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EXECUTIVE SUMMARY

The 2005 report of the National Research Council’s ‘Committee on Characterizing
Biologically Significant Marine Mammal Behavior’ proposed a framework, which they
called PCAD - Population Consequences of Acoustic Disturbance, that uses a series of
transfer functions to link behavioural responses to sound with life functions, vital rates,
and population change. The Committee suggested that the best understood transfer
functions are those linking vital rates to population change. One of the main aims of this
report is to document that understanding. However, we also show how the existing
frameworks for modelling the dynamics of marine mammal populations can be extended
to include the effects of behavioural responses on vital rates.

In Chapter 1 we introduce the central concept of the rate of increase ( ) of a
population, which we believe is the most useful measure of the effects of behavioural

responses on the dynamics of a population. If the value of  exceeds one, then the
population will increase over time; if it is less than one it will decrease. We show how

changes in  provide a measure of the impact of human activities (such as exploitation,
conservation, or disturbance) on a population. We also introduce structured population
models, which take account of the fact that all individuals in a population are not
identical, and show how the dynamics of different parts of a population can be modelled
using a population projection matrix. The mathematical properties of this projection

matrix can be used to determine the sensitivity of  to small changes in vital rates.
Finally, we provide a very brief introduction to the concept of stochasticity, and the use of

 to predict when (and if) a population might be driven to extinction.

Chapter 2 describes how  also provides a measure of the Darwinian fitness of the
individual members of a population. An individual’s fitness, the contribution it will make
to future generations, depends to a large extent on its body condition and on the risks of
mortality to which it is exposed. Both of these could be affected by behaviour responses
to sound. We also explain current theories about the relationship between an individual’s
feeding behaviour and the abundance and distribution of prey, and how this can affect
body condition.

Chapter 3 provides a more detailed description of how elasticity analysis can be used

to investigate the impact of changes in vital rates on  . Elasticity analysis is a useful tool
for detecting which vital rates are most important in determining the dynamics of a
population. However, its value is limited because it does not take account of random
variations (stochasticity) and, in theory, it can only predict the effect of small changes in
vital rates.

Chapter 4 describes the fundamental concept of density dependence: the way in
which vital rates change with population size or the availability of resources, such as prey.
Not only is density dependence an essential prerequisite for population stability and
sustainable use, but the form it takes will also determine how a population responds to
behavioural changes. This is because behaviour, and particularly the effect of behavioural
change on body condition, plays a central role in many of the mechanistic models of
density dependence.

Chapters 5 and 6 explore the way in which additional complexities, such as social
structure and the way in which populations are distributed in space, can affect the
dynamics of populations. Models that account for these complexities behave in a much
less predictable way than the relatively simple structured models that form the core of
Chapters 1-4.

So far, the models of population dynamics that we have reviewed have been
deterministic. That is, they have assumed that the only way in which vital rates can vary is
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in response to a change in abundance, via density dependent mechanisms. In Chapters 7
and 8 we investigate the effect of random variation (stochasticity) on population
dynamics. We distinguish the effects of demographic stochasticity, chance variations in
the number of animals that die or give birth in a time interval that occur even if vital rates
do not vary over time, and environmental stochasticity, which is the result of variations in
vital rates across years. Variation in abundance may also occur as a result of
environmental change and changes in the ecological community of which a population is a
part. The effect of all these sources of variation is to reduce the realised growth rate of a
population, and therefore its risk of extinction.

In Chapter 9 we consider how the basic population modelling framework described in
Chapters 1-8 might be extended to take account of the life functions identified by the NRC
Committee. We suggest that these life functions are useful for defining the context in
which behavioural responses might affect vital rates, but that they do not need to be
modelled explicitly. Removing vital functions from the PCAD framework results in a much
simpler structure, which is compatible with existing population modelling frameworks.
However, these will have to be extended to allow population states, like body condition,
that vary continuously to be modelled.

Chapter 10 describes how changes in  can be detected. The simple analytical
frameworks that are available for this are all vulnerable to the effects of variability that
we introduced in Chapter 7. However, there is a framework (state-space and hidden
Markov process modelling) that can account for the effects of this variability, and we
recommend its use for detecting trends. The additional benefit of this approach is that its
use results in a detailed model of the dynamics of the population that is under
investigation.

Chapter 11 reviews the different model structures that can be used to describe the
dynamics of a population, and explains when different forms of population models (e.g.
discrete vs. continuous time, deterministic vs. stochastic) are most appropriate. We also
discuss how these different frameworks can be extended to account for continuous
population states, as recommended in Chapter 8. The final focus is on how state-space
models can be fitted to time series of abundance estimates and information on vital rates.

Chapter 12 looks at the relevance of the different modelling approaches described in
the previous chapters for analysing the potential effects of behavioural responses to
sound on population dynamics, particularly the kinds of sounds that may be generated by

the oil and gas industry. We conclude that  , the population rate of increase, and its
variation provides a useful measure of these effects. We also believe that the models
used for this purpose will certainly have to account for the effects of variability and
density dependence. They will probably also have to account for the effects of social
structure and the way in which populations use space. The state-space modelling
framework outlined in Chapter 11 can, in principle, be extended to capture all of these
features although work on this is still in its infancy.
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CHAPTER 1
THE POPULATION RATE OF INCREASE ( ) AND ITS IMPLICATIONS FOR HARVESTING,

RECOVERY FROM DEPLETION AND EXTINCTION RISK.

1.1 Introduction

Marine mammals, like most other living organisms, are inherently complex. They
exhibit complicated biochemical, physiological and behavioural processes that, via
interactions between genetic and environmental factors, determine each individual’s
chance of growing, maturing, reproducing and dying. In order to study the attributes of
populations, rather than those of the individuals of which it is composed, we must
average the life attributes of the individuals into combined statistics that can be applied
to the entire population. These vital rates, which include the rates of birth, growth,
maturation, fertility and mortality, determine a population’s dynamics (Caswell, 2001).

In simple terms, the change in the size of a population from one point in time to the
next can be seen as a balance between the number of births and immigrations, which
cause an increase in overall population size, and deaths and emigrations, which reduce

population size (Case, 2000). In other words, if tN is the size of a population at time t ,

then its size at time ( 1)t  is given by:

1t tN N births deaths immigration emigration      (1.1)

This equation is, however, a gross simplification of the real world. For example, each
individual birth has the potential to give birth to other individuals after it reaches sexual
maturity. The more births, the larger the population size becomes, and, as population
size becomes larger, more individuals produce new young, and so on (Case, 2000).
Therefore, the net change in population size from time t to time ( 1)t  is a function of

the size of the population at time t , and we can rewrite equation (1.1) as:

1t t tN RN N   (1.2)

where R is the net rate of growth per individual. This equation states that the
population size at time ( 1)t  is equal to the population size at time t plus a net change,

which can be positive or negative, that is dependent on the current size of the population.
We can rearrange equation (1.2) as:

1 ( 1)t t tN N R N    (1.3)

 (pronounced ‘lamda’) is the factor by which population size increases in each time
step and is termed the population rate of the growth. The term ‘growth’ is used

irrespective of whether the population is increasing in size ( 1  ) or is decreasing

( 1  ). It can be considered as the average number of individuals each individual
contributes to the population in the next time step. If an individual survives to the next
time step, its contribution will be one. If another individual also survives but in addition
gives birth to one offspring, its contribution will be two, and so forth.
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If we let 0N represent the initial population size at time 0 , then after one time step

the population size will be:

1 0N N (1.4)

and after another time step the population size will be:

2
2 1 0N N N   (1.5)

Hence in general, we have:

0
t

tN N (1.6)

where t is the number of time steps that have elapsed. Much of the research into
demography, the study of populations, also makes use of another index, r , the intrinsic
rate of natural increase (Case, 2000). This is equivalent to the change in population size
per individual per time period. It is used in equations that describe change in continuous
time, rather than the discrete time units that are used in equations 1.1-1.6. It is related to

 by the following equation:

lnr  (1.7)

where ln represents the natural logarithm (i.e., logarithms to the base e ). A

population will therefore increase if 0r  and decrease if 0r  .

Models in continuous time are usually used to describe the dynamics of populations
whose size is likely to change over very short time scales, such as those that experience
high rates of mortality, at least during some life history stages. This applies to many fish
populations. By contrast, the dynamics of marine mammal populations are usually
modelled by discrete time equations, because their life histories are dominated by
strongly seasonal events, such as breeding.

If  remains constant over time, equation 1.3 implies that populations have the
potential for exponential growth, and indeed this is true for all populations of living
organisms (Begon and Mortimer, 1986). In real life, however, exponential growth does
not tend to continue for very long (Case, 2000). Rather, as populations increase in size,
competition between individuals for resources, such as food and shelter, also increases
and these resources become more limited as the population increases in size (Begon,
Townsend and Harper, 2006). The rate of growth therefore slows and the population
gradually approaches its maximum size, known as the carrying capacity, a level which is
determined by the resources, such as food and shelter, which are available in the
surrounding environment. This slowing of the overall growth rate as a result of increased
competition between individuals is known as density dependence and is discussed in more
detail in Chapter 4. As a result of this process, the pattern of population growth tends to
be sigmoidal (or S-shaped): the rate of growth starts off relatively slow due to the low
population density, increases rapidly as the population density increases, and then slows
again as a result of density dependence. This type of growth is often described as logistic
(Begon and Mortimer, 1986).
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It is very rare for the size of a population to be maintained consistently at the carrying
capacity. Vital rates will vary from one year to another, and population size tends to
fluctuate as a consequence (Lande, Engen and Saether, 2003). However, biologists are

often more interested in the long-term dynamics of populations and, for this reason,  is
commonly defined as the long-term average growth rate of the population. Chapter 3
provides a detailed review of the current understanding of the relationships between vital

rates and  . It also outlines the mathematical techniques that can be used in the study
of population growth, and highlights how these might be modified so as to incorporate
the effects of the behavioural changes, such as those that might occur in response to
underwater noise.

1.2 Structured population models

Not only do the vital rates of a population, such as the birth rate and the death rate,
vary from year to year in response to environmental conditions, they also vary between
individuals. For example, it seems intuitive to expect that animals of different ages will
have different probabilities of giving birth and of dying in a particular year. Nevertheless,
until recently, population biologists tended to consider that all individuals in a population
were identical, and assumed that the complexities of age-specific birth and death rates
would prevent a thorough examination of how the variability in vital rates between
individuals affected the population’s rate of growth (Sibly and Hone, 2002). However,
with the advent of modern computers and the development of demographic models,
particularly matrix models, it is now very easy to incorporate this kind of population
structure into calculations of the population growth rate (Caswell, 2001).

Matrix population models acknowledge that most life cycles comprise a sequence of
distinct classes, each of which may have different birth and death rates (Caswell, 2001).
These classes may be different ages, different stages (e.g., calves, sub-adult animals and
breeding adults) or size classes. Matrix models make use of what are termed projection
matrices to project the abundances of the different classes forward in time (Caswell,
2001). A comprehensive description of matrix models and their use in population biology
is given in Chapters 10 and 11. What follows here is a brief introduction.

As an example, consider a population that has been classified into four separate
classes. The abundances of each class can be written as a column vector:

1,

2,

3,

4,

t

t

t

t

t

n

n

n

n

 
 
 

  
 
 
 

n (1.8)

where, for example, 3,tn is the number of individuals in the third class at time t , and

bold type is used to indicate that n is a vector. The survival rates (1 – death rates) and
the birth rates (commonly termed the net fecundities) that apply to each class in the
population can then be written in a projection matrix. These matrices are always square
(i.e., they have the same number of columns as rows). An example of a projection matrix
using age classes is shown below. The fecundities of each age class are written along the
top row, and the survival rates are written on a sub-diagonal:
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2 3 4

1

2

3

0

0 0 0

0 0 0

0 0 0

F F F

s

s

s

 
 
 
 
 
 

L (1.9)

2F is the fecundity rate of the second age class, 3s is the survival rate of the third age

class, and so on. The rows of a projection matrix refer to the class number at the
endpoint of a transition and the columns refer to the class number at the start. So, for

instance, the element in the third row of the second column ( 2s ) describes the transition

of individuals from the second class to the third class (i.e., by surviving or growing) and

the element in the first row of the third column ( 3F ) describes the contribution of

individuals from the third class to the first class (i.e., parents in the third class giving birth
to new individuals, which will make up the new first class). In the above example,
individuals in the first age class are unable to give birth. If classes are determined by size
or state, rather than age, then it is possible that the elements in the main diagonal, which
runs from the top left corner of the matrix to its bottom right corner, will not be filled
with zeros, as in this example, but with numbers reflecting the probability that an

individual remains in the same class. Projection matrices like L are commonly referred
to as Leslie matrices, after Patrick Leslie who produced a series of influential papers on
the use of matrix models in the study of population dynamics during the 1940s (Leslie,
1945, 1948).

Using the standard rules of matrix multiplication, it is possible to take the numbers in
the different classes at one point in time, expressed as a column vector, multiply this by
the projection matrix, and generate a new column vector containing the numbers in the
different classes one time step later:

t+1 tn Ln (1.10)

Note the similarity between equation 1.10 and equation 1.3, in which the projection
was made using a single number, rather than a matrix. There is a simple relationship

between the population rate of growth  , and the properties of the projection matrix L .
In algebra, there are often combinations of a matrix and a vector which, when they are
multiplied, result in a new vector that is proportional to the original one. In other words,

for some matrix, A , there exists a vector x and a scalar  such that Ax x . If this is

true, the complexity of matrix multiplication is greatly reduced, because multiplying A by

x results in a simple linear scaling of x . In this situation,  is known as an eigenvalue
and x is its associated eigenvector. Matrices have several eigenvalues, but the largest
(the dominant eigenvalue) is equivalent to the population growth rate (Caswell, 2001).

The symbol  is therefore used to represent both the dominant eigenvalue of a Leslie
matrix and the growth rate of the population it represents.

The age distribution of a population is defined as the proportion of the population
belonging to each age category at a given point in time. If the vital rates of this
population remain constant for a sufficiently long period of time, it will converge on a
particular age distribution, known as the stable age distribution. There is a unique stable
age distribution for each combination of survival and birth rates that is independent of
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the initial age distribution and population size (Caswell, 2001). Once this stable age
distribution is achieved, the age distribution will only change if the vital rates change. The

population will grow or decline at the steady rate  and the number of individuals in
each age class will change at the same rate as the population as a whole. The stable age
distribution can be calculated directly by computing the right-hand eigenvector of the
projection matrix (Caswell, 2001).

It is important to remember that the values used to represent the vital rates in matrix
models are almost always estimates of the true rates. There have been a number of
attempts to capture the uncertainty associated with the estimation process into matrix
models, especially when the parameter values are estimated from very sparse data (Doak,
Gross and Morris, 2005a; Gross et al., 2006). However, this raises the issue that
projections made using matrix models based on sparse data may be artefacts of the
assumptions that were necessary to obtain these estimates. In Chapter 11 we provide a
more detailed discussion of how uncertainty can be measured and accounted for.

1.3 The effect of harvesting on population rate of growth

Commercial harvesting and the exploitation of species have occurred for many
centuries. Many of the world’s plant and animal species have been hunted almost to
extinction (Reynolds et al., 2001) and others, such as the North American passenger
pigeon, have been driven to extinction as a direct consequence of overexploitation. The
primary challenge of sustainable harvesting is to achieve a balance between ensuring the
persistence of the population and maximising profitability. It is with this in mind that
considerable attention has been paid to the manner in which plant and animal
populations can be exploited for the benefit of mankind (Begon and Mortimer, 1986).

The regular removal of animals from a population by means of a harvest obviously
contributes to mortality. The reduction in population size resulting from the act of
harvesting is likely to bring about two changes: increased fecundity of surviving adults,
and reduced adult mortality. This is because a reduction in population density in a
resource-limited environment reduces intraspecific competition and tends to benefit the
survivors (Begon and Mortimer, 1986). These changes in vital rates will result in an
increase in the growth rate of the harvested population. The sustainable harvest that can
be taken from this population will depend on this new growth rate and the size of the
harvested population. In theory, there is a maximal sustainable yield (MSY) that occurs at
population size, whereby repeated harvesting at this size is followed by the rapid recovery
of the population because its rate of regrowth is maximal. For populations whose growth
is described by a logistic equation, the population size for MSY is one half of the carrying
capacity. Such harvesting is only sustainable if the harvesting process allows sufficient
time for the replacement of harvested individuals. This period of time will depend on
both the fecundity and generation time of the species in question (Begon and Mortimer,
1986).

While substantial research has deepened our understanding of the factors influencing
the stability and yield of exploited populations, there are several reasons why populations
are not always harvested at MSY. The first is an incomplete understanding of population
dynamics, primarily due to a lack of good quality, long-term data that can provide
accurate estimations of the population’s vital rates. Another reason is environmental
variability. The environment, particularly climate, frequently affects natural populations
independently of density, and environmental fluctuations may therefore create
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considerable difficulty in the evaluation of the effects of harvesting on population size
(Begon and Mortimer, 1986). Uncertainty in parameter estimates and environmental
variability are likely to increase the danger that a harvest strategy might unintentionally
drive the population to undesirably low levels (Lande et al., 2003). Indeed, the last
century has witnessed a number of instances where over-fishing has led to a dramatic
collapse in fish stocks (Jackson et al., 2001). In order to be sustainable, a harvest schedule

must not reduce the population growth rate  below unity, because reducing it to
exactly this level would leave the population balanced on an extinction knife-edge
(Caswell, 2001). For this reason, a precautionary approach is often advised when planning
harvest strategies.

In practice, many harvesting procedures deliberately select particular individuals to be

harvested. Harvesting different stages will have different effects on  and it therefore
becomes necessary to consider the age, or size, composition of the population being
exploited. Until the advent of structured population models, incorporating stage-biased
harvesting into population models was an extremely complex process. Matrix models,
however, provide a simple mathematical framework for assessing the impacts of stage-
based harvesting on the growth rate of a population (Caswell, 2001).

A simple way of incorporating the effects of a harvest into a matrix model is to

construct a separate matrix ( H ) that describes the harvest process. The principal

diagonal of H is made up of the values 1 2( , , )sh h h , where ih is the proportion of

individuals in class i that survive harvesting and s is the number of stages. If A is a
projection matrix for the exploited population, we can write:

1t t n HAn (1.11)

The dominant eigenvalue of HA is the growth rate of the harvested population
(Caswell, 2001).

1.4 Depletion and the risk of extinction

1.4.1 Matrix models and conservation
Matrix population modelling has become an invaluable tool in conservation and

population management because, by calculating the growth rate of populations, it is
possible to identify those that are most at risk of depletion and extinction. However, the
use of matrix models in conservation biology extends far beyond the assessment of the
risk of extinction. These models have also been successfully used to identify possible
causes of a population’s decline, to identify the management strategies that are likely to
be of most benefit and to predict the likely fate of the population in question. The use of
matrix models in achieving these goals is outlined in more detail below.

The goal of assessment is to identify an index of performance that can be used to
determine whether a population is of conservation concern (Caswell, 2001). Although

there are several possible indices, the population growth rate  is the most commonly
used. Many studies have used matrix models to assess of population growth rates of
marine mammals (e.g., harbour porpoise (Caswell et al., 1998)), turtles (e.g., Crouse,
Crowder and Caswell, 1987) and birds (e.g., Noon and McKelvey, 1996). However,

because  can only be estimated, rather than measured directly, methods for quantifying
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the uncertainty associated with these estimates also play an important role in this
process.

The causes of a population’s decline are often presented in terms of the effects of

differences in the vital rates on  . These effects can be quantified using a process known
as retrospective perturbation analysis (Caswell, 2001). For example, retrospective
perturbation analysis can be used to assess how much change in each of the vital rates

would be required to bring the population back to stability (i.e.,  = 1). Although the
exact cause, or causes, of a population’s decline are rarely known for certain, this method
has often been used to identify the most likely causes or, at least, to remove certain
processes from the list of suspects for birds (Hitchcock and Gatto-Trevor, 1996) and
marine mammals (e.g., Steller sea lion (Pascual and Adkison, 1993)).

While retrospective perturbation analysis is primarily concerned with variations in the

vital rates, and how these contribute to variations in  , the most appropriate tool for
assessing potential solutions to a population’s decline is prospective perturbation analysis
(Caswell, 2001). This enables the evaluation of the effect on overall growth rate of
changes made to the individual elements of the projection matrix. It identifies the

sensitivity of  to changes in the vital rates and the points in the life cycle where
perturbations will have the biggest impact on population growth. It also provides a quick
way to calculate the effect of any management scheme directed at specific vital rates on

 . Although it is not always possible to have good quality or complete data, and despite
the fact that there is always uncertainty in parameter estimation, research has shown that
prospective perturbation analysis is surprisingly robust to sampling error and model
misspecification, making it an extremely valuable tool in conservation biology (Caswell,
2001). More detail on perturbation analysis, often termed sensitivity or elasticity analysis,
is given in Chapter 3.

The ultimate fate of a population is commonly determined using population viability
analyses (PVAs). These methods use stochastic models (section 1.4.2) with varying
demographic parameters to predict population size and the probability of population
persistence over a defined period under specific conditions. Results are often expressed
as a probability of extinction, or of population growth or decline over some specified time
horizon. PVAs are often criticised for requiring large amounts of good quality data to be
sufficiently accurate. They are also hard to validate because their main use is to project
into the future (Coulson et al., 2001). In particular, concern is frequently raised as to
whether these models can provide accurate and dependable projections for use in
conservation management. This is because populations may become extinct simply by
chance even if the probability that they will persist is high. Nevertheless, PVAs are widely
used and frequently provide a useful first-step in the assessment of a population’s risk of
extinction and its chance of recovery from depletion (Brook et al., 2000).

1.4.2 Stochasticity and the risk of extinction
All the population processes so far described in this chapter have been deterministic.

However, the dynamics of populations, and hence their overall growth rates, are
governed by a high level of uncertainty. Not only are the probabilities of births and
deaths likely to vary among the individuals in a population, even those within the same
stage, but these population-level vital rates are also unlikely to be constant over time, due
to changing environmental conditions. Two particular types of uncertainty, or variation,
which are thought to be of particular importance to the fate of populations, have been
identified: demographic stochasticity and environmental stochasticity. Both of these
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processes can have a strong effect on  , and thus contribute to a population’s risk of
extinction (Lande, 1993).

Demographic stochasticity reflects the chance variations among individuals of a

population, which in turn affects their vital rates and ultimately, the variability of  . In

other words,  is subject to random variation due to independent chances of individual
mortality and reproduction, even though the average vital rates for the population are
constant. The size of this effect depends on the size of the population: it declines rapidly
as population size increases (Lande, 1993). Hence, demographic stochasticity is primarily
a problem for small populations, because their numbers provide no buffer against erratic
swings in size which could ultimately lead to extinction.

Environmental stochasticity reflects the year to year fluctuations in the average vital
rates experience by all individuals in a population as a result of a changing environment.

The variation in  generated by environmental fluctuations is largely independent of
population size: it will lead to much the same proportionate increase or decrease in
numbers whether the population is large or small (Lande, 1993).

Another potential and unpredictable cause of population depletion is catastrophes.
These are large environmental perturbations that produce sudden major reductions in
population size. Although there is no strict definition of what constitutes a catastrophe,
the term is generally restricted to events that result in a decrease in population size of at
least 50%. Catastrophes include physical factors such as hurricanes, freezes and droughts,
biological factors such as epidemics or invasion by a new competitor or predator, and
perturbations of the environment caused by humans.

The role of all these stochastic processes, and the way in which they may interact, is
discussed at more length in Chapter 7.

One way of incorporating stochasticity into matrix population models is by assigning a

statistical distribution to each vital rate. For example, if we let B denote the mean
number of offspring (births) produced by an individual in a particular time unit, we can

write jB to denote the number of offspring produced by parent in stage j . If multiple

births are rare, as is the case for all marine mammal species, then it is normal to assume

that B has a Bernoulli distribution, characterised by the probability p of producing an

offspring and we can write:

 

 

0 1

1

P B p

P B p

  

 

For species in which parents tend to give birth to more than one offspring, the
simplest assumption is that offspring are randomly and independently distributed among
parents. In this case per capita offspring production is assumed to follow a Poisson
distribution.
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1.4.3 Using  to measure risk
Several organisations have proposed criteria for classifying species into different risk

categories. Some of these criteria make specific use of  . The risk categories developed
by IUCN (the World Conservation Union) are perhaps the best known of these. Indeed,
the IUCN has established perhaps the most objective and explicit standards for classifying
species into the following categories: extinct, extinct in the wild, critically endangered,
endangered, vulnerable, conservation dependent, near-threatened and least concern. A
species or population may be assigned to one of the “threatened” categories (critically
endangered, endangered, or vulnerable) for a number of reasons: an observed or
projected population decline, limited occurrence, small population size, or as a result of a
quantitative analysis of extinction probability (Caswell, 2001). For example, a species is
designated as critically endangered if it is observed or projected to decline by 80% in 10
years or three generations, whichever is longer. An 80% decline in 10 years corresponds

to 1/100.2 0.851   (Caswell, 2001). Therefore, the value of  , which can be calculated
from structured population models, provides a useful means of quantifying the level of
threat to a population.
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CHAPTER 2
 AND FITNESS:

THE ROLE OF PHENOTYPE, ENERGETICS, AND CONDITION

2.1 Introduction

Not all members of populations are identical, in fact most of them will be different!
Some members will be stronger and healthier than others, and these will have an
increased chance of surviving and giving birth. Others will have a reduced chance of
survival and will be less likely to contribute offspring to future population. Individuals will
therefore differ in the net contributions they make to the next generation: an individual’s
contribution to the future population is known as its fitness. The concept of individual
fitness lies at the heart of Charles Darwin’s theory of natural selection. In his book ‘On the
Origin of Species’, he describes how the process of natural selection acts on a phenotype,
or the observable character traits of an organism, such that individuals with favourable
phenotypes are more likely to survive and reproduce that those with less favourable
phenotypes. Darwin coined the term ‘survival of the fittest’ to describe the process
whereby those individuals whose phenotypes were best suited to their environment had
a higher chance of surviving and reproducing. As a result, the genes that determine the
fitter phenotypes will increase in frequency over the following generations. Over time,
this process may result in species becoming better adapted to their particular
environments and may eventually result in the emergence of new species.

However, fitness is not only a fundamental component of natural selection and
evolution, it is also closely linked to demography, the study of populations. An
individual’s fitness is defined in terms of its contribution to future generations, and this
contribution is determined by its ability to survive and reproduce. It therefore follows
that an individual’s fitness can also be measured in terms of its contribution to population
growth. Thus, there is a relationship between the average fitness of the individuals within
a population and the overall growth rate of the population. Work by Lande and
collaborators in the 1980s was fundamental in proving this relationship and providing a
critical link between demography and selection (Lande, 1982). They showed that, when
appropriate genetic and demographic assumptions are met, the mean fitness of the
individuals in a population can be measured by the mean growth rate of the population.

In proving this relationship, Lande showed that  is a measure of the fitness of a
particular life cycle (i.e., the combination of birth and death rates experienced by an
individual with a particular life history) and that all the vital rates at all stages of the life
cycle were components of that fitness measure.

