
THE DESATURASE GENE FAMILY:
AN EVOLUTIONARY STUDY OF PUTATIVE SPECIATION GENES

IN 12 SPECIES OF DROSOPHILA

Maria C. Keays

A Thesis Submitted for the Degree of PhD
at the

University of St. Andrews

2011

Full metadata for this item is available in
Research@StAndrews:FullText

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/2478

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/2478


The desaturase gene family: an
evolutionary study of putative

speciation genes in 12 species of
Drosophila

Maria C. Keays

This thesis is submitted in partial fulfilment for the degree of

PhD

at the

University of St Andrews

June 2011



The desaturase gene family: an evolutionary

study of putative speciation genes in 12 species of

Drosophila

Abstract

The formation and persistence of species are the subject of much debate among

biologists. Many species of Drosophila are behaviourally isolated, meaning that

heterospecific individuals are not attracted to one another and do not interbreed.

Often, this behavioural isolation is at least in part due to differences in pheromonal

preference. Drosophila pheromones are long-chain cuticular hydrocarbons (CHCs).

Desaturases are enzymes that are important for the production of CHCs. This thesis

investigates the evolution of the gene family across 12 species of Drosophila. Desat-

urase genes were located in all species. Some genes, those that have previously been

shown to have important roles in pheromonal communication, have experienced du-

plication and loss in several species. Two previously undiscovered duplicates were

identified. Generally the desaturase gene family is governed by purifying selection,

although following duplication these contraints are relaxed and in some cases dupli-

cated genes show compelling evidence of positive selection. One of the loci under

positive selection, the novel duplicate desat1b of the obscura group, was found to

have a sex-biased expression pattern and alternative splicing in its 5′ UTR. In RNAi

knock-down experiments of desaturase gene function in D. melanogaster, several de-

saturases were shown to affect CHC profiles of males and females, including some

that were previously unlinked to CHC production.
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Chapter 1

Introduction

1.1 Reproductive isolation and speciation

Questions regarding the formation and persistence of species have long been the

subject of much debate among biologists (Wu and Ting, 2004). According to Mayr

(1942), species are “groups of interbreeding natural populations that are reproduc-

tively isolated from other such groups”. When reproductive isolation arises, gene

flow between the populations is reduced until eventually it no longer occurs. Re-

productive isolation is the result of genetic “barriers”, which prevent gene flow, as

opposed to physical barriers which do not allow species to come into contact with

one another (Wu and Ting, 2004).

Mechanisms by which reproductive isolation acts may be classified as pre-mating

or post-mating. Post-mating mechanisms include those that contribute to problems

during fertilisation, or to sterility or inviability of resulting hybrid offspring (Coyne

and Orr, 2004). Studies of hybrid sterility and inviability have found that the

process of hybrid sterility evolves far more rapidly than that of inviability (Wu

and Ting, 2004). Isolation can arise as a result of cytoplasmic incompatibilities,

via chromosomal rearrangements that lead to problems during meiosis in hybrid

offspring, or because of incompatibilities caused by individual “speciation genes” in

the two species (Wu and Ting, 2004). Many arthropod species are infected with

bacteria of the genus Wolbachia, which inhabit the egg cytoplasm, and have been

found to cause post-zygotic reproductive isolation via cytoplasmic incompatibility

1



1.1. Reproductive isolation and speciation 2

in mosquitoes, Drosophila and Nasonia (Breeuwer et al., 1992; O’Neill et al., 1992;

Rousset et al., 1992; Werren and Jaenike, 1995). Work by Noor et al. (2001) on

Drosophila pseudoobscura and its sister species Drosophila persimilis suggests that

chromosomal inversions between closely-related species create linkage groups that

cause sterility in hybrid offspring, and allow species to remain separate in the face

of gene flow.

Isolating mechanisms or barriers that act before mating include various ecological

barriers, such as isolation via breeding season – if two species breed at different times

of the year they will not mate interspecifically (Coyne and Orr, 2004). In plants,

a difference in pollinator will cause pre-mating isolation because pollen will not be

transferred between plants that do not share pollinators (Kephart and Theiss, 2004;

Rieseberg and Wendel, 2004). Mechanical incompatibilities between individuals can

also be a contributor in pre-mating isolation, for example physical incompatibility

between male and female genitalia, as has been demonstrated in millipedes (Tanabe

and Sota, 2008).

1.1.1 Behavioural isolation

Species can also be behaviourally isolated. This means that they do not mate het-

erospecifically due to a lack of attraction between the opposite sexes of different

species (Coyne and Orr, 2004; Wu and Ting, 2004). Conspecific males and females

recognise one another in many different ways, via visual, auditory, or chemosensory

stimuli (or some combination thereof). These cues have been shown to be impor-

tant in maintaining species boundaries in many different taxa. For example, several

studies in butterflies have shown that differences in male wing patterning has a

large effect on the mate preference of females, who prefer males of their own species

(Silberglied and Taylor, 1978; Wiernasz and Kingsolver, 1992). Wiernasz and King-

solver (1992) demonstrated that artificially colouring a heterospecific male to look

like a conspecific one made them much more acceptable to the females, proving that

wing patterning is largely responsible for reproductive isolation.

Auditory stimuli have also been found to contribute to behavioural isolation in

a great many species. In lots of species of Drosophila, males “sing” to females as



1.1. Reproductive isolation and speciation 3

part of the courtship ritual, using wing vibrations to produce sound. The songs

are species-specific, and it has been demonstrated that females prefer the songs of

conspecific males over those of heterospecific ones (Ritchie et al., 1999). Song has

been found to influence reproductive isolation in other insects, such as crickets (Hoy

and Paul, 1973). It is also an important factor in many other species, such as birds

(Catchpole, 1987), and frogs (Ryan and Rand, 1993).

Chemosensory stimuli in the form of pheromones are an important contributor

to reproductive isolation between many species. Communication via chemical sig-

nalling between individuals has been studied in depth for many years. The term

“pheromone” was coined by Karlson and Butenandt (1959), to distinguish them

from hormones, which remain within an individual organism. Pheromones are sub-

stances that are secreted to the outside, and that provoke a reaction in another

individual of the same species. Pheromone secretion can occur in a specific gland,

or as a cuticular excretion. Their mode of reception may be olfactory or oral. Bind-

ing of the pheromone molecule to the receptor initiates a signalling cascade which

ultimately leads to a behaviour in the receiving individual (Karlson and Butenandt,

1959; Wilson and Bossert, 1963). Pheromones are used by an enormous number of

diverse taxa, including mammals, reptiles, insects and other arthropods, and have

many different functions. Among these functions are mate recognition, territory

marking, kin recognition, and attracting other members of the species to a food

resource (Symonds and Elgar, 2008). The two closely-related moth species Ostrinia

nubilalis andO. furnicalis use different blends of volatile hydrocarbon molecules as

sex pheromones. The difference between the two species was demonstrated to be due

to the activity of enzymes called desaturases, which are involved in the production

of these molecules. Different types of desaturase are used during hydrocarbon syn-

thesis, causing the resulting pheromones to differ between the two species (Roelofs

et al., 2002). Desaturases also have important roles in Drosophila sex pheromone

synthesis (Chertemps et al., 2006; Dallerac et al., 2000; Ferveur et al., 1996; Wicker-

Thomas et al., 1997). The action of two desaturases in D. melanogaster, Desat1 and

DesatF, is shown in Figure 1.1. Drosophila pheromones are waxy, long-chain hydro-

carbons which are secreted onto the fly cuticle. These non-volatile compounds form
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a blend which is species-specific and in some species, such as D. melanogaster, is

sexually dimorphic. They have been shown to be major contibutors to reproductive

isolation between many species of Drosophila (Cobb and Jallon, 1990).

Figure 1.1: The enzymes Desat1 and DesatF are involved in the synthesis of D.

melanogaster sex pheromones. Further explanation of the action of the desaturases

is given in Chapter 2.

1.2 Gene family evolution

The desaturases form a gene family with orthologs across a great many diverse taxa,

including mammals, fish, arthropods, and plants (Nakamura and Nara, 2004). Gene

families grow by accumulating members via gene duplication, and shrink through

gene loss. Following a duplication event, there is thought to be a period of relaxed

selection on the duplicated gene, allowing it to accumulate mutations. Ultimately,

the fate of duplicated genes is dependent upon the selective pressures acting on

them. If the new duplicate is not required or has a negative effect on the fitness of

the organism, it will become silenced by the accumulation of detrimental mutations.



1.3. Thesis objectives 5

This is known as pseudogenisation, or nonfunctionalisation. On the other hand, the

new duplicate may acquire a novel, advantageous function as it accumulates muta-

tions. This would lead to it being favoured by positive natural selection, or adaptive

evolution, and is known as neofunctionalisation. The other copy would retain the

original function. Finally, in subfunctionalisation, both copies may accumulate mu-

tations but in different regions of their sequences, so that each copy ends up with a

different function, but together they still perform the original function (Lynch and

Conery, 2000; Lynch and Force, 2000; Ohta, 1994).

Studying the evolution of gene families across taxa by examining patterns of

duplication and loss, and measuring selective pressures, can provide insights into

their role in the evolution of species. In 2007, the complete genome sequences of 12

species of Drosophila (Figure 1.2) were released (Drosophila 12 Genomes Consor-

tium, 2007). This has provided researchers with new opportunities for studying gene

family evolution across a large amount of evolutionary divergence. Several studies

of Drosophila gene families, including odorant binding proteins and olfactory recep-

tors have been conducted so far (Fang et al., 2009; Gardiner et al., 2008; Guo and

Kim, 2007; Hahn et al., 2007; Vieira et al., 2007). In general they have found that

purifying selection is the dominant force governing gene families in these species,

although these constraints are often relaxed following duplication, and in some of

these cases positive selection has been detected.

1.3 Thesis objectives

The aim of this thesis is to investigate the evolution of the desaturase gene family

in the 12 sequenced species of Drosophila. In Chapter 2, I locate orthologs of nine

D. melanogaster desaturase loci among the species, and examine patterns of gene

duplication and loss. A comparative study of Drosophila desaturases was recently

released by Fang et al. (2009); my results concur with theirs, and go on to locate

novel duplicates in D. pseudoobscura, D. persimilis and D. ananassae. In Chapter

3, I analyse the loci found in the previous chapter to measure the selective pres-

sures acting on them, and find two cases of duplicated genes showing compelling
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Figure 1.2: Phylogeny of the 12 sequenced Drosophila species. Image from http:

//rana.lbl.gov/drosophila/ (Drosophila 12 Genomes Consortium, 2007).
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evidence for positive selection. One of these is desat1b, a novel duplicate unique to

D. pseudoobscura and D. persimilis. I attempt to further characterise this gene in

Chapter 4, by analysing its expression in males and females of both species in which

it was found. In Chapter 5, I use RNA interference of desaturase gene expression in

D. melanogaster, to remove the function of several different desaturase genes, and

examine the effects on the cuticlar hydrocarbon profiles of males and females.

The work in Chapters 2 to 4 is to be published in Molecular Ecology in the near

future (Keays et al., 2011).



Bibliography

Breeuwer, J. A. J., Stouthamer, R., Barns, S. M., Pelletier, D. A., Weisberg,

W. G. and Werren, J. H. (1992). Phylogeny of cytoplasmic incompatibility micro-

organisms in the parasitoid wasp genus Nasonia (Hymerioptera: Pteromalidae)

based on 16s ribosomal DNA sequences. Insect Molecular Biology, 1:25–36.

Catchpole, C. K. (1987). Bird song, sexual selection and female choice. Trends in

Ecology and Evolution, 2:94–97.

Chertemps, T., Duportets, L., Labeur, C., Ueyama, M. and Wicker-Thomas, C.

(2006). A female-specific desaturase gene responsible for diene hydrocarbon

biosynthesis and courtship behaviour in Drosophila melanogaster. Insect Molecu-

lar Biology, 15:465–473.

Cobb, M. and Jallon, J.-M. (1990). Pheromones, mate recognition and courtship

stimulation in the Drosophila melanogaster species sub-group. Animal Behaviour,

39:1058–1067.

Coyne, J. A. and Orr, H. A. (2004). Speciation. Sunderland, Massachusetts: Sinauer

Associates.

Dallerac, R., Labeur, C., Jallon, J.-M., Knipple, D. C., Roelofs, W. L. and Wicker-

Thomas, C. (2000). A ∆9 desaturase gene with a different substrate specificity

is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila

melanogaster. Proceedings of the National Academy of Sciences of the USA,

97:9449–9454.

Fang, S., Ting, C.-T., Lee, C.-R., Chu, K.-H., Wang, C.-C. and Tsaur, S.-C. (2009).

Molecular evolution and functional diversification of fatty acid desaturases af-

8



BIBLIOGRAPHY 9

ter recurrent gene duplication in Drosophila. Molecular Biology and Evolution,

26:1447–1456.

Ferveur, J.-F., Cobb, M., Boukella, H. and Jallon, J.-M. (1996). World-wide varia-

tion in Drosophila melanogaster sex pheromone: behavioural effects, genetic bases

and potential evolutionary consequences. Genetica, 97:73–80.

Gardiner, A., Barker, D., Butlin, R. K., Jordan, W. C. and Ritchie, M. G. (2008).

Drosophila chemoreceptor gene evolution: selection, specialization and genome

size. Molecular Ecology, 17:1648–1657.

Guo, S. and Kim, J. (2007). Molecular evolution of Drosophila odorant receptor

genes. Molecular Biology and Evolution, 24:1198–1207.

Hahn, M. W., Han, M. V. and Han, S. G. (2007). Gene family evolution across 12

Drosophila genomes. PLoS Genetics, 3:e197.

Hoy, R. R. and Paul, R. C. (1973). Genetic control of song specificity in crickets.

Science, 180:82–83.

Karlson, P. and Butenandt, A. (1959). Pheromones (Ectohormones) In Insects.

Annual Review of Entomology, 4:39–58.

Keays, M. C., Barker, D., Wicker-Thomas, C. and Ritchie, M. G. (2011). Signatures

of selection and sex-specific expression variation of a novel duplicate during the

evolution of the Drosophila desaturase gene family. Molecular Ecology, 20:3617–

3630.

Kephart, S. and Theiss, K. (2004). Pollinator-mediated isolation in sympatric milk-

weeds (Asclepias): do floral morphology and insect behavior influence species

boundaries? New Phytologist, 161:265–277.

Lynch, M. and Conery, J. S. (2000). The evolutionary fate and consequences of

duplicate genes. Science, 290:1151–1155.

Lynch, M. and Force, A. G. (2000). The origin of interspecific genome incompati-

bility via gene duplocation. The American Naturalist, 156:590–605.



BIBLIOGRAPHY 10

Mayr, E. (1942). Systematics and the origin of species. New York: Columbia

University Press.

Nakamura, M. T. and Nara, T. Y. (2004). Structure, function and dietary regulation

of ∆6, ∆5, and ∆9 desaturases. Annual Review of Nutrition, 24:345–376.

Noor, M. A. F., Grams, K. L., Bertucci, L. A. and Reiland, J. (2001). Chromosomal

inversions and the reproductive isolation of species. Proceedings of the National

Academy of Sciences of the USA, 98:12084–12088.

Ohta, T. (1994). Further examples of evolution by gene duplication revealed though

DNA sequence comparisons. Genetics, 138:1331–1337.

O’Neill, S. L., Giordiano, R., Colbert, A. M. E., Karr, T. L. and Robertson, H. M.

(1992). 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated

with cytoplasmic incompatibility in insects. Proceedings of the National Academy

of Sciences of the USA, 89:2699–2702.

Rieseberg, L. H. and Wendel, J. (2004). Plant speciation – rise of the poor cousins.

New Phytologist, 161:3–8.

Ritchie, M. G., Halsey, E. J. and Gleason, J. M. (1999). Drosophila song as a

species-specific mating signal and the behavioural importance of Kyriacou and

Hall cycles in D. melanogaster song. Animal Behaviour, 58:649–657.

Roelofs, W. L., Liu, W., Hao, G., Jiao, H., Rooney, A. P. and Jr, C. E. L. (2002).

Evolution of moth sex pheromones via ancestral genes. PNAS, 99:13621–13626.

Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. and Solignac, M. (1992).

Wolbachia endosymbionts responsible for various alterations of sexuality in arthro-

pods. Proceedings of the Royal Society of London Series B: Biological Sciences,

250:91–98.

Ryan, M. J. and Rand, A. S. (1993). Species recognition and sexual selection as a

unitary problem in animal communication. Evolution, 47:647–657.



BIBLIOGRAPHY 11

Silberglied, R. E. and Taylor, O. R. (1978). Ultraviolet reflection and its behavioral

role in the courtship of the sulfur butterflies Colias eurytheme and C. philodice.

Behavioural Ecology and Sociobiology, 3:203–243.

Symonds, M. R. E. and Elgar, M. A. (2008). The evolution of pheromone diversity.

Trends in Ecology and Evolution, 23:220–228.

Tanabe, T. and Sota, T. (2008). Complex copulatory behavior and the proximate

effect of genital and body size differences on mechanical reproductive isolation in

the millipede genus Parafontaria. The American Naturalist, 171:692–699.

Drosophila 12 Genomes Consortium (2007). Evolution of genes and genomes on the

Drosophila phylogeny. Nature, 450:203–218.

Vieira, F. G., Sánchez-Garcia, A. and Rozas, J. (2007). Comparative genomic anal-

ysis of the odorant-binding protein family in 12 Drosophila genomes: purifying

selection and birth-and-death evolution. Genome Biology, 8:R235.

Werren, J. H. and Jaenike, J. (1995). Wolbachia and cytoplasmic incompatibility in

mycophagous Drosophila and their relatives. Heredity, 75:320–326.

Wicker-Thomas, C., Henriet, C. and Dallerac, R. (1997). Partial characterization

of a fatty acid desaturase gene in Drosophila melanogaster. Insect Biochemistry

and Molecular Biology, 27:963–972.

Wiernasz, D. C. and Kingsolver, J. G. (1992). Wing melanin pattern mediates

species recognition in Pieris occidentalis. Animal Behaviour, 43:89–94.

Wilson, E. O. and Bossert, W. H. (1963). Chemical Communication among Animals.

Recent Progress in Hormone Research, 19:673–716.

Wu, C.-I. and Ting, C.-T. (2004). Genes and speciation. Nature Reviews Genetics,

5:115–122.



Chapter 2

The Desaturase Gene Family in 12

Species of Drosophila

2.1 Introduction

2.1.1 Chemical communication in insects

Much of the earlier work on insect pheromonal communication was carried out on

moths, due to their importance as agricultural pests (Roelofs and Bjostad, 1984).

In fact the first characterised sex pheromone was that of the moth Bombyx mori.

Named “bombykol”, it is a volatile long-chain hydrocarbon released by females, and

can be detected by males several kilometres away (Karlson and Butenandt, 1959;

Wilson and Bossert, 1963). It is a dienic hydrocarbon, containing two unsaturations

along its length. Over subsequent decades, many more Lepidopteran pheromones

have been identified, and most of them are also long-chain hydrocarbons possessing

between 1 and 3 unsaturations in varying positions (Roelofs and Bjostad, 1984;

Roelofs and Rooney, 2003). These unsaturations are created by enzymes called

desaturases.

Desaturase enzymes interact with cytochrome-b5 and cytochrome-b5-reductase

in an electron transport reaction which creates an unsaturation in a hydrocarbon

chain. Desaturases typically reside within a membrane and as such their secondary

structure comprises four transmembrane helices. The amino acid sequence of a

12
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desaturase also contains three highly conserved “histidine boxes”, which are thought

to come together in the three-dimensional structure of the enzyme and bind an iron

atom, forming part of the putative active site (Nakamura and Nara, 2004). More

recently, studies have found that the pheromones of Drosophila also take the form

of long-chain hydrocarbons, and that desaturase enzymes also play a pivotal role in

their biosynthesis.

2.1.2 Drosophila courtship and cuticular hydrocarbons

Drosophila courtship involves a number of different behaviours which are mediated

by various cues. A male may first be attracted to a female by a visual cue, which

leads to “orientation” behaviour: the male begins to follow the female. The male

will try to touch the female with a foreleg, detecting phermones on the cuticle

of the female’s abdomen. If the pheromones are attractive to the male he will

progress further in courtship by “singing” – vibrating one of his wings to produce

sound – and by licking the female’s genitalia with his proboscis (Greenspan and

Ferveur, 2000; Hall, 1994). The female is also able to detect the male’s pheromones,

and is thought to base her decision on whether to mate on a combination of her

preference (or lack thereof) for his song and his pheromones (Ferveur et al., 1997;

Grillet et al., 2006). Drosophila pheromones take the form of long-chain fatty acid

hydrocarbons that are secreted onto the fly cuticle by cells called oenocytes (Ferveur,

2005; Ferveur et al., 1997; Jallon, 1984), and are known as cuticular hyrocarbons

(CHCs). As well as acting as sex pheromones, they are thought to be important

in insect physiology, playing roles in traits such as cold tolerance and resistance to

desiccation (Rouault et al., 2000). CHCs may be saturated – with no double bonds –

or they may be unsaturated, containing one or two double bonds (unsaturations) at

specific positions. Mono-unsaturated CHCs are called monoenes, and di-unsaturated

ones are called dienes. Fly pheromones are blends of many different CHCs, which

are species-specific. Certain species of the Drosophila melanogaster subgroup (for

example D. melanogaster, D. sechellia and D. erecta), are sexually dimorphic with

respect to their CHCs. The CHCs of males and females have different numbers

of unsaturations: males of the melanogaster subgroup tend to have high levels of
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monoenes – meaning they contain one unsaturation – while females tend to have a

CHC profile rich in dienes (Chertemps et al., 2006; Cobb and Jallon, 1990; Dallerac

et al., 2000). This is not true for all species however, for example D. simulans, D.

mauritiana and D. yakuba, which are sexually monomorphic. In these species, the

males and females share the same, monoenoic, CHCs (Chertemps et al., 2006; Cobb

and Jallon, 1990; Jallon and David, 1987). The main CHCs of some species in the D.

melanogaster species subgroup are summarised in Table 2.1. CHCs have been shown

to be important in the courtship of species outside the D. melanogaster subgroup,

including D. ananassae (Doi et al., 1997), D. virilis (Liimatainen and Jallon, 2007)

and its close relatives (Liimatainen and Hoikkala, 1998), D. mojavensis (Etges and

Jackson, 2001) and D. grimshawi (Droney and Hock, 1998).

Main CHC

Species Strain Female Male

D
im

or
p
h
ic

D. erecta 9,23 TTCD 7 T

D. sechellia 7,11 HD 6 T

D. melanogaster Cosmopolitan 7,11 HD 7 T

Some African/Caribbean 5,9 HD 7 P

M
on

om
or

p
h
ic

D. simulans Central Africa 7 P 7 P

Elsewhere 7 T 7 T

D. mauritiana 7 T 7 T

D. yakuba 7 T 7 T

Table 2.1: The main CHCs of some species in the D. melanogaster subgroup. TTCD:

Tritricontadiene; HD: heptacosadiene; T: tricosene; P: pentacosene. After Cobb and

Jallon (1990).
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Cobb and Jallon (1990) found that males would court females from species

other than their own, or sometimes even other males, apparently based on their

CHC profile. For example, D. melanogaster and D. sechellia females both exhibit

high levels of 7,11-heptacosadiene (7,11-HD). Cobb and Jallon (1990) found that

D. melanogaster males would court D. sechellia females almost as much as, or in

some cases more than, they would court conspecific females. They also observed

that males from monomorphic species would court females from other monomor-

phic species, but would largely ignore females from dimorphic species. A small

amount of male-male courtship was observed, although interestingly the males show-

ing the highest amount of courtship towards other males were D. melanogaster ones

– perhaps surprisingly because their conspecific females have CHC profiles high in

dienes, and none of the male flies possess dienes. Also, D. melanogaster males court

D. erecta and D. sechellia males to roughly the same extent, though D. erecta males

possess 7-tricosene (7-T) and D. sechellia males have 6-T. Cobb and Jallon (1990)

therefore conclude that while some of their data provides evidence that CHCs are

important in mate recognition and courtship activity, many other factors, such as

visual and auditory perception for example, must be involved in inducing courtship

behaviour and in determining its outcome (Cobb and Jallon, 1990).

The evidence that CHC profiles are important in reproductive isolation was

later reinforced by Coyne et al. (1994), who showed that the courtship behaviour

of D. simulans males is strongly influenced by the type of CHC possessed by the

females, regardless of their species. As noted by Cobb and Jallon (1990), males of

D. simulans only very rarely court females of D. sechellia, who possess dienes. In

their experiment, Coyne et al. (1994) managed to transfer CHCs between females

of D. simulans and D. sechellia by crowding the flies together in vials. They found

that this crowding caused transfer of CHCs so that one female would acquire almost

half the amount of the predominant CHC of the other species. They demonstrated

that D. simulans males largely ignored conspecific females that had undergone the

transfer of CHCs with D. sechellia females and thus carried 7,11-HD, though at

the same time they would readily court ordinary D. simulans females. They note

that this pattern remained consistent even when the females were killed, meaning
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that the lack of courtship was not likely to have been due to some effect on female

behaviour caused by crowding. They also report that the opposite experiment, with

D. sechellia females who had acquired 7-T from the D. simulans females, in turn

showed promising results: the D. sechellia females carrying the 7-T induced more

courtship from D. simulans males than did the ordinary D. sechellia females. This

increase in attraction is not as pronounced as the decrease observed in the first part

of the experiment. They also carried out the same experiments using D. mauritiana

and D. melanogaster flies as well as D. simulans ones, and found that crowding of D.

simulans and D. mauritiana females (who also possess 7-T) made no difference to

the attractiveness of the D. simulans females to conspecific males; however crowding

D. simulans females with D. melanogaster females (with 7,11-HD) caused a marked

reduction in courtship behaviour from the D. simulans males (Coyne et al., 1994).

