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Abstract

In this paper we study some properties of the subsemigroups of the

bicyclic monoid B, by using a recent description of its subsemigroups. We

start by giving necessary and sufficient conditions for a subsemigroup to be

finitely generated. Then we show that all finitely generated subsemigroups

are automatic and finitely presented. Finally we prove that a subsemigroup

of B is residually finite if and only if it does not contain a copy of B.
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1 Introduction and Previous Relevant Results

The bicyclic monoid B, defined by the presentation 〈b, c | bc = 1〉, is one of the

most fundamental semigroups, with many remarkable properties and generaliza-

tions; see [1, 2, 5, 8, 9, 12, 13, 15, 16].

In this paper we use the description of the subsemigroups of the bicyclic

monoid, obtained in [4], to establish some of their properties. We start by giving

necessary and sufficient conditions for a subsemigroup to be finitely generated
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Figure 1: The bicyclic monoid

(Section 2). Then we show that all finitely generated subsemigroups are auto-

matic and finitely presented (Sections 3, 4). Finally we prove that a subsemigroup

of B is residually finite if and only if it does not contain a copy of B (Section 5).

We begin by introducing the notation that will be used throughout the paper

and state some useful known results about the subsemigroups of B. From the

defining presentation for B it is easy to see that every element of B can be

expressed uniquely as cibj with i, j ≥ 0. In what follows we shall identify B with

the set {cibj : i, j ≥ 0}, and the multiplication then becomes:

cibjckbl =

{
ci−j+kbl if j ≤ k

cibj−k+l if j > k.

It is often convenient to view B as an infinite square grid, as shown in Figure

1. The following three functions Φ,Ψ, λ : B → N0, Φ(cibj) = i, Ψ(cibj) = j and

λ(cibj) = |j − i| will be used extensively throughtout the paper. (Φ and Ψ are

the first and the second projections respectively, while λ is the modulus of the

natural epimorphism from B onto the additive group Z.)

Let us now introduce some basic subsets of B:

D = {cibi : i ≥ 0} − the diagonal , U = {cibj : j > i ≥ 0} − the upper half,

Ep = {cibj : 0 ≤ j < p, i ≥ 0} − the left strip (determined by p ≥ 0).,

Next, consider the function̂ : B → B by cibj 7→ ĉibj = cjbi. Geometricallŷ is the reflection with respect to the main diagonal. So, for example, Û is the

lower half. Algebraically this function is an anti-isomorphism (x̂y = ŷx̂), as is

easy to check.

By using the above basic sets and functions we now define some further subsets

of B. For 0 ≤ q ≤ p ≤ m we define the triangle

Tq,p = {cibj : q ≤ i ≤ j < p},
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and the strips

Sq,p = {cibj : q ≤ i < p, j ≥ p}, S ′
q,p = {cibj : q ≤ i < p, j ≥ i},

Sq,p,m = {cibj : q ≤ i < p, j ≥ m}.

Note that for q = p the above sets are empty. For i,m ≥ 0 and d > 0 we define

the lines

Λi = {cibj : j ≥ 0}, Λi,m,d = {cibj : d | j − i, j ≥ m}

and, in general, for I ⊆ {0, . . . ,m− 1},

ΛI,m,d =
⋃

i∈I Λi,m,d = {cibj : i ∈ I, d | j − i, j ≥ m}.

For p ≥ 0, d > 0, r ∈ [d] = {0, . . . , d− 1} and P ⊆ [d] we define the squares

Σp = {cibj : i, j ≥ p}, Σp,d,r = {cp+r+udbp+r+vd : u, v ≥ 0},
Σp,d,P =

⋃
r∈P Σp,d,r = {cp+r+udbp+r+vd : r ∈ P ;u, v ≥ 0}.

Figures illustrating some of these sets can be found in [4].

Finally, for X ⊆ B, we define ι(X) = min(Φ(X ∩ U)) (if X ∩ U 6= ∅) and

κ(X) = min(Ψ(X ∩ Û)) (if X ∩ Û 6= ∅).
We can now state the main result from [4], which gives a description of all

subsemigroups of the bicyclic monoid:

Proposition 1.1 ([4, Theorem 3.1]) Let S be a subsemigroup of the bicyclic

monoid. Then one of the following conditions holds:

1. S is a subset of the diagonal D.

2. S is a union of a subset of a triangle, a subset of the diagonal above the

triangle, a square below the triangle and some lines belonging to a strip

determined by square and the triangle, or the reflection of this union with

respect to the diagonal. Formally there exist q, p ∈ N0 with q ≤ p, d ∈ N,

I ⊆ {q, . . . , p−1} with q ∈ I, P ⊆ {0, . . . , d−1} with 0 ∈ P , FD ⊆ D∩Eq,

F ⊆ Tq,p such that S is of one of the following forms:

(i) S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P ; or

(ii) S = FD ∪ F̂ ∪ Λ̂I,p,d ∪ Σp,d,P .

