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Abstract	  

The	   main	   objective	   of	   this	   thesis	   is	   to	   investigate	   the	   impact	   of	   microbial	   extracellular	  
polymeric	   substances	   (EPS)	   on	   sediment	   stability	   and	   the	   related	   factors	  which	   influence	  
“biogenic	  stabilisation”	  as	  a	  basis	  to	  the	  prediction	  of	  sediment	  erosion	  and	  transport.	  

The	   ability	   to	   make	   direct	   and	   sensitive	   measurements	   of	   the	   physical	   properties	   of	   the	  
biofilm	   is	   a	   critical	   demand	   to	   further	   understanding	   of	   the	   overall	   biostabilisation	  
processes.	  Therefore,	  attention	  has	  been	  focused	  on	  developing	  a	  new	  technique,	  Magnetic	  
Particle	   Induction	   (MagPI)	   for	   measuring	   the	   adhesive	   properties	   of	   the	   biofilm.	   MagPI	  
determines	   the	   relative	   adhesive	  properties	   or	   “stickiness”	   of	   the	   test	   surface,	  whether	   a	  
biofilm,	   a	   sediment	   or	   other	   submerged	   material.	   The	   technique	   may	   have	   future	  
applications	  in	  physical,	  environmental	  and	  biomedical	  research.	  

Newly	  developed	  Magnetic	  Particle	   Induction	   (MagPI)	  and	  traditional	   techniques	  Cohesive	  
Strength	  Meter	   (CSM)	   for	   the	   determination	   of	   the	   adhesion/cohesion	   of	   the	   substratum	  
were	  used	   to	   assess	   the	  biostabilisation	   capacity	   of	   aquatic	  microorganisms.	  Whilst	   these	  
devices	   determine	   slightly	   different	   surface	   properties	   of	   the	   bed,	   they	   were	   found	   to	  
complement	   each	   other,	   increasing	   the	   range	   of	  measurements	   that	   could	   be	  made	   and	  
presented	  a	  strong	  correlation	  in	  the	  overlapping	  portion	  of	  the	  data.	  

It	   is	  recognized	  that	  microorganisms	  inhabiting	  natural	  sediments	  significantly	  mediate	  the	  
erosive	   response	   of	   the	   bed	   (“ecosystem	   engineers”)	   through	   the	   secretion	   of	   naturally	  
adhesive	   organic	  material	   (EPS:	   extracellular	   polymeric	   substances).	   Interactions	   between	  
main	  biofilm	  consortia	  microalgae,	   cyanobacteria	   and	  bacteria	   in	   terms	  of	   their	   individual	  
contribution	   to	   the	   EPS	   pool	   and	   their	   relative	   functional	   contribution	   to	   substratum	  
stabilisation	  were	  investigated.	  	  

The	  overall	  stabilisation	  potential	  of	  the	  various	  assemblages	  was	  impressive,	  as	  compared	  
to	  controls.	  The	  substratum	  stabilisation	  by	  estuarine	  microbial	  assemblages	  was	  due	  to	  the	  
secreted	   EPS	   matrix,	   and	   both	   EPS	   quality	   (carbohydrates	   and	   proteins)	   and	   quantity	  
(concentration)	  were	   important	   in	   determining	   stabilisation.	   Stabilisation	  was	   significantly	  
higher	   for	   the	  bacterial	   assemblages	   than	   for	   axenic	  microalgal	   assemblages.	   The	  peak	  of	  
engineering	   effect	  was	   significantly	   greater	   in	   the	  mixed	   assemblage	   as	   compared	   to	   the	  
bacterial	   and	   axenic	   diatom	   culture.	   This	   work	   confirmed	   the	   important	   role	   of	  
heterotrophic	   bacteria	   in	   “biostabilisation”	   and	   highlighted	   the	   interactions	   between	  
autotrophic	  and	  heterotrophic	  biofilm	  components	  of	  the	  consortia.	  	  

An	  additional	   approach,	   to	   investigate	   the	   impact	  of	   toxins	  on	  biostabilisation	   capacity	  of	  
aquatic	  organism	  was	  performed	  on	  cultured	  bacterial	  and	  natural	  freshwater	  biofilm.	  The	  
data	   suggest	   a	   different	   mode	   of	   triclosan	   (TCS)	   action	   ranging	   from	   suppressing	  
metabolisms	   to	   bactericidal	   effects	   depending	   on	   the	   TCS	   concentration.	   The	   inhibitory	  
effect	  of	  triclosan	  on	  bacterial	  and	  freshwater	  biofilms	  was	  confirmed.	  

This	   information	   contributes	   to	   the	   conceptual	   understanding	   of	   the	   microbial	   sediment	  
engineering	   that	   represents	   an	   important	   ecosystem	   function	   and	   service	   in	   aquatic	  
habitats.	  
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2.7	   The	  schematic	  diagram	  of	  CSM	  (left)	  and	  principle	  of	  the	  threshold	  measurements	  
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2.8	   The	   magnetic	   Particle	   induction	   device	   (left)	   and	   schematic	   diagram	   of	   its	  
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3.1	   Schematic	   diagram	   of	   experimental	   setup	   for	   the	   magnetic	   particle	   induction	  

device,	  where	  F	   is	  a	  magnetic	   force,	  x	   is	  a	  distance	  between	  magnet	  and	  tested	  
surface,	  V	   is	  a	   voltage	  control	  and	  N	   is	   the	  number	  of	   turns	  of	  wire	  around	   the	  
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3.2	   Schematics	   of	   experimental	   setup.	   Two	   variants	   of	   MagPI	   are	   shown.	   The	  
electromagnet	  on	  the	  left	  and	  the	  permanent	  magnet	  on	  the	  right.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   43	  
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3.6	   Examples	   of	   calibration	   curves	   for	   the	   electromagnetic	   (A)	   and	   permanent	  
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3.7	   Examples	  of	  tested	  substratum:	  glass	  beads,	  sand	  and	  mud	  (left).	  Test	  of	  abiotic	  

particulate	  beds	  of	  different	  materials	  (right)	  in	  seawater	  (a)	  and	  in	  freshwater	  (b)	  
to	   attract	   test	   particles	   (180-‐250	   µm) by MagPI (n=6, ±SE). * Significant	  
difference	  between	  adjacent	  groups	  by	  ANOVA,	  α=0.05,	  and	  Tukey	  test.	  .	  .	  .	  .	  .	  .	  .	  .	  	   49	  

3.8	   The	   thresholds	   used	   in	   the	   magnetic	   measurements:	   (I)	   particle	   orientation	   to	  
magnetic	   field;	   (II)	   first	   particles	   captured	   by	   the	  magnet;	   (III)	   larger	   groups	   of	  
particles	   attracted;	   (IV)	   total	   clearance	   of	   particles	   under	   the	   magnet.	   Three	  
treatments	  are	  given	  as	  examples:	  small	  glass	  beads	  submerged	  in	  seawater	  (SW)	  
and	  freshwater	  (FW)	  and	  large	  glass	  beads	  in	  SW	  using	  test	  particles	  of	  size	  range	  
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3.9	   Biotic	  example	  with	  cultured	  biofilms	  grown	  with	  diatoms	  and	  cyanobacteria.	  The	  
threshold	  reported	   is	   the	  strength	  of	  the	  magnetic	   field	  needed	  to	  provide	  total	  
clearance	  of	  particles	   (n=6,	  ±	   SE).*	   Significant	  difference	  between	  experimental	  
groups	  by	  ANOVA,	  α=0.05,	  and	  Tukey	  test.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   51	  

3.10	   MagPI	  placed	  above	  the	  sediment	  surface.	  Test	  particles	  can	  be	  seen	  adhering	  to	  
the	   magnet	   (A).	   Samples	   prepared	   for	   measurement	   (B).	   Surface	   shows	  
fluorescent	  particles	   and	  diatoms	   (C).	  Confocal	  microscopy	  of	   fluorescent	  beads	  
incorporated	   into	  the	  biofilm	  (D	  and	  E).	  The	  green	  coloration	  represents	  organic	  
material	  and	  the	  red	  fluorescence	  represents	  the	  test	  particles.	   Images	  courtesy	  
of	  Prof.	  D.	  M	  Paterson.	  Confocal	  images	  supplied	  by	  Dr.	  A.	  Decho.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   54	  
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4.2	   Schematic	  diagram	  of	  experimental	  setup	  and	  sampling	  strategy.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   67	  
4.3	   Mean	  values	   (n	  =5	  per	   treatment±	   SE)	  of	  measurements	  over	   the	  course	  of	   the	  

experiment.	   (A)	   The	   different	   treatments	  were	   single	   culture:	  ▲- Amphora;	   ◊	   -‐

Navicula;	   ● -‐	   Oscillatoria	   and	   their	   mixture:	   □ -‐	   Amphora	   +	   Navicula	   +	  
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Oscillatoria.	   (B)	  Pairs	  of	  mixed	  cultures:	  ∆	   -‐	  Amphora	  +	  Navicula,	  ○	   -‐	  Amphora+	  

Oscillatoria;	   ♦	   -‐	   Navicula	   +	   Oscillatoria	   and	   their	   mixture:	   	   □	   -‐	   Amphora	   +	  
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4.4	   The	   differences	   in	   chlorophyll	   a	   concentrations:	   (A)	   between	   the	   first	   sampling	  
day	   and	   day	   12	  where	  most	   of	   the	   variables	   showed	   their	  maximum	   value.	   (B)	  
Cumulative	   chlorophyll	   a	   concentrations	   (n=25)	   during	   2	   weeks	   of	   experiment.	  
The	   treatment	   name	   (Diatom	   species)	  was	   given	   according	   to	   the	   first	   letter	   of	  
the	   corresponding	   culture	   (s)	   inoculated:	   A	   for	  Amphora,	   N	   for	  Navicula,	   O	   for	  
Oscillatoria	  and	  their	  mixture	  AN	  for	  Amphora	  and	  Navicula,	  AO	  for	  Amphora	  and	  
Oscillatoria,	  NO	  for	  Navicula	  and	  Oscillatoria	  and	  ANO	  for	  Amphora,	  Navicula	  and	  
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4.5	   Mean	   values	   (n	   =5	   per	   treatment)	   with	   SE	   of	   colloidal	   carbohydrate	  
measurements	  over	   the	   course	  of	   the	  experiment.	   (A)	   The	  different	   treatments	  

were	  single	  culture:	  ▲- Amphora;	  ◊	  -‐Navicula;	  ● -‐	  Oscillatoria	  and	  their	  mixture:	  

□ -‐	  Amphora	  +	  Navicula	  +	  Oscillatoria.	  (B)	  Pairs	  of	  mixed	  cultures:	  ∆	  -‐	  Amphora	  +	  

Navicula,	  ○	  -‐	  Amphora+	  Oscillatoria;	  ♦	  -‐	  Navicula	  +	  Oscillatoria	  and	  their	  mixture:	  

□	  -‐	  Amphora	  +	  Navicula	  +	  Oscillatoria;	  ■-‐Control.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   73	  
4.6	   The	   differences	   in	   colloidal	   carbohydrates	   concentrations:	   (A)	   between	   the	   first	  

sampling	   day	   and	   day	   12	   where	   most	   of	   the	   variables	   showed	   their	   maximum	  
value.	   (B)	   Cumulative	   carbohydrates	   concentrations	   (n=25)	   during	   2	   weeks	   of	  
experiment.	   The	   treatment	   name	   (Diatom	   species)	   was	   given	   according	   to	   the	  
first	   letter	   of	   the	   corresponding	   culture	   (s)	   inoculated:	   A	   for	   Amphora,	   N	   for	  
Navicula,	  O	   for	  Oscillatoria	  and	  their	  mixture	  AN	  for	  Amphora	  and	  Navicula,	  AO	  
for	   Amphora	   and	   Oscillatoria,	   NO	   for	   Navicula	   and	   Oscillatoria	   and	   ANO	   for	  
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4.7	   Mean	  values	  (n=5	  per	  treatment)	  with	  SE	  of	  colloidal	  proteins	  measurements	  over	  
the	   course	  of	   the	   experiment.	   (A)	   The	  different	   treatments	  were	   single	   culture:	  

▲- Amphora;	   ◊	   -‐Navicula;	  ● -‐	   Oscillatoria	   and	   their	   mixture:	  □ -‐	   Amphora	   +	  

Navicula	  +	  Oscillatoria.	   (B)	  Pairs	  of	  mixed	  cultures:	  ∆	   -‐	  Amphora	  +	  Navicula,	  ○	   -‐	  
Amphora+	  Oscillatoria;	  ♦	  -‐	  Navicula	  +	  Oscillatoria	  and	  their	  mixture:	  □	  -‐	  Amphora	  
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4.8	   The	  differences	  in	  protein	  concentrations:	  (A)	  between	  the	  first	  sampling	  day	  and	  
day	  12	  where	  most	  of	  the	  variables	  showed	  their	  maximum	  value.	  (B)	  Cumulative	  
carbohydrates	   concentrations	   (n=25)	   during	   2	   weeks	   of	   experiment.	   The	  
treatment	   name	   (Diatom	   species)	  was	   given	   according	   to	   the	   first	   letter	   of	   the	  
corresponding	   culture	   (s)	   inoculated:	   A	   for	   Amphora,	   N	   for	   Navicula,	   O	   for	  
Oscillatoria	  and	  their	  mixture	  AN	  for	  Amphora	  and	  Navicula,	  AO	  for	  Amphora	  and	  
Oscillatoria,	  NO	  for	  Navicula	  and	  Oscillatoria	  and	  ANO	  for	  Amphora,	  Navicula	  and	  
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4.9	   Relationship	  between	  colloidal	  carbohydrates	  and	  chlorophyll	  a.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   77	  
4.10	   Mean	   values	  of	   the	  different	   treatments:	  mixed	   assemblages	   (BD),	   diatoms	   (D),	  

bacteria	   (B)	  and	  control	   (C).	   (A):	   chlorophyll	  a	   (n=21),	   (B)	  bacterial	   cell	  numbers	  
(n=24),	  (C)	  bacterial	  division	  rates	  (n=18),	  (D)	  bacterial	  specific	  rates	  (n=18).	  .	  .	  .	  .	  .	  	   80	  

4.11	   Mean	   values	  of	   colloidal	   carbohydrates	   (A)	   and	  protein	   (B).	  Mean	   values	   (n	   =	   3	  
per	  treatment,	  based	  on	  n	  =	  3	  replicates	  per	  box	  ±	  SE)	  in	  the	  treatments	  bacteria	  
and	  diatoms	  (BD,	  ▲),	  diatoms	  (D,	  ♦),	  bacteria	  (B,	  □)	  and	  controls	  (C,	  ●).	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   82	  

4.12	   The	  relative	  assessment	  between	  treatments.	  The	  EPS	  concentration	  of	  the	  mixed	   	  
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cultures	  (BD)	  relative	  to	  the	  contribution	  of	  the	  single	  cultures	  (B	  and	  D)	  such	  that	  
the	  value	  “BD-‐B-‐D”	  is	  reported	  for	  carbohydrates	  (A)	  and	  proteins	  (B).	  Where	  the	  
production	  of	  carbohydrate	  or	  protein	  from	  mixed	  cultures	  (BD)	  exceeds	  that	  of	  
the	  added	   single	   cultures	   (B	  and	  D)	   the	  value	   is	  positive	   (synergistic	   effect)	   and	  
vice	   versa	   (inhibitory	   effect).	   If	   the	   added	   values	   of	   the	   single	   cultures	   exactly	  
equal	  the	  mixed	  cultures	  then	  there	  is	  an	  additive	  effect.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	  
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4.13	   Scatter	  plot	   to	   show	   the	   relationship	  between	   colloidal	   carbohydrates	   (μg	   cm-‐3)	  
and	  colloidal	  proteins	  (μg	  cm-‐3).	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   85	  

4.14	   Low-‐temperature	   scanning	   electron	   microscope	   images	   using	   different	  
magnifications.	  A	  -‐	  B.	  The	  mixed	  assemblages	  bacteria	  +	  diatom.	  C	  -‐	  D.	  The	  diatom	  
treatment.	  	  E	  –	  F.	  The	  bacteria	  treatment.	  G	  -‐	  H.	  The	  control	  substratum.	  .	  .	  .	  .	  .	  .	  .	  .	  	   86	  

4.15	   Bacterial	   cell	   number	   in	   superficial	   sediments	   for	   the	   first	   (A)	   and	   second	   (B)	  
sampling	  dates	  (mean	  ±	  SE).	  The	  dashed	  lines	  correspond	  to	  the	  average	  (±	  95%	  
interval	  of	  confidence	  represented	  by	  the	  grey	  area)	  of	  all	  the	  treatments	  which	  
were	   not	   originally	   inoculated	   with	   bacteria	   (e.g.	   the	   dashed	   line	   in	   fig.	   B	   was	  
calculated	  with	  treatments	  C,	  D,	  N	  and	  DN).	  The	  differences	  between	  the	  dashed	  
line	   and	   the	   remaining	   treatments	  was	   tested	   (NS:	   not	   significant,	   *:	   significant	  
difference).	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   88	  

4.16	   Chlorophyll	  a	   concentration	   in	   superficial	   sediments	   for	   the	   first	   (A)	  and	  second	  
(B)	   sampling	  dates	   (mean	  ±	   SE).	   The	  dashed	   lines	   correspond	   to	   the	   average	   (±	  
95%	   interval	   of	   confidence	   represented	   by	   the	   grey	   area)	   of	   all	   the	   treatments	  
which	  were	  not	  originally	   inoculated	  with	  diatoms	   (e.g.	   the	  dashed	   line	   in	   fig.	  B	  
was	   calculated	   with	   treatments	   C,	   B,	   N	   and	   BN).	   The	   differences	   between	   the	  
dashed	   line	   and	   the	   remaining	   treatments	   was	   tested	   (NS:	   not	   significant,	   *:	  
significant	  difference).	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   90	  

4.17	   Mean	  value	  (n=3)	  of	  water	  -‐	  extractable	  (colloidal)	  carbohydrates	  concentrations	  
in	   superficial	   sediments	   for	   the	   first	   (A)	  and	   second	   (B)	   sampling	  dates	   (mean	  ±	  
SE).	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   91	  

4.18	   Mean	   value	   (n=3)	   of	   water	   -‐	   extractable	   (colloidal)	   proteins	   concentrations	   in	  
superficial	  sediments	  for	  the	  first	  (A)	  and	  second	  (B)	  sampling	  dates	  (mean	  ±	  SE).	  .	  	   92	  

4.19	   Simple	  linear	  regressions	  between	  colloidal	  proteins	  and	  carbohydrates	  (n=24)	  for	  
the	   first	   (day	   1)	   and	   the	   second	   (day	   2)	   sampling	   dates.	   The	   coefficient	   of	  
determination	  (R²)	  and	  the	  p-‐value	  are	  indicated.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   93	  

4.20	   The	   relationship	   between	   (A)	   colloidal	   carbohydrates	   and	   bacterial	   abundance	  
(n=24)	  and	  (B)	  chlorophyll	  a	   (n=24)	   for	   the	   first	   (day	  4)	  and	  the	  second	  (day	  10)	  
sampling	   dates.	   The	   coefficient	   of	   determination	   (R²)	   and	   the	   p-‐value	   are	  
indicated.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   94	  

4.21	   The	   relationship	   between	   (A)	   colloidal	   proteins	   and	   bacterial	   abundance	   (n=24)	  
and	  (B)	  chlorophyll	  a	  (n=24)	  for	  the	  first	  (day	  1)	  and	  the	  second	  (day	  2)	  sampling	  
dates.	  The	  coefficient	  of	  determination	  (R²)	  and	  the	  p-‐value	  are	  indicated.	  .	  .	  .	  .	  .	  .	  .	  	   95	  

5.1	   Mean	  values	  (n=5	  per	  treatment,	  ±	  SE)	  of	  MagPI	  measurements	  over	  the	  course	  
of	  the	  experiment.	  (A)	  The	  different	  treatments	  were	  single	  culture:	  ▲- Amphora;	  

◊	   -‐Navicula;	   ● -‐	   Oscillatoria	   and	   their	   mixture:	   □ -‐	   Amphora	   +	   Navicula	   +	  

Oscillatoria.	   (B)	  Pairs	  of	  mixed	  cultures:	  ∆	   -‐	  Amphora	  +	  Navicula,	  ○	   -‐	  Amphora+	  

Oscillatoria;	   ♦	   -‐	   Navicula	   +	   Oscillatoria	   and	   their	   mixture:	   	   □	   -‐	   Amphora	   +	  
Navicula	  +	  Oscillatoria.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   117	  

5.2	   Adhesion	  capacity	  as	  measured	  by	  MagPI:	  (A)	  between	  the	  first	  sampling	  day	  and	  
day	   12th	   where	   most	   of	   the	   variables	   showed	   their	   maximum	   value.	   (B)	  
Cumulative	  adhesion	  values	  (n=25)	  during	  2	  weeks	  of	  experiment.	  The	  treatment	  
name	   (Diatom	   species)	   was	   given	   according	   to	   the	   first	   letter	   of	   the	  

	  
	  
	  
	  



	   	  

viii	  
	  

corresponding	   culture(s)	   inoculated:	   A	   for	   Amphora,	   N	   for	   Navicula,	   O	   for	  
Oscillatoria	  and	  their	  mixture	  AN	  for	  Amphora	  and	  Navicula,	  AO	  for	  Amphora	  and	  
Oscillatoria,	  NO	  for	  Navicula	  and	  Oscillatoria	  and	  ANO	  for	  Amphora,	  Navicula	  and	  
Oscillatoria.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	  
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5.3	   Relationship	   between	   adhesion	   capacity	   as	   measured	   by	   MagPI	   (mTesla)	   and	  
biological	   variables	   (n=35).	   MagPI	   versus	   chlorophyll	   a	   concentrations	   (A)	   and	  
MagPI	  versus	  colloidal	  carbohydrates	  concentrations	  (B).	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   119	  

5.4	   Mean	  values	  of	  sediment	  stability	  over	  the	  course	  of	  the	  experiment:	  A	  by	  MagPI	  
(n=6,	  ±	  SE)	  and	  B	  by	  CSM	  (n=6,	  ±	  SE).	  The	  different	  treatments	  were	  bacteria	  and	  
diatoms	  (BD,	  ▲),	  diatoms	  (D,	  ♦),	  bacteria	  (B,	  □)	  and	  controls	  (C,	  ●).	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   121	  

5.5	   The	  linear	  relationship	  between	  MagPI	  (mTesla)	  versus	  CSM	  (Nm-‐2).	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   122	  
5.6	   The	  relative	  assessment	  between	  treatments	   for	  sediment	  stability	  as	  measured	  

by	   MagPI	   (A)	   and	   CSM	   (B).	   Substratum	   stability	   by	   the	   mixed	   BD	   treatment	  
relative	  to	  the	  stability	  of	  the	  single	  B	  and	  D	  treatments	  is	  given	  for	  MagPI	  (A)	  and	  
CSM	   (B).	  Where	   the	   stability	   created	  by	   the	  mixed	   culture	   (BD)	   exceeds	   that	  of	  
the	  added	  single	  cultures	   (B	  and	  D),	   the	  value	   is	  positive	   (synergistic	  effect)	  and	  
vice	  versa	  (inhibitory	  effect).	  If	  the	  added	  values	  of	  the	  single	  cultures	  equals	  the	  
mixed	  cultures	  then	  the	  effect	  measured	  is	  additive.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	  
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5.7	   Relationships	  between	  sediment	  stability	  (MagPI,	  CSM)	  and	  EPS	  components.	  A	  -‐	  
B.	  The	  relationships	  between	  surface	  adhesion	  (MagPI)	  and	  EPS	  carbohydrate	  and	  
protein	   concentrations.	   C	   -‐	   D.	   The	   relationships	   between	   substratum	   stability	  
(CSM)	  and	  EPS	  carbohydrates	  and	  proteins	  concentrations.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	  
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6.1	   Experimental	  setup.	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   140	  
6.2	   Adhesion	   as	   a	   proxy	   for	   stability,	   measured	   by	   MagPI,	   over	   the	   course	   of	   the	  

experiment.	  (A)	  Mean	  values	  (n	  =	  4	  per	  treatment,	  ±	  SE):	  positive	  control	  (CB,	  ■),	  
negative	  control	  (CT,	  ○),	  T1	  (TCS:	  2	  µg	  l-‐1,	  ∆),	  T2	  (TCS:	  10	  µg	  l-‐1,	  ●),	  T3	  (TCS:	  20	  µg	  l-‐
1,	  ◊),	  T4	  (TCS:	  50	  µg	  l-‐1,	  ▲),	  T5	  (TCS:	  100	  µg	  l-‐1,	  □).	  (B)	  Mean	  values	  per	  day	  (n	  =	  7,	  
±	  SE,	  ♦)	  and	  per	  treatment	  (n	  =	  6,	  ±	  SE,	  bar	  plots).	  (C)	  Mean	  values	  (n	  =	  4,	  ±	  SE)	  
shown	  for	  the	  different	  treatments	  on	  the	  first	  day	  (grey	  bars)	  as	  opposed	  to	  the	  
day	  14	  (white	  bars).	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   143	  

6.3	   Bacterial	  cell	  numbers	  over	  the	  course	  of	  the	  experiment.	  (A)	  Mean	  values	  (n	  =	  4	  
per	  treatment,	  ±	  SE):	  positive	  control	  (CB,	  ■),	  negative	  control	  (CT,	  ○),	  T1	  (TCS:	  2	  
µg	  l-‐1,	  ∆),	  T2	  (TCS:	  10	  µg	  l-‐1,	  ●),	  T3	  (TCS:	  20	  µg	  l-‐1,	  ◊),	  T4	  (TCS:	  50	  µg	  l-‐1,	  ▲),	  T5	  (TCS:	  

100	  µg	  l-‐1,	  □).	  (B)	  Mean	  values	  per	  day	  (n	  =	  7,	  ±	  SE,	  ♦)	  and	  per	  treatment	  (n	  =	  6,	  ±	  
SE,	  bar	  plots).	  (C)	  Mean	  values	  (n	  =	  4,	  ±	  SE)	  shown	  for	  the	  different	  treatments	  on	  
the	  first	  day	  (grey	  bars)	  as	  opposed	  to	  the	  day	  14	  (white	  bars).	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	   145	  

6.4	   Carbohydrate	  concentrations,	  over	  the	  course	  of	  the	  experiment.	  (A)	  Mean	  values	  
(n	  =	  4	  per	  treatment,	  ±	  SE):	  positive	  control	   (CB,	  ■),	  negative	  control	   (CT,	  ○),	  T1	  
(TCS:	  2	  µg	  l-‐1,	  ∆),	  T2	  (TCS:	  10	  µg	  l-‐1,	  ●),	  T3	  (TCS:	  20	  µg	  l-‐1,	  ◊),	  T4	  (TCS:	  50	  µg	  l-‐1,	  ▲),	  

T5	  (TCS:	  100	  µg	  l-‐1,	  □).	  (B)	  Mean	  values	  per	  day	  (n	  =	  7,	  ±	  SE,	  ♦)	  and	  per	  treatment	  
(n	   =	   6,	  ±	   SE,	   bar	   plots).	   (C)	  Mean	   values	   (n	   =	   4,	  ±	   SE)	   shown	   for	   the	   different	  
treatments	  on	  the	  first	  day	  (grey	  bars)	  as	  opposed	  to	  the	  day	  14	  (white	  bars).	  .	  .	  .	  .	  	   147	  

6.5	   Proteins	  concentrations,	  over	  the	  course	  of	  the	  experiment.	  (A)	  Mean	  values	  (n	  =	  
4	  per	  treatment,	  ±	  SE):	  positive	  control	  (CB,	  ■),	  negative	  control	  (CT,	  ○),	  T1	  (TCS:	  2	  
µg	  l-‐1,	  ∆),	  T2	  (TCS:	  10	  µg	  l-‐1,	  ●),	  T3	  (TCS:	  20	  µg	  l-‐1,	  ◊),	  T4	  (TCS:	  50	  µg	  l-‐1,	  ▲),	  T5	  (TCS:	  

100	  µg	  l-‐1,	  □).	  (B)	  Mean	  values	  per	  day	  (n	  =	  7,	  ±	  SE,	  ♦)	  and	  per	  treatment	  (n	  =	  6,	  ±	  
SE,	  bar	  plots).	  (C)	  Mean	  values	  (n	  =	  4,	  ±	  SE)	  shown	  for	  the	  different	  treatments	  on	  
the	  first	  day	  (grey	  bars)	  as	  opposed	  to	  the	  day	  14	  (white	  bars).	  .	  .	  .	  .	  	  
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6.6	   Relationship(n=30)	   between	   bacterial	   biofilm	   adhesion	   expressed	   by	   MagPI	   	  
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6.8	   LTSEM	  (low-‐temperature	  scanning	  electron	  microscopy)	  images	  of	  the	  biofilms:	  A-‐
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7.1	   Experimental	  setup:	  Prior	  to	  experiment	  (top)	  and	  during	  experiment	  (bottom).	  
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7.3	   Biofilm	  adhesion,	  measured	  by	  MagPI,	  over	  the	  course	  of	  the	  experiment.	  (A)	  

Mean	  values	  (n	  =	  6	  per	  treatment,	  ±	  SE):	  positive	  control	  (CB,	  ■),	  negative	  control	  
(CT,	  ○),	  T1	  (TCS:	  2	  µg	  l-‐1,	  ∆),	  T2	  (TCS:	  20	  µg	  l-‐1,	  ●),	  T3	  (TCS:	  50	  µg	  l-‐1,	  ◊),	  T4	  (TCS:	  
100	  µg	  l-‐1,	  ▲),	  T5	  (TCS:	  150	  µg	  l-‐1,	  □).	  	  (B)-‐Changes	  in	  biofilm	  adhesion	  in	  relation	  
to	  the	  first	  day	  (100%)	  represented	  as	  a	  dashed	  line,	  mean	  values	  (n	  =	  6,	  ±	  SE).	  .	  .	  .	  	  
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7.4	   Bacterial	  cell	  numbers	  over	  the	  course	  of	  the	  experiment.	  (A)	  Mean	  values	  (n	  =	  3	  
per	  treatment,	  ±	  SE):	  positive	  control	  (CB,	  ■),	  negative	  control	  (CT,	  ○),	  T1	  (TCS:	  2	  
µg	  l-‐1,	  ∆),	  T2	  (TCS:	  20	  µg	  l-‐1,	  ●),	  T3	  (TCS:	  50	  µg	  l-‐1,	  ◊),	  T4	  (TCS:	  100	  µg	  l-‐1,	  ▲),	  T5	  

(TCS:	  150	  µg	  l-‐1,	  □).	  (B)-‐Changes	  in	  bacterial	  cells	  number	  in	  relation	  to	  the	  first	  
day	  (100%),	  represented	  as	  a	  dashed	  line,	  mean	  values	  (n	  =	  6,	  ±	  SE).	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  .	  	  

	  
	  
	  
	  
178	  

7.5	   The	  inhibition	  of	  photosynthesis	  (n	  =	  3	  per	  treatment,	  	  ±	  SE),	  over	  the	  course	  of	  
the	  experiment	  for	  positive	  control	  (CB,	  ■),	  negative	  control	  (CT,	  ○),	  T1	  (TCS:	  2	  µg	  
l-‐1,	  ∆),	  T2	  (TCS:	  20	  µg	  l-‐1,	  ●),	  T3	  (TCS:	  50	  µg	  l-‐1,	  ◊),	  T4	  (TCS:	  100	  µg	  l-‐1,	  ▲),	  T5	  (TCS:	  

150	  µg	  l-‐1,	  □).	  (B)-‐Changes	  in	  photosynthetic	  activity	  of	  microalgae	  in	  relation	  to	  
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7.6	   Carbohydrates	  concentrations,	  over	  the	  course	  of	  the	  experiment.	  Mean	  values	  
(n=3	  per	  treatment	  based	  on	  n=3	  replicates	  per	  box,	  ±	  SE)	  is	  shown	  for	  positive	  
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T3	  (TCS:	  50	  µg	  l-‐1,	  ◊),	  T4	  (TCS:	  100	  µg	  l-‐1,	  ▲),	  T5	  (TCS:	  150	  µg	  l-‐1,	  □).	  (B)	  -‐	  Changes	  
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7.7	   Proteins	  concentrations,	  over	  the	  course	  of	  the	  experiment.	  Mean	  values	  (n=3	  per	  
treatment	  based	  on	  n=3	  replicates	  per	  box,	  ±	  SE)	  is	  shown	  for	  positive	  control	  
(CB,	  ■),	  negative	  control	  (CT,	  ○),	  T1	  (TCS:	  2	  µg	  l-‐1,	  ∆),	  T2	  (TCS:	  20	  µg	  l-‐1,	  ●),	  T3	  
(TCS:	  50	  µg	  l-‐1,	  ◊),	  T4	  (TCS:	  100	  µg	  l-‐1,	  ▲),	  T5	  (TCS:	  150	  µg	  l-‐1,	  □).	  (B)-‐Changes	  in	  
proteins	  concentration	  in	  relation	  to	  the	  first	  day	  (100%)	  represented	  as	  a	  dashed	  
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7.8	   The	  relationship	  (n	  =	  35)	  between	  microbial	  biofilm	  adhesion	  expressed	  by	  MagPI	  
(mTesla)	  versus	  the	  effective	  quantum	  efficiency	  PS	  II	  (A),	  bacterial	  cell	  numbers	  
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Abbreviation	  

	  
MagPI	  -‐	  Magnetic	  Particle	  Induction	  	  
CSM	  -‐	  Cohesive	  Strength	  Meter	  	  
MPB	  -‐	  Microphytobenthos	  	  
EPS	  -‐	  extracellular	  polymeric	  substances	  	  
ETDC	  -‐	  erosion,	  transport,	  deposition	  and	  consolidation	  
LTSEM	  -‐	  Low	  Temperature	  Scanning	  Electron	  Microscopy	  
BSA	  -‐	  Bovine	  Serum	  Albumin	  	  
PAM	  -‐	  Pulse	  Amplitude	  Modulated	  	  
Y(II)	  -‐	  The	  inhibition	  of	  the	  photosystem	  
TCA	  -‐	  trichloroacetic	  acid	  
SDS	  -‐	  sodium	  dodecyl	  sulfate	  
TCS	  -‐	  triclosan	  	  
HPLC	  -‐	  high	  performance	  liquid	  chromatography	  	  
DMSO	  -‐	  dimethylsulfoxide	  
PSU	  -‐	  Practical	  Salinity	  Units	  
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Chapter 1  

 

General Introduction 

The generic importance of the biogenic mediation of sediment erosion and transport 

is a matter of debate and a multidisciplinary approach is required to investigate 

biologically-mediated mechanisms of sediment stability (Paterson et al. 2000). 

Understanding the process of “biostabilisation” is essential for optimisation of the 

water framework directive and sediment/pollutant management strategies. The 

dynamic equilibrium between the erosion, transport, deposition and consolidation of 

aquatic sediments (ETDC-Cycle) is of key importance for the protection of coastal 

shorelines, especially when considering predicted environmental changes (Foerstner 

and Salomons 2008). This thesis describes work performed to investigate the 

biostabilisation potential of aquatic microbial organisms and the effect of toxins on 

their stabilisation capacity. This study was carried out using traditional and newly 

developed methods, such as the cohesive strength meter (CSM) and by magnetic 

particle induction (MagPI).  

 

Sediment stability 

Natural sediments consist of a mixture of mud/sand/gravel present in varying 

contributions to the total bed formation. Two major classes of sediments have been 

described in the literature: cohesive (fine) and non-cohesive (coarse) sediments. The 

first type is commonly composed of silt and clay, and containing more than 10% of 
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fine material by mass (< 63m). The large proportions of very small particles in this 

sediment are affected by the inter-particulate forces (Van der Waals forces) and by 

Brownian motion. Actions of these forces cause the particles to attract each other 

(cohesion). The bulk properties of this mixture determine an overall behaviour of the 

sediment (Whitehouse et al. 2000). The shear resistance of cohesive muddy sediments 

directly governs the susceptibility of the sediment to erosion by tidal and wave-

induced currents or river flow (Tolhurst et al. 1999, Westrich and Forstner 2005). The 

mobility and transport of sediment depends on a variety of physical, chemical and 

biological processes (de Brouwer et al. 2000, Whitehouse et al. 2000, Haag and 

Westrich 2001). Traditionally, only physical properties of the sediment have been 

investigated such as bulk density, dry density, mineral density, grain-size distribution 

and mineralogical composition (Whitehouse et al. 2000). However a biological impact 

on the sediment stability has also been accepted over the past few decades. The 

biological impact on the sediment stability can be stabilizing (Paterson 1997), and/or 

destabilizing (Defew et al. 2002). Activities of macrofauna, such as bioturbation and 

grazing, can enhance the roughness of the sediment surface and thus, destabilize 

sediment. On the other hand, some activities of the organisms may influence sediment 

stability positively by e.g. constructing tubes (sediment traps) or coating tubes with 

EPS (Olafson and Thompson 1974). The most commonly recognized mechanism of 

biogenic stabilisation is the binding capacity of the mucilaginous extracellular 

polymeric substances (EPS). The EPS matrix is produced by microorganisms and 

some macrofauna. This process of “biostabilisation” significantly contributes to the 

resistance of the bed to physical forcing. Droppo (2001) has defined biostabilisation 

as a process whereby microbial, algal, fungal and other organism grow, along with 

increasing secretion of EPS, leading to an increase in bed stability. The 

microorganisms themselves can also establish bonding between each other and the 

sedimentary environment by their surface coatings. The secreted EPS can eventually 

envelop the sediment particles to form a three-dimensional matrix (Flemming and 

Wingender 2001a). The EPS matrix is held together by a range of bonding 

mechanisms such as electrostatic interactions, hydrogen bonds and London 

dispersion forces, providing the structural and functional integrity in biofilm, flocs 

and sludge(Flemming et al. 2000). The mechanistic relationship between EPS and 

sediment stability has been demonstrated by a number of authors (Yallop et al. 1994, 
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Paterson 1995, Dade et al. 1996) and it has been suggested that the stability of non-

cohesive sediments was greatly increased by the presence of microbial mat 

(Underwood and Paterson 1993, Yallop et al. 1994) . 

More recently, an impressive range of literature has developed concerning the 

biostabilisation of sediments and in particular about the mucilaginous matrix 

developed from EPS  secretions(reviewed in Stal 2003, Underwood and Paterson 

2003). However, very few publications incorporate both, biological and 

sedimentological variables to determine sediment stability (de Brouwer et al. 2000, 

Paterson et al. 2000, Haag and Westrich 2001, Underwood and Paterson 2003, 

Gerbersdorf et al. 2005). 

Thus, the understanding of mechanisms and factors influencing cohesive sediments in 

riverine, estuarine and coastal habitats in terms of ecology and economy is crucial to 

follow up. In-depth studies of sediment erosion, transport, deposition and 

consolidation (ETDC-cycle) concerning sediment load and associated contaminants 

are central objectives for a sustainable management of waterways and coastal areas.  

 

Importance of the methods  

While investigation of the biostabilisation processes is an arguably important field of 

ecological research (ecosystem engineering), the measurement of adhesive potential 

of the biofilm is problematic and requires specialised approaches. Several devices 

have been introduced over the years for precise and reliable measurements of erosion 

resistance and erosion rates. Although these methods provide qualitative and 

quantitative information on the overall sediment erosion behaviour, they have limited 

application for studying low range shear stress and sub-critical responses. Natural 

depositional sediments are often dependent on mechanisms of biogenic stabilisation 

for their persistence against erosive forces. These mechanisms of “biostabilisation” 

can be varied but act together to provide an overall bed “stability” or resistance to 

erosion. While a number of methods are available for determining a bulk threshold for 

sediment stability, few techniques allow for a more sensitive assessment of the 

sediment surface as conditions change. One of them introduced by Prof. David 

Paterson (1989) the “Cohesive Strength Meter” (CSM), an in situ and laboratory 

device, working with a vertical jet flow which measures cohesive properties of the 

substratum. While the CSM is a well-established device to measure erosion resistance, 
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it requires bed failure to occur and thus, needs a certain strength or resistance to the 

substratum to be developed (a threshold stress) before measurement can be made. 

Surface adhesion is also an important bed property reflecting the sediment system’s 

potential to capture and retain new particles, to accumulate material or to replace 

eroded particles. More sensitive methods, which provide a measurement of surface 

adhesion of variety of surfaces, are of high demand.  

 

Ecosystem engineering  

Biofilms represent the dominant microbial life form in aquatic systems, and drive a 

number of important “ecological functions” such as nutrient recycling, biodegradation 

or pollutant retention (e.g. Battin et al. 2003). Once formed, a biofilm acts as a 

protective “skin” at the sediment surface and significantly affects the erosion and 

deposition of sediment particles (Paterson and Black 1999). While investigating 

different species, their growth stages, the abiotic conditions as well as emersion and 

immersion periods, which were mostly site-specific, are not usually considered (e.g. 

Riethmueller et al. 2000, Le Hir et al. 2007). Nowadays, a need has been identified to 

relate descriptive and structural parameters of ecological systems to their functional 

capabilities in order to define the “ecosystem service” of a habitat (e.g. Wimpenny et 

al. 2000, Paterson et al. 2008). In addition, these habitats are colonised by different 

types of microorganisms which play a significant role as ecosystem engineers by 

stabilising the sediments (Miller et al. 1996, Stal and Walsby 2000) through the 

production of extracellular polymeric substances (EPS) (Decho 1990, Underwood et 

al. 1995). Exopolymers are a ubiquitous component of marine ecosystems primarily 

composed of carbohydrates, proteins and lipids. They have multiple roles in aquatic 

systems: attachment to substrata, flotation and locomotion, feeding, protection 

against desiccation/UV/pollution, development of biofilms, communication (see 

reviews Decho 1990, Wotton 2004). For instance, in the surface layer of intertidal 

sediments, benthic epipelic diatoms show an endogenous migration pattern which is 

achieved by the secretion of highly-hydrated carbohydrate-rich exopolymers (Smith 

and Underwood 1998). The properties and behaviour of intertidal marine sediments 

can thus not be studied without taking into account these complex substances (Stal 

2010), mainly because they enhance the cohesion and adhesion of sediments and 
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their capacity to resist to erosion, which is an important feature in these types of 

habitats.  

 

The extracellular polymeric substances (importance, producers and composition) 

The surface of submerged sediments is inhabited by meio-and macrofauna as well as 

microorganisms; all being able to secret EPS (de Brouwer et al. 2000). As mentioned, 

the vast amount of functional groups and different bonding types within the EPS may 

enhance sediment stability significantly. Consequently, EPS may also enhance the 

mechanical stability of eroded sediment-born microbial aggregates in providing the 

“glue” which attaches the cells to given surface(Flemming et al. 2000). Moreover, EPS 

represent a sorption sites for pollutants such as heavy metals (copper, uranium, 

cadmium), and organic molecules; a feature used in water purification process 

(Flemming and Wingender 2001b). In this context, Decho (2000) speculates that the 

sorption of heavy metals by EPS is part of a protection strategy against toxic effects. 

