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August 15, 2011

Abstract

For a semigroup S its d-sequence is d(S) = (d1, d2, d3, . . .), where di
is the smallest number of elements needed to generate the ith direct
power of S. In this paper we present a number of facts concerning the
type of growth d(S) can have when S is an infinite semigroup, com-
paring them with the corresponding known facts for infinite groups,
and also for finite groups and semigroups.
2000 Mathematics Subject Classification: 20M05, 20M20.

1 Introduction

For a semigroup S let d(S) denote the smallest number of generators needed
to generate S, and let

d(S) = (d(S), d(S2), d(S3), . . . ),

where Sn is nth direct power of S. In this paper we present some obser-
vations regarding the growth of the sequence d(S) for infinite semigroups
S.

Wiegold and various co-authors in a series of papers investigated the
sequence d(S), mostly when S is a finite group [14, 15, 16, 17, 8], but also
when it is a finite semigroup [18] or an infinite group [19, 13]. In the context
of this paper we can summarise their main findings as follows. For a finite
semigroup S we have:

(FG1) If S is trivial then d(S) = (1, 1, 1, . . . ).

(FG2) If S is a non-trivial perfect group then d(S) grows logarithmically.

(FG3) If S is a monoid which is not a perfect group then d(S) grows lin-
early.

(FG4) If S is not a monoid then d(S) grows exponentially.
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For S an infinite group we have:

(IG1) If S is an infinite simple group then d(S) is eventually constant.

(IG2) If S is an infinite perfect group then d(S) is bounded above by a
logarithmic function.

(IG3) If S is an infinite non-perfect group then d(S) grows linearly.

To grow logarithmically (resp. linearly, exponentially) throughout the pa-
per means that the sequence is bounded both below and above by logarith-
mic (resp. linear, exponential) functions.

The results from above concerning groups largely carry over to other
‘classical’ algebraic structures, such as rings, associative and Lie algebras;
this is the topic of [9]. The purpose of the present article is to present some
results concerning the growth of d(S) for an infinite semigroup or monoid
S. We mention in passing that recently d-sequences have (re)appeared in
the context of Universal Algebra, in connection with quantified constraint
satisfaction problems; see [5]. Also, Berman et al. [1] undertake an in-depth
study of several sequences closely related to d and to direct powers.

One recurring theme in the results we present is that infinite semi-
groups and monoids compare to groups in ways that are often rather dif-
ferent from the same comparison in the finite case. For example, adopting a
convention that slower growth rates are ‘better’, we see from (FG1)–(FG3)
that growth rates of perfect groups, which are logarithmic, are better than
those of non-perfect groups and monoids, which are linear. For infinite
monoids, however, we have:

(IG4) There exists an infinite non-group monoid S such that d(S) is con-
stant (Theorem 5.1).

(IG5) There exists an infinite non-group monoid S such that d(S) is loga-
rithmic (Corollary 5.2).

Of course, just like groups, there is a natural upper bound on the growth
of d-sequences of monoids:

(IG6) If S is any monoid the sequence d(S) is bounded above by a linear
function.

This follows from the fact that if S = 〈A〉 and T = 〈B〉 are two monoids
then S× T is generated by the set (A× {1}) ∪ ({1} × B). We will use this
fact without special mention throughout.

However, some caution is needed, as the same does not hold for semi-
groups without identity. Indeed, we saw in (FG4) that finite semigroups
may have exponential d-sequences, and that this is governed precisely by
the presence or absence of an identity element. The situation for infinite
semigroups is very different:
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(IG7) There exists an infinite semigroup S without identity such that d(S)
is eventually constant (Corollary 7.1).

(IG8) There exists an infinite semigroup S without identity such that d(S)
is logarithmic (Corollary 7.2).

(IG9) There exists an infinite semigroup S without identity such that d(S)
is linear (Corollary 7.2).

The worst growth rate that a finite semigroup (or indeed any finite struc-
ture) can have is exponential. For infinite semigroups it can happen that
d(Sn) = ∞, even if S itself is finitely generated. However, we prove:

(IG10) If, for a semigroup S, we have d(S2) < ∞ then d(Sn) < ∞ for all n
and the sequence d(S) is bounded above by an exponential function
(Corollary 6.4).