Similar “perfuming” experiments have been carried out in other species. Blows and

Alan (1998) performed a similar analysis on the closely-related species D. serrata

and D. birchii, and showed that CHC profile has a major influence on mate choice

in these two species; Etges and Ahrens (2001) used a perfuming experiment to

demonstrate that CHC profiles are important in the reproductive isolation between

different populations of D. mojavensis.

Further insight into the role of CHCs in courtship and reproductive isolation has

been gained via the study of transgenic D. melanogaster lines. Savarit et al. (1999)

produced lines in which they were able to induce, via heat-shock, over-expression of

the transformer (tra) gene, which is important in sex determination (Butler et al.,

1987). In females, this over-expression caused almost all CHCs, including all known

pheromonal compounds, to be completely eliminated. They performed mating ex-

periments using these females, with the expectation that they would be unattractive

to conspecific males. However, not only were they attractive to D. melanogaster

males, they were also actively courted by males of D. simulans, D. sechellia and

D. mauritiana. They found that while most CHCs are eliminated by the over-

expression of tra, five separate hydrocarbons are still produced. They suggest that

one or more of these could be an ancestral form of attractant, and that known

pheromones such as 7,11-HD reinforce this attraction in conspecifics, and repel het-
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erospecifics. Billeter et al. (2009) later managed to generate D. melanogaster flies

which lack oenocytes, and therefore cannot produce any CHCs. Their experiments

showed that oenocyte-lacking (oe−) females were actively courted by conspecific

wild type males, who in fact preferred them to wild type females. oe− males were

also courted by wild type D. melanogaster males. oe− females were attractive to

heterospecific males: D. simulans, D. yakuba and D. erecta males all courted them.

The importance of 7,11-HD as a reproductive isolation barrier was demonstrated by

coating oe− females with this compound and repeating these mating experiments

– this time they were unattractive to heterospecific males. In another experiment,

they treated oe− females with different amounts of 7,11-HD and cis-vaccenyl acetate

(cVA), the male aversive pheromone. They found that while cVA delayed mating,

7,11-HD appeared to counteract its effect. They suggest that this could be a case

of sexual conflict, whereby 7,11-HD solicits further matings despite the cVA left

behind by the previous male. They hypothesise that, given both male and female

oe− flies are sexually attractive to wild type males, CHCs act to confer sexual iden-

tity onto an otherwise attractive fly substrate. They show that in D. melanogaster

7,11-HD has multiple functions – reinforcing attraction in conspecifics, and repelling

heterospecifics.

2.1.3 The desat1 locus

The enzyme Desat1 is known to be responsible for the introduction of the double-

bond in monoenes, and for the first double-bond in dienes, at least in D. melanogaster

and its close relatives (Figure 1.1). It was first isolated by Wicker-Thomas et al.

(1997), and its amino acid sequence found to contain the highly conserved histidine-

rich regions essential for desaturase action. Later, Dallerac et al. (2000) showed that

it is able to create unsaturated fatty acid precursors of ω7 hydrocarbons, like those

used in CHC biosynthesis.

Marcillac et al. (2005a) generated mutant D. melanogaster flies with a PGal4

transposon inserted into the regulatory region of desat1. They show that this mu-

tation disrupted the expression of desat1 in homozygous mutants, with the result

that they produced between 70 and 90% fewer sex pheromones than control flies.
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They also found that sex-specific differences were almost completely removed in the

mutant flies. They were able to rescue the pheromonal phenotypes of mutants by

creating alleles with all or most of the inserted transposon removed, showing that

the presence and size of the insertion affected the expression and function of desat1.

In the same study, Marcillac et al. (2005a) also detected five individual splice iso-

forms of the desat1 gene in control flies, each with a different non-coding exon at

the 5′ end. Three minor transcripts showed variation between males and females,

while the most prevalent transcript showed no discernible sexual dimorphism. In the

mutant flies, levels of all transcripts were greatly reduced. They also analysed the

desat1 transcripts of D. simulans, which does not show sexually dimorphic CHCs,

and report that the two transcripts exhibiting sexual dimorphism in D. melanogaster

were not found in D. simulans. This indicates that these desat1 transcripts have a

role in influencing sex-specific CHCs in D. melanogaster.

Work from the same research group also indicates that as well as being respon-

sible for creating sex pheromones, desat1 has a role in their perception. (Marcillac

et al., 2005b). The same mutant flies were used, with the transposon inserted in the

desat1 regulatory region. They show that not only is the production of unsaturated

CHCs greatly reduced by this, making mutant males and females indistinguishable

to control males, but also that mutant males were unable to distinguish between con-

trol males and females in mating experiments. They find that desat1 is expressed

in tissues involved in detecting sex pheromones, as well as in the oenocytes, which

produce CHCs. Both mutant phenotypes – the reduction in unsaturated CHCs

and the disrupted perception – were rescued by excising the transposon. These in-

triguing results indicate that the regulatory region of desat1 may have been shaped

by evolution to produce pleitropic activity (Bousquet et al., 2009; Marcillac et al.,

2005b). Further work on this phenomenon by Houot et al. (2010) has shown that

distinct desat1 regulatory regions and/or transcripts are separately controlling the

production and perception of CHCs in D. melanogaster.
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2.1.4 The desatF locus

The formation of the second double-bond of dienic CHCs, as found in D. melanogaster

and D. sechellia females, requires a second desaturation step which is performed by

a second desaturase enzyme (Figure 1.1; Gleason et al., 2005). Previous studies in-

dicated that the gene responsible for the sexual dimorphism was likely to reside on

the third chromosome in D. melanogaster, in region 67E–69B (Coyne, 1996; Glea-

son et al., 2005). Chertemps et al. (2006) have recently characterised a gene in this

region that is probably responsible for the dimorphism in D. melanogaster. They

name it desatF. Using Northern blot analysis, they found that it is only expressed in

females of D. melanogaster and D. sechellia, which have high levels of dienes. They

detected no expression in D. simulans females or males, despite the gene being

present in the genome and the probe hybridising strongly to D. simulans genomic

DNA although it was based on the D. melanogaster sequence.

To discover whether desatF was likely to have an effect on CHC biosynthe-

sis, Chertemps et al. (2006) used RNA interference (RNAi) knock-down to try

and block the expression of the gene, and also overexpression of desatF using the

GAL4/UAS system, which enables targeted expression of genes of interest (Duffy,

2002). They found that RNAi knockdown of desatF in females caused a dramatic

drop in the amounts of 7,11-HD (−83%) and another diene, 7,11-nonacosadiene

(7,11-ND) (−85%). This was accompanied by a large increase in the amounts of

monoenes. Overall, they note that the increase in monoenes (550ng) was almost

equal to the decrease in dienes (594ng). This supports the idea that desatF is re-

sponsible for production of the second double bond in dienes. The overexpression

analysis points to a similar conclusion: it produced an increase in 7,11-HD of 57%,

and a decrease of 50% in 7-T.

Chertemps et al. (2006) also tested the effect of the RNAi knockdown and overex-

pression of desatF in females on the courtship behaviour of males. They found that

females with overexpressed desatF induced 60% more copulation attempts than

control females, while the RNAi knock-down treatment caused a decrease in the

number of copulation attempts and the amount of courtship, accompanied by a

higher courtship latency. They also induced feminisation of male CHCs by express-
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ing the transformer gene. They detected a large amount of desatF expression in

males that had undergone the feminisation, whereas there was none in control males.

The overexpression and RNAi knock-down treatments in males did not produce any

differences in the CHC profile. This is not surprising given that no desatF expres-

sion was detected in males. Chertemps et al. (2006) propose that the lack of effect

of overexpression suggests that either the substrate required by desatF is not avail-

able in males, or that the product of desatF cannot be elongated to make the final

pheromone product. This in turn suggests that there must be other female-specific

genes involved that have not yet been characterised (Chertemps et al., 2006).

All the results from the experiments by Chertemps et al. (2006) indicate that

desatF has a crucial role in pheromone biosynthesis in D. melanogaster females.

The fact that it only appears to be expressed in females that have dienes as their

predominant CHCs suggests that its action contributes to behavioural isolation be-

tween sexually dimorphic and non-dimorphic species, and therefore its evolution

may have been important in speciation (Chertemps et al., 2006).

Further work on desatF has recently been carried out by Legendre et al. (2008).

In the experiments of Chertemps et al. (2006), although RNAi knock-down greatly

decreased the levels of 7,11-HD, it was not completely absent. This could have

been caused by a small amount of desatF expression if the RNAi did not block all

desatF transcripts, or perhaps due to the action of other genes which have not been

characterised (Chertemps et al., 2006). To try to solve this issue, Legendre et al.

(2008) crossed D. simulans males and D. melanogaster females to create hybrid

females – some that were wild-type, and therefore had one working copy of desatF

from D. melanogaster, and some that carried a deletion in the region containing

desatF and therefore could not express the gene. They found that the hybrids with

the functional copy of desatF produced about half the level of dienes found in D.

melanogaster, but that a high proportion of them were shorter than ordinary D.

melanogaster ones. This indicates that perhaps the enzymes involved in elongation

of the hydrocarbons in diene-carrying females are sensitive to gene dosage (Legendre

et al., 2008). The hybrids with the deletion in the desatF region did not express

any dienes at all, therefore Legendre et al. (2008) concludes that desatF must be
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the only gene responsible for their production.

Chertemps et al. (2006) note that desatF is expressed in females of both 7,11-

HD- and 5,9-HD-carrying strains of D. melanogaster. Legendre et al. (2008) used

RNAi knock-down of desatF in females of a hybrid between the Tai and Canton-S

strains, to determine whether levels of 5,9-HD are affected and thus whether desatF

is also likely to be important for 5,9-HD production as well as that of 7,11-HD. The

resulting RNAi knock-down hybrid showed strong inhibition of both types of dienes,

accompanied by a large increase in 7- and 5-monoenes. This indicates that desatF is

able to act on both type of monoenes to produce each type of diene in either strain

of D. melanogaster.

Legendre et al. (2008) tested the effect of the different CHC profiles on courtship

behaviour. They found that D. melanogaster males actually showed reduced courtship

activity towards the hybrid females carrying the functional copy of desatF and there-

fore displaying dienes. They explain that this unexpected result may be due to the

fact that the dienes exhibited by these females are shorter than usual, and that this

is thought to have a detrimental effect on male courtship behaviour. The dienes

almost completely inhibited courtship behaviour in males of D. simulans, while the

females carrying the deletion, and therefore lacking in dienes, induced patterns of

behaviour similar to that observed towards D. simulans females (Legendre et al.,

2008).

Finally, Legendre et al. (2008) examined the DNA sequence variation at the

desatF locus between D. melanogaster and D. simulans, to determine whether the

promoter region of the D. simulans copy has mutations that would explain its lack of

expression in this species. They found many short insertions in the region 5′ to the

putative start codon in D. simulans, but apparently none that would interrupt any

of the transcription factor binding sites found. When comparing the coding regions

of the locus, they found that the codon usage bias and GC content were conserved

between the two species, indicating that the silencing of D. simulans desatF is likely

to be recent, and has not yet had much time to accumulate mutations. Overall,

Legendre et al. (2008) shows that this locus differs by roughly 25% between the two

species. Given that, on average, the two species differ from one another by between
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four and eight percent, a 25% difference is relatively large. Therefore, Legendre

et al. (2008) proposes that desatF has undergone rapid evolution in D. simulans

due to its silencing. This hypothesis has yet to be proven with further analysis of

the region.

Shirangi et al. (2009) examined the evolution of desatF expression in seven

species of Drosophila. They show, like previous studies, that it is expressed female-

specifically in D. melanogaster, in the oenocytes. They also examined the expression

in six other species, and find that its expression corresponds with diene production

in all species. It is female-specific in D. melanogaster and D. sechellia, and not

expressed in either sex of D. simulans or D. yakuba. It was found to be expressed in

both males and females of D. takahashii, D. serrata and D. pseudoobscura, in which

dienes are produced by both sexes. They show that the desatF gene has undergone

rapid evolution across the genus, documenting six separate instances of gene loss,

two modifications in sex-specific expression, and three separate instances of silenc-

ing without gene loss. They go on to discover that the rapid changes in desatF

expression pattern is due to gains and losses of a binding site for the Doublesex

transcription factor (Shirangi et al., 2009). The doublesex gene produces male- and

female-specific transcription factors which are responsible for regulating sex-specific

expression of many genes (Erdman et al., 1996). Shirangi et al. (2009) show that

desatF is under the control of Doublesex in D. melanogaster females, and that the

transitions in desatF expression from sexually monomorphic to dimorphic (and vice

versa), are directly affected by gains and losses of Doublesex binding sites in the

regulatory region of the gene. They suggest that these changes in desatF expres-

sion reflect changing regimes of sexual selection, and that desatF is a promising

candidate for a speciation gene affecting premating isolation in Drosophila.

2.1.5 The desat2 locus

The main cuticular hydrocarbon (CHC) in D. melanogaster females exhibits geo-

graphic variation, with females from west Africa and the Caribbean (known as “Z”

type) possessing one form, and females from the rest of the world (“Cosmopolitan”)

possessing the other. The two forms differ in the positions of the double-bonds found
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along the hydrocarbon chain: the Z females produce high levels of 5,9-heptacosadiene

(5,9-HD), whereas the Cosmopolitan ones produce 7,11-HD (Ferveur et al., 1996).

The gene thought to be responsible for this variation, desat2, was discovered by

Dallerac et al. (2000). They found it while looking for different desaturase isoforms

in two strains of D. melanogaster, to try to explain the observed difference in CHC

profiles (Dallerac et al., 2000). The strains they tested were Tai, a Z-type strain

from the Ivory Coast, and Canton-S, a Cosmopolitan-type strain from Ohio. They

found that this gene is expressed in females of the Tai strain only, and were unable

to detect a promoter region in the Canton-S strain. These results, along with the

fact that Coyne et al. (1999) had previously mapped the polymorphism to the same

chromosomal region, led them to suggest that its activity results in the production

of 5,9-HD in females of the Z type (Coyne et al., 1999; Dallerac et al., 2000). Their

conclusion was reinforced soon after by Takahashi et al. (2001), who discovered a

16bp deletion about 150bp 5′ to the translation start codon (the putative promoter

region) which shows a complete association with the high-5,9-HD phenotype.

It was initially assumed that, due to this deletion, the Cosmopolitan allele is in-

active, and that this inactivity allows for the production of 7,11-HD (Dallerac et al.,

2000; Takahashi et al., 2001). This was corroborated by the discovery by Takahashi

et al. (2001) that one African line with the 7,11-HD phenotype had a deletion and

a stop codon within the coding sequence of the desat2 gene. However, Coyne and

Elwyn (2006a) found that females carrying one Cosmopolitan-type allele, hemizy-

gous with a deficiency at the desat2 locus, produced less 7,11-HD than females

homozygous for the Cosmopolitan allele. This suggests that this allele may not be

completely non-functional (Coyne and Elwyn, 2006a). This finding is supported by

work by Michalak et al. (2007), who demonstrated via microarray analysis that the

gene is still transcribed in Cosmopolitan females, although it is down-regulated. The

CHC profile of the male flies is not affected by the polymorphism (Dallerac et al.,

2000).

Takahashi et al. (2001) also tested whether the worldwide spread of the Cos-

mopolitan allele, which contains the deletion, was likely to have been driven by nat-

ural selection. To do this, they used hitch-hiking analysis of the region surrounding
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the desat2 promoter to demonstrate that the African/Caribbean populations are

2.5–3 times as variable as the Cosmopolitan populations, in the region near to the

deletion. Thus, they conclude that the Cosmopolitan allele has been driven to

high frequency throughout the world by positive natural selection (Takahashi et al.,

2001).

The two races of D. melanogaster sometimes show asymmetric sexual isolation

when they exist in sympatry: Z-type females and Cosmopolitan males do not mate

readily with one another, whereas Cosmopolitan females and Z males do (Wu et al.,

1995). Coupled with the knowledge of the polymorphic CHC profile, it seems logical

that the observed sexual isolation is due to Cosmopolitan males failing to court the Z

females based on their lack of 7,11-HD due to their desat2 genotype. However, this

is probably not the case, for several reasons. One reason is that in Caribbean pop-

ulations whose females have the 5,9-HD phenotype, the pattern of sexual isolation

is not seen (Takahashi et al., 2001). Secondly, it is likely that the phenotypic differ-

ence is the result of more than one gene: Ting et al. (2001) showed, via construction

of recombinant lines carrying different lengths of Z-type and Cosmopolitan-type

segments of the third chromosome, that there are at least four loci from this chro-

mosome contributing in some way to the overall Z-type behaviour (Takahashi and

Ting, 2004; Ting et al., 2001). Also, Greenberg et al. (2003) showed that reintroduc-

tion of the Z-type allele to an otherwise Cosmopolitan genome restores only about

half of the level of 5,9-HD seen in Z lines. This indicates that although desat2 seems

to be the main gene affecting this phenotype, there are likely to be other genes con-

tributing in the Z females (Greenberg et al., 2003). Thirdly, and perhaps most im-

portantly, studies of mating behaviour have shown that it is the Z-type females who

show the discriminatory behaviour, and not the Cosmopolitan-type males. Coyne

and Elwyn (2006a) found that, during no-choice tests where a Z-type female and

a Cosmopolitan-type male were observed at intervals over a three-hour period, the

courtship activity of the male remained constant. They therefore conclude that any

sexual isolation between the two strains must be mainly down to discrimination by

the females, not the males (Coyne and Elwyn, 2006a). Grillet et al. (2006) showed

that females discriminate against males on the basis of their CHCs, so it is likely
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that the Z-type females are repelled by the CHCs of the Cosmopolitan males.

It seems unlikely desat2, a gene which affects the CHC profile of females and

not males, could also somehow affect female selectivity in the Z populations and at

the same time produce a male phenotype that is preferred by Z females (Coyne and

Elwyn, 2006a). However, Greenberg et al. (2003) proposed that desat2 causes this

reproductive isolation as a by-product of selection for a stress-resistance phenotype.

They created transgenic lines possessing either the Z-type desat2 gene (ds2Z) or the

Cosmopolitan-type one (ds2M), and subjected the flies to environmental stress such

as cold temperatures, starvation, and desiccation. They reported strong evidence

that both males and females of the ds2Z-carrying flies were less cold-resistant and

more starvation resistant than the ds2M -carrying ones. They did not find any differ-

ence in the desiccation resistance of either line (Greenberg et al., 2003). Greenberg

et al. (2003) therefore conclude that desat2 is likely to be involved in ecological adap-

tation as well as sexual isolation. This conclusion was later challenged by Coyne

and Elwyn (2006a), who report that they were unable to replicate these results. In

fact, they report that in two of the cold tolerance tests the result was statistically

significant in the opposite direction to that expected, with Z flies surviving better

than Cosmopolitan ones. They also report inconsistencies in the starvation tests,

again finding some results opposite to those expected (Coyne and Elwyn, 2006a).

They propose that the discrepancy between their findings and those of Greenberg

et al. (2003) may be attributable to the likely quantitative nature of stress tolerance

traits, which can be affected by many loci that vary between the different strains

used in the construction of the transgenic lines. They therefore conclude that desat2

may not play any role in stress resistance, and the differences reported by Greenberg

et al. (2003) and Coyne and Elwyn (2006a) are simply down to the differences in the

genetic background, or that it plays a very minor role that cannot be discerned in

these experiments due to the effects of variation in the genetic background (Coyne

and Elwyn, 2006b). The adaptive significance of the different desat2 alleles is still

being debated. It remains to be seen whether either allele conveys some kind of eco-

logical advantage in its respective environment, and to what extent it contributes to

sexual isolation between Z-type females and Cosmopolitan-type males (Coyne and
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Elwyn, 2006a).

Michalak et al. (2007) carried out microarray analyses of Cosmopolitan and Z fe-

males, to determine which genes show differential expression between the two races.

They also compared microarray expression data from mated and non-mated Z fe-

males, to see if mating experience affected the gene expression pattern. This may

help to shed light on what it is that causes the discriminatory behaviour of these

females towards the Cosmopolitan males (Michalak et al., 2007). They discovered

45 genes that had simultaneously different expression profiles between Z-type and

Cosmopolitan females and between mated and unmated Z females. For desat2, they

were able to confirm that it is over-expressed in Z females relative to Cosmopolitan

ones – and as mentioned above they found that contrary to what was previously

thought, desat2 is expressed in Cosmopolitan females despite its deletion, though

it is down-regulated. However, they did not detect a significant difference in the

expression pattern of desat2 between mated and unmated Z-type females (Micha-

lak et al., 2007). This indicates that if desat2 is involved somehow in the sexual

isolation, its action is probably not affected by mating experience. Of the remain-

ing candidate genes identified by Michalak et al. (2007), one was Odorant receptor

63a (Or63a), which plays an important role in olfaction and mate recognition in

Drosophila. In their analyses, Or63a was downregulated in Z-type females com-

pared with Cosmopolitan-type ones, and simultaneously suppressed in mated Z-type

females relative to nonmated ones. This shows the pattern they were expecting –

a Z-type characteristic appears to be “reinforced” after mating. This gene, along

with the others on their list, could be a potential candidate for explaining the sexual

isolation between Z-type and Cosmopolitan populations (Michalak et al., 2007).

2.1.6 Twelve Drosophila genomes

In 2007, the complete genome sequences of 12 Drosophila species became publicly

available (Drosophila 12 Genomes Consortium, 2007). This has provided evolution-

ary biologists with a new opportunity to examine the evolution of gene families

across this genus, spanning a large amount of divergence.

In this chapter, comparative genomics techniques are employed in an attempt
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to discover orthologs of the well-studied, and less well-studied, D. melanogaster

desaturase loci among the 12 species. A similar study was published in 2009 by Fang

et al., in which the authors used a combination of homology searching and synteny

analysis to identify desaturase orthologs among the same 12 species. The work

presented in this chapter concurs with many of the findings of Fang et al. (2009),

and goes on to reveal previously undiscovered desaturase loci in three species. A

summary of the work presented in this chapter appears in Keays et al. (2011).

2.2 Methods

2.2.1 D. melanogaster desaturases

An “All Text” search among the D. melanogaster loci in FlyBase (Wilson et al.,

2008) for “desaturase” currently returns 13 results. Of these, four are well-studied

and known not to code for enzymes involved in CHC manufacture: infertile crescent

(ifc), schnurri (shn), tra and white (w). Of the remaining nine, six are annotated

as having “stearoyl-CoA 9-desaturase activity”: desat1, desat2, desatF, CG8630,

CG15531, CG9743. Another, CG9747, is anotated with “acyl-CoA ∆11-desaturase

activity”, and a further two loci (CG17928 and Cyt-b5-r) are annotated simply with

“fatty acid desaturase activity”. These nine loci were then used as query sequences

in BLAST searches against the 12 genomes.

2.2.2 Reciprocal BLAST

All sequences were downloaded from FlyBase: the protein sequences of the nine

D. melanogaster loci, the 12 whole genome sequences, and files containing pre-

dicted genes and their translations (Drosophila 12 Genomes Consortium, 2007).

All BLAST searches were performed using a local installation of blastall version

2.2.21 (Altschul et al., 1990). BLAST databases were created with formatdb using

the whole genome Fasta files from FlyBase.

Each of the nine D. melanogaster protein sequences was used as the query in

a TBLASTN search against each of the 12 genomes. The TBLASTN program
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takes a protein sequence as the query against a DNA database. The DNA se-

quences are translated in all six possible reading frames, and the translations are

compared with the query sequence. This method is more sensitive than a nucleotide-

nucleotide BLAST, which, due to the degeneracy of the genetic code, might miss

more distantly-related sequences which had divergent nucleotide sequences but more

similar amino acid sequences. Thus, TBLASTN enables the detection of both

closely- and distantly-related loci. The alignments in each TBLASTN output file

was assessed manually to obtain the positions of potential start and end codons, and

the corresponding sequence was copied from the whole genome sequence using Perl.

The next step is to locate the exon-intron boundaries, so that the coding sequence

could be determined.

GeneWise version 2.2.0 (Birney et al., 2004) was used to align each nucleotide

sequence obtained in the first round of TBLASTN to the D. melanogaster amino acid

sequence used as the query. The GeneWise output shows the predicted positions of

the intron-exon boundaries in the nucleotide sequence. These positions were used to

create the coding sequence, which was in turn translated to give the putative amino

acid sequence. The GeneWise and translation stages also enabled identification of

any premature stop codons, which would indicate pseudogenisation.

The amino acid sequence was then used to do a reciprocal TBLASTN search:

back against the D. melanogaster nucleotide database. If the top hit in this search

was the locus used as the query in the initial round of TBLASTN, then the new

locus was taken to be an ortholog of the D. melanogaster locus.

2.2.3 Further ortholog detection

MEME and MAST (Bailey et al., 2006) were used to detect any orthologs that may

have been missed in the reciprocal BLAST. MEME is a tool for detecting shared,

ungapped patterns in a set of nucleotide or amino acid sequences, and produces

HTML output. Its sister program, MAST, reads this output and searches for the

presence of the pattern detected by MEME in a second set of sequences. All amino

acid sequences discovered thus far were scanned by MEME. MEME detected the

pattern show in Figure 2.1, which includes one of the histidine boxes known to
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be functionally important and highly conserved in desaturases. MAST was used

to search for the resulting pattern output among the predicted proteins from each

species, generated by Drosophila 12 Genomes Consortium (2007). Novel hits in the

MAST output (i.e. any not already found using BLAST) were discovered using Perl.

Figure 2.1: Consensus motif detected by MEME. The higher the “Information con-

tent”, the more highly conserved the residue. MAST accepts the output of MEME

as input and searches for the presence of the motif in a set of sequences (Bailey

et al., 2006).