Despite the work by Lande, there remains considerable controversy around the use of

 as a measure of mean fitness (Nur, 1987). Several alternatives have been proposed.
Most of these make use of both birth and death rates, but in a different formulation from

that used to calculate  . One of the most popular of these is reproductive value

0R (Caswell, 2001). The reproductive value at a given age or stage is the sum of an

individual’s past and future reproductive output, this measure therefore combines
expected future survival and fecundity.
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2.2 Feeding and energetics

The way in which an animal searches for and consumes food (known as its foraging
strategy) will affect its daily and annual energy budget. An individual that acquires more
energy than it expends will be able to grow, improve its condition (see below), resist
disease infection, escape predators and provide energy for its young. All of these
activities will increase its fitness and reproductive value. Consequently, foraging
strategies, and the way in which these interact with the distribution and abundance of
prey, will influence both individual fitness and population growth through their effects on
the energy balance of individuals, particularly reproductive females.

The energy obtained through feeding depends on many factors, including the
abundance of food and the type of food items consumed (Begon and Mortimer, 1986).
Energy intake needs to be balanced against the amount of energy expended by the
individual in searching for, chasing, eating and digesting their prey. This balance is termed
the mean net rate of energetic gain. In simple terms, it describes the surplus of energy
that an individual gains from foraging that can then be used for growth, reproduction,
building up reserves for times when food is scarce and avoiding predation. A high net rate
of energetic gain is therefore likely to result in a high level of fitness.

The theory of optimal foraging developed by MacArthur and Pianka (1966) assumes
that individuals attempt to maximize their mean net rate of energetic gain. They used this
theory to predict when an individual animal should leave one foraging location, for
example because prey are getting scarce or harder to catch, and move to another location
where prey densities may be higher, but there is an energy cost attached to making that
move. It is not, of course, imagined that animals are able to consciously weigh up the
costs and benefits of leaving a particular location and finding another. Rather, particular
patterns of foraging behaviour have been favoured by natural selection (Begon and
Mortimer, 1986). Furthermore, it should not be assumed that animals always adopt the
strategy that maximises their foraging profits, because the strategies they adopt will be
influenced by other factors, such as avoiding predators. Any environmental change or
event that affects an individual’s behaviour may therefore alter its foraging strategy, with
ultimate consequences for its fitness.

The marginal value theorem for optimal foraging assumes that an animal “knows” the
average rate of capture to expect in the entire habitat as a result of previous experience
and that it mentally compares this to its current rate of food intake within the location
where it is foraging. The theory predicts that it should leave its present location if its rate
of food intake falls below the anticipated average rate of food intake over the entire
habitat (Charnov, 1976). Complexities arise when foraging animals have a choice between
different foraging areas. For example, suppose an animal had a choice between foraging
in an area that contains three prey items and an area in which there may either be no
prey items or six prey items. The marginal value theorem predicts that, in such
circumstances, an animal would not show a preference for either area because the
expected rate at which prey will be encountered (three per unit time) is the same.
However, research suggests that foraging animals are sensitive to risk (Bradshaw and
Bateson, 2000), and most animals tend to exhibit either risk-averse or risk-prone
behaviours. Risk-averse individuals will prefer the first, predictable foraging area,
whereas risk-prone individuals might show a preference for the less predictable one.

Whether animals are risk-averse or risk-prone appears to depend on a range of
factors, including the current energetic status of the forager, the variance associated with
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the feeding options and the number of feeding options available to the animal (Bradshaw
and Bateson, 2000). Several different explanations for these two types of behaviour have
been proposed. Some are based on a consideration of the psychological mechanisms
involved in decision making, while others consider the fitness consequences of risk-averse
or risk-prone behaviour for the forager (Bradshaw and Bateson, 2000).

We have so far only considered the effects of foraging and energy on the fitness of
predators. However, predators and prey interact, and the fitness of prey individuals is
also affected by the actions of predators, principally through changes in intraspecific
competition: fewer prey mean more resources available for the surviving prey individuals,
but there may be intense competition amongst these individuals for “predator-free”
space. In general, predator-prey interactions tend to stabilize and regulate prey
population (Begon and Mortimer, 1986). Prey populations that have been reduced in size
by their predators experience less competition for resources, produce more offspring, or
are subject to less predation pressure from other predators. The same prey populations
experience much greater intraspecific competition when predators are scarce.

Research suggests that the prey items most vulnerable to predation (such as the
young, the old and the sick) are also likely to provide the lowest contribution to future
generations (Begon and Mortimer, 1986). Thus, in practice, a predator may have less
effect on the population growth rate of its prey than would be expected from the number
of prey it consumes. However, some predators act more like grazers: although they do
not actually kill their prey immediately, their actions make the prey more vulnerable to
other form of mortality. This can lead to a dramatic change in the prey’s competitive
relationships with other members of its species (Beaumont et al., 2007).

2.3 Fitness and condition

Many demographic studies that have used matrix population models to investigate
the dynamics of populations have assumed that birth rates and survival rates are simply a
function of an organism’s age. However, it is not always reasonable to assume that all
individuals of the same age have the same chance of surviving and reproducing. Rather,
survival and reproduction are likely to be influenced, at least in part, by an organism’s
physiological status (Houston and McNamara, 1999). There is abundant evidence that
changes in many physiological variables are not tightly correlated with changes in age
(McNamara and Houston, 1996). One way to make matrix population models more
realistic is to incorporate state variables other than, or in addition to, age. One state
variable that is likely to be relevant in many organisms is individual quality or condition.
Condition is a term used to describe the physiological cost of living and expending energy.
For example, a low mean net rate of energetic gain (corresponding to poor condition) may
have a detrimental effect on an individual’s immune system, making it more susceptible
to disease and reducing its chance of surviving and giving birth.

The relationship between fitness and condition is perhaps best understood through
some examples of particular life-history strategies. Begon et al. (1986) identified the
following components of life-history strategies:

 the relative effort devoted to reproduction, growth, survival, and predator
avoidance;

 the apportionment of reproductive effort between many small or a few large
offspring;
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 the distribution of reproductive effort over an individual’s life-time;

 the diversion of energy to dispersal and migration .

The consequences of these decisions for an individual’s fitness will depend on its state
or condition, and this in turn can depend on its phenotype.

For example, the environmental resources that are available to an individual are
limited. The time, effort and energy used in the pursuit of one set of resources will
diminish the time, effort and energy available for the pursuit of other resources.
Therefore, each individual must trade-off the benefits from particular resources and
activities against those that could be obtained from a different set of activities. For
example, an increase in current reproductive effort might result in an increase in the
probability of death and a decrease in rate of growth, both of which would decrease the
potential for reproduction. An optimal life-history strategy would specify that an animal
should not breed when its condition is below a certain critical level because it will thus
avoid expending valuable energy on potentially unsuccessful reproduction. This energy
can then be used to improve its condition for the following breeding season. The
condition of an individual that adopts this strategy will continue to rise until it eventually
exceeds the critical level and the individual will reproduce. Since the increase in condition
associated with not breeding is likely to vary between individuals, the delay will not be the
same for all animals. One consequence of this is that the age at which animals first breed
is likely to vary as a consequence of their condition (Houston and McNamara, 1999).

Two different fitness-increasing life history strategies appear to have evolved
(MacArthur and Wilson, 1967). The r-strategy is characterised by a high rate of
propagation. It is found especially among species that specialise in the colonisation of
new habitats, where conditions are often variable, or among species that exhibit strongly
fluctuating population sizes. The K-strategy is shown by species whose populations are
often close to the carrying capacity of the environment and are therefore likely to be
regulated by density-dependent processes. K-strategists typically live in relatively stable
habitats, where a high rate of propagation is of no advantage. In reality, all conceivable
intermediates between these two extreme strategies occur: a given species may mainly
adopt one strategy, but it may have some of the characteristics of the other strategy.
Sometimes circumstances, such as unpredictable changes of environmental conditions,
can trigger a change from one strategy to the other. Thus, although fish are generally
described as r-strategists (because most species are capable of producing large numbers
of offspring), and marine mammals are considered to be classic K-strategists (with very
high survival rates and low annual reproductive output), this is not universally true. Some
fish (for example skates and sharks) are really K-strategists, and some marine mammals
(fur seals and porpoises, for example) exhibit life histories that resemble those of r-
strategists.
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CHAPTER 3
THE SENSITIVITY OF  TO CHANGES IN DEMOGRAPHIC RATES AND LIFE HISTORY,

INTERACTIONS BETWEEN DEMOGRAPHIC RATES

3.1 Introduction

A population’s growth rate ( ) is a function of the population’s vital rates, which, in a
matrix population model, are represented by the elements of the projection matrix. All

these elements will influence the size of  , but some elements affect  more than
others. This chapter expands on the concept of prospective perturbation analysis that
was introduced in Chapter 1. It is a branch of demography that explores the functional

dependence of the population growth rate  on the vital rates. Commonly referred to as
sensitivity or elasticity analysis, this analysis determines the influence of the elements of

the projection matrix upon  . Its ease of interpretation and analytical simplicity has
quickly established it as an important tool in population and evolutionary ecology (Benton
and Grant, 1999; Caswell, 2001).

A knowledge of which elements of the projection matrix have the greatest effect on

 is often extremely useful when allocating conservation resources because it allows
these resources to be focused where they are likely to be most effective. For example, if
perturbation analysis reveals that a small change in juvenile survival markedly affects
population growth, then juvenile survival might be a target for conservation efforts (if the
species is at risk of extinction) or control (if the species is a pest). If, on the other hand, a
change in juvenile survival has minimal effects on population growth then resources may
be more effectively directed elsewhere (Benton and Grant, 1999). Perturbation analysis is
also a useful tool in the identification of suitable protected areas. Such areas may only
protect some life history stages and it may be most effective to target those areas that

protect the life history stages that have the greatest effect on  (Hooker and Gerber,

2004). A knowledge of which elements exert most influence on  can also be useful in
designing a strategy for sustainable harvesting and for evaluating approaches for
mitigating the risk to populations from disturbance. In essence, perturbation analysis
highlights a population’s most, and least, vulnerable points that may then be targeted
accordingly.

3.2 Sensitivity analysis

An intuitive method for calculating the sensitivity of  makes use of calculus to
determine the effect that a small change in any element in the projection matrix will have

on  (Caswell, 2001). The sensitivity, S , of  to ,i ja , the element in the i th row and

j th column of that matrix, is given by:

,i j

S
a





(3.1)

S is therefore the local slope of  , as a function of ,i ja .

Caswell (2001) shows that equation 3.1 can also be written as:
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, ,

i j

i j

v w
S

a w v


 


(3.2)

where v is the reproductive value vector (the left eigenvector of the projection
matrix), w is the stable age distribution (the right eigenvector of the projection matrix)

and ,w v is the scalar product of the two vectors. We can see from equation 3.2 that

the sensitivity of  to the changes in ,i ja is proportional to the product of the i th

element of the reproductive value row and j th element of the stable age distribution.

The value of the denominator is independent of i and j , and can be ignored when

considering the relative sensitivities of  to the elements in the matrix. However, it
should not be ignored when comparing elements belonging to different matrices.

Sensitivity analysis calculates the effect on  of changes to any of the elements of
the projection matrix, even if these elements are zero, or fixed at some value. For

example, in the projection matrix given in equation 1.9, element 2,3a is zero, because it is

impossible for individuals in age class three to contribute to age class two. However, the

sensitivity of  to 2,3a will probably not be zero. Nevertheless, it would be futile to

allocate resources to managing this element because its value is fixed at zero. It is the
responsibility of the analyst to interpret such results and decide on their usefulness.

3.2.1 Sensitivity of  to vital rates

Many studies have calculated the sensitivity of  to changes in age specific birth and
survival rates in a variety of living organisms, including beetles (Birch, 1953), turtles
(Crouse et al., 1987) and amphibians (Biek et al., 2002). It appears from these studies that

the sensitivity of  to these vital rates declines with age. In the case of the birth rate, this
decline is nearly exponential. In other words, as individuals age, both their birth rates and
survival rates contribute less and less to overall population growth. Moreover, it appears

that  is more sensitive to a change in survival than to changes in birth rate at early ages.

At older ages the pattern is reversed and  appears to be more sensitive to changes in
birth rate than survival (Caswell, 2001). This can be demonstrated mathematically. The
eigenvectors w and v for age-structured populations are:

1

1
1 2 1

1
i

i i

w

w PP P   




 

for 1i  , where iP is the age-specific survival rate and:

1

1 1
1

1
i

i i i

v

v F P   




 

for 1i  , where iF is the age-specific birth rate.

From equations 3.1 and 3.2 we can see that:
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1 1

/

/

j j

j j j

F w

F w P

 

  

 
 

 
(3.3)

Thus the sensitivity of  to birth rate is a strictly decreasing function of age as long as

1  . If the survival rates ( jP ) are constant, then the decrease will be exponential, so,

other things being equal, the sensitivity of  to changes in birth rate falls off more rapidly

with age the greater the value of  . In a decreasing population, however, the sensitivity

will actually increase from age j to age ( 1)j  if jP  .

The sensitivities of  to changes in survival at successive ages satisfy:

1

1 2

1
1 1 2 1 1

2 2

/

/

j j j

j j j

j j j j j

j j j j j

P w v

P w v

F P v P F

P v P P v










 


    

 

 


 

 
    

 

This expression
1j

j

P

P


 if 1  .

Thus the sensitivity of  to survival decreases monotonically with age provided 1 
and 1j jP P  . This is not necessarily the case for size- or stage-classified models. Their

stable size or stage distributions frequently exhibit peaks, resulting in sensitivities that are
not necessarily monotonic functions of size or stage (Caswell, 2001).

The relative sensitivities of  to the birth and survival rates must satisfy:

1 1

1 1

/

/

j j j j

j j

P w v v

F w v v




  

 
 

Thus  is more sensitive to survival than to fertility if 1 1jv v  , which is true at least

up to the age of first reproduction. Thus, / /j jP F      for young ages, and the

inequality is reversed at older ages.

3.2.2 Interactions between vital rates

When calculating the sensitivity of  to a particular element ,i ja all other

parameters are kept constant. If many parameters are perturbed simultaneously, the net

effect on  is given by the differential:

,
, ,

k l
k l k l

d da
a








 (3.4)

where k and l represent the k th row and the l th column respectively. This result
can be used when assessing the contribution of multiple ‘lower-level’ parameters.

Suppose that one or more of the matrix entries are functions , ( )i ja x of a variable x (e.g.,
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the allocation of energy to reproduction, which affects both survival and birth rates).
Then:

,

,

k l

k l

a
da dx

x






Substituting this expression into equation (3.4) yields the chain rule:

,

, ,

k l

k l k l

ad

dx a x

  


 


One vital rate may be functionally related to another. For example, an increase in the
birth rate may result in decreased growth because of a subsequent change in resource

allocation. We can suppose that perturbing one vital rate, ,i ja , will affect some or all of

the other matrix entries so that:

,

, ,

,

k l

k l i j

i j

a
da da

a





(3.5)

3.3 Elasticity analysis

The elements of the projection matrix, other that the fecundities entered along the
top row, represent probabilities that individuals either remain in their current stage or
progress onto the next. Since these values represent probabilities, their value cannot
exceed one. The fecundities, however, are under no such constraints. Elasticity analysis,
which is closely related to sensitivity analysis, recognises this inequity between the
demographic rates and calculates proportional, rather than absolute, responses to
perturbations (Caswell, 2001).

The effects of proportional changes in the matrix element ,i ja can be examined by

scaling the sensitivities of each ,i ja by their respective magnitudes, allowing the influence

of changes in the matrix elements upon  to be determined, while accounting for their
relative magnitude (Caswell, 2001). The elasticities of the elements can be calculated
using the following equation:

,

,

, ,

log

log

i j

i j

i j i j

a
e

a a

 



 
 

 
(3.6)

Thus the elasticity, ,i je , is the slope of log plotted against ,log i ja .

The elasticity of  with respect to each ,i ja is often interpreted as the “contribution”

of each elements to  . De Kroon et al. (1986) showed that, because these contributions

are proportional, the elasticities of  with respect to the elements always sum to one.

The idea of a “contribution” must be interpreted carefully, however, because  is not

actually composed of independent contributions from each of the ,i ja . Rather, the
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contributions of one element to  will depend on the value of the other elements
(Caswell, 2001).

3.3.1 The elasticity of  to changes in age-specific survival and birth rates

Since sensitivities evaluate the absolute contributions of the matrix elements to  ,
and elasticities evaluate their proportional contribution, it is not surprising that these two
branches of perturbation analysis often give different results. Studies have shown that, in
general, elasticities determined by survival rates are larger than those determined by
fecundities, but the magnitude of the difference declines as generation time decreases
(Caswell, 2001; Saether and Bakke, 2000). Furthermore, it appears that, while the

elasticity of  to the survival rate consistently declines with age, its elasticity to fecundity
first increases and then declines. This appears to be a general property of age-structured
models (Caswell, 2001).

The elasticity to fecundity at successive ages satisfies:

1,

1, 1 1

j j

j j j

e F

e F P



 

  
     
  

which must not be greater than one. The elasticity to survival at successive ages
satisfies:

1, 1

2, 1 1 1 1 2

/

/

j j j j j

j j j j j j

e P P F

e P P P v





 

     

   
         

This ratio is always greater than one when 1  . The equation above implies that

the elasticity of  to survival is the same for all pre-reproductive age classes (Caswell,
2001).

1, 1

2, 1 1 2 1

j j j j j

j j j j j

e P v w

e P v w

 

    

  
     
  

If 1j jF F  then 1
1 1 2j j jv P v 
   , and this ratio is equal to one.
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3.3.2 Elasticity analysis in practice
Elasticity analysis has been shown to be an effective, simple and informative tool in

both conservation and evolutionary biology. One particular example where elasticity
analysis was used effectively concerned the conservation of Kemp’s Ridley sea turtle
(Lepidochelys kempii). Many turtle species suffer high mortality in their first year and
turtle conservation strategies have focused on improving hatchling survival. Often this
involves “head-starting”, whereby eggs are collected from the wild and the hatchlings
reared in captivity before they are subsequently released. Heppell et al. (1996) used
elasticity analysis to evaluate head-starting as a management tool for Kemp’s Ridley sea
turtle and found that increasing hatchling survival had a relatively small impact on
population growth. Conversely, the elasticities for the survival of large juveniles and
adults were much greater, indicating that increasing the survival of large turtles would
allow faster recovery of threatened populations than head-starting. As a result of these
findings, legislation was introduced to make the use of turtle excluder devices on trawl
nets mandatory in certain waters in an attempt to increase adult survival.

Crooks and Soule (1999) used matrix models to investigate how variation in the
survival and fecundity of cheetahs (Acinonyx jubatus) in the Serengeti National Park in
Tanzania might influence the persistence of the population. Their results suggested that
juvenile survival had a relatively small impact on population growth rate compared to
adult survival. They concluded that conservation efforts outside the park, targeted at
reducing poaching of adult cheetahs, might be the most effective way of ensuring the
persistence of the population within the Park.

Elasticity analysis is also an important tool in evolutionary ecology, which often
requires quantification of the relative importance of different life history stages. In

Chapter 2 we described how  can be used as a measure of population fitness. If a
change in a vital rate causes a change in fitness, then there will be selection on that vital
rate that is proportional to the change. Therefore, both elasticities and sensitivities are
measures of the selection pressures on an organism’s life history (Benton and Grant,
1999).

When using elasticity analyses, it is important to remember that the elasticities of 
are calculated using a density-independent, time invariant model. It has not yet been
established empirically whether such elasticities can be accurately applied to real
populations (Benton and Grant, 1999; De Kroon, Van Groenendael and Ehrlen, 2000).
Certainly, the fact that elasticity analysis ignores the effects of density and the variability
in the vital rates over time is an important limitation, and this should be carefully
considered when interpreting their results. Furthermore, elasticities are a measure of

how  changes in response to an infinitesimal change in the matrix elements.
Extrapolating from infinitesimal to large changes assumes that the relationship between

 and the elements of the projection matrix is linear. In practice, this is very unlikely to
be true, particularly in the presence of density dependence (Benton and Grant, 1999).
Despite these limitations, it is widely agreed that sensitivity and elasticity analysis are
useful first steps in identifying the proper focus for management effort. They can be used
for targeting the life history stage that will contribute most to the population growth of a
threatened population or vulnerable life stages of pest species (Caswell, 2001).
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CHAPTER 4
DENSITY DEPENDENCE, ITS CAUSES AND CONSEQUENCES

4.1 Introduction

As noted in Chapter 1, all animal and plant populations have the potential for
exponential growth, but they do not continue to grow in this way indefinitely. As
population density increases, competition between individuals for resources increases
and this is reflected in changes in survival, fecundity and migration rates that have
consequences for the growth rate of the population. These negative feedback processes,
collectively known as density dependence (Chapter 2), are what ultimately regulates
population size (Lincoln, Boxshall and Clark, 1998). However, it should not be assumed
that all populations exhibit the effects of intraspecific competition for scarce resources.
The dynamics of many species are primarily driven by environmental variation that can
cause large variations in survival, birth rates and growth from year to year (see Chapters 7
and 8). This is particularly true of many fish populations, in which the recruitment of
young fish is often highly variable. Other species have been reduced to such low levels as
a result of exploitation that their population dynamics are not really affected by resource
availability. In this chapter, we will describe the biological nature of these processes, the
way in which they have been modelled mathematically, how they can be detected in
natural populations, and their implications for population management.

4.2 The causes of density dependence

As noted above, the principal source of density dependence is competition amongst
individuals for some scarce resource. The consequences of this competition will depend
on the way resources are shared amongst the competitors. If they are shared equally (a
situation known as scramble competition), all of the competitors will get a smaller share
of the resources as they become more scarce. On the other hand, if there is contest
competition, in which some individuals can always obtain the same quantity of resource,
irrespective of its abundance, then the rest of the population will suffer much more than
in a scramble situation.

Which demographic rates are affected by density dependence will depend on the
resource that is in scarce supply. If it is sites for breeding, then mean birth rate will fall as
density increases, because an increasing proportion of the population will be unable to
breed. If competition is for predator-free space (space that provides some protection
from predators), then mean survival will fall as density increases because more and more
individuals are forced into areas where they are at greater risk from predators. Predator-
induced mortality is also likely to increase with density if a species’ most important
predator is a generalist (one that consumes a range of prey species). Such predators
often exhibit prey switching, in which some prey species are ignored when they occur at
low densities but are preferred once their density increases above some threshold value.

Finally, the consequences of competition for food are likely to be progressive,
especially for long-lived species like marine mammals. The initial impacts of reduced per
capita food availability are likely to be experienced by young animals, who are least
experienced and less able to compete in a contest situation. Inexperienced animals are
likely to suffer increased mortality as resources become scarce; those that do survive will
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have a reduced growth rate and are likely to mature later in life (Eberhardt, 1977). As
food becomes even more scarce, some adult females may be unable to acquire sufficient
resources to cover the costs of pregnancy and lactation. These animals may fail to
become pregnant, or abandon their young at some stage before the end of the normal
period of parental care. Finally, when food becomes extremely scarce, adult survival will
fall.

All of these processes result in a negative relationship between population growth
rate and population density. However, there are a number of processes that are a
consequence of the social organisation of a species, or its predators, that can result in a
positive relationship between population growth rate and density. This inverse density
dependence is sometimes known as an Allee effect (Allee et al., 1949). Since it results in
reduced survival or fecundity at low population densities, the Allee effect poses a
particular problem for the conservation of rare species (Courchamp, Clutton-Brock and
Grenfell, 1999). One mechanism that can result in an Allee effect is the fact that breeding
animals may find in difficult to locate mates at low population densities (see Chapter 5).
However, predators can also generate an Allee effect (Gascoigne and Lipcius, 2004)
because the mortality rate associated with their depredations is likely to increase at low
prey densities.

4.3 Density dependence in marine mammal populations

Much of the historical evidence on density dependence in marine mammal
populations has been summarised by Fowler (1981, 1990) and Harwood & Rohani (1996).
In general, this evidence coincides with Eberhardt’s (1977) hypothesis about the way in
which density dependence will act in mammal populations: there is considerable evidence
for density dependent pup mortality and density dependent changes in age at sexual
maturity. Marine mammals can also suffer catastrophic mortality in all age classes as a
result of disease outbreaks (Harwood and Hall, 1990), but the impact of these does not
appear to be related to population density.

4.4 Modelling density dependence

As noted in Chapter 1, the conventional way to model the effect of density
dependence is to propose that population growth follows a logistic function. This
function is based on the assumption that population growth rate will decline in a linear
fashion with increasing population density. If population dynamics are modelled in
continuous time, logistic population growth is described by the following equation:

/ (1 / )dN dt rN N K  (4.1)

where K is the carrying capacity of the environment (see section 1.1). The
equivalent discrete time version is:

1 (1 / )t t t tN N N N K    (4.2)

However, this equation can result in negative population sizes when  is large,

which is clearly nonsensical. This happens when the population overshoots K by so

much that (1 / )t tN N K  - which will be a negative number - is larger than tN .
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Although actual values of  for marine mammals are far too small for this to happen,
population modellers are generally reluctant to use the discrete time logistic model
because of this potentially ‘pathological’ property.

Equations 4.1 and 4.2 predict that maximum net growth will occur when the
population is at half the carrying capacity. However, Taylor & DeMaster (1993) concluded
that the effects of density dependence in marine mammals were likely to be most evident
at population sizes between 50% and 85% of carrying capacity. This relationship can be
captured in the so-called “theta logistic” equation (Saether and Engen, 2002):

/ (1 ( / ) )dN dt rN N K   (4.3)

or:

1 (1 ( / ) )t t t tN N N N K     (4.4)

Equation (4.4), the discrete time version of the theta logistic, is routinely used by the
Scientific Committee of the International Whaling Commission to model the population
dynamics of large whales (Baker and Clapham, 2004).

Other alternatives to the simple logistic are a generalised version of the Beverton and
Holt equation, used by Thomas & Harwood (2007) to model the dynamics of UK grey
seals:

1 (1/ (1 ( ) ))t t tN N N K aN     (4.5)

and the Gompertz equation, used by Dennis et al. (2006) to detect density
dependence in time series of population counts:

1 exp( )t t tN N a bN   (4.6)

4.5 Detecting density dependence

Density dependence is defined as the dependence of per capita growth rate on
present or past density (Murdoch, 1994). It should therefore be possible to detect the
presence of density dependence from a time series of estimates of population size.
McCallum (2000) provides a good summary of this approach. However, the standard

method, which involves investigating the relationship between 1ln( / )t tN N  and

1ln( )tN  , is problematic because the same term ( 1tN  ) appears in both the dependent

and independent variables. In addition, as Bjornstad & Grenfell (2001) point out,
‘population fluctuations arise from the interplay of noise, forcing, and non-linear
dynamics’, all of which are potentially obscured by the effects of observation error (the
fact that we normally have to estimate population size from survey data).

Dennis & Taper (Dennis and Taper, 1994) developed an approach to detecting density
dependence in time series of population estimates for unstructured population models
that addresses the problems of noise. Lande et al. (2002) extended this to take account of
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age structure using generation time and different models of density dependence.
However, Schenk & Bacher (2002) showed that both these approaches were sensitive to
the effects of observation error. Dennis et al. (2006) modified their approach to take
account of observation error, but assumed that density dependence is described by the
Gompertz equation (equation (4.6)), which may not always be the case.