The next possible growth rate is linear:

(IG11) The growth of the d-sequence of a semigroup cannot be strictly
between exponential and linear (Theorem 6.5).

From (FG1) and (IG1) we see that simplicity has a major effect on the
growth rate of both finite and infinite groups. The analogue of simplicity
for semigroups is congruence freeness – not having any proper homomor-
phic images. We show:

(IG12) The polycyclic monoid Pk (k ≥ 2) is an infinite congruence free
monoid for which the d-sequence grows linearly (Theorem 3.1).

(IG13) There exists an infinite congruence free semigroup S without iden-
tity such that d(S) is constant (Corollary 7.1).

In fact, we compute the precise values for the d-sequence of the poly-
cyclic monoid Pk and its relative the bicyclic monoid (Theorem 2.1). We also
present some observations regarding the d-sequences of semigroup and
group actions (Section 8), and propose some open problems which seem
worthy of investigation (Section 9).

2 The bicyclic monoid

The bicyclic monoid B is defined by the presentation

B = 〈b, c | bc = 1〉 .

Each element of B can be uniquely expressed as cnbm with n, m ∈ N0. The
bicyclic monoid is simple (i.e. has no proper ideals), but is not congruence
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free: the mapping b 7→ 1, c 7→ −1 induces an epimorphism π : B → Z.
In particular, from (IG3) and (IG6) we know that d(B) grows linearly. Here
we determine d(B) precisely:

Theorem 2.1. For each n ∈ N, the minimal number of generators for the direct
power Bn of the bicyclic monoid B is n + 1; that is,

d(B) = (2, 3, 4, . . . ).

Proof. For i = 1, . . . , n let

βi = (1, . . . , 1︸ ︷︷ ︸
i−1

, b, 1, . . . , 1︸ ︷︷ ︸
n−i

), γi = (1, . . . , 1︸ ︷︷ ︸
i−1

, c, 1, . . . , 1︸ ︷︷ ︸
n−i

).

Note that 〈β1, . . . , βn, γ1, . . . , γn〉 = Bn. Furthermore, let γ = (c, . . . , c).
From

γi = β1β2 . . . βi−1βi+1 . . . βnγ

it follows that Bn = 〈β1, . . . , βn, γ〉.
On the other hand, since Z is a homomorphic image of B, it follows

that Zn is a homomorphic image of Bn, and hence d(Bn) ≥ d(Zn) = n + 1
(remembering that we are considering Zn as a semigroup here).

3 The polycyclic monoids

The polycyclic monoid Pk (k = 2, 3, . . . ) is defined by the presentation:

Pk = 〈b1, . . . , bk, c1, . . . , ck | bici = 1, bicj = 0 (1 ≤ i, j ≤ k, i 6= j)〉

Every non-zero element of Pk can be uniquely expressed in the form γβ,
where γ is a word over {c1, . . . , ck} and β is a word over {b1, . . . , bk}. It
is known that Pk is a congruence free monoid; see [7, Theorem 9.3.5]. In
this section we determine the d-sequence of Pk, and observe that unlike
the infinite simple groups which have eventually constant d-sequences by
(IG1), the sequence d(Pk) is linear. More precisely, we prove:

Theorem 3.1. Let k, n ∈ N with k ≥ 2. The minimal number of generators for
the direct power Pn

k of the polycyclic monoid Pk is nk + 1. In other words,

d(Pk) = (k + 1, 2k + 1, 3k + 1, . . . ).

Before proving Theorem 3.1 we record the following lemma concerning
the d-sequences of Rees quotients. For a semigroup S and an ideal I of
S, the Rees quotient S/I is defined as the quotient of S by the congruence
{(s, s) : s ∈ S \ I} ∪ (I × I). It can be identified with the set (S \ I) ∪ {0},
where s ∈ S \ I represents the singleton {s}, and 0 represents the class I.
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Lemma 3.2. Let S be a monoid, and let I be an ideal of S. If the set S \ I generates
S then d(S) = d(S/I).