Finally, all loci found were used in an “all-against-all” reciprocal TBLASTN

search against all genomes to confirm orthology and pick up any further undetected

loci.

2.2.4 Re-sequencing

Two genes for which the database sequence was incomplete or questionable, were re-

sequenced. In the D. sechellia genome sequence file, the contig “scaffold 0” contains

stretches of ‘N’ characters. One of these stretches coincides with the 3’ end of
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Target Forward primer Reverse primer

D. sechellia desat1 GGAGAACATCTCGGTGGCTA TGGGCTTCTGCTCTGTTAGG

D. yakuba desatF GAAGTACTACCTGCTCCTGATGC GCACGCTGTTTCACCAAAT

Table 2.2: Primers used to amplify the regions to be sequenced

the putative desat1 gene. The sequence of D. yakuba desatF has a 10bp deletion

which results in a frameshift and premature stop codons. In FlyBase, the gene is

annotated as having a 32bp intron, which corrects the frameshift. However, this

intron is unlikely to be real: if it is electronically spliced out and the spliced coding

sequence translated, the resulting amino acid sequence lacks a region which is highly

conserved in all other DesatF proteins (Figure 2.2). The fact that this region is

highly conserved suggests that it is important for the enzyme to function. Whether

or not the intron is real, if the deletion is indeed present, this copy of desatF would

not be able to produce a functional desaturase enzyme in D. yakuba.

Two strains of D. yakuba were sequenced: 14021-0261.00, and the strain used in

the whole genome project, 14021-0261.01. One strain of D. sechellia was sequenced.

DNA was extracted using the single fly DNA prep protocol (Appendix A, Section

A.1). Primer3 (Rozen and Skaletsky, 2000) was used to design primers to target

the 3’ end of D. sechellia desat1 and the region of D. yakuba desatF which contains

the deletion. The primer sequences are shown in Table 2.2. The target regions were

amplified using the PCR protocol shown in Appendix A, section A.2. Products were

visualised on a 2% agarose gel. The products were purified using the QIAquick Gel

Extraction Kit (QIAGEN; Cat. No. 28704). The sequencing reactions were per-

formed using both forward and reverse PCR primers by DNA Sequencing & Services

at the University of Dundee, who provided chromatographs and the sequences in

FASTA format.

2.2.5 Phylogenetics

Phylogenies were reconstructed using the amino acid sequences, and correspond-

ing nucleotide sequences, of all loci found. The Saccharomyces cerevisiae sequence

OLE1 (YGL055W) was used as an outgroup. This sequence appears to be the

only ∆9 desaturase gene present in S. cerevisiae, and was found using the Ensembl
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Figure 2.2: Alignment of melanogaster group DesatF amino acid sequences with

“intron” region removed. Removing the 32 bp annotated as an intron obliterates

sequence between positions 230 and 252 (indicated by black arrows), which is highly

conserved in all other species.



2.3. Results 32

gene tree image for desaturases (Kersey et al., 2010). Sequences were aligned us-

ing MAFFT (Katoh et al., 2002), using the FFT-NS-2 “Fast but rough” strategy.

ML phylogenies were reconstructed using MODELGENERATOR with 4 Γ cate-

gories (substitution model chosen based on the AIC criterion) (Keane et al., 2006),

followed by TREEFINDER (Jobb et al., 2004). Consensus trees were obtained us-

ing 250 bootstrap replicates and CONSENSE in the PHYLIP package (Felsenstein,

2005).

2.3 Results

2.3.1 Ortholog detection

Reciprocal BLAST searching discovered 96 loci among the 12 species. Six more

loci were detected by MAST using the pattern from MEME, and another three loci

were revealed during the final “all-against-all” BLAST search. Including the nine

previously-known D. melanogaster loci, this brings the total number of desaturase

loci from all species to 114. Details of all genes found are shown in Table 2.3. A

summary of the overall results is shown in Figure 2.3. Amino acid sequences of all

genes are included on the supplementary data CD.

Table 2.3: A summary of all genes found, including those of D. melanogaster (already

known). Protein sequences are given in a separate fasta file.

Species Gene name Chromosome/Scaffold No. of exons

D. ananassae v1.3 Cyt-b5-r scaffold 12916 3

D. ananassae v1.3 desat2 scaffold 13340 4

D. ananassae v1.3 desat2 b scaffold 13340 4

D. ananassae v1.3 desatFα scaffold 13340 1

D. ananassae v1.3 desatFδ scaffold 13340 1
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Species Gene name Chromosome/Scaffold No. of exons

D. ananassae v1.3 desatFε scaffold 13337 1

D. ananassae v1.3 desat1 scaffold 13340 4

D. ananassae v1.3 CG8630 scaffold 13340 4

D. ananassae v1.3 CG17928 scaffold 12916 4

D. ananassae v1.3 CG9743 scaffold 13340 5

D. ananassae v1.3 CG9747 scaffold 13340 4

D. ananassae v1.3 CG15531 scaffold 13340 4

D. erecta v1.3 Cyt-b5-r scaffold 4845 3

D. erecta v1.3 desatFα scaffold 4784 1

D. erecta v1.3 desat1 scaffold 4770 4

D. erecta v1.3 CG8630 scaffold 4770 4

D. erecta v1.3 CG17928 scaffold 4845 4

D. erecta v1.3 CG9743 scaffold 4820 5

D. erecta v1.3 CG9747 scaffold 4820 4

D. erecta v1.3 CG15531 scaffold 4820 4

D. grimshawi v1.3 Cyt-b5-r scaffold 15252 3

D. grimshawi v1.3 desat2 scaffold 15074 4

D. grimshawi v1.3 desat1 scaffold 15074 4

D. grimshawi v1.3 CG8630 scaffold 14906 4

D. grimshawi v1.3 CG17928 scaffold 15252 4

D. grimshawi v1.3 CG9743 scaffold 14906 5

D. grimshawi v1.3 CG9747 scaffold 14906 4

D. grimshawi v1.3 CG15531 scaffold 14906 4

D. mojavensis v1.3 Cyt-b5-r scaffold 6500 3
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Species Gene name Chromosome/Scaffold No. of exons

D. mojavensis v1.3 desat2 scaffold 6540 4

D. mojavensis v1.3 desat1 scaffold 6540 4

D. mojavensis v1.3 CG8630 scaffold 6540 4

D. mojavensis v1.3 CG17928 scaffold 6500 4

D. mojavensis v1.3 CG9743 scaffold 6540 5

D. mojavensis v1.3 CG9747 scaffold 6540 4

D. mojavensis v1.3 CG15531 scaffold 6540 4

D. persimilis v1.3 Cyt-b5-r scaffold 1 3

D. persimilis v1.3 desat2 scaffold 19 4

D. persimilis v1.3 desatFα scaffold 47 1

D. persimilis v1.3 desatFβ scaffold 0 1

D. persimilis v1.3 desatFγ scaffold 3 1

D. persimilis v1.3 desat1 scaffold 19 4

D. persimilis v1.3 CG8630 scaffold 0 4

D. persimilis v1.3 CG17928 scaffold 1 4

D. persimilis v1.3 CG9743 scaffold 7 5

D. persimilis v1.3 CG9747 scaffold 7 4

D. persimilis v1.3 desat1 b scaffold 22 3

D. persimilis v1.3 CG15531 scaffold 7 4

D. pseudoobscura v2.3 Cyt-b5-r 4 group3 3

D. pseudoobscura v2.3 desat2 2 4

D. pseudoobscura v2.3 desatFα XR group6 1

D. pseudoobscura v2.3 desat1 2 4

D. pseudoobscura v2.3 CG8630 2 4
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Species Gene name Chromosome/Scaffold No. of exons

D. pseudoobscura v2.3 CG17928 4 group3 4

D. pseudoobscura v2.3 CG9743 2 5

D. pseudoobscura v2.3 CG9747 2 4

D. pseudoobscura v2.3 CG15531 2 4

D. pseudoobscura v2.3 desat1 b XL group1e 3

D. pseudoobscura v2.3 desatFβ 2 1

D. pseudoobscura v2.3 desatFγ 2 1

D. sechellia v1.3 Cyt-b5-r scaffold 7 3

D. sechellia v1.3 desat2 scaffold 0 4

D. sechellia v1.3 desatFα scaffold 0 1

D. sechellia v1.3 desat1 scaffold 0 4

D. sechellia v1.3 CG8630 scaffold 0 4

D. sechellia v1.3 CG17928 scaffold 7 4

D. sechellia v1.3 CG9743 scaffold 4 5

D. sechellia v1.3 CG9747 scaffold 4 4

D. sechellia v1.3 CG15531 scaffold 4 4

D. simulans v1.3 Cyt-b5-r 2L 3

D. simulans v1.3 desat2 3R 4

D. simulans v1.3 desatFα 3L 1

D. simulans v1.3 CG8630 3R 4

D. simulans v1.3 CG17928 2L 4

D. simulans v1.3 CG9743 3R 5

D. simulans v1.3 CG9747 3R 4

D. simulans v1.3 desat1 3R 4
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Species Gene name Chromosome/Scaffold No. of exons

D. simulans v1.3 CG15531 3R 4

D. virilis v1.2 Cyt-b5-r scaffold 12963 3

D. virilis v1.2 desat2 scaffold 13047 4

D. virilis v1.2 desat1 scaffold 13047 4

D. virilis v1.2 CG8630 scaffold 12855 4

D. virilis v1.2 CG17928 scaffold 12963 4

D. virilis v1.2 CG9743 scaffold 12855 5

D. virilis v1.2 CG9747 scaffold 12855 4

D. virilis v1.2 CG15531 scaffold 12855 4

D. willistoni v1.3 Cyt-b5-r scf2 1100000004577 3

D. willistoni v1.3 desat2 scf2 1100000004943 3

D. willistoni v1.3 desatFζ scf2 1100000004511 1

D. willistoni v1.3 desatFη scf2 1100000004762 1

D. willistoni v1.3 desat1 scf2 1100000004943 4

D. willistoni v1.3 CG8630 scf2 1100000004943 4

D. willistoni v1.3 CG17928 scf2 1100000004577 4

D. willistoni v1.3 CG9743 scf2 1100000004943 5

D. willistoni v1.3 CG9747 scf2 1100000004943 4

D. willistoni v1.3 CG15531 scf2 1100000004943 4

D. yakuba v1.3 Cyt-b5-r 2R 3

D. yakuba v1.3 desat2 3R 4

D. yakuba v1.3 desatFα 3L 1

D. yakuba v1.3 desat1 3R 4

D. yakuba v1.3 CG8630 3R 4
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Species Gene name Chromosome/Scaffold No. of exons

D. yakuba v1.3 CG17928 2R 4

D. yakuba v1.3 CG9743 3R 5

D. yakuba v1.3 CG9747 3R 4

D. yakuba v1.3 CG15531 3R 4

D. melanogaster v5.13 CG17928 2L 4

D. melanogaster v5.13 CG8630 3R 4

D. melanogaster v5.13 CG9743 3R 5

D. melanogaster v5.13 CG9747 3R 4

D. melanogaster v5.13 Cyt-b5-r 2L 3

D. melanogaster v5.13 desat1 3R 4

D. melanogaster v5.13 desat2 3R 4

D. melanogaster v5.13 desatFα 3L 1

D. melanogaster v5.13 CG15531 3R 4

Figure 2.3: Summary of ortholog search results

DesatF was only found in species of the Sophophora subgenus, and not in D.

mojavensis, D. virilis or D. grimshawi. This gene has been duplicated the most:
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twice in D. ananassae and the obscura group species, and once in D. willistoni. The

desatF orthologs found in our study correspond to those recently described by Fang

et al. (2009) using homology-based searching and synteny analysis, and have been

labelled in the same way. The only other gene loss here is desat2 from D. erecta,

which was also noted by Fang et al. (2009).

Additional duplication events in desat1 and desat2 were also identified. desat2

has been duplicated once in D. ananassae. The two species of the obscura group,

D. persimilis and D. pseudoobscura, have a second copy of desat1, which has been

named desat1b. This has fewer exons (three instead of four) than the other ancestral

desat1 gene. Exon 1 appears to be a fusion of exons 1 and 2 of desat1, while exons 2

and 3 correspond to exons 3 and 4 of desat1. The first 56 amino acids of the protein

sequence of exon 1 in D. pseudoobscura desat1b have only 31.4% identity with the

same region of desat1 in the same species (Figure 2.4). The protein sequences of

Desat1 and Desat1b were analysed using SIGNALP (Bendtsen et al. 2004) to check

for the presence of signal peptides, but neither sequence showed evidence for these.

Amino acid identities between these, and the other sets of duplicates are modest,

indicating up to 37% divergence (Table 2.4). All other genes are present in a single

copy in all species.

Species Gene Percent Identity

D. ananassae Desat2 67.6

DesatF 71.5

D. pseudoobscura Desat1 76.5

DesatF 71.9

D. persimilis Desat1 76.3

DesatF 72.8

D. willistoni DesatF 62.7

Table 2.4: The percentage identities of multiple sequence alignments between the

amino acid sequences of each set of duplicates.
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Figure 2.4: Alignment of D. pseudoobscura Desat1 and Desat1b amino acid se-

quences. The alignment shows that the N-terminal region of Desat1b is highly

divergent, compared with the remainder of the sequence. Alignment created using

MAFFT (Katoh et al., 2002), figure created using ClustalX (Thompson et al., 1994).
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2.3.2 Re-sequencing

The resequencing of D. yakuba desatF in strain 14021-0261.00 showed that this

strain does not have a deletion, and the coding sequence is therefore intact. The

strain used in the genome project, 14021-0261.01, does have the deletion, however.

D. sechellia desat1 was found to have an intact coding sequence.

2.3.3 Phylogenetics

Nucleotide and amino acid phylogenies were derived for all loci across all species,

to further examine the evolution of the gene family (Figures 2.5 to 2.8). The amino

acid consensus phylogeny (Figure 2.5) suggests that an initial duplication event

produced the ancestor of desat1 and desat2, and the ancestor of the rest of the

desaturases. Next, the CG17928-Cyt-b5-r clade arose, and after this a retrotrans-

position event occurred which gave rise to desatF. It was after this that the gene

from which the retrocopy was duplicated then duplicated again three more times, to

produce CG8630, CG9743, CG9747 and CG15531. This interpretation is illustrated

in Figure 2.9.
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Figure 2.5: Consensus phylogeny of all desaturase amino acid sequences found and S. cerevisiae

outgroup (scrOLE1), reconstructed using LG+I+G model. Percentage bootstrap support is indi-

cated. Gene names are given as abbreviated species name followed by D. melanogaster gene name.

Desat1, Desat2 and DesatF abbreviated to ds1, ds2 and dsF respectively.
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Figure 2.6: Maximum likelihood phylogeny of amino acid sequences showing branch lengths

(LG+I+G model). Gene names are given as abbreviated species name followed by D. melanogaster

gene name. Desat1, Desat2 and DesatF abbreviated to ds1, ds2 and dsF respectively. Scale bar

indicates expected substitutions per residue.
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Figure 2.7: Consensus phylogeny of protein-coding nucleotide sequences of all desaturases found

and S. cerevisiae outgroup (scrOLE1), reconstructed using GTR+I+G model. Percentage boot-

strap support is indicated. Gene names are given as abbreviated species name followed by D.

melanogaster gene name. Desat1, Desat2 and DesatF abbreviated to ds1, ds2 and dsF respec-

tively.
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Figure 2.8: Maximum likelihood phylogeny of protein-coding nucleotide sequences showing

branch lengths (GTR+I+G model). Gene names are given as abbreviated species name followed

by D. melanogaster gene name. Desat1, Desat2 and DesatF abbreviated to ds1, ds2 and dsF

respectively. Scale bar indicates expected substitutions per residue.
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Figure 2.9: Hypothesis for the evolution of the desaturase genes in Drosophila.

Proposed ancestral genes (pale blue) were arbitrarily named desat0, desatQ and

desatR. DesatF was duplicated many times in various Sophophora species. The

original DesatF gene is labelled DesatFα in the species-specific duplicates. This

diagram is based on the consensus phylogeny of desaturase amino acid sequences

(Figure 2.5), which contains some very low bootstrap support values. Many of

the key nodes cannot be confidently resolved, and hence this diagram remains a

hypothesis of the evolution of the desaturase gene family, rather than a concrete

conclusion.
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2.4 Discussion

This study shows that the majority of desaturase loci are present in a single copy

in each of the 12 sequenced species of Drosophila. The striking exceptions to this,

however, are the three loci known to be involved in pheromone biosynthesis: these

loci show a large amount of duplication and loss across the species. The most

duplicated gene is desatF, which is present in multiple copies in four species (Figure

2.3). This, coupled with the observations of Shirangi et al. (2009) which demonstrate

rapid evolution of sex-specific expression variation in many species, make this gene

an interesting candidate for further investigation.

DesatF has also been lost from the subgenus Drosophila. On first look at the re-

sults in Figure 2.3, it is tempting to conclude that the desatF gene must have arisen

after or during the split between the Sophophora and Drosophila. However, taking

into account the phylogenetic analyses performed here, this cannot have been the

case. They show that desatF arose before CG8630, CG9747, CG9743 and CG15531.

These four genes are present in all species studied. Therefore, they must have arisen

in a single common ancestral species, before any of the species seen today existed.

After this, the ancestors of the Sophophora and Drosophila diverged, and presum-

ably the Drosophila ancestor lost its copy of desatF. This conclusion concurs with

that of Fang et al. (2009), and the search methods utilised here discovered all loci

found in their study. As well as finding all desaturase loci previously identified, the

methods used here also uncovered two more loci: a putative duplicate of desat2 in D.

ananassae, and one of desat1 in D. pseudoobscura and D. persimilis. Nothing is yet

known about the function of these genes, but they have intact coding sequences and

are closely related to genes with previously demonstrated functions in pheromone

modification. In the phylogenetic analysis by Fang et al. (2009), CG8630 is used as

an outgroup to desat1, desat2 and desatF. This difference does not affect the con-

clusions regarding the evolution of these three genes, however. The analyses in this

chapter show that CG8630 is not a natural outgroup to these genes, as it appears

to have arisen later than desat1, desat2 and desatF (Figures 2.5 and 2.9). It should

be noted that the bootstrap support values of the consensus phylogenies shown in

this chapter (Figures 2.5 and 2.7) are relatively low, and it is therefore possible that
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the real topology of the desaturase phylogeny could differ from this.

Similar studies of Drosophila gene family evolution have been completed since

the release of the 12 genomes in 2007. Hahn et al. (2007) conducted an analysis of

gain and loss of loci across the whole genome of all 12 species. They found that

41% of all 11434 gene families have changed in size in at least one species, and some

cases of extreme gene family expansion or contraction, particularly in genes related

to sex and spermatogenesis. Vieira et al. (2007) studied the odorant binding protein

(OBP) family, which contains proteins that make contact with odorant molecules

and are thought to initiate chemosensory pathways. They found that the OBP

family contains between 40 and 61 genes across the 12 species, with in total 43

gains and 28 losses. Guo and Kim (2007) performed a similar analysis of olfactory

receptor genes, a large family in which they report 59 orthologous groups and a

substantial amount of gain and loss, especially in D. willistoni, D. grimshawi and

the obscura group. The desaturase gene family is smaller than both of these, and

does not appear to have undergone extreme expansion or contraction in any of the 12

species; although the desatF gene has been duplicated independently several times,

it is at most present in three copies, in D. ananassae and the obscura group.

The work presented in this chapter has uncovered many desaturase loci with

intact coding sequences, across the 12 species. It is not possible to tell from this

work, however, whether any of the novel genes discovered have a role in pheromone

modification. Although all genes located have intact coding sequences, it is not

possible to discern whether they are actually functional. A step towards discerning

those, if any, that may have interesting evolutionary stories, is to look for signatures

of natural selection within their sequences. This is investigated in the next chapter.
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determining tra gene of Drosophila: molecular cloning and transformation studies.

The EMBO Journal, 5:3607–3613.

Chertemps, T., Duportets, L., Labeur, C., Ueyama, M. and Wicker-Thomas, C.

(2006). A female-specific desaturase gene responsible for diene hydrocarbon

biosynthesis and courtship behaviour in Drosophila melanogaster. Insect Molecu-

lar Biology, 15:465–473.

48



BIBLIOGRAPHY 49

Cobb, M. and Jallon, J.-M. (1990). Pheromones, mate recognition and courtship

stimulation in the Drosophila melanogaster species sub-group. Animal Behaviour,

39:1058–1067.

Coyne, J. A. (1996). Genetics of differences in pheromonal hydrocarbons between

Drosophila melanogaster and D. simulans. Genetics, 143:353–364.

Coyne, J. A., Crittenden, A. P. and Mah, K. (1994). Genetics of a pheromonal

difference contributing to reproductive isolation in Drosophila. Science, 265:1461–

1464.

Coyne, J. A. and Elwyn, S. (2006a). Does the desaturase2 locus in Drosophila

melanogaster cause adaptation and sexual isolation? Evolution, 60:279–291.

Coyne, J. A. and Elwyn, S. (2006b). Desaturase-2, environmental adaptation, and

sexual isolation in Drosophila melanogaster. Evolution, 60:626–627.

Coyne, J. A., Wicker-Thomas, C. and Jallon, J.-M. (1999). A gene responsible

for a cuticular hydrocarbon polymorphism in Drosophila melanogaster. Genetical

Research, 73:189–203.

Dallerac, R., Labeur, C., Jallon, J.-M., Knipple, D. C., Roelofs, W. L. and Wicker-

Thomas, C. (2000). A ∆9 desaturase gene with a different substrate specificity

is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila

melanogaster. Proceedings of the National Academy of Sciences of the USA,

97:9449–9454.

Doi, M., Nemoto, T., Nakanishi, H., Kurahara, Y. and Oguma, Y. (1997). Be-

havioral response of males to major sex pheromone component, (z,z)-5,25-

hentriacontadiene, of Drosophila ananassae females. Journal of Chemical Ecology,

23:2067–2077.

Droney, D. and Hock, B. (1998). Male sexual signals and female choice in Drosophila

grimshawi (Diptera: Drosophilidae). Journal of Insect Behavior, 11:59–71.

Duffy, J. B. (2002). GAL4 system in Drosophila: a fly geneticist’s swiss army knife.

Genesis, 34:1–15.



BIBLIOGRAPHY 50

Erdman, S. E., Chen, H. J. and Burtis, K. C. (1996). Functional and genetic char-

acterization of the oligomerization and DNA binding properties of the Drosophila

doublesex proteins. Genetics, 144:1639–1652.

Etges, W. J. and Ahrens, M. A. (2001). Premating isolation is determined by

larval-rearing substrates in cactophilic Drosophila mojvensis. v. deep geographic

variation in epicuticular hydrocarbons among isolated populations. The American

Naturalist, 158:585–598.

Etges, W. J. and Jackson, L. (2001). Epicuticular hydrocarbon variation in

Drosophila mojavensis cluster species. Journal of Chemical Ecology, 27:2125–

2149.

Fang, S., Ting, C.-T., Lee, C.-R., Chu, K.-H., Wang, C.-C. and Tsaur, S.-C. (2009).

Molecular evolution and functional diversification of fatty acid desaturases af-

ter recurrent gene duplication in Drosophila. Molecular Biology and Evolution,

26:1447–1456.

Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package).

Ferveur, J. F. (2005). Cuticular hydrocarbons: their evolution and roles in

Drosophila pheromonal communication. Behavior Genetics, 35:269–295.

Ferveur, J.-F., Cobb, M., Boukella, H. and Jallon, J.-M. (1996). World-wide varia-

tion in Drosophila melanogaster sex pheromone: behavioural effects, genetic bases

and potential evolutionary consequences. Genetica, 97:73–80.

Ferveur, J. F., Savarit, F., O’Kane, C. J., Sureau, G., Greenspan, R. J. and Jallon,

J. M. (1997). Genetic feminization of pheromones and its behavioral consequences

in Drosophila males. Science, 276:1555–1558.

Gleason, J. M., Jallon, J.-M., Rouault, J.-D. and Ritchie, M. G. (2005). Quantita-

tive trait loci for cuticular hydrocarbons associated with sexual isolation between

Drosophila simulans and D. sechellia. Genetics, 171:1789–1798.



BIBLIOGRAPHY 51

Greenberg, A. J., Moran, J. R., Coyne, J. A. and Wu, C.-I. (2003). Ecological adap-

tation during incipient speciation revealed by precise gene replacement. Science,

302:1754–1757.

Greenspan, R. J. and Ferveur, J. F. (2000). Courtship in Drosophila. Annual Review

of Genetics, 34:205–32.

Grillet, M., Dartevelle, L. and Ferveur, J. F. (2006). A Drosophila males pheromone

affects female sexual receptivity. Proceedings of the Royal Society of London Series

B: Biological Sciences, 273:315–323.

Guo, S. and Kim, J. (2007). Molecular evolution of Drosophila odorant receptor

genes. Molecular Biology and Evolution, 24:1198–1207.

Hahn, M. W., Han, M. V. and Han, S. G. (2007). Gene family evolution across 12

Drosophila genomes. PLoS Genetics, 3:e197.

Hall, J. C. (1994). The mating of a fly. Science, 264:1702–1714.

Houot, B., Bousquet, F. and Ferveur, J. F. (2010). The consequences of regula-

tion of desat1 expression for pheromone emission and detection in Drosophila

melanogaster. Genetics, 185:1297–1309.

Jallon, J.-M. (1984). A few chemical words exchanged by Drosophila during

courtship and mating. Behavior Genetics, 14:441–478.

Jallon, J. M. and David, J. R. (1987). Variations inf cuticular hydrocarbons among

the eight species of the Drosophila melanogaster subgroup. Evolution, 41:294–302.

Jobb, G., von Haeseler, A. and Strimmer, K. (2004). TREEFINDER: A powerful

graphical analysis environment for molecular phylogenetics. BMC Evolutionary

Biology, 4:18.