As a result, the transfer of contaminants through food webs is significantly enhanced 

by EPS (Decho 2000, Flemming and Wingender 2001b, Hirst et al. 2003). 

EPS also provides a nutritious food source for benthic feeders(Decho 2000) and by 

altering the benthic community structure via food source, sediment stability might be 

influenced as well. Interestingly, EPS molecules might also function as light 

transmitters and might support photosynthesis in deeper sediment layers (Flemming 

and Wingender 2001a).  

The nature of the sedimentary environment helps to determines the colonization by 

the organisms; for instance cyanobacteria often colonize fine sand and epipelic 

diatoms produce thin biofilms on mudflat surfaces (Stal 2003). In turn, organisms 

may change their sedimentary environment by e.g. sorting sediment particles (Wood 

and Armitage 1997) or secreting organic matter (Battin and Sengschmitt 1999, 

Perkins et al. 2004, Droppo et al. 2007) and consequently, influence future settlement 

of new organisms. Since different organisms will produce different EPS, the 

sedimentary environment is the first critical variable for organism settlement and EPS 

quality/quantity. The ability to secrete EPS is widespread among prokaryotic and 

eukaryotic organisms (Flemming et al. 2000); however the chemical composition of 

EPS and its binding properties are presumably very different. For instance, EPS 

produced from marine algae is composed primarily of polysaccharides (Staats et al. 
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2000), while bacterial EPS rich in protein (Decho 1990). Diatom biofilms may contain 

up to 100 times more colloidal carbohydrate than cyanobacterial mats (de Winder et 

al. 1999). Fungal species may also play a large role in the biofilm development and 

structure, thus altering EPS composition (Droppo et al. 2007). Most probably the 

composition of the microbial produced EPS depends on the specific function and the 

abiotic conditions. Decho (2000) distinguishes between EPS for motility and 

attachment, which might explain different degrees of contribution to sediment 

stabilization process and described the physical state of EPS as a continuum, ranging 

from gels to a fully dissolved state. EPS contain large variety of chemical structures of 

varying proportions. Polysaccharides have often been assumed to be the most 

abundant component of EPS, other organic macromolecules such as proteins, nucleic 

acids, lipids/phospholipids or humic substances, can also predominate in the EPS 

(Flemming 2000). EPS present a network of molecules interconnected by chemical 

and physical crosslinks and defined as covalently cross linked networks (Decho 

2000). 

Little is known about natural EPS composition and most information originates from 

intertidal flats and microalgae/diatom communities. Microphytobenthos (MPB) 

biomass has been mostly associated with colloidal carbohydrates (Smith and 

Underwood 1998). Hence, it should be possible to predict the quantities of diatom EPS 

from chlorophyll a concentration (Underwood and Smith 1998). The sediment-

stabilizing effect of benthic diatoms was investigated (Underwood and Paterson 2003, 

de Brouwer et al. 2005) and a range of factors such as species composition, 

complexity and physiological states of diatom mats (Decho 2000) correlated with 

increases in the critical erosion shear stress of the sediment, indicating that diatoms 

are important agents for biostabilisation process (Underwood and Paterson 1993). 

Cyanobacteria is can also be found in illuminated areas and often under extreme 

environmental conditions. Fine sandy sediments are often characterized by the 

presence of microbial mats, formed by cyanobacteria (Stal 2003). The mechanism of 

biostabilisation from cyanobacteria is different as compared with other organism. 

Since the cyanobacteria absorb more light than necessary for growth, it is speculated 

that the cyanobacteria become embedded in a matrix of EPS through excess 

production that render a leathery structure and stability to the sediment (Stal 2003). 

EPS composition produced by cyanobacteria differs in comparison with EPS from 



CHAPTER 1.  General Introduction 
 

 7 

diatoms, consisting mostly of tightly bound capsular carbohydrate (de Winder et al. 

1999).  

While the biostabilisation process is very important in terms of the prediction of 

sediment erosion potential and has been increasingly studied over the last decade, 

there are still significant gaps in our knowledge. 

Despite the fact a range of meio- and microorganisms secrete EPS, most studies have 

focused on benthic microalgae as the main EPS producers (de Brouwer et al. 2005), 

and are therefore often considered as the most important contributor to 

biostabilisation. Thus, while microphytobenthos have been extensively researched 

(e.g. Paterson et al. 2000, Underwood et al. 2004), the ubiquitous heterotrophic 

bacterial component has been largely neglected  in term of biostabilisation 

(Gerbersdorf et al. 2009). However in aquatic system with less light at the sediment 

surface, bacterial EPS production may dominate (Flemming and Wingender 2001a, 

Gerbersdorf et al. 2008). Microbial biofilm changes the physical and chemical 

microhabitat (Battin et al. 2003); bacterial activities can enhance yield stress and can 

be related directly to the erosion resistance (Dade et al. 1996). Also heterotrophic 

bacteria are critical to transformation and remineralisation of organic carbon, 

nitrogen and other nutrient (Decho 2000). Bacteria can produce EPS with a high 

protein and lipid content (Flemming and Wingender 2001a). The presence of proteins 

in sediment EPS may also enhance the quality of food in benthic systems, EPS in 

freshwater may be more available to consumers and are strongly suspected to 

increase transfers of contaminants through food web (Decho 2000, Flemming and 

Wingender 2001b, Hirst et al. 2003). Only recently the stabilisation effects by the EPS 

of natural bacterial assemblages (growing on inert glass beads) have been reported 

(Gerbersdorf et al. 2008). 

The interactions of the main biofilm components such as heterotrophic bacteria, 

autotrophic microalgae, and cyanobacteria in terms of their individual contribution to 

the EPS pool and their relative functional contribution to substratum stabilisation, 

have rarely been studied in combination. There is also little known about the impact 

of meiofauna on microbial EPS production. Thus, new investigations upon the impact 

of EPS on sediment stability and relative contribution of EPS producers to 

biostabilisation are needed for the prediction of the erosion behaviour.  
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The effect of toxin on microbial stabilisation capacity 

The mechanisms of biostabilisation and species interactions, including shifts in 

biofilms, are strongly depending on conditions in the environment. Studies of 

environmental risk assessment of pollutants have been the focus of much interest in 

the ecological field and mostly investigate the effect of toxins on aquatic organisms. 

They may also influence microbial biomass, EPS production and possible cause shift in 

community composition. However, the effect of pollution on ecological functions of 

aquatic organisms, such as biostabilisation is still unknown. To begin this research, 

triclosan (TCS) was chosen as a widely-used antibacterial and antifungal compound 

(McMurry et al. 1998, Villalain et al. 2001, Escalada et al. 2005) that has received 

much attention during recent years. It has the highest occurrence rate and maximum 

concentration among a group of 96 organic pollutants recently investigated (Kolpin et 

al. 2002, Halden and Paull 2005). Since effects of TCS on microbial biofilm may vary 

according to the concentration and exposure time (Tatarazako et al. 2004, Tabak et al. 

2007, DeLorenzo et al. 2008, Franz et al. 2008), the range of TCS concentrations used 

in this study were chosen to be relevant to environmental occurrence. Despite that 

TCS is antibacterial agent, there is evidence that TCS also highly toxic to aquatic 

organisms (Orvos et al. 2002, Ishibashi et al. 2004, DeLorenzo et al. 2008), and that 

microalgae are the most sensitive organism to TCS (Reiss et al. 2002, Neumegen et al. 

2005). While the current understanding is that TCS is acutely and chronically toxic to 

aquatic organisms, at the same time, the presence of toxin may elevate microbial EPS 

production(Fang et al. 2002, Iyer et al. 2004, Priester et al. 2006), and as result 

enhance bioaccumulation capacity of microbial biofilm (Schmitt et al. 1995). Based on 

these findings and taking into account the highly species–specific interactions 

between microalgae and bacteria  the prediction of possible effect on biostabilisation 

capacity is complex and needs to be investigated by examination of biological-

chemical variables (e.g. microbial biomass and EPS production) and sediment stability 

simultaneously. 

This knowledge can provide early information about the effect of pollutants on 

engineering capacity of developing biofilms and significant contribute to 

understanding of the ecosystem functionality of “bioengineering.” 
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Objectives and hypothesises  

The aim of the work was to address gaps in our knowledge of microbial stabilisation 

and processes with a number of coherent aims. In Chapter 3, Magnetic Particle 

Induction (MagPI) (Larson et al. 2009) was developed to allow the determination of 

fine changes in surface properties and is suitable for investigation of young, growing 

biofilms. The technique is based on an original concept of using ferrous test particles 

and magnetism for measurements of biofilm adhesion (introduced by Prof. David M. 

Paterson). The method employs fluorescent microscopic magnetic particles that are 

added to the test surface. Thereafter an increasingly attractive force from a magnetic 

field (from an electro-or permanent magnet) is applied and the force at the point 

where the particles are recaptured by the magnet is determined as a measure of the 

adhesive nature of the surface. The methodology is dynamic and provides high level of 

precision. It can be easily controlled by fine increments of current and consequent 

strength of the magnetic field. For increased mobility and application in the field, the 

use of high power permanent magnets is possible. The methodology offers an easy 

and affordable way to determine the surface adhesion of a variety of surfaces rapidly 

and with precision. The technique may have further applications in research where 

the scale of determination required lies between that of atomic force microscopy (< 

um) and flume systems (> 10 cm).  

To address this, the aim of Chapter 4 was an investigation into the interaction of 

aquatic organisms in terms of their coexistence and relative contribution to overall 

EPS pool. Coexistences of monospecific microalgae culture and their individual 

contribution to the EPS pool were investigated using axenic cultures of two diatoms: 

Amphora coffeaeformis and Navicula hansenii in combination with the cyanobacteria 

Oscillatoria species (Section 4.3.1). The individual and combined engineering 

capability of a natural heterotrophic bacterial assemblage with an autotrophic 

microalgae assemblage in terms of their innate EPS secretion was compared using 

benthic microbial cultures (prokaryotic, eukaryotic with natural diversity), isolated 

from estuarine sediments (Section 4.3.2). In addition to this, individual bacterivorous 

nematodes, and bacterial and microalgal cultures and in combination were used in 

order to determine the impact of benthic meiofauna on microbial growth and EPS 

production (Section 4.3.3). 
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A further purpose was to test the hypothesis: 

1. Higher diversity would lead to increase microbial biomass, EPS production 

and hence surface adhesion of the biofilm (described in Chapter 5). 

2. The coexistence of bacteria and microalgae may enhance the EPS secretion, 

elevate microbial cell growth and the net engineering potential. 

3. That bacterivorous nematodes may have a positive effect on the bacterial and 

microalgal growth and EPS production. 

Discussions include the analysis of a shift of microbial community composition, 

changes of biomass and EPS production as a result of aquatic organism interaction.  

Furthermore, results obtained were used to investigate relative functional 

contribution of microorganisms to substratum stabilisation. The aim of Chapter 5, was 

to assess the individual stabilisation capacity of microorganisms. Firstly, the 

individual stabilisation capacity of two benthic diatom species Amphora coffeaeformis 

and Navicula hansenii and cyanobacteria Oscillatoria species, separately and 

combined were determined using MagPI (Section 5.3.1). This data was related to 

biological variables and to quality and quantity of EPS obtained in Chapter 4.  

Secondly, investigation of the engineering effect on a non-cohesive test bed as the 

surface was colonised by natural benthic assemblages (prokaryotic, eukaryotic and 

mixed cultures) of bacteria and microalgae. The mechanical properties of the surface 

were determined by newly developed magnetic particle induction technique MagPI 

and the CSM technique respectively to the adhesive capacity and the cohesive 

strength of the culture surface.  

It was hypothesized that higher levels of microbial biodiversity would lead to increase 

stabilisation potential of the biofilm. A further purpose was to test the hypothesis that 

the coexistence of bacteria and microalgae might show a synergistic effect on their 

engineering capacity and stabilize the substratum more effectively. 

The effect of triclosan (TCS) on microbial stabilisation capacity was investigated by 

using bacterial biofilm (Chapter 6) and natural freshwater biofilm (Chapter 7). Since 

bacteria are omnipresent members of aquatic biofilm and their important role on 

biostabilisation was confirmed in previous chapters, the aim of Chapter 6 was to study 

the impact of TCS on bacterial stabilisation potential. The bacterial culture was 

isolated from natural sediments and small glass beads were used as artificial, non-
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cohesive substratum, to support to development of bacterial biofilm. The stability of 

the substratum was determined using MagPI during two weeks of experimentation. 

The hypothesis that TCS have negative effect on bacterial population, EPS secretion 

and hence inhibited bacterial stabilisation potential was tested in this study. Areas 

discussed include biological and chemical variables (such as bacterial biomass, 

bacterial dividing rate and EPS quality and quantity) and sediment stability. 

Furthermore, obtained results were used as a basis to investigate the impact of TCS on 

natural freshwater microbial community described in Chapter 7.  

The hypothesis that TCS have a negative effect on microbial growth and EPS 

production and impair stabilisation capacity of freshwater biofilm was tested and 

confirmed in Chapter 7. To simulate the natural scenarios of development of the 

biofilm in river system the natural freshwater biofilm was grown in flow-through 

glass channels (mini-flumes) before the start of the experiment and artificial glass 

beads served as the inert non-cohesive substratum. This knowledge can provide early 

information about the effect of pollutants on engineering capacity of developing 

biofilms and significant contribute to understanding of the ecosystem functionality of 

“bioengineering.” 
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Chapter 2  

 

General Methods 

 

The methodologies described in this chapter provide the general materials, methods 

and techniques used throughout the thesis. The results of the experimental chapters 

are described with reference to the relevant sections of this chapter. The experiments 

conducted throughout the course of this thesis are of similar general design, which is 

detailed within this chapter. 

 

2.1. Study sites 

The main subsurface sediments or water used for bacterial and microalgae culture 

were collected from the Eden Estuary, situated on the east coast of Scotland between 

St Andrews and the Firth of Tay (56°22´N, 2°51´W) and from the River Parthe which 

joins the White Elster in northwestern Leipzig, Germany (51021´39´´N 12020´32´´E). 

 

2.2. Culture preparation 

2.2.1. Bacterial cultures 

Subsurface sediment was collected to a depth of 0-2 mm from the intertidal mudflats 

of the Eden estuary located in the southeast of Scotland (56°22´N, 2°51´W). One litre 

of 1 µm filtered seawater was mixed with the same volume of sediment and the 
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sediment slurry was ultrasonicated (Ultrasonic bath XB2 50-60Hz) for 10 min to 

enhance detachment of bacteria from the sediment grains. The sediment slurry was 

centrifuged twice for 10 min (6030 g, Mistral 3000E, Sanyo, rotor 43122-105) to 

separate sediment (pellet) and bacteria (supernatant). The supernatants were 

retained and centrifuged for another 10 min (17700 g, Sorval RC5B/C). This time the 

supernatant was discarded, while the remaining pellet containing the bacteria was 

resuspended and filtered through a 1.6 µm filter (glass microfiber filter, Fisherbrand 

MF100). The filter size was chosen to exclude the smallest expected microalgae from 

the Eden estuary, such as Nitzschia frustulum which is typically 4-10 µm (Aspden PhD 

thesis, 2005). All equipment used after this filtration step was acid-washed and 

possible microalgal contamination was checked regularly by epifluorescence 

microscopy. Standard nutrient broth (Fluka, Peptone 15 g l-1, yeast extract 3 g l-1, 

sodium chloride 6 g l-1, D(+) glucose 1 g l-1) was autoclaved and added (1:3) to the 

filtered supernatant. The bacterial stock cultures were established in 200 ml 

Erlenmeyer flasks under constant aeration in a dark at room temperature (15oC) and 

fresh nutrient broth was added once a week during a 2-week cultivation period.  

 

2.2.2. Diatom cultures 

Sediment surface samples (0-5 mm) were taken from the same location on the Eden 

estuary and were processed in a consistent manner as described for the bacterial 

cultures above. However, the remaining pellet was resuspended in F/2 culture media 

without the filtration step. To exclude bacteria, antibiotics were added (150 mg l-1 

streptomycin, 20 mg l-1 chloramphenicol, final concentrations). To confirm the 

effective exclusion of bacteria the subsamples was mixed with an equal amount of 

SYTO Green 13 (1 µl of stain mixed in 1 ml distilled water, Molecular Probes) and the 

samples were examined regularly using epifluorescence microscopy. The microalgal 

cultures were incubated under constant temperature (15°C) and at ambient light 

conditions in the laboratory for 3 weeks with fresh nutrients added regularly, once a 

week (Ribalet et al. 2008). 

 

2.2.3. Nematode cultures 

Bacterivorous nematodes (Diplolaimelloides meyli Timm 1961, Diplolaimelloides 

oschei Meyl, 1954) belonging to the family Monhysteridae, originally obtained from the 
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Westerschelde Estuary (SW Netherlands), were used from monospecific laboratory 

cultures at the Marine Biology Laboratory, Ghent University. This species was used, as 

they are opportunistic colonizers of various types of decaying organic matter and feed 

largely on bacteria. The nematodes were grown under laboratory conditions (17°C) 

and salinity (25) for many generations prior to the start the experiment (Hubas et al. 

2010). The nematodes were grown and extracted as described by Moens and Vincx 

(1998). Agar media with unidentified bacteria from their natural habitat was used as 

food source. Prior to the experiment the nematodes were extracted from the culture 

plates using a density centrifugation in sucrose (40% final concentration) and 

carefully washed several times with artificial seawater. The nematodes were placed in 

non-cohesive acid washed marine sand (40-100 µm, Fisher Scientific) during the 

experiment. 

 

2.3. Sample collection 

Surface sediment was obtained using a mini core (see section 2.3.1 for details). The 

sediment was fixed using methods appropriate for future analysis. For determination 

of bacterial cell numbers, EPS concentrations, chlorophyll a analysis and LTSEM the 

sediment samples were immediately frozen in liquid nitrogen (LN2) and stored at -

800C, to prevent microbial activity and degradation, until required for further 

analysis. For bacterial dividing rate, one sediment core with a depth of 10 mm was 

taken from each box and three cores per treatment pooled before analysis. Cores were 

incubated for 20 min immediately after sampling with methyl-3H thymidine with final 

concentration of 300 nmol l-1, methyl-3H thymidine, 50 Ci mmol l-1) according to 

Fuhrman and Azam (1982). The incorporation of radioactive thymidine was stopped 

by adding of 5 ml of 80% ethanol. The samples were stored at room temperature in a 

suitable container for radioactive samples until further analysis was carried out. To 

determine bacterial community composition the cores were fixed overnight with 

3.7% formaldehyde and 70% ethanol. In order to determine microphytobenthic 

community composition, the cores were fixed in 4% glutaraldehyde and stored until 

required for further analysis. 
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2.3.1. The mini-cores 

Sediment cores of 5 mm depth were taken with a cut-off syringe 10 mm diameter 

(Figure 2.1) by the following steps: 1-the syringe was placed into the sediment to a 

depth of ~5 mm, rotated 360o within the sediment and removed; 2-any sediment 

protruding from the syringe was removed by scraping a spatula across the face of the 

syringe; 3-the sediment cores for analysis of bacterial cell numbers, EPS 

concentrations and chlorophyll a concentrations were immediately frozen with liquid 

nitrogen after sampling; 4-the sediment was extracted from the syringe using the 

syringe-plunger, wrapped in labelled foil and stored at -80°C until required for further 

analysis. 

 

    

    

Figure 2.1: Sample extraction. 

 

2.4. EPS extraction and determination 

Two millilitres of distilled water was added to the sediment samples in safety-lock 

Eppendorf caps. The samples were continuously rotated for 1.5 h on a horizontal 

mixer (Denley Spiramix 5) at room temperature (20°C). The samples were then 

1 

2 

3

4 
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centrifuged (6030 g, 10 min, Mistral 3000E Sanyo, rotor 43122-105) and the 

supernatant containing the water-extractable (colloidal) EPS fraction was pipetted 

into a new Eppendorf and mixed. The supernatant was divided into 1 ml subsamples 

to determine EPS compounds: ~1 ml for carbohydrates concentration and ~1 ml for 

EPS protein concentration. Subsamples of this supernatant were analysed in 

triplicates for carbohydrate and proteins following the Phenol Sulphuric Assay 

protocol (Dubois et al. 1956) and the modified Lowry procedure (Raunkjaer et al. 

1994) respectively. 

 

2.4.1. Colloidal carbohydrates analysis 

For carbohydrates analysis, 200 µl phenol (5%) and 1 ml sulphuric acid (98%) were 

added to 200 µl supernatant. The samples were incubated for 35 min at 30°C and the 

carbohydrate concentration was measured by spectrophotometer (CECIL CE3021) at 

the wavelength of 488 nm (Dubois et al. 1956). The carbohydrate concentrations were 

calculated according to a glucose standard curve and results reported as glucose 

equivalents (µg cm-3 glucose equivalent). 

 

2.4.2. Glucose standard preparation 

A calibration curve (Figure 2.2) of D-glucose dilutions was performed with each set of 

samples. Standards were made in triplicate within a range of 0, 20, 50, 100, 125, 150 

and 200 µg ml-1 from stock solutions of D-glucose 200 mg l-1.  

 

Figure 2.2: Typical glucose/carbohydrate standard curve. 
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Linear regressions of the relevant standard curves were used to calculate the 

coefficients and constants using following equation 

 

Colloidal Carbohydrate [µg cm-3] = 4
)( ×−−

M

CBAbs
 

Equation 2.1 

 

where Abs is the absorbance of light with wave length of 488 nm, B is absorbance of 

blank sample with zero concentration of glucose, C is the constant-intercept of the line 

and M is the gradient of the line. Obtained values were multiplied by a factor of 4 to 

correct the resulting volume of samples diluted with added water. 

 

2.4.3. Colloidal protein analysis 

For protein analysis, 250 µl supernatant was incubated for 15 min with 250 µl of 2% 

sodium dodecyl sulphate (SDS) and 700 µl of chemical reagent 4. Reagent 4 is a 

mixture of Reagents 1- 3 in a ratio of 100:1:1 (Reagent 1: 143 mM NaOH, 270 mM 

Na2CO3, Reagent 2: 57 mM CuSO4, Reagent 3: 124 mM Na-tartrate), and incubated for 

a further 45 min at 30°C with Folin reagent (diluted with distilled water 5:6) 

(Raunkjaer et al. 1994, Gerbersdorf et al. 2008). The protein concentration was 

determined using a spectrophotometer (BUCK Scientific, CECIL CE3021, UK) at the 

wavelength of 750 nm. The proteins concentrations were calculated according to BSA 

standards curve and results are given in microgram per cubic centimetre. 

 

2.4.4. BSA standard preparation 

A calibration curve of BSA standard (Bovine Serum Albumin: Sigma, cat no A 4503-

10g) was produced for each set of samples. Standards were made within a range of 0, 

20, 50, 125, 150, 200 and 250 µg ml-1 (3 replicates of each) from stock solutions of 

BSA 200 mg l-1. Similar to calculations for colloidal carbohydrates, linear regressions 

of the standards were used to calculate the coefficients and constant as follow 

 

Colloidal Protein [µg cm-3] = 4
)( ×−−

M

CBAbs
 

Equation 2.2 
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where Abs is the absorbance at 750 nm, B is absorbance of blank sample with zero 

concentration of BSA, C is the constant-intercept of the line and M is the gradient of 

the line. Obtained values were multiplied by factor 4 to correct the resulting volume of 

samples diluted with added water. 

 

2.5. Pigment extraction and determination 

Cores were transferred to a 15 ml Apex centrifuge tube to which 10 ml of 96% ethanol 

was added. The mixture was rotated for 24 h in the dark at room temperature (20 C°) 

by a horizontal rotator at a fixed speed of 50 rpm (Denley Spiramix 5). The samples 

were centrifuged for 10 min at 6030 g (Sanyo MSE, Mistral 3000E). The chlorophyll a 

and pheophytin concentrations in the supernatant were measured according to the 

BMEPC guidelines (BMEPC 1988), reading absorbance at 630, 647, 664 and 750 nm 

wavelength before and after acidification (Termo Biomate 5 spectrophotometer), 

respectively, according to Jeffrey et al. (1999). Chlorophyll a and pheophytin 

concentrations are given as a proxy for microphytobenthic biomass and degradation 

products, respectively. Chlorophyll a concentrations were calculated according to the 

chlorophyll a standards and results are given in microgram per cubic centimetre. 

 

2.5.1. Preparation of the chlorophyll a standards 

Stock chlorophyll a standard solution was prepared by dissolving 1 mg of Spinach 

sample (Sigma-Alrdrich) in 250 ml of 96% ethanol. Standards were made in triplicate 

within a range of 4, 2, 1, 0.5 and 0.25 mg l-1 from stock solution. To inhibit pigment 

degradation, the standards were wrapped in tinfoil and stored at 40 C. The absorbance 

of a blank (96% ethanol) and each standard concentration were measured in separate 

1 cm cuvettes (Termo Biomate 5 spectrophotometer), and were read at 630 nm (the 

correct peak maxima (λ max) of chlorophyll a) and 750 nm to correct for light 

scattering in the sample. Chlorophyll a concentration was calculated using 

 

Chlorophyll a [µg cm-3] =([A630]-[A750]-blank)/ε Equation 2.3 

 

where A630 is the absorbance at 630 nm, A750 is the absorbance at 750 nm, C is 

chlorophyll a concentration (µg ml-1) and ε is extinction co-efficient of chlorophyll a. 
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2.6. Fluorescence measurements  

Done with collaboration S. Franz, Helmholtz Centre for Environmental Research, 

Department Bioanalytical Ecotoxicology, Germany. 

Pulse Amplitude Modulated (PAM) fluorescence is increasingly being applied in the 

assessment of algal photosystems (Schmitt-Jansen and Altenburger 2008). Data 

collected using this technique was used as a proxy of microphytobenthic biomass, and 

to assess the stress response of microalgae in the presence of the xenobiotic 

compound triclosan. Effects on photosynthetic activity were performed according to 

McClellan et al. (2008) using the MAXI-Imaging PAM (Fa. Walz, Effeltrich Germany) on 

undisturbed Petri dishes. The instrument was positioned 4 mm above the sediment 

surface; the position was kept constant for comparative purposes. After 5 min dark 

adaptation, the minimum fluorescence yield (F0
5) was measured and used as a 

surrogate of sediment surface algal biomass. Afterwards the samples were adapted to 

actinic light (PAR 111 µmol photons m2 s-1) for 2.5 min. The current fluorescence yield 

(F´) and the maximum fluorescence (Fm’) was assessed immediately after a saturating 

pulse of light (Schreiber et al. 1986, Honeywill et al. 2002). The measurement was 

repeated three times per Petri dish and an average value was calculated. These two 

parameters were then used to calculate the effective quantum yield that represents 

the photosynthetic capacity and can be used to assess the inhibition of Y(II) and 

therefore an indication of stress response, according to Schreiber et al. (1986) and 

Genty et al. (1989): 

'

''

'
)(

Fm

FFm

Fm

Fv
IIY

−=∆=  
Equation 2.4 

 

The inhibition of the photosystem is expressed as the ratio of the effective quantum 

yield of the treated samples Y(II)treat and the effective quantum yield of each 

treatment’s at the first day of the experiment Y(II)fd 

Inhibition [%] =
100* Y(II)treat

Y (II) fd

 
Equation 2.5 

 

2.7. Bacterial enumeration by flow cytometry  

Cores were fixed with 0.2 µm pre-filtered glutaraldehyde solution (1% final 

concentration) and bacteria were stained with Syto13 (Molecular Probes, 1: 2000 v: v, 
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1.2 µmol l-1 final concentration) for 15 min in the dark. The bacterial abundance was 

measured by flow cytometry (Becton Dickinson FACScan™ with a laser emitting at 

488 nm). Fluorescent calibrated beads were added to some samples (PeakFlow™, 6 

µm, 515 nm, Molecular Probes) to distinguish bacterial cells from debris and mineral 

particles (Figure 2.3).  

 

Figure 2.3: Typical example of relevant window for bacterial enumeration by flow 

cytometry. 

 

The acquisition of events was thus limited to a gate encompassing only bacterial cells 

by plotting the side light scatter (SSC) versus green fluorescence (FL1). Data were 

recorded until 10,000 events were acquired or after 60 s of counting. The bacterial 

abundance was calculated by multiplying the acquisition rates (between 160 and 640 

bacteria counted per s) by the flow rate (fixed to 60 µl min-1). 

 

2.8. Bacterial division rate  

Cores were incubated for 20 min immediately after sampling with [methyl-3H] 

thymidine (final concentration 300 nmol l-1, methyl-3H thymidine, 50 Ci mmol l-1) 

according to Fuhrman and Azam (1982). The incorporation of radioactive thymidine 

was stopped by adding 5 ml of 80 % ethanol. All the samples were collected on a filter 
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(0.2 µm) after the incubation time and washed several times with 80% ethanol and 

5% trichloroacetic acid (TCA) to remove excess radioactivity. The filters (containing 

the bacteria and the sediment particles) were mixed with 5 ml of 0.5 mol l-1 of HCl and 

incubated at 95 °C over 16 h (Garet and Moriarty 1996) allowing the settlement of the 

sediment particles and the solubilisation of the stained bacteria into the supernatant. 

A subsample of the supernatant was taken, cooled and mixed with 3 ml of the 

scintillation cocktail Ultima Gold MV. The bacterial division rate (cells cm-3 h-1) was 

calculated according to an internal standard quenching curve (Liquid scintillation 

analyzer “TRI-CARB 2000”) while assuming that 1 mol-1 incorporated thymidine is 

equivalent to the production of 2 x 1018 bacterial cells (Lee and Fuhrman 1987, Cho 

and Azam 1990). The saturating concentration of 3H-thymidine was chosen according 

to previous experiments in similar sediments. The thymidine incorporation was 

shown to be linear under the range of chosen concentrations (Hubas et al. 2007a, 

Hubas et al. 2007b). For each replicate, the radioactivity of the samples was corrected 

against a blank, which corresponded to the pre-fixed sediment cores submitted to the 

protocol described above. 

 

2.9. Microbial community composition 

2.9.1. Bacterial assemblage/Fluorescence in situ hybridization (FISH) 

Done by Dr. W. Manz Institute for Integrated Natural Sciences, University Koblenz-Landau, 

Germany.   

To determine bacterial community composition two sediment cores were fixed 

overnight with 3.7% formaldehyde and 70% ethanol to account for the different 

permeability of Gram negative and Gram positive bacteria, respectively (Roller et al. 

1994, Manz 1999). After incubation (using a horizontal mixer, Denley Spiramix 5; 

Denley-Tech Ltd, Sussex, UK) and centrifugation (5 min at 16060 g-1, Biofuge pico 

Centrifuge, Heraeus, Rotor 7500 3325), the samples were washed twice in 

phosphate-buffer saline (PBS, 130 mM NaCl and 10 mM NaHPO4/ NaH2PO4, pH7.4), 

then the pellets were resuspended and stored in a mixture with equal parts of PBS 

and ice-cold absolute ethanol at -200C (Amann et al. 1990). Prior to further analysis, 

sediment-associated bacteria were detached and homogenized by 5 min of sonication 

(Ultrasonic bath XB2 50-60Hz), thoroughly mixed for 1 min, and centrifuged at 16060 

g-1 (Biofuge pico Centrifuge, Heraeus, Rotor 7500 3325). 
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To determine total bacterial cell counts, 50 µl aliquots of the cell suspensions were 

filtered through polycarbonate membranes (0.2 µm pore size, Millipore, Eschborn, 

Germany) and stained with 15 µl DAPI solution (4´,6-diamidino-2-phenylindole, 

Sigma, Deisenhofen, Germany, 10 µg ml-1). Applying a comprehensive set of 

oligonucleotide probes, intact bacterial cells have been hybridized aiming at selected 

parts of the 16S rRNA that are specific for bacterial groups on the domain, phylum, 

and subphylum level (Manz et al. 1992, Gerbersdorf et al. 2008, Gerbersdorf et al. 

2009) (Table 2.1). 

Table 2.1. Oligonucleotides used in this study (a-Probe nomenclature as described by 

Alm et al. (1996). 

Target organisms 
Oligonucleotidea 

Common name 
Sequence (5´-3´) %FA Reference 

Bacteria 
S-D-Bact-0338-a-A-18 

EUB338 
GCTGCCTCCCGTAGGAGT 0-50 

Amann et al., 

(1990) 

Plantomycetales 
S-D-Bact-0338-b-A-18 

EUB338 II 
GCAGCCACCCGTAGGTGT 0-50 

Daims et al.,  

(1999) 

Verrucomicrobiales 
S-D-Bact-0338-c-A-18 

EUB338 III 
GCTGCCACCCGTAGGTGT 0-50 

Daims et al.,  

(1999) 

Alphaproteobacteria 
S-Sc-aProt-0019-a-A- 

ALF968 
GGTAAGGTTCTGCGCGTT 35 Neef (1997) 

Betaproteobacteria 
L-Sc-bProt-1027-a-A-17 

BET42a 
GCCTTCCCACTTCGTTT 35 

Manz et al., 

(1992) 

Gammaproteobacteria 
L-Sc-gProt-1027-a-A-17 

GAM42a 
GCCTTCCCACATCGTTT 35 

Manz et al.,  

(1992) 

Actinobacteria 
S-P-HGC-1901-a-A-18 

HGC69a 
TATAGTTACCACCGCCGT 25 

Roller et al., 

(1994) 

Desulfobacterales, 

Desulfuromonales, 

Syntrophobacterales, 

Myxococcales, and other 

bacteria 

S-F-Srb-0385-b-A-18 

(SRB385Db) 

 

CGGCGTTGCTGCGTCAGG 35 
Rabus et al.,  

(1996) 

Cytophaga-Flavobacterium 

group of Bacteroidetes 

Flavobacteria, 

Bacteroidetes & 

Sphingobacteria 

S-P-CyFla-0319-a-A-18 

CF319a 
TGGTCCGTGTCTVAGTAC 20 

Manz et al.,  

(1996) 

 

The samples were incubated in hybridization buffer containing 0.9 M NaCl and 

formamide, 20 mM Tris-HCl, 0.01% sodium dodecyl sulfate (SDS), and the 
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oligonucleotide probe at a concentration of 20-50 ng ml-1 for at least 4 h at 460C. 

Under stringent conditions, the slides were washed (washing solution 20 mM Tris-

HCl, pH8; 0.01% SDS) and air-dried. Total bacterial cell counts and FISH analysis was 

performed by epifluorescence microscopy (Zeiss Axioplan II, Carl Zeiss, Jena, 

Germany), fitted with Zeiss light filter set no.1 for DAPI (exciter 365 nm, dichroic 

mirror 395 nm, emission filter 397 nm) and for Cy3 (Exciter 535/50 nm, dichroic 

mirror 565 nm, emission filter 610/75/nm). For cell counts, ten areas on the slide 

were chosen at random to carry out cell counts (100x100 µm) were evaluated 

counting a minimum of 1000 cells per sample. The hybridization with a molar mixture 

of the probes EUB338, EUB338II, and EUB338III gave the total eubacterial counts, and 

the probe-specific counts were calculated on this basis as percentages. 

 

2.9.2. Microphytobenthic assemblage  

Done by  Dr. L.Taeuscher’s Institute fuer Gewaesseroekologie Seddin, Germany 

The species composition of the microalgal community was assessed from fixed 

samples of the diatom assemblage. The cores were fixed in 4 % glutaraldehyde and 

the species composition of the microalgal community was assessed within 10 

subsamples per sample by light microscopy. The subsamples were further cleaned 

and embedded in Naphrax (refractive index n=1.710) for precise determination of 

taxa. The following literature was used: (Simonsen 1962, Krammer and Lange-

Bertalot 1986-1991, Pankow 1990, Lange-Bertalot 1997, Underwood et al. 1998, 

Witkowski et al. 2000). 

 

2.10. Low Temperature Scanning Electron Microscopy 

Done with collaboration I. Davidson, Sediment Ecology Research Group, Scottish Ocean 

Institute, University of St Andrews. 

Low Temperature Scanning Electron Microscopy (LTSEM) has often been used to 

visualise biofilms and microbial mats and investigate their role in the biogenic 

stabilisation of sediments (Perkins et al. 2006). Further details of the examination of 

frozen sediment/biofilm under LTSEM are discussed in Paterson (1995). Samples are 

frozen using liquid nitrogen to facilitate examination in an electron microscope (JEOL 

35CF Scanning Electron Microscope, Japan) (Figure 2.4). This system was adapted to 
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perform low-temperature study (Oxford Instruments CT 1500 Cryopreparation 

System). 

 

Figure 2.4: Low Temperature Scanning Electron Microscope integrated with digital 

image recording system and Oxford cryo-SEM system 

 

The samples for LTSEM were collected using a cut-off syringe, as described in section 

2.3.1, immediately frozen with liquid nitrogen and stored at -80°C until being viewed. 

Samples were mounted onto specifically designed cryo-stubs, whilst remaining 

frozen with LN2, and transferred to the cryo-apparatus. The samples were partially 

freeze-dried within the electron microscope on a heated stage until enough water had 

sublimed into vacuum to allow a clear viewing. Images were recorded with a Digital 

Image Recording System (JEOL Semaphore SA20, Japan). Images were taken to give a 

generalised view of the sample; with higher power images taken to provide detail.  

 

2.11. Application and determination of triclosan concentration 

To investigate the effect of toxin on the biostabilisation capacity of cultured bacterial 

biofilms (Chapter 6) and natural fresh water biofilms (Chapter 7) triclosan (TCS) 

which is a potent biocide that is included in a diverse range of products was 

employed. Two different methods of triclosan (5-chloro-2-(2,4-
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dichlorophenoxy)phenol) spiking were used. Two subsections on each of these 

methods are described below. 

2.11.1.  Application of triclosan-pure standard 

Triclosan stock solution was prepared by dissolving the commercially available 

powder (Irgasan-72779, Sigma –Aldrich) in seawater for 4 h, with the help of a 

magnetic stirrer. The stock solution was further diluted with seawater to gain the 

required concentrations and the experimental treatments were spiked via the water 

phase. Consequently, the actual triclosan concentrations and distribution between the 

water phase and the surface substratum were regularly analysed during the 

experiment by high performance liquid chromatography (HPLC). Overlying water was 

removed carefully using a 20 ml syringe, without disturbing the sediment surface, and 

retained for analysis. Cores were obtained using the minicore method once the 

overlying water had been removed. The water samples and the sediment extracts of 

the substrata were pre-concentrated using silica-based octadecyl bonded phase 

cartridges C18 6cc (Oasis HLB, Waters, Milford, MA), used to adsorb molecules of even 

weak hydrophobicity from aqueous solutions. Prior to use, the cartridges columns (3 

ml) were activated and conditioned with 5 ml of HPLC water, acetone and finally, 

methanol, at a flow rate of 1 ml min-1. About 500 ml of samples volume were promptly 

loaded onto the cartridges at a flow rate of 5 ml min-1 to avoid any degradation of the 

target compounds and the loss of sample integrity. After pre-concentration, the 

cartridges were completely dried by vacuum for about 20 min to avoid hydrolysis and 

kept at -200C until analysis. Finally, the cartridges were eluted with 2 ml of methanol 

and directly injected onto the HPLC vials.  The injection volume was set at 100 µl, and 

the flow rate was kept at 1 ml min-1 of 80% methanol using isocratic flow. Detection of 

triclosan was carried out by UV-VIS detector (Waters 2489) at the wavelength of 280 

nm. The triclosan peak was quantified against an absolute standard by the Empower 2 

Chromatography Software (Waters). Triclosan concentrations were calculated 

according to the triclosan standards and results are given in microgram per litre. 

 

2.11.1.1. Triclosan standard 

Triclosan standard was purchased from Sigma-Aldrich (St. Louis, MO). Solvent used 

during analysis was high performance liquid chromatography grade. The standard 

used to quantify compounds of the highest purity available. Stock solutions (1 mg l-1) 
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of individual standards were prepared by dissolving pure standards in methanol. 

Working solutions were obtained by further dilution of stock solution in within a 

range of 1-1000 µg l-1.  

 

2.11.2. Application of triclosan–partitioning-based dosing 

Done with collaboration S. Franz, Helmholtz Centre for Environmental Research, 

Department Bioanalytical Ecotoxicology, Germany. 

To investigate the possible effect of triclosan on growth and biostabilisation potential 

of natural freshwater biofilm, triclosan commercial powder was dissolved with 1 % of 

dimethylsulfoxide (DMSO). In addition, to ensure the best correspondence between 

planned and actual concentrations, a new dosing technique based on silicone 

elastomer stirred bars (silicon rods) was used (Chapter 7). According to Bandow et al. 

(2009a), this dosing technique has a high loading capacity and a fast achievement of 

equilibrium in the medium establishing the equilibrium of triclosan concentration 

within the sediment-water-biota system. This approach maintains constant 

concentrations in the system by the regular compensation of decomposition losses. 

Preparation of silicon rods is described in detail by Bandow et al. (2009a, 2009b). 

Silicon was purchased as a flexible cord with a diameter of 5 mm from Goodfellow 

Cambridge Ltd. (Huntingdon, U.K.). Rods were produced from this cord by cutting it 

into 2.52 cm lengths (Figure 2.5) to be loaded to each channel. The silicon rods were 

cleaned by immersing to the ultrasonic bath with a mixture of acetonitrile and 

methanol (ratio 80:20) three times for 15 min. The rods were dried for 8 h in an 

atmosphere of nitrogen at 240°C, and then loaded by soaking each silicon rod in 300 

µl of a solution of triclosan in hexane. The solvent was completely removed by gently 

blowing nitrogen over them for 20 min and by heating them for 2 h at 30°C. Amounts 

of triclosan necessary to reach intended water concentrations in the water channels 

(2 µg l-1 to 150 µg l-1) were estimated assuming equilibrium partitioning between the 

silicon rods, water and biofilm (Figure 2.5) and calculated using Equation 2.6.  

The total mass of triclosan in the system at equilibrium equals: 

.constmmmm SWBfLoad =++=  Equation 2.6 
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Figure 2.5: A flexible silicon rod (left) and a schematic diagram of system with 

equilibrium (right). 

 

where mLoad is total mass of triclosan loaded onto silicon rods, mBf  is a mass of 

triclosan in the biofilm at equilibrium, mW is a mass of triclosan in the water phase at 

equilibrium and mS is a mass of triclosan in silicon rods at equilibrium.  

Partitioning between the silicon rods and the water phase at equilibrium can be found 

as (Bandow et al. 2009b): 

S
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Equation 2.7 

 

where CS is the concentration of triclosan in the silicon rod, CW  is the concentration of 

triclosan in the water phase, VW is the volume of water phase and VS is volume of 

silicon rods.  

