180].

6.5.2 Intracellular delivery of macromolecules into living embryos

Single cell genetic modification via delivery of genes in a living embryo is an es-

sential aspect in pushing the boundaries of developmental biology. Microinjection

using a fine capillary needle is often utilised to deliver exogenous materials such

as fluorescent dyes, DNA, RNA or morpholinos. However, this technique becomes

very challenging when the size of cells to be injected is less than that of conven-

tional model systems in embryology such as Xenopus laevis (1.5 mm), Drosophila

melanogaster (200 µm by 500 µm) or Danio rerio (1 mm), for which systematic

methods of manipulation and molecular biology are already well established. To

date, microinjecting small embryos is still difficult to perform as the embryos are
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Figure 6.5: Pomatoceros lamarckii trochophore larva 48 h after fertilization. At-apical

tuft, S-stomach, In- intestine, Pt-Prototrochal cilia.

prone to fluid loss or even bursting with small changes in tonicity, leading to com-

promised embryo viability. An even more challenging prospect is injecting material

into micron sized blastomeres within well developed embryos. Accurate injection

of exogenous material into an embryo requires experience in order to achieve high

success rates.

Recent technological advances in microinjection including automated [40] and

robotic systems [41] or microelectromechanical based devices [42] have been imple-

mented for high throughput microinjection. However, the technique itself is still

invasive leading to poor repeatability and low embryo survival. Methods such as

chemical digestion of the outer layers or electroporation to permeabilise eggs and

embryos have also been demonstrated [201, 202]. However, inherent toxicity with

using chemicals on eggs and embryos is still an issue. Furthermore, both of these

techniques are non-specific and lack cell-targeting capabilities. Hence, further devel-

opment of procedures for the targeted injection of material into embryos is essential

to enhance understanding in this field.

Ultrastructural studies on eggs of the sister species Pomatoceros triqueter, showed

that the plasma membrane is first enclosed in a perivitelline space (500 nm) which

is surrounded with a thick chorion (0.5–1.0 µm). External to this is an intermediate

layer (70–100 nm) and an outer border layer (70–90 nm) [203]. In the present study,

the mechanics of intake of fluorescein conjugated dextrans was investigated in early

stage embryos by confocal imaging showing negative contrast images of the embryos.
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Figure 6.6: Fluorescence image of an embryo bathed in 500 kDa fluorescently labelled

dextrans showing the chorion. The 500 kDa dextran can penetrate through the chorion

layer but not the plasma membrane.

Staining of the plasma membrane with a lipophilic dye FM4-64 (Invitrogen) of

soaked embryos in fluorescein fluorescently labeled dextrans showed that dextran

size of 500 kDa can penetrate through the outer layers but not through the plasma

membrane of individual blastomeres of the embryo as shown in Fig. 6.6. Embryos

were optoinjected at 2-cell (Fig. 6.7 (A)) and 4-cell (Fig. 6.7(B)) stages of devel-

opment with 3 and 70 kDa fluorescein labeled dextrans. Fig. 6.7(C) and 6.7(D)

show that dextrans can be optoinjected into the blastomeres without removal of the

chorion. Fluorescently labeled dextran of sizes 3, 10, 70 and 500 kDa were found

to be successfully optoinjected into individual blastomeres of living embryos. Inde-

pendent studies showed that dextrans larger than 500 kDa have a very low diffusion

ratio in the cytoplasm [83, 84]. This implies that dextrans larger than 500 kDa are

almost immobile and may not be able to diffuse passively in the cytoplasm of the

embryo. Since 70 and 500 kDa correspond to DNA sizes of 106 and 760 bp respec-

tively, they are representative of oligonucleotide sizes that are desirable to optoinject

into these embryos. As a conclusion, individual blastomeres can be targeted without

the need to chemically or mechanically remove the outer membrane of the embryo,

leaving it intact during manipulation, which is crucial for proper development.

In the early stages of the embryo (2-cell and 4-cell stages) after optoinjection with

the pulsed fs Ti:sapphire laser, the fluorescently-labelled dextrans can be seen to

perfuse and spread within the individual blastomere within several minutes of the
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Figure 6.7: Images of (A) 2-cell and (B) 4-cell stage P. lamarckii embryos. Images in

(C) show optoinjection of fluorescein labeled dextrans of size 3 kDa to 2-cell and in (D)

70 kDa to 4-cell stage embryo. Scale bar corresponds to 10 µm [204].

poration event. Similar to previous investigations on cellular poration, the presence

of a gas bubble is a good indication of membrane disruption, leading to rapid dif-

fusion of the dye into the targeted blastomere [27, 14]. However, without the gas

bubble, the dye infusion was localised and did not spread throughout the cell. Impor-

tantly, cells adjacent to the optoinjected blastomere did not acquire any fluorescence

signal, even 30 min after optoinjection, which implied delivery was contained and

the dextrans did not pass through any gap junctions at this stage of development.

6.5.3 Laser parameters for gas bubble poration

Pulsed fs laser poration effects via laser-material interaction are due to the expansion

and collapse of short-lived cavitation bubbles produced within a couple of microsec-

onds of irradiation [107]. At sufficiently high laser intensity, long lasting residual gas

bubbles lasting from milliseconds to seconds are visible using brightfield imaging.

Based on our observations and corroborated by previous independent reports [27, 14]

the presence of a gas bubble is a good indication of successful optoinjection; there-

fore, the laser parameters using NIR pulsed fs mode of Ti:sapphire laser required to

produce a gas bubble were determined as a function of embryo depth. At 5 µm from

the surface of the embryo, only ≈ 0.8 nJ was required to obtain a gas bubble using
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Figure 6.8: (A) Pulse energy required to generate a gas bubble as a function of depth

of embryo. (B) An image of a well-developed embryo with 2 optoinjected cells. Pt are

prototrochal cilia. Scale bar corresponds to 10 µm [204].

30 ms laser exposure. Thereafter, the required pulse energy increases as a function

of depth within the embryo, as shown in Fig. 6.8(A). Probing deeper in the embryo

necessitated an increase in the required pulse energy to create gas bubbles. This

observation may be due to the combined effects of light scattering within the opti-

cally dense sample and increased spherical aberration of the beam with increasing

embryo depth [205]. As shown in Fig. 6.8(A), at a depth of 40 µm into the embryo,

the pulse energy required is 2.3 times more compared to 5 µm from the embryo

surface.

To assess the success of optoinjection, P. lamarckii embryos of mixed cleavage

stages were bathed in a solution of PI mixed in seawater to a final concentration of

10 µM. PI was chosen as it allowed the visualisation of fluorescence from blastomeres

without the need to wash the embryos. Using this method, the fs pulse was focused

tightly within the embryo, avoiding collateral damage to the surrounding cells. For

example, a larva at the gastrula/early trochophore stage (manifested by the pres-

ence of visible prototrochal (pt) cilia) was optoinjected and is shown in Fig. 6.8(B).

Two cells at a depth of 30 µm were selectively targeted and optoinjected with PI.

Notably, cells above the targeted cells were not damaged and did not take up any

dye during the process. This 3-D localised optoinjection capability, using fs pulses,

could be utilised to follow internal cell lineages in later stage embryos and larvae.

This specific delivery of material to internal cells is a unique feature of this optoin-

jection technique, as delivery by traditional microinjection would lead to piercing

and damaging of cells in the capillary needle injection path.
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Table 6.1: Optoinjection efficiency at varying embryo stage using the NIR fs pulsed

Ti:sapphire laser with parameters P= 65 mW and T= 30 ms [204].

Embryo stage 1-cell 1-2 cells 2-16 cells Late stage

Number of optoinjected

(total number irradiated) 10(23) 19(42) 23(43) 26(47)

Percent optoinjected 43.5% 45.2% 53.5% 55.3%

Each blastomere was targeted at three different locations on its surface, forming

an equilateral triangle of targeted dosage points (1 µm apart) by dynamically re-

configuring the phase pattern on the SLM. Individual gas bubbles were present at

each of the delivered shot sites on the blastomere surface. Successful optoinjection

was visualized 5 min after irradiation by detecting increased in fluorescence due to

the intake of PI and subsequent intercalation of PI with DNA or mRNA. The op-

toinjection efficiency ranged from nearly 44% for single cell zygotes to 55% for late

stage (greater than 16 cells) embryos using P= 65 mW and T= 30 ms. For early

stage blastomeres, where the surface area is large compared to the later stages, the

creation of multiple small to medium sized bubbles on the plasma membrane was

required to induce successful optoinjection whilst maintaining the viability of the

embryos.