Karlson, P. and Butenandt, A. (1959). Pheromones (Ectohormones) In Insects.

Annual Review of Entomology, 4:39–58.



BIBLIOGRAPHY 52

Katoh, K., Misawa, K., Kuma, K. and Miyata, T. (2002). MAFFT: a novel method

for rapid multiple sequence alignment based on fast Fourier transform. Nucleic

Acids Research, 30:3059–3066.

Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. M. and McInerney,

J. O. (2006). Assessment of methods for amino acid matrix selection and their

use on empirical data shows that ad hoc assumptions for choice of matrix are not

justified. BMC Evolutionary Biology, 6:29.

Keays, M. C., Barker, D., Wicker-Thomas, C. and Ritchie, M. G. (2011). Signatures

of selection and sex-specific expression variation of a novel duplicate during the

evolution of the Drosophila desaturase gene family. Molecular Ecology, 20:3617–

3630.

Kersey, P. J., Lawson, D. et al. (2010). Ensembl Genomics: extending Ensembl

across the taxonomic space. Nucleic Acids Research, 38:D563–D569.

Legendre, A., Miao, X. X., Lage, J. L. D. and Wicker-Thomas, C. (2008). Evolution

of a desaturase involved in female pheromonal cuticular hydrocarbon biosynthesis

and courtship behavior in Drosophila. Insect Biochemistry and Molecular Biology,

38:244–255.

Liimatainen, J. O. and Hoikkala, A. (1998). Interactions of the males and females

of three sympatric Drosophila virilis-group species, D. montana, D. littoralis and

D. lummei, (Diptera: Drosophilidae) in intra- and interspecific courtships in the

wild and in the laboratory. Journal of Insect Behvior, 11:399–417.

Liimatainen, J. O. and Jallon, J. M. (2007). Genetic analysis of cuticular hydrocar-

bons and their effect on courtship in Drosophila virilis and D. lummei. Behavior

Genetics, 37:713–725.

Marcillac, F., Bousquet, F., Alabouvette, J., Savarit, F. and Ferveur, J. F. (2005a).

A mutation with major effects on Drosophila melanogaster sex pheromones. Ge-

netics, 171:1617–1628.



BIBLIOGRAPHY 53

Marcillac, F., Grosjean, Y. and Ferveur, J. F. (2005b). A single mutation alters

production and discrimination of Drosophila sex pheromones. Proceedings of the

Royal Society of London Series B: Biological Sciences, 272:303–309.

Michalak, P., Malone, J. H., Lee, I. T., Hoshino, D. and Ma, D. (2007). Gene

expression polymorphism in Drosophila populations. Molecular Ecology, 16:1179–

1189.

Nakamura, M. T. and Nara, T. Y. (2004). Structure, function and dietary regulation

of ∆6, ∆5, and ∆9 desaturases. Annual Review of Nutrition, 24:345–376.

Roelofs, W. and Bjostad, L. (1984). Biosynthesis of Lepidopteran Pheromones.

Bioorganic Chemistry, 12:279–298.

Roelofs, W. L. and Rooney, A. P. (2003). Molecular genetics and evolution of

pheromone biosynthesis in Lepidoptera. PNAS, 100:9179–9184.

Rouault, J., Capy, P. and Jallon, J.-M. (2000). Variations of male cuticular hy-

drocarbons with geoclimatic variables: an adaptive mechanism in Drosophila

melanogaster? Genetica, 110:117–130.

Rozen, S. and Skaletsky, H. (2000). Primer3 on the WWW for general users and

for biologist programmers. In: Krawetz, S. and Misener, S. (eds.), Bioinformatics

Methods and Protocols: Methods in Molecular Biology, pages 365–386. Totowa,

New Jersey: Humana Press.

Savarit, F., Sureau, G., Cobb, M. and Ferveur, J. F. (1999). Genetic elimination of

known pheromones reveals the fundamental chemical bases of mating and isolation

in Drosophila. Proceedings of the National Academy of Sciences of the USA,

96:9015–9020.

Shirangi, T. R., Dufour, H. D., Williams, T. M. and Carroll, S. B. (2009). Rapid

evolution of sex pheromone-producing enzyme expression in Drosophila. PLoS

Biology, 7:e1000168.

Takahashi, A. and Ting, C.-T. (2004). Genetic basis of sexual isolation in Drosophila

melanogaster. Genetica, 120:273–284.



BIBLIOGRAPHY 54

Takahashi, A., Tsaur, S.-C., Coyne, J. A. and Wu, C.-I. (2001). The nu-

cleotide changes governing cuticular hydrocarbon variation and their evolution

in Drosophila melanogaster. Proceedings of the National Academy of Sciences of

the USA, 98:3920–3925.

Drosophila 12 Genomes Consortium (2007). Evolution of genes and genomes on the

Drosophila phylogeny. Nature, 450:203–218.

Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improv-

ing the sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids

Research, 22:4673–4680.

Ting, C.-T., Takahashi, A. and Wu, C.-I. (2001). Incipient speciation by sexual

isolation in Drosophila: concurrent evolution at multiple loci. Proceedings of the

National Academy of Sciences of the USA, 98:6709–6713.

Vieira, F. G., Sánchez-Garcia, A. and Rozas, J. (2007). Comparative genomic anal-

ysis of the odorant-binding protein family in 12 Drosophila genomes: purifying

selection and birth-and-death evolution. Genome Biology, 8:R235.

Wicker-Thomas, C., Henriet, C. and Dallerac, R. (1997). Partial characterization

of a fatty acid desaturase gene in Drosophila melanogaster. Insect Biochemistry

and Molecular Biology, 27:963–972.

Wilson, E. O. and Bossert, W. H. (1963). Chemical Communication among Animals.

Recent Progress in Hormone Research, 19:673–716.

Wilson, R. J., Goodman, J. L., Strelets, V. B. and the FlyBase Consortium (2008).

FlyBase: integration and improvements to query tools. Nucleic Acids Research,

36:D588–D593.

Wu, C.-I., Hollocher, H., Begun, D. J., Aquadro, C. F., Xu, Y. and Wu, M.-L.

(1995). Sexual isolation in Drosophila melanogaster : A possible case of incipient

speciation. Proceedings of the National Academy of Sciences of the USA, 92:2519–

2523.



Chapter 3

Signatures of Selection in

Drosophila Desaturase Loci

3.1 Introduction

3.1.1 Positive selection and species evolution

When changes to an amino acid sequence are advantageous, they have a higher

probability of surviving and becoming fixed in the population. Positive selection

promotes the evolution of advantageous mutations, and can lead to neofunctionali-

sation. It is essentially the opposite of negative, or purifying selection, in which any

change to an amino acid sequence has deleterious or disadvantageous consequences

for the organism. As such, they are not tolerated, and the amino acid sequence re-

mains the same. Loci that are thought to play a role in adaptation and reproductive

isolation between species, and therefore to be candidate speciation genes, have been

found to show rapid evolution, and to evolve as a result of positive selection (Nosil

and Schluter, 2011; Orr, 2005; Wu and Ting, 2004). It is therefore of interest to

investigate potential speciation genes with a view to discovering whether they have

been subject to positive selection.
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3.1.2 How to detect positive selection in coding sequences

Due to the degeneracy of the genetic code, mutations in protein-coding nucleotide

sequences may be “synonymous”, meaning there is no change to the resulting amino

acid sequence. A mutation in the nucleotide sequence which in turn leads to a

change in the encoded protein is known as a “nonsynonymous” mutation. Selection

pressure can be measured by examining the relationship between the synonymous

and nonsynonymous substitution rates, dN and dS, using the ratio ω=dN/dS. dN

is the number of nonsynonymous subsititutions per nonsynonymous site, and dS is

the number of synonymous substitutions per synonymous site. Under neutrality,

where natural selection has no effect on fitness, the rates of synonymous and non-

synonymous substitutions are expected to be equal: dN=dS, ω=1. Under purifying

selection, where mutations in the amino acid sequence are deleterious, the rate of

synonymous substitutions is expected to be higher than that of nonsynonymous

substitutions: dN<dS, ω<1. In cases where changes to the amino acid sequence

confer an adaptive advantage and are thus favoured by natural selection, the expec-

tation is that the nonsynonymous mutation rate will be higher than the synonymous

one: dN>dS, ω>1. If ω is significantly greater than 1, this is evidence for positive

selection (Yang, 2006). This method is not without problems however; although

synonymous mutations are generally accepted to be neutrally evolving because they

do not affect the amino acid sequence, this is not always true. In highly expressed

genes, there is often strong preference for certain codons, and this has been shown

to cause lower estimates of dS (Sharp and Li, 1989; Tamura et al., 2004).

Over the last few decades, mathematical methods have been developed to esti-

mate dN and dS among related sequences. Miyata and Yasunaga (1980) and Perler

et al. (1980) presented methods for measuring the rates of synonymous and non-

synonymous substitutions from alignments of homologous nucleotide sequences. Li

et al. (1985) further developed these methods, addressing the difference between

transition and transversion rates (Kimura, 1980), and multiple hits – where the ac-

tual number of changes at a particular site is underestimated. Nei and Gojobori

(1986) put forward another similar method, which was simpler than those preceding

it but produced essentially the same estimates of dN and dS.
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Earlier studies implementing these methods tended to average the estimates of

dN and dS over all codon sites in the alignment, as well as over the divergence

time between the sequences. This approach is very conservative when looking for

positive selection, given that most sites in a functional protein are likely to be under

strong negative selection most of the time. Positive selection is thought to act over

relatively short evolutionary time periods, and to only affect a small number of sites

in the sequence (Yang, 2006). Therefore, these methods may fail to detect such

instances of positive selection.

3.1.3 Statistical tests of positive selection

Three types of statistical test are commonly used to detect positive selection in mul-

tiple alignments of homologous sequences. Maximum likelihood models of evolution,

with and without positive selection, are fitted to the sequence and phylogeny data

provided. Their log-likelihood scores (`) are then compared in a likelihood ratio test

(LRT), to determine whether a model including positive selection is a statistically

significantly better fit to the data than one that does not (Yang, 2006).

Branch tests of positive selection are used to look for selection affecting individual

branches on a phylogeny (Yang, 1998; Yang and Nielsen, 1998). The basic branch

model is the “one-ratio” model, in which all branches have the same ω value. The

“two-ratio” model then allows one or more branches (the “foreground” branches)

to have one ω value, while all other branches (the “background” branches) share

another ω value. The log-likelihood score of the two-ratio model is compared with

that of the one-ratio model in an LRT. Twice the difference between the two log-

likelihood scores, 2∆`, is calculated by subtracting the log-likelihood of the one-ratio

model from that of the two-ratio model, and compared with a χ2
1 distribution. One

degree of freedom is used because there is one parameter difference between the two

models: the one-ratio model allows a single ω value and the two-ratio model allows

two. If the LRT is statistically significant, and ω >1 for the foreground branch, this

is evidence for adaptive evolution. Three-ratio models allow three different values of

ω in the phylogeny, and so on. The branch-based models average ω over the whole

alignment, however. This means that this test will only detect positive selection so
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long as the average ω value is greater than 1. If only a small number of residues are

subject to even very strong positive selection, this signal will be essentially diluted

by that of all the other residues which are not. Hence, selection acting on specific

sites may not be detected using this method (Yang, 2006).

Site-based tests for positive selection allow a separate ω value for each codon

site in the alignment (Nielsen and Yang, 1998; Yang et al., 2000). Several models

have been developed to do this (Anisimova et al., 2001, 2002; Swanson et al., 2003;

Wong et al., 2004). The three used in this study are known as M7, M8 and M8a.

M7 and M8a are null models, which do not allow the ω of any sites to be greater

than 1. M8 is the alternative model, and thus adds another class of sites with ω >1.

The 2∆` of the M8 vs. M7 LRT is compared with a χ2
2 distribution, as M8 has two

more parameters than M7, though this is expected to make the test conservative

(Yang, 2006). Also, it is thought that in some cases the M8 model could be a better

fit to the data than M7, even if there is actually no positive selection, meaning

that this test could result in false positives (Swanson et al., 2003). The M8a model

is essentially the same as M8 but with ω = 1. There is therefore one parameter

difference between the models, so in the M8 vs. M8a LRT, a χ2
1 distribution is used.

This test produces fewer false positives than M8 vs. M7. It also more powerful in

some cases because of the reduction in degrees of freedom (Swanson et al., 2003;

Wong et al., 2004). While the site-based tests allow a separate ω for each site, and

are therefore better at detecting positive selection affecting only a few codons in

an alignment, they instead average ω over the whole phylogeny. This means that

if only certain lineages are undergoing adaptive evolution, again the signal of this

selection may be drowned out by that of the other branches in the phylogeny that

are not (Yang, 2006).

As mentioned earlier, positive selection is thought to most often affect a small

number of codon sites in a small number of branches on a phylogeny. The tests

described so far address either individual branches or individual sites, but not the

combination. The branch-site models, however, are able to detect positive selection

on individual lineages while at the same time allowing codon sites in the alignment to

have differing ω values (Yang and Nielsen, 2002). Branches are defined by the user as
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foreground or background branches, as in the branch models. The alternate model,

called branch-site model A, allows codon sites to fall into one of four categories,

depending on whether they are on a foreground or background branch. On both

foreground and background branches, site class 0 has 0 < ω0 < 1, and site class 1 has

ω1= 1. The two other site classes, 2a and 2b, differ for foreground and background

branches: on foreground branches, both 2a and 2b have ω2 > 1; on background

branches 2a has 0 < ω0 < 1, and 2b has ω1= 1. Model A is compared in an LRT

with a null model, which constrains ω2 to 1, thus not allowing positive selection.

The 2∆` value is compared with a χ2
1 distribution (Yang et al., 2005; Zhang et al.,

2005). This test has also been shown to have low false positive rates compared with

similar tests, and is capable of distinguishing between actual instances of positive

selection and situations where selective constraints are relaxed (Zhang et al., 2005).

All these models are implemented in the software package PAML (Phylogenetic

Analysis by Maximum Likelihood) by Yang (1997). The user provides codon align-

ments and tree topologies, with foreground branches marked for the branch and

branch-site models, and a control file of parameters to specify the model to be run.

The models return the log-likelihood scores which are used to construct the LRT.

For the site-based model M8 and the branch-site model A, the program also outputs

posterior probabilities for sites likely to be under positive selection, estimated by

Bayes empirical Bayes (BEB) analysis. In this chapter, PAML was used to apply

these models to the desaturase genes identified in Chapter 2, to investigate whether

their evolution has been shaped by diversifying selection. Of particular interest are

duplicated genes, which in other gene families have been found to exhibit evidence

relaxed constraints and in some cases positive selection, which can indicate neofunc-

tionalisation (Gardiner et al., 2008; Guo and Kim, 2007; Hahn et al., 2007; Lynch

and Conery, 2000). A summary of the work presented in this chapter appears in

Keays et al. (2011).
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3.2 Methods

Site-based tests were used on each gene. For duplicated genes, only the putative

most ancestral gene was subjected to the site-based tests. D. willistoni desatF was

not included in the site-based test for desatF because neither duplicate is ortholo-

gous with desatFα in the other species. For genes that have undergone duplication

in some species, the branch and branch-site tests were employed. All paralogs were

included in the branch and branch-site tests. This was to determine whether selec-

tion pressures differ before and after duplication, and whether there is any evidence

for adaptive evolution following a duplication event.

Analyses were performed using the putative species tree (Figure 1.2), and also

using subtrees of only more closely-related species. The reasoning for subtree analy-

sis is because the species tree contains species that are in fact quite distantly-related,

it may lead to wrong assumptions when used in the PAML analyses. Using subtrees

of only more closely-related species attempts to minimise this and better ensure that

instances of positive selection detected are “real” (Keays et al., 2011).

3.2.1 Sequence alignments

PAML requires a multiple alignment of codon sequences in order to estimate lev-

els of synonymous and nonsynonymous substitutions. Amino acid sequences for

each orthologous group were aligned using CLUSTALW v2.0.12 (Thompson et al.,

1994). The PROTAL2DNA script v2.0 (Schuerer and Ledontal) was used to align

the corresponding nucleotide sequences, based on the amino acid alignments.

3.2.2 Phylogenies

PAML also requires an unrooted phylogenetic tree showing the relationship be-

tween the sequences in the codon alignment. For site-based analyses, the putative

species tree (Figure 1.2) was used, only including the most ancestral paralog of any

duplicated genes. For the branch and branch-site tests on duplicated genes, max-

imum likelihood phylogenies were reconstructed using amino acid sequences. The

appropriate substitution model was estimated using the AIC criterion in MODEL-
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GENERATOR (Katoh et al., 2002) with four Γ categories. The gene phylogenies

were created using TREEFINDER (Jobb et al., 2004), with branch support esti-

mated using Local Rearrangements-Expected Likelihood Weights (LR-ERW) with

1000 replicates. These gene trees were then reconciled with the species tree using

NOTUNG (Durand et al., 2006), allowing rearrangement on branches with less than

80% LR-ERW support. Tree reconciliation compares the putative species tree with

the gene tree, here created with TREEFINDER, and enables gene losses and gains

to be inferred and mapped onto the species tree (Durand et al., 2006; Hahn, 2007).

The reconciled phylogenies are shown in Figure 3.1.

3.2.3 PAML tests

Analyses using the species tree

The site-based models M7, M8 and M8a were implemented for all genes. The branch

and branch-site tests were only implemented for genes which had undergone dupli-

cation in one or more species: desat1, desat2 and desatF. All foreground branches

tested are shown in Figures 3.2 to 3.6. The species tree was divided into three

subtrees which were used in site-based analyses with the M7, M8 and M8a models.

These are shown in Figure 3.7. Subtrees were also created to analyse the duplicated

genes; these are shown in Figures 3.8 to 3.12. Examples of PAML control files are

given in Appendix B.
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(a) Reconciled tree for desat1

(b) Reconciled tree for desat2

(c) Reconciled tree for desatF

Figure 3.1: Gene trees after reconciliation with the species tree. Branches high-

lighted in yellow had LR-ERW support less than 80% and were thus subject to

rearrangement by NOTUNG. Red squares with “D” indicate duplication events.
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(a) obscura group desat1 clade (b) obscura group desat1 pre-duplication

(c) obscura group desat1 post-duplication (d) obscura group desat1b

(e) Branch leading to obscura group desat1b

(pre-speciation)

Figure 3.2: Trees used in branch and branch-site tests on desat1. Foreground

branches are shown in pink; background branches are shown in black.
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(a) D. ananassae desat2 clade (b) D. ananassae desat2 pre-duplication

(c) D. ananassae desat2 post-duplication

Figure 3.3: Trees used in branch and branch-site tests on desat2. Foreground

branches are shown in pink; background branches are shown in black.
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(a) D. ananassae desatF clade (b) D. ananassae desatF pre-duplication

(c) D. ananassae desatF post-duplication (d) D. ananassae desatFα

(e) D. ananassae desatFδ and desatFε 2-ratio

model

(f) D. ananassae desatFδ and desatFε 3-ratio

model

Figure 3.4: Trees used in branch and branch-site tests on D. ananassae desatF.

Foreground branches are shown in pink and blue to denote differing ω estimates;

background branches are shown in black.



3.2. Methods 66

(a) obscura group desatF clade (b) obscura group desatF pre-duplication

(c) obscura group desatFα (d) Branch leading to obscura group desatFα

(pre-speciation)

(e) obscura group desatFβ (f) obscura group desatFγ

Figure 3.5: Trees used in branch and branch-site tests on obscura group desatF.

Foreground branches are shown in pink; background branches are shown in black.
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(a) D. willistoni desatF clade (b) D. willistoni desatF pre-duplication

(c) D. willistoni desatFζ and desatFη 3-ratio

model

Figure 3.6: Trees used in branch and branch-site tests on D. willistoni desatF.

Foregound branches are shown in pink and blue; background branches are shown in

black.
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(a) melanogaster group (b) D. ananassae, obscura group and D.

willistoni

(c) D. willistoni, D. mojavensis and D.

grimshawi

Figure 3.7: Subtrees used in site-based PAML analyses.
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(a) obscura group desat1 clade (b) obscura group desat1 pre-dupication

(c) obscura group desat1 post-duplication (d) obscura group desat1b

(e) Branch leading to obscura group desat1b

(pre-speciation)

Figure 3.8: Subtrees used in branch and branch-site analyses of obscura group de-

sat1. Foreground branches are shown in pink; background branches are shown in

black.
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(a) D. ananassae desat2 clade (b) D. ananassae desat2 pre-duplication

(c) D. ananassae desat2 post-duplication

Figure 3.9: Subtrees used in branch and branch-site analyses of D. ananassae desat2.

Foreground branches are shown in pink; background branches are shown in black.
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(a) D. ananassae desatF clade (b) D. ananassae desatF pre-duplication

(c) D. ananassae desatF post-duplication (d) D. ananassae desatFα

(e) D. ananassae desatFδ and desatFε 2-ratio (f) D. ananassae desatFδ and desatFε 3-ratio

Figure 3.10: Subtrees used in branch and branch-site analyses of D. ananassae

desatF. Foreground branches are shown in pink and blue to denote differing ω esti-

mates; background branches are shown in black.
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(a) obscura group desatF clade (b) obscura group desatF pre-duplication

(c) obscura group desatFα (d) Branch leading to obscura group desatFα

(pre-speciation)

(e) obscura group desatFβ (f) obscura group desatFγ

Figure 3.11: Subtrees used in branch and branch-site analyses of obscura group

desatF. Foreground branches are shown in pink; backgroun branches are shown in

black.
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(a) D. willistoni desatF clade (b) D. willistoni desatF pre-duplication

(c) D. willistoni desatF post-duplication

Figure 3.12: Subtrees used in branch and branch-site analyses of D. willistoni desatF.

Foreground branches are shown in pink and blue to denote differing ω estimates;

background branches are shown in black.
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3.3 Results

3.3.1 Site-based analyses

No evidence of positive selection was detected with site-based analyses of the whole

species tree (Table 3.1). For the subtree analyses, some of the site-based tests were

significant with P<0.05 (Table 3.2). The M8 model lists posterior probabilities for

codon sites under positive selection. For those genes where the LRT was significant

with P<0.05, all the posterior probabilities for codons being under positive selection

were nonsignificant (less than 0.949). Hence no positive selection was detected.

Gene 2∆` (M7 vs. M8) P value (M7 vs. M8) 2∆` (M8a vs. M8) P value (M8a vs. M8)

CG15531 -0.0006 1.0000 0.0014 0.9702

CG17928 3.7522 0.1532 0.9284 0.3353

CG8630 1.2575 0.5333 0.6069 0.4360

CG9743 0.1050 0.5755 0.0000 1.0000

CG9747 -0.0002 1.0000 0.0015 0.9691

Cyt-b5-r 1.2111 0.5458 -0.1097 1.0000

desat1 2.2082 0.3315 0.6614 0.4200

desat2 2.3794 0.3043 1.7120 0.1907

desatF 0.4237 0.8091 0.4246 0.5147

Table 3.1: Results of site-based tests using the whole species tree. Negative 2∆`

values treated as 0. All P values are nonsignificant (α = 0.05).
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Gene Tree 2∆` (M7 vs. M8) P value (M7 vs. M8) 2∆` (M8a vs. M8) P value (M8a vs. M8)

CG15531 melanogaster group -0.000452 1.0000 0.000000 1.0000

Mid section 10.86332 0.0044 7.317958 0.0068

Lower section 0.015471 0.9923 0.006950 0.9336

CG17928 melanogaster group 0.000972 0.9995 -0.001856 1.0000

Mid section -0.001806 1.0000 0.000000 1.0000

Lower section 6.369314 0.0414 2.921360 0.0874

CG8630 melanogaster group -0.000316 1.0000 0.000000 1.0000

Mid section 6.975244 0.0306 4.364722 0.0367

Lower section -0.000156 1.0000 0.000000 1.0000

CG9743 melanogaster group -0.000588 1.0000 -0.000190 1.0000

Mid section -0.000034 1.0000 0.000000 1.0000

Lower section 6.670512 0.0356 5.717572 0.0168

CG9747 melanogaster group -0.001240 1.0000 0.000000 1.0000

Mid section 0.982076 0.6120 0.158754 0.6903

Lower section 0.267632 0.8748 0.028408 0.8662

Cyt-b5-r melanogaster group 0.757590 0.6847 0.000000 1.0000

Mid section -0.000520 1.0000 0.000330 0.9855

Lower section 2.482048 0.2891 1.363178 0.2430

desat1 melanogaster group 0.208344 0.9011 0.000000 1.0000

Mid section 0.961706 0.6183 0.000000 1.0000

Lower section 0.300870 0.8603 0.011894 0.9132

desat2 melanogaster group 7.644446 0.0219 3.348258 0.0673

Mid section -0.000360 1.0000 0.000000 1.0000

Lower section 2.677108 0.2622 0.039310 0.8428

Table 3.2: Results of site-based tests using subtrees. Negative 2∆` values treated

as 0. P-values less than 0.05 in italics; No P-values significant after Bonferroni

correction (24 tests; P<0.002).
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3.3.2 Branch and branch-site tests

Analyses using the whole species tree

Results from the branch and branch-site analyses using the whole species tree are

shown in Tables 3.3 and 3.4. Eight of the 23 LRTs on 2-ratio branch-based models

vs. the 1-ratio model were significant after Bonferroni correction (P<0.002), but all

foreground ω values were much less than 1 (Table 3.3). Three of the branch-site tests

revealed significant evidence of positive selection after Bonferroni correction (7 tests;

P<0.007) (Table 3.4). In the analysis of D. persimilis and D. pseudoobscura desat1,

the branch test was significant in the branch leading to the desat1b genes (Figure

3.8(e), P=2.9×10−6), though the ω value of this branch was estimated at 0.15.