The loaded amount of TCS per rod varied between 9.6 µg and 724 µg, then depending 

on the intended concentrations of TCS 14 silicon rods were prepared for each channel. 

 

2.12. Sediment stability 

2.12.1. Cohesive Strength Meter 

The substratum stability was determined using the Cohesive Strength Meter (CSM), a 

well-established technique, which allows for the rapid measurement of the erosion 

threshold of exposed sediments (Figure 2.6). This device was firstly described by 

Paterson (1989) and the sensitivity and calibration of the CSM was further improved 

by Tolhurst et al. (1999). The device consists of a water filled test chamber 30 mm in 

diameter, placed into the sediment (Figure 2.7 left). 
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A jet of water is expelled within the chamber towards the surface sediments. The 

velocity of the jet increases with each pulse until the bed fails (Vardy et al. 2007) and 

sediment is resuspended within the chamber. 

 

Figure 2.6: The Cohesive Strength Meter erosion device. 

 

The CSM system records changes in light transmission within the chamber and a 10% 

drop in transmission from the original undisturbed bed is taken as the indication of 

resuspension and erosion (Figure 2.7 right) (Tolhurst et al. 1999, Vardy et al. 2007). 

  

 

 

Figure 2.7: The schematic diagram of CSM (left) and principle of the threshold 

measurements (right). 
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The CSM program “Fine 1” was used as it offered the most appropriate gradual 

increase in pressure steps over time. The relative substratum stability was expressed 

as stagnation pressure at the bed surface (N m-2) causing a 10% decrease in 

transmission and was measured at regular intervals over the experimental period. 

  

2.12.2. Magnetic Particle Induction 

The adhesive property of the biofilms was studied with a new method based on the 

magnetic attraction of specially produced test particles. This method is suitable for 

recording changes of sediment surface adhesion and is described in detail within 

Chapter 3. Briefly, for the methodology presented here, two types of magnets were 

used: permanent magnets and electromagnets (Figure 2.8). In both cases a known 

amount of ferromagnetic fluorescent particles were distributed over the sediment 

surface. Then the particles were recaptured by magnetic force. The relative force 

required to remove the particles was used to assess the sediment adhesion.  

           

Figure 2.8: The Magnetic Particle Induction device (left) and schematic diagram of its 

operation (right). 

 

The voltage applied to electromagnet was increased gradually and the response of 

particles to the increasing powerful magnetic field recorded. The forces required for 

total removal of particles under the magnet were determined as measuring of the 

surface adhesion, were further calibrated by Hall probe (as described in Chapter 3) 

and results reported in mTesla (Larson et al. 2009). The mechanical properties of the 

biofilm were studied in parallel to the CSM measurements over the experimental 

period. 
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Chapter	  3 	  

Methods	  and	  Tools	  for	  Sediment	  Stability	  Assessment	  

	  

Abstract	  

Natural	   sediment	  stability	   is	  a	  product	  of	   interacting	  physical	  and	  biological	   factors,	  

and	  whilst	   stability	   can	   be	  measured,	   few	   techniques	   allow	   sensitive	   assessment	   of	  

the	  sediment	  surface	  as	  conditions	  change.	  For	  example,	  stability	  gradually	  increases	  

as	  a	  biofilm	  develops	  or	  as	  salinity	  rises	  or	   it	  might	  be	   influenced	  by	  environmental	  

context	  such	  as	  the	  presence	  of	  toxic	  compounds.	   In	  this	  chapter	  a	  new	  technique	  is	  

introduced-‐magnetic	  particle	   induction	  (MagPI),	  based	  on	  the	  magnetic	  attraction	  of	  

specially	  produced	  fluorescent	  ferrous	  particles	  (ParTrac,	  UK).	  The	  test	  particles	  were	  

added	   to	   a	   surface	   and	   subjected	   to	   an	   incrementally	   increasing	   magnetic	   field	  

produced	  by	  permanent	  magnets	  or	  electromagnets	  (section	  3.5).	  

There	  was	   a	   strong	   correlation	   found	   between	  magnetic	   flux	   density	   (mTesla)	   and	  

distance	   from	   the	   surface	   (r2=0.99)	   for	   permanent	  magnets	   and	   between	  magnetic	  

flux	   density	   and	   the	   current	   supplied	   to	   an	   electromagnet	   (r2>0.95)	   held	   at	   a	   set	  

distance	  from	  the	  surface.	  The	  magnetic	  force	  at	  which	  the	  particles	  are	  recaptured	  is	  

determined	  as	  a	  measure	  of	  surface	  adhesion.	  

MagPI	   therefore	   determines	   the	   “stickiness”	   of	   the	   surface,	   whether	   a	   biofilm,	  



CHAPTER	  3.	  Methods	  and	  Tools	  for	  Assessment	  of	  Sediment	  Stability	  
	  

	   39	  

sediment,	   or	   other	  material.	   The	   average	  magnetic	   flux	   density	   required	   to	   remove	  

test	  particles	  from	  diatom	  biofilms	  (15.5	  mTesla)	  was	  significantly	  greater	  than	  from	  

cyanobacterial	   biofilms	   (10	  mTesla).	   Removing	   particles	   from	   a	   control	   bed	   of	   fine	  

glass	  beads	  required	  very	   little	   force	  (2.2	  mTesla).	  Surface	  adhesion	   is	  an	   important	  

bed	   property	   reflecting	   the	   sediment	   system’s	   potential	   to	   capture	   and	   retain	   new	  

particles	  and	  accumulate	  material.	  MagPI	  offers	  a	  straightforward	  and	  economic	  way	  

to	  determine	  the	  surface	  adhesion	  of	  a	  variety	  of	  surfaces	  rapidly	  and	  with	  precision.	  

The	   technique	   may	   have	   applications	   in	   physical,	   environmental,	   and	   biomedical	  

research.	  

	  

3.1. Introduction	  

Biofilms	  are	  close	  to	  omnipresent	  in	  aquatic	  systems	  and	  also	  important	  across	  many	  

academic	  disciplines	  including	  medical	  research	  (Morton	  et	  al.	  1998,	  Jain	  et	  al.	  2007,	  

Guo	   et	   al.	   2008),	   waste-‐water	   treatment	   (Liu	   and	   Fang	   2003,	   Raszka	   et	   al.	   2006),	  

toxicant	   removal	   (Sheng	   et	   al.	   2008)	   and	   biotechnology	   (Sutherland	   et	   al.	   1998,	  

Flemming	  and	  Wingender	  2001).	  Considerable	  interest	  has	  focused	  on	  the	  importance	  

of	   biofilms	   for	   enhancing	   sediment	   stability,	   largely	   by	   the	   microbially	   produced	  

matrix	  of	  extracellular	  polymeric	  substances	  (EPS)	  that	  increases	  sediment	  resistance	  

to	   physical	   force	   (Paterson	   et	   al.	   2000,	   Stal	   2003,	   Underwood	   and	   Paterson	   2003,	  

Tolhurst	   et	   al.	   2008).	   Sediment	   stability	   is	   a	   governing	   factor	   in	   sediment	  

management	  because	  sediment	  transport	  and	  the	  release	  of	  associated	  contaminants	  

have	   important	   consequences	   for	   the	   ecological	   and	   commercial	   health	   of	   aquatic	  

habitats	  from	  the	  watershed	  to	  the	  sea	  (Paterson	  et	  al.	  2000).	  To	  assess	  the	  potential	  

for	   sediments	   to	   erode	   under	   hydrodynamic	   forcing,	   several	   devices	   have	   been	  

developed	   to	  determine	   the	  critical	  erosion	   threshold	  (Tolhurst	  et	  al.	  2000)	  and	   the	  

erosion	   rates	   	   of	   natural	   sediments	   (Amos	   et	   al.	   2010).	   These	   laboratory	   or	   in	   situ	  

devices	  are	  based	  on	  many	  different	  approaches	   including	  water	   flow	   (McNeil	   et	   al.	  

1996,	  Kern	   et	   al.	   1999)	  or	  water	   jets	   impacting	   the	   surface	   (Paterson	  1989),	   or	   the	  

oscillation	   of	   a	   horizontal	   grid	   (Tsai	   and	   Lick	   1986),	   a	   spinning	   propeller	  

(Schuenemann	  and	  Kuehl	   1991),	   and	   combined	   suction	   and	   flow	   (Gust	   and	  Mueller	  

1997).	  These	  methods	  provide	  relative	  information	  on	  the	  erosional	  behaviour	  of	  the	  

sediment	  in	  response	  to	  hydrodynamic	  forcing,	  but	  all	  require	  that	  bed	  failure	  occurs	  
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and	  the	  sensitivity	  of	  each	  technique	  is	  very	  much	  dependent	  on	  the	  conformation	  of	  

the	   device,	   the	   area	   of	   eroding	   stress	   applied,	   the	   volume	   of	   the	   capture	   area,	   the	  

sensitivity	  of	  the	  detector	  and	  the	  rate	  of	  flow	  (Tolhurst	  et	  al.	  2000).	  These	  devices	  are	  

therefore	  extremely	  useful	  but	  cannot	  measure	  any	  fine	  changes	  in	  surface	  properties	  

below	   the	   point	   of	   incipient	   erosion.	   This	   restricts	   their	   use	   when	   it	   comes	   to	  

determining	  subtle	  differences	  in	  surface	  properties	  and	  consequently	  more	  sensitive	  

methods	   are	   needed.	   MagPI	   is	   not	   suggested	   as	   a	   replacement	   for	   current	   erosion	  

devices	  but	  provides	  a	  tool	  to	  collect	  the	  relatively	  sensitive	  data	  of	  surface	  properties	  

(adhesive	  capacity)	  influenced	  by	  cohesion	  and	  biofilm	  development.	  
	  

The	   use	   of	   magnetism	   in	   bacterial	   biofilm	   research	   is	   well	   developed:	   Magnetic	  

resonance	   imaging	   (MRI)	   has	   been	   used	   to	   visualise	   structure	   and	   detachment	   of	  

biofilms	  (Manz	  et	  al.	  2005,	  McLean	  et	  al.	  2008),	  while	  surface	  bio-‐magnetism	  was	  used	  

to	  change	  cell	  adhesion	  and	  protein	  secretion	  (Chua	  and	  Yeo	  2005).	  Immobilisation	  of	  

magnetic	  particles	  by	  aggregates	  of	  pathogenic	  bacteria	  has	  been	  employed	  to	  assess	  

biofilm	   formation	   in	  microtitre	   plates	   (Chavant	   et	   al.	   2007).	   The	  method	   presented	  

here	   is	   a	   development	   of	   an	   original	   concept	   by	   Prof	   David	   Paterson	   based	   on	   the	  

finding	   that	   the	   force	   needed	   to	   retrieve	   magnetic	   particles	   from	   a	   biofilm	   is	   a	  

sensitive	   indicator	  of	   retentive	   capacity	  of	   the	   substratum.	  The	  degree	   to	  which	   the	  

retraction	   of	   the	   magnetic	   particles	   from	   a	   biofilm	   is	   possible	   is	   a	   measure	   of	   the	  

surface	  adhesion	  potential	   and	  a	  proxy	   for	   cohesion/sediment	   stability.	   It	   is	   also	  an	  

ideal	  index	  for	  other	  well-‐known	  features	  of	  a	  biofilm	  such	  as	  the	  potential	  to	  capture	  

pollutants,	   the	   binding	   of	   nutrients	   or	   the	   incorporation	   of	   deposited	   sediment	  

particles	   (possibly	   an	   additional	   and	   cumulative	   stabilisation	   effect).	   The	   method	  

presented	   here	   (Magnetic	   Particle	   Induction,	   MagPI)	   describes	   the	   use	   of	   both	  

permanent	  magnets	  and	  electromagnets.	  In	  both	  cases,	  a	  defined	  volume	  of	  magnetic	  

particles	   of	   a	   known	   size	   range	   was	   spread	   onto	   a	   defined	   area	   of	   the	   submerged	  

sediment	   surface	   and	   the	  magnetic	   force	   applied	   to	   the	   particles	   until	   the	   particles	  

were	  recaptured.	  The	  magnetic	  force	  was	  gradually	  increased	  by	  either	  reducing	  the	  

distance	  between	   the	  magnet	  and	   the	  magnetic	  particles	   (permanent	  magnet)	  or	  by	  

increasing	   the	  electrical	   current	   to	   a	   variable	  magnet	   statically	  positioned	  5-‐10	  mm	  

above	   the	   sediment	   (electromagnet).	   The	   sensitivity	   of	   this	   method	   in	   developing	  

microalgal	  (diatoms	  and	  cyanobacteria)	  biofilms	  is	  shown	  by	  the	  data	  presented.	  The	  
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magnetic	  devices	  are	  cheap,	  easy	  to	  build	  and	  the	  calibration	  by	  use	  of	  Gauss	  Meters	  

allows	   for	   inter-‐comparison	   of	   results	   gained	   in	   different	   experiments.	   The	   relative	  

merits	   and	  use	  of	   the	   two	   types	  of	  magnets	   (field,	   laboratory)	   are	   also	  discussed	   in	  

further	  detail.	  	  

	  

3.2. Magnetic	  Particle	  Induction:	  Fundamental	  Principles	  	  

The	  magnetic	   field,	   created	   by	  magnetic	   materials	   or	   motion	   charges,	   at	   any	   given	  

point	   can	   be	   specified	   by	   both	   a	   direction	   and	   a	   magnitude	   (or	   strength).	  

Ferromagnetic	  objects	  or	  particles	  placed	  within	  the	  magnetic	  field	  experience	  a	  force	  

that	  can	  lead	  to	  the	  movement	  of	  the	  object	  (Figure	  3.1).	  	  

	  

	  
Figure	  3.1:	  Schematic	  diagram	  of	  experimental	  setup	  for	  the	  magnetic	  particle	  

induction	  device,	  where	  F	  is	  a	  magnetic	  force,	  x	  is	  a	  distance	  between	  magnet	  and	  tested	  

surface,	  V	  is	  a	  voltage	  control	  and	  N	  is	  the	  number	  of	  turns	  of	  wire	  around	  the	  core.	  

	  

The	  main	  part	  of	  the	  setup	  is	  a	  voltage-‐controlled	  electromagnet	  designed	  to	  create	  an	  

electromagnetic	   field	   strong	   enough	   to	   displace	   particles	   captured	   in	   biofilms.	   The	  

force	   (F)	   needed	   to	   lift	   the	   ferromagnetic	   particles	   depends	   on	   the	   magnetic	   flux	  

density	  and	  can	  be	  determined	  as	  
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Equation	  3.1	  

	  
where	  B	   is	   the	  magnetic	   flux	   density,	  A	   is	   the	   area	   of	   the	   pole	   faces	   and	   	   is	   the	  

permeability	   of	   free	   space	   ( 	   [N	  A-‐2]).	   The	  magnetic	   flux	   density	   at	   the	  

end	  solenoid	  near	  the	  centre	  is	  proportional	  to	  

	  

	   Equation	  3.2	  

where	  N	  is	  the	  number	  of	  turns	  of	  wire	  around	  the	  core,	  I	  is	  the	  current,	  L	  is	  the	  length	  

of	  the	  magnetic	  circuit	  and	   	  is	  permeability	  of	  the	  magnetic	  core	  that	  can	  be	  found	  as	  

	  

    
	   Equation	  3.3	  

 

where 	   is	   the	  relative	  permeability	  of	   the	  material	  of	  core.	   In	  our	  experiment	  steel	  

cores	  were	  used	  ( [NA-‐2]).	  Thus,	   the	  maximum	  force	  can	  be	  determine	  

from	  equation	  

 

	  
Equation	  3.4	  

	  

The	  force	  (F)	  applied	  to	  the	  particle	  can	  be	  controlled	  by	  varying	  the	  voltage	  (V)	  or	  the	  

distance	  (x).	  Design	  of	  electromagnet	  depends	  on	  the	  material	  and	  the	  diameter	  of	  a	  

core	  (D),	  length	  of	  magnetic	  circuit	  and	  number	  of	  turns	  of	  wire	  around	  the	  core,	  while	  

all	  other	  factors	  are	  held	  constant. 
 

3.3. Experimental	  set-‐up	  

Two	   types	   of	   magnets	   were	   used:	   permanent	   magnets	   and	   electromagnets	   (Figure	  

3.2).	  	  
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Figure	  3.2:	  Schematics	  of	  experimental	  setup.	  Two	  variants	  of	  MagPI	  are	  shown.	  The	  

electromagnet	  on	  the	  left	  and	  the	  permanent	  magnet	  on	  the	  right.	  

	  

3.3.1. Permanent	  neodymium	  magnets	  

After	   extensive	   testing	   of	   a	   variety	   of	   permanents	   magnets,	   neodymium	   alloy	  

(NdFe3B)	  disc	  magnets	  were	  chosen	  for	  their	  superior	  magnetic	  strength.	  Neodymium	  

(Nd)	   is	   the	  most	  magnetic	   element	   found	  on	  earth	   (Lebech	  et	   al.	   1975,	  Coey	  1995).	  

The	  Nd-‐magnets	  used	  were	  discs	  of	  the	  size	  20×5	  mm	  (E-‐magnets,	  UK),	  and	  were	  used	  

either	  individually	  or	  as	  a	  stack	  of	  five,	  depending	  on	  strength	  requirements.	  Adding	  

any	  more	  than	  five	  discs	  gave	  no	  further	  increase	  in	  magnetic	  strength,	  since	  the	  extra	  

discs	  were	  too	  far	  away	  to	  influence	  the	  active	  magnetic	  field	  reaching	  the	  test	  surface.	  

The	  force	   from	  the	  permanent	  magnets	  acting	  upon	  the	  surface	  was	  regulated	  using	  

distance	   to	   the	   surface,	   controlled	   by	   an	   adjustable	   vernier-‐scaled	   manipulator	  

(Figure	  3.2).	  

3.3.2. Electromagnets	  

Electromagnets	   were	   used,	   combined	   with	   a	   precision	   power	   supply	   to	   allow	   fine	  

control	   of	   voltage	   and	   current	   supply,	   (Rapid	   5000	   variable	   power	   supply)	   (Figure	  

3.2).	   A	   wide	   range	   of	   commercially	   available	   electromagnets	   was	   tested,	   but	   none	  

showed	   the	   required	   functionality.	  The	  most	   common	  problems	  being	   that	  magnets	  

were	   too	  big,	  obscuring	   the	  surface	  below,	  or	   that	   they	  were	   too	  weak	  to	  be	  able	   to	  

retract	   the	  added	  particles	   from	   the	  different	   test	   surfaces.	  Bespoke	  electromagnets	  
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were	   therefore	   constructed	   from	  metal	   rods	   of	   ferrous	   alloy	   that	   were	   coiled	   with	  

insulated	  copper	  thread.	  To	  widen	  the	  overall	  range	  of	  the	  magnetic	  field,	  two	  sizes	  of	  

magnets	   were	   produced:	   “the	   strong”	   and	   “the	   weak”,	   the	   properties	   of	   these	  

electromagnets	  are	  presented	  in	  Table	  3.1.	  

	  

Table	  1	  Properties	  of	  magnets	  used	  in	  experiments	  

	   D,	  m	   d1,	  mm	   N	   L,	  m	  

Strong	   0.01	   0.375	   500	   0.1	  

Weak	   0.004	   0.13	   1540	   0.1	  

	  

Where	  D	  is	  diameter	  of	  a	  core,	  d1	   is	  diameter	  of	  a	  wire,	  N	   is	  number	  of	  turns	  of	  wire	  

around	  the	  core	  and	  L	  is	  length	  of	  magnetic	  circuit.	  

The	  coil	  was	  spread	  over	  a	  length	  of	  100	  mm	  on	  both	  magnets.	  The	  full	  coil	  resistance	  

of	  the	  larger	  electromagnet	  was	  35	  Ω,	  and	  it	  was	  limited	  to	  a	  power	  input	  range	  of	  0-‐

12	  V	  (0-‐3.4	  A).	  The	  smaller	  magnet	  had	  a	  coil	  resistance	  of	  24	  Ω	  and	  was	  limited	  to	  a	  

power	  input	  range	  of	  0-‐20	  V	  (0-‐1.8	  A).	  Exceeding	  these	  limits	  burnt	  the	  coils,	  since	  at	  

this	  level	  of	  supply	  an	  increased	  current	  is	  dissipated	  as	  heat	  due	  to	  resistance.	  

	  

3.3.3. Ferrous	  particles	  

Particles	  were	  produced	  from	  an	  amalgam	  of	  ferrous	  material	  to	  provide	  a	  magnetic	  

response,	   mixed	   with	   fluorescent	   pigment	   to	   increase	   their	   visibility.	   An	   inert	  

transparent	  binding	  agent	  combines	  the	  material	  into	  a	  solid,	  which	  is	  then	  ground	  to	  

produce	  a	  particle	   spectrum	   (ParTrac,	  UK).	  The	   test	  particles	  were	   then	   sieved	   into	  

different	  size	  classes.	  The	  size	  range	  selected	  for	  the	  trials	  was	  180-‐250	  µm,	  similar	  to	  

fine/medium	   beach	   sand.	   The	   particles	   have	   to	   be	   applied	   to	   the	   test	   surface	   in	   a	  

consistent	  manner	   to	   allow	   repeatable	  measurements.	   To	   achieve	   a	   relatively	   even,	  

single	   layer	   of	   particles	   on	   the	   test	   surface	   took	   practice	   but	   was	   achieved	   with	  

experience.	  The	  test	  particles	  were	  suspended	  in	  water,	  and	  the	  mixture	  was	  drawn	  

into	   a	   plastic	   pipette	   (Figure	   3.3).	   The	   suspended	   particles	   were	   allowed	   to	   settle	  

toward	  the	  tip	  of	  the	  pipette	  before	  being	  ejected	  as	  a	  single	  drop	  in	  the	  media	  above	  

the	  surface.	  A	  cutoff	  2	  ml	  syringe,	  submerged	  into	  the	  water	  and	  held	  at	  short	  distance	  
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above	  the	  test	  surface,	  was	  served	  as	  a	  guide	  to	  confine	  the	  particles	  to	  the	  selected	  

test	  area.	  

	  

	  	  	  	  	  
Figure	  3.3:	  The	  suspension	  particles	  procedure.	  

	  

3.4. Calibrations	  

To	  calibrate	  the	  device	  magnets	  were	  placed	  over	  a	  Hall	  sensor	  connected	  to	  a	  Gauss	  

Meter	   (Unilab,	   Blackburn,	   England)	   (Figure	   3.4).	   The	   permanent	   magnets	   were	  

lowered	   toward	   the	   probe	   in	   small	   incremental	   steps	   (1	  mm),	   as	   applied	   for	   a	   test	  

measurement.	  The	  magnetic	  field	  flux	  in	  mTesla	  was	  recorded	  for	  each	  step.	  For	  the	  

electromagnets,	   the	   voltage	   and	   current	   were	   increased	   in	   small	   increments	   (0.2	  

V/0.05	  A)	  and	  the	  mTesla	  for	  each	  increase	  was	  recorded.	  The	  Hall	  sensor	  calibrations	  

were	   performed	   in	   air	   as	   well	   as	   submerged	   in	   water	   using	   a	   waterproof	   sensor.	  

Calibrations	   were	   performed	   both	   before	   and	   after	   an	   experiment.	   During	   the	  

experiment,	  the	  resistance	  of	  electromagnets	  was	  regularly	  checked.	  A	  decrease	  in	  coil	  

resistance	  would	  be	  evidence	  of	  a	  fault	  and	  thereby	  a	  loss	  in	  magnetic	  field	  strength.	  
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Figure	  3.4:	  The	  calibration	  process	  using	  Hall	  probe.	  

	  

3.5. Measuring	  procedure	  

The	  magnetic	  measurements	  were	   initiated	   immediately	  after	   the	  application	  of	   the	  

particles.	  The	  magnet	  was	  lowered	  into	  position	  a	  set	  distance	  above	  the	  test	  surface	  

(Figure	  3.5).	  The	  distance	  to	  the	  test	  surface	  is	  critical;	  to	  insure	  correct	  placement,	  a	  

small	  guide	  rod	  (glass	  or	  plastic,	  not	  metal)	  was	  attached	  to	  the	  end	  of	  magnet	  to	  set	  

the	   distance	   to	   the	   surface	   consistently	   (usually	   10	  mm).	   The	  magnet	  was	   lowered	  

until	  the	  tip	  of	  the	  guide	  just	  contacted	  the	  test	  surface.	  This	  could	  be	  checked	  by	  use	  

of	  a	  magnifying	  glass.	  The	  magnetic	  field	  was	  increased	  in	  small	  incremental	  steps.	  	  

	  

Figure	  3.5:	  Measuring	  procedure.	  
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Four	  stages	  of	  particle	  response	  were	  noted.	  The	  first	  stage:	  (I)	  is	  when	  the	  particles	  

show	  initial	  orientation	  (alignment)	  along	  the	  magnetic	  field;	  (II)	  the	  first	  particles	  are	  

retracted	  to	  the	  magnet;	  (III)	  large	  groups	  of	  particles	  are	  attracted	  to	  the	  magnet;	  and	  

finally	   (IV)	   total	   clearance	  of	   the	  surface	   from	  particles	  under	   the	  magnet.	  The	   least	  

subjective	  points	  are	   the	   first	  and	   last	  ones.	   If	   the	  replicate	   is	   intended	   for	  repeated	  

measurements,	   after	   total	   clearance,	   all	   particles	   accidentally	   left	   outside	   the	   area	  

affected	  by	  the	  magnet	  should	  be	  cleaned	  from	  the	  surface	  with	  a	  permanent	  magnet	  

to	  prevent	  compromising	  subsequent	  measurements.	  

	  

3.6. Precision	  and	  statistics	  

The	  precision	  of	  the	  method	  was	  tested	  through	  repeated	  calibrations	  (n=25).	  Based	  

on	   95%	   confidence	   intervals	   and	   average	   precision	   of	   0.1%	   for	   the	   electromagnet	  

measurements	  was	  determined	  (±0.22%	  in	  the	  low	  current	  range,	  ±0.35%,	  in	  the	  mid-‐

current	   range	   and	   ±0.45%	   in	   the	   high	   current	   range).	   The	   use	   of	   a	   different	  

electromagnets	   and/or	   other	   power	   source	   requires	   a	   separate	   precision	   test	   to	   be	  

conducted,	  but	   as	   long	  as	   a	   suitably	   sensitive	  power	   supply	   is	  used,	   a	   similar	   range	  

could	   be	   expected.	   Data	  were	   assessed	   for	   normality	   and	   homogeneity	   of	   variance,	  

and	   a	   one-‐way	   ANOVA	   was	   applied	   (significance	   level	   α=0.05)	   and	   post-‐hoc	   test	  

(Tukey)	   to	   determine	   differences	   in	   surface	   adhesion	   between	   varying	   surface	   and	  

biofilm	  compositions.	  

	  

3.7. Results	  

3.7.1. Calibration	  

Electromagnets	  provide	  strong	  linear	  relationships	  (r2=0.996-‐0.997)	  between	  current	  

(I)	   and	   the	   magnetic	   flux	   density	   (mTesla)	   (Figure	   3.6	   A),	   whereas	   the	   permanent	  

magnets	   showed	   an	   exponential	   relationship	   (Figure	   3.6	   B).	   In	   contrast	   to	   the	  

electromagnets,	  the	  permanent	  magnets	  have	  to	  be	  moved	  toward	  the	  surface	  during	  

the	   measurement	   to	   increase	   F.	   Consequently,	   the	   area	   of	   the	   magnetic	   field	   that	  

interacts	  with	  the	  surface	  increases	  with	  decreasing	  distance,	  and	  this	  corresponds	  to	  

a	   nonlinear	   increase	   of	   field	   strength	   (Figure	   3.6	   B).	   The	   line	   of	   best	   fit	   for	   the	  
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calibration	  of	  the	  permanent	  magnet	  strength	  versus	  distance	  required	  a	  sixth-‐order	  

polynomial	  as	  opposed	  to	  the	  linear	  function	  used	  for	  the	  electromagnet	  calibration.	  

	  

	  
Figure	  3.6:	  Examples	  of	  calibration	  curves	  for	  the	  electromagnetic	  (A)	  and	  permanent	  

magnet	  (B)	  devices.	  

	  

3.7.2. Abiotic	  particulate	  surfaces	  

Different	   substrata	  were	   tested	  during	   the	  pilot	   studies.	   Firstly	   clean	   glass	  beads	  of	  

two	  sizes	  (<63	  µm	  and	  >150	  µm	  Ballotini	  beads),	  sand	  and	  mud	  (both	  heat-‐treated	  to	  

remove	  organic	  material).	  The	  surfaces	  were	  submerged	  in	  seawater	  and	  freshwater	  

to	  compare	  abiotic	  particle	  responses	  and	  account	  for	  ionic	  interactions.	  The	  two	  size	  

groups	   (180-‐250	  µm	  and	  425-‐500	  µm)	  of	  magnetic	  particles	  were	  used	   throughout	  
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the	  tests.	  This	  provided	  background	  knowledge	  of	  the	  adhesion	  properties	  of	  common	  

abiotic	  substrata	  of	  variable	  particle	  size.	  

	  

	  	  	  	   	  

	  

Figure	  3.7	  Examples	  of	  tested	  substratum:	  glass	  beads,	  sand	  and	  mud	  (left).	  Test	  

of	  abiotic	  particulate	  beds	  of	  different	  materials	  (right)	  in	  seawater	  (a)	  and	  in	  

freshwater	  (b)	  to	  attract	  test	  particles	  (180-250	  µm) by MagPI (n=6, ±SE).* Significant 

difference between adjacent groups by ANOVA, α=0.05, and Tukey test.	  

	  

The	   force	   required	   to	   recapture	   the	   test	   particles	   (size	   180-‐250	  µm)	   from	  different	  

surfaces	   varied	   between	   seawater	   and	   freshwater	   conditions	   (Figure	   3.7).	   Under	  

saline	   conditions,	   it	   was	   more	   difficult	   to	   capture	   test	   particles	   from	   the	   bed	  

composed	  of	   larger	  glass	  beads	  than	  from	  the	  smaller	  glass	  beads,	   followed	  by	  mud,	  

and	  then	  the	  cleaned	  sand.	  Under	  freshwater	  conditions,	  the	  magnetic	  force	  needed	  to	  

retrieve	   the	   test	   particles	  was	   similar	   for	   all	   surfaces	   except	   the	   larger	   glass	   beads,	  

which	   showed	   a	   significantly	   higher	   retentive	   capacity	   (Figure	   3.7).	   For	   the	   sand,	  

similar	   forces	   were	   needed	   to	   retrieve	   particles	   in	   seawater	   and	   freshwater,	   but	  

relatively	  greater	  force	  had	  to	  be	  applied	  in	  seawater	  to	  recapture	  particles	  from	  the	  

other	  substrata	  (Figure	  3.7).	  However,	   increasing	  binding	  capacity	  was	  also	  noted	  in	  

freshwater	  from	  the	  large	  glass	  bead	  substratum.	  	  
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3.7.3. Threshold	  conditions	  

Total	  clearance	  (IV)	  was	  the	  preferred	  measure	  for	  threshold	  condition	  (Figure	  3.8),	  

because	   this	   is	   the	   least	   subjective	   measure	   and	   the	   data	   gained	   by	   different	  

researchers	  are	  almost	  identical.	  This	  threshold	  shows	  significant	  differences	  between	  

treatments	   that	   neither	   were	   nor	   always	   observed	   using	   three	   other	   thresholds.	  

Under	  laboratory	  conditions	  more	  sophisticated	  observation	  using	  microscopy	  of	  the	  

particles	  is	  possible	  and	  the	  first	  and	  second	  threshold	  measurements	  can	  be	  used	  as	  

an	  alternative	  and	  complementary	  value	  if	  needed.	  

	  

	  

	  

Figure	  3.8	  The	  thresholds	  used	  in	  the	  magnetic	  measurements:	  (I)	  particle	  orientation	  

to	  magnetic	  field;	  (II)	  first	  particles	  captured	  by	  the	  magnet;	  (III)	  larger	  groups	  of	  

particles	  attracted;	  (IV)	  total	  clearance	  of	  particles	  under	  the	  magnet.	  Three	  treatments	  

are	  given	  as	  examples:	  small	  glass	  beads	  submerged	  in	  seawater	  (SW)	  and	  freshwater	  

(FW)	  and	  large	  glass	  beads	  in	  SW	  using	  test	  particles	  of	  size	  range	  180-250	  µm	  (n=6,	  

±SE).	  
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3.7.4. Adhesion	  due	  to	  surface	  biofilms	  (Biotic	  experiment	  example)	  

The	  influence	  of	  biotic	  adhesion	  was	  examined	  using	  glass	  beads	  with	  diameter	  of	  <63	  

µm	  (Ballotini)	   covered	  with	   filtered	   (1	  µm)	  and	  autoclaved	  seawater.	  Biofilms	  were	  

cultured	   with	   benthic	   cyanobacteria	   (dominated	   by	   Oscillatoria	   spp.)	   and	   benthic	  

diatoms	  (dominated	  by	  Nitzschia	  spp.).	  Both	  cultures	  were	  grown	  on	  clean	  glass	  beads	  

in	   a	   temperature-‐controlled	   room	   (150C)	   under	   a	   13/11	   h	   light-‐dark	   cycle	   (~250	  

µmol	   m-‐2	   s-‐1).	   Similar	   glass	   beads	   covered	   with	   seawater	   without	   microorganisms	  

were	  used	  as	  a	  control	  group.	  For	  the	  treatments	  and	  controls,	  plastic	  weighing	  trays	  

(55×55×23	   in	   mm) were filled with 5 mm layer of the glass	   beads	   and	   filled	   with	  

seawater.	   The	   experimental	   period	   lasted	   19	   days	   to	   follow	   changes	   in	   the	   surface	  

properties	  of	  developing	  biofilm	  cultures.	  The	  “weak”	  electromagnet	  described	  above	  

was	  employed	   for	   these	  tests.	  The	  biotic	   test	  experiments	  revealed	  that	   the	  biofilms	  

developed	   by	   benthic	   diatoms	   under	   these	   conditions	   had	   a	  more	   adhesive	   surface	  

than	  the	  cyanobacterial	  biofilms	  (Figure	  3.9).	  

	  
Figure	  3.9	  Biotic	  example	  with	  cultured	  biofilms	  grown	  with	  diatoms	  and	  

cyanobacteria.	  The	  threshold	  reported	  is	  the	  strength	  of	  the	  magnetic	  field	  needed	  to	  

provide	  total	  clearance	  of	  particles	  (n=6,	  ±	  SE).*	  Significant	  difference	  between	  

experimental	  groups	  by	  ANOVA,	  α=0.05,	  and	  Tukey	  test.	  
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The	   magnetic	   flux	   density	   in	   control	   treatments	   did	   not	   show	   any	   variations	   over	  

experimental	   period	   and	   was	   below	   2	   mTesla.	   The	   important	   aspect	   of	   this	  

experiment	   was	   that	   the	   MagPI	   method	   was	   able	   to	   detect	   even	   quite	   small	  

differences	  in	  surface	  adhesion	  with	  high	  precision.	  

	  

3.8. Discussion	  

The	   equipment	   required	   for	   the	   method	   described	   here	   is	   simple	   and	   affordable	  

(Figures	   3.2	   and	   3.10	   A).	   Production	   of	   suitable	   electromagnets,	   however,	   does	  

demand	  some	  technical	  skill	  to	  achieve	  the	  acquired	  magnetic	  strength.	  

In	  the	  laboratory,	  electromagnets	  were	  preferred	  over	  permanent	  magnets	  because	  of	  

the	  accuracy	  of	  their	  calibration	  and	  ease	  of	  deployment.	  Depending	  on	  the	  design	  and	  

power	   source,	   electromagnets	  offer	   the	  possibility	   to	   increase	   the	  magnetic	   force	   in	  

small	   steps,	   thus	   offering	   a	   high	   resolution	   within	   the	   applied	   magnetic	   strength	  

range.	   A	   fixed	   distance	  marker	   (non-‐metallic)	   fitted	   at	   the	   tip	   of	   the	   electromagnet	  

helps	   to	   ensure	   positional	   accuracy	   between	   measurements.	   However,	   permanent	  

magnets	  had	  a	  higher	  strength	  to	  compare	  with	  electromagnets	  and	  can	  be	  used	  for	  

investigation	  of	  matured	  biofilm	  and	  are	  also	  easier	  to	  deploy	  in	  the	  field	  (e.	  g.,	   tidal	  

flats)	   because	   of	   the	   logistical	   ease	   for	   field	   use	   and	   the	   lack	   of	   requirement	   of	   an	  

external	  power	  source.	  The	  permanent	  magnet	  still	  produces	  an	  accurate	  and	  stable	  

force	   at	   each	   set	   of	   distance,	   although	   the	   precise	   manipulation	   of	   the	   distance	  

between	  the	  magnet	  and	  the	  test	  surface	  is	  critical.	  The	  vernier	  scale	  (±100	  µm)	  was	  

then	   used	   to	   move	   the	   magnet	   in	   small	   incremental	   steps,	   and	   the	   results	   were	  

recorded.	  The	  test	  surface	  must	  be	  set	  parallel	  to	  the	  magnet	  face.	  

In	  MagPI	  experiments	  magnetic	  forces	  needed	  to	  be	  applied	  to	  remove	  particles	  were	  

also	  depended	  on	   the	  substratum	  and	  size	  of	  glass	  beads.	  This	  may	  be	  explained	  by	  

the	   fact	   that	   the	   magnetic	   particles	   become	   physically	   trapped	   between	   the	   larger	  

glass	  beads.	  Thus,	  choice	  of	  the	  size	  of	  the	  particles	  is	  also	  very	  important	  decision.	  It	  

is	  sensible	  to	  select	  a	  size	  range	  of	  the	  particles	  that	  does	  not	  deviate	  too	  much	  from	  

the	  test	  sediment,	  preferably	  being	  slightly	  larger	  to	  prevent	  trapping	  in	  surface	  pore	  

space	  (Figure	  3.10C).	  Although	   this	   type	  of	   trapping	  may	  not	  be	  an	   issue	  on	  surface	  

where	  biofilm	  has	  developed,	   the	   test	   particle	   size	   is	   also	   important	   for	   the	   easy	  of	  

observation	   on	   the	   surface.	   It	   is	   also	   sensible	   to	   use	   a	   narrow	   size	   range	   of	   test	  
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particles,	  to	  enhance	  the	  uniformity	  of	  the	  particle	  interactions	  with	  the	  surfaces	  since	  

the	   force	   required	   recapturing	   the	   test	   particles	   from	   different	   surfaces	   varied	  

between	  seawater	  and	  freshwater	  conditions.	  This	  is	  probably	  due	  to	  the	  ionic	  nature	  

of	   seawater	   increasing	   the	   potential	   for	   electrostatic	   and	   other	   physicochemical	  

attractions	   between	   particles	   (e.g.,	   mud	   with	   silt	   and	   clay	   content	   known	   for	   their	  

surface	   charge	   variation).	   This	   could	   imply	   that	   the	   ionic	   milieu	   facilitates	   the	  

cohesion	  of	  the	  surface	  as	  measured	  by	  MagPI.	  However,	  both	  the	  smaller	  and	  larger	  

glass	  beads	  showed	  enhanced	  surface	  cohesion	  in	  seawater	  as	  opposed	  to	  freshwater,	  

which	  suggests	  both	  mechanisms	  may	  be	  responsible	  for	  the	  binding	  capacity	  of	  the	  

larger	  glass	  beads.	  

Another	   variable	   is	   the	   incubation	   time,	   or	   period	   that	   particles	   are	   left	   on	   the	   test	  

surface	   before	   performing	   the	   measurement.	   Because	   this	   depends	   on	   the	  

characteristics	  of	  the	  investigated	  surface	  as	  well	  as	  on	  the	  objectives	  of	  a	  particular	  

study,	   it	   should	   be	   decided	   by	   the	   operator	   on	   the	   basis	   of	   the	   question	   to	   be	  

addressed	  in	  each	  experiment.	  	  

The	   simplest	   way	   to	   ensure	   a	   repeatable	   measure	   of	   the	   test	   surface	   is	   to	   retract	  

particles	  directly	  after	  their	  addition,	  and	  the	  most	  appropriate	  value	  of	  the	  surfaces	  

“stickiness”	  for	  our	  proposes	  can	  be	  gained	  directly	  after	  adding	  the	  particles.	  When	  

particles	  are	   left	   for	  a	   longer	   time,	   they	  will	  be	  partly	  or	   fully	   incorporated	   into	   the	  

biofilm,	   and	   the	   measured	   variable	   becomes	   a	   combination	   of	   the	   adhesion	   of	   the	  

surface	  and	  the	  capacity	  to	  entrap	  particles	  by	  biofilm	  development	  (Figure	  3.10E).	  

The	  influence	  of	  biotic	  adhesion	  using	  glass	  beads	  and	  axenic	  diatom	  diatoms	  culture	  

was	   firstly	   examined	   in	   present	   experiment.	   Results	   suggest	   that	   the	   biofilms	  

developed	  by	  benthic	  diatoms	  had	  a	  more	   adhesive	   surface	   than	   the	   cyanobacterial	  

biofilms.	  One	  plausible	  explanation	  for	  this	  was	  that	  the	  experimental	  irradiance	  was	  

relatively	  high,	  and	  cyanobacteria,	  in	  this	  case	  dominated	  by	  Oscillatoria	  spp.,	  tend	  to	  

prefer	   lower	   light	   levels,	   thus	   forcing	   them	   deeper	   into	   the	   sediment	   matrix	   and	  

reducing	   surface	  EPS	  production.	  Diatoms,	   in	   contrast,	   are	  better	   adapted	   to	  higher	  

irradiances.	   This	   experiment	   was	   further	   developed	   and	   described	   in	   details	   in	  

Chapter	  5.	  
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Figure	   3.10:	   MagPI	   placed	   above	   the	   sediment	   surface.	   Test	   particles	   can	   be	   seen	  

adhering	   to	   the	   magnet	   (A).	   Samples	   prepared	   for	   measurement	   (B).	   Surface	   shows	  

fluorescent	   particles	   and	   diatoms	   (C).	   Confocal	   microscopy	   of	   fluorescent	   beads	  

incorporated	   into	   the	   biofilm	   (D	   and	   E).	   The	   green	   coloration	   represents	   organic	  

material	  and	  the	  red	  fluorescence	  represents	  the	  test	  particles.	  Images	  courtesy	  of	  Prof.	  