Proof. Let n ∈ N be arbitrary. Since (S/I)n is a homomorphic image of Sn,
we have d((S/I)n) ≤ d(Sn).

For the converse inequality, we first note that since S \ I generates S,
and 1 ∈ S \ I, it follows that

Sn = 〈(S \ I)n〉. (1)

Now suppose Y ⊆ (S/I)n generates (S/I)n and |Y| = d((S/I)n). The
complement of the set (S \ I)n in (S/I)n is

J = {(x1, . . . , xn) ∈ (S/I)n : xi = 0 for some i}.

This is an ideal in (S/I)n, and so no elements of J can take part in generat-
ing an element outside of J. Therefore, the submonoid of (S/I)n generated
by Y ∩ (S \ I)n must contain the entire set (S \ I)n. Interpreting this back
in S, we see that 〈Y ∩ (S \ I)n〉 certainly contains (S \ I)n, which in turn
generates the entire Sn by (1). Therefore

d(Sn) ≤ |Y ∩ (S \ I)n| ≤ |Y| = d((S/I)n),

and the lemma is proved.

Proof of Theorem 3.1. For any i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ k let

βij = (1, . . . , 1︸ ︷︷ ︸
i−1

, bj, 1, . . . , 1︸ ︷︷ ︸
n−i

), γij = (1, . . . , 1︸ ︷︷ ︸
i−1

, cj, 1, . . . , 1︸ ︷︷ ︸
n−i

).

Clearly these elements generate Pn
k . In addition, let

δj = βn−1,jβn,j+1 = (1, . . . , 1, bj, bj+1) (1 ≤ j < k),

ζ j = (cj, . . . , cj) (1 ≤ j ≤ k).

We claim that the set

X = {βij : 1 ≤ i ≤ n− 2, 1 ≤ j ≤ k} ∪ {βn−1,k, βn1}
∪ {δj : 1 ≤ j < k} ∪ {ζ j : 1 ≤ j ≤ k} (2)

generates Pn
k . We prove this by showing that all βij and all γij belong to

〈X〉. Obviously βij (1 ≤ i ≤ n− 2, 1 ≤ j ≤ k) belong to X, as do βn1 and
βn−1,k.

Claim 1. βnj ∈ 〈X〉 for all j = 1, . . . , k.
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Proof. Induction on j, the case j = 1 being trivial. Suppose βnj ∈ 〈X〉 for
some j < k. Then 〈X〉 contains

β1jβ2j . . . βn−2,jδjβnjζ j

= (bj, . . . , bj, 1, 1)(1, . . . , 1, bj, bj+1)(1, . . . , 1, 1, bj)(cj, . . . , cj, cj, cj)

= (1, . . . , 1, 1, bj+1) = βn,j+1,

as required.

Claim 2. γnj ∈ 〈X〉 for all j = 1, . . . , k.

Proof. A ‘reverse’ induction on j, starting at k and going downwards. For
j = k we have

〈X〉 3 β1kβ2k . . . βn−2,kβn−1,kζk

= (bk, . . . , bk, bk, 1)(ck, . . . , ck, ck, ck) = (1, . . . , 1, 1, ck) = γnk.

Suppose that γn,j+1 ∈ 〈X〉 for some j ≥ 1. We have

〈X〉 3 β1jβ2j . . . βn−2,jδjγn,j+1ζ j

= (bj, . . . , bj, bj, bj+1)(1, . . . , 1, 1, cj+1)(cj, . . . , cj, cj, cj)

= (1, . . . , 1, 1, cj) = γnj,

completing the induction.

Claim 3. βn−1,j ∈ 〈X〉 for all j = 1, . . . , k− 1.

Proof. 〈X〉 3 δjγn,j+1 = βn−1,j.

Claim 4. γij ∈ 〈X〉 for all i = 1, . . . , n− 1, j = 1, . . . , k.

Proof. We have

〈X〉 3 β1j . . . βi−1,jβi+1,j . . . βnjζ j

= (bj, . . . , bj, 1, bj, . . . , bj)(cj, . . . , cj, cj, cj, . . . , cj)

= (1, . . . , 1, cj, 1, . . . , 1) = γij,

as required.