The branch-site test on the same branch was also significant (P = 1.809×10−5), and

indicates that 13.7% of codon sites are under strong positive selection with ω2=8.12.

The majority of the remaining sites (80.0%) are under strong purifying selection,

with ω0=0.03.

In the analysis of D. persimilis and D. pseudoobscura desatF, the branch-site

test on the branch leading to the desatFα genes was significant (P = 1.007× 10−4).

The model found ω2=998.94. Very high estimates can arise if the value of dS is 0,

and therefore ω can be taken as infinity (Yang, 2005). A 95% confidence interval

for ω2 was constructed by running the branch-site model A with ω2 fixed at each

integer in the range 0 ≤ ω2 ≤ 2000. ` from each run, and ` from the original model

in which ω2 was estimated by maximum likelihood as ω2=998.94, were compared

using the LRT given in equation 3.1.

2∆` = 2(`ω2=998.94 − `ω2fixed) (3.1)

Figure 3.13 shows that a broad range of ω2 values have the maximum ` of

−8288.727, including ω2 = 998.94. Figure 3.14 shows the P-values from the LRTs

(1 d.f.). When P=1, 2∆` = 0, i.e. the two ` values are the same. The 95% confi-

dence interval for ω2 comprises all values for which P>0.05, as indicated by the red

line in Figure 3.14. The lowest value above this line is ω2 = 5. ω2 therefore has

an estimated confidence interval with a lower limit of 5, and an upper limit which



3.3. Results 77

exceeds 2000, the highest value used here.

Figure 3.13: Graph of ` vs. ω2 for obscura group desatFα.
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Gene Species Branch(es) tested 2∆` P value Foreground ω

desat1 obscura group Figure 3.2(a) 19.64 9.35×10−6 0.11

Figure 3.2(b) 1.40 0.24 0.17

Figure 3.2(c) 19.36 1.08×10−5 0.12

Figure 3.2(d) 19.62 9.45×10−6 0.14

Figure 3.2(e) 21.88 2.9×10−6 0.15

desat2 D. ananassae Figure 3.3(a) 0.42 0.52 0.07

Figure 3.3(b) 3.8×10−3 0.95 0.08

Figure 3.3(c) 0.47 0.50 0.07

desatF D. ananassae Figure 3.4(a) 14.53 10−4 0.08

Figure 3.4(b) 3.5×10−4 0.99 0.12

Figure 3.4(c) 15.87 6.7×10−5 0.07

Figure 3.4(d) 40.33 2.14×10−10 0.02

Figure 3.4(e) 0.33 0.57 0.11

Figure 3.4(f) 2.77 0.1 ωδ=0.14; ωε=0.08

obscura group Figure 3.5(a) 0.40 0.53 0.12

Figure 3.5(b) 3.07 0.08 0.02

Figure 3.5(c) 4.11 0.04 0.07

Figure 3.5(d) 2.15 0.14 0.08

Figure 3.5(e) 5.09 0.02 0.24

Figure 3.5(f) 11.85 5.8×10−4 0.28

D. willistoni Figure 3.6(a) 2.54 0.11 0.16

Figure 3.6(b) 0.00 1.00 0.85

Figure 3.6(c) 3.61 0.06 ωζ=0.1; ωη=0.2

Table 3.3: Results of branch tests using whole species tree. P-values less than 0.05 in

italics; P-values significant after Bonferroni correction (23 tests; P<0.002) in bold.

All ω values are less than 1.
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Gene Species Branch(es) tested 2∆` P value ω2

desat1 obscura group Figure 3.2(e) 18.38 1.81×10−5 8.12

desatF D. ananassae Figure 3.4(d) 3.58 0.06 369.16

Figure 3.4(e) 0.00 1.00 1.00

obscura group Figure 3.5(c) 9.58 1.97×10−3 5.52

Figure 3.5(d) 15.12 1.01×10−4 998.94 (∞)

Figure 3.5(e) 0.81 0.37 3.72

Figure 3.5(f) 0.00 1.00 1.00

Table 3.4: Results of branch-site tests using whole species tree. P-values significant

after Bonferroni correction (7 tests; P<0.007) and ω2 >1 in bold.

Figure 3.14: Graph of P values vs. ω2 for obscura group desatFα.
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Analyses using subtrees

Positive selection was detected by branch and branch-site subtree analysis in some

duplicated genes. Eight of the 23 LRTs on 2-ratio branch-based models vs. the

1-ratio model were significant after Bonferroni correction (P<0.002), but all fore-

ground ω values were much less than 1 (Table 3.5). Three of the branch-site

tests revealed significant evidence of positive selection before Bonferroni correction

(P<0.05; Table 3.6) After Bonferroni correction only one remained significant (7

tests; P<0.007). In the analysis of D. persimilis and D. pseudoobscura desat1, the

branch test was significant in the branch leading to the desat1b genes (Figure 3.8(e);

P=8.97×10−6), though the ω value of this branch was estimated at 0.14. The branch-

site test on the same branch was significant before Bonferroni correction (P=0.03),

and indicates that 11.5% of codon sites are under strong positive selection with

ω2=4.16. The majority of the remaining sites (85.1%) are under strong purifying

selection, with ω0=0.04. The Bayes empirical Bayes results of the alternative model

show that most of the sites predicted to be under positive selection are concentrated

near the N-terminus of the protein. The structure of the Desat1b protein is not

currently known. If we apply the proposed secondary structure of a desaturase from

the fungus Claviceps purpurea (Meesapyodsuk et al., 2007), sites affected by positive

selection, and the putative active site and transmembrane helices, are illustrated in

Figure 3.15.
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Gene Species Branch(es) tested 2∆` P value Foreground ω

desat1 obscura group Figure 3.8(a) 18.24 1.95× 10−5 0.10

Figure 3.8(b) 0.12 0.73 0.05

Figure 3.8(c) 19.14 1.22× 10−5 0.11

Figure 3.8(d) 17.65 2.66× 10−5 0.13

Figure 3.8(e) 19.72 8.97× 10−6 0.14

desat2 D. ananassae Figure 3.9(a) 4.06 0.04 0.06

Figure 3.9(b) 0.97 0.33 0.06

Figure 3.9(c) 2.80 0.09 0.06

desatF D. ananassae Figure 3.10(a) 17.38 3.06× 10−5 0.08

Figure 3.10(b) 0.19 0.66 0.10

Figure 3.10(c) 17.64 2.67× 10−5 0.07

Figure 3.10(d) 39.95 2.61× 10−5 0.02

Figure 3.10(e) 0.15 0.70 0.11

Figure 3.10(f) 1.40 0.24 ωδ=0.14; ωε=0.09

obscura group Figure 3.11(a) 4.69 0.03 0.13

Figure 3.11(b) 1.30 0.25 0.02

Figure 3.11(c) 2.72 0.10 0.07

Figure 3.11(d) 0.99 0.32 0.08

Figure 3.11(e) 7.97 5.0× 10−3 0.26

Figure 3.11(f) 16.89 3.95× 10−5 0.29

D. willistoni Figure 3.12(a) 0.40 0.53 0.13

Figure 3.12(b) 28.62 8.82× 10−8 0.01

Figure 3.12(c) 9.12 2.25× 10−3 ωζ=0.10; ωη=0.23

Table 3.5: Results of branch tests using subtrees. P-values less than 0.05 in italics;

P-values significant after Bonferroni correction (23 tests; P<0.002) in bold. All ω

values are less than 1.
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Gene Species Branch(es) tested 2∆` P value Foreground ω

desat1 obscura group Figure 3.8(e) 4.55 0.03 4.16

desatF D. ananassae Figure 3.10(d) 0.00 1.00 1.00

Figure 3.10(e) 0.00 1.00 1.00

obscura group Figure 3.11(c) 6.27 0.01 4.03

Figure 3.11(d) 11.01 9.06× 10−4 941.43

Figure 3.11(e) 0.11 0.74 1.99

Figure 3.11(f) 0.00 1.00 1.00

Table 3.6: Results of branch-site tests using subtrees. P-values less than 0.05 in

italics; P-values significant after Bonferroni correction (7 tests; P<0.007) and ω2 > 1

in bold.

Figure 3.15: Hypothetical structure of Desat1b showing sites affected by positive

selection.
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3.4 Discussion

Positive selection has been found to be important in the evolution of various pu-

tative speciation genes (Orr, 2005; Wu and Ting, 2004). None of the single-copy

desaturase genes showed any significant evidence for positive selection, indicating

that these loci are under strong selective constraints. The results from the branch

tests on duplicated genes are consistent with this hypothesis: even where an LRT

was significant, all ω values were much less than 1, suggesting that on the whole

the loci are under negative selection. The lack of significant LRTs, and the low

ω values in the branch tests, may be artefacts of the way the models average ω

over the entire phylogeny or alignment. This would mean selection on individual

branches or codon sites is not picked up (Yang, 2006). However, it still suggests that

overall, these genes are under purifying selection. Apart from acting as pheromones,

cuticular hydrocarbons are important for Drosophila physiology, having vital roles

in temperature tolerance and desiccation resistance (Rouault et al., 2000). It is

therefore perhaps not surprising that the genes involved in their production seem to

be strongly constrained by selection.

The branch-site tests have detected some instances of positive selection. In the

analysis of obscura group desatF, selection was detected in one of the duplicates,

desatFα. The selection appears to be strongest on the branch leading to the D.

pseudoobscura and D. persimilis genes, just before speciation (Figures 3.5(d) and

3.11(d)). This branch has an extremely high ω2 value (998.94 for the species tree,

941.43 for the subtree), which may not be accurate (Yang, 2005). However the LRT

is still significant, so it is likely that positive selection has affected the evolution of

this duplicate in these two species, suggesting possible neofunctionalisation.

Positive selection was also detected in D. pseudoobscura and D. persimilis de-

sat1b, again on the branch preceding speciation. In this case, the majority of the

positively selected sites are concentrated at the N-terminus of the protein (Figure

3.15), which is highly divergent compared with the ancestral Desat1 protein (Figure

2.4). The function of this new duplicate is not yet known, but the fact that it is

closely related to a known pheromone gene showing strong evidence for positive se-

lection makes it an interesting candidate for further study. The expression pattern
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of this gene is investigated further in Chapter 4.

There were slight differences in the results from the tests using the whole species

tree and those using subtrees. Most of the branch and branch-site tests that had

significant P-values when the species tree was used were also significant in the subtree

analysis, although some of them were not significant after Bonferroni correction.

For the site-based tests, the analyses using the species tree did not produce any

significant LRTs. However, in the site-based subtree analyses, seven of the LRTs

had P values less than 0.05. This could be due to the way the site-based models

average ω over the phylogeny: if the tree includes a branch which has some positive

selection, perhaps the more other branches there are on the tree, the more the signal

of this selection will be drowned out. So maybe using a smaller tree would prevent

this from happening, which could be why the subtrees have more significant LRTs.

However, none of the results from the BEB analysis in the M8 model showed any

sites with significantly high ω values. Conversely, the branch and branch-site tests

using the subtrees showed less significant results that those using the species tree.

This may also be an artefact of reducing the number of branches in the subtree

analyses.

The results of the analyses in this chapter show that the desaturase loci are

generally experiencing strong negative selection pressure. However, the significant

branch-site test results suggest that, following a duplication event, it is possible that

these constraints can be relaxed on one of the paralogs, and adaptive diversifying

evolution and neofuncionalisation can then occur. This has been found in other

studies of gene family evolution across these species of Drosophila (Gardiner et al.,

2008; Guo and Kim, 2007; Hahn et al., 2007; Vieira et al., 2007). While this analysis

found positive selection in the coding regions of desaturase loci, it is unable to pick

up selection affecting non-coding regions. Selection on regulatory regions has been

found to have effects on gene expression, for example in the desat2 locus, where

the Cosmopolitan and African populations have differing promoters which causes a

difference in expression (Takahashi et al., 2001).
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Chapter 4

Characterisation of a Novel

Desaturase Gene

4.1 Introduction

In the work presented in Chapter 2, a new desaturase locus was detected in the

two sequenced species of the obscura group, D. pseudoobscura and D. persimilis.

It was not found in any other species. It is located on the X chromosome in D.

pseudoobscura, and on chromosome 2 in D. persimilis. Its very high sequence identity

with desat1, and the phylogenetic analysis in Chapter 2, indicate that it is a recent

duplicate of this gene. Accordingly, it has been named desat1b. It was shown in

Chapter 2 that the N-terminal region of the putative Desat1b protein is highly

divergent from that of Desat1, the two amino acid sequences having only 31.4%

identity in D. pseudoobscura (Figure 2.4).

In Chapter 3, it was found that the desat1b gene shows strong evidence of positive

selection. The result of BEB analysis shows that most of the codons under positive

selection are near to the 5′ end of the gene – the N-terminus of the protein. This is

the same region that is highly divergent from the ancestral desat1 gene, and suggests

that this divergence has been driven by adaptive evolution.

However, one line of evidence is not enough to prove this locus is actually un-

dergoing adaptive evolution, or if the positively selected changes to the sequence

are really important for the function of the enzyme. If the function of a gene of

90
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interest, and the sites in question, is already known, then it is relatively easy to

hypothesise about what the consequences of selection may be (Jensen et al., 2007).

In other studies of this kind, where a gene is found to be under positive selection

using phylogenetic analyses, these tests have been followed up with laboratory work

on the expression and function of the gene in question, establishing a link between

the sites predicted to be under positive selection and changes in the structure and

function of the protein (Jensen et al., 2007; Yang, 2006). These studies have used in

vitro methods such as site-directed mutagenesis to elucidate the functions of sites in

question (Bielawski et al., 2004; Ilvarsson et al., 2003; Norrg̊ard et al., 2006; Sawyer

et al., 2005).

As yet, the function of Desat1b is not known. Uniprot shows that it has been

automatically annotated in both species as being involved in fatty acid biosynthesis

(GO:0006633), binding iron, being a transmembrane protein (GO:0016021) and hav-

ing oxidoreductase activity (GO:0016491). It has been assigned the name GA23412

in D. pseudoobscura and GL15830 in D. persimilis. Given that it appears to be a

duplicate of desat1, it is possible that it has a similar function, playing a role in

the modification of cuticular hydrocarbons (CHCs). The gene does not contain any

premature stop codons, and PAML has detected that the codon substitutions at the

5′ end show a signal of positive selection, and not simply of relaxation of selective

constraints. Therefore, it is likely that it is a functional desaturase gene. However,

it is not known whether the desat1b locus is even transcribed, and so before it can

be subjected to any functional experiments, the first step is to find out if it is. To

do this, reverse transcriptase PCR was performed using RNA from male and female

flies of D. pseudoobscura and D. persimilis. Following this, RACE PCR was used to

confirm RT-PCR findings and determine the sequence of the 5′ untranslated region

(UTR). A summary of the work presented in this chapter appears in Keays et al.

(2011).



4.2. Methods 92

4.2 Methods

4.2.1 RT-PCR

All flies were reared on standard cornmeal food medium (recipe in Appendix A,

Section A.4) at 23◦C with a 12:12 hour light/dark cycle. Total RNA was extracted

from whole adult flies (20 males and 20 females each of D. pseudoobscura and D.

persimilis) using the QIAGEN RNeasy® Mini kit (catalog number: 74106). For

each RNA sample, twenty flies of the same sex were used. Live flies were placed in

a 1.5 ml microcentrifuge tube and this was placed at −20◦C for approximately five

minutes to anaesthetise the flies. The tube was then opened and immersed slowly

in liquid nitrogen, allowing some liquid to fall into the tube and cover the flies. A

plastic pestle was also cooled in liquid nitrogen and then used to quickly crush the

flies to powder. After the liquid nitrogen in the tube had evaporated, 600 µl Buffer

RLT was immediately added to the tube, before the crushed tissue could thaw.

From this point the protocol for Animal Tissues from the QIAGEN RNeasy Mini

kit was followed, including the optional DNase incubation step between steps 6 and

7. Total RNA concentration was measured using a NanoDrop. The 50 µl sample

was then split into five 10 µl aliquots and stored at −20◦C.

cDNA synthesis

Complementary DNA (cDNA) was generated using the Bio-Rad iScript™ cDNA

Synthesis kit (catalog number: 170-8891). The reaction was carried out in 0.2 ml

PCR tubes. For each reaction, 250 ng total RNA was used. The volume containing

this amount was calculated using the equation 4.1, where x is the volume to be

calculated (in µl) and y is the concentration of the total RNA sample as measured

by the NanoDrop (in ng/µl).

x =
250

y
(4.1)

The cDNA synthesis reactions were set up as shown in Table 4.1. The “No RT”

reaction was used as a control for contamination with genomic DNA. Taq DNA

polymerase, to be used in the PCR step, is unable to amplify RNA under normal
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PCR conditions (Myers and Gelfand, 1991). The “No RT” control reaction should

not produce any cDNA, therefore no product should result. If product is seen, it

must be because genomic DNA was not completely removed from the RNA sample,

and brings into question the origin of any products generated from the cDNA sample.

The “No RNA” control was used to guard against RNA or DNA contamination in

the other reagents. Again, this sample should not give rise to any PCR products.

Amount (µl)

Reagent cDNA synthesis No RT No RNA

5x iScript reaction mix 4 4 4

iScript reverse transcriptase 1 – 1

RNA template 1 1 –

Nuclease-free H2O 14 15 15

Total 20 20 20

Table 4.1: Reagents for cDNA synthesis using Bio-Rad iScript kit.

The tubes were then incubated on a thermal cycler using the following program:

1. 5 minutes at 25◦C

2. 30 minutes at 42◦C

3. 5 minutes at 85◦C

The reactions were then stored at −20◦C.

PCR using cDNA

Two pairs of primers were designed, using Primer3 (version 0.4.0; Rozen and Skalet-

sky, 2000), to target the divergent region at the 5′ end of the gene (Figure 4.1). The

forward primer of pair A is complementary to the sequence beginning 35 bp down-

stream of the putative start codon. The expected product size of this pair is 244 bp

in both cDNA and genomic DNA. Primer pair B anneals further downstream in exon

1, with its forward primer target beginning 61 bp downstream of the putative start
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codon. This primer in fact begins at a second in-frame ATG, which is another pos-

sible candidate for the start codon. The expected product size from primer pair B is

426 bp in both cDNA and genomic DNA. Primer sequences are given in Table 4.2.

The rest of the desat1b gene, downstream of the 5′ divergent region, has extremely

high sequence identity with its ancestor desat1. From the beginning of the putative

start codon up to base pair 169, desat1b has 48.52% identity with desat1. Beyond

this, from base pair 170 up to the putative stop codon, the identity increases to

80.64%. It was therefore impossible to design specific primers to target this region

in desat1b only. Any primers binding to this region would also bind to desat1, so

it would be impossible to determine which gene any resulting PCR products were

from. As a positive control, primers were also designed to target GapDH.

1µl of each of the reactions from the cDNA synthesis was used as template in

a PCR with each of the primer pairs (see Appendix A Section A.2 for protocol).

Genomic DNA was also amplified to verify primer design, and 5µl each reaction was

loaded onto a 2% agarose gel to visualise products.

Figure 4.1: Primers used in RT-PCR of desat1b.

Pair Forward primer Reverse primer

A AAGCAGTGGTAACCGTCGAT TTGGCCGAAGTAACCAAAAG

B ATGCAAGTGAATGCAGGAAC CGTCTCCGAGAACTTGTGGT

GapDH GCGCGGAATACGTAGTTGAA GCGCACAGTTAAATCGACAA

Table 4.2: Sequences of primers used in RT-PCR. Annealing temperature for all

primer pairs was 48.8◦C
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4.2.2 5′ RACE PCR

RNA was extracted from D. pseudoobscura and D. persimilis males and females

using the QIAGEN RNeasy® Mini kit, as previously. The Clontech SMARTer™

RACE cDNA Amplification (Catalog No. 634923) and Advantage® 2 PCR (Catalog

No. 639207) kits were used to generate RACE-ready cDNA and perform the RACE

PCRs. The positive control steps using the Control Mouse Heart RNA provided

in the cDNA Amplification kit were carried out first. RACE-ready cDNA and 5′

RACE PCR products were generated following the protocols in the SMARTer™

RACE cDNA Amplification Kit User Manual (Protocol No. PT4096-1). For the

positive control RACE PCRs, all five reaction tubes in Table IV on page 17 of the

User Manual were set up.

A gene-specific primer, GSP1, was designed for the 5′ RACE PCR from D.

pseudoobscura and D. persimilis male and female cDNA. Prior to the RACE PCR,

GSP1 was tested in PCRs on D. pseudoobscura and D. persimilis male and female

genomic DNA, with another primer (GSP1 F) which targets the region 5′ of the

putative start codon. The expected size of the product of this primer pair is 454 bp.

Sequences of these primers are given in Table 4.3. Tubes 2 and 3 from Table IV on

page 17 of the user manual were not set up for the RACE PCRs from Drosophila

cDNA: Tube 2 is for mouse RNA only; Tube 3 is for overlapping 5′ and 3′ RACE

products. 3′ RACE was not carried out. The RACE PCR was run using Program

1 on page 18 of the user manual.

Name Sequence

GSP1 AGCAGTGATGCCAAGTCCAGAGCAC

GSP1 F AAGCGAAGCTCAATCTGTCGTCTCG

Table 4.3: Sequences of primers for RACE PCR and testing in genomic DNA.

Following the RACE PCR reactions, all RACE products were gel-purified using

the Clontech NucleoTrap® Gel Extraction Kit (included with RACE kit). The ex-

tracted RACE products were then used as template in a further round of PCR, using

the protocol shown in Appendix A, Section A.2, GSP1 (10 µM) and the Universal
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Primer Mix from the RACE kit, and an annealing temperature of 68◦C. The prod-

ucts of these reactions were isolated using the Invitek Invisorb® Fragment CleanUp

kit (Catalog No. 1020300300).

4.2.3 Cloning and sequencing of 5′ RACE products

RACE products were cloned using the Invitrogen™ TOPO® TA Cloning® Kit for

Sequencing with One Shot® TOP10 Chemically Competent E. coli cells (Catalog

No. K4575-01). Following the cloning kit protocol, the RACE products were ligated

into the pCR®4-TOPO® vector (supplied with the cloning kit), which was then used

to transform competent E. coli cells. Transformed cells were grown overnight at 37◦C

on LB/agar plates containing 50µg/ml ampicillin. The next day, ten colonies per

plate were selected and cultured overnight at 37◦C in liquid LB medium containing

50µg/ml ampicillin.

Plasmid DNA was extracted from the liquid cultures using the Invitrogen™

PureLink™ Quick Plasmid Miniprep Kit (Catalog No. K2100-10). The concen-

tration of the extracted plasmid was ascertained using a NanoDrop. Plasmid DNA

was sent for sequencing with M13 forward and reverse primers to the GenePool

(Edinburgh, UK). Sequences were trimmed of pCR®4 vector, RACE kit universal

primer and SMARTer™ II oligonucleotide sequences. They were then aligned using

MAFFT (E-INS-i method; Katoh et al. (2002)) and manual adjustment.

4.3 Results

4.3.1 RT-PCR

The gels of the products from RT-PCR using primer pairs A and B (Table 4.2) are

shown in Figures 4.2 and 4.3. All PCRs from genomic DNA produced strong bands

of the expected size. In PCRs from cDNA, both primer pairs produced stronger

bands from male cDNA than from female cDNA, for both D. persimilis and D.

pseudoobscura, suggesting that the desat1b gene is more highly transcribed in males

than in females. No amplification was detected in any of the No RT or No RNA
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controls, indicating no contamination of genomic DNA in any of the samples.

(a) Products of primer pair A in D. pseudoob-

scura.

(b) Products of primer pair in D. persimilis.

Figure 4.2: Products of primer pair A in (a) D. pseudoobscura and (b) D. persimilis.

The 5′ divergent region appears to be silent, or very weakly transcribed, in D.

pseudoobscura females. It is weakly transcribed in D. persimilis females (very faint

band). The region is transcribed much more strongly in males of both species. All

amplified products are the expected size. Original images are of larger gels: only

relevant lanes are shown here.
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Figure 4.3: Products of primer pair B in D. pseudoobscura and D. persimilis. The

product is extremely weak or non-existent in D. pseudoobscura female cDNA. As

with primer pair A, it is stronger in male cDNA in both species. All amplified

products are the expected size.
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4.3.2 5′ RACE

Positive control

The positive control reactions using mouse heart RNA were successful, producing

bands of 2.1 kb and 3.1 kb (Figure 4.4).

Figure 4.4: Gel of positive control RACE PCR using mouse heart RNA.

The PCRs using the GSP1 and GSP1 F primers in genomic DNA all produced

strong bands of the expected size (454 bp), hence the GSP1 primer appears to be

working and targeting the correct sequence (Figure 4.5).

The RACE PCRs for all samples were successful. The products of 5′ RACE in

D. pseudoobscura male and female, and D. persimilis female samples are shown in

Figures 4.6 and 4.7. The D. persimilis male product was isolated using the Invitek

Invisorb® Fragment CleanUp kit only, as no non-specific bands were present (Figure

4.8). The extra round of PCR was not carried out for this sample, as the band was

strong.
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Figure 4.5: Gel of products of GSP1 and GSP1 F from genomic DNA. The PCRs

all produced strong bands of the expected size.
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Figure 4.6: Gel of RACE products from D. pseudoobscura male and female, and D.

persimilis female
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(a) Gel of RACE products following gel ex-

traction

(b) Gel of RACE products following second

PCR

Figure 4.7: Gels of RACE products following gel-extraction and second round of

PCR.

