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[1] We present an approach for dealing with coarse‐resolution Earth observations (EO) in
terrestrial ecosystem data assimilation schemes. The use of coarse‐scale observations in
ecological data assimilation schemes is complicated by spatial heterogeneity and nonlinear
processes in natural ecosystems. If these complications are not appropriately dealt with,
then the data assimilation will produce biased results. The “disaggregation” approach that
we describe in this paper combines frequent coarse‐resolution observations with
temporally sparse fine‐resolution measurements. We demonstrate the approach using a
demonstration data set based on measurements of an Arctic ecosystem. In this example,
normalized difference vegetation index observations are assimilated into a “zero‐order”
model of leaf area index and carbon uptake. The disaggregation approach conserves key
ecosystem characteristics regardless of the observation resolution and estimates the carbon
uptake to within 1% of the demonstration data set “truth.” Assimilating the same data in
the normal manner, but without the disaggregation approach, results in carbon uptake
being underestimated by 58% at an observation resolution of 250 m. The disaggregation
method allows the combination of multiresolution EO and improves in spatial resolution if
observations are located on a grid that shifts from one observation time to the next.
Additionally, the approach is not tied to a particular data assimilation scheme, model, or
EO product and can cope with complex observation distributions, as it makes no implicit
assumptions of normality.
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1. Introduction

[2] Understanding the spatial and temporal variability of
terrestrial ecosystem states and processes remains an
important challenge. Complexity in the Earth system derives
in large part from the interactions between ecological and
environmental processes over a range of temporal and spa-
tial scales. Naturally occurring ecosystems systems often
tend to vary continuously rather than discretely [Fletcher et
al., 2009] and the length scales for these variations do not
necessarily match the scales of observation. Furthermore,
because interactions are nonlinear in many biophysical
systems [Jarvis, 1995], the use of mean states can lead to
large biases in expected ecosystem response [Chen et al.,
2007; Kimball et al., 1999]. Chen et al. [2007] showed
differences of up to 25% (5% to 15% average) in simula-
tions of Canada’s surface carbon fluxes based on averaged

remotely sensed parameter versus “fine scale” (1 km2)
parameters. Stoy et al. [2009] showed that by spatially
averaging ecosystem properties, rather than preserving a
probability density function (PDF), the resulting biases will
change the predicted response from a moderate sink of
carbon into a source of equal magnitude.
[3] Thus our current understanding of ecosystem

dynamics and land‐atmosphere interactions is at least par-
tially limited by data availability and resolution. This is
largely because critical processes operate on a range of
spatial and temporal scales [Jarvis, 1995]. Land surfaces
tend to be highly heterogeneous and so direct measurements
frequently undersample, or average out, the variability.
Additionally, biophysical interactions are nonlinear and
require complex monitoring. Satellite observations can help
address many of these issues, but have temporal/spatial
resolution trade‐offs. Inherently, satellites with global cov-
erage have either, fine spatial resolution observations and a
lower return frequency (e.g., Landsat and IKONOS); or
frequent observations and a coarse spatial resolution (e.g.,
MODIS and AVHRR). It should also be noted that, satellite
derived reflectance does not scale linearly with many of the
ecosystem properties it is used to measure, for example, the
relationship between normalized difference vegetation index
(NDVI) and leaf area index (LAI) [Chen, 1999; van Wijk
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and Williams, 2005]. Therefore, we must properly account
for scaling issues if we are to make use of satellite observa-
tions and avoid introducing biases.
[4] Work has been done to combine plot studies with

multisatellite data, for example to extrapolate biomass esti-
mates over the Amazon basin at 1 km [Saatchi et al., 2007].
The technique combines the accurate measurements of the
plots with the spatial coverage of remote sensing to provide
a snap shot of biomass with uncertainty. However, the
approach presented by Saatchi et al. [2007] ignored infor-
mation formalized in process based ecosystem models. Both
Demarty et al. [2007] and Tang and Zhuang [2008] use data
assimilation to improve the simulation of spatially explicit
biosphere processes, though neither study deals with the
critical issue of biased data assimilation analyses due to
scaling problems.
[5] Data assimilation has been successfully used to com-

bine ecosystem models with time series satellite observa-
tions at particular sites [Quaife et al., 2008; Tang and
Zhuang, 2009; Zobitz et al., 2008]. However, a general-
ized approach for combining direct measurements and sat-
ellite observations with arbitrary spatial resolutions is still
missing [Raupach et al., 2005]. Tang and Zhuang [2008]
call for an integrated model‐data fusion scheme to reduce
the impact of “equifinality” in ill‐posed problems. Implicit
to the approach of reducing equifinality with multiple
orthogonal data, is the issue of scaling. Clearly, if the
effects of scaling outlined in multiple studies [Chen et al.,
2007; Chen, 1999; Kimball et al., 1999; Stoy et al., 2009] are
not accounted for, then using multiresolution observations in
non linear systems will lead to confused results, and will not
help address the equifinality of ill‐posed inversions.
[6] In this manuscript we present a new and flexible