3. There exist d ∈ N, I ⊆ N0, FD ⊆ D ∩ Emin(I) and sets Si ⊆ Λi,i,d (i ∈ I)

such that S is of one of the following forms:
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(i) S = FD ∪
⋃
i∈I

Si; or

(ii) S = FD ∪
⋃
i∈I

Ŝi;

where each Si has the form

Si = Fi ∪ Λi,mi,d

for some mi ∈ N0 and some finite set Fi, and

I = I0 ∪ {r + ud : r ∈ R, u ∈ N0, r + ud ≥ N}

for some (possibly empty) R ⊆ {0, . . . , d−1}, some N ∈ N0 and some finite

set I0 ⊆ {0, . . . , N − 1}.

We call diagonal subsemigroups those satisfying 1, two-sided subsemigroups

those satisfying 2, upper subsemigroups those satisfying 3 (i) and lower subsemi-

groups those satisfying 3 (ii). Figures 2 and 3 illustrate the several kinds of

subsemigroups, by giving some examples.
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(a) d = 3, FD = {cb}, F = {c4b7},
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(b) d = 3, FD = {1, c2b2}, p = 12,
F = {c3b9, c6b9} , P = {0, 2},
I = {3, 5, 6, 8, 9, 11}

Figure 2: Two-sided subsemigroups

Observation 1.2 In the case where I is finite (R = ∅), an upper subsemigroup

can be written as a union of two finite sets and finitely many lines all starting
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(b) d = 2, I = {3, 5, 6, 10}, FD = {cb}, m3 = 19, F3 = {c3b13, c3b16}, m5 = 17,
F5 = {c5b9, c5b13}, m6 = 20, F6 = {c6b16}, m10 = 20, F10 = {c10b16}

Figure 3: Upper and lower subsemigroups
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from the same column. Formally there exist q, p,m ∈ N0 with q < p ≤ m, finite

sets FD ⊆ D ∩ Eq, F ⊆ S ′
q,p\Sq,p,m and a set I ⊆ {q, . . . , p− 1} such that

S = FD ∪ F ∪ ΛI,m,d.

A similar observation applies to a lower subsemigroup.

The following result, proved in [4], will also be needed:

Proposition 1.3 ([4, Lemma 4.3]) For any q, p ∈ N0 with q ≤ p the sets

Sq,p ∪ Σp and S ′
q,p (q < p) are subsemigroups of the bicyclic monoid.

2 Finite generation

If A is a finite set, we denote by A+ the free semigroup generated by A consisting

of non empty words over A under the concatenation, and by A∗ the free monoid

generated by A consisting of A+ together with the empty word ε. Let S be a

semigroup and ψ : A→ S a mapping. We say that A is a finite generating set for

S with respect to ψ if the unique extension of ψ to a semigroup homomorphism

ψ : A+ → S is surjective. For u, v ∈ A+ we write u ≡ v to mean that u and v

are equal as words and u = v to mean that u and v represent the same element

in the semigroup i.e. that uψ = vψ.

In this section we will establish necessary and sufficient conditions for a sub-

semigroup of the bicyclic monoid to be finitely generated proving the following:

Theorem 2.1 Let S be a subsemigroup of the bicyclic monoid. Then S is finitely

generated if and only if one of the following conditions holds:

(i) S is a finite diagonal subsemigroup;

(ii) S is a two-sided subsemigroup;

(iii) S is an upper subsemigroup and the set {i ∈ N0 : Ei ∩ S 6= ∅} is finite;

(iv) S is a lower subsemigroup and the set {i ∈ N0 : Êi ∩ S 6= ∅} is finite.

Proof. (i) Since cibicjbj = ckbk, with k = max(i, j), a subsemigroup of the

bicyclic monoid contained in the diagonal only admits itself as a generating set,

and so it is finitely generated if and only if it is finite.
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(ii) To prove that every two-sided subsemigroup S of B is finitely generated

it is sufficient to note that S can be expressed as a finite disjoint union of copies

of B and subsemigroups of N0; see [4, Theorem 7.6]. Since each of these is finitely

generated, it follows that S is finitely generated as well.

For future use, we also give a direct proof of our claim, and in doing so

establish a natural finite generating set for S. Let ι(S) = q and κ(S) = p and

let d = gcd(λ(S)). We can assume, without loss of generality, that q ≤ p. By

Theorem 1.1 we have

S = FD ∪ F ∪ Σp,d,P ∪ ΛI,p,d

where F and FD are finite sets and I ⊆ {q, . . . , p − 1} for some q, p ∈ N0. For

every i ∈ I let i + uid = min{i + ud : i + ud ≥ p}. We will prove that the finite

set

Y = {cibi+uid : i ∈ I} ∪ {cpbp+d, cp+dbp} ∪ {cp+rbp+r : r ∈ P}

generates the subsemigroup Σp,d,P ∪ ΛI,p,d. Indeed, for cibi+ud ∈ ΛI,p,d we have

cibi+ud = cibi+uid(cpbp+d)u−ui while for cp+r+udbp+r+vd ∈ Σp,d,P we have

cp+r+udbp+r+vd = (cp+dbp)u(cp+rbp+r)(cpbp+d)v.

Therefore the whole of S can be generated by the finite set FD ∪ F ∪ Y .