Figure 4.8: Gel of D. persimilis male RACE product.
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4.3.3 Cloning and sequencing

It was not possible to extract high quality plasmid DNA from all ten colonies se-

lected from each transformation plate: extractions from nine D. pseudoobscura fe-

male, four D. pseudoobscura male, ten D. persimilis female, and eight D. persimilis

male cultures were successful. All successfully extracted plasmid samples were sent

for sequencing with M13 forward and reverse primers. Of these, not all sequence

traces were high quality: six forward and seven reverse primer sequences from D.

pseudoobscura female, four forward and four reverse primer sequences from D. pseu-

doobscura male, ten forward and nine reverse primer sequences from D. persimilis

female, and five forward and five reverse primer sequences from D. persimilis male

samples were of sufficient quality to use in a multiple alignment. The multiple align-

ment of all high-quality RACE product sequences with the D. pseudoobscura and

D. persimilis desat1b genomic sequence, including 1000 bp upstream of the putative

start codon, is given in Appendix C.

The alignment shows that all of the RACE products contain the putative start

codon (columns 1107–1109) and the divergent region immediately downstream of

it, where positive selection was detected. The products also contain sequence 5′ of

the putative start codon, aligning with the region immediately 5′ to the gene in the

genomic DNA. In most of the products, this region extends for between 80 and 168

bp in the 5′ direction. In two of the D. pseuodoobscura male products (pse male 1

and pse male 4) however, the amount of sequence found that aligns in this region

is shorter (19 bp). The rest of the putative 5′ UTR sequence aligns much further

upstream in the genomic sequence. In both products this region begins 607 bp

upstream of the start codon. In pse male 1 it extends for 130 bp in the 5′ direction;

in pse male 4 it extends for 169 bp. This region has been designated the name “Exon

0”. This suggests there is possible alternative splicing in the 5′ UTR of desat1b in

D. pseudoobscura males.

One of the D. pseudoobscura male RACE products (pse male 1) has “GTG”

instead of “ATG” at the start codon position. Also, one of the D. pseudoobscura

female RACE products appears to have a premature stop codon, “TGA”, at columns

1387–1389. All other sequences have “TGG” at this position. The per fem 10
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forward and reverse sequences have a deletion of 45 bp, between columns 1259 and

1303 of the alignment. It is not clear whether these differences are real, or are a

result of errors introduced at some stage during the PCR, cloning and sequencing

processes. Three sequences, per fem 5 fwd, pse fem 02 fwd, and pse fem 09 fwd,

have relatively poor quality sequence traces. The “TGA” found in pse fem 09 fwd

is also present in pse fem 09 rev, however, which has a high quality trace. So the

“TGA” found in the pse fem 09 sequences is not a result of low-quality sequence

trace. The traces for per fem 10 and pse male 1 forward and reverse are all high-

quality.

4.4 Discussion

The initial RT-PCR results show that the region in which positive selection was

detected is actually transcribed. This strengthens the case for desat1b being a func-

tional gene, and makes it more likely that the positive selection detected in Chapter

3 reflects strong selection such as may occur by neofunctionalisation following dupli-

cation. The RT-PCR results also suggest that the desat1b gene is under sex-specific

differential expression regulation: it appears to be more strongly transcribed in

males than it is in females (Figures 4.2 and 4.3).

Shirangi et al. (2009) found that the sex-specific expression of desatF is regu-

lated by the Doublesex transcription factor, and that the gain and loss of desatF

expression across the Drosophila is likely to be a direct result of the gain and loss of

binding sites for this protein in the regulatory regions of desatF. Doublesex (DSX)

is expressed in a sexually dimorphic manner in Drosophila, with male and female

forms responsible for sex-biased expression of many genes (Burtis and Baker, 1989).

Genes under DSX control have a cis-regulatory element (CRE) which contains the

palindromic DSX target consensus sequence: G
ANNACA

TAT
AGTNNC

T (Erdman et al.,

1996). Along with other genes, such as fruitless and transformer, DSX is an impor-

tant regulator of sex determination in Drosophila, responsible for sexually dimorphic

behaviour and physiology (Siwicki and Kravitz, 2009; Verhulst et al., 2010).

The 3000bp region upstream of the putative desat1b start codon in the genome
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sequences of D. pseudoobscura and D. persimilis contains some sequences which are

close matches to this consensus. The sequence GAGACAATGTATA was found in

this region in both species. In D. persimilis, the sequence CTCACAATGTTTT was

also detected. These sequences match the consensus of Erdman et al. (1996), minus

the 5′- and 3′-most bases. It is as yet unknown whether this region forms part of

a CRE, however. The sex-biased expression pattern of this gene suggests that the

selection found in Chapter 3 is potentially the result of sexually divergent adaptive

evolution.

It is difficult to tell from the RT-PCR gels alone whether the gene is at all

transcribed in D. pseudoobscura females – the bands from cDNA are barely visible.

The RACE PCRs have shown that the desat1b gene is transcribed in both sexes

of both species, however, though before the second round of PCR the bands from

females of both species were fainter than those from males. They also show that

desat1b transcripts contain all sequence from the putative start codon downstream,

including the divergent region, lending further support to the hypothesis that the

positive selection is genuine. The RACE PCR products also contain some sequence

upstream of the putative start codon – the putative 5′ UTR. The results of the

RACE suggest that the 5′ UTR is alternatively spliced, at least in D. pseudoobscura

males (see alignment in Appendix C). We cannot say if this also occurs in females of

this species, or in either sex of D. persimilis. A next step in determining whether it

does would be to design primers to target each of the UTRs found, and use these in

RT-PCR on RNA from both sexes of both species. Also, Q-PCR could be employed

to investigate the difference between male and female expression levels at a finer

resolution, and to examine levels of transcripts possessing alternative 5′ UTRs.

Many genes have been found to have transcripts with alternatively spliced 5′

UTRs. In fact, desat1b’s closest relative, desat1, has five transcripts in D. melanogaster,

differing only in their 5′ UTRs. Marcillac et al. (2005) found that four of the tran-

scripts (“RA”, “RB”, “RC” and “RD”) are expressed from larval stages through

to adulthood, while the other one (“RE”) was only present during metamorphosis.

The functions of the different desat1 transcripts are not yet known, but their tissue-

specific expression is currently under investigation (Houot et al., 2010). Hughes
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(2006) reviews the various ways in which alternative UTRs have been found to be

involved in regulation of translation in mammals. Alternative UTRs can determine

tissue-specific expression patterns, such as in the gene AXIN2, which has three dif-

ferent 5′ UTRs. Each UTR provides the transcript with a different stability and

translational efficiency. This means that the amount of axin2 protein produced in

different tissues depends on the relative amounts of transcripts with each UTR: the

higher the proportion of transcripts with UTRs enabling efficient translation, the

more protein is produced, and vice versa (Hughes and Brady, 2005). The gene FGF1

has four promoters giving rise to tissue-specific expression of four 5′ UTRs, which

enable translation at different efficiencies and via different mechanisms in different

cell types (Martineau et al., 2004). Alternative 5′ UTRs have also been implicated

in some cancers, for example in certain breast cancers, the expression of the gene

BRCA1 in downregulated as a result of a switch to a 5′ UTR that hampers transla-

tion (Sobczak and Krzyzosiak, 2002). It is therefore important to remember that the

level of an mRNA transcript found does not necessarily reflect the level of protein

that will be produced, as UTRs provide another level of gene regulation (Hughes,

2006). UTRs can also be targets of small non-coding regulatory RNAs, although

this seems to affect 3′ UTRs more often than 5′ ones (Ulveling et al., 2011).

Most of the sites under positive selection were shown to be located near the

N-terminus of the Desat1b protein. It is not yet known whether desat1b mRNA is

translated into a functional protein. The function of the N-terminus in Drosophila

desaturase enzymes is as yet unclear. Desaturase enzymes do not act alone, rather

they form an electron transport chain with NADH-cytochrome b5 reductase and

cytochrome b5 (Nakamura and Nara, 2004). It is possible that the N-terminus is

involved in interacting with these other proteins. Mziaut et al. (2000) found that the

N-terminus of a mammalian desaturase, SCD, contains part of a rapid degradation

signal. When part of the N-terminus was removed, the desaturase protein persisted

for much longer than the fully intact enzyme. Concerning desat1b, the first step

should be to determine whether the protein is actually produced at all. This could

be done by creating an antibody to the Desat1b protein and performing a Western

blot. A caveat for this is that Desat1b is very similar in sequence to Desat1, and
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so care would need to be taken to select an antibody that is specific for Desat1b.

If the Desat1b protein is found to be produced, the function of the N-terminus and

the residues under selection can be investigated. Some studies have found that a

particular locus has been subject to diversifying selection, and then have gone on

to discover the functional effects of the changes this selection has caused (Yang,

2006). Ilvarsson et al. (2003) found evidence of positive selection in a human lo-

cus, glutathione transferase (GST). They then used site-directed mutagenesis in

vitro to mutate the codons predicted to be under selection, and found that muta-

tion of these sites greatly affected the specificity of the resulting enzyme. Bielawski

et al. (2004) also used site-directed mutagenesis to investigate positively selected

sites in a retinal-binding membrane protein in marine bacteria. This protein, pro-

teorhodopsin, functions as a light-driven proton pump. The analysis performed by

Bielawski et al. (2004) showed that the sites in question were important in light

absorption sensitivity. For Desat1b this could be used to investigate effects on in-

teractions with other proteins.

Another potential avenue of research into this gene could be to disrupt its func-

tion in vivo and examine the effects. Though desat1b is not found in the model

species, D. melanogaster, ever larger numbers of studies are using non-model organ-

isms to perform techniques such as gene knock-out or knock-down, and misexpression

to infer the function of new genes (Shuker et al., 2003; Terenius et al., 2011). There

is therefore a lot of scope for further work on the desat1b locus. It will be interesting

to see whether, like desat1, it is also involved in pheromonal communication.
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Chapter 5

RNA Interference of Desaturase

Gene Expression

5.1 Introduction

Several genes identified in Chapter 2 as being members of the desaturase family are

as yet functionally uncharacterised. None of them have yet been implicated in the

production of CHCs by methods used so far, such as QTL analysis. If they are

functional desaturases, we might predict them to have a role in CHC modification.

Various methods exist for manipulating gene expression in vivo, suppressing it so

that the gene’s function is removed, amplifying it so that the gene is overexpressed, or

even causing ectopic expression of the gene (Roman, 2004). By observing the effects

of these manipulations on living organisms, researchers can make inferences about

the function of the gene. RNA interference (RNAi) is one method of suppressing a

gene’s expression.

Silencing of gene expression by interfering RNAs was first discovered in plants

(Napoli et al., 1990; van der Krol et al., 1990; Voinnet, 2001). Fire et al. (1998) dis-

covered that a similar phenomenon is present in the nematode worm Caenorhabditis

elegans. They found that injecting double-stranded RNA (dsRNA) into adults of

C. elegans resulted in suppression of gene expression. Genes with sequence match-

ing the dsRNA were being silenced. This phenomenon is in fact conserved be-

tween many organisms, including insects, mammals and fungi (Hannon, 2002). The

111
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RNAi system provides adaptive, sequence-specific defence against infection by RNA

viruses. This has been demonstrated in plants (Vance and Vaucheret, 2001; Voin-

net, 2001), and more recently in C. elegans (Wilkins et al., 2005). The presence

of dsRNA in a cell attracts the Dicer enzyme complex, which cuts it into short,

double-stranded fragments. In Drosophila, these fragments are then bound by an-

other enzyme complex known as RISC (RNA-induced silencing complex). When

activated by ATP, RISC unwinds the dsRNA fragment and this then enables it to

target single-stranded RNA species with complementary sequence via Watson-Crick

base pairing. Targeted RNAs are degraded by RISC, thus preventing their trans-

lation. In this way, the RNAi pathway implements sequence-specific suppression of

gene expression (Hannon, 2002).

The RNAi system can be invoked experimentally to silence expression of a gene

of interest by injection, as mentioned above, however a drawback of injection is that

the effects caused are transient, and not stably inherited by future generations. Ken-

nerdell and Carthew (2000) found a way to overcome this using an inverted repeat

(IR) sequence, which produced RNA with a hairpin-loop structure. They first tested

the effiency of the hairpin-loop at inducing RNAi using Drosophila embryos express-

ing the lacZ gene under the control of the engrailed promoter, and injecting either a

hairpin-loop or linear dsRNA, containing sequence corresponding to a portion of the

lacZ gene. They found that the hairpin was as efficient at suppressing lacZ function

as the dsRNA. They then created a transgene which contained the hairpin sequence,

plus a yeast upstream activating sequence (UAS). UAS is the target of the yeast

transcription factor GAL4. They generated Drosophila lines which contained these

UAS-IRlacZ transgenes, GAL4 under the control of the heat-shock-inducible hsp70

promoter, and also a UAS-lacZ construct. After heat-shocking, flies that carried all

three constructs showed greatly reduced lacZ expression compared with those that

did not possess the hairpin-producing transgene, UAS-IRlacZ, indicating that the

hairpin produced by the transgene was capable of invoking the RNAi mechanism.

The main steps involved in GAL4-mediated RNAi are shown in Figure 5.1.

It is now possible to purchase D. melanogaster lines carrying a UAS-IR hairpin-

producing construct corresponding to virtually any gene of interest, from organi-
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Figure 5.1: The main steps in GAL4-mediated RNAi. GAL4 binds to the UAS

and initiates transcription of the palidromic sequence, which produces mRNA with

a hairpin-loop structure. The hairpin is targeted by Dicer, which breaks it into

double-stranded fragments 19-22 nucleotides long. These fragments are bound by

RISC, which unwinds them to create single-stranded fragments. The RISC-bound

single-stranded fragment allows specific targeting of mRNA (Hannon, 2002).
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sations such as the Vienna Drosophila RNAi Center (http://stockcenter.vdrc.

at) and Drosophila Genetic Resource Center in Kyoto (http://kyotofly.kit.jp/

cgi-bin/stocks/data_search.cgi). Lines carrying GAL4 under various different

promoters are also readily available from multiple sources, and as such it is easy to

induce RNAi “knock-down” of any D. melanogaster gene in any specific tissue. This

is done by simply crossing a line expressing the GAL4 driver in the desired tissue(s),

with a line carrying the UAS-IR construct targeting the gene of interest. The F1

hybrids will carry both the GAL4 gene and the UAS-IR construct, and thus the

gene will be knocked-down in these individuals, only in the tissue(s) desired (Duffy,

2002).

RNAi has been used in numerous functional genetics studies in many different

organisms (reviewed by Perrimon et al., 2010). Maeda et al. (2001) used high-

throughput RNAi to perform genome-wide functional analysis in C. elegans, and

identified 24 genes with important roles in developmental pathways. More recently in

the same organism Sönnichsen et al. (2005) performed another genome-wide screen,

using RNAi to identify all the genes involved in the first two rounds of cell division.

RNAi knock-down has also been employed in many studies of Lepidoptera, reviewed

by Terenius et al. (2011), to advance understanding in processes including develop-

ment and immunity. Genome-wide studies have been carried out in Drosophila:

Mummery-Widmer et al. (2009) performed a genome-wide screen using transgenic

RNAi to successfully identify regulators of the Notch signalling pathway; and Cronin

et al. (2009) discovered numerous genes important for innate immumity and defence

against bacterial infection in Drosophila, again using a genome-wide RNAi screen.

RNAi has also been used to investigate Drosophila desaturase gene function.

Wicker-Thomas et al. (2009) silenced expression of desat1 and desatF in the oeno-

cytes, the cells in which CHC synthesis takes place. They used the 1407-GAL4 line,

which expresses GAL4 in the oenocytes only. They found highly significant changes

in CHC profiles in the resulting progeny, with a 96% and 78% decrease in unsatu-

rated CHCs in males and females, respectively, in the desat1 experiment, and a 98%

decrease in dienes in females in the desatF analysis. In the work presented in this

chapter, the same GAL4 driver was used to induce RNAi knock-down of the seven
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remaining desaturase genes identified in Chapter 2 – desat2, CG8630, CG15531,

CG17928, Cyt-b5-r, CG9743 and CG9747. The CHC profiles of the F1 progeny

were examined to determine whether the knock-down has had any effect. If a desat-

urase is involved in CHC modification and its function is turned off, the expectation

is that there would be a fall in the amount of unsaturated CHCs, as demonstrated

by Wicker-Thomas et al. (2009). The ratios of unsaturated to saturated CHCs were

therefore examined here, as well as the data for each individual CHC.

5.2 Methods

5.2.1 Crosses

All D. melanogaster lines used were kindly supplied by C. Wicker-Thomas. The

GAL4 line used was 1407/Cy, which is oenocyte-specific, and was created by C.

Wicker-Thomas by crossing the 1407-GAL4 line with a w;Cy;TM3 line. Only flies

with curly wings are kept each generation. UAS lines used were UAS-desat2-i, UAS-

CG8630-i, UAS-CG15531-i, UAS-CG17928-i, UAS-Cyt-b5-r-i, UAS-CG9743-i and

UAS-CG9747-i. Lines were originally obtained from the Vienna Drosophila RNAi

Center (Dietzl et al., 2007). All lines apart from UAS-CG15531-i were homozygous-

viable with the UAS-IR transgene inserted on chromosome II; UAS-CG15531-i was

homozygous lethal with the transgene on chromosome II, and kept over the CyO

balancer. Flies were reared on standard cornmeal food medium (recipe in Appendix

A, Section A.4) at 23◦C with a 12:12 hour light/dark cycle.

Figure 5.2 illustrates the crosses performed. For each GAL4/UAS-IR cross, eight

virgin females with curly wings were selected from the 1407/CyO line. These were

added to a vial along with approximately eight virgin males of one UAS-IR line.

All adults were removed after seven days. F1 adults began to appear on day 11;

these were removed twice daily at 9:00 and 18:00, and males and females stored in

separate vials. The F1 generation has two types of flies: those with straight wings

and those with curly. The straight-winged flies have the genotype UAS-IR/1407,

meaning they have both the GAL4 driver and the UAS-IR construct. The RNAi

system should therefore be active in oenocytes of these flies. The curly-winged flies
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Figure 5.2: Diagram to show cross between a GAL4 line and a UAS-IR line. F1

hybrids with the genotype UAS-IR/1407 will have activated RNAi in the oenocytes.

Those with UAS-IR/CyO do not have GAL4 and serve as controls.

do not have the GAL4 driver and their genotype is UAS-IR/CyO. They serve as

the negative control for the experiment.

5.2.2 CHC extractions

CHCs were extracted from flies at 24 hours old, and four days old, as the CHC

profiles of Drosophila are known to change over time (Antony and Jallon, 1982;

Ferveur, 2005; Pechine et al., 1988). Forty flies were analysed from each cross: five

males and five females of UAS/1407 and five males and five females of UAS/Cy at

24 hours old; and the same numbers of males and females of each genotype at four

days old. Live flies were removed from vials under CO2 anaesthesia and placed at

-20◦C in an 1.5ml microcentrifuge tube for at least 10 minutes before beginning the

extraction procedure.

The extraction procedure was carried out in a fume cupboard at room tem-

perature. CHCs were extracted by submerging each single fly in 150µl 5µg/ml

C26/heptane solution, in a cylindrical glass tube. Each fly was left in the solution

for 10 minutes and then removed to a 1.5ml microcentrifuge tube containing 100%

ethanol. Extracted flies in 100% ethanol were stored at -20◦C. The glass tubes

containing the solution were placed in glass bottles and left open to allow all liq-

uid to evaporate. They were then sealed using plastic lids with a Teflon inlay and
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sent to C. Wicker-Thomas who performed gas chromatography-mass spectrometry

(GC-MS) analysis. The extract is injected into a gas chromatography (GC) column,

which separates out the individual CHCs, based on size. Each CHC is then iden-

tified by mass spectrometry (MS), which breaks up the molecules and records the

mass to charge ratio for each fragment. The GC-MS instrument produces a chro-

matogram with peaks corresponding to each individual CHC. The area of each peak

corresponds to the amount of CHC present in the mixture. The absolute amount

is calculated using the peak area of a standard, for which the amount present is

known, as a reference (Kitson et al., 1996).

5.2.3 Statistics

The GC-MS analysis produced spreadsheets containing the peak areas for each hy-

drocarbon, as well as the amount for each CHC in nanograms, estimated using the

peak area and known amount of a C26 standard (equation 5.1).

CHC peak area× ng standard

standard peak area
(5.1)

For each cross, the amounts of each CHC in ng were used to perform principal

components analysis (PCA) in Minitab® (Minitab Inc.). CHCs absent from all

individuals were removed from the data prior to analysis. Data were standardised

to have means of zero and standard deviations of 1. Linear models were fitted to

each principal component which explained greater than 5% of the total variance

and/or had eigenvalues greater than 1. In the model, the principal component was

used as the response variable and explanatory variables were Treatment (RNAi or

Control; categorical), Age (1-day-old or 4-days-old; categorical) and Sex (Male or

Female; categorical). The interactions between Treatment and Age and Treatment

and Sex were also included in the model.

Because desaturases are responsible for levels of unsaturation in CHCs, in addi-

tion analysis of the ratio of unsaturated to saturated CHCs was performed, again

using a linear model. The amounts of all dienes and all monoenes were combined

to give the total amount of unsaturated CHCs for each individual. This was di-

vided by the total amount of linear CHCs for each fly, to give the ratio of unsatu-
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rated:saturated CHCs (equation 5.2). The ratio was used as the response variable,

with the same explanatory variables as in the analysis of principal components. To

correct for multiple testing, a P-value cut-off of 0.007 was used to detect statistical

significance (equation 5.3).

unsaturated:saturated CHC ratio =
total monoenes + total dienes

total linear CHCs
(5.2)

0.05

7 genes
= 0.007 (5.3)

5.3 Results

5.3.1 Principal components analysis

ANOVA results for all PCAs are shown in Tables 5.1 to 5.40. Significant P val-

ues are in bold in the tables. Several P-values were less than 0.05; these “almost

significant” values are shown in italics in the tables. After correcting for multiple

testing, only three P values remained significant: Treatment (RNAi or Control) was

found to have a significant effect on PC5 (4.4% variance) of the CG8630 experiment;

the Treatment*Age interaction also was also significant in PC5 for this gene. The

Treatment*Sex interaction was significant in PC4 (6.0% variance) of the CG15531

analysis.
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desat2

PC1 PC2 PC3 PC4 PC5

Eigenvalue 13.242 5.672 1.999 1.701 1.120

% variance 47.3 20.3 7.1 6.1 4.0

Table 5.1: Eigenvalues and % variance explained for principal components in desat2

analysis.

Source DF Seq. SS MS F P

Treatment 1 0.124 0.124 0.03 0.866

Sex 1 265.206 265.206 61.79 <0.001

Age 1 103.490 103.490 24.11 <0.001

Treatment*Sex 1 0.501 0.501 0.12 0.735

Treatment*Age 1 1.192 1.192 0.28 0.602

Error 34 145.929 4.292

Total 39 516.441

Table 5.2: Analysis of variance for principal component 1 in desat2 analysis

Source DF Seq. SS MS F P

Treatment 1 0.364 0.364 0.31 0.582

Sex 1 40.108 40.108 34.03 <0.001

Age 1 140.445 140.445 119.15 <0.001

Treatment*Sex 1 0.010 0.010 0.01 0.926

Treatment*Age 1 0.217 0.217 0.18 0.671

Error 34 40.077 1.179

Total 39 221.221

Table 5.3: Analysis of variance for principal component 2 in desat2 analysis



5.3. Results 120

Source DF Seq. SS MS F P

Treatment 1 9.403 9.403 5.36 0.027

Sex 1 0.176 0.176 0.10 0.753

Age 1 0.757 0.757 0.43 0.516

Treatment*Sex 1 5.004 5.004 2.85 0.100

Treatment*Age 1 2.987 2.987 1.70 0.201

Error 34 59.642 1.754

Total 39 77.969

Table 5.4: Analysis of variance for principal component 3 in desat2 analysis

Source DF Seq. SS MS F P

Treatment 1 1.266 1.266 0.90 0.350

Sex 1 8.034 8.034 5.70 0.023

Age 1 0.411 0.411 0.29 0.593

Treatment*Sex 1 0.420 0.420 0.30 0.589

Treatment*Age 1 8.261 8.261 5.86 0.021

Error 34 47.955 1.410

Total 39 66.347

Table 5.5: Analysis of variance for principal component 4 in desat2 analysis

Source DF Seq. SS MS F P

Treatment 1 7.2198 7.2198 7.54 0.010

Sex 1 1.2599 1.2599 1.32 0.259

Age 1 0.0350 0.0350 0.04 0.850

Treatment*Sex 1 1.1809 1.1809 1.23 0.275

Treatment*Age 1 1.4243 1.4243 1.49 0.231

Error 34 32.5724 0.9580

Total 39 43.6923

Table 5.6: Analysis of variance for principal component 5 in desat2 analysis
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CG8630

PC1 PC2 PC3 PC4 PC5

Eigenvalue 12.391 6.595 2.292 1.585 1.197

% variance 45.9 24.4 8.5 5.9 4.4

Table 5.7: Eigenvalues and % variance explained for principal components in

CG8630 analysis.