Although the presence of a gas bubble is a precursor to successful optoinjection,

their size and number correlates with embryo viability and the likelihood of normal

development. Large bubbles often led to the leakage of blastomere contents, leading

to compromised embryo development. Yolk granules and intracellular materials

were found to diffuse out of individual blastomeres with large and long lasting gas

bubbles.

Hence, the gas bubble size was investigated as a function of varying both P and T.

Each embryo was exposed to the laser only once to avoid any cumulative effect during

irradiation. The laser was focused on the layer where cortical granules are visible on a

single blastomere within the embryo. The size of gas bubbles was grouped according

to: small (<1 µm), medium (2–5 µm) and large (>5 µm). Visually, the gas bubble

size can also indicate successful and viable optoinjection of embryos. Both small

and medium size gas bubbles led to a high percentage of embryo viability but with

varying success of optoinjection. Small size gas bubbles led to only 10–20% successful

optoinjection while medium sized gas bubbles resulted in 40–50% successful intake

of extracellular material into the blastomeres. Importantly, although the intake is

100% successful with large gas bubbles, it is at the expense of a very low percentage of

embryo viability. The probability of obtaining a specific gas bubble size irrespective
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Figure 6.9: (A) The probability to form gas bubble on the surface of the blastomere as

a function of exposure time at different laser power, P= 52 mW, 65 mW and 78 mW. For

each P and T setting, n> 10 embryos were targeted. Image in (B) shows a medium size

bubble (≈ 4 µm) on a 2-cell stage embryo while (C) shows a large size bubble (≈ 6 µm) in

a 4-cell-stage embryo. Embryo in (C) immediately showed leakage of intracellular contents

after irradiation. Scale bar corresponds to 10 µm [204].
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Figure 6.10: Image in (A) and (B) show gas bubbles created on the blastomeres of

an embryo upon irradiation with fs laser (Media 1). Time lapse imaging of the same

embryo (Media 2) with still images in (C) showing the blastomeres irradiated have retained

morphological features without leakage and in (D) showing the blastomeres have carried on

dividing. (E) Fluorescence images of an embryo at different imaging planes optoinjected

with 3 kDa dextran at the early stage, which has carried on dividing and passed the dye

to its daughter cells [204].

of embryo stage is shown in Fig. 6.9(A). Fig. 6.9(B) and 6.9(C) are representative

images of medium sized and large sized gas bubble formed at the blastomere surface

respectively.

It was observed that gas bubbles vary in size as a function of laser power and

exposure time (Fig. 6.9). For P = 52 mW at T < 40 ms, the bubbles were predom-

inantly transient and very small (<1 µm in size). With increasing T, medium sized

bubbles with diameters of 2–5 µm were formed. Increasing P to 65 mW shifted the

onset of generating medium to large sized bubbles to a shorter exposure time, from

T= 40 ms to T= 20 ms. Medium to large gas bubbles which were more consistently

formed at P= 78 mW and with T greater than 10 ms, tended to be long lasting and

collapsed only after several seconds.

6.5.4 Viability of fs irradiated embryos

Of particular importance was the observation that individual blastomeres could

carry on dividing following the induction of a gas bubble (Media 1, Fig. 6.10(A,B)),
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Figure 6.11: Plot of percentage of properly developed larvae for irradiated embryos

(P= 60 mW, T= 40 ms) and non-irradiated embryos. Each data point consist of n= 3

samples, each with an average of 50 embryos. Error bar represents ± standard deviation.

as observed by time-lapse recording (Media 2, Fig. 6.10(C,D)). Time lapse imaging

was performed on irradiated embryos over an hour following optoinjection. Two

targeted blastomeres subsequently divided after irradiation with the fs laser. A per-

centage of the irradiated embryo carried on dividing and became a normal and viable

trochophore larva, 24-48 h post fertilization. 46±8% of the embryos irradiated at

1-4 cell stage developed into proper trochophore larvae compared to 90±3% of the

control (non-irradiated) embryos in the absence of dextrans or PI for n=3 experi-

ments with an average of 50 embryos (Fig. 6.11). Properly developed trochophore

larvae were determined by fixing the samples in 4% paraformaldehyde solution and

then checking each irradiated larva based on a normal body plan as described in

literature [180]. Furthermore, an individual blastomere optoinjected at 2-cell stage

with a 3 kDa dextran dye could survive the procedure and carried on dividing into

smaller cells which carried the optoinjected dye (see Fig. 6.10(E)). A mosaic pattern

of tagged cells was typically observed demonstrating that the optoinjected blas-

tomere remained viable and the injected dye had been passed on to daughter cells.

This shows that the proposed technique may be used for cell-lineage mapping both

at early and late stages of embryo development.
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6.6 Optical trapping and orientation of P. lamarckii

embryos

Holding and orientation of embryos are useful for the purposes of sorting prior fer-

tilization. Embryos are complex biological systems. As they developed, there are

interesting features which would be important to observe using high-resolution mi-

croscopy which often requires the sample to sit close to a high NA objective. In

practice, holding and orientation of embryos are performed using large microcap-

illary pippettes which disturb the environment of the sample. Hence, an optical

approach to orient an embryo would bring an advantage as this would permit simul-

taneous manipulation and observation in a close, aseptic system. Thus, the same

holographic system can be used to optically orient and move a developing embryo.

For this experiment the Ti:sapphire laser was switched to CW operation at 800 nm.

Previously, clonal growth studies of trapped CHO-K1 cells showed that optical trap-

ping with laser wavelength of 800 nm is significantly less toxic for mammalian cells

than the conventionally used trapping lasers with wavelength of 1064 nm [170].

Hence, optical orientation and trapping at this wavelength would be more suitable

to avoid loss of viability of the embryos. For the optical trapping experiments, the

objective was switched to ×20, 0.5 NA objective (Nikon). Using a low NA objective

offers flexible orientation with a wider field of view and longer working distance

compared to high NA objectives often used in optical tweezers. This wider range of

space is especially important in optical manipulation of large macroscopic samples.

The holographic system developed was used to dynamically translate the focal spot

and laterally position the individual embryos. The system permits fast and accurate

positioning and orienting of a single embryo in three dimensions.

With the weakly focused beam used for this experiment, the axial scattering force

would be expected to be dominant over the axial gradient force on the embryos.

The scattering force will push the embryo along its propagation axis. For the optical

trapping experiments, single-cell zygotes of P. lamarckii were utilised which is more

uniform in structure and shape compared to later developed embryos. Indeed, the

weakly focused single beam at a P= 130 mW could levitate the embryos above

the bottom of the dish. Furthermore, by slight adjustment of the focusing of the

beam performed by wavefront modulation using the SLM, a stable position of the

optically trapped embryo can be found, in which the summative scattering force and

the buoyant force can balance gravity at a given height (Fig. 6.12(A)). Changing the

degree of focusing of the beam, modulates the collimation of the beam incident to

the objective and the position of the focus, allowing the confinement of the embryo

in the axial direction. At the same time, the embryos were confined in the lateral
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Figure 6.12: Single beam optical trap of a P. lamarckii embryo. (A) Schematic layout

of the optical trap and arrows indicating direction of rotation. (B) Movie stills of optical

trapping of embryo using a single beam optical trap (Media 3). Scale bar corresponds to

20 µm [204].

plane resulting in a full three dimensional trapping. A gradual change of the phase

modulation on the SLM could translate the trap in three dimensions resulting in a

controlled movement of the embryo.