(iii) We will prove that an upper semigroup S is finitely generated if and only

if the set

K = {i ∈ N0 : Ei ∩ S 6= ∅}

is finite. We first assume that K is infinite and prove that S is not finitely

generated. Suppose that there exists a finite set X such that S = 〈X〉. Since

X ⊆ S ⊆ U ∪D and X is finite, this implies X ⊆ S ′
0,p for some p ∈ N0. Hence

S = 〈X〉 ⊆ S ′
0,p because, by Proposition 1.3, S ′

0,p is a subsemigroup, and therefore

K ⊆ {0, . . . , p} is finite, which contradicts our assumption. We conclude that S

is not finitely generated.

If we now assume that K is finite then to prove that S is finitely generated

it suffices to observe that S is a finite union of subsemigroups of the infinite

monogenic semigroup N (one in each line).

(iv) Straightforward consequence of (iii) by using the anti-isomorphism ̂. �
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3 Automaticity

Given a finite set A, and a subset L of A+ we say that L is regular if there is

a finite state automaton accepting it, and we say that L is rational if it can be

obtained from finite subsets of A∗ by finitely many applications of ∪ (union), ·
(concatenation) and ∗ (Klenne’s star operation). It is well known that notions of

‘regular’ and ‘rational’ coincide and we use them as synonyms. To be able to deal

with automata that accept pairs of words and to define automatic semigroups we

need to define a new alphabet A(2, $) = ((A∪{$})× (A∪{$}))\{($, $)} where $

is a symbol not in A (called the padding symbol) and the function δA : A∗×A∗ →
A(2, $)∗ defined by

(a1 . . . am, b1 . . . bn)δA =


ε if 0 = m = n

(a1, b1) . . . (am, bm) if 0 < m = n

(a1, b1) . . . (am, bm)($, bm+1) . . . ($, bn) if 0 ≤ m < n

(a1, b1) . . . (an, bn)(an+1, $) . . . (am, $) if m > n ≥ 0.

Let S be a semigroup and let A be a finite generating set for S with respect to

ψ : A+ → S. The pair (A,L) is an automatic structure for S (with respect to ψ)

if

• L is a regular subset of A+ and Lψ = S,

• L= = {(α, β) : α, β ∈ L, α = β}δA is regular in A(2, $)+, and

• La = {(α, β) : α, β ∈ L, αa = β}δA is regular in A(2, $)+ for each a ∈ A,

where, as before, α = β means that α and β represent the same element in S

(i.e. αψ = βψ). We say that a semigroup is automatic if it has an automatic

structure. For a more detailed introduction see [3].

If (A,L) is an automatic structure for a semigroup S then there is an automatic

structure (A,K) such that each element of S has a unique representative inK (see

[3, Proposition 5.4]); we say that (A,K) is an automatic structure with uniqueness

and that K is a set of unique normal forms for S.

In this section we will consider automaticity of the subsemigroups of the bi-

cyclic monoid and our main result is the following:

Theorem 3.1 All finitely generated subsemigroups of the bicyclic monoid are

automatic.
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A finitely generated subsemigroup of B is a finite union of subsemigroups of

N and copies of B. However, it is not known whether a finite union of automatic

semigroups is necessarily automatic. Hence we need to devise a direct proof of

Theorem 3.1. A major ingredient is the following general result from [6]:

Proposition 3.2 ([6, Theorem 1.1]) Let S be a semigroup and let T be a

subsemigroup of S such that the set S\T is finite. Then S is automatic if and

only if T is automatic.

This result will be combined with the following:

Lemma 3.3 For any numbers p,m ∈ N0 with p ≤ m, d ∈ N and sets I ⊆
{0, . . . , p− 1}, P ⊆ {0, . . . , d− 1} such that 0 ∈ P , each of the following subsets

of the bicyclic monoid is automatic whenever it is a subsemigroup:

(i) ΛI,m,d; (ii) Λ̂I,m,d;

(iii) Σp,d,P ∪ ΛI,p,d; (iv) Σp,d,P ∪ Λ̂I,p,d.

Proof. We observe that although the the semigroups (ii) and (iv) are obtained

from (i) and (iii) respectively by using the anti-isomorphism ̂ , our notion of

automatic structure involves multiplication on the right and so we cannot just

apply ̂ to obtain the latter automatic structures and we need to prove each

of the four cases separately. (In [7], four alternative definitions of automatic

semigroup are studied, that correspond to the use of right or left multiplication

and to the use of the padding symbol on the right or on the left. These definitions

are equivalent when applied to groups but, as shown in [7], they are completely

independent for semigroups.)

(i) Let i+uid = min{i+ud : i+ud ≥ m} for i ∈ I. Fixing i0 ∈ I and u = ui0

we define the alphabet

Λ =
⋃
i∈I

{λ(i, 0), . . . , λ(i, u− 1)}

and the homomorphism

f : Λ∗ → ΛI,m,d;λ(i, j) 7→ cibi+(ui+j)d.