approach to spatial data assimilation. We avoid the pro-
blems of scaling by combining coarse‐resolution EO with a
probability distribution function (PDF) which describes the
subpixel spatial heterogeneity. This PDF must capture the
natural heterogeneity at a sufficiently fine resolution to
preserve critical ecosystem states and processes. The coarse
EO is disaggregated so it maintains the high‐resolution
spatial information from the model state, the mean prop-
erties of the coarse observation and is combined with an
estimate of the observation’s PDF to create a new, fine‐
resolution observation. This new disaggregated observation
can then be assimilated normally, and thus can be applied
easily to most sequential data assimilation approaches. The
approach allows great flexibility in combining both high
and low, spatial and temporal resolution observations
within a data assimilation scheme to provide an unbiased
estimate of ecosystem states and processes. Using a dem-
onstration set of normalized difference vegetation index
(NDVI) observations we demonstrate the potential of this
approach to constrain estimates of carbon uptake over a
512 m by 512 m area. To do this we address a number of
questions: (1) To what degree does the standard data
assimilation of coarse observations introduce bias? (2) Does
the disaggregation approach perform better than the stan-
dard data assimilation? (3) How does the disaggregation
perform with more complex observations: First, with com-
binations of coarse spatial resolution (high frequency) and
fine spatial resolution (infrequent) observations? Second,

with observation aligned on a grid that moves between
observations times?

2. Methods

2.1. Sequential Data Assimilation and the Particle
Filter

[7] Sequential data assimilation approaches are particu-
larly useful in ecological applications, where they have been
successfully applied to both state and parameter estimation
[Quaife et al., 2008; Williams et al., 2005]. In common with
other data assimilation schemes, sequential filters and
smoothers are based on the application of Bayes [1763]
theory. However, unlike variational data assimilation
methods that rely on gradient descent algorithms for effi-
ciency, most sequential methods do not require a model
adjoint (the Extended Kalman Filter being a notable
exception to this), so the implementation of sequential
methods with an arbitrary ecosystem model is typically far
simpler. However, the relative merits of each approach are
often situation dependent and have been much discussed in
the literature [Raupach et al., 2005; Williams et al., 2009].
The approach that we describe in this paper is independent
of the specific data assimilation implementation chosen.
[8] In this study we implement a Monte Carlo Metropolis‐

Hastings sequential particle filter [Dowd, 2007]. This par-
ticle filter was chosen for its simple implementation and
numerical efficiency and ability to use a nonlinear model
operator. van Leeuwen [2009] provides a detailed review of
the different particle filtering approaches. The Ensemble
Kalman Filter (EnKF) [Evensen, 2003, 2009] is another
common sequential data assimilation approach used in
ecological studies. For the purposes of this study it is a
somewhat arbitrary choice between the two approaches, and
we would not expect using the EnKF to alter the conclusions
of this study. However, while the EnKF has been applied
with considerable success in a wide range of nonlinear
systems, it should be noted that the EnKF does not explicitly
allow for nonlinear model operators. The ability of the
particle filter to explicitly deal with nonlinear models and
arbitrary model operators is highly beneficial when con-
sidering the complex and nonlinear processes of terrestrial
ecosystems.

2.2. Disaggregation Approach

[9] Satellite observations with good spatial coverage and
regular sampling are an obvious data stream for use in
ecological data assimilation schemes. However, the spatial
resolution of temporally frequent satellite observations can
be coarse (e.g., MODIS has a resolution of 250 to 1000 m)
in comparison to the critical scales (on the order of meters)
of many terrestrial ecosystem processes [Spadavecchia
et al., 2008]. This disparity in scales creates problems for
data assimilation schemes. Stoy et al. [2009] showed that
merely preserving the mean state of an ecosystem parameter
was not sufficient to preserve an accurate representation of
the processes within an ecosystem model. Indeed to pre-
serve the response the mean, variance and skew need to be
preserved. The approach that we describe in this manuscript
provides a general framework for consistently combining
observations with a wide range of spatial and temporal
resolutions and extents, while preserving the PDF of the
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finest‐resolution information. The approach is here after
referred to as “disaggregation” as the coarse‐scale obser-
vation is divided up into constituent parts, as determined by
the fine‐scale variability.
[10] In a pilot study we trialed data assimilation schemes

using disaggregated observations that consisted of per pixel
values for the subpixel variance and skew of the coarse‐
resolution observations. These disaggregated observations
were assimilated via an appropriate observation operator
into the data assimilation scheme. This observation operator
took the form of a skew and variance of the model state
relating to same spatial area as the observation. However,
the performance of these implementations was found to be
poor. Notwithstanding the fact that work could possibly be
done to improve these approaches, they will still be limited
to skew normal, or similar, subpixel observations distribu-
tions. In many ecosystems, where the distributions are more
complex (e.g., multimodal) this limit could present real
challenges. The disaggregation approach we outline is not
limited to a given class of distributions and does not
(necessarily) require any additional information to these
approaches.
[11] The coarse EO is disaggregated to the high spatial

resolution of the model. We assume that the spatial reso-
lution of the model has been appropriately chosen to be
capable of correctly representing nonlinear processes within
the system. The disaggregated observation will possess the
mean from the coarse observation, the spatial information
from the model state and a prescribed PDF. The origins of