Interestingly, in this single beam configuration, the beam can also induced an

optical torque on the embryo causing it to rotate perpendicular to the propagation

axis of the beam (Fig. 6.12(B), Media 3). The rotation can be attributed to the

embryo’s inhomogeneity and the mismatch between the position of the beam focus

and the centre of mass of the embryo. Optical rotation of single cells has been also

demonstrated in a dual beam fibre trap [206]. However, there is still an advantage

on using single beam configuration over dual beam fibre trap, as the former removes

the necessity of the difficult alignment of the fibres in the sample chamber. The

rotation effect of the single beam configuration on optically trapped embryos may

be useful for future experiments involving simultaneous manipulation and long-term

imaging studies of embryos. which requires it to be oriented either at its animal or

vegetal pole position. Furthermore, optical orientation allows immediate access and

subsequent optoinjection of molecules into specific features in a developed embryo,

for example the blastopore lip which forms the mouth and anus.

In situations, when an ideal orientation is already found, the rotation of the

optically trapped embryo must be stopped in order to fix its position. In order to

perform this, a more advanced approach was employed, in which a reconfigurable
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Figure 6.13: (A) Schematic illustration of the dual beam trap on a 1-cell P. lamarckii

embryo. The dual focus trap was created by encoding a CGH on the SLM shown on (B).

Stable trapping without rotation was achieved at a height of 190 µm when the two foci

were separated 36 µm apart. In this configuration, an embryo can be optically trapped

190 µm above the glass bottom dish (Media 4). (C) An image of a single embryo stably

trapped above the dish and the defocused image of embryos at the bottom of the petri

dish [204].

dual focus trap was symmetrically positioned along the z -axis of the embryo. In this

approach, stable trapping can be achieved at a height of up to 200 µm above the

bottom of the dish, without rotation. Fig. 6.13(A) shows the schematic illustration

of the dual beam trap configuration. At 190 µm above the bottom of the dish,

the most stable configuration was found when two overlapping foci were axially

separated by 36 µm. The holographic system enabled dynamic adjustment of the

hologram, allowing optimisation of the locations of the two foci within the embryo

and consequently providing the most stable trapping. An example of the phase

profile displayed in the SLM for stable optical trapping of the embryo is shown in

Fig. 6.13(B). Using a total laser power of about 175 mW with power equally divided

into the two foci, a single embryo can be optically trapped 190 µm above the glass

bottom dish as shown in Fig. 6.13(C). With these parameters, the measured escape
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speed, defined as the speed at which the embryo drops out of the optical trap

is 20±2 µm/s. A similar configuration was recently demonstrated to trap large

motile specimens [164]. In their approach, the dual focus was spaced 100 µm apart

and a counter-propagating trap was formed by introducing a reflecting mirror. In

this configuration, the specimens were trapped in between the two foci, where the

scattering force of the two counter-propagating beam cancels.

However, an important aspect in this optical approach is maintaining the viability

of the trapped embryo. Previous work on optical trapping performed at 1064 nm

conducted in water showed that a temperature increase of 1oC is expected per 100

mW trapping power [171]. As the parameters presented in this work are within this

range and water has substantially lower absorption at 800 nm than at 1064 nm,

the local temperature increase should not be detrimental to the optically trapped

embryos survival. Indeed, optical trapping of single-cell P. lamarckii embryos for

10 min did not induce visible morphological changes and the embryos carried on to

subsequent division.
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6.7 Conclusion and Future Work

In summary, a combined optical approach for the manipulation of living and devel-

oping embryos was presented. The proposed holographic optoinjection and trapping

system facilitates a computer-controlled optical handling and time-sequenced laser

dosage of embryos paving the way towards automated high-throughput processing.

With the newly developed fs holographic system for cell transfection and optical

injection (see Chapter 5), a computer-controlled time-sequenced laser dosage of an

embryo is possible with a potential for automated high-throughput manipulation.

The system enabled selective optoinjection into the blastomere of an embryo. In

addition, the same system can be utilised for the optical trapping, moving and ori-

entation of embryos. In this chapter, experiments were performed on P. lamarckii

embryos, a newly emerging developmental biology species.

Prior optoinjection experiments, the optimal temperature were obtained at which

the embryos will develop properly. It was found that 85% of the embryos properly

developed into trochophore larvae when the environmental temperature was main-

tained at 14-18oC. After optimising the temperature conditions to obtain a high

percentage of viable embryos, optoinjection was performed on 2-cell and 4-cell stage

embryos. Successful optoinjection of dextran molecules of a variety of sizes from

3–500 kDa was achieved in this chapter. Furthermore, using an NIR fs laser, op-

toinjection into the deep layers of the P. lamarckii embryos was demonstrated while

maintaining the integrity of the cells in the beam path. This is unique to optoin-

jection technique, as the more conventional microinjection will lead to piercing and

damaging of cells in the capillary injection path.

The efficiency of the technique was determined by optoinjecting the embryos

in seawater with PI at different stages of its development using P= 60 mW and

T= 30 ms delivered at three different dosage points on the blastomere. It was found

that the efficiency of injection is between 44–55%. The creation of small to medium

sized gas bubbles on the blastomere surface was found to be necessary in order

to obtain a detectable fluorescence signal. With increasing depth from the surface

of the embryo, the energy required to generate a gas bubble increases which was

attributed to increase spherical aberration as well as scattering from the embryo

tissue.

The size of the gas bubble was found to be correlated to leakage of intracellular

contents of individual blastomeres. As the leakage resulted to improperly developed

embryos, parameters were studied at which different sizes of gas bubbles, grouped

according to small (<1 µm), medium (2–5 µm) and large (>5 µm) can be obtained.

With the combination of laser parameters, P≥ 78 mW and T≥ 10 ms, mostly

medium to large gas bubbles were obtained. This combination of power and exposure
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time should be avoided and lower P and T setting should be used in order to obtain

viably optoinjected embryos that will develop into proper larvae. In the absence of

PI or dextran, using laser parameters P= 60 mW and T= 30 ms, 46% of irradiated

embryos developed into proper larvae. Furthermore, irradiated blastomeres with a

gas bubble of less than 5 µm in size created on its surface will carry on dividing as

confirmed by time-lapse imaging over an hour after irradiation.

Furthermore, the same system can be utilised for optical orientation and trap-

ping of individual P. lamarckii embryos. The Ti:sapphire laser was switched to its

continuous mode and the 800 nm CW laser beam was coupled into a ×20, 0.5 NA

objective. With this approach, a single beam can levitate an embryo and with the

holographic system, the wavefront of the beam can be modulated in order to per-

form stable trapping in three dimensions. In this configuration, the beam induces a

torque on the embryo which leads to its rotation. Using an overlapping but axially

separated foci, the rotation of the embryo can be stopped and a stable trapping can

be achieved.

With this technology, future work involves optical transfection of this species

of embryos with other genetic materials such as double stranded DNA, messenger

RNA and iRNA. Preliminary experiments were performed on optically transfecting

these embryos with DNA plasmid encoding for GFP. However, treated embryos

have arrested development and transfection was found to be unsuccessful. The

parameters used for transfection were found not to be detrimental to the embryos

and their improper development maybe due to the incompatible cytomegalovirus

promoter used in the GFP plasmid. At present, the injection of exogenous gene

constructs for this species has not been well established and suitable promoter to

drive protein expression are unknown. Recently, protein expression using in vitro

synthesized capped mRNA using commercially available plasmid constructs was

shown in L.stagnalis via microinjection [207]. It would be interesting to determine

if in vivo expression is possible using these reported constructs and perform genetic

modification to produce P.lamarckii transgenic animals. Similarly, optoinjection of

fluorescently labelled dyes into single blastomeres of these developing embryos would

enable one to investigate fate mapping and the lineage of individual embryonic cells.

Such development of optical techniques for the delivery and orientation of the

developing embryo of this species would benefit the field of developmental biology.

This optoinjection approach is particularly suited to perform delivery of molecules

into species with small embryos that are hard to handle with more conventional

microinjection techniques. Furthermore, optical trapping of an embryo would aid in

orientation for long term imaging and observation to follow its development. The

field of developmental biology may benefit greatly from the development of robust
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6 Integrated optical approach for the manipulation of developing embryos

all-optical techniques for injection, gene transfection and manipulation of embryos,

such as these presented above.

In the following chapter, instead of targeting single cells using CW and fs laser

sources for optical injection and transfection, I will demonstrate a controllable laser

induced breakdown process by the breakdown of optically trapped microspheres

using pulsed ns lasers. The advantage of this technique is its limited region of

cell death and high post-treatment viability over other ns laser based optoporation

techniques, discussed in Chapter 3.