Source DF Seq. SS MS F P

Treatment 1 0.121 0.121 0.03 0.864

Sex 1 271.316 271.316 67.24 <0.001

Age 1 73.742 73.742 18.27 <0.001

Treatment*Sex 1 0.620 0.620 0.15 0.697

Treatment*Age 1 0.265 0.265 0.07 0.799

Error 34 137.195 4.035

Total 39 483.259

Table 5.8: Analysis of variance for principal component 1 in CG8630 analysis

Source DF Seq. SS MS F P

Treatment 1 5.441 5.441 3.30 0.078

Sex 1 37.425 37.425 22.69 <0.001

Age 1 151.009 151.009 91.54 <0.001

Treatment*Sex 1 0.755 0.755 0.46 0.503

Treatment*Age 1 6.475 6.475 3.93 0.056

Error 34 56.085 1.650

Total 39 257.191

Table 5.9: Analysis of variance for principal component 2 in CG8630 analysis
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Source DF Seq. SS MS F P

Treatment 1 0.130 0.130 0.06 0.815

Sex 1 0.254 0.254 0.11 0.744

Age 1 7.202 7.202 3.08 0.088

Treatment*Sex 1 1.964 1.964 0.84 0.366

Treatment*Age 1 0.297 0.297 0.13 0.724

Error 34 79.539 2.339

Total 39 89.386

Table 5.10: Analysis of variance for principal component 3 in CG8630 analysis

Source DF Seq. SS MS F P

Treatment 1 9.439 9.439 0.72 0.009

Sex 1 0.815 0.815 0.66 0.421

Age 1 1.174 1.174 0.96 0.335

Treatment*Sex 1 8.144 8.144 6.64 0.014

Treatment*Age 1 0.554 0.554 0.45 0.506

Error 34 41.690 1.226

Total 39 61.815

Table 5.11: Analysis of variance for principal component 4 in CG8630 analysis

Source DF Seq. SS MS F P

Treatment 1 8.2669 8.2669 11.73 0.002

Sex 1 3.0717 3.0717 4.36 0.044

Age 1 1.0612 1.0612 1.51 0.228

Treatment*Sex 1 0.0044 0.0044 0.01 0.938

Treatment*Age 1 10.3260 10.3260 14.65 0.001

Error 34 23.9712 0.7050

Total 39 46.7012

Table 5.12: Analysis of variance for principal component 5 in CG8630 analysis



5.3. Results 123

CG9743

PC1 PC2 PC3 PC4 PC5

Eigenvalue 12.876 6.551 1.601 1.322 1.112

% variance 47.7 24.3 5.9 4.9 4.1

Table 5.13: Eigenvalues and % variance explained for principal components in

CG9743 analysis.

Source DF Seq. SS MS F P

Treatment 1 0.017 0.017 0.00 0.953

Sex 1 285.539 285.539 58.49 <0.001

Age 1 50.374 50.374 10.32 0.003

Treatment*Sex 1 0.043 0.043 0.01 0.926

Treatment*Age 1 0.218 0.218 0.04 0.834

Error 34 165.989 4.882

Total 39 502.198

Table 5.14: Analysis of variance for principal component 1 in CG9743 analysis

Source DF Seq. SS MS F P

Treatment 1 0.045 0.045 0.04 0.852

Sex 1 47.750 47.750 37.50 <0.001

Age 1 164.055 164.055 128.83 <0.001

Treatment*Sex 1 0.157 0.157 0.12 0.728

Treatment*Age 1 0.173 0.173 0.14 0.715

Error 34 43.295 1.273

Total 39 255.475

Table 5.15: Analysis of variance for principal component 2 in CG9743 analysis
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Source DF Seq. SS MS F P

Treatment 1 8.476 8.476 5.97 0.020

Sex 1 4.141 4.141 2.92 0.097

Age 1 0.215 0.215 0.15 0.700

Treatment*Sex 1 0.772 0.772 0.54 0.466

Treatment*Age 1 0.572 0.572 0.40 0.530

Error 34 48.282 1.420

Total 39 62.456

Table 5.16: Analysis of variance for principal component 3 in CG9743 analysis

Source DF Seq. SS MS F P

Treatment 1 1.143 1.143 0.78 0.384

Sex 1 0.222 0.222 0.15 0.700

Age 1 0.006 0.006 0.00 0.948

Treatment*Sex 1 0.005 0.005 0.00 0.955

Treatment*Age 1 0.222 0.222 0.15 0.700

Error 34 49.965 1.470

Total 39 51.564

Table 5.17: Analysis of variance for principal component 4 in CG9743 analysis

Source DF Seq. SS MS F P

Treatment 1 0.829 0.829 0.77 0.385

Sex 1 0.028 0.028 0.03 0.874

Age 1 0.852 0.852 0.80 0.379

Treatment*Sex 1 4.576 4.576 4.27 0.046

Treatment*Age 1 0.631 0.631 0.59 0.448

Error 34 36.440 1.072

Total 39 43.356

Table 5.18: Analysis of variance for principal component 5 in CG9743 analysis



5.3. Results 125

CG9747

PC1 PC2 PC3 PC4 PC5

Eigenvalue 10.202 6.443 2.002 1.598 1.292

% variance 37.8 23.9 7.4 5.9 4.8

Table 5.19: Eigenvalues and % variance explained for principal components in

CG9747 analysis.

Source DF Seq. SS MS F P

Treatment 1 0.888 0.888 0.28 0.603

Sex 1 265.265 265.265 82.32 <0.001

Age 1 21.306 21.306 6.61 0.015

Treatment*Sex 1 0.154 0.154 0.05 0.828

Treatment*Age 1 0.682 0.682 0.21 0.648

Error 34 109.564 3.222

Total 39 397.860

Table 5.20: Analysis of variance for principal component 1 in CG9747 analysis

Source DF Seq. SS MS F P

Treatment 1 2.019 2.019 1.28 0.265

Sex 1 12.042 12.042 7.66 0.009

Age 1 183.084 183.084 116.39 <0.001

Treatment*Sex 1 0.052 0.052 0.03 0.857

Treatment*Age 1 0.607 0.607 0.39 0.539

Error 34 53.481 1.573

Total 39 251.285

Table 5.21: Analysis of variance for principal component 2 in CG9747 analysis
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Source DF Seq. SS MS F P

Treatment 1 0.028 0.028 0.01 0.907

Sex 1 2.858 2.858 1.40 0.245

Age 1 0.000 0.000 0.00 0.999

Treatment*Sex 1 5.727 5.727 2.81 0.103

Treatment*Age 1 0.084 0.084 0.04 0.841

Error 34 69.384 2.041

Total 39 78.080

Table 5.22: Analysis of variance for principal component 3 in CG9747 analysis

Source DF Seq. SS MS F P

Treatment 1 0.399 0.399 0.24 0.625

Sex 1 0.005 0.005 0.00 0.956

Age 1 0.067 0.067 0.04 0.841

Treatment*Sex 1 1.803 1.803 1.10 0.302

Treatment*Age 1 4.244 4.244 2.59 0.117

Error 34 55.811 1.641

Total 39 62.330

Table 5.23: Analysis of variance for principal component 4 in CG9747 analysis

Source DF Seq. SS MS F P

Treatment 1 5.197 5.197 5.11 0.030

Sex 1 0.000 0.000 0.00 0.984

Age 1 1.352 1.352 1.33 0.257

Treatment*Sex 1 3.558 3.558 3.50 0.070

Treatment*Age 1 5.900 5.900 5.80 0.022

Error 34 34.592 1.017

Total 39 50.599

Table 5.24: Analysis of variance for principal component 5 in CG9747 analysis
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CG15531

PC1 PC2 PC3 PC4 PC5

Eigenvalue 12.931 5.525 2.383 1.681 1.172

% variance 46.2 19.7 8.5 6.0 4.2

Table 5.25: Eigenvalues and % variance explained for principal components in

CG15531 analysis.

Source DF Seq. SS MS F P

Treatment 1 2.854 2.854 0.66 0.423

Sex 1 205.363 205.363 47.39 <0.001

Age 1 146.115 146.115 33.72 <0.001

Treatment*Sex 1 1.713 1.713 0.40 0.534

Treatment*Age 1 0.935 0.935 0.22 0.645

Error 34 147.332 4.333

Total 39 504.312

Table 5.26: Analysis of variance for principal component 1 in CG15531 analysis

Source DF Seq. SS MS F P

Treatment 1 0.627 0.627 0.45 0.508

Sex 1 39.306 39.306 28.09 <0.001

Age 1 126.279 126.279 90.24 <0.001

Treatment*Sex 1 0.054 0.054 0.04 0.845

Treatment*Age 1 1.621 1.621 1.16 0.289

Error 34 47.580 1.399

Total 39 215.467

Table 5.27: Analysis of variance for principal component 2 in CG15531 analysis
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Source DF Seq. SS MS F P

Treatment 1 9.116 9.116 4.07 0.052

Sex 1 2.607 2.607 1.16 0.288

Age 1 1.515 1.515 0.68 0.416

Treatment*Sex 1 1.726 1.726 0.77 0.386

Treatment*Age 1 1.858 1.858 0.83 0.369

Error 34 76.095 2.238

Total 39 92.918

Table 5.28: Analysis of variance for principal component 3 in CG15531 analysis

Source DF Seq. SS MS F P

Treatment 1 10.469 10.469 10.38 0.003

Sex 1 1.503 1.503 1.49 0.231

Age 1 0.036 0.036 0.04 0.852

Treatment*Sex 1 17.603 17.603 17.45 <0.001

Treatment*Age 1 1.650 1.650 1.64 0.210

Error 34 34.296 1.009

Total 39 65.556

Table 5.29: Analysis of variance for principal component 4 in CG15531 analysis

Source DF Seq. SS MS F P

Treatment 1 0.063 0.063 0.06 0.810

Sex 1 2.663 2.663 2.47 0.125

Age 1 0.007 0.007 0.01 0.938

Treatment*Sex 1 0.586 0.586 0.54 0.466

Treatment*Age 1 5.773 5.773 5.36 0.027

Error 34 36.610 1.077

Total 39 45.701

Table 5.30: Analysis of variance for principal component 5 in CG15531 analysis
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CG17928

PC1 PC2 PC3 PC4 PC5

Eigenvalue 11.018 7.006 2.836 1.672 1.102

% variance 40.8 25.9 10.5 6.2 4.1

Table 5.31: Eigenvalues and % variance explained for principal components in

CG17928 analysis.

Source DF Seq. SS MS F P

Treatment 1 3.314 3.314 0.81 0.376

Sex 1 187.517 187.517 45.64 <0.001

Age 1 92.763 92.763 22.58 <0.001

Treatment*Sex 1 4.411 4.411 1.07 0.307

Treatment*Age 1 1.983 1.983 0.48 0.492

Error 34 139.700 4.109

Total 39 429.689

Table 5.32: Analysis of variance for principal component 1 in CG17928 analysis

Source DF Seq. SS MS F P

Treatment 1 1.837 1.837 1.45 0.236

Sex 1 51.796 51.796 41.01 <0.001

Age 1 171.264 171.264 135.59 <0.001

Treatment*Sex 1 4.707 4.707 3.73 0.062

Treatment*Age 1 0.680 0.680 0.54 0.468

Error 34 42.945 1.263

Total 39 273.229

Table 5.33: Analysis of variance for principal component 2 in CG17928 analysis
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Source DF Seq. SS MS F P

Treatment 1 2.971 2.971 1.03 0.318

Sex 1 0.020 0.020 0.01 0.934

Age 1 2.950 2.950 1.02 0.320

Treatment*Sex 1 6.072 6.072 2.10 0.157

Treatment*Age 1 0.250 0.250 0.09 0.771

Error 34 98.342 2.892

Total 39 110.606

Table 5.34: Analysis of variance for principal component 3 in CG17928 analysis

Source DF Seq. SS MS F P

Treatment 1 2.610 2.610 1.72 0.199

Sex 1 5.479 5.479 3.61 0.066

Age 1 0.037 0.037 0.02 0.877

Treatment*Sex 1 0.088 0.088 0.06 0.811

Treatment*Age 1 5.364 5.364 3.52 0.069

Error 34 51.630 1.519

Total 39 65.208

Table 5.35: Analysis of variance for principal component 4 in CG17928 analysis

Source DF Seq. SS MS F P

Treatment 1 0.341 0.341 0.30 0.585

Sex 1 1.840 1.840 1.64 0.209

Age 1 1.403 1.403 1.25 0.271

Treatment*Sex 1 1.123 1.123 1.00 0.324

Treatment*Age 1 0.132 0.132 0.12 0.734

Error 34 38.142 1.122

Total 39 42.983

Table 5.36: Analysis of variance for principal component 5 in CG17928 analysis
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Cyt-b5-r

PC1 PC2 PC3

Eigenvalue 14.367 6.470 1.269

% variance 55.3 24.9 4.9

Table 5.37: Eigenvalues and % variance explained for principal components in Cyt-

b5-r analysis.

Source DF Seq. SS MS F P

Treatment 1 0.003 0.003 0.00 0.980

Sex 1 328.696 328.696 73.71 <0.001

Age 1 79.691 79.691 17.87 <0.001

Treatment*Sex 1 0.014 0.014 0.00 0.956

Treatment*Age 1 0.295 0.295 0.07 0.798

Error 34 151.618 4.459

Total 39 560.317

Table 5.38: Analysis of variance for principal component 1 in Cyt-b5-r analysis

Source DF Seq. SS MS F P

Treatment 1 0.028 0.028 0.02 0.877

Sex 1 35.731 35.731 31.58 <0.001

Age 1 177.275 177.275 156.70 <0.001

Treatment*Sex 1 0.411 0.411 0.36 0.551

Treatment*Age 1 0.408 0.408 0.36 0.552

Error 34 38.465 1.131

Total 39 252.318

Table 5.39: Analysis of variance for principal component 2 in Cyt-b5-r analysis
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Source DF Seq. SS MS F P

Treatment 1 0.867 0.867 0.65 0.424

Sex 1 1.732 1.732 1.31 0.261

Age 1 1.668 1.668 1.26 0.270

Treatment*Sex 1 0.008 0.008 0.01 0.937

Treatment*Age 1 0.129 0.129 0.10 0.757

Error 34 45.079 1.326

Total 39 49.483

Table 5.40: Analysis of variance for principal component 3 in Cyt-b5-r analysis.
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5.3.2 Analysis of unsaturated:saturated CHC ratios

ANOVA results for all analyses of unsaturated:saturated CHC ratios are shown in

Tables 5.41 to 5.47. As above, significant P-values are shown in bold in the following

tables, and “almost significant” P-values are in italics. The data fit approximately

to a normal distribution. After correcting for multiple testing, Treatment was signif-

icant in the analyses for desat2, CG8630 and CG9743, and borderline for CG15531.

The interaction between Treatment and Sex was significant in the analyses for desat2

and CG9743. The Treatment*Age interaction was significant in analyses of CG8630

and CG15531. The Treatment*Sex interaction in the CG9747 ANOVA had P =

0.033, less than 0.05 but non-significant using the cut-off of 0.007. Age and/or Sex

were also significant in most of the analyses.

The least squares means estimates for unsaturated:saturated CHC ratio are

shown in Figures 5.3 to 5.9. In the desat2, CG8630 and CG15531 experiments,

the least squares means for RNAi males and females are lower than those of con-

trol males and females. The ANOVA results indicate that Treatment has had a

significant effect on the ratios for desat2 and CG8630. For CG15531 it was “al-

most significant”. For CG9743, CG17928 and Cyt-b5-r, the means are higher in

RNAi males and females than those of control males and females. Out of these,

only CG9743 has a significant P-value for Treatment in the ANOVA results. For

CG9747, the RNAi males’ mean is higher than that of control males, but RNAi

females have a lower mean than control females. Treatment does not have a signif-

icant P-value in the ANOVA results for CG9747. These results are summarised in

Table 5.48.
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desat2

Source DF Seq. SS MS F P

Treatment 1 46.333 46.333 39.91 <0.001

Sex 1 30.323 30.323 26.13 <0.001

Age 1 0.178 0.178 0.15 0.698

Treatment*Sex 1 10.431 10.431 8.99 0.005

Treatment*Age 1 0.588 0.588 0.51 0.482

Error 34 39.462 1.161

Total 39 127.314

Table 5.41: Analysis of variance results for the ratios of unsaturated:saturated CHCs

in desat2 experiment.
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Figure 5.3: Least squares means estimates and standard deviations of unsatu-

rated:saturated CHC ratios in Control and RNAi males and females from desat2

experiment
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CG8630

Source DF Seq. SS MS F P

Treatment 1 34.543 34.543 59.35 <0.001

Sex 1 37.620 37.620 64.64 <0.001

Age 1 3.342 3.342 5.72 0.022

Treatment*Sex 1 2.134 2.134 3.67 0.064

Treatment*Age 1 16.518 16.518 28.38 <0.001

Error 34 19.786 0.582

Total 39 113.944

Table 5.42: Analysis of variance results for the ratios of unsaturated:saturated CHCs

in CG8630 experiment.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

Control RNAi

un
sa

tu
ra

te
d:

sa
tu

ra
te

d 
C

H
C

 r
at

io

Male
Female

Figure 5.4: Least squares means estimates and standard deviations of unsatu-

rated:saturated CHC ratios in Control and RNAi males and females from CG8630

experiment



5.3. Results 136

CG9743

Source DF Seq. SS MS F P

Treatment 1 13.932 13.932 14.95 0.001

Sex 1 63.161 63.161 67.73 <0.001

Age 1 41.299 41.299 44.29 <0.001

Treatment*Sex 1 11.958 11.958 12.82 0.001

Treatment*Age 1 1.337 1.337 1.43 0.239

Error 34 31.705 0.932

Total 39 163.391

Table 5.43: Analysis of variance results for the ratios of unsaturated:saturated CHCs

in CG9743 experiment.
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Figure 5.5: Least squares means estimates and standard deviations of unsatu-

rated:saturated CHC ratios in Control and RNAi males and females from CG9743

experiment
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CG9747

Source DF Seq. SS MS F P

Treatment 1 0.8206 0.8206 1.21 0.278

Sex 1 28.0078 28.0078 41.44 <0.001

Age 1 0.8872 0.8872 1.31 0.260

Treatment*Sex 1 3.3267 3.3267 4.92 0.033

Treatment*Age 1 0.0234 0.0234 0.03 0.854

Error 34 22.9805 0.676

Total 39 56.0462

Table 5.44: Analysis of variance results for the ratios of unsaturated:saturated CHCs

in CG9747 experiment.
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Figure 5.6: Least squares means estimates and standard deviations of unsatu-

rated:saturated CHC ratios in Control and RNAi males and females from CG9747

experiment
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CG15531

Source DF Seq. SS MS F P

Treatment 1 20.736 20.736 8.20 0.007

Sex 1 196.550 196.550 77.74 <0.001

Age 1 9.695 9.695 3.83 0.058

Treatment*Sex 1 2.301 2.301 0.91 0.347

Treatment*Age 1 41.663 41.663 16.48 <0.001

Error 34 85.957 2.528

Total 39 356.903

Table 5.45: Analysis of variance results for the ratios of unsaturated:saturated CHCs

in CG15531 experiment.

 1

 2

 3

 4

 5

 6

 7

 8

 9

Control RNAi

un
sa

tu
ra

te
d:

sa
tu

ra
te

d 
C

H
C

 r
at

io

Male
Female
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CG17928

Source DF Seq. SS MS F P

Treatment 1 4.275 4.275 1.36 0.252

Sex 1 31.031 31.031 9.88 0.003

Age 1 0.110 0.110 0.03 0.853

Treatment*Sex 1 3.055 3.055 0.97 0.331

Treatment*Age 1 0.270 0.270 0.09 0.771

Error 34 106.778 3.141

Total 39 145.518

Table 5.46: Analysis of variance results for the ratios of unsaturated:saturated CHCs

in CG17928 experiment.
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Cyt-b5-r

Source DF Seq. SS MS F P

Treatment 1 4.031 4.031 5.69 0.023

Sex 1 29.415 29.415 41.51 <0.001

Age 1 59.360 59.360 83.77 <0.001

Treatment*Sex 1 0.010 0.010 0.01 0.905

Treatment*Age 1 0.035 0.035 0.05 0.825

Error 34 24.092 0.709

Total 39 116.943

Table 5.47: Analysis of variance results for the ratios of unsaturated:saturated CHCs

in Cyt-b5-r experiment.
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Summary of analyses of unsaturated:saturated CHC ratios

Gene Significant term(s) Change in ratio

desat2 Treatment Down in RNAi |and ~

Sex

Treatment*Sex

CG8630 Treatment Down in RNAi |and ~

Sex

Treatment*Age

CG9743 Treatment Up in RNAi |

Sex Unchanged in ~

Age

Treatment*Sex

CG9747 Sex Up in RNAi |

Down in RNAi ~

CG15531 Sex Down in RNAi |and ~

Treatment*Age

CG17928 Sex Unchanged in |

Up in RNAi ~

Cyt-b5-r Sex Up in RNAi |and ~

Age

Table 5.48: Summary of analyses of unsaturated:saturated CHC ratios.
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5.4 Discussion

5.4.1 Principal components analysis

Principal components analysis (PCA) found that both age and sex had significant

effects in all knock-down experiments. It is of course widely known that mature

D. melanogaster have sexually dimorphic CHCs (Antony and Jallon, 1982), so the

effect of sex is not unexpected. Neither is that of age: it is also known that the CHC

profiles of both male and female flies change over time. Immature D. melanogaster

male and female adults both produce much longer-chain CHCs than mature adults;

in both sexes immature males and females also possess dienic CHCs, not found in

mature adult males. This is thought to be the reason young males are sometimes

courted by mature males (Antony and Jallon, 1982; Ferveur, 2005; Pechine et al.,

1988).

Significant effect of RNAi knock-down was detected in principal component 5 in

the CG8630 analysis, and the interaction between Treatment and Age is also signif-

icant here. The Treatment*Sex interaction was significant in principal component 4

for CG15531. According to FlyAtlas, the online database of D. melanogaster adult

gene expression, CG8630 is down-regulated in the tissue category “Adult carcass”,

which includes the oenocytes (Chintapalli et al., 2007). It is perhaps surprising,

therefore, that attempted RNAi knock-down of this gene specifically in the oeno-

cytes would have an effect on CHC profile. The data in FlyAtlas is from 7-day-old D.

melanogaster Canton-S flies. Given that the CHC profile of younger flies differs from

that of older ones, it is possible that certain desaturases may be expressed in younger

flies and not in older ones. The flies used in the work presented here were aged 1-

day-old and 4-days-old, so if CG8630 is expressed early and then down-regulated,

this could explain the effect detected in PCA. FlyAtlas shows that CG15531 is up-

regulated in “Adult carcass” in 7-day-old flies, so there is potential for it to affect

CHCs.

Two other genes are up-regulated in “Adult carcass” according to FlyAtlas, these

are CG17928 and Cyt-b5-r. Although they are expressed in this tissue category,

it is possible that they are involved in fatty acid metabolism in other biological
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processes and are not required for CHC modification. This would explain the lack

of significance detected in these genes. A few genes have “almost significant” P-

values (in italics in Tables 5.2 to 5.40). The sample size in this study was fairly

small: 5 flies per sex per treatment. A larger sample size would give greater power

to detect real effects, and it is possible that some of these “almost significant” P-

values would become significant. Of course, there is also potential for the opposite

result, that the significant or nearly significant results seen here are due to sampling

error. Larger sample sizes would provide a more accurate picture of the effects of

RNAi knock-down of these genes.

In general, the data used in the PCA were not normally distributed, and so the

linear model may not fit adequately. Because of this, the results of this analysis

may not be 100% reliable. The reason for this is likely to be because the CHC data

contains many zero values. The main factors contributing to this are dienic CHCs,

which were only present in females, and mostly only in 4-day-old females, while

males and most 1-day-old females did not have any dienes. For these columns, the

variance in males is of course zero, given they all have the same value (zero) for any

particular diene. This produces skewed data because the females have at least some

variance in these columns. In other analyses it may be possible to eliminate zero

values, for example by combining certain columns or by simply removing the columns

or rows containing zeros. However these approaches were not deemed sensible in this

analysis: given that dienic CHCs are some of the most important when it comes

to Drosophila pheromonal communication, and that they are directly affected by

certain desaturases, removing them would remove a source of potentially interesting

variation. The diene columns were therefore kept in the data. However, the results

should be taken with caution.

5.4.2 Analysis of unsaturated:saturated CHC ratios

The ratios of unsaturated:saturated CHCs were more normally distributed, and so

fit the linear models better. Treatment appears to have lowered the ratio in the

desat2, CG8630 and CG15531 experiments, though the P-value for CG15531 is

equal to the cut-off of 0.007. This more or less concurs with what was found in
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the PCA analysis. There has also been a significant interaction between Treatment

and Sex in desat2, and from the least squares means it appears that Treatment has

lowered the ratio more in males than in females (Figure 5.3). desat2 is known to

be involved in CHC modification in certain strains of D. melanogaster. It has been

shown that desat2 is not expressed in Canton-S and other Cosmopolitan strains,

or else is only expressed at a very low level, due to a 16bp deletion in the putative

promoter region (Dallerac et al., 2000; Michalak et al., 2007; Takahashi et al., 2001).

The RNAi flies used were created using the w1118 strain which has a Canton-S genetic

background (Dietzl et al., 2007). It is perhaps surprising therefore that attempted

RNAi knock-down of this gene should have an effect. There is a possibility for non-

specific targetting by the RNAi system: desat2 is very similar in sequence to desat1,

and so it is possible that desat1 is also being targeted by the RNAi machinery. This

would cause a reduction in the amount of unsaturated CHCs and a corresponding

rise in the amount of linear ones (Wicker-Thomas et al., 2009), and hence a lower

unsaturated:saturated CHC ratio.

This analysis also found that Treatment had a significant effect in the CG9743

analysis, apparently causing an increase in the unsaturated:saturated CHC ratio,

particularly in males. This was unexpected: the function of a desaturase is to create

unsaturations, and so removing its function should result in less unsaturations, if the

enzyme is involved in CHC modification. It is possible that this enzyme has some

other function in controlling CHC production but it is not clear what that might

be from these results. It is important to bear in mind that the desaturases act

in a complex network with many other enzymes; perhaps the reduction in activity

of CG9747, directly or indirectly, leads to an increase in activity of some other

desaturase. The other possible explanation is that this is an artefact of the small

sample sizes. No significant effect of Treatment was detected for CG17928 or Cyt-

b5-r. This indicates that these genes do not play a role in CHC production.