There is a growing consensus that the best way to deal with these problems is to use
the power of modern computer-intensive statistics to fit so called state-space models
(which can account for measurement error, environmental variation, age structure and
different forms of density dependence) to all available data (e.g., time series of
abundance estimates, data on vital rates and data on age structure). Model selection
procedures can then be used to decide which model(s) of density dependence provide the
best description of the data. We describe these models and the way they can be fitted to
data in Chapters 10 and 11. However, Clark & Bjornstad (2004) provide a useful overview
of these models, and Buckland et al. (2007) provide more technical detail on their
structure, together with an example of their application to the dynamics of a grey seal
population. Nevertheless, it is not always possible to identify the precise nature of
density dependence. Thomas and Harwood (2007) used the methodology described in
Buckland et al. (2007) to analyse an extensive time series of counts of grey seal pup
production. They were able to identify the presence of density dependence, but were
unable to determine whether this acted through pup survival or birth rate.

4.5 Management implications of density dependence

Understanding and quantifying the nature of density dependence (which is usually
referred to as the stock-recruitment relationship in fisheries science) is central to the
management of the exploitation of any animal population (Punt and Donovan, 2007).
Indeed, sustainable exploitation (as described in section 1.3) is impossible unless a
population shows some form of density dependent response. However, density
dependence is also a central issue in conservation. This is because habitat destruction
and fragmentation is one of the main reasons that many endangered species have been
reduced to low levels. As a result, they are restricted to relatively isolated populations
that are likely to experience resource limitation, and therefore density dependence, as
their numbers recover. It might be thought that marine mammals are exempt from this
problem. After all, they are, potentially, highly mobile and the marine environment poses
few barriers to movement. However, Harwood (2001) has pointed out that the critical
habitat which marine mammals require for breeding and efficient feeding is likely to be
highly fragmented. Many marine mammal species, especially baleen whales, require high
densities of prey if they are to feed efficiently, and these prey “hot spots” are likely to be
separated by hundreds, if not thousands, of kilometres of relatively unsuitable ocean.
Similarly, most pinnipeds breed colonially on land and suitable sites for breeding colonies
are often in short supply.

In addition, disturbance is likely to change the distribution of animals (see Chapter 6).
This redistribution can have profound consequences for the way in which density
dependent mechanisms operate (Sutherland and Norris, 2002). If, for example, animals
are displaced from high quality areas into low quality areas that already have a high
density of conspecifics, competition is likely to be intensified.



28

All these arguments suggest that density dependent processes are an essential
component of any mathematical model that attempts to capture the effects of
disturbance on population dynamics.
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CHAPTER 5
INTERACTIONS BETWEEN SOCIAL STRUCTURE AND POPULATION GROWTH

5.1 Introduction

The social structure of an animal population emerges from the properties of its
members (their sex, age, life history stage) and the relationships between them (kinship,
familiarity). The social structure of a population can have a dramatic impact on the way
individuals and groups can exploit resources and avoid risk through processes such as
aggregation, mutualism, resource depletion and interference (Figure 5.1). This implies
that the effects of social structure on population growth will be realised through the
density dependence mechanisms that determine growth.

Population
density

Population growth

Birth rate

Survival

Exploitation

Risk
avoidance

Aggregation
Cooperation

Communication
Interference

etc

Social structure

Figure 5.1: Potential feedback loops in the interaction between social structure and
population growth. The existence of such feedback will depend on the strength of the
linkages shown in the diagram.

Detection of such density dependent effects is not straightforward, and not just
because of the statistical problems that were discussed in Chapter 4. The net effect of
social structure on productivity will depend on the fine balance between the decrease in
birth rate or juvenile survival associated with an increase in population size and the
increases in overall productivity associated with the increased number of breeding
individuals. Similarly, decreases in survival may be cancelled out by higher overall
productivity. When these processes are exactly balanced, we have perfect compensation
in density dependence (Maynard Smith and Slatkin, 1973). The effects of social structure
on productivity and survival can, but do not need to, be similar in direction or magnitude.
Seasonality and the spatial distribution of resources may play an important part in
deciding which demographic rate is affected by different social behaviours. For example,
in some species, processes such as territoriality and aggregation can be associated with
both resource acquisition and breeding, whereas in others they are related with only one
of the two.

In this chapter, we examine different aspects of social structure and review the ways
in which they affect and are affected by population growth. We begin with two sections
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on intraspecific competition (depletion and interference) focusing on the role of social
structure in modulating the equality between competitors. We then examine the effect
of cooperation (mutualism and altruism) on the fitness of group members. The impacts of
both competition and cooperation can be aggravated or moderated by processes such as
conspecific aggregation and communication, so we examine these next. Finally, we
provide a brief section on the importance of social structure in the spread of disease.

5.2 Social rank and resource depletion

Resource competition between conspecifics can affect their ability to survive and
reproduce (Hahn and Bauer, 2008). Resource depletion is therefore considered as one of
the main mechanisms that can bring about density dependence. The degree of symmetry
in the competitive abilities of individuals has implications for the growth rate and stability
of the population to which they belong (Johst, Berryman and Lima, 2008). If competitive
abilities vary within a population, individuals will suffer to variable degrees from the
effects of depletion. Sutherland (1996) offers the example of territorial populations in
which the territories are fixed in position and size. At low densities, only the best
territories are occupied and the mean reproductive output is high. This is known as a
buffer effect (Brown, 1969). As density increases, reproductive output drops. This effect
will be more pronounced in regions with highly variable territory quality.

Social rank is often important in determining the ability of animals to gain access to
resources and it is therefore likely that, at high densities, dominant individuals will occupy
the best territories. This is one way in which spatial autocorrelation in habitat quality can
cause autocorrelation in the spatial arrangement of social rank. The net effect is the
emergence of spatially contiguous areas occupied by weak competitors in poor quality
habitat. The dynamical implication of this is that entire sections of the population are
made weaker still and opened up to spatially focused disturbance, disease, or predation.
The effect on population growth can be further aggravated if social rank is itself a product
of residency (Fretwell, 1969). These detailed mechanisms give rise to empirical
correlations between social rank and individual performance (e.g., maternal effects
(Altmann and Alberts, 2005), time to sexual maturity (Bercovitch and Strum, 1993) and
size hierarchies (Buston and Cant, 2006).

5.3 Interference competition

Interference competition, in which competitors interact directly with each other,
rather than indirectly through a shared resource, may occur in several different ways
(Goss-Custard, 1980). For example, fighting may increase with density, copulation may be
disrupted by competing males, and prey may be actively stolen, disturbed, or simply
become better at avoiding predators through repeat encounters with them.

Individuals are likely to differ in their success at interference competitive. This implies
that certain parts of the population will be disproportionately affected as density
increases. Social rank and dominance means that risk is not equally spread. Individuals
may try to counteract this effect by associating with other individuals of similar rank. As
with depletion, this will result in a spatially autocorrelated distribution of social rank and
generate “ghettos” of vulnerable individuals.
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5.4 Aggregation

Spatial aggregations of animals may be driven externally, by the spatial patchiness of
required resources, or they may be the result of a real or perceived advantage gained by
being with conspecifics (as a consequence of mutualism or information sharing, see
sections 5.5 and 5.6). Individuals may also aggregate to avoid Allee effects (Allee et al.,
1949; Courchamp, Grenfell and Clutton-Brock, 2000). Allee effects can occur in sparse
populations if individuals have difficulty in finding mates, if small groups are less efficient
at acquiring food than large ones, or if individuals are more vulnerable to predators when
they are alone than when they are in groups (e.g., mammals - Jarman and Wright, 1993;
birds - Kenward, 1978).

The formation of aggregations may be self-reinforcing. For example, a high density of
conspecifics would ensure a large volume of information being exchanged that, under
conditions of cooperation, would increase the accuracy and validity of the information
being exchanged. Similarly, patches of food may be maintained by the action of
consumers. This has been demonstrated for terrestrial herbivores (Fryxell, 1991), whose
grazing activity may stimulate plant growth and productivity, but may also occur in marine
systems. For example, a generalist predator may consume prey at different trophic levels
within a food web. As a result, its consumption of one prey species may indirectly result
in the increase of other prey – a process known as indirect facilitation.

These self-reinforcing aspects of aggregation may help to counteract its potential
disadvantages. These disadvantages include the fact that increased densities of
conspecifics are likely to result in local depletion of resources that will amplify the effects
of interference. In an extreme case, behaviours that increase local density, such as site
fidelity and philopatry, may slow down or temporarily halt population growth. This is
predicted by theory (Matthiopoulos, Halley and Moss, 2005) and supported by field
evidence from New Zealand sea lions (Chilvers and Wilkinson, 2008).

5.5 Cooperation

The size of social groups often directly affects the vital rates of their population. Field
evidence from terrestrial mammalian carnivores (Clutton-Brock et al., 1999) indicates that
large social groups can benefit from economies of scale in avoiding risk and acquiring
resources. Hence, two populations of the same total size living in exactly the same
environments may have different growth rates if their group structure differs
(Matthiopoulos et al., 2005). Experiments with small mammals (Andreassen and
Gundersen, 2006; Ylonen, Pusenius and Viitala, 1995) have shown the potential negative
effect of social composition on population growth rate. However, cooperative behaviour
within groups can also enhance breeding success (Pope, 2000).

Vital rates can also affect the social structure of a population. Different combinations
of vital rates may give the same population growth rate but a different social structure.
For example, Lefebvre, Ménard & Pierre (2003) developed theoretical models of the
process of fission in social groups and demonstrated that the numbers and sizes of
matrilines (animals related through their mothers) within groups depend on the precise
vital rates and age structure of a population. Many cetaceans species appear to have a
matrilineal social structure. In a theoretical study for territorial birds, Matthiopoulos et al.
(2000) looked at the process of kin group formation and the expected degree of
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cooperation between population members in response to variations in birth rate and
survival.

Kin selection plays an important role in the evolution of complex animal societies
(Aviles, Abbot and Cutter, 2002), particularly those with cooperative breeding. In such
societies, subdominant individuals can increase their fitness by aiding individuals that
share a proportion of their genes (inclusive fitness). This can be shown to increase the
survival of those who receive aid and their offspring (Grimm et al., 2003). Recent
evidence suggests that indirect forms of cooperation, such as delayed or postponed
breeding, are more common among large mammalian carnivores, such as bears, than had
previously been thought (Stoen et al., 2006).

There is also theoretical and empirical support for the idea that the evolution of
cooperation is frequency dependent, i.e., that the fitness of non-cooperating individuals is
greater when they make up only a small proportion of a population (Ross-Gillespie et al.,
2007). Such “cheats” do better when they are rare because there are more cooperators
for them to exploit. The size of a population relative to the resources available will also
determine the pressure to cheat or cooperate. The tendency to follow one or other
strategy will be determined by its contribution to inclusive fitness. In turn, the extent of
cooperation will determine the rate of population growth. This introduces another
possible feedback between population growth and social structure.

5.6 Information exchange

Information exchange can happen passively or actively. For example, animals may be
alerted to the location of resources simply through the presence of conspecifics.
Alternatively, animals may actively inform each other about the location of a food patch
using vocal, visual or chemical cues. Ephemeral aggregations of consumers on resource
patches are often a result of this kind of communication. In population modelling, the
relationship between the density of consumers and the density of resources is known as
the aggregative response. The potential importance of communication for population
growth is hinted at by the fact that the aggregative response is one of the two essential
components in models of consumer-resource dynamics. The other component is the
functional response, which describes the relationship between the quantity of resources
taken by individual consumers and the density of resources.

In most animal communities, social connectivity plays an important role in
information transfer via social learning (Krause, Croft and James, 2007). It determines the
pathways that socially-acquired information takes through a population and it also
influences the overall speed of information transfer. Most of the theory concerning
resource acquisition at the level of populations has been developed in the context of
optimal foraging theory, which assumes perfect knowledge of the environment – see
section 2.2). Social structure directly affects the validity of this assumption and, hence,
the inferences from models based on it.

5.7 Spread of disease

Social connectivity can be important in the transmission of disease (Altizer et al.,
2003; Watts and Strogatz, 1998). The size and composition of social groups and the rates
of exchange of sexual partners influence the number and duration of opportunities for
disease transmission. There are several recent examples of models that combine the
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dynamics of social structure with epidemiology, most notably from studies of the
transmission of bovine tuberculosis in domestic cattle. For example, Corner et al. (2003)
used a social network approach to investigate the spread of bovine tuberculosis via a
vector species. Cross et al. (2004) used a fission-fusion model, in which individuals were
switched between herds, to model transmission as a function of the exchange rate
between herds.

A common modelling approach to investigating heterogeneity in patterns of disease
transmission is to group individuals by social status, sex or other characteristics. Contacts
can then be modelled within and between these groups (Blower and McLean, 1991).
Although we would reasonably expect social and promiscuous animals to bear the
greatest cost from disease transmission, the predictions of these models are not always
straightforward. This is because sociality can also compartmentalise a population, as well
as enhancing mixing within certain groups of individuals. Hence, a high rate of
transmission within a group may result in a more rapid initial spread, but a lower
population prevalence (Jacquez et al., 1988) if contact between groups is limited.

5.8 Social rank and sex ratio

Many marine mammals have a polygynous breeding system, in which individual males
may mate with many different females. It is often assumed that population growth in
such species is not limited by the number of males. However, this is not always the case:
population growth may diminish with decreasing numbers of males. This is because
individual males may not be able to inseminate all of the females that are available to
them, or because females pay a price (in terms of the fitness of their offspring) for being
inseminated by a limited number of males. Theory (Rankin and Barlow, 2007) suggests
that social dysfunction and reproductive collapse may occur if the sex ratio in a population
exceeds a critical threshold. Field data from saiga antelope (Milner-Gulland et al., 2003)
indicate that this can occur. Even stronger effects are likely to be observed in
monogamous mammals (Parker, Rosell and Mysterud, 2007). This has implications for
selective harvesting or predation. If, for example, the males of a species are subject to
greater risk (either through greater exposure or selective hunting) the population's
growth rate may suffer well beyond what might be predicted by single-sex population
models. Even if hunters do not actively select males, size-biased hunting in sexually
dimorphic species will have the same net result.

There is evidence that mammals can adjust the sex ratio of their litters in response
to conditions (Kruuk et al., 1999). Furthermore, there is evidence in primates that the sex
ratio of offspring is affected by the dominance rank of mothers (Schino, 2004). These
effects can directly impact on the population’s growth rate by modulating the number of
future reproductive females (Gerber, 2006). The strength of the effect depends on the
mating system used by the species in question. For monogamous animals, female biased
sex ratios are potentially damaging because not all females will be mated. In contrast,
this may improve the viability of small population of polygynous animals, relative to a
population with a 1:1 sex ratio. This is because there will be less competition between
males for mates. It would be surprising if marine mammals adjusted the sex ratio of their
offspring because they normally only produce one offspring per year and so such
adjustments could result in the complete loss of a year’s production. Nevertheless, there
is some evidence that the sex ratio among pups within southern elephant seal colonies
varies significantly from year to year (Hindell, pers comm), suggesting that such
adjustments do occur.
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5.9 Conclusions

A recurrent theme of this chapter has been the feedbacks between social structure
and population growth (Figure 5.1). We have seen how the activities of individual animals
may affect the habitat they occupy, leading to the formation of aggregations that can
exacerbate the effects of depletion and interference on a local scale. We also reviewed
the possibility that social rank can create spatially segregated groupings of weak
competitors whose vulnerability is amplified (and social rank lowered) by the fact that
they are forced into sub-optimal habitat. Simply describing these interactions, as we have
done here, tends to create more questions than it answers. This indicates the need for
detailed mathematical of the study system that incorporate these effects. However, the
problem with social structure is that it is rarely observed, and is often totally
unobservable. Fortunately, new types of data, such as those collected by telemetry
devices that can communicate with each other, and new types of analyses that classify
and identify vocalisations, may make it possible to map the connectivity between the
members of a population more accurately in future.
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CHAPTER 6
 IN A SPATIAL CONTEXT:

THE NATURE AND CONSEQUENCES OF METAPOPULATION STRUCTURE

6.1 Introduction

The role of spatial structure in population dynamics has received considerable
attention in recent decades. Ecologists have realised that the spatial distributions of
interacting individuals from the same or different species can profoundly affect
population growth and stability (Bascompte and Sole, 1998; Tilman and Kareiva, 1997).
This has presented difficulties to both theoreticians and field workers. Population models
that account for spatial variation are often analytically intractable and computationally
expensive, and spatially-referenced data are logistically difficult to collect. One approach
to spatial ecology that offers an effective compromise between realism and tractability is
the family of metapopulation models (see Hanski, 1999, for a general overview). Just as a
population is an assemblage of individuals, a metapopulation is an assemblage of local
populations that are loosely connected by migration and large-scale synchronising
processes, such as predation or environmental variability.

Metapopulation theory assumes that organisms exist in aggregations within patches
of suitable habitat that are surrounded by hostile or undesirable habitat. In the context of
marine mammals, such patches could result from habitat fragmentation (e.g., ice sheets
used by polar bears, or ice-dwelling pinnipeds), social attraction (e.g., breeding colonies in
pinniped species, breeding areas of cetaceans) or the metapopulation structure of prey
species (this is particularly important for specialist foragers).

Questions about metapopulations may be expressed in terms of ultimate population
size (e.g., existence of multiple equilibria, measures of the capacity of a fragmented
environment) or patterns of occupancy (e.g., the proportion of a network of habitat
patches that is occupied, average lifetime of the local populations occupying these
patches). These attributes emerge from the properties of the species (demography,
movement ecology) and the network (number, size, local properties, and connectivity of
the habitat patches). As a result, the majority of work on metapopulations has focused on
understanding how the underlying demography of a species and the topology of the
network of habitat patches affect population size and occupancy patterns. Other
questions have a more applied focus. For example, in direct correspondence with classic
population modelling, the minimum viable metapopulation size (MVM) is defined as the
minimum number of interacting local populations necessary for long-term persistence of
a metapopulation (Hanski, Moilanen and Gyllenberg, 1996).

Four processes are important in determining the dynamics of metapopulations: the
demography of each local population; the factors affecting each animal’s decision to
emigrate; the risks incurred during migration; and the factors affecting the decision to
settle on a new patch. The demography of local populations can be treated with models
from classic (non-spatial) population theory and may involve well-known features such as
stochasticity (see sections 7.3 and 7.4) and density dependence (see Chapter 4). Local
density dependence (i.e., within a patch) may influence the decision of individuals to
leave a patch (Matthysen, 2005), and this may also be affected by longer-term strategies
such as inbreeding-avoidance (Dobson, 1982). The risks associated with migration may
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take the form of a reduced survival rate during movement (e.g., if the space between
patches is hostile) or it may have implications for birth rate or productivity (e.g., lower
offspring survival or postponement of breeding) of migrants. The impact of these costs on
metapopulation dynamics depends on the degree to which they limit the ability of
migrants to colonise new habitat patches (Matthiopoulos et al., 2005). Finally, the
decision of migrants to settle in a new patch may be random, or it may result from
prospecting. Prospecting is a process during which animals use information about the
reproductive performance and mortality of other individuals of the same species to
determine where to settle (Brown, Brown and Danchin, 2000). Prospecting is a well-
documented process in colonially breeding species such as pinnipeds and seabirds (e.g.,
Bradley et al., 1999; Danchin, Boulinier and Massot, 1998; Doligez, Danchin and Clobert,
2002). Evidence of prospecting in some terrestrial migratory species (e.g., Boulinier and
Danchin, 1997) raises the possibility that the same mechanism may operate in cetaceans
that have a choice of breeding grounds.

Figure 6.1. An idealised metapopulation, in which local populations exist in patches of
suitable habitat (shown in grey) that are connected by migration (permanent movement
from one patch to another). Such exchanges between local populations need not be
symmetric. At any given time, only a proportion of the patch network will be occupied as
local populations go through alternating phases of extinction and colonisation.

The particular assumptions made about these four processes can drastically affect the
predictions of a metapopulation model. This makes it hard to derive simple rules for
managing such systems in the wild. Furthermore, the complexity of such systems and the
wealth of possible interactions between their components can undermine our intuitive
notions about the ecology of an organism. For example, the distribution of a species
observed during a single survey may give a misleading impression of its preferred
distribution. This is because it may be absent from apparently suitable regions as a result
of local and temporary extinctions. On the other hand, the species might be present in
unsuitable, hostile region but these populations may be sinks. A sink is a local population
that has a negative growth rate in the absence of migration, but whose existence is
maintained by immigration from neighbouring source populations, which have a positive
growth rate. For seasonally migratory species, such as some whales, or capital breeding
pinnipeds, such as elephant seals, there is also the possibility that the animals are, by
chance, simply not present in the patch at the time of observation. In the rest of this
chapter we will trace the historical roots of metapopulation theory, discuss its basic
predictions and highlight situations under which these predictions become unreliable.
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6.2 Origins

Historically, the concept of metapopulations stems from island biogeography
(MacArthur and Wilson, 1967), the theory of extinction and recolonisation in “island”
communities (i.e., single patches of habitat). This theory focussed on the relationship
between the number of species living in a patch and the size of that patch.
Metapopulation theory, originally developed by Richard Levins (Levins, 1969), shifted the
focus to a single species living in a network of patches. These models looked at the
proportion of patches within a network that were occupied, subject to the basic
assumptions that all occupied patches were at carrying capacity and that an empty patch
was equally likely to be colonised from any other patch. More realistic metapopulation
models (known as incidence function models) have been proposed by Hanski and his
colleagues (summerised in Hanski, 1992), but the Levins model is still the starting point for
new ideas in metapopulation theory.

6.3 The Levins model

Levins (1968, 1969) treated the proportion of colonised patches as a dynamic balance
between local extinction and recolonisation. Each patch became extinct with a constant
probability in any given time unit, and the probability of recolonisation was proportional
to the overall degree of occupancy in the network. This simple model makes several
implicit assumptions:

1) The patch network is very large. For analytical simplicity, Levins modelled both
time and occupancy as continuous variables. Although continuity in time is not
necessarily a problem, patch occupancy cannot be well approximated by a continuous
variable, especially for small networks. Nevertheless, the approximation is good for
networks with 100 patches or more.

2) The probability of extinction is constant. This assumption implies that local
population dynamics have no bearing on the extinction probability. Clearly, everything
else being equal, smaller populations have a higher probability of going extinct by chance
than large ones. This assumption could be satisfied (approximately) if the local
populations, once colonised, quickly reached their average size and could not be rescued
from extinction by neighbouring populations (see Brown and Kodric-Brown, 1977).
Therefore, Levins’ model refers to systems where colonisation and extinction events occur
on a time scale that is much longer than that of population dynamics within individual
patches.

3) All patches are equally connected. This assumption could be violated if the
mobility of animals is restricted by factors such as the distance between patches. The
Levins model would be approximately satisfied in species that can traverse the entire
metapopulation network during a single migration. Such species are not as rare as one
might imagine, indeed many marine mammal species probably fall into this category
(Gaggiotti et al., 2002).

4) Patches are identical and extinctions are asynchronous. This assumption makes it
possible to apply the same probability of extinction and recolonisation to all patches.
Synchrony in the risk of extinction could result from regional or global influences (e.g.,
climate change).
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a b c

Figure 6.2: In the Levins model the rate of extinction is a linear function of occupancy
(the proportion of occupied patches), while the probability of colonisation is parabolic (a).
The point at which these two curves meet, projected on the horizontal axis, gives us the
equilibrium occupancy in the network. If the maximum rate of colonisation is lowered (b)
or the risk of extinction heightened (c) the system settles to a lower occupancy value.

There have been many extensions of the basic Levins model that relax these
assumptions; Etienne & Nagelkerke (2002) provide a near-comprehensive list of these and
we will not review them here.

The main prediction of the Levins model is that a lower proportion of the patches in
the network will ultimately be occupied if the rate of colonisation is lowered or the rate of
extinction increased (Figure 6.2). If the network is disrupted, for example as a result of
the destruction of patches of suitable habitat, the Levins model predicts that the
metapopulation will still persist if the number of habitat patches that remain exceeds the
number of empty, but suitable, patches that were available prior to patch destruction.
This prediction has been described as ‘The Levins rule’ by Hanski et al. (1996).

6.4 Theory of two patch systems

It is clear that the Levins model makes some extreme simplifying assumptions in order
to draw broad conclusions about the dynamics of metapopulations with numerous
patches. Hanski et al. (1996) suggest that these assumptions may result in the Levins rule
underestimating the MVM. However, in order to relax the assumptions of the Levins
model, we need to deal with patch interactions, which can be very extensive. A system

with n patches has the potential for ( 1)/ 2n n pairwise interactions. This number

quickly gets out of hand as n increases. However, a system of two patches has only one
unique interaction, and this makes it an ideal test-bed for several of the biological
processes ignored by the Levins model.

The two patch system is certainly a gross simplification of the general metapopulation
concept. There is a large body of work that shows how the insights obtained from two-
patch models can become invalid in systems of greater complexity. Nevertheless, their
relative simplicity enables us to get analytical results. This has been used to great effect
to study the implications of different mechanisms for density-dependent dispersal,
migration mortality and settlement decision-making. Even these simple models produce
some interesting results. For example, Amarasekare (1998) shows that a behavioural
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feature, such as density-dependent dispersal, can play a more important role in
metapopulation persistence than a demographic feature, such as migration mortality.
Holt (1985) demonstrated how a two-patch system in which one population is a source
and the other a sink (see section 6.1) can settle to an equilibrium in which the sink
population is larger than the source. This has important implications for conservation,
because it implies that the size of a local population is not necessarily a good predictor of
its viability.

6.5 General single-species metapopulations

The expected growth rate of a metapopulation depends on the number of local
populations, their intrinsic growth rates and carrying capacities, and the connectedness
between them. The relationship between persistence and connectedness is not linear
(Molofsky and Ferdy, 2005).

To address the implications of the way the individual patches in a metapopulation are
connected we first need to distinguish between mortality while in the patch and mortality
due to migration. In the incidence function model (Hanski, 1994) these are expressed in
terms of patch area and relative isolation, respectively (Hanski, 1998). This model can be
used to estimate the expected, long-term probability of occupancy of a particular patch as
a function of its size and isolation. The incidence function model therefore maps the
geometry of the patch network to a pattern of patch occupancy. Metapopulation viability
can then be characterised by the environment’s capacity (Hanski and Ovaskainen, 2000),
represented by the dominant eigenvalue (see section 1.2) from a “landscape” projection
matrix. This can be compared with a critical value that stems from the demography and
life history of the study species.

These metrics may not be appropriate for all study systems. For example, patch
quality may be a more important determinant of the probability of extinction than patch
size (Fleishman et al., 2001; Moilanen and Hanski, 1988). Similarly, geographical distance
between patches may not be the most important determinant of isolation (Moilanen and
Hanski, 1988).