Claims 1–4 complete the proof of the fact that the set X generates Pn
k .

Clearly, the size of X is (n− 2)k+ 2+(k− 1)+ k = nk+ 1, and we conclude
that d(Pn

k ) ≤ nk + 1.
For the reverse inequality, let us consider the monoid Fk with presenta-

tion
Fk = 〈b1, . . . , bk, c1, . . . , ck | bici = 1 (1 ≤ i ≤ k)〉;
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this is the free product of k copies of the bicyclic monoid B. The set of
elements in Fk containing bicj with i 6= j as a subword forms an ideal I of Fk,
and the Rees quotient Fk/I is naturally isomorphic to Pk. By Lemma 3.2 we
have d(Fn

k ) = d(Pn
k ), since bi, ci 6∈ I. The free product Fk also has the direct

power Bk as a homomorphic image (by adding the relations bibj = bjbi,
bicj = cjbi for all i 6= j). Hence Bkn is a homomorphic image of Fn

k , and from
Theorem 2.1 we know that d(Bkn) = kn + 1, so that

d(Pn
k ) = d(Fn

k ) ≥ d(Bkn) = kn + 1,

completing the proof.

4 Diagonal acts

In what follows we will make use of the language of semigroup actions.
Suppose that a semigroup S acts on a set X on the right via (x, s) 7→ x ·
s. A set A ⊆ X generates X if A · S′ = X, where S′ denotes the monoid
obtained by adjoining an identity to S if it does not already have one. By
analogy to our definition for semigroups, let d(X) denote the smallest size
of a generating set for X. If d(X) < ∞ we say that X is finitely generated, and
if d(X) = 1 we say that X is cyclic. The nth direct power of X is the set Xn

equipped with the ‘diagonal’ action

(x1, . . . , xn) · s = (x1 · s, . . . , xn · s).

The d-sequence of X is now

d(X) = (d(X), d(X2), d(X3), . . . ).

Analogous definitions can be made for left acts, and for bi-acts.
A semigroup S acts on itself by right multiplication and by left multi-

plication. This gives rise to three acts: the right regular representation, the
left regular representation and the regular bi-representation. In order to
distinguish these from the semigroup S, let us denote them by Rr(S), Rl(S),
Rb(S) respectively. The direct powers of these acts are referred to in [10] as
the diagonal acts of S.

Our main observation, linking the diagonal acts and the d-sequences, is
the following:

Theorem 4.1. For a semigroup S and n ∈N we have

d(Sn) ≤ d(Rb(S)n) + d(S).

Proof. Let A be a generating set for Rb(S) with |A| = d(Rb(S)), and let B
be a generating set of S with |B| = d(S). For s ∈ S, let s = (s, . . . , s) ∈ Sn.
The diagonal S = {s : s ∈ S} is a subsemigroup of Sn isomorphic to S;

7



it is therefore generated by the set B. We claim that Sn is generated by the
set A ∪ B. Indeed, since A generates Rb(S), for an arbitrary (x1, . . . , xn) ∈
Sn there exist (a1, . . . , an) ∈ A and s, t ∈ S′ such that s · (a1, . . . , an) · t =
(s1, . . . , sn). But then in the semigroup Sn we have

s(a1, . . . , an)t = s · (a1, . . . , an) · t = (x1, . . . , xn).

Since clearly s, t ∈ S′ = 〈B〉′, the theorem is proved.

Corollary 4.2. If S is a finitely generated semigroup satisfying d(Rr(S)2) = 1 or
d(Rl(S)2) = 1 then d(Sn) ≤ d(S)+ 1 for every n ∈N, and so d(S) is eventually
constant.

Proof. Without loss of generality assume d(Rr(S)2) = 1. By [11, Lemma
2.6] this implies d(Rr(S)n) = 1 for all n ∈ N, and hence d(Rb(S)n) = 1, so
that the result follows from Theorem 4.1.