Defining

L =
⋃
i∈I

(
u−1⋃
j=0

{λ(i, j)λ(i0, 0)n : n ≥ 0})
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it is clear that L is a regular language and we will show that it is a set of unique

normal forms for S = ΛI,m,d. Given s ∈ S we can write s = cibi+(ui+k)d for some

i ∈ I and k ≥ 0. Dividing k by u we obtain k = nu+ j with n ≥ 0 and 0 ≤ j < u

and hence the unique word in L representing s is the word λ(i, j)λ(i0, 0)n. To

prove that the pair (Λ, L) is an automatic structure for S we only have to show

that the languages

Lλ(k,l) = {(w1, w2)δ : w1, w2 ∈ L,w1λ(k, l) = w2}

are regular for every λ(k, l) ∈ Λ. We can write

λ(i, j)λ(i0, 0)nλ(k, l) = cibi+(ui+j)d+nudckbk+(uk+l)d = cibi+(ui+j+uk+l)d+nud

and dividing j+uk + l by u we obtain j+uk + l = qu+r with q ≥ 0 and 0 ≤ r < u

and so we have

λ(i, j)λ(i0, 0)nλ(k, l) = cibi+(ui+r)d+(n+q)ud = λ(i, r)λ(i0, 0)n+q, (1)

where w = s with w ∈ Λ∗, s ∈ S means that w represents the element s (i.e.

wf = s). Therefore we have

Lλ(k,l) =
⋃
i∈I

(
u−1⋃
j=0

Yk,l,i,j)

where
Yk,l,i,j = { (λ(i, j)λ(i0, 0)n, λ(i, r)λ(i0, 0)n+q)δ :

uk + j + l = qu+ r, 0 ≤ r < u, n ≥ 0}.

Each set Yk,l,i,j is regular because the numbers q and r are uniquely determined

by the fixed numbers k, l, i and j, and we have

Yk,l,i,j = {(λ(i, j), λ(i, r))} · {(λ(i0, 0), λ(i0, 0))}∗ · {(ε, λ(i0, 0)q)δ}.

Hence Lλ(k,l) is regular.

(ii) We define ui (i ∈ I), i0, u and the alphabet Λ as in the proof of (i) but

now our homomorphism is

f : Λ∗ → S;λ(i, j) 7→ ci+(ui+j)dbi

and our regular language is

L =
⋃
i∈I

(
u−1⋃
j=0

{λ(i0, 0)nλ(i, j) : n ≥ 0}),
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where S = Λ̂I,m,d. Again, L is a set of unique normal forms for S, since we have

λ(i0, 0)nλ(i, j) = ci+(ui+j)d+nudbi, and we will prove that the languages

Lλ(k,l) = {(w1, w2)δ : w1, w2 ∈ L,w1λ(k, l) = w2}

are regular for every λ(k, l) ∈ Λ. We can write

λ(i0, 0)nλ(i, j)λ(k, l) = ci+(ui+j)d+nudbick+(uk+l)dbk = ck+(uk+j+ui+l)d+nudbk

and dividing j+ui + l by u we obtain j+ui + l = qu+r with q ≥ 0 and 0 ≤ r < u

and so we have

λ(i0, 0)nλ(i, j)λ(k, l) = ck+(uk+r)d+(q+n)udbk = λ(i0, 0)q+nλ(k, r).

Therefore we have

Lλ(k,l) =
⋃

i∈I(
⋃u−1

j=0{ (λ(i0, 0)nλ(i, j), λ(i0, 0)n+qλ(k, r))δ :

ui + j + l = qu+ r, 0 ≤ r < u, n ≥ 0})

which is a finite union of regular languages and so is regular.

(iii) Let Z = Λ ∪ {x, y} ∪ Γ, where Λ = {λi : i ∈ I} and Γ = {γr : r ∈ P}, be

an alphabet and define

L =
⋃
i∈I

({λix
u : u ≥ 0}) ∪

⋃
r∈P

({yvγrx
u : u, v ≥ 0}),

which is a regular subset of Z+. We are going to prove that (Z,L) is an automatic

structure (with uniqueness) for the semigroup S = Σp,d,P ∪ ΛI,p,d with respect to

f : Z+ → S; λi 7→ cibi+uid, γr 7→ cp+rbp+r, x 7→ cpbp+d, y 7→ cp+dbp

where i+ uid = min{i+ ud : i+ ud ≥ p} for i ∈ I.
To show that each element in S has a unique representative in L it suffices to

observe that

λix
u = cibi+(ui+u)d (i ∈ I;u ≥ 0), yvγrx

u = cp+r+vdbp+r+ud (r ∈ P ;u, v ≥ 0).

Therefore we only have to show that that languages Lz = {(w1, w2)δ : w1, w2 ∈
L,w1z = w2} are regular for every z ∈ Z. We will first consider the case where

z = λt ∈ Λ. Since Ψ((λix
u)f),Ψ((yvγrx

u)f) ≥ p > t = Φ(λtf) we have

Lλt =
⋃
i∈I

{(λix
u, λix

u+ut)δ : u ≥ 0} ∪
⋃
r∈P

{(yuγrx
u, yvγrx

u+ut)δ : u, v ≥ 0}
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which is a regular language. We will now consider z = γt ∈ Γ. Since for u > 0

we have Ψ((λix
u)f),Ψ((yvγrx

u)f) ≥ p+ d > Φ(γtf) we have

Lγt =
⋃

i∈I({(λix
u, λix

u)δ : u > 0} ∪ {(λi, w)δ : w ∈ L, λiγt = w})∪⋃
r∈P ({(yvγrx

u, yvγrx
u)δ : v ≥ 0, u > 0} ∪ L(γt,r))

where

L(γt,r) =

{
{(yuγr, y

uγr)δ : u ≥ 0} if r ≥ t

{(yuγr, y
uγt)δ : u ≥ 0} otherwise.

