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Abstract: Slow light devices such as photonic crystal waveguides (PhCW) 
and coupled resonator optical waveguides (CROW) have much promise for 
optical signal processing applications and a number of successful 
demonstrations underpinning this promise have already been made. Most of 
these applications are limited by propagation losses, especially for higher 
group indices. These losses are caused by technological imperfections 
(“extrinsic loss”) that cause scattering of light from the waveguide mode. 
The relationship between this loss and the group velocity is complex and 
until now has not been fully understood. Here, we present a comprehensive 
explanation of the extrinsic loss mechanisms in PhC waveguides and 
address some misconceptions surrounding loss and slow light that have 
arisen in recent years. We develop a theoretical model that accurately 
describes the loss spectra of PhC waveguides. One of the key insights of the 
model is that the entire hole contributes coherently to the scattering process, 
in contrast to previous models that added up the scattering from short 
sections incoherently. As a result, we have already realised waveguides with 
significantly lower losses than comparable photonic crystal waveguides as 
well as achieving propagation losses, in units of loss per unit time (dB/ns) 
that are even lower than those of state-of-the-art coupled resonator optical 
waveguides based on silicon photonic wires. The model will enable more 
advanced designs with further loss reduction within existing technological 
constraints. 

©2010 Optical Society of America 
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1. Introduction 

The ability to slow down light in high refractive index contrast nanophotonic waveguides has 
inspired many applications, such as dispersion compensation [1], optical delay lines [2–5], 
miniaturised switches [6] and enhanced nonlinear optics [7–9]. While photonic wires and 
photonic crystal waveguides (PhCWs), the main building blocks of nanophotonic slow light 
structures, are intrinsically lossless, their performance is limited by fabrication imperfections 
such as sidewall roughness and lithographic inaccuracies, the high refractive contrast (Δε~10) 
being responsible for the scale of this problem. 

Backscattering loss, in particular, has been recognised as a serious problem in slow light 
photonic crystals, with an ng

2 scaling predicted and observed [10,11]. The ng
2 scaling arises as 

a consequence of the increased density of states in both forward and backward propagating 
modes. In fact, backscattering due to disorder is an issue for any type of waveguide [12], as 
has recently also been shown in nanowires [13] and micro ring resonators [14]. Clearly, if the 
ng

2 scaling applies as generally as hitherto assumed, it will limit slow light devices to very 
short lengths or to moderate group indices only, unless major technological advances can be 
achieved. 

 

Fig. 1. a) SEM Micrograph of a photonic crystal waveguide. The waveguide is formed by a 
missing line of holes in a photonic crystal lattice and referred to as a W1 waveguide. The 
specific waveguide shown here is designed to operate in the mode anticrossing regime [15] and 
has been dispersion-engineered by symmetrically shifting the two rows of holes nearest to the 
line defect [16]. b) Corresponding dispersion curve and c) group index vs. wavelength curve. 
The frequency range of 0.256c/a < ν < 0.258c/a (where a is the lattice period) of nearly 
constant slope in b) corresponds to the “plateau” of nearly constant group index between 
1587nm < λ < 1595nm in c). 

Considerable effort has been devoted to realising the technological advances that have led 
to the current record losses of 2dB/cm for photonic crystals [17] and 1dB/cm for photonic 
wires [18]. Typical values for the disorder are now on the order of σ = 2nm RMS or better 
[19], a value that is close to the lattice constant of silicon (0.5nm). Figure 1a) shows an SEM 
micrograph of a photonic crystal waveguide as an example of a slow light waveguide, 
highlighting the technological quality that has already been achieved. This suggests that the 
limits of the current technology are being approached and that it will be difficult to achieve 
further substantial improvements in fabrication quality. 