D.	  M	  Paterson.	  Confocal	  images	  supplied	  by	  Dr.	  A.	  Decho.	  	  
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The	   MagPI	   methodology	   introduces	   an	   easy	   way	   to	   measure	   the	   variable	   surface	  

adhesion.	  This	  provides	   very	  useful	   data	   for	  depositional	   systems	   such	   as	   intertidal	  

flats,	   shallow	   submerged	   sediment	   systems	   and	   stromatolites	   as	   obvious	   examples	  

(Figure	   3.10	   B).	   MagPI	   is	   also	   easily	   applicable	   for	   monitoring	   and	   detection	   of	  

changes	   over	   time	   in	   shallow	   water	   biofilm	   based	   systems.	   Analysis	   of	   different	  

systems	  with	  accompanying	  data	  on	  the	  composition	  and	  density	  of	  biofilm	  organisms	  

will	  provide	  useful	  comparative	  insights.	  However	  the	  method	  cannot	  easily	  be	  used	  if	  

a	  wet	  biofilm	  is	  not	  submerged,	  such	  as	  during	  emersion	  periods.	  The	  measurements	  

have	  to	  be	  performed	  underwater	  by	  the	  help	  of	  a	  water-‐filled	  chamber,	  otherwise	  the	  

magnetic	  particles	  interact	  with	  the	  surface	  tension	  of	  the	  water–film	  and	  these	  forces	  

confound	  the	  measurement	  of	  adhesion.	  
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Chapter 4  

Interactions between diatoms, cyanobacteria and nematodes in 

terms of their production of extracellular polymeric substances 

 
Abstract 
Many organisms grow in close association in surficial sediments. Bacteria, protists 

(algae, fungi and slime moulds), meiofauna and macrofauna live in close proximity 

and all produce some form of extracellular polymeric substances (EPS). However the 

interaction between these groups in terms of polymer production is not yet known, 

and may be important in terms of the carbon dynamics of the system and as a 

mechanism of sediment stabilisation. In this chapter, the interactions between two 

groups of cohabiting organisms (diatoms and bacteria) is examined individually and 

in association and then in the presence of selected meiofaunal representative 

(nematodes). 

 
Benthic microalgae, cyanobacteria and bacterial assemblages are recognised as the 

main producers of extracellular polymeric substances (EPS) in intertidal sediment 

deposits. Yet little is known about the individual engineering capability of the main 

biofilm consortia (autotrophic microalgae, cyanobacteria and heterotrophic bacteria), 

in terms of their contribution to the EPS pool. In the first experiment interaction of 



CHAPTER 4. Coexistence of organisms: EPS production 
 

 59 

axenic microalgae cultures in terms of their contribution to the EPS pool was 

examined. Single or combined axenic cultures of two diatoms: Amphora coffeaeformis 

and Navicula hansenii in combination with the cyanobacteria Oscillatoria species were 

used in this experiment. The aim of this experiment was to find out whether the 

combination of two or three species in a biofilm would lead to additive or synergistic 

effects on the microbial growth and EPS production. The results suggest that 

coexistence of three of the species had a positive effect on microbial growth and 

mixed cultures exhibit a greater EPS concentration value than single cultures. 

 

Since neither bacteria nor microalgae exist independently in nature, the aim of the 

second experiment was to examine the interactions between autotrophic and 

heterotrophic biofilm consortia in terms of microbial growth, community composition 

and EPS secretion. Cultures of natural benthic bacteria, microalgae and mixtures of 

the two, growing on artificial sediments were used in this study. The data suggest that 

bacterial cultures produce lower EPS carbohydrate than diatom cultures, however 

they both produced similar levels of EPS protein. In the mixed assemblage, while there 

was no clear evidence for synergistic or additive effects in terms of the microbial 

community composition or growth; a synergism in EPS carbohydrate production was 

found. There was no such effect for EPS protein production. 

 

An additional trophic level was added for the next study. Two cultures including (i.e. 

Diplolaimelloides meyli and Diplolaimelloides oschei) were produced in addition to the 

bacterial and microalgal cultures and grown both separately and simultaneously on 

non-cohesive acid washed marine sand. The main aim of this study was thus to 

estimate the effect of nematodes on the EPS production in marine sediment. The study 

showed a positive impact of bacterivorous nematodes on microbial density and 

enhancement of the EPS production.  

 

The data from this chapter will be further addressed in Chapter 5, when investigating 

the stabilisation potential of individual and mixed assemblages of aquatic organisms. 

This information contributes to the conceptual understanding of the microbial 

sediment engineering that represents an important ecosystem function and service in 

aquatic habitats. 
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4.1.  Introduction 

In estuarine systems, wherever light can penetrate with sufficient radiance to support 

photosynthesis, biofilms mainly consist of unicellular eukaryotic benthic microalgae 

(microphytobenthos) and cyanobacteria, that grow within the upper several 

millimetres of illuminated sediments (MacIntyre et al. 1996). However, heterotrophic 

benthic bacteria are also important members of this community, since neither 

microalgae nor bacteria exist independently in natural sediment (Gerbersdorf et al. 

2009). Such communities produce pronounced biofilms, which may be transient or 

become fully developed into microbial mats (de Winder et al. 1999). Over the last 

years, there has been increasing awareness of the importance of biogenic mediation of 

sediment systems, namely by the mucilaginous matrix of extracellular polymeric 

substances (EPS) produced by bacteria, microalgae and macrofauna. Organisms 

produce EPS for different reasons such as feeding, communication and protection of 

microbial cells from desiccation or toxicants, thus enhancing cell survival and success 

(Yallop et al. 1994, Decho 2000, Wotton 2004). 

EPS consists of a relatively undefined complex of a heterogeneous mixture of mainly 

polysaccharides, proteins, nucleic acids, lipids and humic acids (Flemming and 

Wingender 2001) and plays an important and multifunctional role in biofilm ecology 

(Decho 2000). However due to bacterial degradation, consumption by deposit-feeding 

invertebrates or removal by overlying water, EPS may be lost from sediments. To 

quantify these pathways, investigations on the structural and physical properties of 

EPS are needed to understand its role in the environment (reviewed in Underwood 

and Paterson 2003).  

 

In intertidal muddy sediments, the biomass of phototrophic microorganisms is 

supported by the easy availability of nutrients and light (Underwood and Smith 1998). 

These assemblages are the major primary producers in many aquatic habitats and it 

has been estimated that diatoms are responsible for approximately 40% of the total 

global primary production in marine systems (Medlin 2002, Underwood and Paterson 

2003). Due to their ability to release and fix organic and inorganic nutrients, 

microphytobenthos support higher, grazing trophic levels and perform many 
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important functions in food webs and nutrient dynamics (Miller et al. 1996). 

Microphytobenthos (MPB) are involved in a number of ecological and evolutionary 

processes, such as gene flow or bioaccumulation, and may also have a role in water 

conservation and bio-weathering (Wynn-Williams et al. 1997), however very little 

information is available at the molecular level about their biology (Falciatore and 

Bowler 2002), as well as the factors that may control the distribution and ecological 

response of cyanobacteria and diatoms (Watermann et al. 1999). Investigating the 

influence different light levels (Defew et al. 2004), temperature (Admiraal 1977, 

Watermann et al. 1999) or nutrient stress (Admiraal et al. 1982, Villbrandt et al. 

1990) on microbial growth, suggest that effects of abiotic factors are complex and 

coupled, and thus it can be difficult to distinguish these effects (Defew et al. 2004). 

These factors also may have effect on co-occurrence of species would result in high 

intraspecific competitions of these populations and a greater capability of survival 

under stress of one species than another (Admiraal et al. 1984). Admiraal and Peletier 

(1980) found some species of diatoms were more tolerant to the presence of toxins, 

and Joseph and Jacob (2010) found that both Oscillatoria and Navicula were pollution 

tolerant genera, therefore potentially controlling the relative domination of these 

populations. This may also be a density dependent effect, such that the dominant 

species maintain high population densities thereby suppressing the growth of 

invading species and decreasing the diversity of the population. Thus, in addition to 

several cases of coexistence of species, there is also a strong tendency towards 

segregation of some species (Dejong and Admiraal 1984). The diversity response of 

species to these selective forces may lead to a stable co-occurrence of species or to a 

gradual shift in abundance (Admiraal et al. 1984). Thus engineering consequences of 

the co-occurrence of species in terms of their ecological functionality is great of 

interest. Three species were used in this study (experiment 1): Navicula hansenii, 

Amphora coffeaeformis and Oscillatoria species as single or combined cultures. 

Navicula species are a dominant genera (44%) in the Eden Estuary, Scotland (Defew 

et al. 2004). Amphora coffeaeformis is a common benthic marine pennate diatom 

(Round 1990) which has many advantages as a biological model: they are easy to 

maintain in culture, have a short generation time (< 1 day Round 1990), are single-

celled and eukaryotic and give a large population of cloned individuals (Davies et al. 

1998). The reason for including benthic cyanobacteria was to investigate the 
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difference in the EPS production and surface adhesion produced by bacterial 

autotroph. A further purpose was to test the hypothesis that higher diversity would 

lead to increase microbial biomass, EPS production and hence surface adhesion of the 

biofilm (described in Chapter 5). 

While a range of meio-and microorganisms secrete EPS, most studies focused on 

benthic microalgae as the main EPS producers with carbohydrates as their main 

product (reviewed in Stal and Walsby 2000, Stal 2003, Underwood and Paterson 

2003). Heterotrophic bacteria have been mainly regarded as decomposers of the 

organic matrix (Goto et al. 2001) and as acting in response to microalgal exudates 

(Haynes et al. 2007, Bruckner et al. 2008). However, bacteria are able to produce 

copious amounts of EPS as known from biomedical, biotechnology or industrial fields 

(Raszka et al. 2006, Jain et al. 2007, Vu et al. 2009).  

To-date, there is a common agreement that the co-existence of bacteria and 

microalgae might be of mutual advantages mainly in terms of nutrient recycling (Goto 

et al. 2001, Klug 2005). Some microalgal species even seem to depend on the 

association with certain bacteria groups ("satellite bacteria", Schaefer et al. 2002), and 

in some pelagic diatoms, the presence of certain bacteria is crucial for their growth 

and EPS release (Grossart and Simon 2007). Bruckner et al. (2008) suggest that the 

monomer composition of microalgal EPS carbohydrates varied along with the 

presence of different bacterial groups. On the other hand, some microalgae species 

suppress bacteria with polyunsaturated aldehydes that have strong bactericidal 

effects (Wichard et al. 2005, Ribalet et al. 2008); while bacteria can effectively control 

microalgal growth and EPS secretion through the release of specific algicidal 

compounds (Fukami et al. 1997, Kang et al. 2005, Mu et al. 2007, Jung et al. 2008). 

There is evidence that these bacteria-microalgae interactions are highly species-

specific and help to shape the composition of the biofilm assemblages (Boivin et al. 

2007), with possible implications for their EPS secretion and ecological function. 

Presumably, the various bacteria-microalgae interactions are strongly driven by 

abiotic and biotic conditions from both within and outside of the biofilm. For instance, 

external nutrient addition can cause shifts within the natural microbial assemblage to 

influence EPS concentration, EPS composition and sediment stability (Gerbersdorf et 

al. 2009). Still, the mechanisms and species interactions inducing these shifts in 
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biofilms are far from understood and nutrients are not the only condition that varies 

in the environment. 

It was hypothesized that the coexistence of bacteria and microalgae might show 

synergistic effects on EPS secretion, cell growth and the net engineering potential. For 

this purpose, benthic microbial cultures were isolated from estuarine sediments and 

were grown, separately (prokaryotic and eukaryotic) and combined (natural 

diversity), on non-cohesive glass beads over a period of 25 days (experiment 2). The 

data presented on this chapter, compared the individual and combined capability of 

natural heterotrophic bacterial assemblages (B), axenic autotrophic 

microalgal/diatom assemblages (D) and mixed assemblages of both (BD) in terms of 

microbial growth and EPS secretion. The microbial growth (bacterial cell numbers, 

bacterial dividing rate, and microalgal biomass) and EPS secretion (concentrations 

and composition of carbohydrates and proteins) were monitored and further 

addressed to the adhesive capacity as well as the cohesive forces, both proxies for 

sediment stability (described in Chapter 5).  

 

It is likely that the vast majority of these polymers are produced by micro-organisms 

but the impact of benthic meiofauna on this microbial production has seldom been 

studied. Benthic animal populations also effect on the biogeochemical and physical 

characteristics of their environment. For instance, they enhance the oxygen input into 

the sediment and denitrification by bioturbation (Hansen and Kristensen 1997, de 

Deckere et al. 2001). Feeding activity, either by grazing directly on the microbial EPS 

producers (Riera et al. 1996, Hagerthey et al. 2002) or by using the exopolymers 

themselves as a food source (Decho 1990, Smith and Underwood 1998) may cause 

loss of EPS from system. On the other hand meiofauna and macrofauna organisms can 

also secrete important amounts of exopolymers and significantly contribute to overall 

EPS pool. The selected nematodes, Diplolaimelloides meyli (Timm 1961) and 

Diplolaimelloides oschei (Meyl 1954) are two congeneric species which typically 

occupy several types of decomposing macrophyte detritus in estuarine intertidal 

areas (dos Santos et al. 2008), where they feed largely but not exclusively on bacteria 

(Moens and Vincx 1997). These and other monhysterid nematodes have been shown 

to affect bacterial activity and detritus decomposition rates (De Mesel et al. 2006). 

Even at relatively low densities, they can also significantly impact bacterial 
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community composition in a very species-specific way. This may result from 

differential food preferences (De Mesel et al. 2004) and/or from more indirect 

interactions (Moens et al. 2005). Thus investigations into how they interact with each 

other (e.g. synergism-parasitism, predator-prey interactions) and the effect of this 

interaction on EPS production need to be performed. In order to estimate their 

respective influence on microbial growth and EPS production, bacterivorous 

nematodes were included in bacteria-microalgae interaction system (experiment 3). 

For this propose, bacteria, microalgae and nematodes were both grown separately 

and simultaneously in laboratory microcosm. Nematodes were chosen because they 

generally dominate soft-sediment meiofauna communities. It was hypothesized that 

bacterivorous nematodes would impact the bacterial and microalgae growth and EPS 

production. These results may provide future support for investigation of 

biostabilisation processes in presents of meiofauna.  

 

4.2. Experimental set-up 

4.2.1. Investigation of growth and EPS production of axenic microalgae culture 
(Experiment 1) 

To investigate the effect of coexistence and stabilisation potential of the microalgae, 

axenic cultures of Navicula hansenii, Ampfora coffeaformis and Oscillatoria species 

were obtained from monospecific laboratory cultures at the SAMS CCAP, Dunstaffnage 

Marine Laboratory, UK. A layer of 0.5 cm of <63 μm glass beads in total was placed in 

disposable plastic trays (7L×7W×2.5H in cm) and 50 ml of autoclaved seawater were 

added in each box. Five trays containing glass beads and seawater served as controls. 

The controls (C) were additional treated with a mixture of antibiotics (150 mg l-1 

streptomycin and 20 mg l-1 chloramphenicol, final concentrations) and antibiotics 

were replenished regularly. The following treatments were established in five 

replicates each: A, N, O, AN, AO, NO and ANO. Treatments names refer to the first 

letter(s) of the corresponding culture(s) inoculated: A for Amphora coffeaeformis, N 

for Navicula hansenii and O for Oscillatoria species. About 10 ml of the single cultures 

or their combinations were added to each tray of the corresponding treatments. 

Antibiotics were not added as it appeared toxic to microalgae culture. The possible 

bacterial contaminations were monitored regularly by epifluorescense microscopy. 

Bacterial contamination was not found to be a problem in this case. All treatments 
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were illuminated at 220–250 μmol photons m-2 s-1 under a light/dark cycle of 10/14 h 

and kept at constant temperature (15°C) over a period of 2 weeks.  

Sampling strategy (Experiment 1). Sampling took place every 3 days during the 

experiment using cut-off syringe 10 mm diameter (see 2.3.1). In all the trays, two 

cores were sampled to measure chlorophyll a concentration (described 2.5), and EPS 

concentrations (protein and carbohydrates) (described 2.4). 

 

4.2.2. Investigation of growth and EPS production of individual and mixed 

assemblages of natural bacteria and microalgae (Experiment 2) 

A 3 cm layer of <63 μm glass beads was placed in Rotilab deep-freeze boxes 

(208Lx208Wx94H in mm). A layer of buoyant plastic was placed onto the surface of 

the sediment to protect the bed during the addition of the medium (autoclaved sea 

water) (Gerbersdorf et al. 2008). Two litres of autoclaved seawater were carefully 

added to each box. Bacteria and diatom cultures were isolated from natural sediment 

(as described 2.2.1 and 2.2.2) and served as inoculums to grow biofilms on non-

cohesive artificial substratum (Ballotini balls, glass beads). The following treatments 

were established in six replicates each: controls (C), bacterial cultures (B), diatom 

cultures (D), as well as mixed assemblages of bacteria and diatom cultures (BD). The 

controls containing only glass beads and seawater were regularly treated (once a 

week) with a mixture of antibiotics (150 mg l-1 streptomycin and 20 mg l-1 

chloramphenicol, final concentrations) to prevent bacterial colonisation. The other 

boxes were initially inoculated from the stock cultures with 15 ml each for bacterial 

and diatom cultures, and 30 ml (15/15 ml, B/D) for the mixed cultures. All treatments 

were gently aerated and kept at constant temperature (15°C) over a period of 4 

weeks. The diatoms and the bacteria+diatom cultures were illuminated at 220-250 

μmol photons m-2 s-1 from a neon tube with a light/dark cycle of 10/14 h (Figure 4.1).  
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Figure 4.1: Experimental setup. 

 

Sampling strategy (Experiment 2). Sampling took place every 3 days during the 

experiment. For each treatment, 3 boxes out of 6 replicates were sampled in turn at 

each measurement. From each box, 4 sediment cores of 5 mm depth were taken by 

syringe 10 mm diameter (see 2.3.1) to determine bacterial cell numbers (described in 

2.7), bacterial assemblage (2 cores for 2 fixation protocols) (described in 2.9.1), and 

extracellular polymeric substances (EPS) (described in 2.4). For the diatoms 

treatments (D) and the mixed assemblage (BD), 2 additional cores were taken to 

determine chlorophyll a (described in 2.5), and the microphytobenthic species 

composition (described in 2.9.2). To determine bacterial dividing rate, 1 additional 

sediment core (depth 10 mm) was taken from the box and the 3 cores per treatment 

pooled before analysis (described in 2.8), while all other sediment cores were 

processed individually. For LTSEM 1 additional core of 10 mm depth was taken and 

immediately frozen with liquid nitrogen and stored at -80°C until the sediment could 

be viewed (see 2.10). 

 

4.2.3. Investigation into the effect of nematodes on microbial growth and 

exopolymer production in marine sediments microcosms (Experiment 3) 

For this experiment microbial (diatom and bacteria) and nematode cultures were 

obtained as described in (2.2.1, 2.2.2 and 2.2.3). Microbes (bacteria and diatoms) and 

nematodes were grown both separately and simultaneously on non-cohesive acid 
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washed marine sand (40-100 µm, Fisher Scientific). A control group (C) and seven 

different treatments (B, D, BD, N, BN, DN, and BDN) were tested, each in three 

replicate microcosms incubated under the same conditions (a total of 24 boxes, 12x12 

x6 cm, Figure 4.2). Treatment names refer to the first letter(s) of the corresponding 

culture(s) inoculated: B for bacteria, D for diatoms and N for nematodes. For all the 

boxes, a layer of sediment (3 cm deep) was moistened with 200 ml of autoclaved 

seawater. About 20 ml of the bacterial and diatom cultures were added to each box of 

the corresponding treatments. All the nematodes extracted from the cultures were 

resuspended in artificial seawater and distributed equally in the corresponding boxes. 

The nematode density in the corresponding treatments was about 4 nematodes cm-2 

which was low compared to natural sediments (Heip et al. 1985). 

 

 

 

Figure 4.2: Schematic diagram of experimental setup and sampling strategy. 

 

For treatments C and N, an antibiotic cocktail (streptomycin and chloramphenicol in 

final concentrations of 150 mg l-1 and 20 mg l-1, respectively) was added to limit 

bacterial proliferation (Lee 1993). Treatments D and DN were supplemented with 150 

mg l-1 streptomycin only (non lethal for Bacillariophyceae,  Berland and Maestrini 

1969) to avoid bacterial proliferation. Chloramphenicol was not added here as it 

appeared toxic to benthic diatoms. All the treatments were oxygenated, placed at 

room temperature (18°C-20°C) and submitted to a daily 10 h photoperiod throughout 



CHAPTER 4. Coexistence of organisms: EPS production 
 

 68 

the experiment (at a saturating light of about 200 μmol photons m-2 s-1, PAR 400-700 

nm). 

 

Sampling strategy (Experiment 3). The microorganisms (bacteria and diatoms) were 

added at the beginning of the experiment (Figure 4.2, day 0) to allow biofilm growth. 

Sediment cores were sampled 4 days later (Figure 4.2, Sampling Day 1) using a cut-off 

syringe 1 cm2 and 0.2 cm depth (as described 2.3.1). In all the boxes, four cores were 

sampled to measure, respectively, bacterial cell number (described 2.7), chlorophyll a 

concentration (described 2.5) and EPS concentrations (proteins and carbohydrates) 

(described 2.4). The sampling was immediately followed by the addition of nematodes 

in the corresponding treatments. The experiment was maintained during 6 more days 

(10 days after day 0) after which sediment cores were sampled again as described 

above (Figure 4.2, Sampling Day 2). All the sediment cores were immediately frozen 

with liquid nitrogen after sampling and stored at -20°C until analysis. 

 

4.2.4. Statistics 

The data violated assumptions of normality and homogeneity of variance (visual 

assessment of the frequency histogram and normal plot, Kolmogorov-Smirnov and 

Barlett tests), thus differences between treatments were assessed using a non-

parametric Kruskal-Wallis (χ²) test (KW), followed by the non-parametric Student-

Newman-Keuls (SNK) test to correct for multiple comparisons. Additionally, the 

Mann-Whitney test was used to compare pairs of treatments. 

 

4.3. Results 

4.3.1. Experiment 1: Investigation into the interaction of axenic microalgae 
culture with respect to microbial growth and EPS production using Navicula 
hansenii, Amphora coffeaeformis and Oscillatoria species.  

Microbial biomass 

Chlorophyll a concentrations in treatment N, O and NO (Figure 4.3 A) increased 

during the first week of the experiment and decreased rapidly afterwards. In all other 

treatments chlorophyll a concentrations continuously increased until the end of the 

experiment, except in treatment AO (Figure 4.3 B). At the end of the experiment AO 

was significantly lower in Chl a value than ANO and AN (MW test, U=2, p<0.05). 
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Figure 4.3: Mean values (n=5 per treatment ±SE) of measurements over the course of 

the experiment. (A) The different treatments were single culture: ▲- Amphora; ◊ -

Navicula; ● - Oscillatoria and their mixture: □ - Amphora + Navicula + Oscillatoria. (B) 

Pairs of mixed cultures: ∆ - Amphora + Navicula, ○ - Amphora+ Oscillatoria; ♦ - 

Navicula + Oscillatoria and their mixture: □ - Amphora + Navicula + Oscillatoria; ■-

Control.  
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The most pronounced increases were observed for treatments A, AN, AO, ANO (Figure 

4.4 A, Table 4.1). The were significant differences in the medians of the chlorophyll a 

concentrations (KW, χ2=34.7, df=6, p<0.001). For instance on day 12 (given as 

example) treatments ANO and AO were significantly higher than N, O and NO (MW 

test, U=0, p<0.01) and ANO was significantly higher than AN (MW test, U=2, p<0.05). 

The single culture A and AN were significantly higher than N, O and NO (MW test, U=0, 

p<0.01). The highest microbial biomasses were observed in mixed treatments AN, AO 

and ANO and the single culture A where chlorophyll a concentration was up to 9 times 

higher than the other treatments N, O and NO (Figure 4.4 B, Table 4.1). 

 

Table 4.1. Quotient/ factors for Chlorophyll a, EPS carbohydrates, EPS proteins between 

the first day of sampling (day 1) and day 12 where most of the variables showed their 

maximum value as well as differences between mixed assemblages “ANO”  and the given 

treatments (A, N, O, AN, AO, NO, ANO).  

 

 

 

 
 
 
 
 
 
 
 

Factor Treatment Chlorophyll 

a  
Carbohydrates Proteins 

 

Between 

minimum 

and 

maximum 

values 

reached 

A 9.8 1.8 2.5 

N 0 1.1 1.7 

O 1.7 1.3 2.8 

AN 9.4 2.6 3.2 

AO 6.2 2.2 3.7 

NO 4.8 1.6 3.8 

ANO 7.6 2.7 2.6 

Between 

ANO and 

single and 

combined  

treatments  

A 1.1 1.2 1.3 

N 34.8 2.6 1.7 

O 5.8 2.1 1.0 

AN 1.2 1 1.0 

AO 1.3 1 0.7 

NO 9.2 2.2 0.9 
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Figure 4.4: The differences in chlorophyll a concentrations: (A) between the first 

sampling day and day 12 where most of the variables showed their maximum value. (B) 

Cumulative chlorophyll a concentrations (n=25) during 2 weeks of experiment. The 

treatment name (Diatom species) was given according to the first letter of the 

corresponding culture (s) inoculated: A for Amphora, N for Navicula, O for Oscillatoria 

and their mixture AN for Amphora and Navicula, AO for Amphora and Oscillatoria, NO 

for Navicula and Oscillatoria and ANO for Amphora, Navicula and Oscillatoria. 
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Changes in EPS components 

The colloidal carbohydrate concentrations increased in all treatments over time 

(except the control) and reached a maximum on day 15 (Figure 4.5 A and B). However 

this increase was more pronounced in treatments ANO, AO and AN rather with single 

treatment A (Figure 4.6 A and B Table 4.1). Statistical testing per day revealed that on 

day 12, treatments ANO, AN and AO were significantly higher than treatments N, O 

and NO (KW test, χ2=33.4, df=6, p<0.001, MW test, U=0, p<0.001). The carbohydrates 

in the control were below detection limits. 

 

Water–extractable (colloidal) protein concentrations increased in all treatments, 

(except in the control) up to day 4, followed by a rapid decrease to day 7 and then 

continuous increase until the end of experiment day 15 (Figure 4.7 A and B). 

Protein concentration for all treatments reached a maximum on the last day of the 

experiment with a more pronounced increase (up to 3.8 times) for treatments AO and 

NO (Figure 4.8 A, Table 4.1), however cumulative protein concentration was higher in 

treatments O, AO, NO and ANO followed by AN, A and N (Figure 4.8 B). On the last day 

of the experiment treatment AO was significantly higher than all other treatments 

(KW test, χ2=32.2, df=7, p<0.001, MW test, U=0, p<0.001 for all treatments), treatment 

NO was significantly higher than A and N (MW test, U=1, p<0.05), treatments AN and 

ANO was significant higher than A and N (MW test, U=1, p<0.05) and treatment O was 

significant higher than N (MW test, U=0, p<0.01). 
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Figure 4.5: Mean values (n=5 per treatment) with SE of colloidal carbohydrate 

measurements over the course of the experiment. (A) The different treatments were 

single culture: ▲- Amphora; ◊ -Navicula; ● - Oscillatoria and their mixture: □ - 

Amphora + Navicula + Oscillatoria. (B) Pairs of mixed cultures: ∆ - Amphora + Navicula, 

○ - Amphora+ Oscillatoria; ♦ - Navicula + Oscillatoria and their mixture: □ - Amphora + 

Navicula + Oscillatoria; ■-Control.  
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Figure 4.6: The differences in colloidal carbohydrates concentrations: (A) between the 

first sampling day and day 12 where most of the variables showed their maximum value. 

(B) Cumulative carbohydrates concentrations (n=25) during 2 weeks of experiment. The 

treatment name (Diatom species) was given according to the first letter of the 

corresponding culture (s) inoculated: A for Amphora, N for Navicula, O for Oscillatoria 

and their mixture AN for Amphora and Navicula, AO for Amphora and Oscillatoria, NO 

for Navicula and Oscillatoria and ANO for Amphora, Navicula and Oscillatoria. 
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Figure 4.7: Mean values (n=5 per treatment) with SE of colloidal protein measurements 

over the course of the experiment. (A) The different treatments were single culture: ▲- 

Amphora; ◊ -Navicula; ● - Oscillatoria and their mixture: □ - Amphora + Navicula + 

Oscillatoria. (B) Pairs of mixed cultures: ∆ - Amphora + Navicula, ○ - Amphora+ 

Oscillatoria; ♦ - Navicula + Oscillatoria and their mixture: □ - Amphora + Navicula + 

Oscillatoria; ■-Control.  
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Figure 4.8: The differences in colloidal protein concentrations: (A) between the 

first sampling day and day 12 where most of the variables showed their maximum value. 

(B) Cumulative carbohydrates concentrations (n=25) during 2 weeks of experiment. The 

treatment name (Diatom species) was given according to the first letter of the 

corresponding culture (s) inoculated: A for Amphora, N for Navicula, O for Oscillatoria 

and their mixture AN for Amphora and Navicula, AO for Amphora and Oscillatoria, NO 

for Navicula and Oscillatoria and ANO for Amphora, Navicula and Oscillatoria. 
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Relationship between biological variables 

A positive correlation was determined between colloidal carbohydrates and colloidal 

proteins (Pearson correlation coefficient, r=0.410, n=35, p<0.01). A positive linear 

relationship was determined between colloidal carbohydrates and microalgal 

biomass, as indicated by Chl a concentrations (Figure 4.9), however no significant 

relationship was found between colloidal proteins and chlorophyll a. 
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Figure 4.9: Relationship between colloidal carbohydrates and chlorophyll a. 

 

4.3.2. Experiment 2: Interaction of microorganisms (heterotrophic bacteria and 

autotrophic microalgae) 

Microphytobentos composition 

In the mixed assemblage (bacteria+diatoms, BD), diatoms of the genera Achnanthes, 

Caloneis, Navicula and Nitzschia were present on the substratum at the beginning of the 

experiment (day1). While the large species Achnanthes longipes and Caloneis amphisbaena 

seemed to dominate the samples, the majority of species were represented by the genus 

Navicula (N. cinta, N. digitoradiata, N. flanatica N. gregaria N. crytocephala, N. 

perminuta/diserta N. phyllepta  N. salinarum) and Nitzschia (N. epithemioides, N. 

frustulum, N. hungarica, N. sigma). Over time, smaller species such as Navicula became 

dominant together with Nitzschia and Cymbella species. After 4 weeks, only small 
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Navicula species remained. In the diatom assemblage (D), treated with antibiotics to inhibit 

bacterial colonization, the species composition was quite similar to the mixed assemblage 

with Achnanthes, Cylindrotheca, Cymbella, Navicula and Nitzschia species but smaller 

Navicula species dominated in this culture from the beginning. Achnanthes, Cymbella, and 

Nitzschia species were characteristic for this treatment for about 3 weeks. By the end of the 

experiment, only small Navicula species remained.  

Most of the diatom species typically occur in poly- and hypertrophic environments, except 

for some species of Achnanthes and Cymbella, which rather require mesotrophic 

conditions. Although the benthic diatom community was isolated from natural sediments, 

species richness seemed less diverse as compared to the natural habitats.  

Bacterial assemblages 

The proportion of the active cells as determined by EUB mix was higher in the 

beginning for the pure bacterial assemblage (B, 58%) as compared to the mixed 

assemblage (BD, 38%); however at the end of the experiment the proportion of active 

cells was similar for both treatments (54% B and 55% BD) indicating that most of the 

bacterial community was metabolically active at the sampling time. In the control 

measurements (C) as well as in the diatom assemblage (D), hybridizing with 

oligonucleotide probes was below levels of detection. 

The application of domain, phylum, and subphylum specific oligonucleotide probes 

revealed that the samples were predominated by gram-negative Proteobacteria, while 

gram-positive Actinobacteria were determined with less than 1% (Table 4.2). In the 

mixed assemblage, the Alphaproteobacteria accounted for 18%, the 

Betaproteobacteria for 35%, the Gammaproteobacteria for 15%, the Delta-subclass 

for 5% and the Cytophaga Flexibacter Subphylums for 15%. Over time, a noticeable 

shift could be determined within the assemblage: while the Alphaproteobacteria 

increased to 20%, the Betaproteobacteria decreased to 18%, and Sulphate 

deoxidizer/Delta-subclass decreased below detection limit (Table 4.2). 

The Actinobacteria accounted for less than 1% and were thus negligible. The pure 

bacterial assemblage showed similar proportions of the subphylums 

(Alphaproteobacteria 10%, Betaproteobacteria 30%, Gammaproteobacteria 10%, 

Cytophaga/Flexibacter 13%), but the Delta-subclass could not be detected. 
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Table 4.2. Percentage of the specific bacterial groups (marked by the oligonucleotide 

probes named on the left) of the total eubacterial counts; given for the treatments 

bacteria and diatoms (BD), bacteria (B) and diatoms (D) for the beginning (1) and the 

end (2) of the experiment. 

 

 BD, 1 FA 
(%) 

BD, 2 FA  
(%) 

B, 1 FA  
(%) 

B, 2 FA  
(%) 

ALF968 18 20 10 12 

BET42a 35 18 30 25 

GAM42a 15 15 10 25 

HGC69a <1 - - <1 

SRB385Db 5 - - <1 

CF319a 15 15 13 18 

 

Over time, Alphaproteobacteria increased (to 12%) and the Betaproteobacteria 

decreased, but to a much lesser extend (to 25%) as compared to the mixed 

assemblage. Noticeably different to the “BD” treatment was also the increase in 

Gammaproteobacteria (to 25%) and Cytophaga/Flexibacter (to 18%) over time. As 

for the mixed assemblage, the gram-positive Actinobacteria were present at low 

relatively abundance of <1% (Table 4.2). 

 

Microbial biomass, cell number and growth rate 

The chlorophyll a and pheophytin concentrations were significantly different between 

the treatments for most of the sampling days (Kruskal-Wallis (χ²) test (KW), p<0.05). 

Chl a concentrations in the mixed treatment BD ranged between 1.5 and 2.17 μg cm-3 

and were significantly higher than the D treatment (Figure 4.10 A) with values 

ranging between 1.38 and 1.97 μg cm-3 (for example, day 14: KW, χ2=6.77 df=2, 

p<0.05, with post-hoc Student-Newman-Keuls (SNK) test). 

 

Like the microbial biomass, the bacterial cell numbers determined by flow cytometry 

significantly differed between the treatments on most of the days (KW, p<0.05). The 

bacterial cell numbers in the treatment B and BD varied between 1.44x107 and 
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5.56x107 cells cm-3 as well as 0.34x106 and 1.19x107 cells cm-3, respectively (Figure 

4.10 B). Thus, the bacterial cell numbers were significantly higher in the pure 

bacterial culture (for example, day 14: KW, χ2=3.8, df=3, p<0.05, with post-hoc SNK 

test). 

 

Based on the calculated [methyl-3H] thymidine incorporation, there was no significant 

difference for bacterial division rate between the bacterial and mixed assemblages 

(Figure 4.10 C). Like the bacterial cell numbers, the bacterial division rates were 

negligible in the controls and in the axenic diatom assemblage.  

 

 

Figure 4.10: Box plots of the different treatments: mixed assemblages (BD), diatoms 

(D), bacteria (B) and control (C). (A): chlorophyll a (n=21), (B) bacterial cell numbers 

(n=24), (C) bacterial division rates (n=18), (D) bacterial specific rates (n=18). 

 

The specific rate of bacterial division per cell per hour can be calculated by dividing 

the division rate of the bacterial community (cells cm-3 h-1) by the bacterial cell 

numbers (cells cm-3). The specific rate of bacterial division was significantly higher for 
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BD as compared to B (Figure 4.10 D); especially on day 3 where the specific rate of 

bacterial division in the BD assemblage was 18.2 times higher than in B (KW, χ2=6.2 

df=2, p<0.05, with post-hoc SNK tests).  

 

There was no significant correlation between the bacterial cell division rates and 

bacterial cell numbers in the bacterial treatment or in the mixed assemblage. Despite 

ongoing growth of microalgae and bacteria, no significant relationships between 

chlorophyll a as a proxy for microalgal biomass and the bacterial cell numbers or 

bacterial division rates could be determined within the mixed assemblage. 

Changes in EPS components 

Over time, the water–extractable (colloidal) carbohydrate concentrations increased in 

all treatments to a maximum on day 14 (Figure 4.11 A, Table 4.3), but the increase 

was most pronounced for the mixed assemblage.  

 

Table 4.3. Differences between the first day of sampling (day 1) and day 14 where most 

of the variables showed their maximum value as well as differences between the given 

treatments (mixed: BD, Bacteria B, Diatom D); both times expressed as quotient/factors 

for colloidal carbohydrates, colloidal proteins. 

 

Factors  Carbohydrates Proteins 

between 

day 1-14 

B 5.5 6.4 

D 3.6 2.1 

BD 11 6.4 

between 

treatments 

BD/B 5.1 1.7 

BD/D 2.6 1.9 

B/D 0.714 - 

 

The carbohydrate concentrations varied between 13-147.3 μg cm-3, 7.3-40.5 μg cm-3 

and 15.9–56.6 μg cm-3 for BD, B and D, respectively (Figure 4.11 A) with significantly 

different means in the treatments for all sampling dates except at the beginning of the 

experiment (KW, p<0.05). The carbohydrate concentrations were significantly higher 

in BD as compared to D and B (for example, day 14: KW, χ2=9.66, df=3, p<0.05, 
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followed by post-hoc SNK test) (Figure 4.11 A, Table 4.3). The treatments B and D 

were not significantly different from each other. The controls showed negligible 

amounts of colloidal carbohydrates. 

 

Figure 4.11: Mean values of colloidal carbohydrates (A) and colloidal protein (B). Mean 

values (n = 3 per treatment, based on n = 3 replicates per box ± SE) in the treatments 

bacteria and diatoms (BD, ▲), diatoms (D, ♦), bacteria (B, □) and controls (C, ●). 
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The pattern of the water–extractable (colloidal) protein concentrations over time was 

similar to that of the carbohydrates, with an increase towards on day 14 in all 

treatments (Figure 4.11 B, Table 4.3). The protein concentrations for the treatments 

BD, B and D varied between 20.9-213.1 μg cm-3, 9.8-120.6 μg cm-3 and 27.8-112.8 μg 

cm-3, respectively (Figure 4.11 B) with significantly different means in the treatments 

for most of the sampling dates (KW, p<0.05). The protein concentrations in the 

treatment BD were significantly higher than in the treatments B and D (for example, 

day 14: KW, χ2=9.67, df=3, p<0.05, followed by post-hoc SNK test). The treatments B 

and D were not significantly different from each other. The colloidal proteins in the 

controls were below detection limits. 

 

To explore possible additive, inhibitory or synergistic effects between the effects of 

single and combined assemblages, the amount of EPS produced in each single 

assemblage (B and D) was assessed relative to the amount of EPS produced in the 

mixed assemblage ([BD]-[B+D], Figure 4.12 A and B).  

 

Where this relationship is close to zero, production by B and D is additive with respect 

to BD, the more negative the relationship then the lower the relative production of BD 

against the combined values of B and D (inhibitory effect) suggesting that either EPS 

production in BD is reduced or that cycling is more rapid in the combined culture. A 

strongly positive value for the relationship (BD>>B+D) would suggest synergy in the 

mixed culture. There were 2 sampling dates on which the relationship was inhibitory 

for [EPS] and on all other occasions the value was strongly positive suggesting a 

synergistic effect (Figure 4.12 A). The results in terms of protein production were 

more equivocal with a balance in response across the sampling dates (Figure 4.12 B). 
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Figure 4.12: The relative assessment between treatments. The EPS concentration of the 

mixed cultures (BD) relative to the contribution of the single cultures (B and D) such 

that the value “BD-B-D” is reported for carbohydrates (A) and proteins (B). Where the 

production of carbohydrate or protein from mixed cultures (BD) exceeds that of the 

added single cultures (B and D) the value is positive (synergistic effect) and vice versa 

(inhibitory effect). If the added values of the single cultures exactly equal the mixed 

cultures then there is an additive effect. 
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Relation between biological variables 

A strong positive correlation was determined between colloidal carbohydrates and 

colloidal proteins (Figure 4.13). The colloidal carbohydrates and proteins showed a 

significant positive relation to microalgal biomass, as indicated by Chl a 

concentrations (r=0.385, n=56, p<0.001 and r=0.310, n=57 p<0.01, respectively) as 

well as to the bacterial cell numbers (r=0.649, n=18, p<0.01 and r=0.518, n=18, 

p<0.01, respectively).  

 

 

 

Figure 4.13: Scatter plot to show the relationship between colloidal carbohydrates (μg 

cm-3) and colloidal proteins (μg cm-3). 

Low Temperature Scanning Microscopy 

Microbial colonization resulted in the development of a biofilm, which significantly 

stabilized the test substratum. As the chosen substratum was composed of non-

cohesive glass beads, the binding force must have been entirely due to microbial 

attachment and the secretion of a polymeric matrix (Figure 4.14). LTSEM highlighted 

that in treatments with microorganisms, the EPS matrix is visible, heavily covering the 

glass beads and permeating the intermediate pore space, on the other hand, frozen 

water (ice) on the surface produces a solid matrix around the glass beads on the 

controls (Figure 4.14). 
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Figure 4.14: Low-temperature scanning electron microscope images using different 

magnifications. A-B. The mixed assemblages bacteria + diatom. C-D. The diatom 

treatment.  E–F. The bacteria treatment. G-H. The control substratum. 
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4.3.3. Experiment 3: The effect of nematodes on microbial growth and EPS 

production 

Microbial biomass 

For bacterial cell number, a baseline was calculated by averaging the results of the 

controls and all the treatments which were not originally inoculated with bacteria and 

which were supplemented with antibiotics (see the dashed lines in Figure 4.15 A, B 

mean ±95% interval of confidence). For the first sampling date (Figure 4.15 A), 

bacterial abundance in treatment B was not significantly different from the baseline 

(Mann-Whitney test, U=28.00, p>0.05). The difference was significant for treatment 

BD (Mann-Whitney test, U=5.00, p<0.01). For the second sampling date (Figure 4.15 

B), bacterial abundance was between 2 and 24x106 cells cm-2 depending on the 

treatment considered which is slightly lower than natural bacterial abundances of 

intertidal mud and sand flats i.e. 109 cells cm-2(Epstein et al. 1997, Goni-Urriza et al. 

1999, Bottcher et al. 2000, Danovaro et al. 2001). Bacterial abundance was relatively 

stable between the first and last sampling dates in treatments C, B, D and BD and was 

higher in presence of nematodes. As for sampling Day 1, bacterial abundance in 

treatment B was not significantly different from the baseline (Mann-Whitney test, U = 

22.00, p>0.05). At the sampling Day 2 the difference was significant for treatment BD, 

BN and BDN (Mann-Whitney test, p<0.01 for all the treatments). 
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For chlorophyll a (Chl a), a baseline was calculated as described above from the 

treatments which were not originally inoculated with diatoms (Figure 4.16 A and B). 