5 Partially recursive functions in one variable

The first example of a finitely generated monoid with d(Rr(S)2) = 1 given
in [10] is the monoid RN of all partially recursive functions N→ N in one
variable. For basic facts about partially recursive functions, and especially
the existence of universal partially recursive functions which are crucial
for the argument below, we refer the reader to any standard text on com-
putability, such as [6]. It is shown in [10] that RN can be generated by four
mappings; Corollary 4.2 implies that d(Rn

N) ≤ 5 for all n. In fact, we can
prove:

Theorem 5.1. Every direct power of the monoid RN of all partially recursive
functions can be generated by two elements, i.e.

d(RN) = (2, 2, 2, . . . ).

Proof. Let ψ : N ×N → N be a universal partially recursive function
for the family of all partially recursive functions in one variable. Thus for
every f ∈ RN there exists i ∈ N such that x f = (i, x)ψ for all x ∈ N.
Let p1, p2, p3, . . . be the sequence of prime numbers. Every x ∈ N can
be uniquely represented as a product ∏∞

i=1 pxi
i where xi ∈ N0 and all but

finitely many are equal to 0.
Let n ∈ N be fixed. Let us define two tuples g = (g, . . . , g) and h =

(h1, . . . , hn) from Rn
N as follows:( ∞

∏
i=1

pxi
i

)
g =

∞

∏
i=1

pxi
i+1, (3)

( ∞

∏
i=1

pxi
i

)
hk =

{
px1+1

1 ∏∞
i=2 pxi

i if x2 = 0
(x2k, ∏∞

i=1 px2n+1+i
i )ψ if x2 6= 0.

(4)
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It is a routine exercise to verify that g, h1, . . . , hk are all partially recursive.
We claim that Rn

N is generated by g and h. To this end let f = ( f1, . . . , fn) ∈
Rn

N. Let m1, . . . , mn ∈N be such that

(mj, x)ψ = x f j (1 ≤ j ≤ n, x ∈N). (5)

Let us consider the product

g2hmn g2hmn−1 . . . g2hm1 gh ∈ Rn
N. (6)

Its kth component (1 ≤ k ≤ n) is

g2hmn
k g2hmn−1

k . . . g2hm1
k ghk.

Let us determine how this mapping acts on an arbitrary x = ∏∞
i=1 pxi

i ∈N:( ∞

∏
i=1

pxi
i

)
g2hmn

k g2hmn−1
k . . . g2hm1

k ghk

=

(
p0

1 p0
2

∞

∏
i=1

pxi
i+2

)
hmn

k g2hmn−1
k . . . g2hm1

k ghk (by (3))

=

(
pmn

1 p0
2

∞

∏
i=1

pxi
i+2

)
g2hmn−1

k . . . g2hm1
k ghk (by (4))

=

(
p0

1 p0
2 pmn

3 p0
4

∞

∏
i=1

pxi
i+4

)
hmn−1

k . . . g2hm1
k ghk (by (3))

=

(
pmn−1

1 p0
2 pmn

3 p0
4

∞

∏
i=1

pxi
i+4

)
g2 . . . g2hm1

k ghk (by (4))

...

=

(
pm1

1 p0
2 . . . pmn−1

2n−3 p0
2n−2 pmn

2n−1 p0
2n

∞

∏
i=1

pxi
2n+i

)
ghk

=

(
p0

1 pm1
2 p0

3 . . . pmn−1
2n−2 p0

2n−1 pmn
2n p0

2n+1

∞

∏
i=1

pxi
2n+i+1

)
hk (by (3))

=

(
mk,

∞

∏
i=1

pxi
i

)
ψ (by (4))

=(
∞

∏
i=1

pxi
i ) fk. (by (5))

It then follows that the product (6) is actually equal to f = ( f1, . . . , fn) and
the theorem is proved.

A further corollary of this and Theorem 4.1 is:
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Corollary 5.2. There exists an infinite non-group monoid S such that d(S) grows
logarithmically.

Proof. Let T be any monoid such that d(T) is (eventually) constant (such
as RN, say), and let G be any group such that d(G) is logarithmic (such as
any finite non-abelian simple group). Then d(T × G) is bounded below by
d(G) and above by d(T) + d(G), two logarithmic functions .