We note that, for each i ∈ I, the set {(λi, w)δ : w ∈ L, λiγt = w} has only one

element because L is a set of unique normal forms for S, and so the language Lγt

is a finite union of regular languages and therefore it is regular. The language Lx

is clearly regular since we have Lx = {(w,wx)δ : w ∈ L}. Finally, we have

Ly =
⋃

i∈I({(λix
u, λix

u−1)δ : u > 0} ∪ {(λi, w)δ : w ∈ L, λiy = w})∪⋃
r∈P ({(yvγrx

u, yvγrx
u−1)δ : v ≥ 0, u > 0} ∪ {(yvγr, y

v+1γ0)δ : v ≥ 0})

because, for v ≥ 0, we have

(yvγr)y = (cp+r+vdbp+r)(cp+dbp) = cp+(v+1)dbp = yv+1γ0.

Again, for each i ∈ I, the set {(λi, w)δ : w ∈ L, λiy = w} is regular because it has

only one element and so Ly is also a finite union of regular languages and hence

is regular. We conclude that S is automatic.

(iv) We define the alphabet Z as in the proof of (iii) and our regular language

over Z+ is now

L =
⋃
i∈I

({yvλi : v ≥ 0}) ∪
⋃
r∈P

({yvγrx
u : u, v ≥ 0}).

We are going to prove that (Z,L) is an automatic structure (with uniqueness)

for the semigroup S = Σp,d,P ∪ Λ̂I,p,d with respect to

f : Z+ → S; λi 7→ ci+uidbi, γr 7→ cp+rbp+r, x 7→ cpbp+d, y 7→ cp+dbp

again with i+ uid = min{i+ ud : i+ ud ≥ p} for i ∈ I.
It is again clear that L is a set of unique normal forms for S and we will show

that the languages Lz = {(w1, w2)δ : w1, w2 ∈ L,w1z = w2} are regular for every

z ∈ Z. We start by showing that, for any λt ∈ Λ, we have

Lλt =
⋃

i∈I{(yvλi, y
v+uiλt)δ : v ≥ 0}∪⋃

r∈P ({(yvγrx
u, yvγrx

u−ut)δ : v ≥ 0, u ≥ ut} ∪ L(λt,r)∪⋃ut−1
u=1 {(yvγrx

u, yv+ut−u−ukλk)δ : v ≥ 0, k = p+ r + (u− ut)d})
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where

L(λt,r) =

{
{(yvγr, y

vλt)δ : v ≥ 0} if p+ r ≤ t+ utd

{(yvγr, y
v+ut−ukλk)δ : k = p+ r − utd} otherwise.

We have

yvλiλt = ci+uid+vdbict+utdbt = ct+utd+(v+ui)dbt = yv+uiλt.

If u ≥ ut then

yvγrx
uλt = cp+r+vdbp+r+udct+utdbt = cp+r+vdbp+r+(u−ut)d = yvγrx

u−ut .

For u ∈ {1, . . . , ut − 1} we define k = p+ r + (u− ut)d and we have

w= yvγrx
uλt = cp+r+vdbp+r+udct+utdbt = cp+r+vdbp+r+(u−ut)d

= ck+(v+ut−u)dbk = ck+ukd+(v+ut−u−uk)dbk.

Since S is a semigroup and k < p we have w ∈ Λ̂I,p,d and therefore, observing

the definition of uk, it must be v + ut − u − uk ≥ 0 and we can write w =

yv+ut−u−ukλk. We will now consider the multiplication of a word of the form yvγr

by λt and so we define w = yvγrλt = cp+r+vdbp+rct+utdbt. If p + r ≤ t + utd then

w = ct+utd+vdbt = yvλt. If p + r > t + utd we have w = cp+r+vdbp+r−utd. We

observe that ut > 0 because t < p and t + utd ≥ p and therefore w ∈ Λ̂I,p,d.

Hence, defining k = p+ r − utd we can write

w = ck+(v+ut)dbk = ck+ukd+(v+ut−uk)dbk

and, from the definition of uk, it follows that v + ut − uk ≥ 0 and so we have

w = yv+ut−ukλk. We conclude that Lλt can be defined as a finite union of regular

languages and so it is a regular language.

It is easy to see that

Lγt =
⋃

i∈I{(yvλi, y
v+uiγt)δ : v ≥ 0} ∪ L(γt,r)⋃

r∈P{(yvγrx
u, yvγrx

u)δ : u > 0, v ≥ 0}

where

L(γt,r) =

{
{(yvγr, y

vγr)δ : v ≤ 0} if r ≥ t

{(yvγr, y
vγt)δ : v ≥ 0} otherwise

and so it is a regular language. The language Lx is regular because we have

Lx =
⋃
i∈I

{(yvλi, y
ui+vγ0x)δ : v ≥ 0} ∪

⋃
r∈P

{(yvγrx
u, yvγrx

u+1)δ : u, v ≥ 0}
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and since

Ly =
⋃

i∈I{(yvλi, y
v+ui+1γ0)δ : v ≥ 0}∪⋃

r∈P ({(yvγrx
u, yvγrx

u−1)δ : v ≥ 0, u > 0} ∪ {(yvγr, y
v+1γ0)δ : v ≥ 0})