this PDF could be from (infrequent) fine‐resolution satellite
or airborne observation, a detailed field study or “expert
knowledge.”
[12] In the following example (see Figure 1) we demon-

strate the disaggregation procedure on a 3 by 3 pixel model
state and a single coarse observation covering the same area
is assimilated. Arbitrarily chosen PDFs are used to illustrate
the approach.
[13] 1. For step 1, extract current model state and coarse

observation of the system state, X. If needed, apply a
suitable model operator to the model state (not done in this
example). Index the location of each element in the model
state, that is, n = 1 to 9. In the example the n model states
have been drawn from a normal distribution with a mean
(m) = 5 and a standard deviation (s) = 1. In this example we
assume we have a coarse observation of value 7.
[14] 2. For step 2, assign a PDF to coarse observation of

X. In this example, s = 1.5 is picked for the PDF (the actual
source of this PDF is discussed in detail later).
[15] 3. For step 3, randomly draw n samples from the

observation PDF. The observation PDF of X is now
represented by n sampled values.
[16] 4. For step 4, sort the n model states according to

their values of X.
[17] 5. For step 5, assign the locations of the model states

to the n observation samples according to the order of the
numerical sorted model and observation values.
[18] 6. For step 6, reassemble the observation. The new

disaggregated observation has the same spatial distribution

Figure 1. Schematic of the disaggregation approach to calculate the new observation. In this example
the model state has nine “pixels,” and the coarse observation has just one value for this same area. Each
of the pixel locations is labeled with a number from one to nine. These are used to indicate the locations of
the samples in steps 4 and 5. A full description of the approach is given in the main text.
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as the model state, the mean of the coarse observation, and
the assigned PDF. This is referred to as a “disaggregated”
observation, owing to the fact that it is no longer a pure
observation. This disaggregated observation can now be
used as a normal measurement in the data assimilation
scheme.
[19] In the context of the particle filter the disaggregation

was performed on the particle mean in these experiments,
rather than on each individual particle. Consequently, irre-
spective of the number of particles used in the analysis the
disaggregation was only performed once per observation.
Using the particle mean as an approximation of the dis-
tribution’s expected value imposes an assumption about the
underlying distribution which is appropriate in this case,
more generally however, it will be necessary to use other
estimators of the expected value to avoid bias.

2.3. Demonstration Data Set

[20] The data assimilation analysis, in many ways, re-
presents the sum of all our knowledge (i.e., about the model
processes, observations, initial states, uncertainties and
covariance). Therefore it can be tricky to assess the per-
formance of data assimilation analyses, particularly when no
independent prediction is being generated, as is the case in
this example. For this reason, we first generate a realistic
demonstration “truth,” from which we can draw observa-
tions. This approach has been used before in data assimi-
lation studies and allows the performance of the data
assimilation to be assessed against a known “truth” [e.g.,
Fox et al., 2009; Trudinger et al., 2008].
[21] The demonstration data set is based on a normalized

difference vegetation index (NDVI) map of Abisko, Sweden
(68°21′N, 18°49′E) gathered from an aircraft flyover. The
flyover took place on 17 July 2005 and was flown by the
Natural Environment Research Council’s (NERC) Airborne
Research and Survey Facility (ARSF) aircraft. The ARSF
aircraft used a Daedalus 1268 Airborne Thematic Mapper
(ATM) multispectral scanner. The resolution of the image is
4 by 4 m. A section of this image 512 by 512 m, or 128 by
128 pixels, was used in this study.
[22] To provide the temporal variability associated with

seasonal changes in phenology, the NDVI map was scaled
according to observations from a nearby NDVI sensor (Skye
Instruments, Powys, UK) mounted on a 3 m tower. NDVI
records were available at 30 min intervals during 2007–9.
After filtering for erroneous data points (NDVI < 0.4 or
>0.8), we smoothed the NDVI time series using a seven day
running mean window for the growing season of 123 days
(May till August 2007). The NDVI time series was used as
a gain factor to temporally extrapolate the NDVI map to
form a demonstration data set, an hourly time series of
NDVI maps. The gain was set to be unity on the day of year
(17 July) that the aircraft map was acquired. The time series
of NDVI maps was then converted to leaf area index (LAI)
using an exponential relationship described by van Wijk and
Williams [2005]. From these LAI and NDVI time series,
fine‐resolution maps, we drew incomplete and aggregated
observations of NDVI.

2.4. Modeling Net Ecosystem Exchange of Carbon

[23] The net ecosystem exchange of carbon (NEE) was
calculated from respiration and gross primary production

(GPP) estimates. GPP and respiration were calculated by a
simple ecosystem model driven by time series of down-
welling photosynthetic photon flux density (PPFD), air
temperature and LAI [Shaver et al., 2007]. In Shaver et al.’s
[2007] work, model GPP is calculated as a function of the
light‐saturated photosynthetic rate per leaf area, the Beer’s
law extinction coefficient, the initial slope of the light
response curve, the top of canopy PPFD and LAI. Using the
second of three functional forms in Shaver et al.’s [2007]
paper, respiration is calculated as a function of respiration
rate at 0°C, the air temperature, an empirical fit coefficient
and LAI. We used parameters optimized for a wide range of
Arctic vegetation assuming an extinction coefficient of 0.5
[Shaver et al., 2007, Table 5]. PPFD and air temperature
came from meteorological stations within the aircraft image.
In this manner, cumulative GPP, respiration and NEE esti-
mates could be calculated using LAI from the data assimi-
lation analysis and compared to the “true” values calculated
using the demonstration LAI data set.