5.4.3 Concluding remarks

The results of the PCA and the analysis of unsaturated:saturated CHC ratios sug-

gest that, apart from the well-studied functions desat1, desat2 and desatF, other
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desaturases may have roles to play in the production of CHCs in D. melanogaster.

The caveat of small sample size applies, but with a larger sample size it would be

possible to obtain a more definitive answer to the question of which desaturases are

important for this process. It would also be of interest to investigate the expression

pattern of CG8630 further, to discover whether it is expressed in the oenocytes in

younger adults.

Aside from the small sample size, another caveat for these analyses was that

the RNAi knock-down was not verified by RNA extraction and Q-PCR. The GAL4

driver used was verified to function in the oenocytes and successfully drove RNAi

of other desaturases in these cells by Wicker-Thomas et al. (2009). However, it

would strengthen this study if it could be said that each gene was found to have

been knocked down by investigating the amount of mRNA present. This process is

difficult for the oenocytes, as they form very small amounts of tissue and this would

need to be dissected specifically and quickly enough to prevent RNA degradation.

This was not possible in the scope of this project, however it is concievable that it

would be possible in future.
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Chapter 6

Discussion

The release of the complete genome sequences of 12 Drosophila species has provided

researchers with the opportunity for comparative analyses across a large amount of

evolutionary time. Following the publication of the genome sequences came many

studies examining gene family evolution across the phylogeny. Hahn et al. (2007)

used this newly available resource to study gain and loss of loci across the whole

genome. They found large numbers of gains and losses, with some instances of

extreme expansion or contraction in gene family size, particularly in sex-related

genes. They note that although the overall number of genes has remained relatively

constant over time, there has been rapid turnover in gain and loss of individual genes

and families (Hahn et al., 2007).

Studies of individual gene families so far tend to find that they are generally

governed by purifying selection, with more relaxed constraints and sometimes posi-

tive selection on duplicated genes. This was true in a study of the odorant-binding

protein (OBP) family, a group of proteins which establish the initial contact with

odorant molecules (Vieira et al., 2007). This analysis identified 595 genes, with 43

gains and 28 losses, 13 of which were pseudogenisations. The authors note that

evolution in this family was more rapid in the specialists D. sechellia and D. erecta

than in their closely related generalist species D. simulans and D. yakuba, suggest-

ing that the OBP family was involved in the process of specialisation (Vieira et al.,

2007).

Guo and Kim (2007) performed a comparative analysis of olfactory receptors,

149
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identifying 59 orthologous groups of genes and noting a large amount of duplica-

tion and loss, particularly in D. willistoni, D. grimshawi, D. pseudoobscura and D.

persimilis. In a similar study of this gene family, Gardiner et al. (2008) analysed ol-

factory and gustatory receptors and found that gene family size varied considerably

between different species, with many genes having undergone pseudogenisation, and

many lineage-specific duplications. They also note that the majority of the loci were

under strong purifying selection, although this is relaxed in genes that have been

duplicated.

The desaturase gene family also appears to be under strong purifying selection

for the most part, with all instances of positive selection being in duplicated genes.

No pseudogenisation was found among the desaturases, however, indicating that

they are under stronger constraints, perhaps due to the fact that there has been

less duplication in this family – most desaturases are only present in a single copy.

The size of the desaturase family remains fairly consistent between different species:

only desatF and desat2 appear to have been lost, and although desatF has been du-

plicated several times, at most a single species has three copies. Recently, a similar

comparative genomic study of the Drosophila desaturases was published, which com-

bined homology-based searching with synteny analysis to identify orthologous genes

(Fang et al., 2009). Their analysis identified most of the loci found in this thesis,

excluding two duplicated genes in the form of desat1b in D. pseudoobscura and D.

persimilis, and a duplicate of desat2 in D. ananassae. They also found evidence for

the desaturases being generally governed by purifying selection, with relaxation or

positive selection on branches following duplication, which concurs with this study.

The work presented in this thesis has identified novel duplicates in the Drosophila

desaturase gene family. Two duplicates show strong evidence of being under positive

selection: desat1b and desatFα in D. pseudoobscura and D. persimilis. It is shown

that desat1b is expressed in both species, lending support to the idea that it is a

functional gene, and not a pseudogene and therefore bolstering the claim of positive

selection. Furthermore, it is expressed in a sex-biased manner and also demonstrates

alternative splicing in its 5′ UTR at least in males of D. pseudoobscura. The sex-

biased expression pattern in a gene likely to influence pheromones is particularly
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interesting. The RNAi work in D. melanogaster has identified genes, which had not

previously been associated with CHC production, as having a possible effect on it.

These results demonstrate the potential of comparative genomic studies in furthering

our understanding of gene family evolution and in discovering new candidates for

genes that influence reproductive isolation.

Future directions

Much of the work presented here raises new questions to be answered. In Chapter

3, two genes were found to show evidence of positive selection (Tables 3.4 and 3.6).

The desat1b gene of D. pseudoobscura and D. persimilis was subjected to further

analysis; the other gene – D. pseudoobscura and D. persimilis desatFα – showed

strong evidence for positive selection on the branch preceeding speciation, but after

gene duplication (Figure 3.5). The regulation of the desatF gene is known to have

undergone rapid evolution in many species (Shirangi et al., 2009). It would be

interesting to investigate the duplicates in the obscura group species further to see

what their patterns of expression are, and how the positive selection detected in

Chapter 3 has affected the function of the gene.

There are many possibilities to follow up the work so far on desat1b in D. pseu-

doobscura and D. persimilis (Chapter 4). These species naturally occur in North

America; D. persimilis inhabits only the western USA, while D. pseudoobscura is

found all across the country. There are therefore populations of D. pseudoobscura

in the western US that are sympatric with D. persimilis, and those found further

east that are allopatric. These different populations of D. pseudoobscura have been

found to show different levels of behavioural isolation from D. persimilis, with fe-

males of sympatric D. pseudoobscura being less willing to mate with D. persimilis

males than allopatric females are (Noor, 1995). desat1b is located on the X chromo-

some in D. pseudoobscura, which has been implicated in courtship in these species

and strains (e.g. Noor et al., 2001; Ortiz-Barrientos et al., 2004, but see Barnwell

and Noor 2008). It would be interesting to see whether the expression of desat1b

differs between sympatric and allopatric strains of D. pseudoobscura, and could be

contributing to this difference in isolation levels. This could be done using RT-PCR,
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with primers designed based on the sequence of the mRNA found in Chapter 4 us-

ing RACE. Q-PCR could also be used here, to measure the levels of expression in

males and females of the different strains, and also in different tissues to determine

where in the fly the gene is expressed. An oenocyte-specific expression pattern would

of course suggest involvement in CHC production. It would also be of interest to

determine whether both sexes of both species and/or strains of D. pseudoobscura

demonstrate alternative splicing in the 5′ UTR, as was found in D. pseudoobscura

males.

Following on from expression analysis, it is important to find out the function of

the protein product of desat1b. Given that it is so closely related to desat1, there is

a possibility it also has a part to play in CHC modification. However, this is merely

an assumption, and must be investigated empirically. Although it is not possible

yet to buy ready-made RNAi lines of D. pseudoobscura or D. persimilis, as it is for

D. melanogaster, RNAi is increasingly being performed in non-model organisms. It

should be possible, therefore, to create lines of D. pseudoobscura and D. persimilis

carrying an RNAi hairpin construct, which could then be used to knock down de-

sat1b expression. To determine whether the protein is even translated is another

possible avenue for investigation. Methods such as Western blotting can detect spe-

cific proteins in a protein extract from tissue or a whole organism. Since most of

the positive selection was localised at the N-terminal region, it would be of inter-

est to determine the function of this region and of the positively-selected residues.

This could be investigated in vitro using site-directed mutagenesis, changing these

residues and observing the effects, as has been done previously to determine the

function of positively-selected sites (Bielawski et al., 2004; Ilvarsson et al., 2003;

Norrg̊ard et al., 2006; Sawyer et al., 2005).

It is as yet unknown whether any other species in the obscura group possess this

gene: this would be relatively easy to determine, using the primers already designed

in this thesis and attempting to amplify the gene from DNA extracted from other

species. A caveat to all work involving amplification or probing of this gene using

complementary oligonucleotides must be to ensure that only desat1b is targeted by

the oligo, and not its close relative, desat1, since they are very similar in sequence.
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The RNAi work in Chapter 5 also produced some potentially interesting results,

particularly with the genes CG8630 and CG9743 having significant effects on the

CHC profile. These are genes that up to now were unlinked to CHC modification, so

it is of particular interest to follow this analysis up and determine what their exact

function is. An obvious next step here is to repeat the RNAi experiments using a

much larger sample size, for example 20 flies per category as opposed to 5, which was

used here. This would provide much more statistical power to detect real effects in

the data. Also potentially important to look at would be the mRNA levels in RNAi

and Control flies – this was not done here in part because the GAL4 driver was

already verified to function as expected, but a Q-PCR analysis would strengthen

the study and any conclusions drawn. RNAi experiments on other genes involved

in CHC production would also be interesting, for example the elongases, which act

after desaturases to lengthen the fatty acid hydrocarbon chain and produce the

mature CHC.
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Appendix A

Laboratory Protocols

A.1 Single fly DNA prep

This protocol is adapted from Gloor et al. (1991).

Ingredients for squishing buffer

1 ml 1M TrisHCl

0.5 ml 0.2M EDTA

0.5 ml 5M NaCl

to 100ml H2O

20 mg/ml proteinase K

Method

1. Place one fly in a 1.5 ml microcentrifuge tube, and leave at -20◦C.

2. Make 100 ml squishing buffer using all ingredients shown apart from proteinase

K.

3. Decant 990 µl squishing buffer into a microcentrifuge tube, and add 10 µl

20mg/ml proteinase K, giving a final concentration of 200 µg/ml proteinase

K.
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4. Remove fly from -20◦C.

5. Aspirate 50 µl squishing buffer with proteinase K and, without expelling the

buffer, mash fly with the end of the tip.

6. Expel the buffer into the tube.

7. Incubate at 37◦C for 30 minutes.

8. Incubate at 95◦C for 2 minutes to inactivate proteinase K.

9. Store at -20◦C for up to 30 days.

A.2 PCR

In a 1.5 ml microcentrifuge tube, make mastermix containing all reagents given in

Table A.1, except Taq DNA polymerase. Multiply all amounts by the number of

reactions (including one MilliQ H2O negative control) plus one extra for every ten

reactions, to ensure sufficient mastermix is made for all reactions. Vortex primers

and dNTPs prior to use.

Reagent Amount (µl) for 1 reaction

MilliQ H2O 19.55

Forward Primer (50 pmol/µl) 0.15

Reverse Primer (50 pmol/µl) 0.15

10X NH4 2.5

MgCl2 0.75

dNTPs (10 nmol/µl) 0.8

Taq DNA Polymerase 0.1

Table A.1: Ingredients for a single 25 µl PCR reaction.

Add 1 µl template to separate 0.2 ml PCR tubes. Add the Taq DNA polymerase

to the mastermix and vortex briefly to mix. Decant 24 µl mastermix into each

PCR tube, making sure that there are no air bubbles separating the mastermix and

template. Place tubes in a thermocycler and run the following program:
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Step 1. 94◦C for 3 minutes

Step 2. 94◦C for 30 seconds

Step 3. Annealing temperature for 30 seconds

Step 4. 72◦C for 1 minute

Step 5. Go to Step 2 29 more times

Step 6. 72◦C for 5 minutes

Check all PCR reactions on a 2% agarose gel.

A.3 Agarose gel electrophoresis

2% Agarose Gel

Place combs and barriers to gel tray. Add 50 ml 0.5X TBE to 1 g agarose in a

conical flask. Cover flask with cling film, pierce film, microwave until all agarose

has dissolved. Allow gel to cool until it is not steaming, then add 2.5 µl ethidium

bromide and swirl to mix. Pour gel into tray and allow to set. When gel has set,

remove combs and barriers and pour over 50 ml 0.5X TBE.

Electrophoresis of PCR products

On a clear slide, pipette one 2 µl drop of loading dye for each PCR reaction. To each

drop, add 5 µl PCR reaction. Load these on the gel, as well as 2.5 µl GeneRuler

100 bp ladder. Connect the power supply and run at 90 volts for 20 minutes. After

the run, examine gel under UV light to visualise PCR products.

A.4 Corn meal fly food

Put all the ingredients in Table A.2 into a pot. Add the water and stir continuously.

Once it boils, reduce heat and simmer while stirring constantly for 15 minutes. Do

not allow to burn. Cool for 10-15 minutes.
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Ingredient Amount

Corn meal 50 g

Brewer’s yeast 50 g

Glucose 80 g

Agar 10 g

H2O 1 L

Table A.2: Ingredients for 1 L corn meal fly food.

While to cornmeal mixture is cooling, mix together 7 g baker’s yeast and 40 ml

H2O and boil. Add directly to the cooled cornmeal mixture, as well as 27 ml 10%

nipagin.

Add cornmeal mixture to empty vials. Cover vials with a cloth and leave to cool

overnight, then add foam lids to all vials and refrigerate.



Appendix B

PAML Control Files

B.1 Site-based models

B.1.1 M7 and M8 models

seqfile = desat1_allsp_codons_4paml.phy

* sequence data file name

treefile = species.tree * tree structure file name

outfile = desat1_M7M8.paml * main result

file name

noisy = 3 * 0,1,2,3,9: how much rubbish on the

screen

verbose = 0 * 1: detailed output , 0: concise

output

runmode = 0 * 0: user tree; 1: semi -automatic;

2: automatic

* 3: StepwiseAddition; (4,5):

PerturbationNNI; -2: pairwise

seqtype = 1 * 1: codons; 2:AAs; 3:codons -->AAs

CodonFreq = 2 * 0:1/61 each , 1:F1X4 , 2:F3X4 , 3:

161



B.1. Site-based models 162

codon table

clock = 0 * 0: no clock , unrooted tree , 1:

clock , rooted tree

aaDist = 0 * 0:equal , +: geometric; -:linear ,

{1-5:G1974 ,Miyata ,c,p,v}

model = 0

NSsites = 7 8

* 0:one w; 1: NearlyNeutral; 2:

PositiveSelection; 3: discrete;

* 4: freqs; 5:gamma ;6:2 gamma ;7: beta ;8:

beta&w;9: beta&gamma ;10:3 normal

icode = 0 * 0: standard genetic code; 1:

mammalian mt; 2-10:see below

Mgene = 0 * 0:rates , 1: separate; 2:pi , 3:kappa ,

4:all

fix_kappa = 0 * 1: kappa fixed , 0: kappa to be

estimated

kappa = .3 * initial or fixed kappa

fix_omega = 0 * 1: omega or omega_1 fixed , 0:

estimate

omega = 1.3 * initial or fixed omega , for codons

or codon -based AAs

ncatG = 10 * # of categories in the dG or AdG

models of rates

getSE = 0 * 0: don ’t want them , 1: want S.E.s

of estimates

RateAncestor = 0 * (0,1,2): rates (alpha >0) or

ancestral states (1 or 2)
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Small_Diff = .45e-6

cleandata = 1 * remove sites with ambiguity data (1:

yes , 0:no)?

fix_blength = 0 * 0: ignore , -1: random , 1: initial ,

2: fixed

B.1.2 M8a model

seqfile = desat1_allsp_codons_4paml.phy *

sequence data file name

treefile = species.tree * tree structure file name

outfile = desat1_M8a.paml * main result

file name

noisy = 3 * 0,1,2,3,9: how much rubbish on the

screen

verbose = 0 * 1: detailed output , 0: concise

output

runmode = 0 * 0: user tree; 1: semi -automatic;

2: automatic

* 3: StepwiseAddition; (4,5):

PerturbationNNI; -2: pairwise

seqtype = 1 * 1: codons; 2:AAs; 3:codons -->AAs

CodonFreq = 2 * 0:1/61 each , 1:F1X4 , 2:F3X4 , 3:

codon table

clock = 0 * 0: no clock , unrooted tree , 1:

clock , rooted tree

aaDist = 0 * 0:equal , +: geometric; -:linear ,

{1-5:G1974 ,Miyata ,c,p,v}

model = 0
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NSsites = 8

* 0:one w; 1: NearlyNeutral; 2:

PositiveSelection; 3: discrete;

* 4: freqs; 5:gamma ;6:2 gamma ;7: beta ;8:

beta&w;9: beta&gamma ;10:3 normal

icode = 0 * 0: standard genetic code; 1:

mammalian mt; 2-10:see below

Mgene = 0 * 0:rates , 1: separate; 2:pi , 3:kappa ,

4:all

fix_kappa = 0 * 1: kappa fixed , 0: kappa to be

estimated

kappa = .3 * initial or fixed kappa

fix_omega = 1 * 1: omega or omega_1 fixed , 0:

estimate

omega = 1 * initial or fixed omega , for codons

or codon -based AAs

ncatG = 10 * # of categories in the dG or AdG

models of rates

getSE = 0 * 0: don ’t want them , 1: want S.E.s

of estimates

RateAncestor = 0 * (0,1,2): rates (alpha >0) or

ancestral states (1 or 2)

Small_Diff = .45e-6

cleandata = 1 * remove sites with ambiguity data (1:

yes , 0:no)?

fix_blength = 0 * 0: ignore , -1: random , 1: initial ,

2: fixed
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B.2 Branch models

B.2.1 One-ratio model

seqfile = desat1_all_codons_4paml.phy *

sequence data file name

treefile = one_ratio.tree * tree structure file

name

outfile = one_ratio.paml * main result

file name

noisy = 3 * 0,1,2,3,9: how much rubbish on the

screen

verbose = 0 * 1: detailed output , 0: concise

output

runmode = 0 * 0: user tree; 1: semi -automatic;

2: automatic

* 3: StepwiseAddition; (4,5):

PerturbationNNI; -2: pairwise

seqtype = 1 * 1: codons; 2:AAs; 3:codons -->AAs

CodonFreq = 2 * 0:1/61 each , 1:F1X4 , 2:F3X4 , 3:

codon table

clock = 0 * 0: no clock , unrooted tree , 1:

clock , rooted tree

aaDist = 0 * 0:equal , +: geometric; -:linear ,

{1-5:G1974 ,Miyata ,c,p,v}

model = 0

NSsites = 0

* 0:one w; 1: NearlyNeutral; 2:

PositiveSelection; 3: discrete;
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* 4: freqs; 5:gamma ;6:2 gamma ;7: beta ;8:

beta&w;9: beta&gamma ;10:3 normal

icode = 0 * 0: standard genetic code; 1:

mammalian mt; 2-10:see below

Mgene = 0 * 0:rates , 1: separate; 2:pi , 3:kappa ,

4:all

fix_kappa = 0 * 1: kappa fixed , 0: kappa to be

estimated

kappa = .3 * initial or fixed kappa

fix_omega = 0 * 1: omega or omega_1 fixed , 0:

estimate

omega = 1.3 * initial or fixed omega , for codons

or codon -based AAs

ncatG = 10 * # of categories in the dG or AdG

models of rates

getSE = 0 * 0: don ’t want them , 1: want S.E.s

of estimates

RateAncestor = 0 * (0,1,2): rates (alpha >0) or

ancestral states (1 or 2)

Small_Diff = .45e-6

cleandata = 1 * remove sites with ambiguity data (1:

yes , 0:no)?

fix_blength = 0 * 0: ignore , -1: random , 1: initial ,

2: fixed

B.2.2 Two and three-ratio models

seqfile = desat1_all_codons_4paml.phy *

sequence data file name
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treefile = two_ratios.tree * tree structure file

name

outfile = two_ratios_ratios.paml * main

result file name

noisy = 3 * 0,1,2,3,9: how much rubbish on the

screen

verbose = 0 * 1: detailed output , 0: concise

output

runmode = 0 * 0: user tree; 1: semi -automatic;

2: automatic

* 3: StepwiseAddition; (4,5):

PerturbationNNI; -2: pairwise

seqtype = 1 * 1: codons; 2:AAs; 3:codons -->AAs

CodonFreq = 2 * 0:1/61 each , 1:F1X4 , 2:F3X4 , 3:

codon table

clock = 0 * 0: no clock , unrooted tree , 1:

clock , rooted tree

aaDist = 0 * 0:equal , +: geometric; -:linear ,

{1-5:G1974 ,Miyata ,c,p,v}

model = 2

NSsites = 0

* 0:one w; 1: NearlyNeutral; 2:

PositiveSelection; 3: discrete;

* 4: freqs; 5:gamma ;6:2 gamma ;7: beta ;8:

beta&w;9: beta&gamma ;10:3 normal

icode = 0 * 0: standard genetic code; 1:

mammalian mt; 2-10:see below

Mgene = 0 * 0:rates , 1: separate; 2:pi , 3:kappa ,
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4:all

fix_kappa = 0 * 1: kappa fixed , 0: kappa to be

estimated

kappa = .3 * initial or fixed kappa

fix_omega = 0 * 1: omega or omega_1 fixed , 0:

estimate

omega = 1.5 * initial or fixed omega , for codons

or codon -based AAs

ncatG = 10 * # of categories in the dG or AdG

models of rates

getSE = 0 * 0: don ’t want them , 1: want S.E.s

of estimates

RateAncestor = 0 * (0,1,2): rates (alpha >0) or

ancestral states (1 or 2)

Small_Diff = .45e-6

cleandata = 1 * remove sites with ambiguity data (1:

yes , 0:no)?

fix_blength = 0 * 0: ignore , -1: random , 1: initial ,

2: fixed

B.3 Branch-site tests

B.3.1 Null model

seqfile = branchsite_test/desat1_all_codons_4paml

.phy * sequence data file name

treefile = branchsite_test/two_ratios_leadingbranch.

tree * tree structure file name
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outfile = branchsite_test/

two_ratios_leadingbranch_alt.paml * main result

file name

noisy = 3 * 0,1,2,3,9: how much rubbish on the

screen

verbose = 0 * 1: detailed output , 0: concise

output

runmode = 0 * 0: user tree; 1: semi -automatic;

2: automatic

* 3: StepwiseAddition; (4,5):

PerturbationNNI; -2: pairwise

seqtype = 1 * 1: codons; 2:AAs; 3:codons -->AAs

CodonFreq = 2 * 0:1/61 each , 1:F1X4 , 2:F3X4 , 3:

codon table

clock = 0 * 0: no clock , unrooted tree , 1:

clock , rooted tree

aaDist = 0 * 0:equal , +: geometric; -:linear ,

{1-5:G1974 ,Miyata ,c,p,v}

model = 2

NSsites = 2

* 0:one w; 1: NearlyNeutral; 2:

PositiveSelection; 3: discrete;

* 4: freqs; 5:gamma ;6:2 gamma ;7: beta ;8:

beta&w;9: beta&gamma ;10:3 normal

icode = 0 * 0: standard genetic code; 1:

mammalian mt; 2-10:see below

Mgene = 0 * 0:rates , 1: separate; 2:pi , 3:kappa ,

4:all
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fix_kappa = 0 * 1: kappa fixed , 0: kappa to be

estimated

kappa = .3 * initial or fixed kappa

fix_omega = 1 * 1: omega or omega_1 fixed , 0:

estimate

omega = 1 * initial or fixed omega , for codons

or codon -based AAs

ncatG = 10 * # of categories in the dG or AdG

models of rates

getSE = 0 * 0: don ’t want them , 1: want S.E.s

of estimates

RateAncestor = 0 * (0,1,2): rates (alpha >0) or

ancestral states (1 or 2)

Small_Diff = .45e-6

cleandata = 1 * remove sites with ambiguity data (1:

yes , 0:no)?

fix_blength = 0 * 0: ignore , -1: random , 1: initial ,

2: fixed

B.3.2 Alternative model

seqfile = branchsite_test/desat1_all_codons_4paml

.phy * sequence data file name

treefile = branchsite_test/two_ratios_leadingbranch.

tree * tree structure file name

outfile = branchsite_test/

two_ratios_leadingbranch_alt.paml * main

result file name

noisy = 3 * 0,1,2,3,9: how much rubbish on the
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screen

verbose = 0 * 1: detailed output , 0: concise

output

runmode = 0 * 0: user tree; 1: semi -automatic;

2: automatic

* 3: StepwiseAddition; (4,5):

PerturbationNNI; -2: pairwise

seqtype = 1 * 1: codons; 2:AAs; 3:codons -->AAs

CodonFreq = 2 * 0:1/61 each , 1:F1X4 , 2:F3X4 , 3:

codon table

clock = 0 * 0: no clock , unrooted tree , 1:

clock , rooted tree

aaDist = 0 * 0:equal , +: geometric; -:linear ,

{1-5:G1974 ,Miyata ,c,p,v}

model = 2

NSsites = 2

* 0:one w; 1: NearlyNeutral; 2:

PositiveSelection; 3: discrete;

* 4:freqs; 5:gamma ;6:2 gamma ;7: beta ;8:

beta&w;9: beta&gamma ;10:3 normal

icode = 0 * 0: standard genetic code; 1:

mammalian mt; 2-10:see below

Mgene = 0 * 0:rates , 1: separate; 2:pi , 3:kappa ,

4:all

fix_kappa = 0 * 1: kappa fixed , 0: kappa to be

estimated

kappa = .3 * initial or fixed kappa

fix_omega = 0 * 1: omega or omega_1 fixed , 0:
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estimate

omega = 1.5 * initial or fixed omega , for codons

or codon -based AAs

ncatG = 10 * # of categories in the dG or AdG

models of rates

getSE = 0 * 0: don ’t want them , 1: want S.E.s

of estimates

RateAncestor = 0 * (0,1,2): rates (alpha >0) or

ancestral states (1 or 2)

Small_Diff = .45e-6

cleandata = 1 * remove sites with ambiguity data (1:

yes , 0:no)?

fix_blength = 0 * 0: ignore , -1: random , 1: initial ,

2: fixed
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Alignment of desat1b RACE
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