Ly is a regular language as well. We conclude that (Z,L) is an automatic struc-

ture for S. �

Proof of Theorem 3.1 We know from the previous section that any

finitely generated subsemigroup is either a finite subset of the diagonal, and so it

is automatic, or it has one of the forms:

FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P , FD ∪ F ∪ Λ̂I,p,d ∪ Σp,d,P ,

FD ∪ F ∪ ΛI,p,d, FD ∪ F ∪ Λ̂I,p,d

where I ⊆ {q, q+1, . . . , p−1} for some numbers q, p ∈ N0 and the sets F and FD

are finite. In each case we can remove the finite set FD∪F from our subsemigroup

and we still have a subsemigroup, because we are in fact intersecting it with the

set Sq,p ∪ Σp, which by Proposition 1.1 is itself a subsemigroup. Hence every

finitely generated subsemigroup S of B has a subsemigroup U such that S\U is

finite and that, by the previous lemma, is automatic. It follows from Proposition

1.3 that S is automatic as well. �

4 Finite presentability

Let A be an alphabet and let R ⊆ A+ × A+ be a relation on A+. We say that

the semigroup S is defined by the presentation 〈A | R〉 if S is generated by A

with respect to a mapping ψ : A → S, and the kernel of the extension of ψ

to a homomorphism A+ → S is the smallest congruence ρ containing R. In this

case, of course, we have S ∼= A+/ρ. Given a presentation 〈A | R〉, for two words

w, z ∈ A+ we write w →∗ z, and say that w = z is a consequence of R (or that

the word w can be reduced to z by applying relations from R), to mean that either

w ≡ v or that there is a sequence a words w ≡ w1, w2, . . . , wn ≡ v where for each

i = 1, . . . , n − 1 we can write wi ≡ αiuiβi, wi+1 ≡ αiviβi for some αi, βi ∈ A∗

and (ui, vi) ∈ R or (vi, ui) ∈ R. It is then well known that the relation w = z

holds in S (i.e. wψ = zψ) if and only if it is a consequence of R. Moreover, given

a semigroup S generated by a set A and a set R ⊆ A+ × A+, the pair 〈A | R〉
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is a presentation for S if and only if S satisfies all relations from R and any

other relation that holds in S is a consequence of R. We will use the following

straightforward consequence of this fact:

Proposition 4.1 Let S be a semigroup generated by a set A, let R ⊆ A+ × A+

and let L ⊆ A+ be a set of unique normal forms for S. If the following conditions

hold:

(i) S satisfies all the relations from R; and

(ii) any word w ∈ A+ can be reduced to the corresponding unique normal form

in L by using relations from R;

then 〈A | R〉 is a presentation for S.

We say that a semigroup S is finitely presented if there is a presentation 〈A | R〉
for S where both A and R are finite sets. For further details about semigroup

presentations we refer the reader to [10].

In the previous section Proposition 3.2 allowed us to remove finite subsets

from the semigroups when considering automaticity. We have a similar result for

finite presentability, proved in [14]:

Proposition 4.2 ([14, Theorem 1.3]) Let S be a semigroup and T be a sub-

semigroup of S such that S\T is finite. Then S is finitely presented if and only

if T is finitely presented.

Our main result of this section is the following:

Theorem 4.3 All finitely generated subsemigroups of the bicyclic monoid are

finitely presented.

The main work on the proof of Theorem 4.3 is contained in the following:

Lemma 4.4 For any numbers p,m ∈ N0 with p ≤ m, d ∈ N and sets I ⊆
{0, . . . , p− 1}, P ⊆ {0, . . . , d− 1} such that 0 ∈ P , each of the following subsets

of B is finitely presented whenever it is a subsemigroup:

(i) ΛI,m,d; (ii) ΛI,p,d ∪ Σp,d,P .
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Proof. (i) We consider the automatic structure (Λ, L) obtained in the proof of

Lemma 3.3 (i), which gives us a finite generating set and a set of unique normal

forms for ΛI,m,d. We are going to prove that < Λ | R > is a finite presentation

for T , where R consists of the following relations:

λ(i, j)λ(k, l) = λ(i, r)λ(i0, 0)q where j + uk + l = qu+ r, 0 ≤ r < u

(i, k ∈ I, j, l ∈ {0, . . . , u− 1}).

That the relations hold follows from equation (1), in the proof of Lemma 3.3.

We are going to show that any word w ∈ Λ+ can be reduced to a word in L by

applying relations from R, using induction on the length |w| of the word w. If

|w| = 1 then w ∈ L by definition of L. If |w| = 2 then w = λ(i, j)λ(k, l) and

therefore

w →∗ λ(i, r)λ(i0, 0)q ∈ L, j + uk + l = qu+ r (0 ≤ r < u),

using one relation from R. Let n ≥ 2 and suppose that any word w such that

|w| ≤ n can be reduced to a word in L by using relations from R. Let w ∈ Λ+

with |w| = n+ 1. We have w = λ(i1, j1) . . . λ(in, jn)λ(in+1, jn+1). We can reduce

λ(in, jn)λ(in+1, jn+1) obtaining

w →∗ λ(i1, j1) . . . λ(in−1, jn−1)λ(in, r)λ(i0, 0)q

where

jn + uin+1 + jn+1 = qu+ r (0 ≤ r < u).