2.5. General Data Assimilation Setup

[24] The model forecast step used a “zero‐order” model of
LAI, where the LAI at time t was simply the LAI at t − 1
with the addition of the stochastic model noise at t, nt:

�LAI

�t
¼ nt : ð1Þ

Each of the 16384 (i.e., 128 by 128) pixels were treated as a
completely separate data assimilation, apart from the dis-
aggregation of coarse observations. Consequently, no error
covariance matrix was required as only a single variable
comprised the state vector. While the model state was LAI,
NDVI observations were assimilated and a model operator
was used to translate the LAI model state into NDVI. This
model operator was the same relationship used before to
convert between LAI and NDVI [van Wijk and Williams,
2005].
[25] For each of the individual assimilations 250 particles

(i.e., 250 particles per pixel and therefore 4,096,000 for
the whole analysis) were used, though in tests very similar
results were obtained with an order of magnitude fewer
particles. The assimilations were initialized with LAIt=0 = 0
to avoid imposing any inherent spatial distribution on the
assimilation. The alternative of using the mean value for the
scene could have used, however the use of LAIt=0 = 0
conveniently reveals the rate at which the ensemble con-
verges with observations. Convergence takes approximately
five days (Figure 2). A lower bound was imposed that set
negative model forecasts to be zero. The total length of the
assimilations were 2952 steps, comprising of 24 h steps for
123 days, covering the growing season for a sub‐Arctic
environment. Model noise was set to have a variance of
0.0075 (s = 0.09) and the observation uncertainty variance
was set at 0.001 (s = 0.03). In a synthetic study the correct
choice of these parameters, and particularly the observation
uncertainty, is somewhat unclear as the demonstration data
represents the uncontaminated “truth.” In this study the
uncertainties were chosen so the data assimilation analysis
had the freedom to track the observations, but at the same
time be sufficiently constrained to avoid the being artifi-
cially constrained by the lower bound for LAI. On a stan-
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Figure 2. (a) Demonstration data, consisting of the mean LAI and cumulative NEE throughout the sea-
son, the final PDF of LAI, and the LAI map. The mean (m), standard deviation (s), and skew (g) of the
final PDF are shown in the a2 graph. (b–e) Data for 1 by 1 pixel, 4 by 4 pixel, 16 by 16 pixel, and 64 by
64 pixel standard data assimilation analyses, respectively. The data assimilation analyses used the mean
NDVI for the observation and did not use the disaggregation approach.
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dard desktop computer an analysis took approximately one
hour to complete.
[26] Instead of deriving a PDF from the fine‐scale

observations and randomly drawing from this PDF (steps 2
and 3) we simply use the fine‐scale observations that were
aggregated to form each coarse‐scale observation. This is
possible owing to the particular setup of our analysis and
avoids the contrived step that would otherwise be necessary;
the implications of this are discussed later. When using
direct field measurements, the samples would be used to fit a
PDF from which to draw. This allows field observations to
be used to fit the PDF that are not collocated with the model
grid.

2.6. Specific Data Assimilation Setup

[27] A “standard” data assimilation analysis was repeated
for NDVI observation resolutions of 1 by 1 pixel, 4 by
4 pixel, 16 by 16 pixel, and 64 by 64 pixel; for example, for
the 16 by 16 pixel resolution case, 64 observations covered
the whole 128 by 128 pixel study region. In the standard
analysis, the mean NDVI value for each observation reso-
lution was assimilated. One NDVI observation was assim-
ilated at noon of each day, on the remaining 23 h of each
day no data were assimilated. That is on 96% of time steps
no observations were assimilated and, unconstrained, the
variance of the particle ensembles increased for these per-
iods. The scheme functioned on a subdiurnal time step to
allow instantaneous fluxes to be calculated using the NEE
model [Shaver et al., 2007].
[28] The disaggregation data assimilation analysis repeated

the set of analyses performed for the standard data assimila-
tion with the inclusion of the disaggregation methodology.
Then using the assimilation of the 16 by 16 pixel observations
as a bench mark, two further analyses were performed. The
first additional analysis dealt with the case where coarse‐
resolution observations and high‐resolution imagery could
be combined and the second where the grid on which the
observations were distributed shifted from one observation
time to the next.
[29] Specifically, the first additional analysis simulated

the case where coarse (MODIS) observations were being
disaggregated using PDFs derived from a field survey;
however, on one particular day, high‐resolution imagery
was also available. The assimilation was run as a repeat of
the previous 16 by 16 pixel disaggregation assimilation, but
with the inclusion of high‐resolution (1 by 1 pixel) NDVI
observations assimilated at 1000, 1100, 1200, 1300, and
1400 LT on day 148 (four weeks into the assimilation).
Multiple high‐resolution observations were assimilated in
order that the assimilation analysis could converge with
them.
[30] The second additional analysis was again based on

the 16 by 16 pixel data assimilation runs with disaggrega-
tion and tested the impact of assuming that the grid on
which each subsequent observation falls was not exactly
collocated with the previous observations’ grid. This crudely
simulated the case where the position of satellite observation
pixels is known but varies between each time step by some
small amount. This is analogous to the way MODIS pro-
ducts are generated [Wolfe et al., 1998]. In this case the
coarse grid, on which the 16 × 16 pixel NDVI observations

were drawn, was allowed to shift by 0 to 15 individual
pixels in both dimensions.