For the first sampling date (Figure 4.16 A), chlorophyll a concentration in treatments 

D and BD were significantly different from the baseline (Mann-Whitney test, p<0.001 

and p<0.01 respectively). For the second sampling date (Figure 4.16 B), chlorophyll a 

concentration ranged from 1 to 7 µg cm-3 depending on the treatment considered 

which is also lower than chlorophyll a concentration of natural intertidal mud- and 

sandflats (Dejonge and Colijn 1994, Barranguet et al. 1997, Paterson and Hagerthey 

2001). Chl a concentration increased slightly from the first to last sampling dates in 

treatments D and BD and was slightly higher in presence of nematodes. As for 

sampling Day 2, chlorophyll a concentration in treatment D was not significantly 

different from the baseline (Mann-Whitney test, U=5.50, p>0.05). The difference was 

significant for treatment BD, DN and BDN (Mann-Whitney test, p<0.01 for all the 

treatments). 

Changes in EPS components 

For the first sampling date (Figure 4.17 A), colloidal carbohydrate concentration of all 

the treatments were significantly different from the control and the treatment BD 

displayed the highest average concentration (Kruskal-Wallis, H=13.18, df=3, p<0.01, 

followed by a non-parametric SNK test). For the second sampling date (Figure 4.17 B), 

the colloidal carbohydrates concentrations were significantly different from the 

control and treatment BDN displayed the highest carbohydrates concentration 

(Kruskal-Wallis, H=12.71, df=6, p<0.05, followed by a non-parametric SNK). 

For the first sampling date (Figure 4.18 A), treatment BD displayed the highest 

average colloidal protein concentration (Kruskal-Wallis, H=10.17, df=3, p<0.05, 

followed by a non-parametric SNK). For the second sampling date (Figure 4.18 B), the 

colloidal protein concentrations were significantly different from the control and 

treatment BDN again displayed the highest protein concentration (Kruskal-Wallis, 

H=18.51, df=7, p<0.01, followed by a non-parametric SNK). 
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Relationship between microbial biomass and EPS compounds 

For the first and the second sampling dates, colloidal carbohydrates and proteins 

were always significantly correlated (Pearson correlation coefficient r=0.64 and 0.69, 

p<0.001, Figure 4.19). 
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Figure 4.19: Simple linear regressions between colloidal proteins and carbohydrates 

(n=24) for the first (day 1) and the second (day 2) sampling dates. The coefficient of 

determination (R²) and the p-value are indicated. 

 

On the first sampling day no significant relationship was found between colloidal 

carbohydrates and bacterial abundance and colloidal carbohydrate and chlorophyll a 

(Figure 4.20 A and B). On the second sampling day a strong positive relationship 

between colloidal carbohydrates and bacterial abundance and chlorophyll a was 

observed (Pearson correlation coefficient r=0.59, p<0.01 and r=0.76, p<0.001, 

respectively, Figure 4.20 A and B).  
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Figure 4.20: The relationship between (A) colloidal carbohydrates and bacterial 

abundance (n=24) and (B) chlorophyll a (n=24) for the first (day 4) and the second (day 

10) sampling dates. The coefficient of determination (R²) and the p-value are indicated. 

 

There was a significant relationship between colloidal proteins and bacterial 

abundance on the first and second sampling days (Pearson correlation coefficient 

r=0.41 and 0.46, p<0.05, Figure 4.21 A). Colloidal proteins exhibited strong positive 

relationship to chlorophyll a at the second day of experiment (Pearson correlation 

coefficient r=0.54, p<0.01), but not at the first sampling day (Figure 4.21 B).  
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Figure 4.21: The relationship between (A) colloidal proteins and bacterial abundance 

(n=24) and (B) chlorophyll a (n=24) for the first (day 1) and the second (day 2) sampling 

dates. The coefficient of determination (R²) and the p-value are indicated. 
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4.4. Discussion 

4.4.1. The coexistence of axenic microalgae culture: growth rate and EPS 

production.  

The results obtained in this experiment, confirmed the main hypothesis, that 

increasing levels of biodiversity will lead to an increase in microbial biomass. In this 

experiment, there was no contribution by bacteria in this interaction. The difference 

between the treatments in terms of biomass and EPS production were addressed only 

to coexistence of these microalgae species and their preferences to abiotic conditions. 

Many laboratory studies have shown that the proportion of EPS, produced by algae, 

varies widely among species and is affected by the physiological status of the algae 

and by experimental conditions (Smith and Underwood 2000, Goto et al. 2001, 

Underwood et al. 2004, Cyr and Morton 2006). Values of colloidal EPS components, 

obtained in present experiment, were in range 1-5 µg cm-3 , which is lower than values 

obtained in previously reported experiment (Yallop et al. 2000, Cyr and Morton 2006, 

Gerbersdorf et al. 2009).The carbohydrate - protein ratio (1:1) in present experiment 

were also differing from previously published results (1:2 or 1:5). This may be due to 

the absence of bacterial culture in this experiment, which may be significant 

contributor to the overall EPS pool. 

The continuous increase of microalgae biomass was observed in treatments where 

cultures were combined, with more pronounced increase for mixture of three species 

ANO. At the end of the experiment the treatments ANO and AN showed similar 

biomass levels as indicated by chlorophyll a concentration, however mixture of AO 

was significantly lower. This may be explained by a density dependent effect, such 

Amphora spp producing a large population of cloned individuals (Davies et al. 1998) 

and suppressing the growth of Oscillatoria spp. The results also confirmed that the 

biomass of single Amphora spp biofilms were higher than in the mixed cultures. In 

contrast, other single species biofilms (Navicula spp and Oscillatoria spp) had much 

lower biomass also their combined cultures which showed a very much lower level of 

biomass. In fact, the chlorophyll a levels in treatment O and NO exhibited a slight 

increase over the first week of experiment and a rapid decrease thereafter. The slow 

rate of the development of Oscillatoria’s biofilm may be a result of low temperature 

regime (Watermann et al. 1999). The glass beads, which typically simulated sand type 
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of the sediment, were used in the present study. Previous investigations (Admiraal 

1977, Watermann et al. 1999) suggested that benthic diatoms prefer muddier 

sediment. In fact, during the present experiment Navicula’ s biofilm developed very 

little. This was confirmed by the visual observation of the biofilm along with low 

concentrations of chlorophyll a. This result was mirrored in the analysis of 

carbohydrate and protein concentrations. Culture conditions such as nutrition, light 

and temperature etc. also affect the productivity of algal extracellular substances, as 

has been observed in previous studies(De Philippis and Vincenzini 1998). Examining 

the sum of EPS across treatments does not give a clear answer. The differences 

between treatments in terms of carbohydrate production followed microbial biomass. 

In contrast to this and despite their low biomass, EPS protein produced by Oscillatoria 

culture shown higher concentration than other single culture. This may suggest that 

(a) Oscillatoria’s EPS mainly consist of protein rather than carbohydrate components 

and (b) and Oscillatoria species produced larger quantities of EPS proteins than 

diatom species. The protein concentration in mixed cultures with Oscillatoria were 

higher than proteins produced by mixed diatoms culture AN. The three species ANO 

had the highest concentration of EPS, at least at the end of the experiment, but the 

single species A treatment had almost the same concentration of EPS suggesting that 

Amphora produces high levels of EPS, thus may have a higher stabilisation potential 

than other species. 

 

4.4.2. The species-specific interactions of natural bacteria and microalgae  

The individual and combined microbial assemblages 

The comparison of pure bacterial, axenic microalgal and mixed (bacteria+microalgae) 

assemblages was designed to provide insights into the individual and combined 

functional capacity of the heterotrophic and autotrophic biofilm components in terms 

of substratum properties (Chapter 5). The concentration of colloidal carbohydrates in 

present experiment were between 50-150 µg cm-3, which is similar to the values 

reported in previous study(Hirst et al. 2003, Cyr and Morton 2006). Extracellular 

proteins are rarely measured in marine intertidal flats (Staats et al. 1999, Cyr and 

Morton 2006). EPS production is also strongly depend of abiotic factors, such as 

nutrients enrichment, temperature and culture condition (Underwood et al. 2004). 



CHAPTER 4. Coexistence of organisms: EPS production 
 

 98 

Thus, it is difficult to perform comparison in EPS values and ratios of EPS components, 

due to differences in experimental conditions. However, the value of colloidal protein 

(20-230 µg cm-3 ) and ratios between carbohydrate and protein (1:1.5) were 

comparable with values and ratio of carbohydrates and protein 1:2, obtained in by 

Gerbersdorf et al. (2009). 

Separation of the influence of component assemblages of bacteria and diatoms in 

nature is problematic. In this study the approach was to use assemblages derived 

from natural systems but manipulated to create the segregation of bacteria and 

diatoms. However a mixture of antibiotics was used to inhibit bacterial growth which 

may have raised some potential problems. Chloramphenicol has been reported to 

suppress the growth of microalgae in general and diatoms in particular (Campa-

Cordova et al. 2006, Lai et al. 2009). 

It is also known that some microalgae, among them diatoms, require an association 

with certain bacteria and might be hampered in their metabolic activities of growth 

and organic matter release otherwise (Fukami et al. 1997, Guerrini et al. 1998, 

Wichard et al. 2005, Grossart and Simon 2007, Bruckner et al. 2008, Levy et al. 2009). 

In this study, the microalgal biomass was significantly lower in the axenic diatom 

assemblage (D) as compared to the assemblage associated with bacteria (BD) which 

may be an indication of physiological damage and/or species selection by antibiotic 

treatment or the influence of bacteria/diatom association. In contrast, the bacterial 

growth was unspoiled in the pure culture without microalgae, showing an impressive 

increase over the first weeks of the experiment. 

It was first hypothesized that the grouping of bacteria and diatoms in the mixed 

assemblages might result in synergy in community EPS secretion and therefore 

substratum stabilisation (Chapter 5). The first of these concepts is supported by the 

data in terms of EPS carbohydrate production but not for EPS protein production. 

It is often said that diatoms are promoted by nutrient recycling of the bacteria to 

enhance their growth rate, cell yield and EPS polysaccharides release (Guerrini et al. 

1998, Elifantz et al. 2005, Klug 2005, Grossart and Simon 2007). Over the first 10 days 

of the experiment, the better development of microalgal biomass in the natural 

assemblage, as compared to the axenic microalgal culture, seemed to support this 

possibility. However, with time, the microalgal biomass decreased to comparable 

levels in both treatments that would not be expected with continuous inorganic 
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nutrient supply. Furthermore, the microalgal community composition and the 

nutrient requirements of the determined species were quite similar over time in both 

biofilms and thus gave no hints to more or less preferable nutrient conditions. In fact, 

the natural and axenic microalgal assemblages were both dominated by typical poly- 

to hypertrophic species found in fresh-brackish waters. In the last week of the 

experiment, species diversity declined similarly in both biofilms over time until small 

Navicula species remained. This indicates  laboratory conditions were not ideal, 

supporting earlier work on diatom assemblages in laboratory systems (Defew et al. 

2002). Surprisingly, the bacterial cell numbers along with the bacterial dividing rates 

were significantly lower in the mixed assemblage as compared to the pure bacterial 

culture. In the literature, it is reported that bacteria develop concomitant with benthic 

microalgae (Bowen et al. 2009) and they adapt quickly to the different organic 

microalgal exudates with substrate-specific responses regarding enzyme activity and 

compositional shifts, usually resulting in stimulated bacterial growth and metabolic 

activity (Schaefer et al. 2002, Haynes et al. 2007). However, the bacteria consortia that 

developed in this system did not seem to profit from the presence of diatoms. There is 

a possibility that the bacteria were actively suppressed by the diatoms. It is known 

that marine bacteria are very sensitive to polyunsaturated aldehydes (PUAs) that are 

produced by a range of microalgae species (Wichard et al. 2005, Ribalet et al. 2008). 

This possibility requires further study in benthic systems. In addition, diatoms could 

have profited better from the initial nutrient concentrations in the inoculums to 

outcompete bacteria  for nutrient in the initial stage of culture. This has been shown 

for a mixed assemblage with external nutrient supply (Gerbersdorf et al. 2009), 

although bacteria are usually known as superior nutrients competitors (Jansson 

1993). It might be more likely that we are observing a selection/adaptation process as 

the natural microbial biofilms adapted to culture condition and populations capable of 

co-existing or exploiting algal/bacterial species were promoted, as has been shown 

for floodplains and estuaries(Boivin et al. 2007, Haynes et al. 2007). Indeed, the 

bacterial community showed pronounced composition shifts with the presence of 

diatoms in the mixed assemblage during the experiment. While the gram negative 

Proteobacteria continuously constituted the majority of the bacterial community, the 

percentage of α, β, γ-Proteobacteria changed over time. Members of α-Proteobacteria 

were more prominent in the mixed assemblage than in the bacterial culture, although 
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the absolute increase over time was similar in the two relevant treatments. Members 

of α-Proteobacteria as well as from the Cytophaga-Flavobacterium-Bacteroides (CFB) 

phylum were identified as “satellite bacteria” to marine diatoms (Schaefer et al. 2002). 

That might explain the preferred association of α-Proteobacteria with diatoms in the 

mixed assemblage while hybridization to the CFB phylum was similar to the pure 

bacterial biofilm over time. In contrast, β-Proteobacteria decreased in both 

treatments, but this decrease was most pronounced in the natural assemblage where 

the presence of diatoms might have posed an additional stress factor. Otherwise, their 

decrease might be related to the constantly high salinity conditions (30 Practical 

Salinity Units) during the experiment, since β-Proteobacteria are typical for 

fresh/brackish water habitats (Gockner et al. 1999), where they experience varying 

salinities in the low-medium range. The γ-Proteobacteria increased solely in the 

bacterial assemblages and remained unchanged in the mixed biofilm, thus seem to 

have an inferior role in the presence of diatoms. Hence, the bacterial assemblage 

seemed to adapt in composition to the presence of diatoms rather than the other way 

around. Altogether, the data on microbial biomass/cell numbers and community 

composition gave no evidence for mutual advantages of bacteria and diatoms by their 

co-existence in the present experiment.  

The EPS matrix  

It is generally stated that diatoms produce mainly EPS polysaccharides while bacteria 

secrete larger proportions of EPS proteins (e.g. Decho 2000, Flemming and Wingender 

2001). This is supported by the significantly higher carbohydrate concentrations in 

the axenic microalgal assemblage as opposed to the bacterial biofilm. 

Neither carbohydrates nor proteins are exclusively linked to microalgae or bacterial 

occurrence and their proportion might not always be as expected from the literature, 

as could be seen in the pure bacterial and axenic microalgal cultures. Consequently, 

EPS carbohydrates and EPS proteins in the mixed assemblage were significantly and 

positively correlated to microalgal biomass and bacterial cell numbers; and these 

relationships were also broadly supported in the pure cultures. In addition, the 

characteristics of one particular EPS component, carbohydrate or protein, most likely 

differs between the heterotrophic and autotrophic producers. Thus, the co-bonding of 

microalgal EPS and bacterial EPS in the biofilm matrix of the natural assemblage 
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might have changed the “quality” of binding as compared to the pure bacterial and 

microalgal biofilms. The alteration of the EPS concentrations in the mixed assemblage 

as opposed to the single cultures of bacteria and microalgae were of an additive 

(proteins), or synergistic (carbohydrates) nature. 

 

4.4.3. The effect of nematodes on microbial growth and EPS production  

Biofilm development prior to nematode inoculation  

During the experiment, differences between quantity of EPS compounds in treatments 

which were not inoculated with nematodes B, D and BD, were directly implicated by 

changes in microbial biomass. Such as the reduction in colloidal carbohydrate in 

treatments D and BD correlated with a decrease in microalgal biomass in these 

treatments as indicated by concentrations of Chl a. While microalgae secrete mainly 

polysaccharides (Staats et al. 1999, Stal 2003), bacterial EPS consists of high 

proportion of proteins (Flemming and Wingender 2001). In fact, increasing bacterial 

biomass, as determined by flow cytometry was accompanied by an elevation of EPS 

proteins. The production of such compounds is relatively variable in natural 

environments and depends strongly on the physiological state of the cells and the 

environmental conditions (Decho 1990). Thus, inter-comparison between EPS 

concentration with previous experiment is not realistic, due to differences in 

experimental conditions and microbial biomass. However, the results obtained in this 

experiment confirmed previous results which found that when bacteria and diatoms 

were grown together (BD), they produced much more EPS than when grown 

separately. This treatment was consistently the highest in EPS concentrations and the 

highest microbial abundance/biomass as compared with single treatments. Whilst 

there was a significant relationship between EPS carbohydrate and microbial biomass, 

the significance level was more pronounced for Chl a concentration (p<0.001), than 

for bacterial cell number (p<0.01). These results suggest that microalgae were more 

responsible for EPS carbohydrate production than bacteria. The EPS proteins data 

shows a similar relationship (p<0.05) to chlorophyll a and bacterial cell number thus 

is most like that total protein concentration is a result of both microalgae and 

bacterial production. 
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Effect of bacterivorous nematodes on microbial growth and exopolymer production  

During locomotion, many nematodes secrete significant amounts of mucus, which 

may agglutinate sediment particles (Gerlach 1978, Riemann and Schrage 1978), fix 

eggs to substrata (Moens pers. observ.), or facilitate settlement of specific strains of 

bacteria (Moens et al. 2005) and life stages of microalgae (Warwick 1981). It has been 

suggested that these mucus tracks serve to trap bacteria, which will then be grazed 

upon by the nematodes (mucus-trap hypothesis, Riemann and Schrage 1978, Moens 

et al. 2005), but this hypothesis has not been confirmed. Nematode mucus secretions 

contain a substantial share of acid mucopolysaccharides (Riemann and Schrage 1978). 

However, when grown alone (treatment N), in this experiment, nematodes did not 

produce high amounts of colloidal EPS (Figure 4.17 B and 4.18 B). This could be due to 

the low abundances of nematodes, or to the absence of bacterial food in treatment N, 

which may have negatively impacted nematode activity and movement. The co-

occurrence of bacteria and nematodes (treatment BN) significantly increased the EPS 

production compared to treatment N, but not compared to treatment B (Figure 4.17 B 

and 4.18 B). Bacterial abundance however was drastically higher in BN than in B. 

Bacterial grazing by nematodes was clearly not high enough to negatively impact 

bacterial proliferation. Such top-down controls on bacterial abundance probably only 

occur at high abundances of nematodes with high grazing rates (De Mesel et al. 2006), 

and not at the relatively low nematode densities of this experiment. A stimulatory 

effect of nematodes on bacterial abundance may result from (a) microbioturbation, 

improving oxygen and nutrient distribution in sediments (Alkemade et al. 1992, Aller 

and Aller 1992), (b) moderate grazing, preventing bacteria from rapidly reaching 

carrying capacity and (c) excretion of N-rich compounds by nematodes which 

stimulate microbial growth (Ingham et al. 1985, Ferris et al. 1998). The first and last 

explanations appear most plausible for this experiment. Nematode movement may 

have facilitated oxygen penetration into the sediment. At the same time, bacteria-

feeding nematodes generally excrete N assimilated in excess of that required for 

growth (Ferris et al. 1997, Ferris et al. 1998). This excess N is usually excreted as 

ammonium and may relieve nutrient limitation for bacteria as well as for diatoms. 

The simultaneous presence of diatoms in treatment DN increased the EPS production 

compared to treatment N (Figure 4.17 B and 4.18 B) as well as the presence of 

nematodes may stimulate protein production and chlorophyll a concentrations 
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compared to treatment D. A possible explanation is that the above-mentioned N-

excretion by nematodes provided enough nutrients to stimulate diatom growth and 

protein production.   

In the presence of nematodes, the additive effect observed between bacteria and 

diatoms at the first sampling (Day 1) was even more pronounced. For instance, the 

carbohydrate concentration increased from the control to BDN (e.g. carbohydrate 

content in C<D<BD<BDN, Figure 4.17 B). As mentioned before, nematodes probably 

stimulated bacterial growth and subsequent mineralization/nutrient generation, 

which may in return have stimulated microagal proliferation. In addition, as 

hypothesised by Riemann & Helmke (2002), the metabolic activities of mucus-

secreting nematodes and the associated bacteria may have complemented each other 

in this treatment. In this study, nematodes in treatment BDN probably obtained most 

of their nitrogen from the ingestion and digestion of bacterial cells. In addition, it is 

possible that, conversely to other treatments, the presence of bacteria helped to fulfil 

nematode and diatom nitrogen needs by breaking down proteins. This could explain 

why treatment BDN, which assembled all the studied organisms, displayed the highest 

polymer and biomass contents. 
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Chapter 5  

Coexistence of aquatic organisms in terms of sediment stability 

 
Abstract 

It is recognized that microorganisms inhabiting natural sediments significantly 

mediate the erosive response of the bed (“ecosystem engineers”) through the 

secretion of naturally adhesive organic material (EPS: extracellular polymeric 

substances). However, the relative importance of the different EPS producers on the 

stabilization of the sediment matrix is still unknown. The aim of the first experiment 

was to examine the adhesive capacity of mono-species biofilm surfaces of benthic 

diatoms and cyanobacteria, as well to find out whether the combination of two or 

three species in a biofilm would lead to any kind of additive or synergistic effect on 

the adhesive force. Three species, Navicula hansenii, Amphora coffeaeformis and 

Oscillatoria species, were grown separately or combined on non-cohesive artificial 

sediment. The adhesive capacity of the biofilm produced by these species was 

measured by MagPI over a two week experimental period and related to biological 

data from Chapter 4. In the present experiment the adhesive properties of the biofilm 

of the three species (ANO) produced continuously higher adhesive values during the 

experiment than other biofilms. These results support the main hypothesis and quite 

clearly point in the direction of an increasing level of adhesive force with increasing 
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level of biodiversity of the biofilms. It was the first attempt to explore earlier 

unknown ground and increased knowledge of the area of species contribution in 

biofilms. This study was made possible by using a high resolution experimental set-up 

Magnetic Particle Induction (MagPI). This knowledge will lead to a deeper 

understanding of the effect of changing biodiversity on interspecies relationships and 

related implications for the properties and quality of biofilms. 

 

Since the natural ”microalgal mats” is certainly not devoid of heterotrophic bacteria, 

the question of the functional role and origin of EPS in microbial mats requires further 

interpretation and can initially be addressed by separate studies of the engineering 

potential of prokaryotic and eukaryotic assemblages. The aim of the second 

experiment was to investigate microbial biostabilisation capacity by using natural 

benthic bacteria and microalgae cultures growing on artificial sediments over 4 

weeks. The sediment stability was measured using both a Cohesive Strength Meter 

(CSM) and a newly developed device Magnetic Particle Induction (MagPI). The results 

obtained suggest that stabilisation was significantly higher for the bacterial 

assemblages (up to a factor of 2) than for axenic microalgal assemblages. The EPS 

concentration and the EPS composition (Chapter 4) were both important in 

determining stabilisation. The peak of engineering effect was significantly greater in 

the mixed assemblage as compared to the bacterial (x1.2) and axenic diatom (x1.7) 

cultures. The possibility of synergistic effects between the bacterial and algal cultures 

in terms of stability was examined and rejected although the concentration of EPS did 

show a synergistic elevation in mixed culture. The rapid development and overall 

stabilisation potential of the various assemblages was impressive (x7.5 and x9.5, for 

MagPI and CSM, respectively, as compared to controls). This study confirmed the 

important role of heterotrophic bacteria in “biostabilisation” and highlights the 

interactions between autotrophic and heterotrophic biofilm consortia. 

 

5.1. Introduction  

In intertidal habitats, the cohesive strength of sediments depends on their 

physicochemical properties such as water content, density, mineralogy, plasticity, 

salinity and pH (Dade et al. 1992). Benthic communities colonize these habitats and 
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form pronounced biofilms (de Winder et al. 1999) which can have a large impact on 

the whole sediment system. The initial step of biofilm formation is normally regarded 

as the attachment of microbial cells to a surface by the secretion of polymeric 

substances. In transient biofilms, however, much of the extracellular polymeric 

substances (EPS) are secreted as a by-product of the locomotive mechanism of 

diatoms (Consalvey et al. 2004). In recent years it has been shown that benthic 

biofilms can also act as a protective layer at the sediment surface that can significantly 

influence erosion and deposition of sediment particles (Underwood and Paterson 

2003). Thus investigation into this “biostabilisation” process is very important in 

terms of the prediction of sediment erosion potential (Perkins et al. 2004). The major 

mechanism of this microbial biostabilisation is through the production of EPS matrix 

which is a complex mixture of carbohydrates, proteins and proteoglycans, secreted by 

biofilms cells. Previous studies on the influence of EPS on sediment stability have been 

carried out both in the laboratory (Dade et al. 1992, Battin et al. 2003, Droppo et al. 

2007) and in the field (Tolhurst et al. 2000, Hirst et al. 2003) using artificially 

modified sediment (Droppo 2001) and/or natural sediment (Underwood and Smith 

1998, Yallop et al. 2000, Perkins et al. 2003, Gerbersdorf et al. 2005). However 

biological impact is highly variable and difficult to express as one constant factor. 

Numerous studies have established a positive correlation between sediment 

stabilization, EPS and microbial biomass. Some studies have attempted to use 

chlorophyll a/microalgae biomass as an indicator of sediment stability, but the 

relationships were at best site-specific (e.g. Riethmueller et al. 2000, Defew et al. 

2002, Le Hir et al. 2007). However, although biostabilisation has been increasingly 

studied over the last decade, there are still significant gaps in our knowledge. 

Motile epipelic diatoms are recognized as the main EPS producers in intertidal muddy 

sediments and as the main contributors to biostabilisation (de Brouwer et al. 2005). 

MPB alter sediment properties (e.g. erodibility) both directly, by forming a mat on the 

sediment surface, and indirectly by modifying the activities of benthic infauna (Miller 

et al. 1996). Nevertheless, due to the microalgal influence on the structure and 

behaviour of sedimentary habitats, they have been put forward as important 

“ecosystem engineers” (Boogert et al. 2006), irrespective of their small size that is 

easily compensated by biomass. The adhesion/cohesion mechanism with the EPS 

matrix the closely related to the biological function of the polymer in nature has been 
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discussed (Hu et al. 2003). For instance, for most benthic cyanobacteria, the adhesion 

mechanism with the matrix is due to the surface hydrophobicity of exopolymers 

(Fattom and Shilo 1984). The biological function of EPS production and 

characterisation from benthic algae and cyanobacteria were described in detail by 

Parikh & Madamwar (2006) who suggest that cyanobacterial EPS is composed of a 

network of macromolecules having different biochemical properties, which may 

contribute to extracellular functions (Kawaguchi and Decho 2000). Due to different 

degrees of substitution and different structures of the main chains, EPS producers 

were characterized as strong or weak species in terms of cohesion stabilization, 

nevertheless their EPS were similar both in protein content, in monosaccharides 

composition and linkage types (Hu et al. 2003). However there is still a significant gap 

in the knowledge of engineering capacity of microalgae species and their individual 

contributions to the biostabilisation processes. There is evidence that MPB is highly 

sensitive to changes of environmental conditions and depends from a range of abiotic 

factor, such as salinity, temperature, UV radiations and presence of pollutants (Dejong 

and Admiraal 1984). These changes in environmental conditions may have a direct 

impact on MPB community structure as one species dominates (out competes) 

another or a species disappears/collapse population. In this context, the knowledge 

about the contribution of species to biostabilisation is very important. The first part of 

this study will make a first attempt to resolve the contribution to the adhesion from 

individual species. The adhesive capacity of the two benthic diatom, Navicula hansenii 

(N), Amphora coffeaeformis (A) and Oscillatoria species (O) was examined over two 

week of experimental period by MagPI. These results were related to EPS 

(spectrophotometric determination of carbohydrates and proteins) and diatom 

biomass (spectrophotometric determination of chlorophyll a) described in previous 

chapter (see 4.3.1). A further purpose was to test the hypothesis that higher diversity 

would lead to increased surface adhesion, because most biofilms found in nature 

show a higher biodiversity than laboratory systems and that the conjunction of all 

those species may give some advantages for the biofilm and the system. 

While biostabilisation by microalgae has been researched extensively in the marine 

habitat, the ubiquitous heterotrophic bacteria have largely been ignored, even in 

conceptual models. However, heterotrophic bacteria also secrete copious amounts of 

EPS and may have a significant influence in the stabilization of sediment (Dade et al. 
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1990, Gerbersdorf et al. 2008). Pioneering studies on the entrainment of a clay-water 

suspension by Dade et al. (1996) and on the stability of experimentally derived 

biofilms by Leon-Morales et al. (2007) indicate significant effects of bacterial 

exopolymers on the substratum. In recent works (Gerbersdorf et al. 2008, 

Gerbersdorf et al. 2009) it has been shown that natural benthic bacterial assemblages 

from estuarine areas significantly stabilized test substratum, exceeding by far the 

importance that might be assumed form the dearth of the literature. Despite their 

importance in marine ecosystems, marine bacteria and their interaction with 

microalgae are rarely studied in this context (Ribalet et al. 2007). 

The aim of the second part of this study was to examine the individual engineering 

capability of the main biofilm components (heterotrophic bacterial and autotrophic 

microalgae) in terms of their relative functional contribution to substratum 

stabilisation. It was hypothesized that the coexistence of bacteria and microalgae will 

show synergistic effects on their engineering potential to enhance EPS production and 

stabilize the substratum. For this purpose, stabilisation potential of bacterial 

assemblages (B), axenic autotrophic microalgal/diatom assemblages (D) and mixed 

assemblages of both (BD) growing on non-cohesive glass beads were determined over 

a period of 25 days. The adhesive capacity as well as the cohesive forces, both proxies 

for sediment stability, were monitored regularly by MagPI and CSM, respectively, and 

related to microbial growth: bacterial cell numbers, bacterial dividing rate, microalgal 

biomass and EPS secretion: concentrations/composition of carbohydrates and 

proteins (described in Chapter 4). 

 

5.2. Experimental set-up 

Experiments were performed as described in detail in Chapter 4 (see 4.2.1 and 4.2.2).  

Briefly, for the first experiment of investigation stabilisation capacity of axenic 

microalgae culture (4.2.1) the microalgae culture of Navicula hansenii, Amphora 

coffeaeformis and Oscillatoria species were obtained from monospecific laboratory 

cultures. A layer of 0.5 cm of <63 µm glass beads in total was placed in disposable 

plastic trays (70Lx70Wx25H in mm) and 50 ml of autoclaved seawater were added in 

each box. The control (C) contained only glass beads and autoclaved seawater and 

was treated regularly by the mixture of antibiotics, to prevent bacterial 

contaminations. Five replicates were established for each treatment and the 
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treatment names refer to the first letter(s) of inoculated culture: A for Amphora 

coffeaeformis, N for Navicula hansenii and O for Oscillatoria species. The adhesive 

capacity of the microalgae biofilm was monitored regularly by MagPI (2.13.2), over 

the experimental period of two weeks (measured on days 1, 4, 7, 12, 15). 

The second experiment investigates the engineering effects on a non-cohesive test 

bed as the surface was colonised by natural benthic assemblages (prokaryotic, 

eukaryotic and mixed cultures). The bacteria and microalgae culture were isolated 

from natural sediment (as described 2.2.1 and 2.2.2) and were grown both separately 

and simultaneously on a non-cohesive artificial substratum (Ballotini balls, glass 

beads). A three cm layer (minimum operation depth of the Cohesive Strength Meter, 

CSM) of <63 µm glass beads was placed in Rotilab deep-freezes boxes 

(208Lx208Wx94H in mm) and 2 L of autoclaved seawater were carefully added to 

each box. Six replicates per treatment were established and treatment names refer to 

the first letter(s) of the corresponding culture inoculated: B for bacteria, D for diatoms 

and BD for the mixed culture of bacteria and diatoms. The controls (C) containing only 

glass beads and seawater were regularly treated with a mixture of antibiotics. The 

adhesive capacity and the cohesive forces, both proxies for sediment stability, as 

determined by MagPI (2.13.2) and CSM (2.13.1) respectively, were monitored 

regularly over the experimental period 7 times in 4 weeks. 

 

5.2.1. Statistics 

The data violated assumptions of normality and homogeneity of variance (visual 

assessment of the frequency histogram and normal plot, Kolmogorov-Smirnov and 

Barlett tests), thus differences between treatments were assessed using a non-

parametric Kruskal-Wallis (χ²) test (KW), followed by the non-parametric Student-

Newman-Keuls (SNK) test to correct for multiple comparisons. Additionally, the 

Mann-Whitney test was used occasionally to compare pairs of treatments.  
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5.3. Results 

5.3.1. Investigation stabilisation potential of axenic microalgae culture using 

Navicula hansenii, Amphora coffeaeformis and Oscillatoria species 

The stability of the substratum  

The stability of the sediment surface increased continuously in most treatments up to 

day 12 (Figure 5.1) and decreased from day 12 until the end of the experimental 

period. In contrast, there were no significant changes in sediment adhesion/stability 

for control C sediment, for which the adhesion measurements did not exceed 5 mTesla 

(to increase the contrast between treatments these data are not presented here). The 

increase was more pronounced for treatments O and ANO (Figure 5.1 A, Table 5.1).  

 

Table 5.1: Differences between the minimum (the first of sampling day) and maximum 

values reached, as well as differences between mixed assemblages ANO and the given 

treatments (A, N, O, AN, AO, NO, ANO) both times expressed as quotient/factors for 

MagPI. 

 

Factor Treatment MagPI 

 
Between min and max values 

A 1 
N 0.9 
O 1.2 

AN 1.1 
AO 1.0 
NO 1.1 

ANO 1.2 

Between ANO and single and 
combined  treatments 

A 1.4 
N 1.3 
O 1.2 

AN 1.3 
AO 1.1 
NO 1.2 

 

Statistical testing revealed that the differences between the treatments were 

significant. For example on day 12, stability was significantly different in all 

treatments (KW, χ2=30.37, df= 6, p<0.001). The stability of the biofilm produced by 

ANO was significantly higher than all treatments ((up to 1.4 times, MW test, U=0, 

p<0.001), Figure 5.1, Table5.1). Pair-combined treatment stability was not as high as 
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the ANO treatment stability but higher than that for the single species cultures, for 

instance on day 12, treatment AO was significantly higher than treatment A (Mann-

Whitney (MW) test, U=0, p<0.001) and N (MW test, U=2, p<0.05). Single treatment O 

was significantly higher than treatment A and N (MW test, U=2, p<0.05) (Figure 5.1 A).  

 

 
Figure 5.1: Mean values (n=5 per treatment, ± SE) of MagPI measurements over the 

course of the experiment. (A) The different treatments were single culture: ▲- Amphora; 

◊ -Navicula; ● - Oscillatoria and their mixture: □ - Amphora + Navicula + Oscillatoria. 

(B) Pairs of mixed cultures: ∆ - Amphora + Navicula, ○ - Amphora+ Oscillatoria;♦ - 

Navicula + Oscillatoria and their mixture: □ - Amphora + Navicula + Oscillatoria. 
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At the day 12, adhesion properties of the biofilm in treatments A, N and AN declined 

as compared to the first day of the experiment (Figure 5.2 A). Cumulative stability 

during experimental period was more pronounced for group AN, AO, and ANO (up to 

27 mTesla) followed by NO>A>N>O (Figure 5.2 B). The adhesive capacity of the mixed 

culture biofilm ANO was 5.7 times higher than the control and the single culture was 

4.7 times higher than the control (Figure 5.2 B). 

 

Figure 5.2: Adhesion capacity as measured by MagPI: (A) between the first sampling 

day and day 12th where most of the variables showed their maximum value. (B) 

Cumulative adhesion values (n=25) during 2 weeks of experiment. The treatment name 

(Diatom species) was given according to the first letter of the corresponding culture(s) 

inoculated: A for Amphora, N for Navicula, O for Oscillatoria and their mixture AN for 

Amphora and Navicula, AO for Amphora and Oscillatoria, NO for Navicula and 

Oscillatoria and ANO for Amphora, Navicula and Oscillatoria. 
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Relationship between biological variables (described in Chapter 4) and surface 

adhesion/ stability   

There was a strong positive relationship between adhesion capacity as measured by 

MagPI and chlorophyll a (r=0.508, N=35, p<0.01) and colloidal carbohydrate 

concentration (r=0.492, N=35, p<0.01) (Figure 5.3 A and B respectively), positive but 

not significant correlation was found between sediment stability and colloidal 

proteins concentrations (r=0.145, N=35, p>0.05). 

 

 
 
Figure 5.3: Relationship between adhesion capacity as measured by MagPI (mTesla) 

and biological variables (n=35). MagPI versus chlorophyll a concentrations (A) and 

MagPI versus colloidal carbohydrates concentrations (B). 
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5.3.2. The stabilisation potential of individual and mixed assemblages of natural 

bacteria and microalgae  

The stability of the substratum  

The surface adhesion of the substratum, as determined by MagPI, increased for all 

treatments over time to a maximum value on day 14 (Figure 5.4 A, Table 5.2). 

  

Table 5.2: Differences between the first sampling day 1 and day 14 where most of the 

variables showed their maximum value, as well as differences between the given 

treatments (mixed: BD, Bacteria B, Diatom D); both times expressed as quotient/factors 

for MagPI and CSM. 

Factors  MagPI CSM 

between day 1-14 

B 3.4 4.0 

D 2.6 2.8 

BD 2.9 1.8 

between treatments 

BD/B 1.4 2.6 

BD/D 2.5 4.1 

B/D 1.7 1.3 

 

Cohesion of the substratum as indicated by CSM increased continuously for all 

treatments (Figure 5.4 B, Table 5.2) over the 4 weeks. The control treatments (C) did 

not show any significant changes in adhesion/stability over the 25 d of the 

experiment. There was a significant difference in the means of the treatments for the 

surface adhesion and cohesion (p<0.05) for all dates except at the beginning of 

experiment. The mixed assemblage (BD) showed the highest surface adhesion of the 

sediment followed by the bacterial culture (B) and finally, the diatom biofilms (D). The 

CSM measurements confirmed the MagPI results with significantly higher sediment 

surface stability in treatment BD followed by B and D (for example, day 24: KW, 

χ2=10.2, df=3, p<0.05, followed by a post hoc SNK test).  
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Figure 5.4: Mean values of sediment stability over the course of the experiment: A by 

MagPI (n=6, ±SE) and B by CSM (n=6, ±SE). The different treatments were bacteria and 

diatoms (BD, ▲), diatoms (D, ♦), bacteria (B, □) and controls (C, ●).  

 

There was a strong linear relationship between CSM (erosion threshold) and MagPI 

(surface adhesion) (Pearson correlation coefficient: r=0.785, n=20, p<0.001, Figure 

5.5). 
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Figure 5.5: The linear relationship between MagPI (mTesla) versus CSM (Nm-2). 

 
In order to visualize possible additive/synergistic effects of bacteria-diatom 

assemblages for sediment stability, their absolute value of adhesion was compared to 

the values for the pure bacterial and diatom cultures ([BD]-[B+D], Figure 5.6 A and B). 

There was a stronger case for interference in the mixed assemblage since the results 

were much lower than would be expected from the additive effects of the two cultures 

B and D, as was particularly evident for surface adhesion as determined by MagPI 

(Figure 5.6 A and B).  
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Figure 5.6: The relative assessment between treatments for sediment stability as 

measured by MagPI (A) and CSM (B). Substratum stability by the mixed BD treatment 

relative to the stability of the single B and D treatments is given for MagPI (A) and CSM 

(B). Where the stability created by the mixed culture (BD) exceeds that of the added 

single cultures (B and D), the value is positive (synergistic effect) and vice versa 

(inhibitory effect). If the added values of the single cultures equals the mixed cultures 

then the effect measured is additive. 
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Relationship between biological variables and surface adhesion/ stability 

The data of sediment stability measurement (MagPI and CSM) was addressed to 

biological variables (see 4.3.2 Chapter 4): chlorophyll a concentration, bacterial cell 

number and EPS concentrations. There was a strong positive relationship between 

sediment stability measurements and chlorophyll a concentrations (MagPI: r=0.395, 

p<0.001; CSM: r=0.501, p<0.001). Similarly, colloidal carbohydrate concentrations 

were highly significantly correlated with MagPI and CSM measurements for all 

treatments (Figure 5.7 A and C, Table 5.3). The same applied for the relationship of 

colloidal protein concentrations to adhesion (MagPI) and cohesion (CSM) of the 

surface for B and BD, while for D the relationships were not significant (Figure 5.7 B 

and D, Table 5.3).   

 

Table 5.3: Pearson’s correlation coefficients between surface adhesion (MagPI) and 

substratum stability (CSM) and colloidal carbohydrates and proteins per treatment. The 

significance levels are the following: *** p < 0.001. ** p< 0.01. * p < 0.05.  

 

Treatments Techniques  Carbohydrates Proteins 

Diatom 
MagPI 0.882 17 *** -0.189 21  

CSM 0.869 11 *** 0.321 15  

Bacteria 
MagPI 0.861 15 *** 0.770 14 ** 

CSM 0.753 9 * 0.902 10 *** 

Bacteria + Diatom 
MagPI 0.706 15 ** 0.741 15 ** 

CSM 0.617 12 * 0.494 12 * 
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Figure 5.7: Relationships between sediment stability (MagPI, CSM) and EPS 

components. A-B. The relationships between surface adhesion (MagPI) and colloidal 

carbohydrate and protein concentrations. C-D. The relationships between substratum 

stability (CSM) and colloidal carbohydrates and proteins concentrations. 

 

5.4. Discussion 

Biostabilisation potential of axenic microalgae cultures 

How does the level of biodiversity affect adhesive capacity? Numerous studies 

attempted to use microbial biomass as an indicator of sediment stability and linked 

sediment stability to EPS (e.g. Riethmueller et al. 2000, Defew et al. 2002, Le Hir et al. 

2007). By the end of the experiment, higher adhesive capacity, microbial biomass and 

EPS carbohydrate concentrations were observed in treatments ANO and AN. The 

rapid decrease of biomass in treatment AN, on day 12 was mirrored by decrease of 

sediment stability. To compare with these treatments, AO shows significantly lower 
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biomass, however similar or higher EPS carbohydrates and protein concentration. As 

a result, where a lack of biomass is compensated by the quality of EPS, a similar 

adhesive capacity of the biofilm was determined. There is evidence that sediment 

stability cannot to be linked only to microbial biomass and highlighted synergistic 

effect in interaction of EPS carbohydrates and proteins, which might strengthen their 

binding forces (Costerton et al. 1978, Pennisi 2002). However it may also be due to a 

different origin of EPS produced by diatom species or cyanobacteria. For instance, in 

comparison to the single species treatments, higher biomass and EPS concentrations 

were observed in treatment A to compare with treatment O. However in terms of 

stabilization treatment O was significantly higher than two single diatom treatments A 

and N during the second week of the experiment. Higher adhesive capacity exhibited 

by cyanobacteria biofilms compared to diatom biofilms may be explained by 

differences of colonisation strategy. The majority of diatoms form biofilms around 

single grains rather than the filamentous EPS network formed by cyanobacteria 

(Watermann et al. 1999). The filamentous nature of the cyanobacteria itself may 

therefore result in different properties of the EPS, thus may have a different impact on 

sediment stability. Determination of which composition of the carbohydrates exuded 

from Oscillatoria or from the diatoms species require high-resolution chemical 

analyses of the EPS composition in different species and mixed species treatments. 