Finding a design-route to reducing propagation oss is therefore highly desirable and in this 
paper, we describe such a route. We will show that while the ng

2 scaling is fundamental, the 
actual phenomenon is very rich and allows considerable scope for controlling and reducing 
the losses. 
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2. Theoretical model 

It is reasonable to assume, as also proposed by others [12,20], that the loss is composed of two 
components: the out-of plane radiation losses and the backscattering losses. The former 
depend linearly on the group index, whilst the latter depend on its square. Using appropriate 
scaling factors c’1 and c’2, the loss can then be expressed as follows [21], 

 2

1 2' ' .g gc n c n    (1) 

Equation (1) provides a good starting point, but it does not capture the full picture, as it 
includes the implicit assumption that the mode shape is independent of the group index. While 
this is a good approximation for photonic wires, it does not hold for photonic crystal 
waveguides, which exhibit a strong dependence of the mode shape on the group index [22,23]. 
This effect can be seen in Fig. 2 which illustrates the changes in mode shape calculated for the 
waveguide shown in Fig. 1a for several different group indices. The mode shape is a critical 
parameter when considering losses, as it determines the field strength on the sidewall of the 
holes, which, in turn, determines the fraction of the field available for scattering at 
imperfections. This dependence can be explicitly included in the theoretical model by 
introducing the parameters γ = γ(k) and ρ = ρ(k) which describe the mode shape contribution 
to radiation loss and backscatter loss, respectively; 

 2
1 2 .g gc n c n     (2) 

The coefficients c1 and c2 now solely describe the technological parameters, and as shown 
in [24], contain the dielectric contrast Δε and the disorder parameter σ. The separation of 
disorder and mode shape contributions in Eq. (2) is very informative and instantly suggests 
the possibility of addressing the loss-issue by suitably tuning the mode shape. 

 

Fig. 2. Modal field intensity as a function of group index for the waveguide with dispersion 
shown in Fig. 1b. The fields were calculated as a function of wavevector modulus |k| using 3D 
MPB [25] and mapped onto group indices via the dispersion curve. 

The derivation of ρ in Eq. (2) is based on the Lorentz reciprocity theorem, which treats 
scatterers as radiating dipoles [26]. Following this model, radiation scattering and 
backscattering need to be treated differently; radiation loss occurs into a continuum of 
radiation modes, whereas backscattering occurs into a single mode only, i.e. the guided mode 
of the system propagating backwards. Therefore, the mode shape dependent backscattering 
parameter is given by [26]: 

 
2

-1
1 2( ) d ,

c
n L

     T. T N. NE E D D r  (3) 
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where we have made the assumption that the disorder only occurs at the etched side-walls. Lc 
is the correlation length (see below) measured along the boundary of a hole, and the hole 
boundaries are broken up such that there are n parts of length Lc in one unit cell (distributed 
over all the holes in a unit cell). ET is the electric-field component tangential to the hole 
surface and DN is the displacement-field component normal to the hole surface; note that the 
complex components ET and DN are continuous across the interface. ε1 and ε2 are the two 
dielectric constants constituting the photonic crystal, i.e. that of the matrix and that of the 
hole. 

Deriving a similar exact analytical expression for the out-of-plane coefficient γ, is more 
challenging, as it involves the coupling between a guided Bloch mode and the continuum of 
radiation modes. This is difficult to implement due to the large number of modes required to 
simulate the radiation continuum. By way of approximation, we therefore treat the disorder as 
again creating local dipole sources, in agreement with the derivation of ρ. By assuming 
wavelength and position independent coupling of the dipole radiation to the air-mode 
continuum, we obtain: 

  
2

1
d ,

c
n L

  
   T NE D r  (4) 

where ε1 is the dielectric constant of the material at position r, an expression that takes local-
field corrections [12,26] and the local phases of ET and DN into account [27]. 

In order to implement this calculation we have calculated the complex field amplitudes 
E(r) and D(r) using the freely available MIT Photonics Band (MPB) code [25], which is a 3D 
plane-wave method that uses periodic boundary conditions to calculate the eigenfrequencies 
and eigenmodes of our PhC waveguides. The field profiles (or eigenmodes) are calculated on 
a cubic grid of points separated by a/16, and the surface integral along the hole boundaries 
then proceeds by splitting the unit cell into horizontal slices and interpolating the fields 
between the grid points on the edges of the holes, using one point per degree of arc. One may 
be concerned that interpolating the fields near a dielectric boundary could introduce numerical 
instabilities, but note that we are only concerned with ET and DN. These two components of 
the field are continuous at a dielectric boundary, and so the interpolation is numerically 
robust. The fields are normalized for every k-point (see [25]), and the ng-dependence of the 
propagation loss is then inserted explicitly into Eq. (2). We believe that this notation is clearer 
than the alternative of including ng directly as a parameter into γ and ρ as in [26]. For more 
information on the implementation and the code used see reference [28]. 