3. Results

3.1. Standard Data Assimilation Performance

[31] The standard data assimilation did not use the dis-
aggregation approach. The analysis was initialized at a LAI
of zero and so did not reflect the initial distribution of the
observations. The assimilation took approximately five days
to reach the mean of the “true” LAI, though if a more
realistic (than zero) initial LAI had been specified this delay
could be eliminated (Figure 2, b1 graph). All analyses
captured the form of the seasonality in the mean LAI, but
with approximately two to three days lag, however the
magnitude of the analysis LAI was lower than the “true”
area mean LAI which peaked at 0.34 m2 m−2 (Figure 2, b1,
c1, d1, and e1 graphs). This LAI underestimate increased
with observation pixel size to a maximum underestimate of
33% with the 64 by 64 observation pixel. Additionally the
PDF progressively collapsed, with an unrealistic reduction
in both s and skew (g). This collapse was greatest for
coarse observation resolutions. At a resolution of 64 by
64 pixels the final analysis PDF had m = 0.19, s = 0.034
and g = 0.035 (Figure 2, e2 graph) compared to the
demonstration data set values of m = 0.26, s = 0.24 and
g = 2.6 (Figure 2, a2 graph). Features larger than the
resolution of the NDVI observations were still recogniz-
able; however, at subobservation scales, variability was
minimal (Figure 2, c3, d3, and e3 maps). At observations
scales other than 1 by 1 pixel the analysis cumulative
NEE did not reproduce the “true” cumulative uptake of
carbon of −45.9 gC m−2 for the period. At 1 by 1 pixels
the cumulative NEE was over estimated by 1% (Figure 2,
b1 graph), at 4 by 4 pixels the underestimate was 12%
(Figure 2, c1 graph), at 16 by 16 pixels the underestimate
was 32% (Figure 2, d1 graph), and with 64 by 64 pixel
observations the “true” cumulative NEE uptake was under-
estimated by 58% (Figure 2, e1 graph). For the same period
the “true” cumulative GPP was 153.9 gC m−2, at 1 by
1 pixels the cumulative GPP was within 0.5%, at 4 by
4 pixels the underestimate was 5%, at 16 by 16 pixels
the underestimate was 13%, and at 64 by 64 pixels the
underestimate was 24%. The “true” cumulative respiration
was 108.0 gC m−2, at 1 by 1 pixels the cumulative respi-
ration was within 0.2%, at 4 by 4 pixels the underestimate
was 2%, at 16 by 16 pixels the underestimate was 6%,
and at 64 by 64 pixels the underestimate was 10%.

3.2. Disaggregation Data Assimilation Performance

[32] The full suite of analyses was repeated with the
inclusion of the disaggregation methodology. Again the
analysis was initialized at a LAI of zero and takes approxi-
mately five days to reach the mean of observations (Figure 3,
b1, c1, d1, and e1 graphs). All observation resolutions pro-
duced near identical temporal evolutions of LAI, with the
two to three day lag, and distributions of LAI with identical
means, standard deviations and skews (Figure 3, b1, c1, d1,
and e1 graphs). Excluding the initial five day period, the
maximum difference between the composite data set LAI
and the analysis was 10%. This difference was similar for all
observation resolutions and was the result of the analysis
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Figure 3. (a) Demonstration data, consisting of the mean LAI and cumulative NEE throughout the sea-
son, the final PDF of LAI, and the LAI map. The mean (m), standard deviation (s), and skew (g) of the final
PDF are shown in the a2 graph. (b–e) Data for 1 by 1 pixel, 4 by 4 pixel, 16 by 16 pixel, and 64 by 64 pixel
disaggregation data assimilation analyses, respectively. The analyses all used the disaggregation approach
to assimilate the NDVI observations.
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lagging behind the demonstration data set during periods of
increasing LAI. The analyses overestimated the “true”
cumulative NEE of −45.9 gC m−2 by 1% for all observation
resolutions. Similarly the analysis GPP estimates were all
with 0.5% of the “true” cumulative GPP of 153.9 gC m−2 and
respiration estimates were all within 0.2% of the “true”
cumulative respiration of 108.0 gC m−2 All analyses
reproduced the final PDF closely, with m = 0.28, s = 0.27 and
g = 2.9 compared to the demonstration data set values of m =
0.26, s = 0.24 and g = 2.6 (Figure 3, a2, b2, c2, d2, and
e2 graphs). The 1 by 1 pixel assimilation reproduced the
spatial distribution very closely (Figure 3, b3 map). As the
observation scale coarsens so does the reduction in spatial
detail (Figure 3, c3, d3, and e3 maps). This drop in analysis
resolution is directly linked to the observation resolution,
with features finer than the observation not being resolved.