6 Semigroups without identity

Robertson, Ruškuc and Wiegold [12] describe necessary and sufficient con-
ditions for the direct product of two semigroups to be finitely generated or
finitely presented. Here we will make use of their findings regarding the
generators.

An element s of a semigroup S is said to be indecomposable if s 6= uv for
any u, v ∈ S. Clearly, an indecomposable element must belong to every
generating set of S. Now suppose that S and T are infinite semigroups. If
s ∈ S is indecomposable then (s, t) is indecomposable in S× T for every t ∈
T, and so S× T is not finitely generated. Suppose, on the other hand that
neither S nor T have any indecomposable elements. Take any generating
sets A and B of S and T respectively, and write

a = ζ(a)σ(a) (a ∈ A), b = θ(b)τ(b) (b ∈ B),

where ζ(a) ∈ A, σ(a) ∈ S, θ(b) ∈ B, τ(b) ∈ T. With this notation we have:

Proposition 6.1 ([12, Proposition 2.5]). The direct product S× T is generated
by the set

(A ∪ {σ(a) : a ∈ A})× (B ∪ {τ(b) : b ∈ B}).

Corollary 6.2 ([12, Theorem 2.1]). The direct product S× T of two infinite semi-
groups is finitely generated if and only if both S and T are finitely generated and
neither has any indecomposable elements.

Corollary 6.3. For any two infinite semigroups S and T with no indecomposable
elements we have

d(S× T) ≤ 4d(S)d(T).

The first corollary for the growth of d-sequences is as follows.

Corollary 6.4. Let S be an infinite semigroup. If S2 is finitely generated then Sn

is finitely generated for every n ∈ N, and the sequence d(S) is bounded above by
an exponential function.

Proof. By Corollaries 6.2, 6.3, S2 is finitely generated if and only if S is
finitely generated and has no indecomposable elements, in which case we
have

d(S2) ≤ 4d(S)2.
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It is easily seen that S having no indecomposable elements implies that Sn

has no indecomposable elements, and so an easy induction shows that

d(Sn) ≤ 4n−1d(S)n,

proving the corollary.

We can also prove that the growth of the d-sequence of a semigroup
cannot be strictly between linear and exponential:

Theorem 6.5. Let S be a finitely generated semigroup. If there exist p, q ∈ S such
that pS = Sq = S then d(S) is bounded above by a linear function, and otherwise
it is bounded below by an exponential function.

Proof. Suppose first that pS = Sq(= pSq) = S for some p, q ∈ S. Let
e, f ∈ S be such that pe = p and f q = q. Let A be any finite generating set
of S. In the direct power Sn (n > 1) define the following tuples:

∆p = (p, . . . , p), ∆q = (q, . . . , q),
αi,a = ( f , . . . , f︸ ︷︷ ︸

i−1

, a, e, . . . , e︸ ︷︷ ︸
n−i

) (a ∈ A, i = 1, . . . , n).

We claim that Sn is generated by the set

X = {∆p, ∆q} ∪ {αi,a : a ∈ A, i = 1, . . . , n},

from which it will immediately follow that d(Sn) ≤ 2+ n|A|, a linear upper
bound as required.

Let σ = (s1, . . . , sn) ∈ Sn be arbitrary, and let t1, . . . , tn ∈ S be such
that ptiq = si. Each ti is a product of generators from A, say of length li.
Replacing each a ∈ A by αi,a in this product, we obtain

τi = ( f li , . . . , f li︸ ︷︷ ︸
i−1

, ti, eli , . . . , eli︸ ︷︷ ︸
n−i

) ∈ 〈X〉.

Letting mi = l1 + · · · + li−1 and ni = li+1 + · · · + ln, and multiplying the
above tuples we obtain

〈X〉 3 τ1 . . . τn = (t1 f n1 , em2 t2 f n2 , . . . , emi ti f ni , . . . , emn tn).