The importance of within-patch population dynamics for the management of
metapopulations is emphasised by the general theory on sources and sinks (Pulliam,
1988). At equilibrium, source patches are net exporters of individuals and sink patches
are net importers. Hence, a source may sustain several sink patches in which mortality
exceeds their productivity. This creates two problems for conservation (Watkinson and
Sutherland, 1995). First, we run the risk of misinterpreting the habitat preferences of a
species that is abundant in suboptimal patches (the sinks). Second, our assessment of
MVM may be misleading because the destruction of a small number of source patches
may lead to loss of a large number of sink populations. In theory, this also means that the
loss of a sink population is less critical than the loss of a source population. If we are to
account for this in management, we must be able to characterise patches as either
sources or sinks. This is not straightforward because the observed growth rate of a
population within a patch includes the effect of migration (Runge, Runge and Nichols,
2006; Watkinson and Sutherland, 1995).

Metapopulation dynamics can be thought of in terms of extinctions and colonisations
at the regional level. A necessary condition for metapopulation persistence is that each
local population is responsible for the colonisation of at least one patch during its lifetime
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(Hanski, 1998). However, just as a population growth rate of one does not guarantee that
a population will not go extinct due to stochastic effects, this condition is not sufficient to
guarantee metapopulation persistence. All the local populations in a metapopulation that
occupy a small number of patches may become extinct simultaneously, either by chance
or due to spatial synchrony in environmental perturbations (Hanski, 1998).

6.6 Synchrony

The dynamics of local populations may be correlated, either as a result of large-scale
random events or because of other spatially-correlated processes, such as migration and
predation (Sole and Bascompte, 2006). Such correlations reduce the independence of
local population dynamics. In the extreme, they can result in a metapopulation behaving
more like a perfectly-mixed population, and therefore increase its likelihood of extinction.
In principal, a metapopulation is more robust than a single population with an equivalent
number of individuals. This is because the asynchrony in the dynamics of different local
populations reduces the variance in the intrinsic rate of population increase (see Chapter
7) and hence reduces the risk of total extinction (Hanski, 1998). Simply put, if all local
populations fluctuate in unison, then the extinction of one local population is likely to
herald the extinction of all the others. In contrast, if spatial synchrony is low, patches in
which the local population has become extinct are likely to be rescued by colonists from
their more successful neighbours (Liebhold, Koenig and Bjornstad, 2004).

Although, it is true that increased synchrony reduces metapopulation persistence, this
may be counteracted by clustering of patches. This increases the probability that an
empty patch will be recolonised (Adler and Nuernberger, 1994), a phenomenon known as
the rescue effect. This is surprising given that both synchrony and clustering would be
expected to push a metapopulation closer to perfect mixing. Furthermore, these factors
appear to act independently of each other in determining metapopulation persistence
(Johst and Drechsler, 2003).

The interaction between different synchronising processes can have unexpected
results. A number of papers (Doebeli and Ruxton, 1998; Holt and Keitt, 2000; Lennon,
Turner and Connell, 1997) have shown how gentle environmental gradients can interact
with dispersal to give strong spatial patterning in metapopulations. These theoretical
findings suggest that the boundaries of a species range can emerge naturally from
metapopulation processes.

6.7 Multispecies metapopulations

The metapopulation concept also provides a template for models of multispecies
interactions. The predictions made by multispecies models, which usually assume perfect
mixing amongst the interacting species, will change in a metapopulation context.
Similarly, the predictions of single-species metapopulation models can become more
complex when additional species are involved. This may result in complex spatial
patterning (Tilman and Kareiva, 1997), and the occurrence of multiple equilibria. For
example, the system may be equally likely to result in metapopulation extinction or near-
full occupancy of all patches (Hanski, 1998).

It has long been known that habitat fragmentation can prevent the exclusion of one
competing species by another (Hanski, 1983), because inferior competitors can take
advantage of chance extinctions of the superior competitors to re-establish themselves in
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empty patches. More recent theoretical work (Moilanen and Hanski, 1995; Nee and May,
1992) has demonstrated that local habitat destruction could bring about global changes in
the community composition of entire networks.

A particularly important application of multispecies metapopulation theory is in the
area of epidemiology. Epidemiological principles are used to examine the spread of
disease in fragmented habitats (Hess, 1996; Xia, Bjornstad and Grenfell, 2004), and
disease hosts of disease are treated as patches in a metapopulation, where migration
serves as a metaphor for disease transmission (Grenfell and Harwood, 1997).

6.8 Metapopulation dynamics and genetics

Metapopulation theory was spawned from evolutionary considerations and,
consequently, genetics still hold a prominent place in it. Furthermore, fundamental
questions, such as the evolution of dispersal, are best addressed in a metapopulation
framework.

Genetics can certainly affect metapopulation dynamics. Field evidence suggests that
extinction risk increases with increasing level of inbreeding (Saccheri, 1998), but it is not
entirely clear what impact the classic metapopulation processes of local extinction and
recolonisation has on genetic variability (Hanski, 1998). This question cannot be
answered without reference to the traits that are affected by natural selection. For
example, if migration rates have time to evolve according to a particular regime of
extinctions, we may expect complex interactions between metapopulation dynamics and
processes such as habitat destruction.

6.9 Conclusions

The classic models of population dynamics described in Chapters 1-3 rely on the
assumption of perfect mixing amongst the members of the population. The existence of
metapopulation structure has two major implications for such models. First, the
dynamics of each local population will be affected by migration to and from surrounding
populations, and this needs to modelled explicitly. Second, a model of global population
dynamics that ignores metapopulation structure, where it is appropriate, will fail to
capture important properties of the system. These properties include its robustness to
catastrophes, the emergence of spatial patterning, and the existence of multiple
equilibria.
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CHAPTER 7
FACTORS AFFECTING VARIATION IN 

7.1 Introduction

Variations in population growth can result from deterministic processes, which may
be modelled mechanistically as part of an empirical trend, or in the form of stochastic
processes that can be represented by statistical distributions. These sources of variation
can operate independently or together, in which case they can result in autocorrelation.
The relative importance and degree of interaction between these processes has been the
subject of considerable discussion in ecology (Bjornstad and Grenfell, 2001; Boyce et al.,
2006; Coulson, Rohani and Pascual, 2004).

The classic approach to population biology treated stochasticity as an additive
influence acting independently from population size and growth. Increasingly, this
distinction between a deterministic “skeleton” and stochastic error is seen as
unproductive (Coulson et al., 2004). For example, even in the simplest models of density
independent population growth, environmental and demographic stochasticity affect the
growth rate of a population as well as its variance (Saether and Engen, 2002, section 8.2).
This implies that an artificial separation of the different sources of variation in population
growth can result in badly biased predictions.

Furthermore, it is essential that the different sources of variability are correctly
identified, allocated to the appropriate vital rate and modelled with a suitable
mathematical function or statistical distribution. As Kendall (1998) has pointed out, even
modern applied studies (e.g., Caswell et al., 1998) often incorrectly model demographic
stochasticity (see section 1.4.2) as if it was the effect of sampling error in a population
that is assumed to be comprised of identical individuals. When used in statistical
inference, such models can give biased estimates of the demographic parameters and the
risk of extinction (Boyce et al., 2006; Fox and Kendall, 2002).

The primary objective of this chapter is to identify, define and illustrate all the sources
of variation in population growth. Its secondary objective is to highlight some of the ways
in which these sources of variation can interact.

7.2 Simple density dependent dynamics

The effects of density dependence, inverse density dependence (also known as Allee

effects, see sections 4.2 and 5.4) and delayed density dependence on  have already
been reviewed in Chapter 4. Density dependence is traditionally thought to result in

monotonic growth or decline, especially in species for which  is relatively low, such as
marine mammals. However, it is important to note that even these simple mechanisms,
when used to model the dynamics of single species or predator-prey systems, can result
in dynamics that may be deterministically stable (e.g., population cycles) or unstable (e.g.,
damped oscillations). There is good theoretical evidence that stochastic perturbations
can turn a propensity to instability into sustained oscillation (Greenman and Benton,
2003; May, 1973), and a tendency for regular population cycles into unpredictable
fluctuations (Coulson et al., 2004).
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7.3 Demographic stochasticity

Populations are made up of individuals. Because of this, they tend to fluctuate in size
even in the absence of environmental variation. Even if birth and survival rates are
constant, the actual births and deaths occurring in a population will be subject to some
variation. This can conveniently be modelled as a Binomial process for probabilities (e.g.,
annual per-capita mortality) or a Poisson process for rates (e.g., number of offspring
produced per year) (Bartlett, 1960).

As the number of animals in a population increases, the proportion of a population
that is represented by a single individual decreases and the importance of a single birth or
death diminishes. Therefore, in general, the effect of demographic stochasticity declines
with increasing population size (Lande et al., 2003). However, there are ecological
mechanisms that can boost its importance. For example, habitat fragmentation can
create a metapopulation structure (see Chapter 6) in which local populations are more
vulnerable to extinction due to demographic events (Bonsall and Hastings, 2004). This is
especially important if the metapopulation includes source and sinks (see section 6.1)
because they can create situations where the whole metapopulation is threatened by the
extinction if a few source populations disappear.

Similarly, the impact of demographic stochasticity is affected by population structure
because, although all individuals must die eventually, not all individuals can reproduce.
Even without these mechanisms, demographic stochasticity can affect the dynamics of
large populations through lattice effects (Henson et al., 2003). These are recurrent, but
seemingly stochastic, patterns in the dynamics of simple population models. It seems
that, particularly for populations with high growth rates, the importance of demographic
stochasticity is not always simply related to population size.

7.4 Environmental stochasticity

Factors external to a population can also affect the fitness of individuals, and hence
determine their ability to survive and breed. For example, weather conditions and prey
availability tend to fluctuate randomly, even if there is no concerted drift in the climate or
makeup of the ecosystem. These chance fluctuations affect birth and death rates for all

members of a population, adding a second layer of stochasticity to  . Unlike
demographic stochasticity, however, the variability caused by the environment does not
depend on population size, and this independence makes it easier to apportion the
contribution of environmental stochasticity to observed patterns of variation in
abundance and growth (Engen, Bakke and Islam, 1998).

As mentioned in section 7.2, the effect of environmental stochasticity tends to be
amplified by strongly, or mildly unstable, dynamics (Greenman and Benton, 2003).
However, this is not always reflected in population variability. Some populations can
buffer the effects of erratic environmental change (Morris and Doak, 2004) because vital
rates in different population components are correlated (Doak et al., 2005b).

Environmental stochasticity tends to be uncorrelated over time. If this is the case, its
effect on vital rates can be described by independent, random variables. Whether or not
these variables have identical statistical distributions will depend on the existence of
underlying environmental trends.
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There has recently been considerable interest in the use of so-called ‘thick-tailed’
stochastic processes to represent the occurrence of rare, extreme events (Halley, 1996;
Halley and Inchausti, 2004). Such catastrophes (see section 1.4.2) can have both
immediate effects, through mass mortality or reproductive failure, and long-term
consequences, through changes in community and habitat structure (Thibault and Brown,
2008).

7.5 Environmental change

Environmental change, also known as environmental forcing, will result in long-term
autocorrelations in a population's vital rates via the mean and variance of environmental
variables. Currently, the main focus is on large-scale trends in climate (Easterling et al.,
2000a). Such trends may be monotonic (as in the case of climate change) or periodic
(e.g., the North Atlantic Oscillation and the El Niño Southern Oscillation). All these
changes can increase the variability in vital rates as organisms with different genetic
make-ups adapt to the changing environment (Barbraud and Weimerskirch, 2003; Drake,
2005; Hone and Clutton-Brock, 2007; Saether, Sutherland and Engen, 2004). In addition,
these large-scale processes can have indirect, often lagged, impacts on population
variability by acting on the availability and fragmentation of habitat, or on community
structure (see section 7.8).

7.6 Complex dynamics

May’s groundbreaking work (May, 1976) demonstrated that even simple
deterministic population models can display a wide range of dynamics. These include
transitions between dynamic regimes (bifurcations), multiple equilibria or unstable
attractors, resonance, basins of attraction or repulsion, saddle influences, stable and
unstable manifolds, transient phenomena and chaos (see Henson et al., 2003 for a
review). The main consequence of these phenomena is that they make the systems in
which they occur sensitive to perturbations (small changes have large consequences) and
prone to deterministic chaos (dynamics that appear random but contain none of the
forms of stochasticity already discussed).

In his original paper May (1976) suggested that, despite their different origins, the
complex behaviour induced by these processes may be indistinguishable from
environmental stochasticity. This encouraged numerous investigations into ways of
diagnosing this deterministic chaos, its population consequences and the way in which it
interacted with environmental noise (Ellner & Turchin 1995, 2005, Dennis et al. 2003,
González et al. 2003, Scheuring & Domokos 2007). This work has focussed both on
semantics and substance, and has led to improved methods distinguishing between
intrinsic and extrinsic sources of variability using time series. However, these methods
are still poor substitutes for information on the possible environmental covariates of
change.

In general, populations with high values of  are most prone to deterministic chaos.
This suggests that variability in marine mammal populations is more likely to be caused by
external drivers than deterministic chaos. However, chaotic dynamics may be present in
the dynamics of other parts of the community, such as prey, and this could augment the
environmental stochasticity to which their predators are exposed.
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7.7 Population structure

Changes in population structure can also affect the variability of  . For example, in

structured population models (Caswell, 2001),  determines age or stage structure and
the representation of different classes of animals determines the population's
reproductive ability and vulnerability to mortality. The resulting interactions between
these classes make the population more prone to deterministic chaos. In turn, changes in
population structure may be instigated by the differential effects of environmental
stochasticity on different population components and trends on different parts of the
population (Saether, 1997).

7.8 Community structure

Biological communities that have many trophic levels are particularly likely to exhibit
complex dynamics (see section 7.6). Such systems are therefore prone to fluctuations,
even in the absence of external stochasticity (Turchin, 2003). Most obviously, the
deterministic dynamics of other species that feed on, are fed upon, or compete with the
population of interest can all drive that population's dynamics. In addition, the effect of
environmental noise on species of secondary interest can be propagated indirectly to the
focal species through community linkages (Brassil, 2006; Getz, 2003; Wilmers, Post and
Hastings, 2007a).

Population dynamics and community structure can interact in complex ways and may
result in multiple dynamical outcomes for a system. These outcomes may be locally
stable point equilibria or they may be locally stable attractors, the latter may lead the
system to different, mutually exclusive, regimes, each with its own statistical properties
(McCauley et al., 1999).

7.9 Ecological energetics, stochasticity and trends in growth rate

Variability in population growth rates is the result of variability in the performance of
the individuals of which it is comprised (Lomnicki, 1988). This variability will contain an
element of chance and it will be modified by environmental change. However, variability
will mainly operate through the ecological mechanisms of resource acquisition and risk
avoidance. Ultimately, therefore, a great part of the variation in population trajectories
can be attributed to variation in the energetic condition (and hence fitness) of the
different types of individuals in the population (Lande et al., 2003). Studies of mammal
populations (e.g., Steller sea lion - Matthiopoulos et al., 2008; moose - Saether et al.,
1996) have attempted to use energetic models to connect variations in resource
availability and demography. These studies suggest that it may be difficult to establish
the ultimate causes of population variability if the only information that is available is on
demographic change. This is because many different mechanisms can give rise to the
same demographic patterns. Additional data to inform this analysis may be obtained
either destructively (e.g., gut contents, age, age at sexual maturity and timing of ovulation
from shot animals) or non-destructively (e.g., morphometric measurements from capture-
release experiments, and behavioural data from tagged animals).
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7.10 Conclusion

In this chapter we have identified the main determinants of population variation.
They can usefully be divided into three categories: density dependence (direct, inverse,
delayed), external drivers (climate effects, trophic effects), and stochasticity
(demographic, environmental, deterministic). All of these can interact in a multiplicity of
ways with each other and with population structure (spatial, age, stage). Only recently
have studies emerged that examine the sensitivity of population growth rates to several
of these factors simultaneously (e.g., Wilmers, Post and Hastings, 2007b). Although these
studies are unlikely to provide conclusive advice about the relative importance of these
factors in shaping the dynamics of real populations, they have provided some indication
of which of these factors are likely to act independently of each other.
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CHAPTER 8
THE IMPLICATIONS OF VARIATION IN  FOR RECOVERY AND EXTINCTION RISK

8.1 Introduction

As we noted in Section 1.3.2, the dynamics of a wild population will never follow a
simple deterministic course. Rather, numbers will fluctuate from year to year as a
consequence of various sources of random (stochastic) and directional variation. In
Chapter 7 we identified the principle sources of stochasticity as demographic (chance
variations in survival and fecundity between individuals that occur even if the mean value
of these demographic rates remain constant over time) and environmental (among year
variations in the mean values of demographic rates). In addition, populations may
periodically experience catastrophic events that result in the death of a high proportion of
a population (or a particular age class), or near complete failure to reproduce. Finally,
there may be long- or medium-term trends in demographic rates that are a consequence
of natural events (e.g., regime shifts), anthropogenic events (e.g., pollution), or some
combination of the two (e.g., climate change). In this chapter, we will focus on how these
sources of variation affect the net growth rate of a population and, in particular, how
variation in growth rate affects the risk of extinction for a population.

8.2 The impacts of stochasticity on population growth rates

In a series of publications, Lande, Saether and Engen have shown how the effects of
demographic and environmental stochasticity on population growth rate can be
quantified. The majority of these results have been conveniently summarised in Saether
and Engen (2002). Consider a simple, unstructured discrete time model of a population
that is showing exponential growth:

1t tN N 

In reality,  will vary from year to year as a result of demographic and environmental
stochasticity. So we should write:

1t t tN N 

As Coulson and Godfray (2007) and Coulson, Rohani and Pascual (2004) point out, the
long term dynamics of this population will be described by:

1 1.....t n t n t t tN N     

so that the mean growth rate over the interval t to (t+n) is given by the geometric

mean of the  ’s; this will be smaller than their simple arithmetic mean. Saether and
Engen (2002) show that the reduction in the mean growth rate can be quantified as:
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stochastic growth rate of the population. Thus, the actual growth rate of a population will
always be smaller than that estimated from its mean demographic rates; the higher the
level of environmental stochasticity, the lower the growth rate. In addition, it is clear that
the effect of demographic stochasticity depends on population size and can effectively be
ignored for populations with more than 50 breeding females (Coulson and Godfray, 2007).

The same analysis can be extended to populations that show density dependent
growth. Again, the results have been summarised by Saether and Engen (2002). If the
population’s growth can be described by the theta-logistic equation (see section 4.4),
then demographic stochasticity prevents the population from settling at a fixed
equilibrium. Rather, its size can be described by a quasi-stationary distribution that can
extend close to zero, even if the carrying capacity of the environment is relatively large.

8.3 Stochasticity and extinction risk

We have already touched on the role that demographic and environmental
stochasticity play in the extinction process (section 1.3.2) and the importance of the

absolute value of  (section 1.3.3). Here, we describe the results obtained by Lande and

his co-workers on the interaction between population size,  and stochasticity (Lande et
al., 2003) in more detail.

One fact is immediately obvious: it is inevitable that populations on the road to
extinction are small, so it is not appropriate to ignore the effects of demographic
stochasticity. Indeed, as population size decreases, demographic stochasticity will play an
increasingly important role in population dynamics. Lande (2002) has shown that there is

a threshold population size, determined by  and the scale of environmental variation,
below which extinction becomes highly likely.

Chapter 2 in Lande et al. (2003) summarises the results of a large number of
theoretical studies of the effect of carrying capacity, growth rate, environmental
stochasticity and the frequency and severity of catastrophes on the mean time to
extinction. Mean time to extinction increases as the logarithm of carrying capacity. This
time (and the effect of carrying capacity) is reduced substantially if environmental

stochasticity or catastrophes have a large effect on the variance in  .

The probability distribution of times to extinction is almost always positively skewed,
with an extended (or “fat”) right-hand tail, indicating that some populations will persist
for very long times. As a consequence, mean or modal time to extinction is not a
particularly informative statistic because more than 50% or populations will go extinct
before this time. Median time to extinction is a more useful statistic (Morris and Doak,
2002) because it is the time at which half of all populations are likely to have gone extinct.
However, Morris and Doak (2002) suggest that the stochastic growth rate of a population
(i.e., the population growth rate accounting for the effects of demographic and
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environmental stochasticity – see section 8.2) is the best metric of population viability
because increasing this rate will automatically decrease the extinction risk for a
population. We will follow this approach in subsequent chapters.
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CHAPTER 9
INCORPORATING LIFE FUNCTIONS AND

BEHAVIOURAL CHANGE INTO POPULATION MODELS

9.1 Introduction

The Committee on Characterizing Biologically Significant Marine Mammal Behavior
established by the National Research Council developed a framework for analysing the
population consequences of acoustic disturbance (PCAD) (NRC, 2005). The framework
demonstrates how behavioural responses to sound may affect life functions, how life
functions are linked to vital rates, and how changes in vital rates may cause population
change through a series of transfer functions (Figure 9.1). One purpose of this report is to
document the different kinds of transfer functions that link changes in vital rates to
population change, since NRC (2005) indicates that these influences are better known
than any of the other transfer functions in the PCAD model.

As we have shown in Chapter 3, the NRC conclusion is certainly true for discrete
populations that are not subject to migration and whose members can be considered as
virtually identical. However, Chapters 4-8 demonstrate that these relationships become
much more complicated when the effects of individual variation, social and spatial
structure and environmental variation are considered. In these circumstances, which
provide a much more accurate reflection of the ecology of marine mammals, the context
in which animals are exposed to sound becomes important. The life functions identified
in NRC (2005) can be considered as a way of categorizing this context, and provide a
useful framework for modelling the effects of behavioural responses to sound on vital
rates. This Chapter focuses on the way in which these effects can be modelled.

9.2 Modelling the effects of context on population dynamics

The state-space modelling framework, which we described briefly in Chapter 4 and
will consider in much more detail in Chapters 10 and 11, can be readily extended to
include the effects of spatial and social structure and to account for the effects of
environmental variation on vital rates (Buckland et al., 2007).

However, the projection matrix approach rests on the assumption that members of a
population can be divided into discrete categories. This discretization is potentially
unrealistic if we are considering traits (like body size and condition) that actually vary
continuously. Coulson and his colleagues have shown how the underlying projection
matrix can be extended to account for the effects of genetically-determined traits
(Benton, Plaistow and Coulson, 2006; Coulson et al., 2006; Coulson et al., 2005), such as
body size (Pelletier et al., 2007). Easterling, Ellner and Dixon (2000b) have proposed an
approach, the integral projection model (IPM), in which these traits can be modelled as
continuous variables. Appendix E of Clark (2007) provides a useful summary of IPMs and
a comparison with the state space approach, and Ellner and Rees (2006) show how this
approach can be extended to more complex population models.

However, IPMs require extensive amounts of data and, at present, there are no well-
developed statistical procedures that allow them to be fitted to data. Clark and his
colleagues (Clark, 2003; Clark, 2007; Clark and Gelfland, 2006) advocate the use of a



51

hierarchical extension of the state-space approach. This overcomes many of the
statistical problems associated with highly parameterised models like IPMs, but still
accounts for much of the same biological complexity. Such hierarchical models can be
fitted to relatively small data sets using Bayesian statistical techniques.

Figure 9.1: The PCAD (Population Consequences of Acoustic Disturbance) framework
developed by the National Research Council Committee on Characterizing Biologically
Significant Marine Mammal Behavior (NRC, 2005).

As Clark (2003) points out, the assumption that all members of a population (or some
component of that population, such as all males living in a particular habitat patch) are
known is “the ecological fallacy” in public health science. Public health analysts have
developed powerful statistical techniques to avoid this fallacy. The underlying concept is
that all members of a population unit share some basic vital rates, but there are additive
components associated with their actual status within these units. These additive
components may vary between individuals and over time, but this variation can be
described by simple statistical distributions. This hierarchical approach dramatically
reduces the number of parameters in these highly-structured models.

9.3 Behavioural change and vital rates

Sutherland and Norris (2002) have pointed out that the underlying mechanisms that
drive density dependence in populations are often determined by behavioural changes.
They suggest that models of density dependence that simply link variations in vital rates
to changes in population size are unlikely to have much predictive power outside the
range of population sizes used to derive them. Instead, they propose that the underlying
behavioural processes that determine the density dependent response should be
modelled explicitly. They, and their colleagues, have had considerable success applying
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this approach to the population dynamics of migratory shorebirds (Gill et al., 2001a;
Stillman et al., 2000) and for modelling the likely effects of human disturbance (Gill, Norris
and Sutherland, 2001b; Gill and Sutherland, 2000; Gill, Sutherland and Watkinson, 1996).
Their approach evaluates the impacts of changes in behaviour on individual fitness which,
as we have seen in Chapter 2, can be represented by variations in the growth rate of the
population. Their underlying approach is therefore similar to that of the PCAD model, and
it can easily be generalised as a hierarchical state-space model. In the next section, we
demonstrate how the PCAD approach can be conceptualised in this way.

9.4 Conceptualising the PCAD model.

First, we make some simplifications to the list of life functions used in NRC (2005) and
shown in Figure 9.1. This includes “survival” (which is also a vital rate) and “response to
predator” (which is really a behavioural change). We suggest that survival is an
unnecessary category for defining the context in which behavioural change occurs and
that “response to predators” can effectively be modelled by a more general definition of
“movement” that includes local movement and changes to migration patterns. This
leaves us with five life functions: feeding, mating, nurturing, physiology and movement.

NRC (2005) also provided a list of changes in the behaviour of marine mammals that
had been observed in response to acoustic disturbance. These are listed in Figure 9.1 and
are:

 Changes to diving and breathing behaviour

 Changes in swimming speed

 Changes in vocalization

 Changes in resting behaviour

 Changes in the relative location of mothers and their offspring
 Avoidance

 Changes in the direction of travel (which NRC called “Orientation”)

In general, the first four of these do not result in animals leaving a particular area or
moving to an area that is different from the one they are heading towards. They can
therefore be classified as responses that modify behaviour. The last two responses
generally do result in animals leaving an area and can both be considered as avoidance.
They may, of course, also involve a change in swimming speed and a change in the
relative location of mothers and their offspring.

We now consider how these two broad sets of behavioural responses might affect
vital rates in different contexts determined by the life function in which an animal is
involved at the time of the disturbance.

9.4.1 Mating, nurturing and physiology
The likely effects of both modifications to behaviour and avoidance on vital rates in

the context of mating, nurturing and physiology are relatively simple (Figure 9.2). For
example, changes in vocalization patterns and avoidance reactions may make it more
difficult for individuals to find mates. This will affect birth rates, in the case of females,
and the number of offspring that are fathered, in the case of males. We summarise these
effects as “fewer offspring” being produced. Changes in maternal diving behaviour and
behaviour that results in separation of mothers from their young may result in decreased
time spent in lactation and increased exposure of young to predators. Both of these
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disruptions of nurturing could result in an increased risk of calf or pup mortality and,
therefore, a higher death rate for this age group. Changes in diving and surfacing
behaviour have been implicated in the physiological damage that has been observed in
beaked whales that stranded soon after naval exercises in Greece, the Bahamas and the
Canary Islands. Hence, these behavioural changes are likely to increase the risk of
mortality, particularly for beaked whales, and result in a higher death rate. All of the
mechanisms linking these behavioural responses to changes in vital rates are relatively
well understood. It should therefore be possible, with existing knowledge, to define
transfer functions that could link particular behavioural changes to changes in vital rates
within each of these contexts.