3.3. Disaggregation Data Assimilation Performance
With Fine Spatial Resolution and Shifting Observations

[33] Using the 16 by 16 pixel data assimilation runs with
disaggregation as a benchmark (Figure 4a), we tested the
impact of adding in high‐resolution observations on a single
day. In this case the seasonality, and PDFs are very close to
the first 16 × 16 data assimilation, but the final LAI map has
retained more spatial information (Figure 4b). Cumulative
NEE, GPP and respiration estimates were unchanged. Esti-
mation of the final PDF improved and the analysis had
identical m, s and g to that of the demonstration data set
(Figure 4, b2 graph).
[34] Testing the impact of assuming that the grid on which

each subsequent observation falls was not exactly collocated
with the previous observations’ grid showed both the sea-
sonality and the final PDF agreed extremely closely with the

Figure 4. (a) Standard 16 by 16 pixel data assimilation analysis, consisting of the mean LAI and cumu-
lative NEE throughout the season, the final PDF of LAI, and the LAI map. Figure 4a is the same as
Figure 3d. The mean (m), standard deviation (s), and skew (g) of the final PDF are shown in the a2
graph. (b) The 16 by 16 pixel (with additional high‐resolution NDVI “snap shot”) data assimilation
analysis. (c) The 16 by 16 data assimilation analysis, where successive NDVI observations shift in
location rather than being collocated between observation times.
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demonstration data set, with only the g differing by 0.01
(Figure 4, c1 and c2 graphs). The spatial resolution was
greatly improved to a level that (visually) appears some-
what similar to the 4 by 4 pixel data assimilation (Figure 4,
c3 map). Cumulative NEE, GPP and respiration estimates
were unchanged.

4. Discussion

[35] There is a compelling case being made for a frame-
work to integrate all available observations with spatially
and temporally explicit ecosystem models [Raupach et al.,
2005; Tang and Zhuang, 2008]. Observations not only dif-
fer in the quantity measured, but also in spatiotemporal
resolution and extent. Data assimilation has been proposed
as a natural framework with which the integration of models
and measurements can be formalized. However, in order to
achieve this integration with data assimilation, a consistent
and unbiased method for combining models with multi-
resolution spatiotemporal data is needed. Any such meth-
odology needs to manage the issues of scaling in heterogeneous
ecosystems highlighted by Stoy et al. [2009]. This is expected
to be particularly important for highly nonlinear processes, and
studies have shown a greater effect on fluxes of carbon rather
than latent and sensible heat fluxes [Kimball et al., 1999; Stoy
et al., 2009; Wood and Lakshmi, 1993]. However, some cau-
tion should be employed when comparing these results as
the processes and scales of observation vary.
[36] The disaggregation framework that we propose pro-

vides a flexible and robust method for combining fine‐
resolution (infrequent) and coarse‐resolution (frequent)
observations with terrestrial ecosystem models. There are no
implicit assumptions about the PDF used in the disaggre-
gation routine and so the approach can work with nonnormal
distributions and even multimodal PDFs. The routine has
intentionally been formulated to be easily implemented in a
wide range of data assimilation schemes.
[37] Using a demonstration data set we evaluated the

performance of the disaggregation approach. The demon-
stration data set used was temporally smoothed, by the
seven day windowing of the tower NDVI time series. This
smoothed data set can be expected to be easier to assimilate
than a noisy, unsmoothed data set (if it existed). However,
using the composite data allowed the performance of the
assimilations to be assessed relative to a known “truth.”
[38] Owing to the particular setup of this study, we did not

perform “step 3” of the disaggregation approach; the ran-
dom drawing of samples from the PDF. While this could be
seen as a shortcut that reduced noise by reusing the high‐
resolution demonstration data sets PDF, it remains a logical
step. When high‐resolution imagery is used to provide the
PDF, the same approach (missing out “step 3”) should be
used. In this study this step is particularly important, as the
PDF is not a normal distribution (e.g., Figure 2, a2 graph).
Alternatively, when direct field studies and/or expert
knowledge forms the basis of the PDF, the PDF would
normally be better described than by, for example, the 16
samples in the 4 by 4 pixel observations. The effectiveness
of the approach would then depend on how well the PDF
was described by the field study, and the spatial extent for
which the PDF can be considered representative. The dis-
aggregation approach will not compensate for poorly

described PDFs, nor can it account for a PDF’s lack of
spatial representativeness (i.e., trying to apply a PDF derived
from one biome, to another ecologically distinct biome).
[39] The use of a zero‐order model for LAI introduced a two

to three day lag in the analysis mean. This lag is to be expected
with such a simple LAI model, as updates to the model state
only came through the assimilation of observations. This
model was picked to illustrate the benefits of the disaggrega-
tion process clearly, however for general applications it might
be more reasonable to use a model with mechanistic phenol-
ogy, which would eliminate much of this lag. Indeed for
assimilations relying on less frequent observations, a process‐
based model would likely be required.