Part of this work was published in Biomedical Optics Express, 2, 2011 [204].
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7
Cell transfection by laser induced

breakdown (LIB) of an optically

confined microsphere

In contrast to previous chapters, in which the tightly focused laser directly irradiates

the cell, in this chapter, a different methodology will be presented for cell transfection.

Optoporation techniques described previously in Chapter 3 focused a ns laser beam

onto the buffer medium or the glass cover slip where the cells are attached. The

mechanical effects associated with the breakdown of medium and glass interacts with

the cell monolayer leading to membrane permeabilisation. However, due to the large

energy deposited on the sample, a large zone of cell death is created. Hence, by using

an optically trapped microsphere as a seed for the breakdown, an optimised membrane

permeabilisation and controllable mechanical effects of the breakdown with minimum

cell death will be demonstrated.

7.1 Introduction

In previous chapters, targeted single cell optical injection and transfection techniques

was described using tightly focused CW violet diode and NIR fs lasers. In contrast,

multiple cells are targeted using pulsed ns lasers techniques as described in Chapter
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7 Cell transfection by laser induced breakdown (LIB) of an optically confined microsphere

3. Due to the associated mechanical side effects of the interaction of long pulsed

ns laser sources with the sample, treatment of cells is often non-localised, treating

large population of cells at a time.

The mechanical effects scale with the amount of energy deposited to achieve the

LIB threshold. The breakdown of material induced by ns laser pulses can be violent

with the generation of plasma followed by shock wave propagation as well as forma-

tion of fast gas filled bubbles called cavitation bubbles. The expansion of cavitation

bubbles is responsible for the loss of viability of the surrounding cells leading to

cell detachment, late apoptosis and necrosis. Cavitation bubble expansion causes

cellular lysis and detachment due to the impact of shear stress by the expanding

cavitation bubble wall [32].

Although the energetic pulses are favourable for large scale effects for some bio-

logical applications, their application to targeted optical transfection is limited due

to the amount of energy it deposits to the sample. It has been shown that the

LIB in the presence of confluent cells induces a large zone of cell lysis due to the

high breakdown threshold of absorptive medium such as buffer medium [32, 30] and

glass silica coverslip [28]. This results in a large cavitation bubble of hundreds of

microns in size, which reduces the overall cellular viability. This is a drawback to

transfection of cells which requires small and transient disruptions on the cell mem-

brane in order to maintain cell viability. Thus, a controllable cavitation of LIB and

its mechanical effects is desirable as it would provide a more flexible ns laser based

optical transfection device i.e. a single system could be utilised for both targeted

single cell transfection and large scale treatment of multiple cells.

Hence, in this chapter, instead of inducing breakdown on a glass coverslip or

in buffer medium, the breakdown of a single micron-sized microsphere was imple-

mented in the presence of a cell monolayer. Optical tweezers allow the confinement

and positioning of micro- and nano-particles at a desired location within the buffer

medium. A single microsphere can be confined and positioned spatially and axially

over a monolayer of cells. The axial positioning can control the extent of mechani-

cal effects. Furthermore, the breakdown threshold can be manipulated by changing

the microsphere material. Changing the size of the microsphere will influence the

size of the cavitation bubble and the subsequent hydrodynamic flow of fluid over

the cell monolayer. Therefore, employing optical tweezers with LIB would provide

additional degrees of freedom such as the microsphere material, its size, and the LIB

position relative to the cell monolayer. In this chapter, these additional parameters

were demonstrated to offer a method to minimise the energy required for controllable

cavitation, leading to the permeabilisation and transfection of Mito-DsRed plasmid

to mammalian cells in a targeted area, while reducing cell lysis.
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7.2 Events during LIB of a microsphere in an optical trap

This work was performed in collaboration Dr.Yoshihiko Arita (Postdoctoral re-

searcher, University of St. Andrews). The optical tweezers system described here

was built and characterised by Dr. Woei Ming Lee (former Research Associate, Op-

tical Trapping Group) as an independent PhD project. The author performed all

the transfection experiments and analysis presented in this chapter.

7.2 Events during LIB of a microsphere in an optical

trap

For the fundamental concepts of LIB, the reader is referred to Chapter 3. With

pulsed ns laser sources, the LIB is accompanied by plasma formation, breakdown

of material, followed by a series of events that may affect the surrounding cells or

tissue material. It is assumed that a single cavitation bubble, centred on the site of

the LIB of a microsphere, is initiated in the same manner as LIB of a liquid. In this

section, I will discuss the events during the LIB of a microsphere based on previous

investigations of LIB in water. An excellent review article on the concepts of LIB

in aqueous media was written by Kennedy et al. [101].

Fig. 7.1 shows a schematic diagram of the events occurring during LIB of an opti-

cally trapped microsphere. The concept of optical tweezers was discussed in Chapter

6. A single optically trapped microsphere is exposed to a tightly focused ns laser.

The critical breakdown threshold intensity is achieved at the focus of the laser lead-

ing to the breakdown of the particle. Among the commercially available microsphere

materials, polymer has relatively low breakdown threshold of 0.7 GW/mm2 [208].

The breakdown of a particle is accompanied by the formation, ultrafast growth and

decay of a plasma which occurs in the order of ns time-scale [209, 116]. Its expansion

would generate a pressure wave which propagates radially away from the breakdown

site [210]. The pressure wave initially travels at hypersonic speed but as it expands

and loses energy, its speed would approach the speed of sound.

In the vicinity of the plasma, the vaporised material will have a very high tem-

perature and pressure. However, the thermal and pressure effects of the plasma are

localised within its volume and most of the energy is converted to the mechanical

effects of the breakdown [101]. Apart from the plasma, the subsidiary mechanical

effects such as cavitation bubble expansion generate the most damage to the sur-

rounding medium after the breakdown [32, 30]. The cavitation bubble expands,

pushing material away until it reaches its maximum bubble size. Cells encountering

the expanding cavitation bubble wall experience shear stress. When the pressure in-

side the bubble reaches the saturation pressure of the liquid, it will rapidly collapse,

occuring ≈10 µs after the breakdown. Aside from cavitation bubble expansion,
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7 Cell transfection by laser induced breakdown (LIB) of an optically confined microsphere

Figure 7.1: A schematic diagram of the time-series evolution of laser induced breakdown

of optically trapped microsphere. An optically trapped microsphere is irradiated with a

laser leading to its breakdown and vaporisation. A plasma is formed accompanied by

pressure wave and cavitation bubble expansion. Several ms after the breakdown event,

residual gas bubbles are formed. Approximate time for each event after breakdown are

specified based on values given in reference [32].

its subsequent collapse may also affect the integrity of surrounding cells and tissue

around the breakdown site [211]. Depending on its distance from a solid boundary,

the cavitation bubble may interact with the substrate leading to formation of liquid

jets, counterjets and secondary gas bubbles. Its growth and jet formation is dic-

tated by two parameters, the distance, D, between the center of the bubble to the

substrate and its maximum bubble radius, RB giving an expression for the standoff

distance, γ,

γ =
D

RB

(7.1)

At γ < 1, or RB > D, the cavitation bubble wall is in contact with the bottom

substrate and the bubble is inhibited to form a spherical shape. During its collapse,

the bubble will become elongated and a jet formed within it will be directed towards

the surface boundary. Meanwhile, for γ > 1, in addition to jet formation, a counterjet

is also generated which rebounds away from the boundary. The jet impact to the
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7.3 Experimental Design

Figure 7.2: Schematic illustration of possible events during the collapse of a cavitation

bubble generated during microsphere LIB. (A) Concept for cavitation bubble formation af-

ter microsphere LIB. (B) Subsequent asymmetric collapse with jet involution. (C) Toroidal

bubble formation once jet moves along bubble volume. This is generated with a radial flow

along substrate plane followed by the formation of secondary bubbles which are presumed

to interact with the substrate by themselves jetting towards the surface [211].

substrate gives rise to a high pressure which may damage the surface [212].