Despite low biomass and EPS concentration the stability in treatment N was 

significantly higher than O at the first week of the experiment. This is probably 

explained by the fact that the Oscillatoria preferred to grow below the uppermost 

surface-layer and at the first week of the experiment when the Oscillatoria film had 

grown denser it gave a large quantity of exudates influencing the surface and thereby 

increasing surface adhesion. 

 

This experiment was targeted to examine the adhesive capacity of the biofilms with 

different levels of biodiversity. The strength of adhesive properties of the biofilm may 

vary between the species, due to their different colonisation strategies or various in 

EPS origin. The ratio and content of polysaccharides, proteins, viscosities, molecular 

weight and other physical-chemical parameters may also be related to this property. 

Further this study need to be extended by investigation influence of abiotic factor (e.g. 
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temperature, salinity, nutrient level, type of sediment) on co-occurrence of the species 

and their stabilisation potential.  

This is an area where more knowledge can be produced using high-resolution 

techniques, both physical and chemical. The importance of knowledge of the 

interspecies relationships in ecosystem services like particle adhesion will be useful in 

determining effects of disturbances to the systems that changes the biodiversity and 

relationships between the conjunctive organisms. 

 
Substratum stabilisation by heterotrophic bacteria and autotrophic microalgae from 

estuarine sediments.  

This study has shown impressive bio-stabilisation of non-cohesive material by 

microbial assemblages, as determined by Magnetic Particle Induction (MagPI) and the 

Cohesive Strength Meter (CSM). These devices determine slightly different surface 

properties of the test bed. With MagPI, an increase in adhesion (a proxy for particle 

capture potential and interface stability) was determined from day 1 and this 

increased with time in all microbial assemblages. MagPI does not require the erosion 

of the surface and therefore is a non-destructive, repeatable, sub-critical stress 

measurement with a high sensitivity that has been shown suitable for measuring the 

surface properties of young, developing biofilms. The CSM is a well-established device 

to measure erosion resistance; it requires bed failure and can operate over a range of 

values beyond that of most linear flumes. It does require a surface that has some 

initial resistance to erosion or the lightest jet pulse causes a 10% reduction in 

transmission, and therefore it is not as sensitive as MagPI for highly unconsolidated 

systems. However, these devices were found to complement each other, increasing 

the range of measurements that could be made and showed a strong correlation in the 

overlapping range of the data (R2=0.62, p<0.001).  

 

The individual and combined engineering capability of microbial assemblages.  

The comparison of pure bacterial, axenic microalgal and mixed (bacteria+microalgae) 

assemblages was designed to provide insights into the individual and combined 

functional capacity of the heterotrophic and autotrophic biofilm components in terms 

of substratum properties. While this is a limited suite of measurements, they 

demonstrate the functional development of these assemblages in a new light. 
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Bacterial assemblages stabilised the substratum significantly more than axenic 

microalgal assemblages (x2). This work supported the early findings (Gerbersdorf et 

al. 2009) but is in contrast to most of the literature (Yallop et al. 2000, Lundkvist et al. 

2007) where the contribution of bacteria to sediment stabilization is usually regarded 

as less significant or even negligible as compared with diatom assemblages.  

Due to the well-known bacterial-algal interactions, it was first hypothesized that the 

grouping of bacteria and diatoms in the mixed assemblages might result in mutual 

advantages which might affect EPS secretion and stabilization positively. The first of 

these concepts is supported by the data (described in Chapter 4) in terms of EPS 

carbohydrate production but not for EPS protein production. However, the synergism 

in EPS carbohydrate was not reflected in surface stability by either method of 

determination (MagPI, CSM). Indeed, in comparison to the controls, the adhesion 

capacity and the cohesion forces of the substratum were significantly highest in the 

natural assemblage with a factor up to 7.5 and 9.5, as determined by MagPI and CSM, 

respectively. However, the differences to the pure cultures were less than expected: 

an increase of a factor of 6 and 8 for bacteria and a factor of 5 and 6 for diatoms, by 

MagPI and CSM, respectively. This may be because the shape of the relationship 

between EPS concentration and surface stability is not linear and should reach an 

asymptote as EPS increases. This makes logical sense since by adding more EPS the 

strength of the surface cannot increase beyond the fundamental binding capacity of 

the polymer. The improved binding by the mixed culture may reflect the contribution 

of different types of EPS with varied properties and the nature of the micro-spatial 

arrangement of the EPS deposited by bacteria (largely attachment to grains) and 

diatoms (for locomotion) (Figure 5.5).  

 

The EPS Matrix – key to substratum stabilisation?  

The common suggestion, that diatoms secrete mainly polysaccharide EPS (e.g. Decho 

2000, Flemming and Wingender 2001), was supported by our results of significantly 

higher carbohydrate concentrations in the axenic microalgal assemblage as opposed 

to the bacterial biofilm. Despite this the stabilization effect of the bacterial assemblage 

was significantly higher than for the microalgal biofilms, although the EPS protein 

concentrations were quite similar. This strongly suggests that EPS quantity per se 

cannot be predictive of substratum stabilisation. The ecological function of the 
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microbial EPS secretion has to be considered: for instance, bacteria attach firmly to a 

substratum with the help of EPS while diatoms secrete EPS for locomotion (Edgar and 

Pickett-Heaps 1983). Thus, it seems logical to suggest that the EPS secreted by 

bacteria and diatoms must differ in their characteristics and mechanical properties. 

This variation in properties might explain the unexpectedly greater stabilisation 

capability of bacterial cultures as compared to the axenic diatom cultures. These 

findings also support earlier work that suggests proteins play a more significant role 

in substratum adhesion/cohesion than previously thought (Gerbersdorf et al. 2008, 

Gerbersdorf et al. 2009). Hydrophobicity, surface charges (Zeta potential) and the free 

energy of microbial cell surroundings/EPS are crucial factors controlling the “first 

kiss”, the initial attachment of a microbe to a surface (e.g. Fang et al. 2000). Proteins 

play a significant role in this first adhesion (Czaczyk and Myszka 2007, Jain et al. 

2007), but also contribute towards the binding strength within the developing EPS 

matrix. This has been demonstrated for marine aggregates, where the incorporation 

of free protein particles significantly increased stability (Long and Azam 1996). If EPS 

proteins interact with carbohydrates, they can form a resilient matrix similar to an 

epoxy resin (Pennisi 2002). The degree of bonding also depends on the lengths of the 

polymers involved and the degree to which they branch (Pennisi 2002, Wotton 2004). 

In addition, the characteristics of one particular EPS component, carbohydrates or 

proteins, most likely differs between the heterotrophic and autotrophic producers. 

The greatest functional effect, in terms of substratum stabilization, in natural 

assemblages coincided with significantly higher quantities of microbial produced 

colloidal carbohydrates and proteins.  

The alteration of the EPS concentrations in the mixed assemblage as opposed to the 

single cultures of bacteria and microalgae were even of additive (proteins), if not 

synergistic (carbohydrates) nature. However, this did not translate into equivalent 

adhesion and cohesion capacity, since these proxies for stability did not indicate any 

additive or synergistic effects in the binding strength of the mixed assemblage. 

Altogether, the data points to the importance of EPS composition and the interactions 

of single EPS components that, along with higher EPS concentrations, established the 

highest substratum stabilization in the natural biofilm.  

Although the initial hypothesis of synergistic effects in a combined prokaryotic and 

eukaryotic biofilm community in terms of stability was not supported, the functional 
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capacity for adhesion and cohesion by the liaison between bacteria and microalgae 

was impressive. This biostabilisation is an important “ecosystem service” since it 

affects processes beyond the biofilm such as nutrient fluxes, pollutant retention and 

sediment erosion/transport. 
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Abstract	  

The	   importance	   of	   bacteria	   on	   biostabilisation	   processes	   through	   the	   secretion	   of	  

organic	   glue	   (EPS:	   extracellular	   polymeric	   substances)	   has	   been	   previously	  

recognized	  (Gerbersdorf	  et	  al.	  2008).	  However,	  investigation	  of	  bacterial	  engineering	  

capacity	  under	   stress,	   such	  as	  presence	  of	   contaminants	  has	  never	  been	  performed.	  

This	   study	   investigates	   the	   stabilisation	   potential	   of	   natural	   benthic	   bacterial	  

assemblages	  from	  the	  Eden	  Estuary	  (Scotland,	  UK)	  on	  non-‐cohesive	  glass	  beads	  over	  

17	  days	  in	  the	  presence	  of	  a	  toxin.	  The	  toxin	  employed	  was	  triclosan	  (TCS)	  which	  is	  a	  

potent	  biocide	  that	  is	  included	  in	  a	  diverse	  range	  of	  products.	  

A	   range	  of	   triclosan	   (TCS)	   concentrations,	   relevant	   to	  environmental	  occurrence	   (2-‐

100	  μg	   l-‐1)	  was	  used.	  The	  adhesive	  capacity	  of	   the	  biofilm	  produced	  by	  bacteria	  was	  

determined	   by	   MagPI	   (Magnetic	   Particle	   Induction).	   This	   technique	   has	   been	  

successfully	   used	   in	   a	   number	   of	   experiments	   and	   shows	   high	   sensitivity	   in	  

determination	  of	  the	  response	  of	  complex	  communities	  to	  a	  range	  of	  stresses	  (such	  as	  

nutrient–depleted	   condition)	   and	   the	   associated	   changes	   in	   sediment	   properties	   of	  

the	  biofilm.	  The	  stabilisation	  potential	  of	  bacteria	   (treatment	  CB)	  was	  up	   to	  2	   times	  

higher	   than	   treatments	   of	   bacteria	   with	   triclosan.	   Substratum	   stability	   was	   closely	  
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related	   to	   bacterial	   cell	   number	   (R2=0.47)	   and	   EPS	   carbohydrates	   concentrations	  

(R2=0.53)	   but	   less	   strongly	   related	   to	   bacterial	   dividing	   rate	   (R2=0.13)	   and	   EPS	  

protein	  concentrations	  (R2=0.17).	  TCS	  exposure	  reduced	  microbial	  biomass	  and	  EPS	  

production	  and	  as	  result	  had	  a	  negative	  effect	  on	  bacteria	  stabilisation.	  This	  negative	  

effect	  was	  more	  pronounced	  with	  increasing	  concentration	  of	  TCS.	  The	  data	  presented	  

in	   this	   chapter	   significantly	   contributes	   to	   the	   investigation	   of	   “ecosystem	  

functioning”	  and	  biostabilisation	  processes	  under	  natural	  conditions.	  This	  work	  is	  the	  

first	  investigation	  of	  microbial	  stabilisation	  potential	  under	  the	  stress	  of	  a	  xenobiotic	  

toxin.	  	  

	  

6.1. Introduction	  

Triclosan–a	  recent	  chemical	  introduction	  to	  aquatic	  habitats.	  Triclosan(TCS)	  (5-‐chloro-‐

2-‐(2,4-‐dichlorophenoxy)phenol)	   is	   a	   broad-‐spectrum	   antibacterial	   and	   antifungal	  

compound	   that	   has	   been	   widely	   used	   in	   pharm	   personal	   care	   products	   (PPCPs),	  

textiles,	   cleaning	   supplies,	   toys	   and	   computer	   equipment	   since	   1972	   (Singer	   et	   al.	  

2002).	  About	  96%	  of	  triclosan	  (TCS)	  originating	  from	  consumer	  products	  is	  disposed	  

of	   through	   residential	   drains	   (Adolfsson-‐Erici	   et	   al.	   2002),	   leading	   to	   considerable	  

loads	   of	   the	   chemical	   in	   waters	   entering	   waste-‐water	   treatment	   plants	   (WWTP).	  

While	  biological	  sewage	  treatment	  was	  regarded	  as	  an	  effective	  barrier	  for	  TCS	  due	  to	  

removal	   efficiencies	   of	   98%	   in	   the	   aqueous	  phase,	  Heidler	  &	  Halden	   (2007)	  proved	  

that	   the	   particle-‐associated	   TCS	   was	   sequestered	   into	   waste-‐water	   residuals	   and	  

accumulated	  in	  the	  sludge	  with	  less	  than	  half	  of	  the	  total	  mass	  being	  biotransformed	  

or	   lost.	   Consequently,	   substantial	   quantities	   of	   the	   chemical	   can	   be	   transferred	   into	  

soils	   and	   groundwater	   by	   sludge	   recycling	   (Heidler	   and	   Halden	   2007)	   or	   directly	  

enters	  rivers	  with	  estimated	  concentrations	  between	  11-‐98	  ng	  l-‐1	  (Singer	  et	  al.	  2002)	  

and	  with	   one	   report	   of	   up	   to	   2.7	   µg	   l-‐1	   (Chalew	   and	   Halden	   2009).	   In	   the	   aqueous	  

phase,	   the	  transformation	  of	  TCS	   into	  a	  variety	  of	  polychlorinated	  dibenzo-‐p-‐dioxins	  

under	  the	  exposure	  of	  sunlight	  and	  especially	  at	  high	  pH	  values	  becomes	  problematic	  

(Mezcua	  et	  al.	  2004);	  and	  the	  last	  twenty	  years	  has	  seen	  a	  rapid	  increase	  in	  the	  use	  of	  

triclosan-‐containing	   products	   (Schweizer	   2001).	   Water	   testing	   studies	   by	   the	   U.S.	  

Geological	   Survey	   have	   found	   that	   triclosan	   is	   among	   the	   top	   10	   persistent	  

contaminants	   in	   US	   rivers,	   streams,	   lakes,	   and	   underground	   aquifers	   (Kolpin	   et	   al.	  
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2002,	   Halden	   and	   Paull	   2005).	   McAvoy	   et	   al.	   (2002)	   suggests	   that	   TCS	   is	   readily	  

biodegradable	  under	  aerobic	  conditions,	  but	  not	  under	  anaerobic	  conditions	  therefore	  

accumulation	  in	  sediments	  even	  more	  likely	  than	  in	  the	  water	  column.	  	  

The	   environmental	   occurrence	   of	   TCS	   is	   of	   interest	   to	   environmental	   scientists	   and	  

the	   results	   of	   determination	   of	   TCS	   in	   water	   samples	   and	   sediment	   have	   been	  

reported	   in	   numerous	   studies	   (Okumura	   and	   Nishikawa	   1996,	   Kolpin	   et	   al.	   2002,	  

Lindstrom	  et	  al.	  2002,	  McAvoy	  et	  al.	  2002,	  Singer	  et	  al.	  2002)	  and	  further	  summarized	  

by	  Chalew	  and	  Halden	  (2009).	  Due	  to	  a	  photodegradation	  it	  was	  suggested	  a	  seasonal	  

dependence	  of	  the	  TCS	  concentration	  (lower	  in	  summer,	  higher	  in	  winter)	  (Lindstrom	  

et	  al.	  2002,	  Singer	  et	  al.	  2002).	  Analytical	  data	  from	  environmental	  samples	  in	  several	  

countries	  demonstrate	  different	  range	  of	  concentrations	  for	  rivers,	  lakes	  and	  streams.	  

For	   instance,	   McAvoy	   et	   al.	   (2002)	   reported	   that	   TCS	   concentration	   in	   wastewater	  

ranged	  from	  3.8	  to	  16.6	  µg	  l-‐1	  ,	  however	  Aguera	  et	  al.	  (2003)	  presented	  concentrations	  

of	  37.8	  µg	  l-‐1	  of	  TCS	  in	  samples	  coming	  from	  urban	  wastewater	  treatment	  plants.	  Some	  

studies	  report	  concentrations	  in	  sediment	  samples	  situated	  in	  the	  range	  0.27	  to	  130.7	  

μg	  kg	   -‐1	  (Aguera	  et	  al.	  2003),	  and	  the	  highest	  concentrations	  have	  been	  found	  under	  

anaerobic	  conditions	  (McAvoy	  et	  al.	  2002).	  These	   findings	  varied	  between	  countries	  

and	  sampling	  sites	  (Okumura	  and	  Nishikawa	  1996).	  

	  

Effects	   of	   triclosan	   on	   bacteria.	   TCS	   is	   a	   broad-‐spectrum	   antimicrobial	   agent,	   which	  

may	   have	   two	   major	   actions:	   stopping	   microbial	   reproduction	   or	   killing	  

microorganism,	   which	   have	   been	   well	   investigated	   for	   bacteria	   in	   the	   laboratory.	  

Thus,	  it	  has	  been	  shown	  that	  perturbation	  of	  bacterial	  membranes	  and	  functions	  were	  

a	  consequence	  of	  the	  specific	  inhibition	  of	  fatty	  acid	  biosynthesis	  by	  triclosan	  (Heath	  

et	  al.	  1999).	  TCS	  specifically	  inhibits	  the	  enzyme	  enoyl-‐acyl	  carrier	  protein	  reductase	  

(ENR)	  by	  mimicking	  its	  natural	  substrate,	  thus	  blocking	  the	  final,	  regulatory	  FabI	  step	  

in	   the	   fatty-‐acid	   synthesis	   cycle	   (Levy	   et	   al.	   1999).	   Consequently,	   bacterial	   cells	   can	  

become	   resistant	   to	   TCS	   as	   has	   been	   shown	   for	   several	   strains	   of	   Escherichia	   coli	  

(McMurry	   et	   al.	   1998,	   Escalada	   et	   al.	   2005a).	   Schweizer	   (2001)	   reported	   that	   some	  

bacterial	  strains	  (such	  as	  gram-‐negative	  bacteria)	  use	  a	  multiple	  triclosan	  resistance	  

mechanism,	  including	  active	  efflux	  from	  cells	  where	  bacteria	  pump	  TCS	  actively	  out	  of	  

their	   cell.	   Although	   it	   has	   been	   discussed	   whether	   the	   inhibition	   of	   the	   metabolic	  

pathway	  via	  ENR	  can	  solely	  explain	  the	  complex	  mode	  of	  action	  and	  lethality	  of	  TCS	  
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for	  bacteria	  (Escalada	  et	  al.	  2005a),	  other	   impairments	  of	  bacterial	   functions	  by	  TCS	  

have	  not	  yet	  been	  investigated.	  	  

	  

The	   effects	   of	   TCS	   on	   bacteria	   may	   vary	   according	   to	   the	   concentration	   of	   the	  

chemical,	  the	  exposure	  time,	  its	  bioavailability,	  the	  physiology	  of	  the	  target	  organisms	  

and	  the	  targeted	  species.	  For	  instance,	  Russell	  (2004)	  reported	  that	  TCS	  affects	  many,	  

but	  not	  all	  types	  of	  Gram-‐positive	  and	  Gram-‐negative	  bacteria.	  Inactive	  bacteria	  seem	  

to	  be	  more	  resilient	  to	  the	  lethal	  effects	  of	  TCS	  possible	  due	  to	  a	  reduced	  metabolism	  

and	  an	  enhanced	  physical	  barrier	  against	  TCS	  caused	  by	  debris	  and	  dead	  cells	  in	  the	  

stationary	  growth	  phase	  (Escalada	  et	  al.	  2005b).	  Recent	  research	  (Suller	  and	  Russell	  

1999,	  2000,	  Escalada	  et	  al.	  2005b)	  showed	  that	  at	  low	  concentrations	  (0.02–0.5	  µg	  ml-‐

1)	  TCS	  appears	  bacteriostatic	  and	  affected	  the	  growth	  of	  several	  bacteria,	  while	  higher	  

TCS	  concentrations	  (10	  mg	  l-‐1	  and	  above)	  were	  bactericidal	  regardless	  of	  the	  growth	  

phase	  (Escalada	  et	  al.	  2005b).	  At	  higher	  concentrations,	  TCS	  seems	  to	  act	  rapidly	  and	  

with	   damaging	   effects	   on	   multiple	   cytoplasmic	   and	  membrane	   targets,	   resulting	   in	  

leakage	  of	   intracellular	  material	   (Villalain	  et	  al.	  2001).	  However,	   in	  natural	   samples,	  

lethal	   effects	  of	  TCS	  were	  observed	  at	  much	   lower	   concentrations	  of	   environmental	  

relevance,	   by	   using	   the	   bioluminescence	   assay	   of	   Vibrio	   fisheri.	   For	   instance,	  

DeLorenzo	  et	  al.	  (2008)	  reported	  an	  EC50	  of	  53	  µg	  l-‐1	  for	  estuarine	  samples	  and	  Farré	  

et	   al.	   (2008)	   determined	   an	   EC50	   of	   280	   µg	   l-‐1	   in	   waste-‐waters	   while	   Ricart	   et	   al.	  

(2010)	  observed	  mortality	  within	  a	  river	  biofilm	  at	  0.21	  µg	   l-‐1	  TCS.	  The	  same	  is	  true	  

for	   acute	   toxic	   effects	   of	   TCS	   exposure	   on	   co-‐occurring	   non-‐target	   components,	  

especially	  for	  microalgae	  (Wilson	  et	  al.	  2003,	  Lawrence	  et	  al.	  2009,	  Ricart	  et	  al.	  2010)	  

and	   for	   higher	   organisms	   (e.	   g.	   shrimps,	   Orvos	   et	   al.	   2002).	   This	   indicates	   that	   the	  

relatively	  low	  TCS	  concentrations	  currently	  measured	  in	  the	  aquatic	  habitats	  can	  have	  

a	  profound	  effect	  on	  the	  inhabiting	  organisms.	  

	  

Does	  TCS	  impair	  ecosystem	  services	  of	  bacterial	  biofilms?	  

Microbial	  consortia	  are	  important	  contributors	  towards	  the	  functional	  capabilities	  of	  

natural	  benthic	  ecosystems.	  Microbial	  biofilms	  represent	  the	  dominant	  microbial	  life	  

forms	   in	   many	   aquatic	   systems	   and	   drive	   a	   number	   of	   important	   “ecosystem	  

functions”	  (Cyr	  and	  Morton	  2006).	  Possible	  effects	  of	  TCS	  on	  microbial	  biofilm	  were	  

addressed	   only	   in	   terms	   of	   biomass	   and	   EPS	   production.	   Therefore	   there	   are	   still	  
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significant	   gaps	   in	   our	   knowledge	   concerning	   the	   possible	   effect	   of	   TCS	   on	   their	  

“ecosystem	  functionality”.	  Research	  has	  shown	  that	  the	  presence	  of	  TCS	  may	  influence	  

both	  the	  structure	  and	  the	  function	  of	  microbial	  communities	  (Lawrence	  et	  al.	  2009).	  

These	  changes	  could	  result	  in	  shifts	  in	  evolutionary	  and	  ecological	  processes	  such	  as	  

gene	  flow,	  in	  nutrient	  processing	  capacity	  and	  the	  natural	  food	  web	  structure	  (Wilson	  

et	   al.	   2003).	   One	   interesting	   ecosystem	   service	   is	   biostabilisation	   where	   the	  

microorganisms	   modify	   the	   response	   of	   aquatic	   sediments	   to	   erosive	   forces	   (flow	  

velocity,	   turbulence).	  Microbial	   communities	   release	   organic	   compounds	   associated	  

with	   the	   binding	   of	   particles	   and	   the	   retention	   of	   pollutants	   (Bellin	   and	   Rao	   1993,	  

Wolfaardt	  et	  al.	  1998).	  The	  importance	  of	  bacteria	  as	  ecosystem	  engineers	  with	  broad	  

range	   of	   effect	   (Jones	   et	   al.	   1994)	   including	   biostabilisation	   has	   been	   confirmed	  

(Gerbersdorf	   et	   al.	   2008,	   Gerbersdorf	   et	   al.	   2009)	   and	   enhanced	   by	   recent	   work	  

(Lubarsky	  et	  al.	  2010)	  demonstrating	  that	  natural	  benthic	  bacterial	  assemblages	  from	  

estuarine	   areas	   can	   significantly	   stabilised	   test	   substrata.	   Due	   to	   the	   importance	   of	  

bacteria	   in	   the	   biostabilisation	   processes,	   the	   investigation	   of	   the	   possible	   effect	   of	  

TCS	  on	  bacterial	  stabilisation	  capacity	  is	  required.	  It	  was	  hypothesized	  that	  TCS	  may	  

have	   a	   negative	   effect	   on	   bacterial	   population,	   EPS	   secretion	   and	   hence	   bacterial	  

stabilisation	  potential.	  

	  

The	  present	   study	   investigated	   for	   the	   first	   time	   the	   effects	   of	  TCS	   exposure	  on	   the	  

stabilization	  potential	  of	  natural	  bacterial	  biofilms	  using	  different	  TCS	  concentrations	  

(ranging	  from	  2–100	  μg	  l-‐1).	  Over	  the	  course	  of	  2	  weeks,	  the	  adhesive	  capacity,	  a	  proxy	  

for	  sediment	  stability,	  was	  determined	  with	  a	  newly	  developed	  device,	  as	  described	  in	  

Chapter	   3	   (MagPI,	   Larson	   et	   al.	   2009).	   In	   parallel,	   bacterial	   cell	   numbers,	   division	  

rates,	   species	   composition	   and	   EPS	   (proteins,	   carbohydrates)	   secretion	   were	  

monitored	   and	   related	   to	   the	   adhesive	   capacity.	   Knowledge	   of	   the	   biostabilisation	  

capacity	  of	  biofilms	  and	   its	   impairment	  by	  pollutant	  exposure	   is	  of	  high	  significance	  

for	  sediment	  management	  strategies	  in	  waterways	  and	  coastal	  regions.	  

	  

6.2. Experimental	  set-‐up	  and	  triclosan	  spiking	  

Since	   triclosan	   (TCS)	   is	   highly	   absorptive,	   the	   use	   of	   plastic	   or	   Perspex	   had	   to	   be	  

avoided.	  Thus,	  glass	  boxes	  were	  used	  (in	  mm	  105Lx105Wx55H)	  in	  which	  a	  1	  cm	  layer	  
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of	   <63	  μm	  glass	   beads	  was	   added	   as	   a	   non-‐cohesive	   substratum	   for	   biofilm	  growth	  

(Figure	   6.1).	   The	   boxes	   were	   gently	   filled	   with	   300	   ml	   of	   autoclaved	   seawater	  

(controls)	  that	  had	  been	  spiked	  with	  defined	  TCS	  concentrations	  (treatments).	  For	  the	  

latter,	   the	   stock	   solution	   of	   TCS	   was	   prepared	   by	   dissolving	   the	   commercially	  

available	  powder	   (Irgasan,	  Sigma-‐Aldrich	  C.N	  72779)	   in	  seawater	  with	   the	  help	  of	  a	  

magnetic	  stirrer	  (STUART	  GB)	  for	  4	  h.	  The	  stock	  solution	  was	  diluted	  with	  seawater	  to	  

gain	  the	  defined	  concentrations	  of	  2	  μg	  l-‐1,	  10	  μg	  l-‐1,	  20	  μg	  l-‐1,	  50	  μg	  l-‐1,	  and	  100	  μg	  l-‐1	  of	  

triclosan.	   TCS	   is	   a	   highly	   photodegradable	   compound.	   Taking	   into	   account	   this	   fact,	  

the	   experiment	  has	  been	  performed	   in	  dark	   condition	   to	   eliminate	  degradation	  and	  

maintain	  required	  concentration.	  However,	  due	  to	  water	  evaporation,	  it	  was	  predicted	  

accumulation	   of	   TCS	   on	   water	   column	   and	   sediment	   and,	   as	   a	   result,	   the	   actual	  

concentrations	  of	  TCS	  may	  be	  different	  from	  the	  targeted	  concentration.	  	  

The	   bacterial	   culture	   was	   isolated	   from	   natural	   sediment	   (as	   described	   2.2.1).	   The	  

glass	   boxes	  were	   further	   inoculated	   by	   10	  ml	   of	   bacterial	   stock	   solution	   to	   initiate	  

biofilm	  growth,	  with	  the	  exception	  of	  the	  negative	  controls.	  

The	  following	  treatments	  were	  established	  with	  four	  replicates	  each:	  

1. bacterial	  culture	  +	  2	  μg	  l-‐1	  of	  triclosan	  (T1)	  	  

2. bacterial	  culture	  +	  10	  μg	  l-‐1	  of	  triclosan	  (T2)	  

3. bacterial	  culture	  +	  20	  μg	  l-‐1	  of	  triclosan	  (T3)	  

4. bacterial	  culture	  +	  50	  μg	  l-‐1	  of	  triclosan	  (T4)	  

5. bacterial	  culture	  +	  100	  μg	  l-‐1	  of	  triclosan	  (T5)	  

6. negative	  control	  (CT):	  no	  triclosan,	  no	  bacterial	  culture	  	  

7. positive	  control	  (CB):	  no	  triclosan,	  plus	  bacterial	  culture	  	  

	  

The	  negative	  control	  (CT)	  containing	  only	  glass	  beads	  and	  seawater	  and	  was	  treated	  

once	   a	   week	   with	   a	   mixture	   of	   antibiotics	   (150	   μg	   l-‐1	   streptomycin	   and	   20	   μg	   l-‐1	  

chloramphenicol,	   final	   concentrations)	   to	   prevent	   bacterial	   colonisation.	   All	  

treatments	  were	  gently	  aerated	  and	  kept	  at	  constant	  temperature	  (15°C)	  in	  the	  dark,	  

over	  the	  experimental	  period	  of	  2	  week.	  	  
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Figure	  6.1:	  Experimental	  setup.	  

Sampling	  strategy	  

Sampling	  took	  place	  every	  second	  day	  during	  the	  experiment.	  For	  each	  replicate	  (n=4)	  

of	  the	  treatments	  and	  the	  controls,	  4	  cores	  (2	  mm	  depth)	  were	  removed	  using	  a	  cut-‐

off	  syringe	  10	  mm	  diameter	  (see	  2.3.1).	  The	  cores	  were	  immediately	  processed	  for	  the	  

determination	   of	   bacterial	   cell	   numbers	   (described	   in	   2.7)	   and	   division	   rates	  

(described	   in	   2.8)	   or	   frozen	   at	   -‐80°C	   for	   further	   analysis	   of	   extracellular	   polymeric	  

substances	   (EPS)(described	   in	   2.4)	   and	   DNA	   extractions	   for	   bacterial	   community	  

analysis	  (described	  in	  2.9.1).	  To	  monitor	  triclosan	  concentrations	  over	  time,	  samples	  

of	   water	   and	   substratum	   (additional	   cores	   of	   5	   mm	   depth)	   were	   taken	   at	   the	  

beginning	   (sampling	   day	   1),	   in	   the	   middle	   (sampling	   day	   4)	   and	   at	   the	   end	   of	   the	  

experiment	   (sampling	  day	  7)	   from	  each	  box.	  The,	  4	  substratum	  cores	  per	   treatment	  

were	  pooled	  within	  a	  15	  ml	  Apex	  centrifuge	  tube	  to	  account	  for	  spatial	  heterogeneity	  

and	  stored	  for	  future	  analysis	  at	  -‐80°C	  (as	  described	  in	  2.11.1).	  The	  adhesive	  capacity	  

as	  proxy	  for	  sediment	  stability,	  of	  the	  bacterial	  biofilm,	  was	  monitored	  every	  second	  

day	  by	  MagPI	  (2.13.2),	  over	  the	  experimental	  period	  of	  two	  week.	  
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6.2.1. Statistics	  

The	   data	   did	   not	   pass	   Kolmogorov-‐Smirnov	   normality	   test	   and	   Bartlett	   test	   for	  

homogeneity	  of	  variance.	  Thus	  differences	  between	  treatments	  were	  addressed	  using	  

a	   non-‐parametric	   PERMANOVA	   (999	   permutations)	   test	   followed	   by	   the	   non-‐

parametric	   post-‐hoc	   Student-‐Newman-‐Keuls	   (SNK)	   test	   to	   compare	   pairs	   of	  

treatments.	  

All	  the	  measured	  variables	  were	  analysed	  by	  Principal	  Component	  Analysis	  (PCA)	  

with	  R©2.9.0	  using	   the	  dudi.pca	   function	  of	   the	   “ade4”	  package.	  Briefly,	  Eigen	  value	  

decomposition	   of	   a	   data	   covariance	   matrix	   was	   performed	   from	   a	   data	   frame	  

containing	   the	   variables	   colloidal	   EPS	   (proteins	   and	   carbohydrates),	   bacterial	   cell	  

numbers,	   substratum	   adhesion	   (MagPI)	   and	   bacterial	   division	   rates	   as	   well	   as	   the	  

objects	  treatments	  and	  sampling	  dates.	  The	  aim	  of	  the	  numerical	  decomposition	  was	  

to	  generate	  principal	  components	  (PC1	  and	  PC2)	  that	  explain	  the	  majority	  of	  the	  total	  

variance	  of	  the	  whole	  dataset.	  The	  calculation	  was	  performed	  with	  centred	  and	  scaled	  

parameters	  after	  deleting	  rows	  that	  contained	  missing	  values.	  Scores	  (coordinates	  of	  

the	   objects)	   were	   plotted	   twice,	   either	   clustered	   according	   to	   the	   treatment	   or	   the	  

sampling	   date.	   Loadings	   (coordinates	   of	   the	   variables)	   were	   visualized	   in	   the	  

correlation	   circle.	   Both,	   scores	   and	   loadings	   were	   plotted	   separately	   for	   a	   better	  

readability.	  	  

	  

6.3. Results	  

6.3.1. Triclosan	  concentrations	  

Triclosan	  concentrations	  within	  the	  substratum	  were	  about	  two	  times	  higher	  than	  the	  

intended	  concentrations	   (measured	  over	   the	  whole	   spiking	   range:	  4	  µg	   l-‐1–200	  µg	   l-‐

1(from	   the	   lowest	   to	   the	  highest	   value).	   The	  determined	   triclosan	   concentrations	   in	  

the	  overlaying	  water	  were	  again	  two	  times	  higher	  than	  the	  intended	  concentrations	  in	  

the	  low	  range	  (up	  to	  4	  µg	  l-‐1),	  but	  similar	  to	  the	  spiking	  concentrations	  in	  the	  medium	  

range	  (49	  µg	  l-‐1)	  and	  even	  lower	  in	  the	  high	  range	  (30	  µg	  l-‐1	  ).	  Over	  the	  experimental	  

period,	   the	   water	   within	   the	   glass	   boxes	   evaporated	   to	   a	   noticeable	   degree	   (water	  

height	  dropped	  from	  4	  cm	  to	  3	  cm).	  	  
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6.3.2. The	  stability	  of	  the	  substratum	  

The	  adhesion	  of	  the	  substratum	  surface	  increased	  continuously	  in	  all	  treatments	  with	  

biofilms	   up	   to	   day	   14	   and	   decreased	   afterwards	   (Figure	   6.2	   A,	   B).	   In	   contrast,	   the	  

negative	   control	   (CT)	   did	   not	   show	   any	   significant	   changes	   in	   adhesion	   over	   the	  

experimental	   time	  (Figure	  6.2	  A,	  B).	  The	  stability	   increase	  by	   the	  biofilms	  was	  most	  

pronounced	   for	   the	   treatments	  CB	  and	  T1	  (up	   to	  4.6)	   followed	  by	  T2	  and	  T3	  (up	   to	  

3.6)	  as	  well	  as	  T4	  and	  T5	  (up	  to	  2.7)	  (Figure	  6.2	  A,	  B,	  C,	  Table	  6.1).	  Accordingly,	   the	  

positive	   control	   without	   triclosan	   showed	   the	   highest	   surface	   adhesion	   of	   the	  

sediment	  (CB)	  (22.73	  mTesla),	  that	  was	  otherwise	  declining	  in	  the	  bacterial	  cultures	  

with	   increasing	   TCS	   exposure:	   T1	   (20.7	   mTesla)>T2	   (18.53	   mTesla)>T3	   (16.7	  

mTesla)>T4	   (15.7	   mTesla)>T5	   (14.7	   mTesla)	   (Figure	   6.2	   C,	   Table	   6.1).	   Statistical	  

testing	   generally	   revealed	   significant	   differences	   between	   the	   treatments.	   For	  

example	   on	   day	   14,	   the	   stability	   of	   the	   biofilm	   without	   TCS	   (CB)	   was	   significantly	  

higher	   than	   T3,	   T4,	   and	   T5	   (PERMANOVA	   p<0.0001,	   followed	   by	   a	   non-‐parametric	  

SNK	  test,	  p<0.05).	  	  

	  

Table	  6.1:	  A.	  Ratio	  for	  different	  variables	  between	  the	  first	  day	  (minimum)	  and	  day	  14	  

(maximum)	   of	   the	   experiment.	   B.	   Ratio	   for	   different	   variables	   between	   the	   positive	  

control	  “CB”	  and	  the	  treatments	  (“T1,	  T2,	  T3,	  T4,	  T5”).	  

	   Treatment	  
	  
Adhesion	  
MagPI	  

	  
EPS	  
Carbohydrates	  

	  
EPS	  
Proteins	  

Bacterial	  
cell	  
numbers	  

Bacterial	  
division	  
rates	  

CB	   4.4	   3.5	   2.2	   2.0	   8.3	  
T1	   4.6	   3.2	   1.4	   1.9	   1.9	  
T2	   3.6	   2.6	   1.8	   1.4	   3.1	  
T3	   3.5	   1.7	   1.6	   1.5	   1.1	  
T4	   2.7	   2.9	   1.8	   1.2	   4.0	  

	  
Ratio	  A	  

T5	   2.5	   3.5	   1.1	   1.7	   3.7	  
T1	   1.1	   1.3	   1.4	   0.9	   1.4	  
T2	   1.2	   1.4	   1.4	   1.5	   1.2	  
T3	   1.3	   1.8	   1.7	   1.4	   1.3	  
T4	   1.5	   1.1	   1.0	   2.5	   1.0	  

Ratio	  B	  
	  

T5	   2.0	   1.6	   1.3	   1.9	   1.0	  
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Figure	  6.2:	  Adhesion	  as	  a	  proxy	  for	  stability,	  measured	  by	  MagPI,	  over	  the	  course	  of	  the	  

experiment.	  (A)	  Mean	  values	  (n=4	  per	  treatment,	  ±SE):	  positive	  control	  (CB,	  ■),	  negative	  

control	  (CT,	  ○),	  T1	  (TCS:	  2	  µg	  l-1,	  ∆),	  T2	  (TCS:	  10	  µg	  l-1,	  ●),	  T3	  (TCS:	  20	  µg	  l-1,	  ◊),	  T4	  (TCS:	  

50	  µg	   l-1,	  ▲),	   T5	   (TCS:	   100	  µg	   l-1,	  □).	   (B)	  Mean	   values	   per	   day	   (n=7,	  ±SE,	  ♦)	   and	  per	  
treatment	   (n=6,	   ±SE,	   bar	   plots).	   (C)	   Mean	   values	   (n=4,	   ±SE)	   shown	   for	   the	   different	  

treatments	  on	  the	  first	  day	  (grey	  bars)	  as	  opposed	  to	  the	  day	  14	  (white	  bars).	  
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6.3.3. Bacterial	  cell	  numbers	  and	  growth	  rate	  

In	  the	  first	  experimental	  week,	  the	  bacterial	  cell	  numbers	  increased	  in	  all	  treatments	  

up	  to	  day	  10	  (Figure	  6.3	  A,	  B).	  The	  increase	  was	  more	  pronounced	  for	  the	  treatments	  

CB	  and	  T1	  (up	  to	  2	  times)	  with	  bacterial	  cell	  numbers	  ranging	  from	  5.9x106	  to	  12x106	  

cells	   cm-‐3	   and	  6.7x106	   to	  13x106	   cells	   cm-‐3,	   respectively	   (Figure	  6.3	  A,	   C,	  Table	  6.1).	  

Generally,	  the	  other	  treatments	  showed	  significantly	  lower	  bacterial	  cell	  numbers.	  For	  

examples	  on	  day	  14,	  both	  treatments	  CB	  and	  T1	  were	  significantly	  higher	  than	  T4	  and	  

T5	   (PERMANOVA	   p<0.0001,	   followed	   by	   a	   non-‐parametric	   SNK	   test,	   p<0.05).	   A	  

general	  decrease	  of	  bacterial	  cell	  numbers	  along	  with	   increasing	  TCS	  concentrations	  

was	  observed,	  except	  for	  T1	  which	  was	  quite	  similar	  to	  the	  positive	  control	  (Figure	  6.3	  

C).	  

	  

The	   bacterial	   division	   rates	   of	   the	   community	   were	   highly	   variable	   within	   the	  

treatments	   over	   time	   (Table	   6.2).	   Still,	   the	   biofilm	  without	   triclosan	   (CB)	   showed	   a	  

more	  consistent	  and	  pronounced	  increase	  in	  the	  bacterial	  division	  rates	  as	  compared	  

to	   the	   TCS	   treatments	   (Table	   6.1).	   No	   significant	   relations	   could	   be	   determined	  

between	   bacterial	   cell	   numbers	   and	   bacterial	   division	   rates	   in	   the	   different	  

treatments.	   Like	   for	   the	   bacterial	   cell	   numbers,	   the	   bacterial	   division	   rates	   were	  

negligible	  in	  the	  negative	  controls.	  	  