Correlation length 
A closer examination of the numerical evaluation of Eq. (3) yields one of the key insights 

of the paper, and helps us to understand the correlation length of the imperfections that cause 
extrinsic loss. Disorder is normally described by a correlation length [29] – the distance over 
which the occurrence of defects is correlated to one another. For distances shorter than the 
correlation length, the electric fields in Eqs. (3) and (4) should therefore be added coherently. 
To illustrate the impact of the correlation length on ρ, we show a plot of ρ vs. ng in Fig. 3 that 
includes the effect of the mode shape variation from Fig. 2. The simplest model is to assume a 
correlation length approaching zero, such that each scatterer acts independently. The integral 
in Eq. (3) then reduces to assessing ET.ET and DN.DN on each point of the hole boundary and 
adding the resulting values incoherently. This approach is similar to the one chosen by Petrov 
et al. [23] and yields the green dashed curve in Fig. 3. 

Alternatively, one can assume that the roughness is correlated over a distance of 20-50nm, 
which is a typical value for photonic wires, and integrate over short segments of the boundary. 
This seems to be the most reasonable approach and was previously chosen by several authors 
[11,22]. Applied to our model, however, this approach yields a result similar to the one 
obtained with independent point scatterers and is shown by the black dashed curve. 
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Fig. 3. Backscattering coefficient ρ vs. group index. The solid red curve represents ρ given by 
Eq. (3) with the integration performed over an entire hole boundary, while the green dashed 
curve corresponds to point-by point addition, which assumes scatterers to be independent. The 
black dot-dashed curve corresponds to a correlation length of 40 nm, which is also not able to 
represent the observed strong increase of backscattering for higher group indices shown in Fig. 
4. 

If, however, we integrate over the entire circumference of the hole, we obtain the red solid 
curve, which predicts a dramatically different loss behavior when compared to the first two 
curves. In particular, the backscattering coefficient initially decreases with increasing group 
index up to ng~40 then increases rapidly beyond ng~40; much faster than either of the other 
two models. As such clear differences arise from the choice of correlation length, it is 
relatively easy to compare the predictions against experimental data and determine which 
model of disorder is most appropriate. In section 3 we show that the third option – integrating 
coherently over the entire circumference of the hole – provides an excellent fit with 
experimental loss measurements on several different waveguide geometries (Fig. 4). The good 
agreement suggests that the correlation length in photonic crystals is larger than previously 
assumed and that it extends over the entire hole. Furthermore, it implies that the loss 
mechanism is not simply roughness scattering as in photonic wires, but that it is a 
combination of roughness, radius and hole position disorder. It is difficult to separate these 
three effects further at this point, as roughness on the hole sidewall can also appear as a form 
of radius disorder in the experiment – the important thing is to add any such scattering 
coherently along the surface of the entire hole. For comparison, it is interesting to consider the 
following formula, which has, effectively, been used previously to calculate ρ [22,30] but 
which excludes phase/coherence effects by taking the modulus of the respective fields before 
integrating: 

    
2 2

221 1* *
1 2 1 2. . d d ,

b bH H

         T T N N T NE E D D r E D r  (5) 

where Hb is the hole boundaries in a unit cell. Using Eq. (5) results in a curve that has an 
identical ng dependence as that of the point scatterer assumption (dashed green in Fig. 3). A 
comparison between Eqs. (3) and (5) and the respective loss curves is a clear demonstration of 
the importance of correctly including the phases and that different implementations can give 
radically different results. 
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3. Experimental data 