A schematic illustration of the collapse of a cavitation bubble generated during

microsphere LIB is shown in Fig. 7.2 (A). The experiments that will be presented

in this chapter have the position of the LIB in close proximity to the cell substrate

(0–25 µm), hence, we may assume that γ< 1. In such a case, an asymmetric collapse

accompanied by jet involution occurs (Fig. 7.2(B)). This is followed by a toroidal

bubble formation accompanied by radial flow along the substrate and collapse of

many tiny bubbles or secondary bubbles (Fig. 7.2(C)). The collapse of these tiny

bubbles have been implicated in formation of damage pits in solid substrates [211].

7.3 Experimental Design

Fig. 7.3 shows a schematic diagram of the experimental setup. The optical tweezers

system was built on an inverted microscope system (Nikon TE2000). A CW fibre

laser (IPG Laser GmbH, YLM-5-1070-LP) operating at 1070 nm was utilised for the

optical tweezers. The output laser beam was directed to a polarising beam split-

ter and half wave plate to control the laser power. A laser power of 200 mW was

utilised to optically trapped individual microspheres for all the breakdown experi-

ments. Lenses L1 and L2 expand the laser beam 3×. L2 was attached to a stepper

motor (SM, LS series, Zaber technology) to change its position and consequently the

divergence of the beam, thereby changing the axial position of the laser trap within

the sample. M1 and M2 form a periscope system to elevate the height of the beam

and direct it on the upper fluorescence port of the microscope system. L3 and L4

(f3 and f4= 100 mm) form a beam steering system that ensures the beam will not
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7 Cell transfection by laser induced breakdown (LIB) of an optically confined microsphere

Figure 7.3: Setup of an optical tweezers combined with pulsed ns laser for laser induced

breakdown. L-lenses, M-mirrors. Periscope pairs, M1 and M2, M3 and M4 spatially

aligned the 1070 nm beam and the 532 nm. L2 is attached to a stepper motor to adjust

the axial positioning of the optical tweezers and axially align it with the 532 nm beam.

Lenses have focal lengths, f3 and f4= 100 mm, f5= 350 mm, f6 and f7= 50 mm.

walk off from the back aperture of the oil immersion objective (Nikon, Eplan,100×,

NA:1.25). A NIR dichroic mirror (DM, Chroma, z900dcp) reflects the tweezing laser

beam into the backaperture of the objective.

LIB was induced using a pulsed Q-switched Nd:YAG laser (Elforlight, SPOT). It

has a fundamental wavelength of 1064 nm with 1 ns pulse width running at 1 kHz

repetition rate and with pulse energy of 1 µJ. A potassium dideuterium phosphate

(KD*P) crystal is used to double the frequency of the laser output thereby producing

a laser beam with a wavelength centred at 532 nm. The diverging beam from the

ns laser was collimated using a single lens, L5 (f5= 350 mm) positioned 350 mm

from the KD*P crystal. A mechanical shutter (Newport, UK model 845 HP-02)

controlled the exposure of the laser to 40 ms (40 pulses). A neutral density filter

(Nd filter) was incorporated in the beam path to control the laser power. M3 and

M4 formed a second periscope to direct the ns laser to the lower fluorescence port.

Lenses L6 and L7 (f6 and f7= 50 mm) formed a beam steering lens system. A

tetramethylrhodamine isothiocyanate filter (TRITC, Nikon, excitation filter: 530-

560 nm) was used to deflect the ns laser beam to the backaperture of the microscope
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objective.

The lasers used for optical tweezers and LIB were co-aligned axially within the

sample by adjusting L2 position to control the divergence of the tweezing laser.

Meanwhile, the lateral beam alignment was performed by moving either mirror M2

and M4 to position the optical tweezers or the ns laser beam. The optical tweezers

and the breakdown of the microsphere was imaged and recorded using an EMCCD

camera (Andor, iXonEM+885, frame rate= 31.23 Hz). LIB of a single polymer

microsphere with sizes of 0.4–2.0 µm was performed when the tweezing and the ns

laser were perfectly co-aligned.

The axial position of the trapped microsphere was evaluated by trapping a single

microsphere and axially moving the trap towards the bottom of the dish. When

the sphere was in contact with the dish bottom and subsequently released from the

trap, this axial position was set as z= 0. Based on this calibration, the trap was

positioned at specific axial locations. Polymer microsphere size as small as 0.2 µm

can be optically trapped using the system, however, it was difficult to obtain single

microspheres at this size as they often formed aggregates. A single microsphere

was optically trapped and exposed to the pulsed ns laser for 40 ms to induce its

breakdown.

7.4 Materials and Methodology

7.4.1 Sample preparation

CHO-K1 and HEK293 cells were utilised for the experiments in this Chapter. Cell

culture methods are discussed in Appendix 9.1. The polymer microsphere sus-

pension (Thermo Scientific) of sizes 0.4, 0.5, 0.7, 1.0 and 2.0 µm were diluted in

OptiMEM (Invitrogen) to yield concentrations of 1:1000 (0.4, 0.5, 0.7, 1.0 µm) and

1:50 (2.0 µm). Prior to experiments, microspheres were spun at low speed to pre-

vent aggregation of particles. Diluted microspheres with a volume of 100 µL were

aliquoted ino microcentrifuge tubes containing 0.55 µL of 1.88 µg/mL stock Mito-

DsRed plasmid to obtain a final DNA concentration of 10 µg/mL. Cells were washed

twice with OptiMEM to remove residual fetal calf serum on the CHO-K1 monolayer.

60 µL of mixed microspheres and Mito-dsRed plasmid DNA solution were added to

the cells. A Type 0 coverslip was floated on top of the solution to maintain sterility.

7.4.2 Cell transfection protocol

For each prepared sample, 10 individual microspheres with the same size (0.4 µm–

2.0 µm in diameter) were targeted at different lateral positions at specific axial
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7 Cell transfection by laser induced breakdown (LIB) of an optically confined microsphere

location (5–25 µm) above the bottom of the dish. A single microsphere was opti-

cally trapped and axially positioned up to 25 µm above the glass dish. The pulsed

ns laser with a power of 1 mW (measured at the back aperture of the objective) was

introduced to the system with the opening of the mechanical shutter. The micro-

sphere was exposed to the pulsed ns laser for 40 ms, during which time subsequent

breakdown and formation of gas bubbles were observed. To obtain reliable statistics,

a minimum of 3 samples (n= 3) were treated for each axial position and microsphere

size. In a similar manner, a control sample were exposed to both the optical tweezers

and the pulsed ns laser with 0.5 µm microspheres in the buffer medium but without

trapping any microsphere and inducing LIB. After treatment, the cell monolayer

was washed twice with OptiMEM to remove residual DNA plasmids and micro-

spheres. Fresh culture medium was added to the cells and dishes were incubated at

37oC and 5% CO2. After 48 h of incubation, cells expressing mitochondrial targeted

Mito-DsRed protein were counted under fluorescence microscope.

7.5 Results and Discussions

In this section, the results of LIB of a microsphere in water will be presented and

a description of the vaporisation of the microsphere and the presence of residual

bubbles after the breakdown. Then, the events following the LIB of a microsphere

on top of a cell monolayer is described and subsequently the effect of changing

the microsphere size on the number of cells affected after the breakdown. Finally,

successful cell transfection will be demonstrated using this technique.

7.5.1 LIB of an optically trapped microsphere

Videos of LIB of various sized microsphere both in water and in the presence of CHO-

K1 monolayer were acquired. From the videos, individual frames were obtained,

depicting events during and after the breakdown. A video processing software called

Virtualdub was utilised to acquire the frames saved as tiff files. The pixel size of

each image was calibrated using a microscope graticule. Measurements within each

image were performed using ImageJ.