Figure 9.2: Hypothetical links between behavioural change and vital rates in the
context of mating, nurturing and physiology. Key:

9.4.2 Feeding
The effects on vital rates that might result from changes in behaviour that occur

within the context of feeding rates are shown in Figure 9.3. These are very similar to
those that have already been modelled by Sutherland and his colleagues (see section 9.3).
The basic approach is to use an intermediate state (in this case, body condition is the
obvious candidate) to provide a simple connection between the different components of
the model. Thus, changes in diving behaviour and time spent resting and avoidance
reactions are likely to impact both energy expenditure and energy intake. These will
affect the value of the appropriate state variable (as defined in section 2.3) for each
individual. The most likely direct consequence of such changes is a reduction in offspring
production (Figure 9.3A) because animals in poor condition may chose not to breed. Poor
condition could also increase the risk of mortality, and hence the death rate, particularly
for younger animals. However, changes in condition that occur in a feeding context can
have consequences in other contexts. Animals in poor condition are likely to be less
effective in securing mates; the consequences of this will appear in the context of mating.
Females in poor condition may also transfer fewer resources to their calves or pups in
milk in the nurturing context. These indirect effects are represented in Figure 9.3B.
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B

Figure 9.3: The direct and indirect effects of behavioural responses to sound on vital
rates when disturbance occurs within a feeding context. (A) Changes in feeding have a
direct effect on offspring production and mortality that are mediated by the body condition
of individuals. (B) Changes in feeding have indirect effects on offspring production and
mortality through “spill over” effects in the context of mating and nurturing that are also
mediated by body condition. Colour coding of boxes follows the same convention as
Figure 9.2.

9.4.3 Movement
Movement responses may simply result in a short-term increase in energy

expenditure that would be reflected in an individual’s condition. However, they may also
change the risks of predation (Figure 9.4). Indeed, the response of beaked whales to
sonar has been interpreted as an antipredator behaviour. Estimating the fitness
consequences of antipredator behaviour is a major area of interest in behavioural
ecology, and a large body of theory relating to what are called Trait-Mediated Interactions
between species has been developed (Bolker et al., 2003; Creel and Christianson, 2008;
Lind and Cresswell, 2005; Luttbeg and Kerby, 2005; Preisser, Bolnick and Benard, 2005;
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Werner and Peacor, 2003). These studies have shown that avoiding predation is
sometime a more important cause of mortality than predation itself. Again, it will be
possible to build on these developments to augment the PCAD model because they use
fitness as the basic response metric.

Figure 9.4: The consequences of avoidance behaviour for vital rates in the context of
local and long-range movement. There are likely to be direct effects on predation risk and
indirect effects on offspring production and survival through changes in the body condition
of individuals. Colour coding of boxes follows the same convention as Figure 9.2.

9.4.4 Synthesis
Figure 9.5A shows what happens when all of these linkages described in the sections

9.4.1-9.4.3 are combined into the PCAD framework. However, this model framework can
be dramatically simplified if we recognise that the main function of the “life function”
boxes is to provide information on the context in which behavioural changes might impact
vital rates, as shown in Figure 9.5B.

In later chapters we describe the mathematical and statistical tools that can be used
to estimate the parameters of mechanistic and empirical models of the transfer functions
that link behavioural responses to vital rates in Figure 9.5B.
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B

Figure 9.5: Conceptual diagram linking changes in behaviour to vital rates (A) when
life functions are included, and (B) when life function is used simply to define the context
within which disturbance occurs. Colour coding of boxes follows the same convention as
Figure 9.2.
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CHAPTER 10
DETECTING CHANGE IN 

10.1 Introduction

In this chapter, we give an overview of the state of knowledge about methods for

estimating  , the population rate of increase, and for detecting variability and changes in

 over time. We begin with a discussion of the underlying concepts necessary to
understand the relationships between, and the relative merits of, the methods. We then
review the available estimation methods. Next, we demonstrate how the types of input
data that are available affect our ability to make reliable inferences about population
change. Lastly, we discuss the detection of population change in the context of existing
regulatory frameworks.

10.2 Background and Concepts

10.2.1 Input data

There are three types of data that are directly relevant to estimating  and change in

 .

The first is estimates of population size for successive time periods of interest, tN .

Re-arranging equation 1.3 from Chapter 1, it is clear that population change between two
time periods can be estimated as:

t

t
t

N

N

ˆ

ˆ
ˆ 1 (10.1)

Note that inferences about t may be biased when estimates of population size,

rather than actual population size, are used.

The second type of data that may be used is estimates of demographic parameters,
such as birth and death rates. As shown in Chapter 1, these can be combined to obtain
estimates of the asymptotic population growth rate, using the dominant eigenvalue of a
population projection matrix. As with the previous approach, naïve substitution of
estimated values of demographic parameters into a population projection matrix can

produce a biased estimate of  . More complex methods are necessary for this to be
addressed.

Thirdly, covariate data may be used in models that seek to explain changes in
population size or vital rates. Examples include the abundance of the species being
modelled (through density dependent effects), environmental covariates (such as winter
severity or habitat size) and anthropogenic covariates (such as the amount of seismic
survey activity).

A recent research direction has been the development of integrated modelling
methods, in which both population size and demographic parameter estimates are used
simultaneously, and often with covariates, to fit models of population dynamics and
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estimate population change. We return to these methods in section 10.3.3, and in
Chapter 11.

10.2.2 Levels of estimation of 
There are several levels at which the parameter  can be estimated; the appropriate

level depends on the goal of the study. At its simplest, the goal may be to estimate

overall population trend. This requires an estimate of  averaged over all members of a
population in some defined space and over a long time period. Such trend estimates are
often used to assess the status of a population (see Section 10.4)

However, in many circumstances, an estimate of the average value for  is not
sufficient. For example, in section 8.3 we showed that the extinction risk of a population

is dependent not only on current population size and  , but also on the temporal and

population variation in  . In these circumstances, an appropriate goal is to estimate how

 varies between time periods, within a specific population. One common reason for

estimating change in  over time is to search for biological or empirical correlates of
population change. For example, there are numerous papers that describe how estimates
of population change can be used to test for density dependence in wild animal
populations (review by Lebreton, 2008).

10.2.3 Empirical and mechanistic modelling

Estimation of  can be approached from two different modelling perspectives:
empirical or mechanistic (see Turchin, 2003, who uses the term 'phenomenological' for
the former). These are two ends of a continuum – many methods blend elements of both
approaches.

With empirical modelling, we attempt to estimate  directly from the data, without
reference to any underlying population dynamics mechanism. Clearly this is not practical
if we are substituting estimates of demographic parameters into a population projection
matrix. However, if population size estimates alone are to be used, then an empirical
approach can easily be achieved. For example, one could use equation 10.1 to estimate

 for each successive pair of years in a study and then compute an average value of  as

the mean of the t ’s. Empirical approaches are simple to implement and understand and

the assumptions are easily understood and tested. However, incorrect results can be
produced (e.g., population change estimates that are biologically impossible and are just
due to errors in estimating population size in one year) if no account is taken of the
underlying biology of the species. In addition, they are of limited use in helping to explain
the causes of population change, although covariate modelling can be used to provide
some insights. They cannot be used to predict the consequences of changes in the factors

that might affect  (e.g., management actions) because, by definition, they do not

attempt to describe the mechanisms that may change the value of  . Finally, the
assumptions required by some empirical methods are clearly unreasonable (e.g., no

correlation in successive estimates of t ).

Mechanistic modelling, on the other hand, includes information about the population
biology as part of the modelling exercise. This is essential if demographic parameters are
the input because a population projection matrix (or other more complex representations
of population processes) is a description of the population biology. However, if the only
data to be used are estimates of population size, a mechanistic approach is optional. The
main advantage of the mechanistic approach is that it respects what is known about the
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species’ biology, and hence estimates of  are constrained to be biologically realistic, as
are future projections of the consequences of changes in demography. The main
disadvantage is that including population or demographic information in a mechanistic
population model in a statistically rigorous way is not straightforward. As a result,
biologists may find it difficult to implement these methods. However, progress is being
made to make this easier by developing specialist computer software.

To be realistic, a mechanistic model should include both demographic and
environmental stochasticity. However, it is common to ignore one or both of these
sources of stochasticity in order to simplify the modelling process. Another limitation of
many mechanistic approaches is that they fail to account for variation between individuals
(see section 9.2 and Chapter 11).

10.2.4 Sources of uncertainty in estimates of 
Given a set of data, there are four potential sources of variation that will contribute to

our uncertainty about the value of : process variation, observation error, model error
and, for some estimation methods, Monte-Carlo error. We describe these in the
following paragraphs, but Harwood and Stokes (2003) also provide an accessible
overview.

Process variation is the actual variability in population change occurring over time and
between different components of the population (e.g., different populations within a
metapopulation). This is caused both by intrinsic demographic stochasticity and by
environmental stochasticity. As shown in section 8.3, populations that show high

variability in  are more susceptible to extinction.

Observation error (also called sampling error) is an additional source of variability in

estimates of  over that caused by process variation alone. There are almost no wild
animal populations where population size is known each year with certainty, and hence

where the true value of  in each year is known. Instead, the estimates of population

size or demographic parameters that are used to estimate  are themselves derived from
survey samples and thus, are subject to sampling error. This sampling error is transferred

into errors in the estimates of  . Therefore, even if the true value of  is constant in a

population over 10 years (i.e., there is no process variation in  ), the estimates of  will
vary due to sampling error. Analysis methods that do not separate observation error from

process variation will therefore overestimate the true variation in  , and hence
overestimate biological consequences, such as extinction risk.

Model error arises because, in almost all cases, the statistical model required to move

from input data to an estimate of  is not a precisely correct representation of the
system modelled, although it may be a good approximation. The rare exceptions occur
when the properties of the model arise solely from the survey design – for example when
we wish to estimate population change between two years, and have conducted a simple
random survey of stationary animals (e.g., coral) to determine population size in each

year. The consequence of model error is that estimates of  are not correct, although if
the model used is “good” (i.e., a reliable approximation) then we hope they are not too
far wrong. The additional uncertainty due to not knowing the “correct” model is

traditionally ignored when computing measures of uncertainty in  , such as variances on
estimates. However, it is possible to include a measure of such uncertainty if there are
several plausible competing statistical models and we can judge their relative “good”-ness
using a model selection statistic such as Akiake’s Information Criterion (Buckland,
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Burnham and Augustin, 1997; Burnham and Anderson, 2002). In this case, the traditional
procedure is to select the best model, and proceed as if that were the only candidate. An
alternative approach (e.g., Buckland et al., 1997; Burnham and Anderson, 2002) is to take

an average value for the quantity of interest, in our case , across all models using
weights that are determined by the support for each model according to the model

selection statistic. It is also possible to calculate a variance on  that takes account of
this averaging process.

Monte-Carlo error can arise when statistical algorithms are used to obtain estimates
that involve an element of simulation as part of the estimation process. Examples include
the nonparametric bootstrap (Davison and Hinkley, 1998), a method often used for robust
estimation of variances and confidence intervals that involves taking random resamples of
the data, and Markov Chain Monte-Carlo (MCMC, Gammerman and Lopes, 2006) a
simulation-based technique often used for fitting Bayesian models to data. In such cases,
pseudo-random numbers are used to generate samples from the distribution of the
quantity of interest, and it may take many samples before an accurate picture of the
distribution is obtained. This source of error is entirely under the control of the analyst,
since more samples can always be generated. It should therefore be negligible if the
analysis is carried out well.

10.2.5 Statistical framework
Given the sources of uncertainty outlined above, it is clear that, in almost all real-

world biological systems, it is impossible to obtain estimates of the value of  that are
free from uncertainty. However, powerful statistical methods are available to quantify
the uncertainty in estimates, as well as providing a rigorous framework for assessing
model performance, comparing models and calculating model uncertainty. Nevertheless,

there had, until recently, been few attempts to estimate  (and other parameters) by
integrating statistical methods and the mechanistic approach described in section 10.2.3.
For example, in the second edition of Caswell’s (2001) classic text on matrix population
models, only two chapters are concerned with statistical methods for estimating
parameters and fitting the models that are described in the other 17 chapters of the book.

There are at least two reasons for the historical lack of statistics in this field. First,
population dynamics has its roots within the mathematical modelling community, rather
than the statistical one. Hence the emphasis has been on understanding the
mathematical properties of the population models. Second, appropriate statistical
methods were not available to fit observational data to the complex nonlinear models
that are common in population dynamics.

By contrast, a large body of statistical research has been devoted to the estimation of
the demographic parameters that are input to matrix population models. This may be
because these data generally come from surveys, and survey sampling has long been a
realm of statistical research. In addition, the estimation problem in this case is more
tractable and the distributions of the input parameters are often well characterized. As a
result, the “state-of-the-art” for quantifying uncertainty in the output parameters of

population modelling, such as  , was based on analytic approximations or relatively ad
hoc simulation methods (Caswell, 2001) (e.g., Caswell 2001 Chapter 12, section 10.2.2).
However, it has recently become possible to integrate population dynamics modelling
within a rigorous statistical framework, and this is discussed further in Chapter 11.
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In contrast, empirical modelling of population data is a relatively straightforward
statistical exercise, although it is rather more complex if one wants to account for the
effect of observation errors in the estimates of population size. Standard, parametric or
semi-parametric statistical tools have been used extensively (see Thomas, Burnham and
Buckland, 2004for a brief review; and Turchin, 2003 for a more comprehensive treatment
of empirical and semi-mechanistic methods). Historically, population size data was
treated separately from data on vital rates. However, it is now possible to carry out an
integrated analysis of both sets of data using the same mechanistic model. We will
describe these approaches in more detail in Chapter 11.

In the past, much of the statistical modelling and analysis of population data focussed
on the construction and maximization of likelihoods, within the frequentist statistical
framework. However, this has changed radically due to the exponential increase in
computing speed and algorithmic advances. Now, most of methods used for fitting
mechanistic models to data on population size and vital rates are conducted within a
Bayesian statistical framework. A review and comparison of the two frameworks is
beyond the scope of this report, but Barnett (1999) provides a useful historical review.
Accessible introductions to modern Bayesian statistics in ecology are given by Ellison
(2004) and Clark and Gelfand (2006).

10.3 Overview of methods

10.3.1 Empirical and semi-mechanistic methods using population size data

The simplest empirical method for estimating  from population size data is to take
the ratio of successive pairs of population estimates (equation 10.1). Average population
change can be estimated as the mean of the estimates for each time period, and an
empirical variance can be calculated using the variability in the estimates. If distributional

assumptions are required (e.g., to calculate confidence intervals on the mean of  , or to

compare mean values between different time periods, species or areas) then mean 
could be assumed to have any continuous real-valued distribution, such as the Gaussian.
One issue with the above method is that any population size estimate of zero will result in
a non-admissible estimate of population change. More generally, the method makes no
attempt to distinguish between, or separate, process variation and observation error.

A closely related method is to perform a least squares regression on the logarithms of
the population size estimates. The underlying model is:

  tt tN   10
ˆlog (10.2)

where 0 is the intercept parameter, 1 is the slope, εt are the errors (which are

assumed to be independent and normally distributed with zero mean and common

variance), and  1
ˆexp  is an estimator of  . If data are available for every year, this is

equivalent to taking the geometric mean of the population change estimates from

equation 10.1. An approximately unbiased estimate of mean  is   11
ˆrâv5.0ˆexp   .

One problem with this approach is the need to log transform population size data.
This does not work if any estimates are zero. Hence, arbitrary constants are often added
to all values before transformation. More sophisticated methods, based on generalized
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linear modelling, do not require log transformation and also give direct estimates of mean

 . Further details of methods for trend analysis on population size data are given by
Thomas et al. (2004).

One issue with all of the aforementioned methods is that they fail to account for the
serial correlation of successive population sizes. For example, in the approach based on

equation 10.1, each successive estimate of  will be correlated with the previous

estimate because they both share an estimate of population size (e.g., 121
ˆˆˆ NN and

232
ˆˆˆ NN share 2N̂ ). Various solutions based on modified regression methods have

been proposed to deal with the serial correlation. For example, Dennis and Taper (1994)
proposed testing for density dependence by using least squares regression to fit the first-
order autoregressive model:

    tttt bNrNN 
ˆlogˆlog 1 (10.3)

where r is the log of the maximum growth rate, and b is a parameter governing the
strength of density dependence. The underlying population dynamics model here is that
populations follow a random walk with exponential growth. However, the growth rate is
discounted by density dependence that depends directly on population size. This is
sometimes referred to as a semi-mechanistic model because there is some attempt to
capture biology in the model by accounting for density dependence. However, there is no
attempt to create a realistic representation of the structured population dynamics by
separating out births and deaths, different age classes, etcetera. Other models are

possible, for example using log( )tb N rather than tbN in equation 10.3. This corresponds

to a Gompertz model for density dependence. Unfortunately, such approaches do not
explicitly separate observation and process error. As a result they can “detect” density
dependence when none exists, as demonstrated in a comprehensive simulation study by
Shenk, White and Burnham (1998).

In cases where there are independent estimates of the sampling errors associated
with each population size estimate, it is possible to separate observation and process
error (Thomas et al., 2004). Various authors have extended the semi-mechanistic
methods of Dennis and Taper (1994) to simultaneously account for the time series nature
of the data and observation error. A useful statistical framework for achieving this is the
state-space model. This is treated in detail in Chapter 11, but we give a brief overview
here.

A state-space model is a stochastic, discrete-time model describing the evolution of
two time series in parallel: the true but unknown states (population numbers, in our
case), which evolve according to a state process model, and the observations (on the
population, in our case), which are linked to the states via an observation model. An
example of a state-space generalization of the model in equation 10.3 is:

   

ttt

tttt

NN

bNrNN









ˆ
loglog

:modelprocessnObservatio

:modelprocessState 1
(10.4)

The key differences between this and the previous formulation are:

 the state process model now describes the true population changes, rather than
changes in population estimates,
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 there is a separate model for the relationship between the observations and the
true population numbers, and

 the process variation t and observation error t have been separated.

A comprehensive review of methods for fitting such models is given in Chapter 11. A
natural approach has been the use of Bayesian statistical methods, because they can
easily cope with the nonlinear nature of the model and can (in theory) be extended to
allow quantitative comparison between various potential models. Examples of three
analyses of the same dataset on North American ducks using different models and
software are Jamieson and Brooks (2004), Viljugrein et al. (2005) and Giminez et al.
(2008). Another example, using a terrestrial mammal can be found in Saether et al.
(2007). All of these examples are, however, semi-mechanistic, because there is no
attempt to capture the structured population dynamics of the population.

One source of population size estimates is from the analysis of data on the capture
and recapture of marked individuals in a population where the sampling occurs over a
short time period. In these cases, population processes such as births, deaths,
immigration and emigration can be assumed to be insignificant. This approach has a long
history (reviewed by Schwarz and Seber, 1999) of increasingly complex statistical
methods. At its heart is the attempt to estimate the probability of capture and, hence,
turn the (known) number of marked individuals in the population into the (unknown) total
number of individuals. If the sampling occurs over a long enough time periods then
capture-recapture data may also be suitable for the estimation of survival rates. Indeed,
estimation of survival is now a more common application of capture-recapture methods
than estimation of population size (see Buckland, Goudie and Borchers, 2000; Williams,
Nichols and Conroy, 2002). The classic modern techniques for this were reviewed by
Lebreton et al. (1992). Recently, both approaches have been combined so that, with the
appropriate sampling scheme, estimates of population size (and hence population
change) can be derived at the same time as estimates of vital rates. An early paper
describing the potential of such methods is Arnason (1973), but a fuller development is
given by Schwarz and Arnason (1996). A brief review of recent work is given by Buckland
et al. (2000) and a comprehensive one by Bishop (2008).

Although sophisticated, these methods are basically empirical because they do not
contain an explicit population dynamics model. For example, population size and survival
are estimated at successive time periods using the capture-recapture data and then
estimates of population recruitment are derived by subtraction. Thus the number of
animals recruiting between time t and time (t+1) is estimated as:

(number alive at time (t+1))
+ (number estimated to have died between time t and (t+1))

- (number estimated to be alive at time t).

It is clearly possible for an estimate of recruitment made in this way to be biologically
impossible. Although ad-hoc constraints can be introduced during the estimation process,
a full integration of population dynamics modelling with mark-recapture data analysis, as
described in section 10.3.2, is preferable.

10.3.2 Mechanistic and semi-mechanistic methods using demographic data

As discussed earlier, one of the simplest approaches for estimating  is from the
dominant eigenvalue of a population projection matrix constructed using existing
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estimates of the vital rates. This is a useful exploratory tool. For example, Francis and
Saurola (2004) used capture-recapture and recovery data from an extensive, long-term
banding and data from nest studies to derive annual estimates of age-specific survival and
fecundity for tawny owls in Finland. The principal prey of these owls are voles that show
dramatic triennial cycles. They then used the resulting projection matrix to estimate the
population growth rate in years of high, medium and low vole abundance. They found
that owl populations should decline in two out of three years, but show a dramatic
increase in the years of high vole abundance.

One problem with this method is that it estimates the asymptotic growth rate, i.e.,
the growth rate that would occur given the specified parameter values and model if the
population was at its stable age or stage distribution. However, in situations where
demographic parameters change over time (e.g., the Francis and Saurola study cited
above, or when populations exhibit density dependent growth), the population may never
approach a stable age distribution, even ignoring the effects of demographic stochasticity.
Hence, actual growth rates may be different from the asymptotic value predicted by the
dominant eigenvalue of the projection matrix. It is possible to use matrix properties to
study these transient dynamics, including the speed at which populations converge
towards their asymptotic behaviour. However, the general caveat remains: using

deterministic matrix population models to estimate  yields estimates of the potential,
not the actual, growth rate.

A second problem with the basic method described above is that it takes no account
of the uncertainty associated with the input parameters. This results in biased estimates,
although the bias is usually small (Fiske, Bruna and Bolker, 2008), and provides no
assessment of the uncertainty associated with the final estimate. The “traditional” ways
of estimating these uncertainties (Caswell, 2001 Chapter 12) are relatively
straightforward, but they either involve approximations or are somewhat ad hoc.

One possible analytic approximation, commonly referred to as the “delta method”
(Seber, 1982), involves transforming the estimated variances associated with the input
parameters into variances on the outputs using a first order Taylor series expansion of the
relationship between the two. The approximation is accurate if the variances are not too
large and the relationship is approximately linear. Another approximation involves
performing a nonparametric bootstrap on each input dataset. In other words, the input
data are resampled many times and these samples are used to provide replicate estimates

of the output parameter (e.g.,  ). The uncertainty associated with the output
parameters is then estimated by calculating variances and confidence intervals on the
replicate values obtained from the bootstrapping process. The nonparametric bootstrap
is a well-established and popular method in statistics that requires only mild assumptions
about the input datasets. However, it does require access to the original data and
analysis methods, and also only works if the input datasets are sufficiently large. When
these are not available, a third approach to quantifying uncertainty is preferred: a
parametric bootstrap. Here, one requires a characterization of the statistical distribution
of uncertainties in the input parameters (for example, their variance and an assumption
that they are approximately normally distributed). Then, simulated values are repeatedly

drawn from the inputs and the required output (e.g.,  ) is calculated for each set of
simulated values. The distribution of simulated outputs is then used to characterize the
uncertainty in the output parameter (e.g., by calculating variances or confidence
intervals). The parametric bootstrap is probably the mostly commonly used approach
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(e.g., the software package Vortex developed by Miller and Lacy (2005) for conducting
PVA – see section 1.4.1).

We have, so far, assumed that a deterministic population dynamics model is being
used. However, these models would be much more realistic if they accounted for
environmental and demographic stochasticity. A number of authors (e.g., Lande et al.,
2003; Tuljapurkar, Horvitz and Pascarella, 2003 and references therein) have investigated
the mathematical properties of such stochastic models. However, only a restricted range
of rather simple models can be analysed in this way. A complementary approach is
stochastic simulation, which uses repeated sampling from a distribution of initial values of
population size and parameter values. These are then used to project the population
forward stochastically. In the same way that simulation based (bootstrapping)
approaches were until recently the “state of the art” for deterministic models, this
simulation approach was, until recently, considered the standard way to make inferences
from stochastic methods.

However, there is an emerging awareness of the utility of fully integrating the
estimation of demographic parameters from mark-recapture data with the modelling of
population dynamics in a rigorous statistical framework. This allows the estimates of both
vital rates and output parameters to be constrained within biologically plausible limits,
and also makes it possible to select among competing biological models. Initial steps in
this direction were taken by Nichols et al. (1992), but surprisingly little further
development occurred until recently. Caswell and Fujiwara (2004) outlined an approach
applicable to deterministic models, but stated that the ‘estimation of stochastic mark-
recapture models is in its infancy’. The only comprehensive study that we are aware of is
Bishop (2008), who developed a Bayesian framework to fit stochastic state-space models
that explicitly account for the mark-recapture sampling process as well as demographic
processes. However, he had limited success applying his approach to real data due to
limitations of the fitting algorithm employed.

10.3.3 Integrated population modelling
For many species, data are available on vital rates (often, but not necessarily, from

mark-recapture studies) and on population size (often from count-based surveys such as
distance sampling surveys (Buckland et al., 2001)). A recent trend has been the integrated
fitting of both sources of data to mechanistic models of population dynamics. This is done
using state-space models to represent both the observation process giving rise to the
observed data and the demographic process giving rise to the unobserved true population
numbers. A full review of these models, and the associated fitting methods, is given in
Chapter 11.

10.3.4 Other approaches
The literature on the analysis of population and demographic data is vast, and this

section provides by no means a complete review. One important branch of research that
does not fit neatly into the above sections involves the detection of density dependence
in the presence of environmental and demographic stochasticity, but ignoring observation
error. Lande et al. (2006) provides an example of this approach using long term complete
census data on the red deer of Rhum in Scotland.
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10.4 The problems associated with monitoring only one component of a
population

Many wildlife species are hard to enumerate, and this is a particular problem for
marine mammals. However, for some species, one component of the population is much
more accessible than others, and is therefore used as the basis for monitoring population
change over time. Seals provide a good example of this situation. Adult seals spend much
of their lives at sea, and much of that time underwater, so are difficult to count.
However, many species breed colonially and, as a result, the entire population of pups can
be accessible for counting during the first few days or weeks of life. Hence, monitoring
programmes for pinniped often rely on annual estimates of the number of pups that have
been born (known as pup production). Monitoring only one component of the population
requires strong assumptions about the link between the size of this component and the
total size of the population. Such assumptions can be difficult to test, and we illustrate
this with a brief review of a specific example: the British grey seal population.

British grey seals (Halichoerus grypus) comprise approximately 45% of the world
population of this species (SMRU, 2008). Their status is monitored annually via a series of
aerial surveys of the major breeding colonies. The numbers of pups counted on high-
resolution photographs taken during these surveys are used to derive estimates of annual
pup production. Thomas and Harwood (2008) combined pup production estimates from
1984 onwards with information from mark-recapture studies of pup survival, fecundity
estimates based on historical samples of shot adult female seals, information from two
intensive studies of seal breeding colonies and other expert opinion in a set of
mechanistic, Bayesian state-space models. These models are stochastic and operate in
discrete-time. They are structured by age (pups and age 1 to 6+ adult females), and
location (four breeding regions each containing aggregations of individual breeding
colonies).