Letting w′ = λ(i1, j1) . . . λ(in−1, jn−1)λ(in, r) we have |w′| = n and, using the

induction hypothesis, we have w′ →∗ λ(i, j)λ(i0, 0)m ∈ L for some i ∈ I, j ∈
{0, . . . , u− 1}, m ∈ N0, implying w →∗ λ(i, j)λ(i0, 0)m+q ∈ L.

(ii) We will use the automatic structure (Z,L) obtained in the proof of Lemma

3.3 (iii) to prove that T = Σp,d,P ∪ ΛI,p,d is finitely presented. We will show that

< Z | R > is a finite presentation for T , defining R to be the following set of

relations:

x = γ0x (2)

y = yγ0 (3)

λiλj =λix
uj (i, j ∈ I) (4)

xλi =x1+ui (i ∈ I) (5)

yλi = yxui (i ∈ I) (6)
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γrλi = γrx
ui (r ∈ P, i ∈ I) (7)

xy = γ0 (8)

λiy = λj (i ∈ I, ui > 1, j = p+ d− uid) (9)

λiy = γ0 (i ∈ I, ui = 1) (10)

γry = y (r ∈ P ) (11)

xγr = x (r ∈ P ) (12)

λiγr = λi (i ∈ I, r ∈ P, i+ uid ≥ p+ r) (13)

λiγr = λj (i ∈ I, r ∈ P, i+ uid < p+ r, j = p+ r − uid) (14)

γrγt = γr (r ≥ t) (15)

γrγt = γt (r < t) (16)

To see that any of these relations holds we just have to prove that both sides

of it correspond to the same word in {cibj : i, j ≥ 0}. We will only prove that

relations (9), (10), (13) and (14) hold since for the others this is straightforward.

To prove that relations (9) and (10) hold we observe that, by definition of ui,

we have λiy = cibi+uidcp+dbp = cp+d−uidbp. If ui = 1 then λiy = cpbp = γ0 and

relation (10) holds. If ui > 1 then p+d−uid < p and so, defining j = p+d−uid,

we have λiy = cjbj+(ui−1)d ∈ ΛI,p,d. But we have j + (ui − 1)d = p which implies,

by definition of uj, that ui − 1 = uj which means that λiy = λj and relation (9)

holds as well.

To prove that relations (13) and (14) hold we start by writing

λiγr = cibi+uidcp+rbp+r.

If i + uid ≥ p + r then λiγr = cibi+uid = λi and relation (13) holds. Otherwise

we have λiγr = cp+r−uidbp+r ∈ ΛI,p,d because ui > 0. Defining j = p+ r − uid we

have λiγr = cjbj+uid and, since j + uid = p + r < p + d and using the definition

of uj, we must have ui = uj, which implies λiγr = λj and relation (14) holds as

well.

We are now going to prove that any word in w ∈ Z+ can be reduced to a

word in L, using our relations, by induction on the length of w. If |w| = 1 then

either w ∈ L or it can be reduced to a word in L by using one of the relations (2)

or (3). We now consider words of length 2. The word λiλt reduces to λix
ut ∈ L

using relation (4); λix ∈ L; λiy either reduces to γ0 ∈ L using relation (10) or

to λj ∈ L for some j using relation (9); λiγr reduces to λj ∈ L for some j using

relations (13) or (14); xx reduces to γ0x
2 ∈ L using (2); xy reduces to γ0 ∈ L
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using relation (8); xλi reduces to γ0x
1+ui ∈ L using relations (5) and (2); xγt

reduces to γ0x ∈ L using relations (12) and (2); yx reduces to yγ0x ∈ L using

(2); yy reduces to y2γ0 ∈ L using (3); yλi reduces to yγ0x
ui ∈ L using (6) and

(3); yγt ∈ L; γix ∈ L; γiy reduces to yγ0 ∈ L using (11) and (3); γiλt reduces to

γix
ut ∈ L using (7); finally γiγr reduces to γj ∈ L for some j using (15) or (16).

In the following induction step we use that fact that if a word w belongs to

L then wxn belongs to L as well for any n ∈ N0, which follows immediately from

the definition of L. Let n ≥ 2 and suppose that all words w ∈ Z+ with |w| ≤ n

can be reduced to a word in L. Let w ∈ Z+ be a word of length n + 1. Then

we have w = w1g1g2 with w1 ∈ Z+ and g1, g2 ∈ Z. We will consider all possible

pairs of generators g1, g2 ∈ Z and prove that in every case w reduces to a word

in L using the relations.

Case 1: g1g2 ∈ {λiy, λiγt, xy, xγt, γty, γtγi}. In these cases we can apply one

of the relations to reduce g1g2 to a generator g. We can then apply the induction

hypothesis to reduce w1g to a word in L.

Case 2: g1g2 ≡ g1x. In these cases we can reduce w1g1 to a word w2 ∈ L

using the induction hypothesis and so we can reduce w to w2x ∈ L.

Case 3: g1g2 ≡ λiλt. Using relation (4) we have w →∗ w1λix
ut and, since

|w1λi| = n, using the induction hypothesis we have w1λi →∗ w2 ∈ L and therefore

w →∗ w2x
ut ∈ L.