LIB of an optically trapped microsphere was observed in deionised water. Fig. 7.4

shows the consecutive frames of a video with a single 0.5 µm sphere and its sub-

sequent breakdown after irradiation with a 1 mW pulsed ns laser. The fastest

acquisition of the camera is limited by its frame rate which is set at 30 frames per

second; hence, the temporal resolution of the system is ≈ 30 ms. Fig. 7.4(A) shows

an optically trapped microsphere, axially positioned at 10 µm from the surface.
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Figure 7.4: Individual frames showing laser-induced breakdown of optically trapped mi-

crosphere in water. (A)-(F) are consecutive snapshots of a video showing: (A) an optically

confined 0.5 µm sphere, 10µm above the glass bottom; (B) the introduction of the pulsed

ns laser with a 35 µm diameter shadow surrounding the sphere; (C) absence of the sphere

and formation of gas bubbles; (D)–(F) and one by one collapse of the gas bubbles. Scale

bar corresponds to 10 µm.

When the pulsed ns laser was introduced to the system, a bright flash of light was

observed where the sphere was originally located (Fig. 7.4(B)). The microsphere

was immediately vaporised with the introduction of the pulsed ns laser as depicted

by its absence in the succeeding frames of the video. A ring-shaped shadow can

be observed in Fig. 7.4(B) which has a radius, r= 17.5 µm. Fig. 7.4(C) shows the

collapse of this shadow into discrete structures, which can be referred to as residual

gas bubbles. These gas bubbles collapsed independently as shown in Fig. 7.4(E-

F). Similar experiments were also performed with larger microsphere sizes, 1.0 and

2.0 µm. The diameter of the ring of residual gas bubble was found to increase with

increasing microsphere size.

The full extent of the LIB event can only be temporally resolved by stroboscopic

illumination or high-speed imaging using a fast camera with frame rates of kHz

or more. Therefore, ultra-fast events such as shock wave formation and cavitation

bubble expansion and collapse after the breakdown cannot be fully resolved using our

current system. However, the acquired frames in the videos confirm the breakdown

of microsphere as a result of LIB.

In the presence of a confluent cell monolayer, the breakdown of a microsphere
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7 Cell transfection by laser induced breakdown (LIB) of an optically confined microsphere

Figure 7.5: Individual frames of laser-induced breakdown of an optically confined 0.5 µm

microspheres on top of a CHO-K1 cell monolayer. (A)–(F) are consecutive snapshots of a

video showing: (A) optically trapped microsphere situated 10 µm from the cell substrate;

(B) shows the introduction of the pulsed ns laser and a single bubble formed; (C) shows

the formation of more gas bubbles; ((D)–(F)) depicts their independent collapse. Scale

bar corresponds to 10 µm.

using a pulsed ns laser resulted in a region of cell necrosis. Fig. 7.5 shows consecutive

frames of the breakdown of a 0.5 µm microsphere on top of a CHO-K1 cell monolayer.

After the breakdown, gas bubbles were seen to be initiated from the site of irradiation

and travelled radially outwards with a maximum distance of 30 µm. Cells were

displaced and pushed away from the breakdown site resulting in deformation of

some of the cells (Fig. 7.5(C)). Notably, a clearance zone is repeatedly observed

surrounding the breakdown site. It can be assumed that the clearance zone occurs

due to the shear stress imposed by cavitation bubble expansion.

Next, the size of the clearance zone created surrounding the breakdown site as

a function of the microsphere size was investigated. The clearance zone could be

indicative of the amount of shear stress on the cell due to the cavitation bubble

expansion. Hence, individual microspheres of sizes 0.5, 1.0 and 2.0 µm were targeted

with the pulsed ns laser in the presence of cells. Fig. 7.6 shows the clearance zone

for sphere sizes, 0.5 µm and 2.0 µm. The clearance zone increases with microsphere

size. Beside the clearance zone, several cells surrounding the breakdown site exhibit

necrotic signatures such as granulated cytoplasm and pronounced nuclei. Other cells
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7.5 Results and Discussions

Figure 7.6: Clearance zone due to breakdown of microsphere of sizes (A) 0.5 µm (B)

2.0 µm. Scale bar corresponds to 10 µm.

Table 7.1: Summary of clearance zone at breakdown of different microsphere sizes

Microsphere size (µm) Diameter of clearance zone (µm) Affected cells

0.5 21.3±1.0 4±2

1.0 27.6±1.5 4±1

2.0 31.3±2.5 6±0

were compressed with the fluid flow during breakdown and were displaced away from

the breakdown site but did not exhibit drastic morphological changes.

It was observed that the breakdown of a 0.5 µm microsphere size provided the

smallest clearance area with diameter of 21 µm. Furthermore, the shear stress

accompanying LIB of 0.5 µm microsphere did not result in major morphological

changes of the surrounding cells (Fig. 7.6(A)). However, the breakdown of larger

microspheres, 1.0 µm and 2.0 µm, resulted in a larger clearance zone and irreversible

drastic morphological changes on the surrounding cells (Fig. 7.6(B)). A summary of

the clearance zone diameter measured for n= 3 samples and the number of affected

cells is shown in Table 7.1. The LIB of 1.0 µm and 2.0 µm microspheres resulted in

a clearance zone diameter of 28 µm and 31 µm, respectively. For all the microsphere

sizes used in this study, the region of affected area is confined to the cells right beside

the clearance zone.

Previous independent studies on the LIB of buffer medium in the presence of cell

monolayer have shown that the size of cavitation bubble is proportional to the radius

of lysed cells [30]. Hence, it can be assumed that increasing the microsphere size
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Figure 7.7: (A) Fluorescence image of LIB of cells with Propidium iodide (B) Brightfield

image showing cells that have been affected during LIB (C) Fluorescence image of cells

with Calcein AM, showing cells which are not viable. Scale bar corresponds to 50 µm.

constitutes to a larger vapour material and plasma leading to increased cavitation

bubble size produced during the breakdown. Since a larger cavitation bubble would

imply a higher maximum shear stress [32], the breakdown of 1.0 and 2.0 µm mi-

crospheres resulted in larger magnitude of shear stress compared to smaller 0.5 µm

microsphere.

In order to determine the state of viability of the surrounding cells around the

breakdown site, cells were incubated in 3 µM CAM for 15 min before LIB. After

which, cells were washed twice with fresh OptiMEM and then bathed in 3 µM PI

during the LIB of 0.5 µm microsphere. In this experiment, PI and CAM were used

to determine the number of necrotic cells within the vicinity of the breakdown.

Fig. 7.7(A) shows a typical fluorescence image of cells after LIB of 0.5 µm micro-

sphere. Three cells at the centre of the site of breakdown are brightly stained with

PI at the nucleus. These cells are necrotic as confirmed by the absence of CAM

signal (Fig. 7.7(C)). Meanwhile, surrounding cells away from the irradiated region,

at a distance greater than 40 µm away from the breakdown were visibly not affected

and remained viable during the breakdown as shown in Fig. 7.7(B) and confirmed

by both PI and CAM fluorescence images. This can be explained by the radially

decreasing impact of shear stress induced by the cavitation bubble. Similar results

were obtained by [28] and [30] wherein beyond a certain radial distance from the

breakdown, cells were unaffected and were not compromised by LIB. From these

observations, by using an optically trapped polymer microsphere for LIB, the region

of cell lysis was demonstrated to be limited and controlled, localising the affected

region. Furthermore, the size of microsphere is an important parameter in the level

of shear stress experienced by the cell during LIB.
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7.5.2 Cell transfection by LIB of an optically trapped

microsphere

Cell transfection of Mito-DsRed encoding plasmid into HEK293 and CHO-K1 cells

was performed by LIB of optically trapped microspheres. Fig. 7.8(a) shows a bright-

field image of HEK293 cells using ×20 objective. LIB was induced in 4 different spa-

tial regions marked by x. Its corresponding fluorescence image shown in Fig. 7.8(b)

depicts the cells transfected for each breakdown site. Two to four cells were found

to be expressing the Mito-DsRed protein for each breakdown site, 48 h after trans-

fection. A closer view on these transfected cells is shown in Fig. 7.8(c) and (d).

Fluorescence image of transfected CHO-K1 cells is shown in Fig. 7.8(e). It can be

seen that cells transfected form small colonies surrounding the blasted region. No-

tably, similar to transfection using CW and fs laser, both HEK293 and CHO-K1 cell

lines can be transfected and the technique seem to have no bias on the cell lines to

be transfected.