4.1. Biases and the Standard Data Assimilation
of Coarse Observations

[40] Without the disaggregation the mean (m), standard
deviation (s) and skew (g) were not preserved in the anal-
ysis (Figure 2, a2, b2, c2, d2, and e2 graphs). These devia-
tions were manifested as an underestimate of the mean LAI,
a collapse of the PDF and an underestimate of the NEE
magnitude. As the observations become coarser the effect
increases until at a resolution of 64 by 64 pixels the carbon
uptake was underestimated by the data assimilation analysis
by 58% (Figure 2, e2 graph). The 58% (26.8 gC m−2) NEE
underestimate is composed of a GPP underestimate of 24%
(37.5 gC m−2) and a respiration underestimate of 10%
(10.7 gC m−2). Thus the inability of the standard assimi-
lation to deal with nonlinear processes occurs in both the
production and respiration of carbon. In both percentage
and absolute terms the underestimate is larger for GPP
than for respiration. This GPP error could be avoided by
exploiting the broadly linear relationship of GPP with
remotely sensed fraction of absorbed photosynthetically
active radiation (fAPAR) products. However, NEE esti-
mates would still be biased owing to errors in respiration.
Furthermore, when considering more detailed ecosystem
models which explicitly allocate GPP, a nonlinear rela-
tionship between the carbon invested in resources for
photosynthesis and fAPAR would be required. This non-
linear relationship, as well as other nonlinear responses
(such as the significant lag between GPP and subsequent
heterotrophic respiration) would be expected to result in
biases when assimilating coarse observations in heteroge-
neous ecosystems with standard approaches.
[41] The coarsest resolution we consider (256 m by 256 m)

approximately matches the finest resolution available for
MODIS products, and is finer than the 1 km by 1 km reso-
lution products frequently used in terrestrial ecosystem
studies. At resolutions coarser than those considered in this
study the problem is expected to be worse. However, the
effect can be expected to vary with the specific sub-
observation heterogeneity and the nonlinearity of the key
processes and model operators. In a similar analysis, Stoy
et al. [2009] found the flux of carbon to change sign
(from a sink to a source) with varying observation scales.

4.2. Improvements With the Disaggregation Approach
to Data Assimilation

[42] Using a demonstration data set, the performance of
the disaggregation method has been shown to be robust
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(Figure 3) and to avoid the scaling issues often associated
with using coarse observations (Figure 2) [Stoy et al., 2009].
The disaggregation method successfully assimilated the
observations such that the mean (m), standard deviation (s)
and skew (g) of the observations were preserved in the data
assimilation analysis. Contrary to the example without the
application of the disaggregation, the performance of the
assimilation was preserved irrespective of the observation
resolution (Figure 3). The disaggregation approach suc-
cessfully estimated the cumulative NEE, GPP and respira-
tion terms. From the spatial maps presented, it can be seen
that while the PDF of the observations was preserved, no
spatial information was imposed below the size of ob-
servations (Figure 3, a3, b3, c3, d3, and e3 maps). Chen et al.
[2010] also blended (infrequent) fine‐resolution observa-
tions (LANDSAT) and (frequent) coarse‐resolution MODIS
imagery to obtain a temporally frequent high‐resolution
(30 m) data set. However, our results indicate that all else
being equal the use of LANDSAT imagery, without the
disaggregation, at 30m would result in an underestimate of
cumulative NEE somewhere between 12% (4 by 4 pixels,
16 by 16 m) and 32% (16 by 16 pixels, 64 by 64 m).

4.3. Performance of the Disaggregation Approach With
Fine Spatial Resolution and Shifting Observations

[43] The performance of the assimilations is improved
with the addition of infrequent high‐resolution NDVI
imagery (Figure 4, b2 and b3 graphs). The high‐resolution
imagery imprinted the model state with finer‐resolution
spatial information and the final PDF m, s and g were
slightly closer to the demonstration data set values. Spatial
information was propagated forward in time by the model
state, though this information will degrade with time after a
high‐resolution observation, with the uncertainty deter-
mined by the model noise. This performance increase will
be of benefit for field studies where infrequent (e.g., air-
borne, IKONOS) imagery is available, but at an insufficient
frequency to capture the temporal dynamics of the ecosys-
tem. However, the analysis presented here was not sufficient
to determine to what extent multiresolution data of different
types (e.g., NDVI and surface moisture) can be combined
with benefits to spatial resolution. Further studies are
required, but it is likely that the benefit of combining mul-
titype, multiresolution observations will be determined by
the covariances between the data types and their combined
ability to constrain key model states.
[44] Combining shifting observations allowed the assim-

ilation to improve the spatial information in the analysis
(Figure 4, c3 map). Considered over several time steps, the
shifting observation grid permitted a finer‐resolution con-
straint to be placed on the model state which translated into
improved spatial resolution. This result makes it attractive to
consider noncollocated observations from multiple satellites,
even if they are of a similar resolution, provided that their
geolocation is accurately known.