Case 4: g1g2 ≡ xλt. Using relation (5) we have w →∗ w1x
1+ut . Since |w1| ≤ n,

using the hypothesis we can write w1 →∗ w2 ∈ L and so w →∗ w1x
1+ut →∗

w2x
1+ut ∈ L.

Case 5: g1g2 ≡ yλt. Using relation (6) we reduce yλt to yxut . We can

then apply the induction hypothesis to w1y to obtain w1y →∗ w2 ∈ L implying

w →∗ w2x
ut ∈ L.

Case 6: g1g2 ≡ yy. We start by reducing w1y to a word w2 ∈ L using the

induction hypothesis. We can have w2 ≡ λix
u or w2 ≡ yvγrx

u. If w2 ≡ λi then

w →∗ λiy and applying relations (9) or (10) it reduces to a word in L. If w2 ≡ λix

then w →∗ λixy →∗ λiγ0 by applying relation (8). Therefore by applying now

relations (13) or (14), w reduces to word in L. If w2 ≡ λix
u with u > 1 then

w →∗ λix
u−1xy →∗ λix

u−2xγ0 →∗ λix
u−1 ∈ L,

by applying relations (8) and (12). If w2 ≡ yvγr then

w →∗ yvγry →∗ yvy →∗ yv+1γ0 ∈ L,
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using relations (11) and (3). If w2 ≡ yvγrx then w →∗ yvγrxy and we can apply

relation (8) to reduce xy to γ0. Then we can reduce γrγ0 to γr by applying relation

(15) and so w →∗ yvγr ∈ L. We can have w2 ≡ yvγrx
u with u > 1 and then

w →∗ yvγrx
u−1xy →∗ yvγrx

u−2xγ0 →∗ yvγrx
u−1 ∈ L

by applying relations (8) and (12).

Case 7: g1g2 ≡ yγt. We start again by reducing w1y to a word w2 ∈ L. We can

have w2 ≡ λix
u or w2 ≡ yvγrx

u. If w2 ≡ λi then w →∗ λiy and applying relation

(9) or relation (10) we can reduce w to a generator that belongs to L. If w2 ≡ λix
u

with u > 0 then we can apply relation (12) giving w →∗ λix
uγt →∗ λix

u ∈ L.

If w2 ≡ yvγr then w →∗ yvγrγt and so applying relations (15) or (16) we have

w →∗ yvg ∈ L with g ∈ {γr, γt}. Finally, if w2 ≡ yvγrx
u with u > 0 then we have

w →∗ yvγrx
uγt →∗ yvγrx

u ∈ L by applying relation (12).

Case 8: g1g2 ≡ γtλi. Applying relation (7) we get γtλi →∗ γtx
ui . Since

|w1γt| ≤ n, using the hypothesis, we have w1γt →∗ w2 ∈ L and so w →∗ w2x
ui ∈

L. �

Proof of Theorem 4.3 We know from Section 1 that any finitely gener-

ated subsemigroup is either a finite subset of the diagonal, and so it is finitely

presented, or it has one of the forms:

FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P , FD ∪ F ∪ Λ̂I,p,d ∪ Σp,d,P ,

FD ∪ F ∪ ΛI,p,d, FD ∪ F ∪ Λ̂I,p,d

where I ⊆ {q, q + 1, . . . , p − 1} for some numbers q, p ∈ N0 and the sets F and

FD are finite. Without loss of generality we may consider only subsemigroups of

the form

FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P , FD ∪ F ∪ ΛI,p,d

(the other two are anti-isomorphic to them). In both cases we can remove the

finite set FD∪F from our subsemigroup and we still have a subsemigroup. Hence,

in both cases, our subsemigroup S has a subsemigroup U such that S\U is finite

and which, by Lemma 4.4, is finitely presented. It follows from Proposition 4.2

that S is finitely presented as well. �
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5 Residual finiteness

We say that a semigroup S is residually finite if, for any two elements s1, s2 ∈ S,

there is a finite semigroup F and a homomorphism φ : S → F that separates s1

and s2 (such that s1φ 6= s2φ). We have the following:

Theorem 5.1 A subsemigroup of the bicyclic monoid B is residually finite if and

only if it is not two-sided.

Proof. We first show that a two-sided semigroup is not residually finite. In fact,

a two-sided semigroup S contains a subset of the form X = {cp+udbp+vd;u, v ≥ 0},
which is isomorphic to the bicyclic monoid; the mapping ψ : B → X; cubv 7→
cp+udbp+vd is clearly an isomorphism. Since B is not residually finite (see [11]) it

follows that S is not residually finite either.

We will now show that a subsemigroup S contained in U (an upper semigroup

or a subset of the diagonal) is residually finite. Let α = cibj and β = ckbl be two

arbitrary elements of S. Taking p ≥ max(j, l) the set Sp = S ∩ Ip is an ideal of

S. Hence the Rees homomorphism φ : S → (S\Sp)∪ {0} separates α and β, and

S\Sp∪{0} is finite, since S\Sp ⊆ T0,p. Analogously, any subsemigroup contained

in Û is residually finite. �

This theorem has the following equivalent formulation:

Theorem 5.2 A subsemigroup of the bicyclic monoid B is residually finite if and

only if it does not contain a copy of B.
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