The number of CHO-K1 cells transfected was evaluated as a function of the poly-

mer sphere size, and its axial location from 5 to 25 µm measured from the bottom

of the dish, whilst using a fixed laser power of 1 mW at 1 kHz. In each dish, 10

individual microspheres with the same size (0.4–2.0 µm in diameter) were targeted

and at a fixed axial position at 10 µm. LIB of individual microspheres was situ-

ated ≈ 100 µm apart from each of the LIB site. Fig. 7.9 (A) shows the number of

transfected cells with LIB as a function of microsphere size. 0.5 µm microsphere

was found to be the optimal size for LIB at 10 µm axial position providing a level

of shear stress that will induce successful transient permeabilisation on surround-

ing cells. The maximum number of transfected cells in a dish was ≈ 30 with an

average of 3 transfected cells at each breakdown site. With increasing microsphere

size, the number of transfected cells decreases. The control dishes which were ex-

posed to just tweezing laser and the pulsed ns laser without microsphere breakdown

showed negligible number of transfected cells compared to dishes with microsphere

breakdown.

The number of transfected cells as a function of axial position from the bottom

of the cell dish was also investigated using 0.5 µm polymer microsphere size shown

in Fig. 7.9 (B). It was found that the optimal axial position is at 10 µm from the

dish bottom. Further above 10 µm, the number of transfected cells decreases which

maybe due to the radially decreasing impact of the fluid shear stress from the point

of breakdown. Also with increasing distance, D, from the substrate, the γ factor

increases decreasing the energy of the cavitation bubble due to formation of jetting

and counterjets. At 25 µm, cells were observed to be unaffected by the breakdown

despite the formation of residual bubbles. This shows that LIB from a range of
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Figure 7.8: Transfection of Mito-DsRed encoding plasmids into multiples of HEK 293

cells at four LIB sites indicated as ’x’. (a) Bright field image of cells 48 h after LIB. (b)

Fluorescence images of image (a) showing transfected cells at the four LIB sites. (c) A

section of image (a) showing cells around one of the LIB sites. (d) A section of (b) and

a corresponding fluorescence image of (c) showing four or more cells transfected around

the LIB site. (e) Fluorescence image of transfected CHO-K1 cells. The encircled regions

referred to affected area surrounding a breakdown site.
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Figure 7.9: Optimisation of transfection of Mito-DsRed encoding plasmids into multiples

of CHO-K1 cells by LIB parameters for P= 1 mW and T= 40 ms. (A) Number of cells

transfected with different microsphere sizes at the fixed axial location of 10 µm. (B)

Number of cells transfected at different axial locations with the fixed particle size of

0.5 µm. The error bars indicate ± standard deviation.
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heights above the cell monolayer also provided a means of optimising molecular

delivery since the shear stress to cells from the microsphere LIB is dependent on the

stand-off parameter given by Eq. 7.1. It was important to note that with increasing

distance from the bottom, spherical aberration may come into play, influencing both

the tweezing and pulsed ns laser beam.

7.6 Discussion and Conclusion

In this chapter, LIB of an optically trapped microsphere was demonstrated inducing

cell permeabilisation and transfection of CHO-K1 and HEK293 cells. The size of the

microsphere affected the the clearance zone radius as well as the number of cells lysed

during the process. The region of affected area was characterised for microsphere

sizes 0.5, 1.0 and 2.0 µm. Both 1.0 and 2.0 µm microsphere sizes resulted in a

larger clearance and affected zone compared to 0.5 µm. This was attributed to a

larger cavitation bubble generated owing to a larger volume of ablated material and

resulting plasma. This is in agreement with previous investigations that have shown

that the size of cavitation bubble scales with the zone of cell lysis [32, 30].

The magnitude of shear stress produced during the breakdown is also proportional

to the cavitation bubble size and decays as a function of distance from the breakdown

site [30]. In this study, a small region of clearance (r= 10–15 µm) and limited

number of necrotic cells corresponding to 3–6 cells at a distance of r= 35 µm from

the breakdown site can be obtained which corresponds to the region of largest shear

stress during the bubble wall expansion with no cellular detachment. In comparison,

the smallest affected area reported for LIB in water with cell monolayer has an

affected radius, r≥ 60 µm with both cellular detachment and necrosis [30]. This

corresponds to 60 necrotic or lysed cells since their cell monolayer confluency was

1000 cells/mm. Hence, the LIB of optical trapped microsphere provided a more

localised approach to targeting cells compared to LIB in water, limiting the number

of necrotic cells.

In this work, the required threshold was minimised by simply changing the op-

tically trapped particle material. The laser pulse energy used in this experiment

was only 1 µJ to ablate the polymer microsphere corresponding to only 12.5% of

the threshold pulse energy of water reported by Rau and co-workers [32]. Similarly,

other types of particles can be utilised for this experiment to control the mechani-

cal stress induced on the sample. An example is silica which has a slightly higher

breakdown threshold of 0.9 GW/mm2 [208]. With more advanced nanotechnology,

many particles of a variety of properties are being synthesised which can further

optimise the level of control on the cavitation during LIB. Gold nanoparticles are
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becoming a popular tool for precise nanosurgery due to its plasmonic properties

when irradiated close to its resonance which could increase the surrounding media

temperature leading to the formation of cavitation bubbles [213]. Recently, delivery

of molecules into cells by irradiating carbon nanoparticles with fs laser pulses has

also been demonstrated [214].

Using this technique, successful transfection of both HEK293 and CHO-K1 cells

with a plasmid encoding for the protein, Mito-DsRed was facilitated. By changing

the microsphere size and the position of the breakdown by moving the optically

trapped particle along the z, an optimal transfection can be achieved using polymer

microsphere size of 0.5 µm and an axial position of 10 µm from the substrate.

Increasing the microsphere size from 0.5 µm to 1.0 µm resulted in a decrease in the

number of transfected cells. Furthermore, increasing axial position beyond 10 µm

may have decreased the impact of the shear stress due to the expanding cavitation

bubble which resulted in less number of treated cells.

In summary, a technique that uses LIB of a single optically trapped microsphere

was described to facilitate the optimisation of the energy required for controllable

cavitation. This was achieved by varying the microsphere size and its height above

the cell monolayer at which LIB was performed and led to the successful permeabil-

isation or transfection of cells in a targeted area with the retention of cell viability.

Part of this work was published in Applied Physics Letters, 98, 2011 [215].
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Cell transfection is an important and ubiquitous biological methodology that brings

about an understanding of protein functionalities and corresponding cellular re-

sponse by injecting genetic materials such as naked plasmid DNA, single-stranded

mRNA and siRNA into living cells. The targeted delivery of macromolecules into

single cells, subcellular regions within a cell and individual blastomeres would per-

mit further advancement in molecular biology. Optical injection and transfection is

a new technology utilising a laser in order to inject biological substances into the

cell’s cytoplasm thereby allowing the subsequent expression of the protein of interest.

With increasing innovations in the design of laser systems, a variety of laser sources

have been utilised for the purposes of cellular transfection. This thesis demonstrates

optical injection and transfection using a variety of laser sources in either continu-

ous or pulsed mode. Furthermore, it provides significant improvement in this field,

offering new methodologies for increase in viable transfection of mammalian cells

using a reactive oxygen scavenger in continuous wave violet diode systems; better

targeting in fs laser systems and confined mechanical effects of optical breakdown

in ns laser systems using optically tweezed microspheres.

Using a violet diode CW laser system, I demonstrated that an inexpensive, portable

and compact laser system can be employed for single cell optical transfection. This

is the first time that a 405 nm laser diode source was utilised for transient cell

transfection of mammalian cells. The mechanism of transfection was elucidated by

calculating the temperature change due to the irradiation of the laser. It was found
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that the temperature change using the current parameters was not enough to induce

permeability change on the cellular membrane. Hence, I proposed a photochemical

effect as a dominant mechanism in transfection using this laser source. Transient

transfection using a violet diode laser can be enhanced with the use of phenol red

as a reactive oxygen scavenger. Demonstrating transient transfection using this

laser source is a significant step towards commercialisation and wider usage of this

technology.