Photonic crystal waveguides with a = 410nm lattice period and radius 0.270a were fabricated 
on a SOITEC silicon-on-insulator wafer with a nominally 220 nm thick silicon guiding layer 
on a 2000 nm layer of buried oxide. The pattern was defined in 350 nm thick ZEP-520A 
electron beam resist using a VISTEC VB6 electron beam writer with a 1.2 mm writing field 
and an acceleration voltage of 100 kV. The pattern was transferred into the silicon layer using 
reactive ion etching (RIE), with a combination of CHF3 and SF6 gases, before selectively 
removing the buried oxide using hydrofluoric acid wet etch. The fabrication process is based 
on that reported in [31] and has been carefully optimized to yield devices with state-of-the-art 
disorder levels (below 2 nm RMS [17]) and is known to yield low-loss PhC waveguides with 
losses of 5 dB/cm or better in the fast light regime (Fig. 4). Coupling regions, as described in 
[32] were used to aid coupling of light into the slow light regime. The experimental group 
index is measured by Fourier-transform spectral interferometry [33]. 

 

Fig. 4. Loss vs. group index for different waveguide designs. The losses were extracted from 
transmission measurements of waveguides ranging between 180 um and 2000 um in length. 
a) Waveguide designed to exhibit a constant group index of ng38 over a Δλ8nm wavelength 
range (s1 = 48nm, s2 = 16nm) [16]. The green dashed curve is the best fit according to Eq. (2) 
with losses assessed point by point, while the red solid curve assumes a coherence length equal 
to the entire hole.b) Waveguide designed to have a constant group index of ng27 over a 
Δλ10nm wavelength range (s1 = 52nm, s2 = 0nm). c) Standard W1 waveguide (s1 = s2 = 0nm). 
Identical values of c1 and c2 (2cm1 and 110cm1 respectively) were used for all three 
waveguides. 

In order to examine separately the contribution of radiation and backscattering to the loss 
and thereby verify our model, we measured the waveguide directly in transmission and 
reflection. The result is shown in Fig. 5. For low group indices, the reflected signal is weak – 
more than 20 dB below the transmitted signal - indicating low backscattering. Once the group 
index increases to ng35, however, the two signals become comparable, implying that 
backscattering dominates over radiation losses. Interestingly, the increase in reflected signal 
coincides with the “kink” in the loss-curve. We therefore conclude empirically that the linear 
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dependence below ng35 is caused by the suppression of backscattering losses, while the 
sudden increase of the backscattering shown in Fig. 3 is responsible for dramatic increase in 
loss around ng38. 

 

Fig. 5. a) Transmitted and reflected power directly measured through a dispersion engineered 
waveguide of 180µm length. The transmission signal is normalised to a PhC waveguide in the 
fast light regime, thus accounting for the insertion loss. b) The loss-measurement from Fig. 4 
(a), plotted against wavelength is included for comparison. The black dotted line corresponds 
to ng38 

4. Multiple Scattering 

In the past multiple scattering has been recognised as a problem for slow light PhC 
waveguides [22,24]. Here we investigate this phenomenon and present near field optical 
measurements in support of our model. Multiple scattering occurs when light is not 
backscattered once, but multiple times, with the result that characteristic hot-spots form along 
the waveguide [34–36]. The lateral extent of these hot-spots indicates the localisation length. 
If the localisation length is shorter than the device length, then multiple scattering will impact 
on device operation and propagation can no longer be described by the “ballistic” transport of 
photons [22,24,36]. To study multiple scattering in dispersion engineered waveguides, we 
investigated a similar waveguide to the one shown in Fig. 1(a), except that it was deliberately 
“overengineered” to the extent that the group index reached ng100 in the anticrossing region. 
This design was chosen to accentuate the differences between the anticrossing regime and the 
band-edge regime, providing a direct visual comparison up to group indices of ng100 in the 
same waveguide. The results are shown in Fig. 6. 

#137805 - $15.00 USD Received 8 Nov 2010; revised 10 Dec 2010; accepted 10 Dec 2010; published 15 Dec 2010
(C) 2010 OSA 20 December 2010 / Vol. 18, No. 26 / OPTICS EXPRESS 27634



 

Fig. 6. a) Scanning near field optical micrograph of the amplitude of the electric field. The 
figure is a montage of scans along the same waveguide taken at different wavelengths. No 
measurements were taken in the black region between 1555nm and 1557.5nm b) 
Corresponding experimentally-measured group index curve c) Calculated loss curve clearly 
highlighting the difference between anticrossing and bandedge slow light. Significantly, 
anticrossing slow light at point B achieves significantly higher group indices with lower losses 
than bandedge slow light at point D. 