Two mechanisms for density dependence are thought to be plausible: density
dependent pup survival (pup survival rate decreases as pup production increases) with a
constant birth rate; and a density dependent birth rate combined with constant pup
survival. Figure 10.1 shows the pup production data together with the fits to these data
using the two competing models of density dependence. Model selection statistics give
similar weight to both models, but the estimated adult population trajectories and, more
importantly, population sizes, are very different (Figure 10.2). The estimated adult
population size is 117,600 under the density dependent pup survival model but twice as
high (239,700) under the density dependent fecundity model. The reason for the
discrepancy is because in long-lived species the majority of the population is composed of
animals of breeding age. This number is estimated in the model by dividing estimated
pup production by the estimated birth rate. For example, if 1,000 pups are estimated to
have been born and the estimated birth rate is 0.5, then the estimated number of
breeding females is 2,000. Estimated pup production is nearly identical in the two
models, but the estimated birth rate is very different. In the density dependent pup
survival model, birth rate remains relatively high and estimated adult population size is
relatively low. By contrast, in the density dependent birth rate model, recent birth rates
are estimated to be low and the estimated adult population size is high. Both models
make similar predictions of total population size in the early stages of population growth,
when the population is far from carrying capacity. Hence, this is an example where model
uncertainty is not important under some population conditions, but dominates the overall
uncertainty under others.
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In this example, and in general, it is possible to obtain an estimate of population size
that incorporates the model uncertainty. In this case, it is 160,100 with a 95% Bayesian
credibility interval of 84,500-304,500. However, there are two problems with this
estimate. First, the estimate itself is in a region of low posterior density (i.e., it is unlikely
under either of the candidate models). Second, the credibility intervals are depressingly
wide. Research effort has focussed on methods for resolving which of the candidate
models is more plausible. It appears that the most feasible approach is to obtain one or
more independent estimates of total population size (Matthiopoulos et al., 2006).

10.5 Understanding and managing the consequences of change: PBR
and other regulatory frameworks

We saw in Chapter 1 how the IUCN classifies animals or plant populations in terms of
their risk of extinction. Thus, species that are identified as critically endangered are those
that face an extremely high risk of extinction (greater than 50% over the next 10 years or
three generations), endangered species face a very high risk (greater than 1 in 5 over the
next 20 years or five generations) and vulnerable species a high risk (greater than 1 in 10
over the next 100 years). In practice, it is rarely possible to calculate these risks explicitly
and various surrogates are used (e.g., a population may also be classified as critically
endangered if it has declined in abundance by more than 80% over the last decade or
three generations, or if population size of less than 50 mature individuals). However,
IUCN provides no advice on how species in these different categories should be managed,
although it is implicit that any species that falls within one of the ‘threatened’ categories
requires management to increase its population rate of increase.

10.5.1 Management approaches
Regulatory frameworks are often established for species that are subject to

exploitation, and this is particularly true of fish stocks. In most developed countries this
framework is based on what are known as Harvest Control Rules (HCRs): management
procedures that rely on the relationship between a species’ current abundance and a
series of biological reference points. If a population is found to have fallen below a
particular reference point this triggers management action that is aimed at helping the
population to recover (Punt and Donovan, 2007). Increasingly, these management
procedures also try to take account of the uncertainties that are associated with
estimates of abundance, population structure, environmental change and the way in
which management action will actually affect exploitation. A classic example of this is the
Revised Management Procedure (RMP) developed by the International Whaling
Commission to manage the commercial exploitation of large baleen whales, although the
Commission has never actually used this procedure.

An HCR that has been implemented is the one used to determine the Potential
Biological Removal (PBR) that may be allowed under the US Marine Mammal Protection
Act (MMPA). The development of the PBR formula was relatively simple because the
MMPA has a single clear objective: to prevent populations from depletion. A population
is defined as depleted if it is below the maximum net productivity level, or 50-70% of a
historic population size thought to represent the carrying capacity of the environment
(Wade, 1998). However, this objective, on its own, is insufficient to allow the evaluation
of rival HCRs because it does not specify a time frame. Clearly, an HCR that always sets a
zero harvest will achieve the objective of the MMPA, but there are many other HCRs that
would allow some harvest, but prevent depletion or allow depleted populations to
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recover rapidly. In fact, rival HCRs were evaluated using two criteria (Wade, 1998): there
should be a 95% probability that any population, regardless of its current size, will no
longer be depleted after 100 years, and there should be a similar probability that a
population that is not currently depleted will remain so for at least 20 years.

In practice, application of either the PBR or the RMP is likely to result in low harvest
rates of less than 2% of the population. PBR essentially provides a rule of thumb that
takes account of uncertainty in the available estimates of abundance, which can be used
when there is very limited information on the species being managed. It allows an
estimate of the allowable take of animals from a population. Interpretation of a take is
straightforward if this involves either direct mortality through harvesting or, as is more
usually the case, indirect mortality (e.g., as a result of entanglement of animals in fishing
gear). However, a take can be defined as the number of animals that suffer disturbance if
this results in an increased risk of mortality or reduced fecundity. Takes of this kind were
not considered in the development of the PBR. The deliberate or accidental capture of an
individual not only results in certain death, it also removes all future offspring that may
have been born to that individual. Although changes in behaviour could have similar
consequences, these will probably be rare and there will always be a degree of
uncertainty associated with the predicted effects.

Nevertheless, the central methodology used in devising the PBR is still applicable to
takes that are associated with disturbance. At the core of this methodology is an
assessment of the impact of the take on the underlying (stochastic) growth rate of the
population. If an approach like PBR is to be used to regulate takes that involve
disturbance, it is necessary to develop ways of calculating how changes in behaviour
impact on population growth rate. As we have seen in Chapter 9, there are a number of
mathematical and statistical frameworks that could be used to achieve this. In Chapter 12
we consider how these frameworks might be implemented.
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Figure 10.1: Estimates of true pup production from two models of grey seal population
dynamics fit to pup production estimates from 1984-2007 in four regions (see Thomas and
Harwood, 2008 for details). Input data are shown as circles, while the lines show the
posterior mean bracketed by the 95% credibility interval.

(A) Extended density dependent survival with no movement model
(B) Extended density dependent fecundity with no movement model
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Figure 10.2: Estimates of adult population size from two models of grey seal
population dynamics fit to pup production estimates from 1984-2007 in four regions (see
Thomas and Harwood, 2008 for details). Lines show the posterior mean bracketed by the
95% credibility interval.

(A) Extended density dependent survival with no movement model
(B) Extended density dependent fecundity with no movement model



71

CHAPTER 11
MATHEMATICAL AND STATISTICAL FRAMEWORKS FOR

MODELLING POPULATION DYNAMICS

11.1 Introduction

In this chapter, we give an overview of the mathematical frameworks available for
modelling the population dynamics of marine mammals. We also provide a more detailed
description of a statistical framework for specifying discrete stage, discrete time models
and their link to both demographic and population size data, as well as an overview of
methods for fitting these models.

11.2 Mathematical framework

Wild animal populations are complex, highly structured systems. Population
dynamics models are mathematical abstractions that attempt to represent these systems
at a level of complexity that is realistic enough to encapsulate the important properties of
the system, but is also tractable to analysis. Many forms of mathematical abstraction
have been used, but all describe the response of animals through time in terms of a
number of state variables (variables that predict the response of each individual to the
environment). The fate of these individuals then determines the dynamics of the
population. However, the models may differ in how they aggregate individual animals
into groups, in whether they project the population in discrete or continuous time, and
whether they treat this projection as deterministic or stochastic. Tuljapurkar and Caswell
(1997) provide a more detailed review of modelling formulations. As noted by Caswell
(2001) the choice of formulation is in part driven by the biology of the study organism and
goals of the study, but it is also determined by the methodological and aesthetic
preferences of the researchers involved.

11.2.1 Aggregating individuals
Some classes of models do not aggregate individuals at all, but explicitly follow the

fate of each individual within the population. Caswell (2001) refers to these models as ‘i-
state configuration models’, but they are usually referred to as individual-based models.
In these models, the population’s dynamics is an emergent property of the interactions
between individuals. They usually (but not always) operate in discrete time and are
stochastic. The classic text on individual-based models in ecology is DeAngelis and Gross
(1992), a more recent text is Grimm and Railsback (2005). These models are used in other
fields, from social science to computer animation. In computer science they are
commonly known as “agent-based models”, in the context of population modelling the
“agent” is an individual (Ginot, Le Page and Souissi, 2002).

One disadvantage of working with individual-based models is that implementing them
can be extremely computer-intensive. As a result, they may be impractical for modelling
large populations. In addition, mathematical analysis of their asymptotic or transient
dynamics is generally impossible and, as a result, it is hard to make generalizations about
population dynamics from these models.

For these reasons, many population dynamics models work with aggregations of
individuals that are described by one or more state variables such as age, life stage,
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geographic location, etcetera. The aggregation can be into a discrete set of classes (e.g.,
age classes, breeder and non-breeder, etcetera) or described by a distribution over
continuous classes (e.g., size or locations). In both cases, two fundamental assumptions
are required for the state assigned to individual animals to translate into a density or
distribution of states in the population (Caswell, 2001, section 3.1.2): all individuals must
experience the same environment (often called the mixing assumption) and it must be
possible to write the effect of the population on the environment as the sum of the
contributions of its individuals. Although these assumptions are generally easily met
(Caswell, 2001), the first assumption is likely to be violated if interactions between
individuals are exclusively local – such as for sessile organisms. In this case, individual-
based models will be more reliable. Other situations where individual-based models may
be preferred over aggregated models are if the number of states in an aggregated model
is very large (in which case any efficiency gain is lost) and if the population is so small that
the impact of demographic stochasticity can be conveniently documented by following
the histories of individuals (Caswell, 2001, section 8.4).

For all models, the choice of which state variables to use will involve a trade-off
between the need to include all the variables that might predict the response of
individuals to their environment and the desire for analytic and/or computational
tractability. Chapter 2 of Caswell (2001) provides a detailed discussion of the selection of
state variables. For models that aggregate states into discrete classes, an additional
decision must be made about the number of classes to use and, if the state variable is
actually continuous, how to divide it into discrete categories (a process known as
discretization). For example, if “age” is the state variable, it is easy to define discrete age
classes if the model operates in discrete time, but difficult if the model involves
continuous time. Within discrete classes, each individual is assumed to be the same, but
this is often an unrealistic assumption. An interesting intermediate approach between
the extremes of discrete and continuous state models is hierarchical population modelling
(see section 9.2), in which individuals within discrete states are assumed to follow a
distribution of some state variable, and this is modelled in a parsimonious way (e.g., by
modelling just the first two moments of the distribution of state variables in each class
(Clark, 2003)).

11.2.2 Choosing between discrete and continuous time models
The decision to work in continuous or discrete time will depend on the biology of the

study species and on the goals of the modelling exercise. A discrete time model is likely to
be the natural choice to describe the long-term population dynamics of a species with
naturally periodic population dynamics (e.g., pulse breeders, such as many marine
mammals, which have a discrete, usually short, breeding season). Continuous time
models are more appropriate for species whose abundance changes rapidly and whose
dynamics are highly non-linear (e.g., most insects and many fish species). Continuous
time models are also commonly used in the study of disease epidemics, in which the
important processes are nonlinear and can take place over short time periods.

When the states in a discrete time model are also discrete, it is convenient to use
matrix population modelling, which is described in detail by Caswell (2001) and was
outlined in Chapters 1-3. Far less research has been conducted into models with discrete
time but continuous states. However, Integral Projection Models (Easterling et al., 2000b;
Ellner and Rees, 2006, section 9.2), which can be fully continuous in state and time or
continuous in state but discrete in time, appear to have the analytic tractability of matrix
population models. One problem with this approach is that a parametric projection
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kernel, rather than a population projection matrix, has to be specified, and it may be
difficult to know what form this kernel should take.

Continuous time, discrete state models can be specified by sets of ordinary
differential equations. If the models include time lags that allow for the effect of previous
time intervals to pass through each state, the result is a set of delay-differential
equations. Specification and analysis of such models is described in detail by Gurney and
Nisbet (1998) who also provide specialist software for solving differential equation
models. Continuous time, continuous state models must be specified as partial
differential equations. In general, these are more difficult to work with than ordinary
differential equations (Gurney and Nisbet, 1998 p. 242).

11.2.3 Choosing between deterministic and stochastic models
Many population dynamics models assume a deterministic relationship between the

input population states and vital rates and the output population dynamics. Such
deterministic models can yield valuable insights about the general behaviour of biological
populations, and can also be realistic in cases where demographic stochasticity is thought
to be negligible (e.g., large populations of long-lived animals) and environmental
stochasticity can be ignored (e.g., where predictable environmental variables or internal
dynamics dominate the system). However, such cases are probably rare, and models that
incorporate both demographic and stochastic stochasticity are, in general, to be
preferred. This is particularly the case when the models are used to address specific
management issues rather than to draw general conclusions.

The modelling frameworks discussed thus far have implicitly been deterministic. They
can be extended to include stochastic effects, although some frameworks rapidly become
intractable if realistic model structures are used. Stochastic extensions to matrix
population models have received a fair amount of research attention (see Caswell (2001)
for a review). Discrete time, continuous state models are relatively new, even in the
deterministic context, but stochastic extensions have recently been developed, together
with the requisite theory for estimating quantities such as the long-term population
growth rate (Ellner and Rees, 2007). Stochastic methods for continuous time models have
generally proven difficult, with analytic approximations being required for even relatively
simple models, and simulation-based approaches used more generally (e.g., Marion,
Renshaw and Gibson, 2003). However, the inclusion of stochasticity may be more
important than is generally realized. For example, Mao, Marion and Renshaw (2002)
showed that a small amount of environmental stochasticity could radically alter the
behaviour of a continuous time discrete state model. Fortunately, Breto et al. (2008) have
created an approach (together with accompanying software) for fitting continuous time
discrete state models to data that appears to have wide applicability. Ionides, Breto and
King (2006) describe an accessible application of this approach to an epidemiological
problem.
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11.3 A statistical framework for discrete time, discrete state models

In the previous section, we gave a brief overview of the mathematical analysis of
matrix population models, but we did not discuss where the input values for initial
population size or vital rates should come from. Nor did we discuss how the performance
of rival models could be compared. These issues were encountered in Chapter 10, where
we emphasized the need to embed the estimation of demographic and population
parameters within a rigorous statistical framework, and claimed that a state-space
approach provides a useful framework for this. In this section, we give an overview of
state-space models and their application to the modelling of ecological population
dynamics. A more complete description can be found in Buckland et al. (2004); Buckland
et al. (2007) provide a concise review of model specification and fitting method.

11.3.1 Model specification
A state-space model is a stochastic, discrete-time model describing the parallel

evolution of two time series. The first time series is the true, but unknown, number of
animals in each population state, which we denote, nt. Note that states can represent
animal ages, stages, locations or even species (see Buckland et al. (2004) for a diverse set
of examples). The states evolve through time according to a stochastic model for the
population dynamics, called the state process model. This is represented by the

probability density function (pdf) 1( | , )t tg n n  , where  is a vector of model

parameters. For the sake of simplicity we refer to densities, rather than masses,

throughout, even though the support of ( )g  is discrete, not continuous, because

population size is necessarily an integer value. Note that the density of the state at time t
depends only on the states in the previous time period and the model parameters and not
on any states further back in time. This property of a model is called first-order Markov,
and it is a requirement of a state-space model. However, higher-order dependencies are
easily incorporated within this modelling framework, the resulting models are known as
hidden Markov models. One exception to the first order Markov property is the first time

point (i.e., 0( , )g n  ), which must be specified explicitly because there is no previous time

point that its pdf can depend upon.

The second time series is that of the observations, which we denote yt. These are
linked to the true, unknown states by the observation process model, which we represent

with the pdf ( | , )t tf y n  . Note that the observation density depends only on the values

of the current state (and model parameters), and not on the state at any previous time
period. This is a realistic assumption in many cases. The observation data could be
counts, mark-recapture information, or both.

State-space models of wild animal population dynamics are often formulated in a
Bayesian statistical framework, in which case prior distributions are required for the

unknowns in the model: n0 and  . The other state values, n1, n2, n3,…, are also unknown,

but prior distributions on them can be derived automatically from the priors on n0 and 
and the Markovian nature of the state process model.

Animal population dynamics can be quite complex, making the specification of a
single state process model difficult. Buckland et al. (2007; 2004) show how complex
models can be constructed by chaining together simple sub-process models. In a matrix
population context, this is equivalent to multiplying together component matrices. We
demonstrate this with an example in section 11.3.2. Buckland et al. (2007; 2004) also
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show that some transitions (e.g., ageing) are always deterministic, while others can be
stochastic. Lastly, they show how the expected values of the state process can be
approximated using a matrix model notation.

11.3.2 Example of specification: British grey seals
As an example, we demonstrate how a state-space model of the dynamics of the

British grey seal population from section 10.3 can be constructed. We have arbitrarily
chosen here to focus on the model that includes density dependent pup survival. The fine
details of the model are not important; the purpose of this example is to demonstrate
that complex, semi-realistic models can be built from relatively simple building blocks.

In constructing the state processes, we divide the seal population in each of four
geographic regions into seven age classes: pups (age 0), females age 1 – age (pre-
breeders), and females age 6 and older (breeders). The models do not include adult
males – instead we assume that there are 0.73 males for every female in order to
calculate total population size.

The time step for the process models is one year, beginning just after the seal
breeding season. The models are made up of four sub-processes: survival, ageing,
movement of recruiting females, and breeding.

Survival is modelled as a binomial random sub-process. We assume that pup survival
follows a generalised Beverton-Holt function of the form:
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where 1,,0 trn is the number of pups born in region r in year t-1, trp ,, is the survival

rate of these pups, maxp is maximum pup survival rate, r/1 is proportional to the

carrying capacity of the region, and  is a parameter that can alter the shape of the

relationship between pup survival and pup numbers.

Since half of the pups born will be male, the expected number of female pups

surviving will be
, , 0, , 10.5 p r t r tn 

. We assume that the adult female survival rate, a , is

constant across regions and time.

Ageing is deterministic – all seals age by one year at each time step, although those in
the age 6+ category remain there.

To model movement, we assume that only females breeding for the first time move
from their natal region. Once a female has started breeding she remains faithful to the
region she has chosen. We assume that females will only move if the value of pup
survival is higher elsewhere, and the probability of movement is proportional to the
differences in pup survival between regions. In addition, we assume that females are
more likely to move between regions that are close together and that females show some
degree of site fidelity – that is, they may not move even if conditions for their offspring
are better elsewhere. We model movement from each region as a multinomial random
variable, where probability of movement from region r to region i at time t is given by:
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, ,if dd  and dist are movement parameters that index the strength of the site

fidelity, density dependence and distance effects respectively, and ,r id is the 20%

trimmed mean of the distance between colonies in regions r and those in region i. This is
standardized so that the largest distance is one.

We model breeding by assuming that the number of pups produced is a binomial
random variable, with rate  .

For the observation process, we assume that pup production estimates follow a
normal distribution with a constant coefficient of variation (CV), the value of which is

governed by a model parameter, , so that CV 1  .

The input data were pup production estimates for 1984-2007, aggregated into
regions. A Bayesian estimation method with prior distributions for each parameter was
used (see Figure 11.1). The prior distributions were made moderately informative if this
could be justified using external data or expert opinion. We used a re-parameterization of
the model to set priors on the numbers of pups at carrying capacity in each region rather
than directly on the  s. We denote the carrying capacity for region r as r . Prior

distributions for the states were generated using the priors for the parameters in
conjunction with the 1984 data (Thomas and Harwood, 2008).

The resulting estimates of some population states were shown in Figures 10.1 and
10.2. Here we show prior and posterior estimates of the model states (Figure 11.1).

Posterior estimates of  by year and region can be calculated directly from the output of
the fitting algorithm, but they are not presented here.

11.3.3 Model fitting
Analytic methods are available to fit state-space models in which the state and

observation process models are linear and uncertainty can be represented using Gaussian
distributions, so that the well-known Kalman filter algorithm can be used. This approach
has been used with considerable success to fit wildlife population dynamics models by
Besbeas et al. (2005; 2002; 2003). In some cases they used approximations to extend the
range of application of the models. Other extensions of the Kalman filter that allow
approximate inference for non-linear or non-Gaussian models have been developed.
However, such approximations will be poor for highly non-linear or highly non-Gaussian
cases, and the method of choice in these situations has been Bayesian computer-intensive
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inference. A review of these methods can be found in Buckland et al. (2007). Newman et
al. (2009) provide a detailed comparison of the algorithms that can be used to implement
this approach.

In order for practitioners to use these methods, they need to have access to easy-to-
use software. Relatively simple state-space models can be fit using the Bayesian analysis
software WinBUGS (e.g., Millar and Meyer, 2000). Model selection and model averaging
can be performed within this software using reversible jump MCMC algorithms (Giminez
et al., 2008). However, for more complex models or more difficult data, there is currently
no good solution other than the creation of custom-written software (Newman et al.,
2009).

Fitting state-space models to wildlife population data is an active research topic.
Newly developed methods such as data cloning (Lele, 2007), iterated filtering (Breto et al.,
2008) and particle MCMC (Andrieu, Doucet and Holstein, In preparation) may make it
easier to implement these often complex models in the future.

11.4 Extending state-space modelling into continuous states

In previous chapters, we have shown that some measure of an individual’s condition
is the glue that can link behaviour to population consequences. The state-space
modelling framework described in the previous section is an increasingly successful way
to describe the dynamics of marine mammal populations and to allow integrated
modelling of population dynamics and the available data on these populations. We will
now consider how this framework can be extended to allow inclusion of individual
measures of condition and the way in which these may change over time.

One possibility is to discretize condition, in the same way that other state variables
are discretized in the state-space framework, and then to add another “dimension” to the
state vector. For example, the seal population dynamics model described in section
11.3.2 contained 28 state elements per year: seven age classes in each of four regions. If
condition could be represented adequately with three classes (say ‘good’, ‘medium’ and
‘poor’) then the state vector could be extended to have 84 elements per year: three
condition levels within seven age classes within four regions. The population process
model could then be extended to model the probability of transition between the
different condition classes (perhaps as a function of density), and also the probability of
demographic events (such as death and birth) as a function of condition.

A clear advantage of this approach is that it fits neatly within the current modelling
and analysis framework. However, there are also disadvantages. First, the number of
states increases dramatically, leading to a risk of over-parameterization and causing
problems for some fitting methods. Second, discretizing a naturally continuous variable,
such as body condition, is an arbitrary process.

An alternative is to return to an individual-based modelling approach and represent
the condition of each individual as a continuous state variable. In theory, it is possible to
perform individual- based modelling within the state-space framework (Buckland et al.,
2004). However, to our knowledge, this has never been done and it seems likely that the
problems with fitting algorithms alluded to above will make analysis impossible.
Nevertheless, this is an avenue worth exploring, especially for small populations.
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A third possibility, first suggested in section 9.2, is to extend the population projection
model so that it is discrete for some state variables (such as age and location, as with the
seal model), but continuous within each of these classes with respect to condition. This is
precisely the form of the IPMs described in sections 9.2 and 11.2.2. Although stochastic
extensions to the IPM framework have recently been made (Ellner and Rees, 2007), vital
rates are still estimated in a separate statistical exercise and then “plugged in”, rather
than using the integrated population modelling approach described in section 10.3.3.
However, it should be possible, using a simulation-based fitting approach to extend the
standard state-space modelling framework to include IPMs. This would involve replacing
each state element with a low-dimensional statistical distribution and projecting forward
between time periods using stochastic kernels rather than scalars.
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Figure 11.1: Posterior parameter estimates (histograms) and priors (solid lines) from a
Bayesian state-space model for the dynamics of British grey seal populations fit to pup
production estimates from 1984-2007. The model includes density dependent pup survival,
but does not include movement between colonies; hence the movement parameters are not
shown. The vertical line shows the posterior mean; its value is given in the title of each
plot after the parameter name, with the associated standard error in parentheses.
Corresponding estimates of population states are shown in Figures 10.1A and 10.2A.
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CHAPTER 12
MODELS OF MARINE MAMMAL POPULATION DYNAMICS

IN THE CONTEXT OF THE OIL AND GAS INDUSTRY

12.1 Introduction

In the preceding chapters, we have discussed many potential approaches to
population modelling and many different ways of estimating the parameters of such
models from data. The question inevitably arises: Which approach is the best for a given
scenario? The answer depends on a number of factors:

1. the goals of the analysis,
2. the biology of the study organism,
3. the available data, and
4. the skills and preferences of the analyst.

In this chapter we will focus on the first of these factors. In particular, we will
consider which model structures are most appropriate for the applications that are likely
to be relevant to the offshore oil and gas industry.

It may seem perverse to ignore factor 2 (the biology of the study organisms) but, at
least in terms of the factors that need to be incorporated in a model of population
dynamics, the biology of most marine mammals species is rather similar. None produce
more than one offspring per year on a regular basis, and almost all are long-lived (i.e.,
they have a high adult survival) with an extended period of maturation. Many species
show a marked peak in births at one particular time of the year. All of these features
would normally lead an analyst to propose using a discrete time, discrete state model
framework, although the states that are modelled might be very simple. For example, for
decades the Scientific Committee of the International Whaling Commission (IWC) used a
discrete time model that had only two states, adults and “recruits” (young animals
entering the population for the first time), to model the dynamics of exploited stocks of
baleen whales. This simple framework was made possible by the assumptions that
commercial whaling only exploited adult animals and did not select animals within this
state by age or sex. These are all assumptions that relate to factor 1 - the goals of the
analysis. The IWC also assumed that all young animals recruited to the breeding
population at the same age, that density dependent changes in vital rates were a
consequence of competition between adult animals, and that there was no migration into
or out of the exploited populations. We now know that almost all of these assumptions
were wrong. However, at the time when these models were developed, there were
insufficient data to parameterize more sophisticated versions using the statistical tools
that were then available. That is, model structure was further determined by factors 3
and 4. So, we see that the need to account for factor 2, although conceptually very
important, is often overwhelmed by the other factors.

The job of the analyst is to develop a model that makes use of all available data, which
represents uncertainty in the system in an appropriate way, matches the available data
well, and captures the most important biological features of the system being modelled.
For example, the grey seal population model described in sections 10.4 and 11.3.2
accounts for many more biological features than the models used by the IWC’s Scientific
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Committee. However, although we explicitly modelled some of the effects of space, we
did not attempt to model the dynamics of individual colonies because the main
requirement was an estimate of size of the total UK population.

Historically, our ability to formulate complex, semi-realistic, mechanistic, stochastic
representations of animal population dynamics has far outstripped our ability to fit them
to data. However, recent increases in the availability of inexpensive computing resources
coupled with parallel advances in computer-intensive fitting methods have made it
possible to fit a range of semi-realistic models and to select between them. Such models
can also account explicitly for demographic, environmental and observation errors. We
believe that the state-space modelling approach, described in detail in Chapter 11, is an
extremely powerful tool that will see increasing use in the future. However, this approach
is challenging to implement and, until user-friendly computer software that will make it
accessible to non-specialists is widely available, its use is likely to be confined to research
groups that have substantial statistical expertise.