Finally, pre- and postmultiplying by ∆p and ∆q respectively, proves that

∆pτ1 . . . τn∆q = (pt1q, . . . , ptnq) = (s1, . . . , sn) = σ

belongs to 〈X〉, and so 〈X〉 = Sn as required.
For the second assertion, without loss of generality assume that pS 6= S

for all p ∈ S. Also, by Corollary 6.2, we may assume without loss that S
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has no indecomposable elements. Since S is finitely generated it follows
that S has maximal principal right ideals, and that they are of the form aS
for some a ∈ A. Since S itself is not a principal right ideal by assumption,
it follows that there exist a1, a2 ∈ S such that a1S and a2S are two distinct
maximal principal right ideals. Let Rj (j = 1, 2) be the strong orbit (or R-
class) of aj:

Rj = {x ∈ S : xS = ajS}.
From the foregoing discussion it follows that R1 ∩ R2 = ∅ and

aj ∈ xS⇒ x ∈ Rj.

Let n ≥ 1, and let X be any generating set of Sn. We claim that for
any j1, . . . , jn ∈ {1, 2} there exists a generator ξ = (x1, . . . , xn) ∈ X such
that xi ∈ Rji . Since there are 2n choices for j1, . . . , jn, an exponential lower
bound follows as required.

To prove our claim, consider the element α = (aj1 , . . . , ajn) ∈ Sn. If
α ∈ X there is nothing to prove. Otherwise, α can be written as a product
of elements of X. Let ξ = (x1, . . . , xn) be the leftmost generator in this
product. Clearly we have aji ∈ xiS, which implies xi ∈ Rji , as desired.

Further corollaries will be derived in the next section.

7 Semigroups with slowly growing d-sequences

In order to establish various examples of semigroups without identity, as
required for (IG7)–(IG9), we utilise a construction introduced in [9] as a
modification of an earlier construction by Byleen [2]. Let A and B be two
(disjoint) countably infinite alphabets. Let P = (pij)A×B be a matrix with
entries from the set A ∪ B ∪ {0}, satisfying the following properties:

(P1) For every n ≥ 1, every collection a1, . . . , an ∈ A of distinct indices,
and every collection c1, . . . , cn ∈ A ∪ B ∪ {0} there exist infinitely
many distinct b ∈ B such that pai ,b = ci for all i = 1, . . . , n.

(P2) Dually, for every n ≥ 1, every collection b1, . . . , bn ∈ B of distinct
indices, and every collection c1, . . . , cn ∈ A ∪ B ∪ {0} there exist in-
finitely many distinct a ∈ A such that pa,bi = ci for all i = 1, . . . , n.

(P3) If a′1, a′2, . . . and b′1, b′2, . . . are fixed enumerations of A and B respec-
tively, pa′i ,b

′
i
= b′i+1, pa′i ,b

′
i+1

= a′i+1 for all i = 1, 2, . . . .

The semigroup S = S(A, B; P) is then defined by the following presenta-
tion:

〈A, B | ab = pab (a ∈ A, b ∈ B)〉.
The following properties of this semigroup are established in [9, Lemmas
6.6, 6.7]:
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(S1) S is finitely generated.

(S2) S is congruence free.

(S3) S has no identity element.

(S4) For every n ∈N, any n distinct non-zero elements s1, . . . , sn ∈ S \ {0},
and any n elements t1, . . . , tn ∈ S, there exist u, v ∈ S such that usiv =
ti for i = 1, . . . , n.

The property (S4) clearly implies

(S5) Every bi-act Rb(S)n is cyclic.

Combining this with Theorem 4.1 yields:

Corollary 7.1. There exists a finitely generated, infinite, congruence free semi-
group S with zero, but without identity, such that d(S) is eventually constant.

Corollary 7.2. Let S be a semigroup without identity such that d(S) is eventually
constant, and let G be an infinite finitely generated group. Then the semigroup
T = S× G has no identity. Moreover, if d(G) grows logarithmically then d(T)
grows logarithmically, while if d(G) grows linearly then d(T) grows linearly.