This measurement was performed using a scanning near-field microscope (SNOM) [37]. 
TE-polarized light from a continuous-wave tunable laser source is injected into the PhC 
waveguide and an aluminum-coated near-field tip with an aperture diameter of 200nm is 
scanned over the sample at a distance of 20nm. By mixing the light picked up by the tip with a 
frequency-shifted reference beam of known linear polarization, the amplitude, phase and 
polarization of the evanescent electric field can all be measured simultaneously with a 
heterodyne detection scheme. The tip is scanned along the entire length of the waveguide, 
above the waveguide axis. The measurement was repeated at wavelengths from 1540nm to 
1555nm and 1558nm and 1564nm in steps of 0.2nm. 

The extracted amplitude of the electric field is shown in Fig. 6(a) and shows a clear 
distinction between the two types of slow light (Fig. 6(b) shows the experimentally measured 
group index curve for the same device). Light enters the waveguide from the left and 
propagates to the right. In the fast light regime (point A in Fig. 6), the characteristic Bloch 
mode propagates along the waveguide. The interference effect inherent to a Bloch mode gives 
rise to a modulation that encompasses 4-5 lattice spacings. As the group index increases, there 
is a rise in detected amplitude reaching a maximum at point B, as expected in the slow light 
regime [38]. Additionally, close to this maximum, a small number of randomly distributed 
peaks in amplitude begin to form, superimposed on the regular Bloch structure. These peaks 
have a spatial extent of several 10s of micrometers and we attribute them to the onset of weak 
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localisation. With a further increase in wavelength (C in Fig. 6), the group index decreases 
again and the more uniform distribution is regained. Note that the slow modulation, due to 
interference of forward- and backward-propagating Bloch components, now becomes more 
widely spaced (approximately 10 lattice spacings), as is characteristic for Bloch modes close 
to the bandedge due to the magnitude of the wavevector difference between the forward- and 
backward-propagating components decreasing when the bandedge is approached. As the 
wavelength comes close to the bandedge (D in Fig. 6), the amplitude pattern changes again. 
We observe a rise in amplitude, accompanied by a large number of random hotspots which are 
smaller in size than the hotspots observed in the anticrossing regime, indicating strong 
localization and multiple scattering [34]. 

Using our model, we can predict the corresponding loss for the waveguide, shown in Fig. 
6(c). It should be noted that as our model is based on perturbation theory, it cannot 
quantitatively predict the occurrence of multiple scattering. However, as multiply scattered 
light is a subset of backscattered light, we can place an upper limit on the amount of multiple 
scattering that occurs. In essence, regions of weak backscattering cannot exhibit strong 
multiple scattering. 

The comparison between the anti-crossing regime (B) and the bandedge regime (D) is very 
informative. Near the band edge, extremely high loss (predominantly backscattering) is 
predicted, in excellent agreement with the short localisation length and the many localisation 
hotspots observed. In the anti-crossing regime, the predicted loss is orders of magnitude lower 
leading to multiple scattering with very long localisation lengths and fewer localisation 
hotspots. It is also interesting to note that a much higher group index is measured in the anti-
crossing regime (see Fig. 6(b)) by virtue of the stronger transmission. 

The good agreement between model and experiment allows us to draw two important 
conclusions. The first is that our model is able to qualitatively explain the onset of multiple 
scattering via the backscatter coefficient; if the backscatter coefficient is larger, the multiple 
scattering regime is entered for lower group indices. The second is that in the anticrossing 
regime, multiple scattering plays a much smaller role than in the bandedge regime, so multiple 
scattering cannot be held responsible for the sudden onset of loss shown in Fig. 4(a). 