	  

Table	  6.2:	  Bacterial	  division	  rates	  in	  treatments	  over	  the	  experimental	  time	  (10	  6	  cells	  
cm-3	  h-1)	  
	  

	   Day	  1	   Day	  2	   Day	  3	   Day	  4	   Day	  5	   Day	  6	  

CB	   0.64	   2.30	   5.13	   3.48	   5.33	   1.53	  

T1	   2.04	   0.91	   0.24	   1.37	   3.89	   1.47	  

T2	   1.41	   4.14	   2.77	   4.03	   4.46	   1.30	  

T3	   3.81	   4.23	   2.72	   2.85	   4.01	   1.32	  

T4	   2.06	   2.91	   8.43	   2.76	   4.86	   1.46	  

T5	   1.33	   0.11	   4.61	   3.72	   4.95	   0.64	  
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Figure	  6.3:	  Bacterial	  cell	  numbers	  over	  the	  course	  of	  the	  experiment.	  (A)	  Mean	  values	  (n	  

=	  4	  per	  treatment,	  ±	  SE):	  positive	  control	  (CB,	  ■),	  negative	  control	  (CT,	  ○),	  T1	  (TCS:	  2	  µg	  

l-1,	  ∆),	  T2	  (TCS:	  10	  µg	  l-1,	  ●),	  T3	  (TCS:	  20	  µg	  l-1,	  ◊),	  T4	  (TCS:	  50	  µg	  l-1,	  ▲),	  T5	  (TCS:	  100	  µg	  

l-1,	  □).	  (B)	  Mean	  values	  per	  day	  (n=7,	  ±SE,	  ♦)	  and	  per	  treatment	  (n=6,	  ±SE,	  bar	  plots).	  (C)	  
Mean	  values	  (n=4,	  ±SE)	  shown	  for	  the	  different	  treatments	  on	  the	  first	  day	  (grey	  bars)	  as	  

opposed	  to	  the	  day	  14	  (white	  bars).	  
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6.3.4. Changes	  in	  colloidal	  EPS	  components	  

The	   colloidal	   EPS	   carbohydrate	   concentrations	   increased	   up	   to	   the	   middle	   of	  

experiment	   and	   gradually	   decreased	   thereafter	   in	   the	   positive	   control	   and	   the	  

treatments	  with	  low	  TCS	  concentrations	  (Figure	  6.4	  A,	  B).	  In	  contrast,	  the	  treatments	  

T4	  and	  T5	  with	   the	  highest	  TCS	  concentrations	  showed	  a	  much	   lower	   increase	  over	  

the	   first	  week,	  however	  at	   the	  end	  of	  experiment	  (day	  10	  and	  day	  12)	  carbohydrate	  

concentration	   in	   these	   treatments	   increased	   and	   the	   concentration	   value	   was	  

comparable	   with	   positive	   control	   CB.	   Thus,	   the	   relative	   increase	   in	   EPS	   colloidal	  

carbohydrates	  from	  the	  starting	  point	  to	  its	  maximum	  was	  finally	  similar	  between	  all	  

treatments	  (about	  3-‐3.5	  times,	  except	  T3,	  Table	  6.1	  and	  Figure	  6.4	  C).	  Still,	  CB,	  T1	  as	  

well	  as	  T2	  showed	  the	  highest	  carbohydrate	  concentrations	  as	  compared	  to	  the	  other	  

treatments,	  with	   ranges	  between	  8.35–28.9	  μg	   cm-‐3,	   9.09–28.8	  μg	   cm-‐3,	   11-‐29.01	  μg	  

cm-‐3,	  respectively	  (Figure	  6.4	  A).	  For	  instance,	  on	  day	  7,	  CB	  and	  T1	  were	  significantly	  

higher	   than	   T3,	   T4	   and	   T5	   (PERMANOVA	   p<0.0001,	   followed	   by	   a	   non-‐parametric	  

SNK	  test,	  p<0.05).	  At	  the	  same	  time,	  T3	  (range	  14.27–24.9	  μg	  cm-‐3)	  was	  significantly	  

higher	  than	  T4	  and	  T5	  (range	  7.34–21.5	  μg	  cm-‐3	  and	  5.98–20.96	  μg	  cm-‐3,	  respectively)	  

(PERMANOVA	  p<0.0001,	  followed	  by	  a	  non-‐parametric	  SNK	  test,	  p<0.05)	  (Figure	  6.4	  

A).	   The	   negative	   controls	  without	   biofilms	   showed	  negligible	   concentrations	   of	   EPS	  

carbohydrates.	  	  

	  

The	   water–extractable	   proteins	   exhibited	   a	   clear	   increase	   over	   the	   first	   half	   of	   the	  

experiment	   and	   a	   decrease	   thereafter;	   in	   all	   treatments	   (Figure	   6.5	   A,	   B).	   Still,	   the	  

relative	   increase	   in	   EPS	   proteins	   from	   starting	   point	   to	   maximum	   was	   most	  

pronounced	  for	  the	  biofilm	  without	  TCS	  (up	  to	  2.2	  times,	  ranged	  between	  53.3-‐116	  μg	  

cm-‐3,	   Figure	   6.5	   C,	   Table	   6.1).	   Consequently,	   the	   positive	   control	   had	   significantly	  

higher	  EPS	  protein	  concentrations	  on	  most	  of	   the	  sampling	  days	  as	  compared	   to	  T1	  

(range	   60-‐85	   μg	   cm-‐3),	   T2	   (range	   48.5-‐89	   μg	   cm-‐3)	   and	   T3	   (49.4-‐80.3	   μg	   cm-‐3)	  

(PERMANOVA	  p<0.0001,	   followed	  by	   a	   non-‐parametric	   SNK	   test,	   p<0.05,	   Figure	  6.5	  

A).	  However,	  the	  treatments	  with	  the	  highest	  TCS	  concentrations	  (T4,	  T5)	  started	  with	  

higher	   protein	   concentrations	   that,	   over	   the	   course	   of	   the	   experiment,	   were	   in	   a	  

similar	  range	  to	   the	  positive	  control	   (between	  69.9-‐126.2	  μg	  cm-‐3	  and	  90.4-‐102.5	  μg	  

cm-‐3,	  respectively)	  (Figure	  6.5	  B,	  C,	  Table	  6.1).	  Accordingly,	  there	  were	  no	  significant	  

differences	  between	  CB	  and	  T4	  as	  well	  as	  T5.	  
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Figure	   6.4:	  EPS	   carbohydrate	   concentrations,	   over	   the	   course	   of	   the	   experiment.	   (A)	  

Mean	  values	  (n=4	  per	  treatment,	  ±SE):	  positive	  control	  (CB,	  ■),	  negative	  control	  (CT,	  ○),	  

T1	  (TCS:	  2	  µg	  l-1,	  ∆),	  T2	  (TCS:	  10	  µg	  l-1,	  ●),	  T3	  (TCS:	  20	  µg	  l-1,	  ◊),	  T4	  (TCS:	  50	  µg	  l-1,	  ▲),	  

T5	  (TCS:	  100	  µg	  l-1,	  □).	  (B)	  Mean	  values	  per	  day	  (n=7,	  ±SE,	  ♦)	  and	  per	  treatment	  (n=6,	  
±SE,	   bar	  plots).	   (C)	  Mean	  values	   (n=4,	  ±SE)	   shown	   for	   the	  different	   treatments	   on	   the	  

first	  day	  (grey	  bars)	  as	  opposed	  to	  the	  day	  14	  (white	  bars).	  
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Figure	   6.5:	  EPS	   protein	   concentrations,	   over	   the	   course	   of	   the	   experiment.	   (A)	  Mean	  

values	   (n=4	  per	   treatment,	  ±SE):	   positive	   control	   (CB,	  ■),	   negative	   control	   (CT,	  ○),	   T1	  

(TCS:	  2	  µg	  l-1,	  ∆),	  T2	  (TCS:	  10	  µg	  l-1,	  ●),	  T3	  (TCS:	  20	  µg	  l-1,	  ◊),	  T4	  (TCS:	  50	  µg	  l-1,	  ▲),	  T5	  

(TCS:	  100	  µg	  l-1,	  □).	  (B)	  Mean	  values	  per	  day	  (n=7,	  ±SE,	  ♦)	  and	  per	  treatment	  (n=6,	  ±SE,	  
bar	  plots).	  (C)	  Mean	  values	  (n=4,	  ±SE)	  shown	  for	  the	  different	  treatments	  on	  the	  first	  day	  

(grey	  bars)	  as	  opposed	  to	  the	  day	  14	  (white	  bars).	  
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A	  strong	  relationship	  was	  determined	  between	  EPS	  colloidal	  carbohydrates	  and	  EPS	  

colloidal	   proteins	   for	   all	   treatments	   except	   T5	   (CB:	   R2=0.748;	   T1:	   R2=0.523;	   T2:	  

R2=0.542,	   T3:	   R2=0.560;	   T4:	   R2=0.508;	   p<0.05).	   The	   colloidal	   carbohydrates	   and	  

proteins	  both	  showed	  a	  significant	  positive	  relation	  to	  the	  bacterial	  division	  rate	   for	  

the	  positive	  control	  and	  the	  treatments	  with	  highest	  TCS	  concentration	  (CB:	  R2=0.834,	  

T4:	  R2=0.632,	   T5:	  R2=0.799,	   p<0.01,	   for	   carbohydrates;	   CB:	  R2=0.590,	   T4:	  R2=0.672,	  

T5:	   R2=0.468,	   p<0.05,	   for	   proteins).	   The	   relations	   between	   EPS	   components	   and	  

bacterial	  cell	  numbers	  were	  positive	  in	  tendency,	  but	  not	  significantly	  different.	  	  

	  

6.3.5. Relation	   between	   biological	   variables,	   surface	   adhesion/stability	   and	  

triclosan	  exposure	  

Considering	   the	   whole	   dataset,	   positive	   relationships	   were	   determined	   between	  

substratum	  adhesion/stability	  and	  bacterial	  cell	  numbers	  (Figure	  6.6	  A)	  as	  well	  as	  to	  

bacterial	  division	  rates	  (Figure	  6.6	  B).	  Substratum	  adhesion	  was	  also	  closely	  related	  to	  

EPS	   colloidal	   carbohydrates	   (Figure	   6.6	   C)	   and,	   to	   a	   lesser	   extent,	   to	   EPS	   proteins	  

(Figure	   6.6	   D).	   Focusing	   on	   the	   single	   treatments	   separately,	   the	   strongest	  

correlations	  between	  adhesion/stability	  and	  the	  biological	  parameters	  (bacteria,	  EPS)	  

were	   generally	   determined	   for	   the	   treatments	  with	   no	   or	   lower	   triclosan	   exposure	  

(Table	  6.3).	  

	  
Table	  6.3.	  Pearson’s	  correlation	  coefficients	  between	  surface	  adhesion	  (MagPI)	  and	  EPS	  

carbohydrates	   and	   proteins	   bacterial	   cell	   number	   and	   bacterial	   division	   rate	   per	  

treatment.	  The	  significance	  levels	  are	  the	  following:	  ***	  p<0.001	  **	  p<0.0	  *	  p<0.05.	  

	  
Treatment	   Carbohydrates	   Proteins	   Bacterial	  cell	   Bacterial	  

dividing	  rate	  
CB	   0.774	   20	   **	   0.795	   20	   **	   0.528	   20	   *	   0.834	   13	   **	  
T1	   0.634	   20	   **	   0.595	   18	   **	   0.497	   29	   *	   -‐0.154	   14	   	  
T2	   0.542	   16	   *	   0.548	   20	   *	   0.537	   16	   *	   0.626	   12	   *	  
T3	   0.011	   18	   	   0.135	   18	   	   -‐0.233	   18	   	   0.094	   12	   	  
T4	   0.667	   20	   **	   0.483	   20	   *	   0.438	   16	   	   0.642	   12	   *	  
T5	   0.610	   20	   **	   0.096	   20	   	   0.465	   18	   *	   0.617	   14	   *	  
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Figure	  6.6:	  Relationship(n=30)	  between	  bacterial	  biofilm	  adhesion	  expressed	  by	  MagPI	  

(mTesla)	   versus	   bacterial	   cell	   numbers	   (A),	   bacterial	   dividing	   rates	   (B),	   EPS	  

carbohydrate	  concentrations	  (C)	  and	  EPS	  protein	  concentrations	  (D).	  

The	  first	  and	  second	  principal	  components	  (PC1	  and	  PC2)	  explained	  about	  75%	  of	  the	  

total	  variability	  (inertia),	  respectively	  54.5	  and	  21.2%.	  Objects	  (rows)	  of	  the	  original	  

data	  frame	  were	  grouped	  by	  plotting	  their	  ellipse	  inertia	  (which	  indicated	  the	  size	  of	  

the	  group)	   along	  with	   their	   gravity	   centre.	  The	  projection	  of	   the	  objects	   in	   the	  plan	  

formed	   by	   PC1	   and	   PC2	   showed	   that	   the	   gravity	   centres	   are	   distributed	   differently	  

depending	  on	  whether	  they	  are	  grouped	  according	  to	  the	  sampling	  dates	  (Figure	  6.7	  

A)	   or	   the	   treatments	   (Figure	   6.7	   B).	   Despite	   a	   relatively	   high	   variability	  within	   the	  

groups	   (especially	   in	   Figure	   6.7	  B),	   the	   sampling	   dates	   gravity	   centres	  were	   clearly	  

distributed	  along	  PC1	  with	   the	   first	  dates	   at	   the	   right	   end	  of	   the	  graph	  and	   the	   last	  

sampling	   dates	   at	   the	   left	   end.	   Treatments	  were	  mostly	   distributed	   along	   PC2	  with	  

lowest	   triclosan	   concentrations	   located	   at	   the	   top	   and	   highest	   TCS	   concentrations	  

located	  at	  the	  bottom.	  Two	  groups	  of	  variables	  were	  identified	  (Figure	  6.7	  C):	  within	  

the	  PC1,	  substratum	  adhesion	  (MagPI),	  EPS	  carbohydrates	  and	  bacterial	  cell	  numbers	  

were	  strongly	  correlated	  (i.e.	  Spearman	  Rank	  correlation	  coefficient	  p=0.71	  and	  0.70	  

between	   MagPI	   vs.	   EPS	   carbohydrates	   and	   cell	   numbers,	   respectively,	   n=30,	   p	   <	  

0.001)	   and	   they	   accounted	   for	   75%	   of	   the	   variance	   (MagPI,	   EPS	   carbohydrates,	  
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bacterial	  cell	  numbers	  each	  30,	  23	  and	  22%,	  respectively).	  Within	  PC2,	   the	  bacterial	  

division	  rates	  (42%)	  and	  EPS	  proteins	  (31%)	  contributed	  to	  73%	  of	  the	  variance	  and	  

were	  correlated	  to	  each	  other	  (i.e.	  p=0.41,	  n=30,	  p<0.05).	  	  

The	   analysis	   suggested	   that	   carbohydrates,	   sediment	   stability	   and	   cell	   number	  

increased	  with	  time,	  but	  also	  that	  they	  tend	  to	  decrease	  with	  increasing	  the	  triclosan	  

concentrations.	  Simultaneously	  bacterial	  division	  rate	  and	  protein	  concentration	  tend	  

to	  increase	  with	  increasing	  time	  but	  also	  with	  increasing	  triclosan	  concentrations.	  	  

The	   distribution	   of	   the	   different	   treatments	   along	   the	   second	   axis	   (PC2),	   suggested	  

that	   the	   triclosan	  concentration	  explained	  more	   than	  20%	  of	   the	   total	   inertia	  of	   the	  

dataset.	  	  
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Figure	   6.8:	   LTSEM	   (low-temperature	   scanning	   electron	   microscopy)	   images	   of	   the	  

biofilms:	  A-B:	  controls	   (negative	  and	  positive,	  higher	  magnification)	  at	  day	  1;	  C-D:	  T	  2	  
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and	  T5	  at	  day	  1;	  E–F:	  controls	  (negative	  and	  positive,	  lower	  magnification)	  at	  day	  7;	  G–

H:	  T2	  and	  T5	  at	  day	  7.	  	  Note	  the	  water	  has	  been	  frozen	  around	  the	  clean	  glass	  beads	  of	  

the	   control	   without	   biofilm	   (A,	   E).	   In	   the	   presence	   of	   bacteria	   (F-H),	   the	   secreted	  

bacterial	  EPS	  matrix	  is	  visible,	  covering	  the	  glass	  beads	  and	  becoming	  denser	  by	  the	  end	  

of	  the	  incubation	  (F-H)	  and	  permeating	  the	  intermediate	  space.	  However,	  at	  day	  7,	  the	  

biofilm	  EPS	  matrix	  exposed	  to	  higher	  TCS	  concentrations	  (H)	  appeared	  less	  as	  compared	  

to	  the	  low	  TCS	  concentration	  treatment.	  

	  

6.4. Discussion	  

Impairment	  of	  the	  bacterial	  stabilisation	  potential	  by	  triclosan	  

This	   is	   the	   first	   study	   to	   investigate	   the	   effect	   of	   triclosan	   (TCS)	   on	   bacterial	  

stabilization	  and	  compares	  the	  effect	  of	  different	  concentrations	  of	  triclosan	  (relevant	  

to	  environmental	  occurrence).	  The	  biofilm	  was	  established	  in	  all	  of	  the	  treatments	  and	  

the	  bacterial	  colonization	  resulted	  in	  the	  development	  of	  a	  biofilm	  which	  significantly	  

stabilized	   the	   test	   substratum.	   Since	   the	   chosen	   substratum	  was	   composed	   of	   non-‐

cohesive	   glass	   beads,	   the	   binding	   force	   must	   have	   been	   entirely	   due	   to	   bacterial	  

attachment	   and	   the	   secretion	   of	   a	   polymeric	  matrix(	   Figure	   6.8)	   (Gerbersdorf	   et	   al.	  

2008).	   The	   stabilisation	   effect	   as	   determined	   by	   MagPI	   was	   significantly	   more	  

pronounced	  for	  the	  positive	  control	  CB	  without	  TCS,	  than	  for	  the	  treatments	  with	  TCS	  

exposure	  and	  was	  over	  5	  times	  higher	  than	  negative	  control	  CT.	  Initial	  adhesion	  of	  the	  

pure	   cultures	  depends	  on	  a	   range	  of	   factors	   including	   selected	  pharmaceuticals	   and	  

their	  concentration	  (Schreiber	  and	  Szewzyk	  2008).	  In	  present	  experiment	  the	  overall	  

stability	   was	   increased	   over	   time	   in	   all	   treatments,	   suggesting	   that	   environmental	  

concentrations	   of	   triclosan	   would	   not	   stop	   development	   of	   the	   bacterial	   biofilm.	  

However	  different	  “slope	  of	  increase”	  of	  stabilisation	  indicate	  that	  TCS	  does	  inhibit	  the	  

adhesive	   properties	   of	   the	   biofilm.	   These	   results	   suggest	   the	   impairment	   of	   the	  

bacterial	   stabilisation	   by	   TCS	   exposure	   were	   more	   pronounced	   along	   with	   TCS	  

gradient.	  	  

It	  has	  been	  reported	  that	  sensitivity	  of	  bacteria	  to	  TCS	  depends	  on	  culture	  condition	  

(Johnson	  et	  al.	  2009).	  The	  present	  experiment	  was	  performed	  under	  nutrient	  depleted	  

condition	  and	  a	  decrease	  in	  stabilisation	  was	  observed	  in	  all	  treatments	  including	  the	  

positive	  control,	  after	  two	  week	  of	  experiment.	  This	  decrease	  may	  be	  due	  to	  a	  “batch	  
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culture”	   effect.	   However,	   such	   a	   decrease	   was	   already	   observed	   after	   one	   week	   of	  

experiment	   in	   treatments	  with	  higher	  TCS	  concentration	   it	  may	   indicate	   the	  highest	  

sensitivity	  of	  bacterial	  culture	  to	  presence	  of	  TCS	  in	  nutrient–depleted	  conditions.	  	  

The	   negative	   control,	   without	   bacterial	   biofilm	   CT	   does	   not	   show	   an	   increase	   in	  

stability	   and	   also	   does	   not	   show	   variation	   over	   time.	   This	   indicates	   that	   the	  

contribution	   of	   gravity	   forces	   on	   the	   overall	   stabilization	   in	   all	   of	   the	   treatments	   is	  

negligible.	  

	  

What	  is	  the	  cause	  of	  stabilization	  in	  TCS	  treatments?	  

In	  recent	  years	  it	  has	  been	  highlighted	  that	  EPS	  production	  may	  significantly	  stabilize	  

the	  sediment	  (Perkins	  et	  al.	  2003,	  Underwood	  and	  Paterson	  2003).	  In	  fact	  increasing	  

stability	   was	   mirrored	   by	   increasing	   EPS	   concentrations	   in	   the	   first	   week	   of	   the	  

experiment	   in	   all	   of	   the	   treatments.	   After	   the	   first	   week	   of	   experiments	   a	   rapid	  

decrease	   in	  EPS	  concentration	  for	  both	  carbohydrate	  and	  proteins	  were	  observed	  in	  

almost	   all	   TCS	   treatments	   in	   contrast	   to	   a	   continuous	   increase	   in	   CB.	   Indeed,	   the	  

positive	  control	  CB	  demonstrates	  higher	  stabilisation	  effect	  together	  with	  higher	  EPS	  

carbohydrate	  and	  protein	  concentration	  than	  treatments	  with	  TCS	  exposure.	  Despite	  

that	   treatments	   with	   higher	   TCS	   concentration	   (T4	   and	   T5)	   demonstrate	   rapid	  

increase	  in	  EPS	  carbohydrate	  production	  at	  the	  end	  of	  experiment	  (Figure	  6.4	  C),	  the	  

cumulative	  EPS	  carbohydrate	  concentration	  in	  these	  treatments	  was	  still	  significantly	  

lower	   than	   other	   treatments	   (Figure	   6.4	   B).	   Consequently	   due	   to	   the	   quite	   similar	  

pattern	   of	   stability	   and	   EPS	   production,	   highly	   significant	   relationships	   between	  

sediment	  stability	  and	  EPS	  carbohydrate	  (r=0.728,	  n=29,	  p<0.001)	  were	  determined.	  

However	   due	   to	   the	   highly	   variability	   between	   treatments	   in	   EPS	   protein	  

concentration	  relationship	  between	  stability	  and	  EPS	  protein	  	  concentration	  was	  less	  

pronounced,	   but	   still	   significant	   (r=0.414,	   n=29,	   p<0.05).	   These	   variations	   in	   EPS	  

values	   are	   likely	   to	   have	   direct	   implications	   for	   the	   adhesion	   potential	   and	   confirm	  

that	   EPS	   matrix	   is	   responsible	   for	   stability.	   So	   does	   less	   EPS	   mean	   less	   stability?	  

Different	  tendencies	  in	  stability	  and	  EPS	  production	  were	  observed	  in	  treatments	  with	  

lower	   and	   higher	   TCS	   concentrations.	   For	   the	   lower	   range	   of	   TCS	   concentrations,	  

parallel	   decreases	   in	   stability	   and	   EPS	   concentration	   were	   observed.	   However	   in	  

treatments	  with	  higher	  TCS	  (T4	  and	  T5)	  the	  EPS	  concentrations	  were	  also	  higher	  and	  

comparable	   to	   the	   positive	   control	   CB.	   This	   is	   in	   opposition	   to	   stability	   data,	  which	  
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shows	  a	  continual	  decrease	  with	  increasing	  TCS	  concentration.	  This	  may	  be	  explained	  

by:	  	  

a)	  As	  a	  bactericidal	  effect	  of	  TCS.	  The	  TCS	  toxicity-‐mediated	  cell	  lysis	  may	  augment	  

EPS	  and	  suggest	  that	  some	  EPS	  compounds	  may	  be	  relative	  to	  intracellular	  pools.	  	  

As	  has	  been	  previously	  shown,	   the	  density	  of	  bacteria	   in	  biofilms	  can	  be	  affected	  by	  

chemical	   compounds	   (TCS	   concentration	   10-‐3,	   10-‐4,	   10-‐5M)	   (Dobretsov	   et	   al.	   2007).	  

The	   presence	   of	   TCS	   could	   promote	   both	   structural	   and	   functional	   changes	   in	   the	  

bacterial	  membrane	  (Villalain	  et	  al.	  2001).	  The	  latest	  observations	  indicate	  that	  in	  low	  

concentration,	  triclosan	  working	  as	  bacteriostatic	  agent,	  inhibit	  bacterial	  growth	  and	  

reproduction	  (Suller	  and	  Russell	  1999,	  2000,	  Escalada	  et	  al.	  2005b,	  Tabak	  et	  al.	  2007).	  

At	  the	  higher	  concentrations,	  triclosan	  become	  bactericidal	  and	  is	  likely	  to	  damage	  the	  

bacterial	   membrane	   (Villalain	   et	   al.	   2001).	   Our	   results	   corroborate	   these	   latest	  

observations,	  whereby	  at	  low	  concentrations,	  bacterial	  growth	  was	  severely	  affected,	  

but	  at	  the	  high	  concentration	  (i.	  e.	  T4,	  T5)	  the	  bactericidal	  effect	  was	  rapid,	  indicating	  

a	  more	  damaging	  effect	  such	  as	  membrane	  activity.	  Indeed	  the	  bacterial	  cell	  number	  

in	   highest	   TCS	   concentration	   T4,	   T5	   after	   2	   weeks	   of	   experiment	   (day	   14)	   were	  

significantly	  lower	  as	  compare	  to	  the	  control	  and	  lowest	  TCS	  treatments	  (Figure	  6.3).	  

These	   results	   corroborate	   the	   previous	   observation	   that	   the	   highest	   TCS	  

concentration	  (<100	  μg	  l-‐1)	  interacted	  with	  the	  cell	  envelopes	  and	  may	  cause	  bacterial	  

lysis	  and	  subsequent	  fatal	  loss	  of	  intracellular	  material	  (Villalain	  et	  al.	  2001,	  Escalada	  

et	  al.	  2005b)	  	  

b)	  EPS	  quantity	  per	  se	  is	  not	  always	  decisive	  for	  the	  binding	  capacity	  of	  sediments	  

(Gerbersdorf	  et	  al.	  2009),	   thus	   for	   the	  substratum	  stabilization	  and	  also	  depends	  on	  

abiotic	  and	  environmental	  condition	  and	  on	  the	  particular	  organism	  from	  which	  they	  

are	  produced	  (Decho	  1990).	  In	  many	  earlier	  studies,	  polysaccharides	  were	  considered	  

to	  be	  main	  constituents	  of	  EPS,	  however,	  when	  more	  extensive	  analyses	  of	  EPS	  were	  

performed,	   proteins	   were	   frequently	   shown	   to	   be	   abundant	   in	   the	   EPS	   from	   pure	  

cultures	   of	   Gram-‐negative	   and	   Gram-‐positive	   bacteria	   (Flemming	   et	   al.	   1999).	  

Bacteria	  need	  to	  attach	  firmly	  to	  a	  substratum	  with	  the	  help	  of	  EPS	  and	  proteins	  play	  a	  

significant	  role	  in	  this	  first	  adhesion	  (Czaczyk	  and	  Myszka	  2007,	  Jain	  et	  al.	  2007),	  but	  

also	  contribute	  towards	  the	  binding	  strength	  within	  the	  developing	  EPS	  matrix.	  Due	  to	  

high	   proportions	   of	   the	   hydrophobic	   amino	   acid	   alanine,	   extracellular	   proteins	  

contribute	   to	   hydrophobic	   properties	   of	   EPS.	   If	   proteins	   intertwine	   with	  
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carbohydrates,	   they	   form	   heteropolymers	   of	   EPS	   (Jorand	   et	   al.	   1998)	   with	   net	  

negative	  or	  positive	  charges	  (Flemming	  and	  Wingender	  2001).	  This	  may	  enhance	  and	  

strengthen	   the	   EPS	   matrix	   (Pennisi	   2002)	   by	   involving	   the	   electrostatic	   and	  

hydrophobic	   interaction	   between	   different	   macromolecules	   (Flemming	   and	  

Wingender	   2001).	   In	   addition,	   the	   characteristic	   quantity	   of	   one	   particular	   EPS	  

component,	  carbohydrates	  or	  proteins,	  most	  likely	  differs	  between	  the	  different	  group	  

of	  bacteria,	  and	  so	  changes	  in	  bacterial	  community	  composition	  may	  lead	  to	  changes	  

in	  EPS	  quality	  per	  se.	  	  

In	   summary,	   the	   interaction	   of	   triclosan	  with	   the	   bacterial	   cell	   is	   complex.	   There	   is	  

evidence	   that	   TCS	   exposure	   affects	   bacterial	   biomass	   and	   EPS	   production	   and	   this	  

affect	   was	   more	   pronounced	   with	   increasing	   TCS	   concentration.	   This	   study	  

demonstrates	  that	  TCS	  concentration,	  relevant	  to	  environmental	  occurrence	  not	  stop	  

development	   of	   the	   bacterial	   biofilm.	  However,	   significant	   impairment	   the	   bacterial	  

stabilisation	  potential	  along	  with	  TCS	  gradient	  was	  suggested.	  Further	  studies	  should	  

examine	  the	  effect	  of	  TCS	  on	  stabilisation	  capacity	  of	  the	  natural	  microbial	  community	  

(bacteria	   and	   microalgae).	   These	   results	   will	   have	   a	   wider	   implication	   for	  

optimisation	  sediment	  /pollutant	  management	  strategies.	  
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Chapter 7  

Effect of triclosan on a natural freshwater biofilm 

 
Abstract  
The introduction of herbicidal and pesticidal compounds onto the consumer market 

has rapidly increased over the last decade and as a result, the level of organic 

compounds found in surface water and sediments have increased (Ricart et al. 2010). 

This creates a potential risk to aquatic communities and their functionality, such as 

biostabilisation processes described in this thesis. To assess the potential 

environmental risk of such contaminants on biostabilisation, the establishment of a 

natural biofilm community was used as a suitable model of their community 

ecotoxicology. The response of a natural freshwater biofilm, under exposure to a 

concentration series of triclosan in a range relevant to environmental occurrence, was 

investigated. The biofilm was grown for 3 weeks in flow-through glass channels (mini-

flumes) before the start of the experiment and artificial glass beads served as the inert 

non-cohesive substratum. The TCS (triclosan) was loaded using impregnated silicon 

rods (Bandow et al. 2009a, Bandow et al. 2009b) and TCS concentrations were 

checked regularly over experimental time. Assessment of the effects of TCS on natural 

freshwater biofilm was conducted over a two week period following the 3 weeks of 

biofim development. The biostabilisation potential of natural biofilm under TCS 
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exposure was assessed using the sensitive new method of MagPI (Magnetic Particle 

Induction) (see Chapter 3) which can be used to determine the adhesive capacity of 

the biofilm. The results suggest an inhibitory effect of TCS on microbial 

biostabilisation. The positive control (CB) without TCS exposure was up to 2 times 

more adhesive than treatments with TCS concentrations. This data was followed up 

by examining the biological properties of the biofilms, such as microbial biomass and 

quantity of EPS compounds (carbohydrates and proteins) production. The results 

suggest that changes in the biofilm have a direct implication to their stabilisation 

potential. The bacterial growth demonstrated a delayed response to the TCS as 

determined by flow cytometry, and reveal that the decrease in bacterial cell number 

was more pronounced with increasing TCS concentrations. TCS was observed to 

inhibit microalgae photosynthetic activity (PSII) along with TCS gradient. In contrast, 

higher EPS carbohydrate quantity was found in treatments with higher TCS 

concentration.  

TCS had an inhibitory effect on microbial stabilisation processes, which was found to 

be more pronounced along the TCS gradient. Biostabilisation potential cannot be 

addressed simply by the quality and quantity of extracellular polymeric substances, 

but also needs to take account of context and the structural parameters of the biofilm 

and their interactions. The present study raises the unexpected effects of using toxins 

in consumer products. The data presented will have wider implications for 

optimisation of sediment/pollutant management strategies and provides significant 

contribution to the investigation of biostabilisation process as a very important 

ecosystem function. 

 

7.1. Introduction 

Triclosan–persistence in environment and effect on aquatic organisms. 
Toxic pollution of aquatic systems and the associated effects on aquatic communities 

is of major environmental concern (Schmitt-Jansen and Altenburger 2008). The 

previous studies of toxicity assessment were focused on single diatom species or 

bacterial strains. However, neither microalgae nor bacteria exist independently in 

natural sediment (Gerbersdorf et al. 2009), and their interactions are complex and 

highly species–specific. Thus, the investigation effect of toxins on natural assemblages 

is great of the interest. Toxicity assessment was based on biomass, EPS components or 
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shift in community composition; however, the effect of pollution on ecological 

functionality of aquatic organisms, such as biostabilisation is still unknown. For this 

propose, a set of physiological variables of microbial community were observed and 

further addressed in terms of biostabilisation capacity of the microorganism, growing 

under environmental stress, such as presents of the triclosan.  

Triclosan (TCS) (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a synthetic, broad 

spectrum antimicrobial pesticide used to destroy or suppress the growth of harmful 

microorganisms, such as bacteria and fungi. TCS has use has expanded markedly into 

the consumer marked over the last 30 years and is present in soap (0.10-1.00%), 

toothpastes, deodorants, shaving creams, mouthwashes and other products. Over the 

last decade, there has been a rapid increase in the use of TCS-containing products. 

About 96 percept of TCS from consumer products are disposed of in residential 

drains, leading to large loads of the chemical in water entering wastewater treatment 

plants (Ciba 1998). TCS is a stable, lipophilic compound (log Kow=4.8) which forms low 

chlorinated dioxins on incineration and under the influence of sunlight (Adolfsson-

Erici et al. 2002). It has been observed that TCS itself is relatively non-toxic to humans 

and other mammals (Bhargava and Leonard 1996), however TCS degradation 

products, such as dioxin, are highly carcinogenic and can cause health problems 

(Glaser 2004). On the other hand, TCS is non-degradable under anaerobic conditions 

(McAvoy et al. 2002), and as TCS is disposed of predominantly down residential 

drains (Reiss et al. 2002), it can reach groundwater and accumulated on sediment 

surface. Halden & Paull (2005) suggested a propensity of TCS to persist in various 

environmental compartments with predicted half-lives ranging from 0.75 days in air 

to 540 days in sediment. A U.S. Geological Survey study of organic wastewater 

contaminants in water samples, found TCS ranking in the top 10 in occurrence rate 

and in the top 20 in maximum concentration among 96 organic pollutants (Kolpin et 

al. 2002, Halden and Paull 2005), due to its continuous replenishment and its 

accumulation within the sediments. Analytical data from environmental samples in 

several countries demonstrate concentration levels in rivers, lakes and streams in the 

range 18-2300ng l-1 (Okumura and Nishikawa 1996, Kolpin et al. 2002, Lindstrom et 

al. 2002, McAvoy et al. 2002, Singer et al. 2002). Digested sludge concentrations of 

TCS ranged from 0.5 to 15.6 μg g -1 (dry weight), where the lowest value was from an 

aerobic digestion process and the highest value was from an anaerobic digestion 
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process (McAvoy et al. 2002). Measurable concentrations of TCS first appeared 

sediment cores around 1964 (Cantwell et al. 2010), the measured vertical 

concentration profile of TCS in a lake sediment core (Singer et al. 2002), reflects its 

increased use over 30 years and presence of TCS in sediment samples was found in 

concentrations 0.27 to 130.7 μg kg-1 (McAvoy et al. 2002, Aguera et al. 2003). 

According to Reiss et al. (2002) the mean percentage of triclosan sorbed to suspended 

sediment and solids was 14.3 (±) 7.3 (range 3.6-86.9 ppb). 

Triclosan acts as a biocide, with multiple cytoplasmic and membrane targets, causing 

leakage of intracellular material (Villalain et al. 2001). However at low concentrations 

TCS appears bacteriostatic and associated with an inhibition of membrane biogenesis 

through a specific target, the enoyl reductase enzyme, which is involved in the 

synthesis of fatty acids (McDonnell and Pretzer 1998, McMurry et al. 1998, Escalada et 

al. 2005) and affects reproduction in bacteria. The minimum inhibitory concentration 

(MIC) of TCS for clinically important bacteria were found to be as high as 1 μg ml-1 

(Suller and Russell 1999).  

Triclosan has a broad range of activity that encompasses many, but not all, types of 

Gram-positive and Gram-negative non-sporulating bacteria (Russell 2004). Bacteria 

may form resistance to TCS, due to mutation and/or overproduction of enoyl 

reductase (Escalada et al. 2005). These aspects of the adaptation of bacteria to TCS 

have since been examined extensively (Schweizer 2001, Escalada et al. 2005, Tabak et 

al. 2007) and other research shows that minimum inhibitory concentration of 

triclosan for different bacteria strains may reach 3000 μg l-1 (Bhargava and Leonard 

1996). DeLorenzo et al. (2008) found that the presence of sediment decreased TCS 

toxicity and determined that bacteria were sensitive to TCS with 15 min of aqueous 

TCS value of 53 μg l-1 and a 15 min spiked sediment TCS value of 616 μg kg-1. In 

natural sediment, bacteria coexist with other phototrophic and heterotrophic 

microorganisms. There is evidence that triclosan is also acutely and chronically toxic 

to other aquatic organisms (Orvos et al. 2002, Ishibashi et al. 2004, DeLorenzo et al. 

2008), of which microalgae are the most sensitive to TCS (Reiss et al. 2002, Neumegen 

et al. 2005). Biofilms can be used as an early warning system for detection of the effect 

of toxicants on aquatic systems (Sabater et al. 2007) and microphytobenthos have 

been shown to be a suitable model in community ecotoxicology (Schmitt-Jansen and 

Altenburger 2005a, 2008). Using natural algal communities sampled both upstream 
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and downstream Wilson et al. (2003) shows shifts in the community structure and 

suggests that toxin exposure may potentially influence both the structure and the 

function of algal communities. 

Experiments to assess the potential risks of toxicants on aquatic organisms 

(community) have been previously performed using various strategies. The toxicity of 

TCS was evaluated using microalgae systems varying in biological complexity, under 

different periods of TCS exposure and including various abiotic parameters (such as 

nutrient enrichments). Depending on species composition varying ranges of TCS 

concentration were found to be toxic to microalgae: Tabak et al. (2007) observed an 

eight-fold log reduction of exponentially growing cell with 1000 μg ml-1 triclosan 

within 10 min, Franz et al. (2008) found the inhibition of photosynthetic efficiency of 

various microalgae system after 24 h TCS exposure with concentrations 3.7 μg l-1 for a 

chlorophyte suspension and 900 μg l-1for periphyton communities, DeLorenzo et al. 

(2008) examined range of marine species, and suggest the phytoplankton species 

were the most sensitive species tested, with a 96 h EC50 value of 3.55 μg l-1, Orvos et al. 

(2002) found inhibited growth of algae in presence of TCS in concentration ranged 

between 3.4-13 μg l-1 over 9 d of experiment, especially for the diatom Skeletonema 

costatatum (>66 μg l-1 96 h). Lawrence et al. (2009) determined a significant reduction 

of algae biomass as result of TCS exposure in concentration 10 μg l-1 over 8 weeks of 

experiment. There is evidence that TCS maybe even more harmful for algae than 

bacteria (Johnson et al. 2009). Tatarazako et al. (2004) shows that some microalgae 

species were 30-80 fold (IC25=0.0034 mg l-1 triclosan) more sensitive to triclosan 

toxicity than bacteria.  

 

Natural communities may improve cell tolerance to toxins? 

The central purpose of environmental risk assessment is the protection of ecosystem 

from adverse impacts of chemicals (McClellan et al. 2008). Due to presence of 

microorganisms and their functional importance, microbial test is widely used in 

toxicity assessment. These investigations were mainly based on single species testing 

requiring extrapolation routines to estimate community-level effects (Schmitt-Jansen 

and Altenburger 2008). 

Community composition might better reflect the effects of the toxicant(s), because 

they may cause a shift from a sensitive to a progressively more tolerant community 
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(Schmitt-Jansen and Altenburger 2005b, Sabater et al. 2007). In contrast to this, 

Johnson et al (2009) showed that a natural fresh water microbial community was 

more sensitive to TCS than a culture of the freshwater bacterium Caulobacter 

crescentus. In natural sediment, organisms do not exist independently, and their 

interactions, especially between bacteria and microalgae are complex and range from 

symbiosis to parasitism (Cole 1982). Some algal cells constitute niches for bacterial 

species (Schaefer et al. 2002) by providing a substantial pool of organic carbon 

available to the bacteria as source of food (Bell et al. 1974, Haynes et al. 2007), as the 

result elevating the numbers of bacterial cells (Wang and Priscu 1994). On the other 

hand, bacterial remineralisation of organic nutrients may increase algae growth 

(Grossart 1999). However the inhibition and sometimes lethal effect (Imai et al. 1993) 

of these interactions between microorganisms have also been described in detail. 

Bacteria may compete with algae for nutrients and can inhibit algae growth (Grossart 

1999). To prevent this, microalgae have a capability to produce antibacterial 

substances against both gram-positive and gram-negative bacterial strains which 

inhibit bacterial activities (Sastry and Rao 1994). According to Schaefer et al. (2002) 

algal diversity might be an important factor in explaining the enormous bacterial 

diversity and vice versa. Thus, bacteria-microalgae interactions are highly species-

specific and presence of toxins can alter these interactions drastically, causing a shift 

in total community structure and knock-on effects on ecological functioning of the 

biofilm.  

As described above, the biofilms consist of layers of microorganisms embedded in an 

extracellular polymeric matrix. In natural biofilms the EPS is the net result of 

prokaryotic and eukaryotic communities. EPS may fulfil a variety of functions (Wotton 

2004), for instance bacteria produce EPS for attachment to a substratum (Costerton et 

al. 1999) and diatoms mostly for locomotion (Underwood and Paterson 2003). To 

enhance survival, both of these organisms produce EPS for protection of individual 

cells (Roberson and Firestone 1992, Sutherland 2001b, a). The EPS matrix can also 

buffer microbial colonies from some effects of desiccation (Roberson and Firestone 

1992), may reduce diffusion and hence contribute to enhanced resistance of the 

biofilm-associated cells (Tabak et al. 2007). Recent investigation of effect of pollutants 

on EPS secretion shows a significant increase of EPS-polysaccharide formation in the 

presence of toluene, a toxic hydrocarbon (Schmitt et al. 1995), elevated extracellular 
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carbohydrates and proteins under chromium (Fang et al. 2002, Iyer et al. 2004, 

Priester et al. 2006), and cadmium (White and Gadd 1998) exposure. Lawrence et al. 

(2009) indicate that TCS treatments result in significant changes in the composition of 

the EPS matrix and suggest the significant alteration in community composition from 

one dominated by autotrophic processes to one dominated by heterotrophic 

processes. However, interaction of EPS and TCS may depend on the quality and 

quantity of EPS, which in turn varies with the coexisting bacterial-microalgae 

assemblages. In the past,  microalgae were considered as main EPS producers 

(reviewed in Stal and Walsby 2000, Underwood and Paterson 2003) with 

polysaccharides as their main product (Staats et al. 1999, Paterson et al. 2000, Stal 

2003), however bacteria act not only as decomposers of the organic matrix (Goto et al. 

2001), but also may secrete a copious amount of EPS (Decho 1990) with a high 

proportion of proteins (Flemming and Wingender 2001a, Gerbersdorf et al. 2008). 

Bruckner et al. (2008) showed that the presence of different bacteria strongly 

influenced carbohydrate secretion by the alga and changed monomer composition of 

extracellular polysaccharides. Previous studies have shown that in mixed assemblages 

(bacteria+microalgae) the EPS concentrations were significantly higher than in single 

culture assemblages (Lubarsky et al. 2010). Taking these aspects into account it is 

hypothesized that natural assemblages of microorganisms may provide biofilms with 

a high potential of tolerance to toxicants. 

 

Biofilm formation under toxicant exposure. 

In recent years, microbial EPS have been linked to a number of important ecological 

functions (Cyr and Morton 2006), such as accumulating pollutants and 

biostabilisation processes. The process of biostabilisation was intensively investigated 

(Paterson 1989, Dade et al. 1990, de Winder et al. 1999, Paterson et al. 2000), and 

related to microbial biomass (microalgae and bacteria) and EPS compounds 

(carbohydrates and protein) (Yallop et al. 2000, Gerbersdorf et al. 2009, Lubarsky et 

al. 2010). Secreting EPS into the surrounding sediment matrix may further aid 

organisms to attach to surfaces (adhesion) (Stal 2003) that can result in sediment 

cohesion and the increased stability of the sediment. It has been suggested that, by 

inhibiting initial adhesion, biofilm formation might be prevented (Cerca et al. 2005). 