The use of NIR fs laser sources have been previously employed for optical transfec-

tion. However, using such laser sources for this technique requires stringent focusing

and is a rate-limiting step for high-throughput transfection. Hence, a system was

developed that is capable of fast and accurate axial and lateral beam positioning

by incorporating a spatial light modulator in the system. By designing a targeting

method wherein a cell was irradiated three times, once in each axial position, it was

shown that accurate targeting of the membrane is crucial for successful and viable

optical injection of dyes into the cytoplasm of mammalian cells. In optical trans-

fection, increasing the number of doses on the membrane increases the efficiency of

the technique. Sixteen shots on the membrane with relatively lower power to cur-

rent methodologies provided the best transfection efficiency of Mito-DsRed plasmid

into mammalian cells. To design a wider-field targeting device, a piezo-driven scan-

ning mirror was incorporated in the system increasing the targeting field of view to

140 µm by 140 µm using a ×60 objective.

Using a NIR fs laser coupled with a spatial light modulator, targeting and op-

toinjection exogenous materials into a living and developing embryo of Pomatoceros

lamarckii was demonstrated. The NIR fs laser is capable of injecting fluorescently

labeled dextran molecules into individual blastomeres of early stage embryos of this

animal. Smaller embryonic cells deep within an embryo in its late stage of devel-

opment can be optoinjected without affecting the surrounding tissue. It was found

that embryos optoinjected at an early stage (1-cell and 2-cell) carried on dividing

and passed on the dye to its daughter cells. This capability of the system would

open up applications for overexpression of proteins by injecting DNA and mRNA or

knockdown of protein expression into this species. Furthermore, by switching to the

CW mode of laser, the same system was able to optically trap and orient an embryo.

This could be an alternative to intrusive glass capillaries for holding and orienting

embryos. Hence, in this chapter, an all optical approach for embryo manipulation

was demonstrated by optical trapping of single-cell zygotes and optoinjection of

macromolecules into the individual cells of an embryo.

Finally, a novel methodology using a pulsed ns laser source was developed in order

to achieve the optical breakdown of a polymer microsphere producing cavitation
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bubbles that induced membrane permeability to surrounding cells. Although, pulsed

ns lasers have been ubiquitous sources for biomedical applications, the required high

energy to achieve the breakdown threshold of water or coverslip induces damage to

surrounding cells and tissues causing cellular lysis to a large affected area. Hence, I

demonstrated that instead of breaking down water or glass coverslips in the presence

of adherent cells, alternatively an optically trapped microsphere can be utilised to

considerably lower the applied laser energy into the sample, thus decreasing the

overall level of cellular lysis. Using this technique, a localised region of permeabilised

cells was identified with their membrane integrity intact. By varying the position

of the breakdown and the size of the microsphere, the transfection efficiency was

optimised. This enhances the application of ns laser systems for optical transfection

whilst limiting cellular lysis.

Future work on using a CW violet diode laser for cell transfection will be to deter-

mine if the addition of other ROS scavengers such as Vitamin C and antioxidants,

would enhance the efficiency of the technique. Further understanding of the bio-

chemical processes occuring during laser irradiation with the focused violet diode

laser could also provide better methodologies in order to make the system a more

robust and reliable device for cell transfection. For example, there is a need to inves-

tigate the optimum buffer medium to be used for CW violet diode laser transfection

due to the interplay of photochemistry in the medium which affects the efficiency

of transfection. CW violet diode lasers could rival against the more mature NIR

fs lasers for cell transfection due to their portability allowing more biologists to ac-

cess the technique. The work presented in this thesis using this laser provides an

advancement towards compact and inexpensive optical transfection device.

With the enhanced targeting using the fs holographic system, the next step is

to incorporate multiphoton imaging into the device allowing nonlinear imaging (i.e.

second harmonic and third harmonic generation), which would be useful for imag-

ing thick samples. Although, utilising a fs laser system has been a robust technique

for transfection, its application to in vivo samples has been limited. Among the

various laser sources for transfection, only fs laser can achieve deep penetration as

well as precise targeting which is suitable for targeting animal models and accessing

turbid areas such as the vasculature. Recently, an NIR fs laser was employed to

create vasculature disruptions within a rat brain to study stroke in animal mod-

els [216]. Similarly, optical transfection of significant biomolecules in a living animal

model could be the next step inorder to assess how genetic modification could enable

therapeutic treatment of certain brain diseases such as Alzheimer’s and Dementia.

Having demonstrated successful optoinjection of macromolecules into P. lamar-

ckii embryos, future work involves finding the appropriate DNA constructs that
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can be successfully be transfected in these embryos. This work also opens up the

possibility to determine if the technique is suitable for other species with more so-

phisticated molecular biology, but still requires an efficient delivery technique to

inject biomolecules into its embryo. Collaborations have been started with other

developmental biologists in order to use the technique to other species.

Future work on the LIB of optically trapped microsphere technique is to perform

time-resolved imaging to fully understand the events during the breakdown. Fur-

thermore, with this technique, controllable cavitation can be achieved which may

be useful for pulsed ns laser applications specifically for in vitro samples. Pulsed

ns laser systems have been recently used to perform nanoaxotonomy in microfluidic

devices for neuronal regeneration studies [217]. Currently, as pulsed ns laser systems

are less expensive than fs lasers, optimising and controlling the parameters using

this laser source for precise nanosurgery is still desirable.

The variety of optical transfection and injection methodologies demonstrated in

this thesis extends the possible applications of the technology depending on the

available laser source in a laboratory. Each laser source despite of its own advantages

and disadvantages could still be optimised in order to increase the efficiency of

the technique. This thesis provides a fundamental step towards commercialisation

and increased throughput of optical transfection and injection for wider biological

applications.
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9
Appendix

9.1 Cell culture

Chinese hamster ovary (CHO-K1) cells and Human embryonic kidney cells (HEK293)

are cultured in T25 flasks at 37oC and 5% CO2 in Modified Eagles Medium (Sigma,

UK) with 10% Fetal Calf Serum (GlobePharm, University of Surrey, UK), 20 µg/mL

streptomycin (Sigma, UK) and 20 µg/mL penicillin (Sigma,UK). Cells were passaged

three times a week and number of passages used for experiment was a maximum of

30 for CHO-K1 and 32 for HEK293.

9.2 Willin-GFP expressing stable colony

A stable tetracycline inducible system, TRex willin-GFP-HEK was created using

a TRex inducible plasmid pcDNA4/TO/myc-his (Invitrogen, UK) modified to ex-

press willin-GFP, which was then transfected into stable HEK293 cells contain-

ing a plasmid expressing a tetracycline repressor, pcDNA6/TR. TRex willin-GFP-

HEK cells are cultured in T25 flasks in the presence of Dulbeco Modified Eagles

Medium (Sigma, UK) with 10% Fetal Calf Serum (GlobePharm, University of Sur-

rey, UK), 2 mM L-glutamate, 100 units/mL penicillin and 100 units/mL strepto-

mycin (Sigma, UK). Stable cells were selected by the addition with 5 µg/mL blas-

ticidin and 250 µg/mL zeocin. Willin-GFP expression was induced with 1 µg/mL
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tetracycline (Invitrogen, UK). Cells were routinely passaged three times a week.

9.3 siRNA chemical transfection

Willin knockdown was performed using siRNA, to a final concentration of 5nM,

specifically targeting the protein (GACAGAGCAGCAAGAUACUAUUAUU, CACA-

GACUAUAUGUCGGAAACCAAA, GCCUCUAUAUGAAUCUGCAGCCUGU; In-

vitrogen) using Gene Eraser (Startagene); according to manufacture’s instructions.

Protein expression was analysed by Western blotting, using anti-GFP (Santa-Cruz)

and anti-actin (Sigma) as a loading control. Fig. 9.1 shows the Western blot analysis

of the chemically transfected cells with siRNA specific for willin.

Figure 9.1: Western blot analysis depicting reduction of willin-GFP expression, 48 h

after chemical transfection of 5 nm siRNA into TRex-willin-GFP cells. TRex-willin-GFP

cells were induced with 1 µg/mL tetracycline to express willin-GFP 24 h prior to siRNA

treatment. Western blots were probed with anti-GFP and anti-actin, with the latter used

as a loading control [130].
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9.4 Human willin sequence

9.4.1 DNA sequence
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9.4.2 Amino acid sequence
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