12.2 Choosing an appropriate population model

By and large, models of the dynamics of marine mammal populations are developed
to answer specific management questions, rather than to improve our general
understanding of the way in which these populations may change over time. As we noted
in section 12.1, this means that model structure will also largely be determined by the
management questions that are being addressed. For example, the biology of marine
mammals would appear to make them particularly amenable to being modelled in a
discrete time, discrete state framework with a one year time step. However, this
amenability is something of an illusion, because both time and age are really continuous
variables. The discretization of the population into ages and time into years is possible
because most births occur within a relatively short interval and survival rates are high, so
that no dramatic changes in numbers occur within in a time step. However, this
framework is only appropriate if the time scale that is being considered is relatively long
(decades rather than years, for example). If the main management question concerns
changes that may occur within a year, a discrete time model with a time step of one year
will not provide useful insights. In general, discrete time models can be converted
reasonably easily into continuous time analogues, and the same is true of discrete state
models. Thus the Integral Projection Model framework described in sections 9.2 and
11.2.2 provides a continuous time, continuous state equivalent to the projection matrix
approach. However, the arsenal of powerful statistical techniques that has been used to
fit projection matrix to data has yet to be applied to these models. A “half-way house”
approach could involve discretizing time into shorter time steps of, say, one month, and
adopting a hierarchical approach to model variations within states. Such an approach is
certainly feasible, but carries the cost that additional parameters values will have to be
estimated from what is often a limited set of data.

Ultimately, the choice of an appropriate approach will depend on all four of the
factors listed in section 12.1. In many cases, the choice of an appropriate model will be
compromised by data availability and the analytical and statistical skills available within a
group. In these cases, we recommend additional simulation modelling with models that
are more complicated than those that will actually be fitted to the available data and used
for management advice. This approach, which is generally referred to as robustness
analysis, will provide useful insights into the shortcomings of the simple models that will
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have to be used in practice. Harwood and Stokes (2003) have provided a useful
introduction to this methodology.

12.3 Using the output of population models to create a risk matrix

The standard approach to assessing and mitigating risk within the offshore oil and gas
industry is to construct a risk matrix. This is a two dimensional representation of the two
key characteristic of risk: The probability that an undesirable event will occur and the
severity of this event. Usually, the matrix is presented as a graph, with one axis
representing increasing risk and the other representing increasing severity. The
effectiveness of different mitigation strategies can be compared using such graphs, with
the emphasis being on reducing the probability of the least desirable outcomes. Although
the axies of these risk graphs are effectively continuous, they are often discretized into a
number of categories, both for the probability of occurrence and for the types of
undesirable outcomes. Expert opinion is then used to assess the probability of the
outcomes under different outcomes. In most cases, this works very well. However, it is
less effective when there is substantial uncertainty about the way in which different
activities may affect the probabilities of the different outcomes. This is a classic example
of what is known as “pure uncertainty,” which occurs when experts disagree, and is what
Donald Rumsfeld once famously referred to as “the known unknowns.”

The modelling approach we have described in the previous eleven chapters offers a

way out of this potential impasse. The growth rate () of a population under different
scenarios can provide a quantitative measure of the risk that it will fall below some
threshold size or that it will fail to reach some specified population size by a specified
date. In addition, the methodologies we have described in Chapters 10 and 11 can be
used to quantify the uncertainties that are associated with the calculated values of these
risks. Thus, it should be entirely feasible to build a quantitative risk evaluation framework
using the outputs from the models described particular in Chapters 9 and 11. This
information could be represented in the form of a risk matrix that is functionally identical
to those currently used by the offshore oil and gas industry.



83

REFERENCES

Adler, F. R., and Nuernberger, B. (1994). Persistence in patchy irregular landscapes.
Theoretical Population Biology 45, 41-75.

Allee, W. C., Emerson, A. E., Park, O., Park, T., and Schmidt, K. P. (1949). Principles of
Animal Ecology. Philadelphia: Saunders.

Altizer, S., Nunn, C. L., Thrall, P. H., et al. (2003). Social organization and parasite risk in
mammals: Integrating theory and empirical studies. Annual Review of Ecology,
Evolution, and Systematics 34, 517-547.

Altmann, J., and Alberts, S. C. (2005). Growth rates in a wild primate population:
ecological influences and maternal effects. Behavioural Ecology and Sociobiology
57, 490-501.

Amarasekare, P. (1998). Interactions between local dynamics and dispersal: insights from
single species models. Theoretical Population Biology 53, 44-59.

Andreassen, H. P., and Gundersen, G. (2006). Male turnover reduces population growth:
An enclosure experiment on voles. Ecology 87, 88-94.

Andrieu, C., Doucet, A., and Holstein, R. (In preparation). Particle markov chain monte
carlo.

Arnason, A. (1973). The estimation of population size, migration rates, and survival in a
stratified population Researches in Population Ecology 15, 1-8.

Aviles, L., Abbot, P., and Cutter, A. D. (2002). Population ecology, nonlinear dynamics, and
social evolution. I. Associations among nonrelatives (vol 159, pg 115, 2002).
American Naturalist 159, 714-714.

Baker, C. S., and Clapham, P. J. (2004). Modelling the past and future of whales and
whaling. Trends in Ecology & Evolution 19, 365-371.

Barbraud, C., and Weimerskirch, H. (2003). Climate and density shape population
dynamics of a marine top predator. Proceedings of the Royal Society Series B-
Biological Sciences 270, 2111-2116.

Barnett, V. (1999). Comparative Statistical Inferences, 3rd edition: John Wiley and Sons.

Bartlett, M. S. (1960). Stochastic population models. London: Methuen.

Bascompte, J., and Sole, R. V. (1998). Modelling spatiotemporal dynamics in ecology. New
York: Springer.

Beaumont, N. J., Austen, M. C., Atkins, J. P., et al. (2007). Indentification, definition and
quantification of goods and services provided by marine biodiversity: Implications
for the ecosystem approach. Marine Pollution Bulletin 54, 253-265.



84

Begon, M., and Mortimer, M. (1986). Population ecology: a unified study of animals and
plants, 2nd edition: Blackwell Scientific Publications.

Begon, M., Townsend, C. R., and Harper, J. L. (2006). Ecology: from individuals to
ecosystems, 4th edition: Blackwell Publishing.

Benton, T. G., and Grant, A. (1999). Elasticity analysis as an important tool in evolutionary
and population ecology. Trends in Ecology and Evolution 14, 467-471.

Benton, T. G., Plaistow, S. J., and Coulson, T. N. (2006). Complex population dynamics and
complex causation: devils, details and demography. Proceedings of the Royal
Society Series B-Biological Sciences 273, 1173-1181.

Bercovitch, F., and Strum, S. (1993). Dominance rank, resource availability and
reproductive maturation in female svanna baboons. Behav Ecol Sociobiol 33, 313-
318.

Besbeas, P., Freeman, S. N., and Morgan, B. J. T. (2005). The potential of integrated
population modelling. Australian & New Zealand Journal of Statistics 47, 35-48.

Besbeas, P., Freeman, S. N., Morgan, B. J. T., and Catchpole, E. A. (2002). Integrating mark-
recapture-recovery and census data to estimate animal abundance and
demographic parameters. Biometrics 58, 540-547.

Besbeas, P., Lebreton, J. D., and Morgan, B. J. T. (2003). The efficient integration of
abundance and demographic data. Journal of the Royal Statistical Society: Series C
(Applied Statistics) 52, 95-102.

Biek, R., Funk, C., Maxell, B., and Mills, L. (2002). What is missing in amphibian decline
research: insights from sensitivity analysis. Conservation Biology 16, 728-734.

Birch, L. (1953). The intrinsic rate of natural increase of an insect population. Journal of
Animal Ecology 17, 15-26.

Bishop, J. R. B. (2008). Embedding population dynamics in mark-recapture models. PhD
thesis, University of St Andrews.

Bjornstad, O. N., and Grenfell, B. (2001). Noisy clockwork: Time series analysis of
population fluctuations in animals. Science 293, 638-643.

Blower, S. M., and McLean, A. R. (1991). Mixing ecology and epidemiology. Proceedings of
the Royal Society of London, Series B 245, 187-192.

Bolker, B., Holyoak, M., Krivan, V., Rowe, L., and Schmitz, O. (2003). Connecting
theoretical and empirical studies of trait-mediated interactions. Ecology 84, 1101-
1114.

Bonsall, M. B., and Hastings, A. (2004). Demographic and environmental stochasticity in
predator-prey metapopulation dynamics. Journal of Animal Ecology 73, 1043-
1055.



85

Boulinier, T., and Danchin, E. (1997). The use of conspecific reproductive success for
breeding patch selection in terrestrial migratory species. Evolutionary Ecology 11,
505-517.

Boyce, M. S., Haridas, C. V., Lee, C. T., and Demography, N. S. (2006). Demography in an
increasingly variable world. Trends in Ecology & Evolution 21, 141-148.

Bradley, J. S., Gunn, B. M., Skira, I. J., Meathrel, C. E., and Woller, R. D. (1999). Age-
dependent prospecting and recruitment to a breeding colony of Short-tailed
Shearwaters Puffinus tenuirostris. Ibis 141, 277-285.

Bradshaw, E., and Bateson, P. (2000). Animal welfare and wildlife conservation. In
Behaviour and conservation, L. Gosling, and W. Sutherland (eds), 330-348.
Cambridge: CAmbridge University Press.

Brassil, C. E. (2006). Can environmental variation generate positive indirect effects in a
model of shared predation? American Naturalist 167, 43-54.

Breto, C., He, D., Ionides, E. L., and King, A. A. (2008). Time series analysis via mechanistic
models. Annals of Applied Statistics 3, 319-348.

Brook, B. W., O'Grady, J. J., Chapman, A. P., Burgman, M. A., Akcakaya, H. R., and
Frankman, R. (2000). Predictive accuracy of population viability analysis in
conservation biology. Nature 404, 385-387.

Brown, C. R., Brown, M. B., and Danchin, E. (2000). Breeding habitat selection in cliff
swallows: the effect of conspecific reproductive success on colony choice. Journal
of Animal Ecology 69, 133-142.

Brown, J. H., and Kodric-Brown, A. (1977). Turnover rates in insular biogeography: effect
of immigration on extinction. Ecology 58, 445-449.

Brown, J. L. (1969). The buffer effect and productivity in tit populations. American
Naturalist 103, 347.

Buckland, S., Newman, K., Fernandez, C., Thomas, L., and Harwood, J. (2007). Embedding
population dynamics models in inference. Statistical Science 22, 44-58.

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas,
L. (2001). Introduction to distance sampling. Oxford: Oxford University Press.

Buckland, S. T., Burnham, K. P., and Augustin, N. H. (1997). Model selection: An integral
part of inference. Biometrics 53, 603-618.

Buckland, S. T., Goudie, I. B. J., and Borchers, D. L. (2000). Wildlife population assessment:
Past developments and future directions. Biometrics 56, 1-12.

Buckland, S. T., Newman, K. B., Thomas, L., and Koesters, N. B. (2004). State-space models
for the dynamics of wild animal populations. Ecological Modelling 171, 157-175.



86

Burnham, K. P., and Anderson, D. R. (2002). Model selection and multi-model inference,
2nd edition. New York: Springer-Verlag.

Buston, P. M., and Cant, M. A. (2006). A new perspective on size hierarchies in nature:
patterns, causes, and consequences. Oecologia 149, 362-372.

Case, T. J. (2000). An illustrated guide to theoretical ecology. New York: Oxford University
Press.

Caswell, H. (2001). Matrix population models: construction, analysis and interpretation,
2nd edition. Sunderland, Massachusetts: Sinauer Associates, Inc. Publishers.

Caswell, H., Brault, S., Read, A., and Smith, T. (1998). Harbour porpoise and fisheries: an
uncertainty analysis of incidental mortality. Ecological Applications 8, 1226-1238.

Caswell, H., and Fujiwara, M. (2004). Beyond survival estimation: mark-recapture, matrix
population models, and population dynamics. Animal Biodiversity and
Conservation 27, 471-488.

Charnov, E. (1976). Optimal foraging, the marginal value theorem. Theoretical Population
Biology 9, 129-136.

Chilvers, B. L., and Wilkinson, I. S. (2008). Philopatry and site fidelity of New Zealand sea
lions (Phocarctos hookeri). Wildlife Research 35, 463-470.

Clark, J. S. (2003). Uncertainty and variability in demography and population growth: A
hierarchical approach. Ecology 84, 1370-1381.

Clark, J. S. (2007). Models for ecological data. Princeton: Princeton University Press.

Clark, J. S., and Bjornstad, C. N. (2004). Population time series: Process variability,
observation errors, missing values, lags, and hidden states. Ecology 85, 3140-
3150.

Clark, J. S., and Gelfand, A. E. (2006). A future for models and data in environmental
science. Trends in Ecology & Evolution 21, 375-380.

Clark, J. S., and Gelfland, A. E. (2006). Hierarchical modelling for the environmental
sciences. Oxford: Oxford University Press.

Clutton-Brock, T. H., Gaynor, D., McIlrath, G. M., et al. (1999). Predation, group size and
mortality in a cooperative mongoose, Suricata suricatta. Journal of Animal
Ecology 68, 672-683.

Corner, L. A. L., Pfeiffer, D. U., and Morris, R. S. (2003). Social-network analysis of
Mycobacterium bovis transmission among captive brushtail possums (Trichosurus
vulpecula). Preventive Veterinary Medicine 59, 147-167.

Coulson, T., Benton, T. G., Lundberg, P., Dall, S. R. X., and Kendall, B. E. (2006). Putting
evolutionary biology back in the ecological theatre: a demographic framework
mapping genes to communities. Evolutionary Ecology Research 8, 1155-1171.



87

Coulson, T., Benton, T. G., Lundberg, P., Dall, S. R. X., Kendall, B. E., and Gaillard, J. M.
(2005). Estimating individual contributions to population growth: evolutionary
fitness in ecological time. Proceedings of the Royal Society Series B-Biological
Sciences 273, 547-555.

Coulson, T., and Godfray, H. C. J. (2007). Single-species dynamics. In Theoretical ecology:
principles and applications, R. M. May, and A. McLean (eds), 17-34. Oxford:
Oxford University Press.

Coulson, T., Mace, G. M., Hudson, E., and Possingham, H. (2001). The use and abuse of
population viability analysis. Trends in Ecology & Evolution 16, 219-221.

Coulson, T., Rohani, P., and Pascual, M. (2004). Skeletons, noise and population growth:
the end of an old debate? Trends in Ecology & Evolution 19, 359-364.

Courchamp, F., Clutton-Brock, T., and Grenfell, B. (1999). Inverse density dependence and
the Allee effect. Trends in Ecology & Evolution 14, 405-410.

Courchamp, F., Grenfell, B. T., and Clutton-Brock, T. H. (2000). Impact of natural enemies
on obligately cooperative breeders. Oikos 91, 311-322.

Creel, S., and Christianson, D. (2008). Relationships between direct predation and risk
effects. Trends in Ecology & Evolution 23, 194-201.

Crooks, K., and Soule, M. (1999). Mesopredator release and avifaunal extinctions in a
fragmented system. Nature 400, 563-566.

Cross, P. C., Lloyd Smith, J. O., Bowers, J. A., Hay, C. T., Hofmeyr, M., and Getz, W. M.
(2004). Integrating association data and disease dynamics in a social ungulate:
bovine tuberculosis in African buffalo in the Kruger National Park. Annales
Zoologici Fennici 41, 879-892.

Crouse, D., Crowder, L., and Caswell, H. (1987). A stage-based population model for
loggerhead sea turtles and implications for conservation. Ecology 68, 1412-1423.

Danchin, E., Boulinier, T., and Massot, M. (1998). Conspecific reproductive success and
breeding habitat selection: Implications for the study of coloniality. Ecology 79,
2415-2428.

Davison, A. C., and Hinkley, D. V. (1998). Bootstrap methods and their application.
Cambridge: Cambridge University Press.

De Kroon, H., Plaisier, A., Van Groenendael, J., and Caswell, H. (1986). Elasticity: the
relative contribution of demographic parameters to population growth rate.
Ecology 67, 1427-1431.

De Kroon, H., Van Groenendael, J., and Ehrlen, J. (2000). Elasticities: A review of methods
and model limitations. Ecology 81, 607-618.



88

DeAngelis, D. L., and Gross, L. J. (1992). Individual based models and approaches in
ecology. New York: Chapman and Hall.

Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L., and Staples, D. F. (2006). Estimating
density dependence, process noise, and observation error. Ecological
Monographs 76, 323-341.

Dennis, B., and Taper, M. L. (1994). Density-dependence in time-series observations of
natural-populations - estimation and testing. Ecological Monographs 64, 205-224.

Doak, D. F., Gross, K., and Morris, W. F. (2005a). Understanding and predicting the effects
of sparse data on demographic analyses. Ecology 86, 1154-1163.

Doak, D. F., Morris, W. F., Pfister, C., Kendall, B. E., and Bruna, E. M. (2005b). Correctly
estimating how environmental stochasticity influences fitness and population
growth. American Naturalist 166, E14-E21.

Dobson, F. S. (1982). Competition for mates and predominant juvenile male dispersal in
mammals. Animal Behaviour 30, 1183-1192.

Doebeli, M., and Ruxton, G. D. (1998). Stabilization through spatial pattern formation in
metapopulations with long-range dispersal. Proceedings of the Royal Society
Series B-Biological Sciences 265, 1325-1332.

Doligez, B., Danchin, E., and Clobert, J. (2002). Public information and breeding habitat
selection in a wild bird population. Science 297, 1168-1179.

Drake, J. M. (2005). Population effects of increased climate variation. Proceedings of the
Royal Society Series B-Biological Sciences 272, 1823-1827.

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., and Mearns, L. O.
(2000a). Climate extremes: Observations, modeling, and impacts. Science 289,
2068-2074.

Easterling, M. R., Ellner, S. P., and Dixon, P. M. (2000b). Size-specific sensitivity: Applying a
new structured population model. Ecology 81, 694-708.

Eberhardt, L. (1977). Optimal policies for the conservation of large mammals with special
reference to marine ecosystems. Environmental Conservation 4, 205-212.

Ellison, A. M. (2004). Bayesian inference in ecology. Ecology Letters 7, 509-520.

Ellner, S. P., and Rees, M. (2006). Integral projection models for species with complex
demography. American Naturalist 167, 410-428.

Ellner, S. P., and Rees, M. (2007). Stochastic stable population growth in integral
projection models: theory and application. Journal of Mathematical Biology 54,
227-256.

Engen, S., Bakke, O., and Islam, A. (1998). Demographic and environmental stochasticity -
concepts and definitions. Biometrics 54, 840-846.



89

Etienne, R. S., and Nagelkerke, C. J. (2002). Non-equilibria in small metapopulations:
Comparing the deterministic Levins model with its stochastic counterpart. Journal
of Theoretical Biology 219, 463-478.

Fiske, I. J., Bruna, E. M., and Bolker, B. M. (2008). Effects of sample size on estimates of
population growth rates calculated with matrix models. PLoS ONE 3, e3080.

Fleishman, E., Ray, C., Sjorgren-Gulve, P., Boggs, C. L., and Murphy, D. (2001). Assessing
the roles of patch quality, area and isolation in predicting metapopulation
dynamics. Conservation Biology 16, 1-11.

Fowler, C. W. (1981). Density dependence as related to life-history strategy. Ecology 62,
602-610.

Fowler, C. W. (1990). Density dependence in Northern fur seals (Callorhinus ursinus).
Marine Mammal Science 6, 171-195.

Fox, G. A., and Kendall, B. E. (2002). Demographic stochasticity and the variance reduction
effect. Ecology 83, 1928-1934.

Francis, C. M., and Saurola, P. (2004). Estimating components of variance in demographic
parameters of Tawny Owls, Strix aluco. Animal Biodiversity and Conservation 27,
489-502.

Fretwell, S. (1969). Dominance behavior and winter habitat distribution in juncos (Junco
hyemalis). Bird-banding 40, 1-25.

Fryxell, J. M. (1991). Forage quality and aggregation by large herbivores. American
Naturalist 138, 478-498.

Gaggiotti, O. E., Jones, F., Lee, W. M., Amos, W., Harwood, J., and Nichols, R. A. (2002).
Patterns of colonisation in a metapopulation of grey seals. Nature 416, 424-427.

Gammerman, D., and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic
Simulation for Bayesian Inference: Chapman and Hall.

Gascoigne, J. C., and Lipcius, R. N. (2004). Allee effects driven by predation. Journal of
Applied Ecology 41, 801-810.

Gerber, L. R. (2006). Including behavioral data in demographic models improves estimates
of population viability. Frontiers in Ecology and the Environment 4, 419-427.

Getz, W. M. (2003). Correlative coherence analysis: variation from intrinsic and extrinsic
sources in competing populations. Theoretical Population Biology 64, 89-99.

Gill, J. A., Norris, K., Potts, P. M., Gunnarsson, T. G., Atkinson, P. W., and Sutherland, W. J.
(2001a). The buffer effect and large-scale population regulation in migratory
birds. Nature 412, 436-438.



90

Gill, J. A., Norris, K., and Sutherland, W. J. (2001b). Why behavioural responses may not
reflect the population consequences of human disturbance. Biological
Conservation 97, 265-268.

Gill, J. A., and Sutherland, W. J. (2000). Predicting the consequences of human disturbance
from behavioural decisions. In Behaviour and Conservation, L. Gosling, and W. J.
Sutherland (eds), 51-64. Cambridge: Cambridge University Press.

Gill, J. A., Sutherland, W. J., and Watkinson, A. R. (1996). A method to quantify the effects
of human disturbance on animal populations. Journal of Applied Ecology 33, 786-
792.

Giminez, O., Bonner, S., King, R., et al. (2008). WinBUGS for population ecologists:
Bayesian modeling using Markov chain Monte Carlo methods. In Modeling
Demographic Processes in Marked Populations. Environmental and Ecological
Statistics, D. L. Thomson, E. G. Cooch, and M. J. Conroy (eds): Springer.

Ginot, V., Le Page, C., and Souissi, S. (2002). A multi-agents architecture to enhance end-
user individual-based modelling. Ecological Modelling 157, 23-41.

Goss-Custard, J. D. (1980). Competition for food and inference among waders. Ardea 68,
31-52.

Greenman, J. V., and Benton, T. G. (2003). The amplification of environmental noise in
population models: Causes and consequences. American Naturalist 161, 225-239.

Grenfell, B. T., and Harwood, J. (1997). (Meta)population dynamics of infectious diseases.
Trends in Ecology & Evolution 12, 395-399.

Grimm, V., Dorndorf, N., Frey-Roos, F., Wissel, C., Wyszomirski, T., and Arnold, W. (2003).
Modelling the role of social behavior in the persistence of the alpine marmot
Marinota marmota. Oikos 102, 124-136.

Grimm, V., and Railsback, S. F. (2005). Individual-based Modelling and Ecology. Princeton,
NJ: Princeton University Press.

Gross, K., Morris, W. F., Wolosin, M. S., and Doak, D. F. (2006). Modeling vital rates
improves estimation of population projection matrices. Population Ecology 48, 79-
89.

Gurney, W. S. C., and Nisbet, R. M. (1998). Ecological Dynamics. New York: Oxford
University Press.

Hahn, S., and Bauer, S. (2008). Dominance in feeding territories relates to foraging success
and offspring growth in brown skuas Catharacta antarctica lonnbergi. Behavioral
Ecology and Sociobiology 62, 1149-1157.

Halley, J. M. (1996). Ecology, evolution and 1/f noise. Trends in Ecology & Evolution 11, 33-
37.



91

Halley, J. M., and Inchausti, P. (2004). The increasing importance of 1/f noises as models
of ecological variability Fluctuation and Noise Letters 4, R1-R26.

Hanski, I. (1983). Coexistence of competitors in a patchy environment. Ecology 64, 493-
500.

Hanski, I. (1992). Inferences from ecological incidence functions. Am Nat 139, 657-662.

Hanski, I. (1994). A practical model of metapopulation dynamics. Journal of Animal
Ecology 63, 151-162.

Hanski, I. (1998). Metapopulation dynamics. Nature 396, 41-49.

Hanski, I. (1999). Metapopulation Ecology. Oxford: Oxford University Press.

Hanski, I., Moilanen, A., and Gyllenberg, M. (1996). Minimum viable metapopulation size.
American Naturalist 147, 527-541.

Hanski, I., and Ovaskainen, O. (2000). The metapopulation capacity of a fragmented
landscape. Nature 404, 755-758.

Harwood, J. (2001). Marine mammals and their environment in the twenty-first century.
Journal of Mammalogy 82, 630-640.

Harwood, J., and Hall, A. (1990). Mass mortality in marine mammals: its implications for
population dynamics and genetics. Trends in Ecology & Evolution 5, 254-257.

Harwood, J., and Rohani, P. (1996). The population biology of marine mammals. In
Frontiers of Population Ecology, R. B. Floyd, A. W. Sheppard, and P. J. De Barro
(eds), 174-190. Melbourne: CSIRO.

Harwood, J., and Stokes, K. (2003). Coping with uncertainty in ecological advice: lessons
from fisheries. Trends in Ecology & Evolution 18, 617-622.

Henson, S. M., King, A. A., Costantino, R. F., Cushing, J. M., Dennis, B., and Desharnais, R.
A. (2003). Explaining and predicting patterns in stochastic population systems.
Proceedings of the Royal Society Series B-Biological Sciences 270, 1549-1553.

Heppell, S. S., Crowder, L. B., and Crouse, D. T. (1996). Models to evaluate headstarting as
a management tool for long-lived turtles. Ecological Applications 6, 556-565.

Hess, G. (1996). Disease in metapopulation models: implications for conservation. Ecology
77, 1617-1632.

Hitchcock, C., and Gatto-Trevor, C. (1996). Diagnosing a shorebird local population decline
with a stage-structured population model. Ecology 78, 522-534.

Holt, R. D. (1985). Population dynamics in two-patch environments: some anomalous
consequences of optimal habitat distribution. Theoretical Population Biology 28,
181-208.



92

Holt, R. D., and Keitt, T. H. (2000). Alternative causes for range limits: a metapopulation
perspective. Ecology Letters 3, 41-47.

Hone, J., and Clutton-Brock, T. H. (2007). Climate, food, density and wildlife population
growth rate. Journal of Animal Ecology 76, 361-367.

Hooker, S., and Gerber, L. (2004). Marine reserves as a tool for ecosystem-based
management: The potential importance of megafauna. Bioscience 54, 27-39.

Houston, A. I., and McNamara, J. M. (1999). Models of Adaptive Behaviour. Cambridge:
Cambridge University Press.

Ionides, E. L., Breto, C., and King, A. A. (2006). Inference for nonlinear dynamical systems.
Proceedings of the National Academy of Sciences of the United States of America
103, 18438-18443.

Jackson, J., Kirby, M., Berger, W., et al. (2001). Historical overfishing and recent collapse of
coastal ecosystems. Science 293, 629-637.

Jacquez, J. A., Simon, C. P., Koopman, J., Sattenspiel, L., and Perry, T. (1988). Modeling and
analyzing HIV transmission: the effect of contact patterns. Mathematical
Biosciences 92, 119-199.

Jamieson, L. E., and Brooks, S. P. (2004). Density dependence in North American ducks.
Animal Biodiversity and Conservation 27, 113-128.