Investigations into the effect of a range of pharmaceuticals on microbial adhesion 
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capacity have been performed using both bacterial cultures and natural microbial 

community. The results suggest that pharmaceuticals at environmentally relevant 

concentrations can influence the initial adhesion of bacteria, this was especially noted 

in the drinking water community which exhibited a decreased adhesion in the 

presence of the pharmaceuticals regardless of adhesion surface (Furneri et al. 2003, 

Schreiber and Szewzyk 2008). However, effect of toxins on biostabilisation capacity of 

natural biofilm is mostly unknown.  

The ability of aquatic organisms, especially certain algal species, to continuously bio 

accumulate toxic compounds into aquatic food webs were previously described 

(Zaranko et al. 1997, Jabusch and Swackhamer 2004, Coogan et al. 2007). There was 

evidence that the presence of toxins can significantly increase the formation of 

carboxyl groups thus increasing the number of negatively charged groups and 

consequently, the sorption capacity of the biofilm (Schmitt et al. 1995), which may 

result an increasing bioaccumulation capacity of biofilm.  

To summarise, toxins may have a negative effect on microbial biomass, but on other 

hand, the presence of toxins may elevate EPS production and increase 

bioaccumulation capacity of the microorganisms. The prediction of possible effect of 

toxins on biostabilisation is complex and must be investigate extensively.  

For this propose the flow-through channels approach applied in this study represents 

a more realistic scenario for biofilm development and colonization of substratum. The 

use of silicon rods provided an improved strategy of TCS spiking and equilibrium and 

produced a better approximation between calculated and actual concentrations of TCS 

than aqueous addition. Structural parameters (e.g. microbial biomass) and functional 

parameters (e. g photosynthetic capacity and EPS production), together with 

assessment of substratum stability will be used to demonstrate the effect of triclosan 

on biostabilisation potential of freshwater microbial community.  

 

7.2. Experimental set-up and triclosan spiking 

To simulate the natural scenarios of development of the biofilm in river system, the 

flow-through channels containing Petri dishes that were filled with glass beads were 

used in this experiment. This creates potential problems with pseudoreplicates. 

Despite this fact this experiment has been chosen in order to increase range of 
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concentrations that may appear in aquatic system. Thus the experiment was 

conducted in seven flow through channels (LxWxH in cm 86x11.5x10) filled with 

water from the river Parthe which joins the White Elster in north-western Leipzig, 

Germany (51021´39´´N 12020´32´´E). Small glass beads in the size range 0.04-0.07 

mm (Ballotini balls, Jensson) were used as an artificial, non-cohesive substratum, 

supporting development of biofilm. A 1 cm layer of glass beads was placed in glass 

Petri dishes (Ø 10 cm, 2 cm height) and 6 Petri dishes were placed in each channel 

(Figure 7.1). 

 

 

Figure 7.1: Experimental setup: Prior to experiment (top) and during experiment 

(bottom). Triclosan rods and air pump system are marked with A and B respectively. 
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Natural fresh water (3.5 l) was carefully added to each channel, after placing a layer of 

buoyant plastic onto the surface of the artificial sediment to protect the bed from 

erosion (Gerbersdorf et al. 2009). To simulate the natural scenarios of development of 

the biofilm in river system, the flow in the pumped system (Tubing Pump BVP 

Standard, ISMATEC) was set to a rate of 2 l min-1. The biofilms grew for 18 d under 

laboratory conditions, were illuminated at 80±5 µmol photons s-1 m-2 from a neon 

tube with a light/dark cycle of 14/10 h, and the temperature was kept constant 

(16°C). During the growth phase, the fresh river water was replaced regularly (once 

per week). Development of the biofilm was checked regularly by visual observation 

and it was observed that the biofilm was equally distributed in each channel. Each 

channel was initially inoculated by adding biofilm cultivated for four weeks on glass 

slides in an aquarium (under similar conditions). The biofilm was scraped from the 

glass slides, mixed with relevant amount of fresh water, homogenised and added at 

100 ml per channel.  

 

Prior to the experiment, an UV-filter (UV CL SR HPR, WIPA Technik, Germany) was 

used to avoid UV-degradation of TCS during the experiment and the flow system was 

replaced by an air pump system (Koi Air KA25, max output 25 l min-1, max pressure 

BLAGDON, Dorking, Surrey, England, Figure 7.1 B). Following the system design 

criteria of Wicke et al. (2007) all reactor materials, namely the solid support for the 

biomass, were polar to reduce hydrophobic interaction and sorption of the analytes. 

Only glassware was used and air supply tubing was fitted with glass tips (15 cm 

length and 0.5 cm diameter).  

 

Stock solution of TCL (150 μg l-1) was prepared as described in 2.11.2 and working 

solutions were obtained by further dilution of stock solution. The following 

treatments were established aiming to produce concentrations of triclosan at 2 μg 

(T1), 20 μg l-1 (T2), 50 μg l- (T3), 100 μg l-1 (T4), 150 μg l-1 (T5), the positive control 

(CB) contained only natural biofilm culture, glass beads and fresh water. The negative 

controls (CT) contained glass beads, autoclaved fresh water and was not inoculated 

with biofilm. To exclude possible effects of TCS and dimethylsulfoxide (DSMO) on 

sediment stabilisation, 150 μg l-1 of triclosan dissolved in 1% DSMO was additionally 

added to this channel. Additionally, silicon rods were prepared as described in 2.11.2 
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and served as a passive dosing tool in order to keep concentrations stable throughout 

the 10 d period of the experiment. Starting concentration of the analytes should not 

exceed the microgram per litre range (Wicke et al. 2007), which are concentrations 

similar to those one can expect to occur in the environment. Thus, the amount of TCS 

necessary to reach equilibrium concentrations on the levels mentioned above were 

calculated, and silicon rods were loaded accordingly. Then, the loaded rods were 

placed in the channels below the water surface (Figure 7.1 A). Prior to the experiment 

the fresh river water was replaced and kept at a constant level to account for 

evaporation over the course of the experiment, the missing volume was replenished 

by fresh river water (4 times~600 ml per channel). The pH-regime was checked 

regularly each day of experiment, using the universal measuring device Multi 340i 

(WTW GmbH, Weilheim, Germany) and kept stable by adding phosphate buffer 

(NaH2PO4, 4mM) according to Clark et al. (1981). 

 

Sampling strategy 

Prior to the experiments (day 0) all variables were measured to obtain the baseline 

readings, after which all channels were treated with appropriated level of TCS. First 

sampling took place the day after the first TCS treatment (day 1) and was repeated 

every second day for the two weeks of experiment. For each treatment, 3 Petri dishes 

were randomly selected and sampled in turn at each measurement. From each Petri 

dish, 3 sediment cores of 2 mm depth were sampled with a cut-off syringe 10 mm 

diameter (see 2.3.1). The 2 sediment cores were immediately frozen at-80°C until 

further analysis of EPS (described in 2.4) and the additional core was fixed with a 

glutaraldehyde solution (1% final concentration) and stored for future analysis of 

bacterial cell numbers (described in 2.7). For determination of a possible shift in 

microbial community, 2 additional cores were taken, fixed by adding 2.5% 

glutaraldehyde for determination of microalgae community composition (described in 

2.9.2) and 3.7% formaldehyde for bacterial community composition (described in 

2.9.1) and stored for future analyses. The functional parameter photosynthesis as 

proxy of microalgae biomass was measured by PAM fluorescence (described in 2.6) 

and determination of the sediment stability by MagPI (2.12.2) was measured for each 

Petri dish at every second day during the experimental period. 
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7.2.1. Statistics 

The majority of the data did not pass the Kolmogorov-Smirnov normality test and 

Bartlett test for homogeneity of variance. Thus differences between treatments were 

addressed using a non-parametric Kruskal-Wallis test of variance followed by the 

non-parametric post-hoc Student-Newman-Keuls (SNK) test to compare pairs of 

treatments. 

7.3. Results 

7.3.1. Triclosan concentrations 

The actual triclosan concentrations in water samples did not increase over time 

(Figure 7.2), but were about two times higher than the spiked concentrations. The 

actual average TCS concentration in the overlaying water determined were 3.9 μg l-1 

for T1, 28 μg l-1 for T2, 94.7 μg l-1 for T3, 207.1 μg l-1 for T4 and 430.7 μg l-1 for T5. In 

the negative control CT, the TCS concentration exceeded 1000 μg l-1 and there were no 

significant changes over the experimental period. 

  

 

Figure 7.2: Triclosan concentration over the experimental period. 

Surprisingly, the minimum concentration of TCS (3 μg l-1) was also determined in 

positive control CB, this may be due to the actual concentration of TCS in the river 
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Parthe. At the end of the experiment the concentration of TCS was measured in the 

sediment and biofilm. The results suggest that TCS accumulated more in biofilm than 

in sediment (Table 7.1). The accumulation of the TCS was increased, along the 

gradient of triclosan. Similar to the water samples, the minimum concentration of the 

TCS was determined in sediment for treatment CB. 

 

Table 7.1. Concentration of TCS in glass beads and in biofilm per treatment. 

Treatment TCS 
concentration 
in sediment 
μg/g 

TCS 
concentration 
in biofilm 
μg/g 

CB 0.006 0.27 
T1 0.005 0.53 
T2 0.013 2.71 
T3 0.073 7.50 
T4 0.119 15.14 
T5 0.170 18.64 

 

7.3.2. The stability of the substratum 

The biofilm in all treatments was developed during a 3-week period prior to the start 

of the experiment and on the first sampling day (before TCS spiking) the stabilisation 

effect on the substratum with biofilm was significantly higher (up to 4.8 times) in than 

for the negative control (CT) without the biofilm (Kruskal-Wallis (KW) test, χ2=15.4, 

df=6, p<0.05). The adhesive capacity of the negative control (CT) was below 5 mTesla 

and did not show any significant changes in adhesion/stability over the experimental 

time (Figure 7.3 A). On the first day of the experiment (before TCS spiking), no 

significant differences were found between all of the treatments, suggesting that the 

biofilm was equally developed before it was treated with TCS. On sampling day 3 

(after TCS spiking), all treated cultures exhibited a slight increase (~6%) in the 

adhesion of the substratum, except the treatment with higher TCS concentration T5, 

which showed a rapid decrease of stability by 12% (Figure 7.3 B). In contrast to that 

positive control CB was increased by 24%. After TCS spiking a decrease in substratum 

stabilisation was observed for all treated cultures (Figure 7.3 A), and the overall 

decrease was more pronounced for the treatments with higher and medium 

concentration of TCS, followed by low concentration of the TCS T1 and T2 (Figure 7.3 



CHAPTER 7. Effect of triclosan on natural freshwater biofilm 
 

 175 

B). In contrast, in the positive control CB (without triclosan), the stability of the 

sediment surface increased continuously up to day 10 (Figure 7.3 A), exhibiting an 

overall increase up to 49% as compared to the first day of the experiment (Figure 7.3 

B) and was in average 1.4 times higher than T1, T2, T3 and 2 times higher that T4 and 

T5. There was no significant difference between the TCS treatments including positive 

control CB, in the day 1 and day 3 of experiment. However, after this time there was a 

significant difference between treatments for example day 8 (KW, χ2=27.5, df=6, 

p<0.001) and day 10 (KW, χ2=32.8, df=6, p<0.001). The positive control CB was 

significantly higher than other treatments with triclosan for example day 8 (KW, 

followed by post-hoc SNK test p<0.01). The treatment with higher TCS concentration 

T5 was significantly lower than other treatments for all of this time (KW, p<0.01 

followed by post-hoc SNK test), except the day 10 and 12, where no significant 

difference was found between treatment T5 and T4. On the rest of the experiment 

treatment with low TCS concentrations, T1 and T2, were significantly higher than 

treatments T4 and T5, for example day 8 (KW, followed by post-hoc SNK test p<0.05). 
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Figure 7.3: Biofilm adhesion, measured by MagPI, over the course of the experiment. (A) 

Mean values (n=6 per treatment, ±SE): positive control (CB, ■), negative control (CT, ○), 

T1 (TCS: 2 µg l-1, ∆), T2 (TCS: 20 µg l-1, ●), T3 (TCS: 50 µg l-1, ), T4 (TCS: 100 µg l-1, ▲), 

T5 (TCS: 150 µg l-1, □). (B)-Changes in biofilm adhesion in relation to the first day 

(100%) represented as a dashed line, mean values (n=6, ±SE). 
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7.3.3. Microbial biomass 

Bacterial cell number  

From the beginning of experiment the bacterial cell numbers in all treatments 

determined by flow cytometry were significantly higher than negative control CT 

(KW, χ2=20, df=6, p<0.01), which did not show any significant changes over the 

experimental time. In the first experimental week the bacterial cell numbers 

continuously increased in all treatments up to day 5 (Figure 7.4 A) and decreased 

afterwards, however, the bacterial cell numbers in the positive control (CB) and 

treatment with low TCS concentration T1 increased or remained stable until the end 

of experiment. The increase was most pronounced for the treatments T1 and T3 (up 

to 180%), in other treatments the overall increase was quite similar and did not 

exceed 91% (Figure 7.4 B). The highest bacterial cell numbers were determined in the 

treatments CB and T1 and ranged between 26.4x106-50.6x106 cells cm-3 as well as 

15.2x106-45.6x106 cells cm-3 respectively, followed by T2 and T3 with range 29.4x106-

48.7x106 cells cm-3 as well as 15.5x106 -41.8x106 cells cm-3 respectively and finally T4 

and T5 with range 21.4-38.8 cells cm-3 as well as 18.4-35.2 cells cm-3 respectively. 

There was no significant difference between the treatments at the beginning of 

experiment, however by the second week of experiment differences between 

treatments became significant. For example from day 5 treatments CB, T1 and T2 

were significantly higher than T4 and T5 (KW, χ2=15.6, df=6, p<0.01 followed by post-

hoc SNK test). By day 8 the positive control CB was significantly higher compared with 

T1 and T2 (KW, followed by post-hoc SNK test p<0.01), however, there was no 

significant difference between these treatments at the end of experiment. From day 8 

and until to the end of experiment, treatments CB, T1 and T2 were significantly higher 

than T3, T4 and T5 (KW, χ2=18.2, df=6, p<0.01, followed by post-hoc SNK). After day 8 

treatments T3 and T4 were rapidly decreased and were not significant different from 

T5.  
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Figure 7.4: Bacterial cell numbers over the course of the experiment. (A) Mean values 

(n=3 per treatment, ±SE): positive control (CB, ■), negative control (CT, ○), T1 (TCS: 2 µg 

l-1, ∆), T2 (TCS: 20 µg l-1, ●), T3 (TCS: 50 µg l-1, ), T4 (TCS: 100 µg l-1, ▲), T5 (TCS: 150 

µg l-1, □). (B)-Changes in bacterial cells number in relation to the first day (100%), 

represented as a dashed line, mean values (n=6, ±SE). 
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Microalgae biomass and the effective quantum yield (PSII) 

The changes of biomass as indicated by Fo5 were highly variable within the 

treatments over time (Table 7.2), although the minimum fluorescence of the biofilm 

without triclosan (CB) increased throughout the experiment, in contrast to all TCS 

treatments. 

  

Table 7.2 Biomass development, measured as minimum Chl a fluorescence (Fo5) in 

treatments over experimental time (relative units). 

Fo Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

CB 0.926 0.910 0.940 0.910 0.944 0.993 

T1 0.943 0.904 0.955 0.915 0.968 0.940 

T2 0.903 0.904 0.962 0.899 0.963 0.933 

T3 0.947 0.931 0.899 0.965 0.933 0.931 

T4 0.895 0.902 0.903 0.996 0.927 0.897 

T5 0.899 0.932 0.904 0.994 0.898 0.911 

 

The effective quantum yield did not differ significantly between treatments at the 

beginning of the experiment (day 1 and day 3) (Figure 7.5 A). However, after TCS 

spiking, there were major differences in the inhibition of the photosynthetic yield PSII, 

which were more pronounced along the increasing TCS gradient (Figure 7.5 B). The 

effective quantum yield in treatments CB and T1 increased in comparison with the 

first day of the experiment and remained stable until the end of the experiment. 

Effective quantum yield of samples in CB and T1 treatments were significantly higher 

than other treatments for example day 8 (KW, χ2=16.7, df=6, p<0.01, followed by post-

hoc SNK test) except on day 10, where no significant difference was found between 

CB, T1 and T2. The negative controls without biofilms were undetectable by multi-

wavelength-excitation PAM fluorometry.  
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Figure 7.5: The inhibition of photosynthesis (n=3 per treatment, ±SE), over the course of 

the experiment for positive control (CB, ■), negative control (CT, ○), T1 (TCS: 2 µg l-1, ∆), 

T2 (TCS: 20 µg l-1, ●), T3 (TCS: 50 µg l-1, ), T4 (TCS: 100 µg l-1, ▲), T5 (TCS: 150 µg l-1, 

□). (B)-Changes in photosynthetic activity of microalgae in relation to the first day 

(100%), represented as a dashed line, mean values (n=6, ±SE).  
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7.3.4. Changes in colloidal EPS components 

The colloidal carbohydrate concentrations increased over time in all treatments; 

however the negative controls CT showed negligible concentrations of colloidal 

carbohydrates over the entire period of the experiment (Figure 7.6 A). The increase 

was more pronounced for the treatments T3 (up to 175%), T4 (164%) and T5 (up to 

88%) (Figure 7.6 B). The colloidal carbohydrate concentration in these treatments 

reached a maximum in day 5 of experiment, and ranged between 83.3-229 μg cm-3, 

87.9-232 μg cm-3 and 92.5-201.2 μg cm-3 respectively and were significantly higher 

than CB, T1 and T2 (KW, χ2=18.3, df=6, p<0.01, followed by post-hoc SNK test). The 

positive control CB and treatments T1 and T2 reached a maximum at day 10 of 

experiment and ranged between 137.4-169.2 μg cm-3, 131.5-154.4 μg cm-3 and 122.8-

177.8 μg cm-3 respectively. At the end of the experiment (day 12) the treatments T3 

and T4 still significantly higher than positive control and treatment T1 and T2 (KW, 

χ2=14.3, df=6, p<0.05, followed by post-hoc SNK test), however no significant 

difference was found between treatments CB, T1, T2 and T5. 

 

The water–extractable protein concentrations increased up to the middle of 

experiment and gradually decreased thereafter in all treatments with low and 

medium TCS concentration and the positive control (Figure 7.7 A). The increase was 

more pronounced for treatment T3 (150%), followed by >T2 (77%)>T1 (41%)>CB 

(37%) (Figure 7.7 B) with ranges between 114.5-286.8 μg cm-3 for T3, 144-255.4 μg 

cm-3 for T2, 151.8-214.5 μg cm-3 for T1 and 199.5-274.5 μg cm-3 for CB. In contrast, the 

treatments T4 and T5 with the highest TCS concentration showed a much reduced 

increase over the first week that continued until the end of the experiment (Figure 7.7 

A). At the beginning of experiment there was no significant difference between 

treatments, except the negative control. However after TCS spiking (day 5), the 

treatments CB, T1, T2 and T3 were significantly higher than T4 and T5 (KW, χ2=17.9, 

df=6, p<0.01, followed by post-hoc SNK test) and at the end of the experiment positive 

control CB was significantly higher than another treatment with TCS (KW, χ2=19.1, 

df=6, p<0.01, followed by post-hoc SNK test). The negative controls without biofilms 

showed negligible concentrations of colloidal proteins concentration over 

experimental period. 
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Figure 7.6: Colloidal carbohydrate concentrations, over the course of the experiment. 

Mean values (n=3 per treatment based on n=3 replicates per box, ±SE) is shown for 

positive control (CB, ■), negative control (CT, ○), T1 (TCS: 2 µg l-1, ∆), T2 (TCS: 20 µg l-1, 

●), T3 (TCS: 50 µg l-1, ), T4 (TCS: 100 µg l-1, ▲), T5 (TCS: 150 µg l-1, □). (B)-Changes in 

carbohydrates concentration in relation to the first day (100%), represented as a dashed 

line, mean values (n=6, ±SE).  
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Figure 7.7: Colloidal protein concentrations, over the course of the experiment. Mean 

values (n=3 per treatment based on n=3 replicates per box, ±SE) is shown for positive 

control (CB, ■), negative control (CT, ○), T1 (TCS: 2 µg l-1, ∆), T2 (TCS: 20 µg l-1, ●), T3 

(TCS: 50 µg l-1, ), T4 (TCS: 100 µg l-1, ▲), T5 (TCS: 150 µg l-1, □). (B)-Changes in 

proteins concentration in relation to the first day (100%) represented as a dashed line, 

mean values (n=6, ±SE). 
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7.3.5. Relation between biological variables, surface adhesion/stability and 

triclosan exposure 

A strong linear relationship was determined between sediment stability 

measurements and the effective quantum yield of photosystem PSII (r=0.627, n=35, 

p<0.001, Figure 7.8 A) as well as bacterial cell numbers (r=0.536, n=35, p<0.001, 

Figure 7.8 B) and EPS proteins (r=0.471, n=35, p<0.01, Figure 7.8 C); however, the 

relationship to the colloidal carbohydrate was not significant. Analysis suggests that 

there was no significant correlation between the sediment stability measurement by 

MagPI and all other variables at the beginning of the experiment (day 1 and day 3) 

(Table 7.3). However, during the rest of the experiment, stability was closely related 

to colloidal proteins, bacterial cell number and the effective quantum yield of 

photosystem PSII and to a lesser extent, to colloidal carbohydrates (Table 7.3). On the 

last day of the experiment there was no significant correlation between MagPI 

measurement and colloidal carbohydrates, and strong negative correlation was 

determined between MagPI measurement and bacterial abundance. 

 
Table 7.3 Pearson’s correlation coefficients between surface adhesion (MagPI) and 

colloidal carbohydrates and proteins bacterial cell number and the effective quantum 

yield of photosystem PSII, per each day of the experiment. The significance levels are the 

following: *** p<0.001. ** p<0.01. * p<0.05 

 

Treatment Carbohydrates Proteins Bacterial cell PS II 
Day 1 -0.205 21  -0.372 21  -0.207 21  0.173 21  
Day 3 -0.214 21  0.163 21  0.312 21  0.519 21 * 
Day 5 0.639 21 ** 0.778 21 ** 0.790 21 ** 0.774 21 ** 
Day 8 0.524 21 * 0.774 21 ** 0.740 21 ** 0.669 21 ** 
Day 10 0.546 21 * 0.678 21 ** 0.796 21 ** 0.719 21 ** 
Day 12 0.362 21  0.719 21 ** -0.634 21 ** 0.754 21 ** 
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Figure 7.8:  The relationship (n=35) between microbial biofilm adhesion expressed by 

MagPI (mTesla) versus the effective quantum efficiency PS II (A), bacterial cell numbers 

(B) and colloidal protein concentrations (C). 
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7.4. Discussion 

The effect of triclosan on substratum stabilisation potential of a natural biofilm 

This is a pioneering study that investigates the effect of triclosan (TCS) on the 

stabilization potential of natural freshwater biofilms. A biofilm was developed in flow-

through glass channels with TCS concentrations relevant to environmental 

occurrence. As was explained in section 7.2, selected experimental set-up may create 

problems with preudoreplicates, so some caution needs to be exerted in the 

interpretation of the results. However, on every day of the experiment, the monitoring 

of experimental conditions in each channels was performed (this data is not 

presented in this work). Results of monitoring parameters, such as temperature, pH-

value, conductivity, O2-content and O2-saturation allow to conclude that experimental 

conditions in all channels were similar, thus differences between treatments may be 

addressed to the effect of TCS to microbial community. 

In previous experiment (Chapter 6), the negative effect of triclosan on bacteria 

stabilization potential was observed. The microalgae in former experiments were 

found to be more sensitive to TCS and this fact alongside the highly species specific 

interaction between bacteria and microalgae, make the prediction of the effect of 

toxins on biostabilisation potential of natural biofilm complex. On the first day of 

measurements, after 3 weeks of growth, the sediment stability value as measured by 

MagPI was ~20mTesla. This value is comparable with results obtained in previous 

experiments described in Chapter 6. In previous experiment TCS was inhibitory, but 

did not prevent the settlement of a bacterial biofilm and hence, the stability increased 

in all treatments. In this experiment, however, the rapid decrease in stability of 

natural biofilm was observed in all treatments after TCS spiking, and over time it was 

more pronounced with increasing TCS concentration. In contrast to that, sediment 

stability in positive control CB was increased continuously until the end of the 

experiment. Despite the relatively low initial value, stability of the biofilm in 

treatment CB at the end of the experiment was 1.4 times higher than stability in 

treatments with low and medium TCS concentration and two times higher than 

treatments with higher TCS concentrations. These results suggest a clear negative 

effect of TCS on stability of natural biofilms. This effect cannot be explained by 

bacterial-microalgae interaction such as the production of poly-saturated aldehydes 

from microalgae (Wichard et al. 2005, Ribalet et al. 2008) or algicidal compounds 
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from bacteria (Fukami et al. 1997, Jung et al. 2008) or “batch culture” effects, because 

such a decrease in sediment stability was observed only in TCS treated biofilm and not 

in the positive control. The work also confirmed previous results (Reiss et al. 2002, 

Tatarazako et al. 2004, Neumegen et al. 2005) that microalgae are more sensitive to 

TCS than the directly targeted bacteria. On the other hands, additional nutrient 

produced by microalgae may allow bacterial culture to be are more sensitive to TCS 

than nutrient depleted cultures (Johnson et al. 2009). After one week of experiment 

treatments with low TCS concentration, the cultures showed slightly increases or 

remained stable in terms of adhesive capacity until the end of experiment, which may 

indicate some adaptations or resistance developed by the microorganism to the 

presence of low concentrations of the TCS. In the present experiment, a “batch 

culture” effect was not observed. This may be due to additional nutrient supply from 

microalgae, via the additional fresh water added after one week of experiment or 

perhaps the effect become stronger after more than 2 weeks of experiment. In all 

treatments the stability was significantly higher than the negative control with 

triclosan. This fact suggests that TCS does not affect the cohesion of the sediment 

particles and the stability originated from development of the biofilm. Sediment 

stability values in the negative control CT do not show variations over the course of 

the experiment, confirming that there was no contribution of gravity forces to overall 

stabilisation. 

 

EPS responsible for biostabilisation? 

In recent studies (Underwood and Paterson 2003, Gerbersdorf et al. 2009), natural 

biofilm biostabilisation was directly linked to quantities of EPS components, 

carbohydrates and proteins, and showed increasing EPS production may result in an 

increase of sediment stability. In the present experiment, the higher carbohydrate 

concentration was determined in treatments with higher TCS concentrations. This is 

opposite to sediment stability data, where higher stabilisation effect was observed in 

treatments with no or low TCS concentration. The data suggest that TCS may elevate 

EPS carbohydrate production along the TCS gradient. These results support previous 

studies, that the presence of toxins could elevate EPS productions from 

microorganisms (Schmitt et al. 1995, White and Gadd 1998, Fang et al. 2002). 

However there were no significant differences in quantity of EPS carbohydrate in 
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treatments CB, T1 and T2. This may be explained if only medium and higher TCS 

concentrations cause microorganisms to produce higher EPS levels. Also at higher 

levels triclosan appears to act as bactericide which may cause cell lysis and 

subsequent fatal loss of intracellular material (Villalain et al. 2001). Thus some of the 

recorded EPS compounds may related to intracellular pools (Priester et al. 2006) 

which may not be effective for sediment stabilisation. The bactericidal effect in 

treatment T3, T4 and T5 was confirmed by microbial biomass data. At the end of the 

experiment bacterial cell number in treatment T3, T4 and T5 were significantly lower 

than all other treatments. Inhibition of microalgal photosynthetic activity was also 

observed in these treatments as well as in treatment T2. This may be explained by 

higher sensitivity of microalgae when low concentrations of triclosan may have 

already inhibited the photosynthetic activity. Similar to the previous experiments 

(Chapter 3, Chapter 4), after one week of experiment significant decreases in EPS 

carbohydrate production in all of the treatments was observed, which may be due to 

nutrient-depleted conditions in all treatments. However, after additional fresh water 

was supplied (day 10) a slight increase in EPS carbohydrate production was 

determined in all treatments. In contrast to EPS carbohydrate, the EPS protein 

production was more pronounced for positive control and treatments with low and 

medium TCS concentration (T1, T2 and T3). This may be due to different origins of 

EPS compounds. It was previously recognized that microalgae secrete mainly 

polysaccharides (Staats et al. 1999) and bacteria mostly contributed in proteins pools 

(up to 60%, Flemming and Wingender 2001b). Bacteria may be more tolerant to the 

presence of low concentrations of TCS than microalgae and therefore produce higher 

amounts of EPS protein to protect cells as response to the toxin.  

Similar to EPS carbohydrate, after one week of experiment, a decrease in EPS protein 

concentration was observed in all of the treatments. However the decrease was more 

pronounced for treatment under TCS exposure as compared to the positive control 

CB, suggesting that under nutrient-depleted conditions, TCS may affect 

microorganism secretion of EPS protein, with direct implication on the adhesion 

capacity and sediment stability. The sediment stability is probably a net result of 

coexisting of EPS compound, such as carbohydrates and proteins (Pennisi 2002, 

Gerbersdorf et al. 2009), in terms of stabilizations the reduction of one compound 

may be compensated for by enhancement another and vice versa. 
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Sediment stability and microbial biomass. 

Stability has been directly linked to EPS quality and quantity together with microbial 

biomass in the past (Yallop et al. 2000, Perkins et al. 2004, Gerbersdorf et al. 2008). In 

the present experiment microbial cells were obviously stressed by the presence of 

TCS; however bacteria demonstrated a delayed response in terms of cell number. 

After TCS spiking bacterial cell numbers increased in all treatments, however the 

increase was more pronounced for treatments with low and medium TCS 

concentration. This fact may be explained by hormesis, a well-known dose-response 

phenomenon characterized by a stimulatory response of various growth parameters 

at low toxin doses, followed by an inhibitory response at higher doses (Calabrese 

2001b) and can occur after an initial disruption in homeostasis (Calabrese 2001a). 

After one week, bacterial cell numbers decreased in all TCS treatments except 

treatment T1 (Figure 7.4). After this time the bacterial cell numbers slightly increased 

(T1) or remained stable (T2) and at the end of experiment the bacterial cell number in 

treatments CB, T1 and T2 were not significantly different from each other. This may 

indicate that bacteria developed a resistance (T1) or adapted (T2) to the presence of 

TCS at the relevant concentration. In contrast, the negative effect on bacterial biomass 

was observed in the treatments with medium and higher TCS concentration. Bacteria 

biomass decreased T3>T4>T5 along the gradient of TCS concentration after the first 

week of the experiment. At the end of experiment, the bacterial cell number in these 

treatments, were comparable with values at the start of the experiment and were not 

significantly different from each other. These results may suggest the bactericidal 

effect of TCS in concentrations in excess of 100 g l-1. 

To assess to disturbances to the photosystem of the algae, Chl a fluorescence 

quenching analysis was applied. This method has been developed to monitor the 

influence of a stress factor on microalgae photosynthesis and provides information of 

physiological responses concerning the photosynthetic status of microalgae (Schmitt-

Jansen and Altenburger 2008). Similar to the bacterial cell number, after TCS spiking, 

the photosynthetic efficiency of microalgae in positive control CB and treatment with 

low TCS concentrations T1, increased slightly or remained stable and was significantly 

higher than other treatments. After one week of the experiment the inhibition of the 

photosynthetic efficiency of these treatments was observed (day 8). The inhibition of 
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photosynthetic activity in these treatments may be due to the presence of TCS 

concentration in the treatment T1, as well as minimum concentration of TCS in 

positive control. However, an increase in the photosynthetic yield in these treatments 

with time indicated the adaptation of microorganism to these concentrations or 

possible shift from a sensitive to a progressively more tolerant community. In other 

treatments, the inhibition of the photosynthetic yield PSII was observed immediately 

after TCS spiking (day 5) with continuous decrease until the end of experiment and 

was more pronounced for treatments with higher TCS concentrations T4 and T5. 

These results indicate that inhibition of photosynthetic activity of microalgae may 

occur with the presence of minimal TCS concentrations, however inhibition of 

bacterial growth rate only occurred in treatments with much higher concentrations. 

These data suggest a different mode of TCS action ranging from suppressing 

metabolism to bactericidal effects depending on the TCS concentration. General 

relationships between biological variables and sediment stability (MagPI) indicate 

that in the presence of a toxin the substratum stabilization is correlated with 

microbial biomass as well as colloidal EPS proteins, and to a lesser extent to colloidal 

carbohydrates. In fact, the statistical correlations for each sampling day suggest there 

were no significant correlations between sediment stability and EPS compounds 

(carbohydrates and proteins) and bacterial cell number at the beginning (day 1, day 

3) of the experiments. However after TCS spiking, the MagPI measurements were 

strongly correlated with all of the parameters. The described experiments were 

designed to simulate natural scenarios for ecological relevance and applicability. The 

significant impairment of stabilisation capacity of the natural freshwater biofilm was 

determined. The data suggest that exposure to triclosan affects on microbial biomass, 

may change the EPS production and has a great influence on the dynamics of 

sediments and associated pollutants with wider implications for the aquatic 

ecosystems and beyond.  
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Chapter 8  

 

General Conclusion and Future Work 

To summarise this study I would like to emphasise the advantages and limitations of 

described methods and to propose some ideas to future work. 

 

Methods:  

A great advantage of MagPI, described in Chapter 3, is the ability to measure biofilm 

adhesion in a non-destructive manner, a variable that has rarely been considered, but 

is at the same time of great significance for binding pollutants, trapping nutrients, 

enhancing sediment stability, and capturing newly deposited particles. For instance, 

the ecosystem service (Paterson et al. 2008) of particle capture and retention is of 

great importance to sediment systems in balancing the replacement of material lost 

by tidal erosion (Verney et al. 2006) or wave action (Andersen et al. 2007), enhancing 

the nutrient status (Freeman and Lock 1995) and offering binding sites for pollutants 

(Ghosh et al. 2003). This biofilm adhesion can be measured with high sensitivity, and 

small changes in developing biofilms can be demonstrated that would be unnoticed 

using established erosion devices. MagPI comes at comparatively low cost, and with 

basic practical skills and technical understanding it is comparatively easy to build and 

use. 

Although the permanent magnet is valuable for the use in the field, MagPI cannot 

easily be used if a wet biofilm is not submerged, such as during tidal emersion period. 
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The measurements have to be performed underwater by the help of a water-filled 

chamber, otherwise the magnetic particles interact with the surface tension of the 

water film and these forces confound the measurement of adhesion.  

This method can be used for any subtidal or intertidal sediment, including complex 

biofilm-based systems such as stromatolites (Paterson et al. 2008), but the 

measurements of moist surface should be made underwater because of surface 

tension effect. In addition, dry exposed surface, where adhesion is important, might 

also be examined. To-date, during this experiment a very few substrata were tested, 

but stonework, tree surfaces, leaves, etc., remain possible candidates for investigation.  

The MagPI represents an economically viable, easily constructed, easy-to-use tool to 

determine surface adhesion, a proxy for the retentive capacity of the substratum. The 

knowledge of surface adhesion can provide useful insights for particulate pollutant 

capture, nutrient trapping, enhancing sediment stability, and capturing particles in 

various depositional systems such as intertidal flats, shallow submerged sediment 

systems, and stromatolites, to name but a few. In contrast to established erosion 

devices, MagPI can determine small changes in surface properties below the point of 

incipient erosion with high sensitivity, high accuracy, and high repeatability. The 

calibration of the device by the gauss meter makes the comparison of the data 

between different experiments and various laboratories possible, which is an 

important prerequisite for future success in biofilm research. Two types of magnets 

have been examined here; the high-power permanent magnet for increased mobility 

and application in the field and the electromagnet, which is to be preferred in the 

laboratory due to a higher accuracy in calibration and measurement. The MagPI 

methods presented here are likely to have future applications in environmental, 

medical, and biotechnological research. 

 

Microbial interactions and effects on stability  

Results presented in Chapter 4 suggest that bacteria may produce as copious amounts 

of EPS as microalgae culture, while the combination of bacteria and diatoms in the 

mixed assemblages might result in synergy in terms of EPS carbohydrate production 

but not for colloidal protein production. In-depth investigation of interaction of main 

biofilm components such as heterotrophic bacteria and autotrophic microalgae, and 

as mixtures in terms of their individual contribution to the EPS pool was done. 
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However, contamination of the microbial culture in this study was problematic, thus a 

mixture of antibiotics was used to inhibit bacterial growth, which in itself created 

problems. Chloramphenicol has been reported to suppress the growth of microalgae; 

however the actual effect of antibiotics on microalgae EPS production is still 

unknown, leaving an opening for future investigation into the effects of antibiotics on 

microbial EPS production. 

Whilst the positive effect of nematodes on microbial growth and EPS production was 

determined, their impact on sediment stability is mostly unknown. Despite impressive 

enhancement of microbial growth and EPS production in the presence of nematodes, 

their feeding activity or bioturbation may have a negative effect on overall 

stabilization processes and this needs to be investigated further, using traditional or 

newly development technics. 

The results described in Chapter 4 conclude that interaction between species is highly 

species-specific under varying abiotic scenarios and requires further investigation. 

Increased levels of biodiversity, such as combinations of bacteria and microalgae or 

natural microbial assemblages and nematodes may provide enhancement of EPS 

production. However, as this study suggests, differences in EPS composition may have 

significant effects on biostabilisation and need to be investigated with high resolution 

chemical analysis. 

 

The microbial assemblages-isolated from estuarine sediments-significantly stabilized 

the non-cohesive test substratum from day 1 onwards as determined by MagPI. Thus, 

this new technique has been very successful in determining early and subtle changes 

in growing biofilm properties. By the sensitive measurement of biofilm adhesion, a 

proxy for sediment stability, this method provides a useful addition to the variables 

measurable by established erosion devices (Gerbersdorf et al. 2009). The stabilisation 

of the substratum as described in Chapter 5 was highly correlated with microbial 

biomass and was due to the secreted EPS matrix. Both EPS concentrations (quantity) 

and EPS components (quality) were important. In this context, the EPS protein seems 

to play a critical role for adhesion/cohesion of the substratum. Bacterial assemblages 

had a significant higher stabilisation potential as compared to the axenic microalgae 

cultures. The explanation is probably in the conformation of the polymeric matrix and 

may reflect the functional roles (attachment, movement) that the EPS provides. The 
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tendency in the literature to exclude the contribution of bacterial EPS to sediment 

stability in the field should be re-addressed and the importance of bacterial 

assemblages recognized. The investigation of biostabilisation in natural marine or 

freshwater biofilm should not be performed without assessment of bacterial impact 

on these processes. On the other hand, monospecific microalgae culture shows 

differences in stabilisation capacity, probably due to different degrees of substitution 

and different structures of the main EPS chains and in this regard may be 

characterised as strong or weak species in adhesion/cohesion. The mixed 

assemblages provided greater sediment stability than either community on its own. 

This probably due to a different origin of EPS produced by bacterial or microalgae 

assemblages and suggests both assemblages have an important role in substratum 

stabilisation and are more effective together. 

 

Influence of toxins on microbial stabilisation capacity 

Microbial colonisation resulted in significant substratum stabilisation as was shown in 

previous chapters. However, in response to varying abiotic conditions (e.g. presence 

of pollutant) notable shifts in the populations affected the secretion of EPS and thus, 

biostabilisation. The possible effect of triclosan (TCS) on stabilisation potential of 

bacterial assemblages was described throughout this thesis. Chapter 6 focused on the 

effect of triclosan on bacterial assemblages due to their impressive stabilisation 

potential. These microbes dominate in submerged biofilms in rivers and coastal areas. 

The work described in Chapter 6 is a pioneering study into the impact of toxins on 

biostabilisation potential of aquatic microorganisms. These investigations were only 

possible by using the newly development and very sensitive MagPI technique. The 

negative effect of TCS on bacterial biomass and growth rate were previously 

described. It is a widely accepted fact that presence of toxins may stimulate microbial 

EPS production (Fang et al. 2002, Iyer et al. 2004, Priester et al. 2006) and as a result 

enhance bioaccumulation capacity of microbial biofilm (Schmitt et al. 1995). In this 

regard, prediction of biostabilisation processes in biofilms with the presence of 

triclosan is complex. In order to determine the substratum stabilisation process in the 

presence of toxins, more investigations are required. Results obtained suggest that 

concentrations of TCS relevant to environmental conditions do not to stop 

development of a bacterial biofilm. However, it has a significantly inhibitory effect on 
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bacterial stabilisation capacity. This effect was more pronounced along the triclosan 

concentration gradient. These results were mirrored by EPS carbohydrate production 

and less significantly by EPS proteins. TCS exposure also affected bacterial growth 

rate, but the most damaging effect on bacteria was observed in treatments with 

highest TCS concentrations. It is recognised that bacteria are very sensitive to changes 

in abiotic conditions. Changes in nutrients or salinity may have a huge impact on 

bacterial stabilisation capacity. For further extension of this study, experiments 

performed with different abiotic condition, such as nutrients, salinity or temperature 

regimes should be carried out. 

 

Triclosan was developed as a broad-spectrum antibacterial compound. However it 

also generates acute and chronic toxic effects on non-target organisms, especially on 

microalgae. Based on the findings of Chapter 6, an investigation into the impairment 

of the stabilisation capacity of natural freshwater biofilms by TCS exposure to 

different concentrations was described (Chapter 7). Biochemical parameters and 

sediment stability were measured over two weeks of experimental time. The results 

showed significant changes in EPS quantity and quality over time along with 

inhibition effect of TCS on microbial biostabilisation. This negative effect was more 

pronounced when triclosan concentration increased. It is possible that a bacteriostatic 

effect was observed in treatments with low triclosan concentration. However, in 

treatments with high TCS concentrations bacterial growth was significantly 

hampered. Microalgal photosynthetic activity was also inhibited by TCS determined. 

To summarise, triclosan exposure affects on microbial biomass and EPS production 

and impairing the stabilisation capacity of microbial biofilm The studies on 

environmental risk assessment of pollutants on biostabilisation processes needs to be 

continued on the different substrata (e.g. natural sediment), by involving of other 

aquatic organisms (e.g. nematodes) and testing other hazardous compounds (such as 

pesticides, heavy metals or surfactants). Further, studies are needed to address the 

environmental risk of pollutants and identify the causes of ecological deterioration as 

the European Water Framework Directive requires. Microbial population and biofilms 

are at the centre of the ecology and metabolism of many aquatic ecosystems and they 

may act as an early warning system for the impact of toxic chemicals on the 

environment and as such we need to expand our knowledge to these systems. 
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