4.4. Future Challenges

[45] Considering the application of the disaggregation
approach to real‐world ecosystems, it quickly becomes
apparent that there are significant challenges to be addressed:

4.4.1. Challenge One: Determining the Subpixel PDF
[46] The disaggregation method we propose allows coarse

observations to be combined with subpixel PDFs. However,
it is obvious that without knowing, or assuming, subpixel
information we cannot account for processes at scales
smaller than our observation resolution, potentially resulting
in prediction biases. In reality, this information could be
hard to obtain, but fortunately there are a number of possible
sources. We suggest that the required PDFs can be spatially
extrapolated from local fine‐resolution information, and
applied to a wider area. The PDFs could also be temporally
extrapolated from infrequent fine‐resolution imagery (e.g.,
from aircraft and satellites), as we have done in this study.
Alternatively, this approach allows the PDF to be derived
from field surveys, even when the sampling design does not
permit a “map” to be drawn. This ability to use field surveys
represents a significant advantage over similar, image only,
approaches [Chen et al., 2010].
4.4.2. Challenge Two: Determining the Subpixel
Observation Uncertainty
[47] When considering real observations it is as yet

unresolved how to specify the observation uncertainties for
the disaggregated observation. By definition the dis-
aggregated observations must be at least as uncertain than
the original coarse observation. In particular, there is an
uncertainty associated with the coarse‐scale observation
(that provides the mean for the disaggregated observation)
and another uncertainty associated with determining the
PDF itself. The first uncertainty is common to all data
assimilation approaches; see section 4.4.3. The second
uncertainty, which is unique to this approach, is somewhat
mitigated by the nature of the uncertainty. For instance if we
sample a normal distribution with m = 0 and s = 1, and each
sample has a measurement uncertainty of m = 0 and s = 0.1,
the s of the PDF will, on average, be overestimated by just
0.5%. This is likely to be much lower than the uncertainty
on the coarse observation. However, the derivation of these
uncertainties will be dependent on the observation, the
quality controls imposed on the observations, and the pur-
pose of the analysis.
4.4.3. Challenge Three: Dealing With Biases in Models
and Real‐World Observations
[48] Even ignoring issues of scaling, models and mea-

surements can exhibit significant biases, as is the case with
any data assimilation scheme. Research in this area exists
[Dee, 2005; Dee and Da Silva, 1998], but working at mul-
tiple scales brings new challenges. The derivation of remote
sensing products often involves complex inverse modeling
strategies that may not transfer well from scale to scale. The
MODIS LAI products, for example, use the inversion of a
complex radiative transfer scheme that, in part, relies on
reflectance data being acquired at differing view angles over
a relatively short period of time (around 8 days). It is
unlikely that sufficient data will be acquired over a short
enough period of time by, for example, Landsat to repeat this
analysis. Thus methodological biases might exist in the
derivation of the observation products. Furthermore,
empirical approaches to estimating LAI, such as the one
used here will not hold generally over a wide range of cover
types or view and illumination geometries. A more elegant
approach to resolve these issues would be to forward model
reflectance from the process model, using an observation
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operator, and assimilate actual reflectance data [Quaife et al.,
2008]. The operator can be made consistent across scales,
wave bands and arbitrary view and illumination geometries
and will consequently remove bias between the different
scales. A noteworthy study is that by Roy et al. [2008] in
which MODIS and Landsat data are combined using kernel
driven Bidirectional Reflectance Distribution Function
(BRDF) models to negate differences between the position
of the satellite and the sun. This presents a simple and ele-
gant step via which some of these goals may be achieved.
[49] In this manuscript we have used a single model to

describe the production of tundra, where productivity is
determined by LAI and not cover type [Shaver et al., 2007].
To extend this approach to land‐surface exchange models
with plant functional types (PFT) it is likely that the model
operator would have to be modified to cope with separate
PDFs for each PFT. Furthermore the use of spatial corre-
lations, thematic information (e.g., field boundaries) and
contexture approaches [Chen, 1999] could be exploited to
benefit the data assimilation process.

5. Conclusions

[50] In our data assimilation disaggregation method, fre-
quent, coarse‐resolution observations are combined with an
estimate of their subpixel probability distribution function
(PDF) and the fine‐resolution model state to produce a fine‐
resolution disaggregated observation that can then be
assimilated normally. The subpixel PDF can be derived
from a variety of sources, either from (infrequent) fine‐
resolution Earth observation, or from detailed field studies.
We demonstrate the data assimilation disaggregation
method by assimilating normalized difference vegetation
index (NDVI) observations into a zero‐order model of leaf
area index (LAI) for a 512 by 512 m area. Using the data
assimilation analysis LAI, and meteorological observations,
we predict the uptake of carbon by the system. The meth-
odology is shown to be extremely robust and clearly out
performs standard approaches that do not make use of the
disaggregation method. Using the data assimilation disag-
gregation approach results in a 1% overestimate of carbon
uptake, compared to the 58% underestimate of carbon
uptake that occur with the standard assimilation of coarse
(256 m by 256 m) observations. The approach is easily
implemented in most data assimilation schemes and benefits
from combining multiple observations at differing spatial
and temporal resolutions.
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