5. Discussion 

The motivation for the structural modification applied to the photonic crystal waveguides 
described in this paper (Figs. 1 and 4) was initially to engineer their dispersion and to achieve 
a flatband region of constant group index. It is now clear, however, and much better 
understood, that the dispersion engineering also leads to loss engineering via the modification 
of the modal field distribution and the backscatter coefficient ρ. For example, these loss and 
dispersion engineered devices have already demonstrated their superiority over standard 
photonic crystal waveguides, both with respect to propagation loss and group index bandwidth 
product, by enabling the enhancement of nonlinear effects [7,39] and the demonstration of 
high bit-rate (100Gbit/s) delay lines with lower loss than those based on silicon wires [2]. The 
latter point is particularly noteworthy and has already been pointed out in [32], where we have 
highlighted the importance of the loss per unit time in dB/ns as the figure of merit for slow 
light waveguides. Clearly, if the objective is to slow light down and to store it in the structure 
for a given period of time, then the loss per unit time is the important parameter and the loss 
per unit length becomes less relevant. Consequently, when comparing the loss per unit time, 
we have noticed that our dispersion/loss engineered structures offer the lowest value for any 
high refractive index contrast structure. The best losses for microring-based coupled resonator 
optical waveguides in silicon are in the range of 44-60 dB/ns, while our photonic crystal 
waveguides achieve 25-40 dB/ns [32]. 

To demonstrate that further advances are possible through implementing the loss 
engineering concepts introduced here, we show two examples in Fig. 7. Figure 7(a) represents 
a design that enables maintaining the linear loss-dependence up to higher group indices, 
which is particularly important for nonlinear applications. Figure 7(b) shows a design that 
allows the reduction of the loss per unit time. Both of these designs would not have been 
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possible without understanding the loss issue and describing it by the comprehensive model as 
we have done here. Both examples also demonstrate that further improvements in the 
performance of photonic crystal based devices are possible that do not require improvements 
in the fabrication processes. 

 

Fig. 7. a) Calculated loss curve for s1 = 0.10a, s2 = 0.05a and r = 0.286a. The curve shows that 
the propagation loss can be kept linear with respect to ng for group indices in excess of 50. b) 
Calculated loss per unit time for a structure with s1 = 0.10a, s2 = 0.08a, r = 0.286a and r2 = 
0.240a highlighting that the loss per unit time can be reduced further (20dB/ns). Where s1 and 
s2 are the lateral shifts of the 1st and 2nd row respectively and r2 is the radius of the second 
row, following [32]. 

Conclusion 

We have developed a new understanding of the origin of extrinsic losses in slow light 
structures based on high contrast waveguides, especially silicon photonic crystal waveguides. 
More importantly, we have developed a new model that can guide new designs that should 
exhibit even lower losses without having to improve the fabrication technology. The model is 
a simple perturbation model based on the Lorentz reciprocity theorem that treats scatterers as 
radiating dipoles and is able to fully describe the complicated loss-dependence observed 
experimentally for structurally engineered slow light waveguides. These waveguides have 
proven to be a very good model system for studying slow light-related losses in general by 
allowing us to gain a clear understanding of the physical mechanisms involved. We have 
clarified the balance between radiation and backscatter losses and shown that the impact of 
the latter can be reduced significantly by appropriate design, at least within a limited operating 
window. 

The work proves that the technological parameters and group index alone are insufficient 
to describe the loss-dependence of a particular type of waveguide, and that the mode shape 
has a significant impact on losses. This observation is in agreement with previous work 
[22,23] but we add the key point that phase, via the coherence length, matters more than 
previously assumed. We show that scattering across an individual hole adds coherently, while 
scattering from neighbouring holes adds incoherently, i.e. the coherence length is given by the 
circumference of the hole. This is a key aspect as it leads to a reduction of the backscattering 
coefficient ρ with increasing group index, which allows the reduction of propagation loss 
through appropriate waveguide design. 

Having established this comprehensive understanding, we provide an equation as a tool for 
developing novel waveguide designs that may control the backscatter coefficient ρ even more 
effectively and show that further improvements are possible by optimising the current design. 
Looking ahead, other designs may be conceived that will further develop the concept of “loss 
engineered” slow light waveguides described here and that can take the current performance, 
which already represents the lowest loss high refractive index contrast slow light devices, to 
even higher levels. 
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