Proof. The first assertion is trivial, and for the remaining two, if d(Sn) ≤ c
for all n ∈N, we have

d(Gn) ≤ d(Tn) = d(Sn × Gn) ≤ 4d(Sn)d(Gn) ≤ 4cd(Gn),

by Corollary 6.3.

8 Some remarks on d-sequences of acts

As indicated in Section 4, group and semigroup actions can be considered
as algebraic structures in their own right, and the d-sequences of these
structures can be investigated. For a group G acting on a set X, the num-
ber d(Xn) is simply the number of orbits of the action of G on the n-tuples
of elements of X. The condition of d(X) consisting of finite numbers is
then equivalent to the action of G being oligomorphic; see [4, Section 4.1] or
[3, Section 5.2]. There has been quite a lot of work concerning the growth
of various sequences related to an oligomorphic group; see the references
cited in [4]. We just record a trivial lower bound:

Proposition 8.1. Let G be an oligomorphic permutation group acting on a set X.
Then d(Xn) ≥ B(n), the nth Bell number.

13



In particular, this gives us examples of d-sequences growing faster then
exponential, which, as we saw earlier, cannot happened for groups and
semigroups themselves, or indeed any finite structures.

Our second observation relies on [4, Theorem 3.4]: For every positive
integer k, there is a permutation group G acting on an infinite set X which is k-
transitive, and in which the stabiliser of any k + 1 points is trivial. Clearly, for
such G and X we have d(Xn) < ∞ for n = 1, . . . , k. Also, given any k + 1
distinct points x1, . . . , xk+1, since their stabiliser is trivial, it follows that all
the (k + 2)-tuples (x1, . . . , xk+1, y) (y ∈ X) belong to different orbits, and
hence d(Xn) = ∞ for n ≥ k + 2.

Proposition 8.2. For every k ∈N there exists a group G acting on an infinite set
X such that d(Xn) < ∞ for n ≤ k and d(Xn) = ∞ for n ≥ k + 2.

For semigroup actions on finite sets we have

Proposition 8.3. If a semigroup S acts on a finite set X with |X| > 1 then d(X)
grows exponentially.

Proof. Every element u = (x1, . . . , xn) ∈ Xn induces an equivalence relation
π(u) on {1, . . . , n} as follows:

π(u) = {(i, j) : xi = xj}

with at most |X| equivalence classes. Furthermore, for every u ∈ Xn and
every s ∈ S we have π(u) ⊆ π(u · s).

Suppose A is a generating set for Xn. For every equivalence relation
π on {1, . . . , n} there must exist u ∈ A such that π(u) = π. Thus |A| is
bounded below by S(n, |X|), the Stirling number of the second kind, and
hence by an exponential function. A trivial exponential upper bound is
provided by |A| ≤ |X|n.

But the actions of semigroups on infinite sets can behave very differ-
ently from group actions or semigroup actions on finite sets:

Proposition 8.4. Let X be an arbitrary infinite set, and consider X as a TX-act,
where TX is the full transformation monoid on X. Then

d(X) = (1, 1, 1, . . . ).

Proof. For every n ∈ N, the act Xn is generated by (x1, . . . , xn), where
x1, . . . , xn are arbitrary distinct elements of X.

Further examples are provided by cyclic diagonal acts which we en-
countered in Section 4.
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9 Concluding remarks and open problems

This paper demonstrates interesting possibilities for the behaviour of the
d-sequences of semigroups which parallel and contrast with the existing
knowledge for groups. In our opinion the most interesting remaining ques-
tions concern possible intermediate rates of growth:

• Does there exist a group G such that the growth of d(G) is strictly
between constant and logarithmic?

• Does there exist a monoid S such that the growth of d(S) is strictly
between constant and logarithmic?

• Does there exist a monoid S such that the growth of d(S) is strictly
between logarithmic and linear?

• Does there exist a semigroup S acting on a set X such that d(X) is: (a)
logarithmic; (b) linear; (c) strictly between logarithmic and linear; (d)
strictly between constant and logarithmic?
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[9] M.R. Quick and N. Ruškuc, Growth of generating sets for direct pow-
ers of classical algebraic structures, J. Austral. Math. Soc. 89 (2010),
105–126.
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