Jarman, P., and Wright, S. (1993). Macropod studies at Wallaby Creek. IX Exposure and
responses of eastern grey kangaroos to dingoes. Wildlife Research 20, 833-843.

Johst, K., Berryman, A., and Lima, M. (2008). From individual interactions to population
dynamics: individual resource partitioning simulation exposes the causes of
nonlinear intra-specific competition. Population Ecology 50, 79-90.

Johst, K., and Drechsler, M. (2003). Are spatially correlated or uncorrelated disturbance
regimes better for the survival of species? Oikos 103, 449-456.

Kendall, B. E. (1998). Estimating the magnitude of environmental stochasticity in
survivorship data. Ecological Applications 8, 184-193.

Kenward, R. E. (1978). Hawks and doves - Factors affecting success and selection in
goshawk attacks on woodpigeons. Journal of Animal Ecology 47, 449-460.

Krause, J., Croft, D. P., and James, R. (2007). Social network theory in the behavioural
sciences: potential applications. Behavioral Ecology & Sociobiology 62, 15-27.

Kruuk, L. E. B., Clutton-Brock, T. H., Albon, S. D., Pemberton, J. M., and Guinness, F. E.
(1999). Population density affects sex ratio variation in red deer. Nature 399, 459-
461.

Lande, R. (1982). A quantitative genetic theory of life history evolution. Ecology 63, 607-
615.



93

Lande, R. (1993). Risks of population extinction from demographic and environmental
stochasticity and random catastrophes. American Naturalist 142, 911-927.

Lande, R. (2002). Incorporating stochasticity in population viability analysis. In Population
Viability Analysis, S. Beissinger, and D. McCullough (eds), 18-40. Chicago:
University of Chicago Press.

Lande, R., Engen, S., and Saether, B.-E. (2003). Stochastic Population Dynamics in Ecology
and Conservation. New York: Oxford University Press.

Lande, R., Engen, S., Saether, B.-E., and Coulson, T. (2006). Estimating density dependence
from time series of population age structure. American Naturalist 168, 76-87.

Lande, R., Engen, S., Saether, B. E., Filli, F., Matthysen, E., and Weimerskirch, H. (2002).
Estimating density dependence from population time series using demographic
theory and life-history data. American Naturalist 159, 321-337.

Lebreton, J. D. (2008). Assessing density dependence: where are we left? In Modeling
Demographic Processes in Marked Populations. Environmental and Ecological
Statistics, D. L. Thomson, E. G. Cooch, and M. J. Conroy (eds): Springer.

Lebreton, J. D., Burnham, K. P., Clobert, J., and Anderson, D. R. (1992). Modeling survival
and testing biological hypotheses using marked animals - a unified approach with
case-studies. Ecological Monographs 62, 67-118.

Lefebvre, D., Menard, N., and Pierre, J. S. (2003). Modelling the influence of demographic
parameters on group structure in social species with dispersal asymmetry and
group fission. Behavioral Ecology and Sociobiology 53, 402-410.

Lele, S. R. (2007). Data cloning: easy maximum liklihood estimation for complex ecological
models using Bayesian Markov chain Monte Carlo methods. Ecology Letters 10,
866-866.

Lennon, J. J., Turner, J. R. G., and Connell, D. (1997). A metapopulation model for species
boundaries. Oikos 78, 486-502.

Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika
33, 183-212.

Leslie, P. H. (1948). Some further notes on the use of matrices in population mathematics.
Biometrika 35, 213-245.

Levins, R. (1968). Evolution in Changing Environments. Princeton: Princeton University
Press.

Levins, R. (1969). Some demographic and genetic consequences of environmental
heterogeneity for biological control. Bulletins of the Entomological Society of
America 15, 237-240.



94

Liebhold, A., Koenig, W., and Bjornstad, O. (2004). Spatial synchrony in population
dynamics. Annual Review of Ecology, Evolution, and Systematics 35, 467-490.

Lincoln, R., Boxshall, G., and Clark, P. (1998). A Dictionary of Ecology, Evolution and
Systematics. Cambridge: Cambridge University Press.

Lind, J., and Cresswell, W. (2005). Determining the fitness consequences of antipredation
behavior. Behavioral Ecology 16, 945-956.

Lomnicki, A. (1988). Population Ecology of Individuals. Princeton: Princeton University
Press.

Luttbeg, B., and Kerby, J. L. (2005). Are scared prey as good as dead? Trends in Ecology &
Evolution 20, 416-418.

MacArthur, R., and Pianka, E. (1966). On optimal use of a patchy environment. American
Naturalist 100, 603-609.

MacArthur, R., and Wilson, E. (1967). The Theory of Island Biogeography. Princeton:
Princeton University Press.

Mao, X. R., Marion, G., and Renshaw, E. (2002). Environmental Brownian noise suppresses
explosions in population dynamics. Stochastic Processes and Their Applications 97,
95-110.

Marion, G., Renshaw, E., and Gibson, G. (2003). Stochastic modelling of environmental
variation for biological populations. Theoretical Population Biology 57, 197-217.

Matthiopoulos, J., Halley, J. M., and Moss, R. (2005). Socially induced red grouse
population cycles need abrupt transitions between tolerance and aggression.
Ecology 86, 1883-1893.

Matthiopoulos, J., Moss, R., and Lambin, X. (2000). The kin-facilitation hypothesis for red
grouse population cycles: territory sharing between relatives. Ecological
Modelling 127, 53-63.

Matthiopoulos, J., Smout, S., Winship, A. J., Thompson, D., Boyd, I. L., and Harwood, J.
(2008). Getting beneath the surface of marine mammal - fisheries competition.
Mammal Review 38, 167-188.

Matthiopoulos, J., Thomas, L., McConnell, B., et al. (2006). Putting long-term population
monitoring data to good use: the causes of density-dependence in grey seals.
SCOS Briefing Paper 06/08.

Matthysen, E. (2005). Density-dependent dispersal in birds and mammals. Ecography 28,
403-416.

May, R. M. (1973). Stability in randomly fluctuating versus deterministic environments.
American Naturalist 107, 621-650.



95

May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature
261, 459-467.

Maynard Smith, J. M., and Slatkin, M. (1973). The stability of predator-prey systems.
Ecology 127, 348-391.

McCallum, H. (2000). Population Parameters: Estimation for Ecological Models. Oxford:
Blackwell Science Ltd.

McCauley, E., Nisbet, R. M., Murdoch, W. W., de Roos, A. M., and Gurney, W. S. C. (1999).
Large-amplitude cycles of Daphnia and its algal prey in enriched environments.
Nature 402, 653-656.

McNamara, J. M., and Houston, A. I. (1996). State-dependent life histories. Nature 380,
215-220.

Millar, R. B., and Meyer, R. (2000). Non-linear state space modelling of fisheries biomass
dynamics by using Metropolis-Hastings within-Gibbs sampling. Journal of the
Royal Statistical Society Series C-Applied Statistics 49, 327-342.

Miller, P. S., and Lacy, R. C. (2005). VORTEX. A stochastic simulation of the simulation
process. Version 9.50 user's mannual. Apple Valley, Minnesota: Conservation
Breeding Specialist Group (IUCN/SSC).

Milner-Gulland, E. J., Bukreevea, O. M., Coulson, T., et al. (2003). Conservation -
Reproductive collapse in saiga antelope harems. Nature 422, 135-135.

Moilanen, A., and Hanski, I. (1988). Metapopulation dynamics: effects of habitat quality
and landscape structure. Ecology 79, 2503-2515.

Moilanen, A., and Hanski, I. (1995). Habitat destruction and coexistence of competitors in
a spatially realistic metapopulation model. Journal of Animal Ecology 64, 141-144.

Molofsky, J., and Ferdy, J. B. (2005). Extinction dynamics in experimental
metapopulations. Proceedings of the Nationall Acadamy of Sciences of the United
States of America 102, 3726-3731.

Morris, W., and Doak, D. (2002). Quantitative Conservation Biology: Theory and Practice
of Population Viability Analysis. Sunderland, Massachusetts: Sinauer Associates
Inc.

Morris, W., and Doak, D. (2004). Buffering of life histories against environmental
stochasticity: accounting for a spurious correlation between the variabilities of
vital rates and their contributions to fitness. American Naturalist 163, 579-590.

Murdoch, W. W. (1994). Population regulation in theory and practice. Ecology 75, 271-
287.

Nee, S., and May, R. M. (1992). Dynamics of metapopulations: habitat destruction and
competitive coexistence Journal of Animal Ecology 61, 37-40.



96

Newman, K. B., Fernandez, C., Buckland, S. T., and Thomas, L. (2009). Monte Carlo
inference for state-space models of wild animal populations. Biometrics 65, 572-
583.

Nichols, J. D., Sauer, J. R., Pollock, K. H., and Hestbeck, J. B. (1992). Estimating transition
probabilities for stage-based population projection matrices using capture-
recapture data. Ecology 73, 306-312.

Noon, B., and McKelvey, K. (1996). Management of the spotted owl: a case history in
conservation biology. Annual Review of Ecology and Systematics 27, 135-162.

NRC (2005). Marine Mammal Populations and Ocean Noise: Determining When Noise
Causes Biologically Significant Effects. Washington DC: National Academies Press.

Nur, N. (1987). Population growth rate and the measurement of fitness: a critical
reflection. Oikos 48, 338-341.

Parker, H., Rosell, F., and Mysterud, A. (2007). Harvesting of males delays female breeding
ina socially monogamous mammal; the beaver. Biology Letters 3, 106-108.

Pascual, M., and Adkison, M. (1993). The decline of the Stellar sea lion in the north-east
Pacific: demography, harvest or environment? Ecological Applications 4, 393-403.

Pelletier, F., Clutton-Brock, T., Pemberton, J., Tuljapurkar, S., and Coulson, T. (2007). The
evolutionary demography of ecological change: linking trait variation and
population growth. Science 315, 1571-1574.

Pope, T. R. (2000). Reproductive success increases with degree of kinship in cooperative
coalitions of female red howler monkeys (Alouatta seniculus). Behavioral Ecology
and Sociobiology 48, 253-267.

Preisser, E. L., Bolnick, D. I., and Benard, M. F. (2005). Scared to death? The effects of
intimidation and consumption in predator-prey interactions. Ecology 86, 501-509.

Pulliam, H. R. (1988). Sources, sinks, and population regulation. American Naturalist 132,
652.

Punt, A., and Donovan, G. (2007). Developing management procedures that are robust to
uncertainty: lessons from the International Whaling Commission. ICES Journal of
Marine Science 64, 603–612.

Rankin, S., and Barlow, J. (2007). Sounds recorded in the presence of Blainville's beaked
whales, Mesoplodon densirostris, near Hawai'i. Journal of the Acoustical Society
of America 122, 42-45.

Reynolds, J. D., Mace, G. M., Redford, K. H., and Robinson, J. G. (2001). Conservation of
Exploited Species. Cambridge: Cambridge University Press.

Ross-Gillespie, A., Gardner, A., West, S. A., and Griffin, A. S. (2007). Frequency
dependence and cooperation: theory and a test with bacteria. American
Naturalist 170, 331-342.



97

Runge, J., Runge, M., and Nichols, J. (2006). The role of local populations within a
landscape context: Defining and classifying sources and sinks. American Naturalist
167, 925-938.

Saccheri, I. (1998). Inbreeding and extinction in a butterfly metapopulation. Nature 392,
491-494.

Saether, B.-E., and Bakke, O. (2000). Avian life history variation and contribution of
demographic traits to the population growth rate. Ecology 31, 642-653.

Saether, B.-E., Lillegard, M., Grotan, V., Filli, F., and Engen, S. (2007). Predicting
fluctuations of reintroduced ibex populations: the importance of density
dependence. Journal of Animal Ecology 76, 326-336.

Saether, B. E. (1997). Environmental stochasticity and population dynamics of large
herbivores: A search for mechanisms. Trends in Ecology & Evolution 12, 143-149.

Saether, B. E., Andersen, R., Hjeljord, O., and Heim, M. (1996). Ecological correlates of
regional variation in life history of the moose Alces alces. Ecology 77, 1493-1500.

Saether, B. E., and Engen, S. (2002). Pattern of variation in avian population growth rates.
Philosophical Transactions of the Royal Society Series B - Biological Sciences 357,
1185-1195.

Saether, B. E., Sutherland, W. J., and Engen, S. (2004). Climate influences on avian
population dynamics. Advances in Ecological Research 35, 185-209.

Schenk, D., and Bacher, S. (2002). Functional response of a generalist insect predator to
one of its prey species in the field. Journal of Animal Ecology 71, 524-531.

Schino, G. (2004). Birth sex ratio and social rank: consistency and variability within and
between primate groups. Behavioral Ecology 15, 850-856.

Schwarz, C. J., and Arnason, A. N. (1996). A general methodology for the analysis of
capture-recapture experiments in open populations. Biometrics 52, 860-873.

Schwarz, C. J., and Seber, G. A. F. (1999). Estimating animal abundance: review III.
Statistical Science 14, 427-456.

Seber, G. A. F. (1982). The Estimation of Animal Abundance and Related Parameters, 2nd
edition. London: Edward Arnold.

Shenk, T. M., White, G. C., and Burnham, K. P. (1998). Sampling-variance effects on
detecting density dependence from temporal trends in natural populations.
Ecological Monographs 68, 445-463.

Sibly, R. M., and Hone, J. (2002). Population growth rate and its determinants: an
overview. Philosophical Transactions of the Royal Society Series B - Biological
Sciences 357, 1153-1170.



98

SMRU (2008). Scientific advice on matters related to the management of seal populations.
St Andrews, Scotland: Sea Mammal Research Unit.

Sole, R. V., and Bascompte, J. (2006). Self-organisation in complex ecosystems. Princeton:
Princeton University Press.

Stillman, R. A., Goss-Custard, J. D., West, A. D., et al. (2000). Predicting mortality in novel
environments: tests and sensitivity of a behaviour-based model. Journal of
Applied Ecology 37, 564-588.

Stoen, O. G., Zedrosser, A., Wegge, P., and Swenson, J. E. (2006). Socially induced delayed
primiparity in brown bears Ursus arctos. Behavioral Ecology and Sociobiology 61,
1-8.

Sutherland, W. J. (1996). From Individual Behaviour to Population Ecology. Oxford: Oxford
University Press.

Sutherland, W. J., and Norris, K. (2002). Behavioural models of population growth rates:
implications for conservation and prediction. Philosophical Transactions of the
Royal Society Series B - Biological Sciences 357, 1273-1284.

Taylor, B., and DeMaster, D. (1993). Implications of non-linear density dependence.
Marine Mammal Science 9, 360-371.

Thibault, K. M., and Brown, J. H. (2008). Impact of an extreme climatic event on
community assembly. Proceedings of the National Academy of Sciences of the
United States of America 105, 3410-3415.

Thomas, L., Burnham, K. P., and Buckland, S. T. (2004). Temporal inferences from distance
sampling surveys. In Advanced Distance Sampling, S. T. Buckland, D. R. Anderson,
K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas (eds). Oxford: Oxford
University Press.

Thomas, L., and Harwood, J. (2007). Estimating the size of the UK grey seal population
between 1984 and 2006. SCOS Briefing Paper 07/2.

Thomas, L., and Harwood, J. (2008). Estimating the size of the UK grey seal population
between 1984 and 2007. SCOS Briefing Paper 08/3.

Tilman, D., and Kareiva, P. (1997). Spatial Ecology. Princeton: Princeton University Press.

Tuljapurkar, S., and Caswell, H. (1997). Structured Population Models in Marine, Terrestrial
and Freshwater Systems. New York: Chapman and Hall.

Tuljapurkar, S., Horvitz, C., and Pascarella, J. (2003). The many growth rates and
elasticities of populations in random environments. American Naturalist 162, 489-
502.

Turchin, P. (2003). Complex Population Dynamics. A Theoretical/empirical Synthesis.
Princeton: Princeton University Press.



99

Viljugrein, H., Stenseth, N. C., Smith, G. W., and Steinbakk, G. H. (2005). Density
dependence in North American ducks. Ecology 86, 245-254.

Wade, P. (1998). Calculating limits to the allowable human-caused mortality of cetaceans
and pinnipeds. Marine Mammal Science 14, 1-37.

Watkinson, A. R., and Sutherland, W. J. (1995). Sources, sinks and pseudo-sinks. Journal of
Animal Ecology 64, 126-130.

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks.
Nature 393, 440-442.

Werner, E. E., and Peacor, S. D. (2003). A review of trait-mediated indirect interactions in
ecological communities. Ecology 84, 1083-1100.

Williams, B. K., Nichols, J. D., and Conroy, M. J. (2002). Analysis and Management of
Animal Populations: Modeling, Estimation and Decision Making: Academic Press.

Wilmers, C. C., Post, E., and Hastings, A. (2007a). The anatomy of predator-prey dynamics
in a changing climate. Journal of Animal Ecology 76, 1037-1044.

Wilmers, C. C., Post, E., and Hastings, A. (2007b). A perfect storm: The combined effects
on population fluctuations of autocorrelated environmental noise, age structure,
and density dependence. American Naturalist 169, 673-683.

Xia, Y., Bjornstad, O., and Grenfell, B. (2004). Measles metapopulation dynamics: A gravity
model for epidemiological coupling and dynamics. American Naturalist 164, 267-
281.

Ylonen, H., Pusenius, J., and Viitala, J. (1995). Impact of kinship and familiarity on the
annual social-organization and population-dynamics of Clethrionomys and
Microtus voles. Annales Zoologici Fennici 32, 225-232.



100

GLOSSARY

Absolute contributions - contributions of the matrix elements to  , evaluated by
sensitivity analysis.

Aggregative response - the relationship between the density of consumers and the
density of resources.

Allee effect - when a vital rate declines at low population densities, rather than increasing,
as would be expected as a result of density dependent processes. Also known as
inverse density dependence.

Biological reference point - an extreme value for a population characteristic, such as
biomass, that is used in conjunction with the species current abundance to aid
management decisions.

Bootstrap - a computer-intensive statistical technique for estimating uncertainty by
resampling, either from the actual data used in the estimation process (a
nonparametric bootstrap) or from a statistical distribution (parametric bootstrap).

Capital breeder - a species that relies on stored resources to make a large fecundity-
independent investment at each breeding opportunity.

Carrying capacity - the maximum equilibrium size of a population, often determined by
the available resources.

Catastrophes - an environmental perturbation that produce a sudden major reduction in
population size.

Condition - the physiological cost of living and expending energy.

Conspecific - an individual of the same species.

Contest competition - competition in which some individuals can always obtain the same
quantity of resource, irrespective of its abundance. Cf. scramble competition.

Death rate - the probability that an individual will die during a particular time interval.

Demography - the study of populations.

Density dependence - the slowing of the overall population growth rate as a result of
increased competition between individuals.

Demographic stochasticity - chance variations among individuals of a population, which in

turn affects their vital rates and ultimately, the variability of .

Depleted - Under the US Marine Mammal Protection Act, a population that is below the
maximum net productivity level, or 50-70% of a historic population size thought to
represent the carrying capacity of the environment.

Deterministic chaos - population dynamics that shows apparentely random variation
even though the underlying model contains none of the conventional forms of
stochasticity.

Deterministic growth - the change in population size from one time step to the next in the
absence of any uncertainty.

Discretization - the process of dividing a continuous variable into an arbitrarily defined set
of discrete categories (e.g. time can be discretized into categories of years).
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Dominant eigenvalue - the largest eigenvalue, which is equivalent to the population

growth rate  he scalar value which can be used to simplify the multiplication of a

projection matrix containing constants, so that Ax x .

Eigenvector - the vector associated with an eigenvalue, such that matrix multiplication

can be simplified as Ax x .

Elasticity analysis - a process for estimating the sensitivity of to changes in the
elements of the transition matrix. See also retrospective and prospective perturbation
analysis

Empirical modelling - modelling that attempts to estimate  directly from the data,
without reference to any underlying population dynamics mechanism. Also known as
phenomenological modelling.

Environmental stochasticity - fluctuations over time in the environment that are reflected
in the average value of the vital rates experience by all individuals in a population.

Fitness - an individual’s contribution to future generations.

Food web - a network diagram showing the direct linkages between the species in a
biological community.

Frequency dependence - process whereby the fitness of non-cooperating individuals is
greater when they make up only a small proportion of a population.

Functional response - the relationship between the quantity of resources taken by
individual consumers and the rate at which it encounters resources.

Generalist - a predator that consumes more than one prey species.

Harvest Control Rule - a management procedures in which management action depends
on the relationship between a species’ current abundance and a series of biological
reference points.

Individual-based model - a population model that explicitly follows the fate of each
individual within the population.

Incidence function model - a metapopulation model that predicts the presence or absence
of a species in habitat patches.

Inclusive fitness - the process whereby individuals can increase their fitness by aiding
individuals that share a proportion of their genes.

Indirect facilitation - the process whereby the consumption of one prey species by a
predator benefits other species by reducing competition.

Integral projection model (IPM) - an approach to modelling population dynamics that
allows some state variables (e.g. size, age, condition) to vary continuously rather than
discretely, as is assumed in a conventional projection matrix approach.

Interference competition - a form of competition for resources in which individuals
interact directly with each other, rather than indirectly through their impact on a
shared resource.

Intraspecific competition - competition amongst individuals of the same species or
population for some scarce resource. cf interspecific competition which occurs
between individuals of different species.

Intrinsic rate of natural increase (r) - the change in population size per individual per time
period.
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Inverse density dependence - a positive relationship between population growth rate and
density. Also known as an Allee effect.

Island biogeography - the theory of extinction and recolonisation in “island” communities
that focuses primarily on the relationship between the number of species living in a
patch and the size of that patch.

Kernel - A non-negative, real valued integrable function that represents transitions from
one set of states to another. In the context of population models, the continuous
version of a projection matrix.

K-strategy - a life history strategy used by individuals in populations that are normally
close to their carrying capacity. Cf. r –strategy.

Lattice effects - recurrent, but seemingly stochastic, patterns in the dynamics of simple
population models.

Life cycle - the combination of birth and death rates experienced by an individual with a
particular life history

Logistic growth - a sigmoidal, or S-shaped, relationship between population growth and
population size.

Matriline - a group of animals related through their mothers.

Matrix model - a mathematical model of population growth that uses a projection matrix
to predict the change in the number of individuals in each age- or stage-class from one
time step to the next.

Maximum sustainable yield (MSY) - the largest repeated harvest that can maintain an
optimal population size due to the rapid recovery of the population due to a maximal
rate of re-growth.

Mean net rate of energetic gain - the surplus of energy that an individual gains from
foraging which can then be used for other life history processes and building up
reserves .

Mechanistic modelling - modelling that attempts to estimate  as part of an underlying
population dynamics mechanism.

Median time to extinction - the time at which half of all populations are likely to have
gone extinct.

Metapopulation - an assemblage of local populations that are loosely connected by
migration and large-scale synchronising processes such as predation or environmental
variability.

Minimum viable metapopulation size (MVM) - the minimum number of interacting local
populations necessary for long-term persistence of a metapopulation.

Model error - uncertainty that is a consequence of the fact that an underlying statistical
model is not a precisely correct representation of the system being modelled,

Monte-Carlo error - uncertainty is an estimate that arises when statistical algorithms that
involve an element of simulation are used as part of the estimation process.

Net fecundity - the birth rates that apply to each class in a population.

Observation error - uncertainty in estimates that is a consequence of the way in which
data are collected. Also known as sampling error.

Occupancy - proportion of a network of habitat patches that is occupied.
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Phenomenological modelling - see empirical modelling.

Phenotype - the observable character traits of an organism.

Prey - a food item consumed by an animal. Usually the term is restricted to food items
consumed by predators, but may be extended to the food of herbivores if this can be
divided into discrete units.

Polygynous breeding system - a breeding system in which individual males may mate with
many different females

Population rate of the growth () - the factor by which population size changes in each
time step

Population viability analysis (PVA) - An approach that use stochastic models with
fluctuating population size and varying demographic parameters to predict future
population size and the probability of population persistence over a defined period.

Prey switching - the process whereby some prey species are ignored when they occur at
low densities, but are preferred once their density increases above a threshold value.

Projection matrix - a square matrix that is used to project the abundances of different
states of a population forward in time. Also known as a transition matrix

Probability density function (pdf) - a statistical distribution that defines the probability
that a random variable will take a particular value.

Process variation - the actual variability in population change occurring over time, and
between different components of the population. It is caused by intrinsic demographic
stochasticity and by environmental stochasticity.

Productivity - in a population context, the total number of offspring that survive to the
end of a particular time unit. It combines the effects of fecundity and the size of the
breeding population.

Proportional contribution - contribution of the matrix elements to , evaluated by
elasticity analysis.

Prospective perturbation analysis - a method of evaluating the effect of changes in
individual elements of the transition matrix on the population growth rate.

Pup production - number of pups born each year

r-strategy - life history strategy seen amongst individuals in populations that are normally
far below their carrying capacity. Cf. K –strategy.

Reproductive value ( 0R ) - the sum of an individual’s past and future reproductive output

Rescue effect - the process whereby empty patches in a metapopulation are more likely to
be recolonised if they are surrounded by occupied patches than they are in a random
configuration of patches.

Resource competition - the contest between conspecifics to obtain the resources required
to survive and reproduce.

Retrospective perturbation analysis - the quantified effects of how differences in vital

rates contribute to variations in 

Sampling error - see observation error.

Scalar - a single numerical value.
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Scramble competition - form of competition in which the resources are shared equally
amongst the competitors.

Semi-mechanistic model - a model of population dynamics that involves a mechanistic
model of one component (such as density dependence), but does not account for
population structure (e.g. age, state, sex, etc.).

Sink - a patch in a metapopulation which would have a negative growth rate in the
absence of immigration.

Source - a patch in a metapopulation which has a net positive growth rate..

Stable age distribution - the age distribution to which a population will converge if the
population’s vital rates remain constant for a sufficient length of time

State-space mode - a stochastic, discrete-time model describing the evolution of two time
series in parallel. The first time series is the true, but unknown number of animals in
each population state. The second time series is that of the observations; these are
linked to the true, unknown states by the observation process model.

State variable - a variable that describes the status (breeding, age, etc.) of an animal at a
particular point in time.

Stochastic - following a random probability distribution or pattern.

Stochastic population growth rate - Population growth rate that takes account of the
effects of demographic and environmental stochasticity. It is always less than the
deterministic growth rate.

Stock-recruitment relationship - a relationship indicating how the number of fish recruiting
to a breeding population varies with the size of that population.

Survival probability - the probability that an individual will survive from one time step to
the next. Survival probabilities are an important component of projection matrices, in
which they make up a sub-diagonal. The survival probability = (1 – death rate).

Take - the number of animals that may be removed from a population.

Thick-tailed stochastic process - a process generated by statistical distributions in which
the probability of rare, but significant events is higher than predicted by more
conventional distributions such as the Poisson distribution. Catastrophes are
sometimes modelled using distributions of this kind.

Trophic level - a group of species living at the same position in a food web, e.g.
zooplankton that feed on phytoplankton.

Vital rate - a generic term for all of the demographic rates (birth rate, death rate, growth
rate, immigration and emigration) that determine a populations dynamics.


