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Abstract

Opportunistic networking involves forwarding messages between proximate users, who may or may not know
one another. This assumes that users are willing to forward messages to each other. This assumption may not hold
if users are concerned about using the opportunistic network service. One such concern may be due to privacy; for
instance, users’ locations may be leaked.

A privacy-concerned user may therefore disable their mobile device’s opportunistic-networking features at
various times, to preserve their privacy. This paper studies the impact of location privacy concerns on the
performance of an opportunistic network. Using data from a real-world location-aware user study to develop a
privacy model, we conduct trace-based simulations of various opportunistic routing protocols with two real-world
traces. We find that users’ location privacy preferences may potentially reduce the delivery performance of an
opportunistic network to zero.

I. INTRODUCTION

An opportunistic network leverages the various wireless devices that humans now carry, in conjunction
with human contact patterns, to enable a new communication paradigm. As people come into contact with
each other, their devices can communicate wirelessly to send and receive data [22].

Although the opportunistic network may facilitate communication, those users who participate may
have privacy concerns — for example, regarding the confidentiality of their transmitted messages, or the
potential leakage of their private information [21].

In this paper, our focus is on location privacy. A user who is concerned about privacy may choose
to disable their device’s opportunistic networking features at various times, thus preserving privacy by
rendering the user invisible to the network, depending on whether they feel that participating in the
opportunistic network is acceptable. How might doing so affect the performance of such an opportunistic
network? Our goal is to explore this question.

In this paper, we:
• present a dataset-independent empirical model of users’ location privacy preferences, based on a

real-world user study of 80 participants.
• demonstrate methods for applying this privacy model, in different modes, to datasets containing

human mobility patterns.
• evaluate the impact on opportunistic network routing performance on application of the privacy model.
Our contributions are to provide an empirical model of users’ location privacy preferences, and, to our

knowledge, the first application of such a model to opportunistic network routing.
This paper is structured as follows. Next, we discuss related work, and introduce our empirically-

determined model of location privacy preferences in Section III. We discuss the application of this privacy
model to opportunistic routing protocols in Section IV. Section V evaluates the performance impact using
two real-world traces, and finally in Section VI we conclude and discuss ongoing work.
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II. RELATED WORK

Our work is at the overlap of two research areas: privacy in opportunistic networking, and location
privacy in general. Both of these areas have been the focus of much research in recent years.

A. Privacy threats in an opportunistic network

For a participant in an opportunistic network, there are many possible privacy threats. For example:
• Disclosure of message content, enabling it to be read by unintended parties. This threat may be

mitigated with encryption, if the sender and destination are able to agree on encryption keys [23].
• Messages may be traced as they progress through the opportunistic network, to infer communication

patterns [18].
• Social network information may be used to inform routing decisions [14], [8], [4]. This social network

information may be leaked via the routing scheme [21].
• Locations of the participants may be inferred from the messages which their mobile devices carry

— whether in absolute terms (“Alice is at the supermarket”), or relative terms (“Alice and Bob were
in the same location this afternoon”) [21].

Some of these privacy concerns may be mitigated by technical measures, such as encryption. Even
though a public key infrastructure may not be well-suited to opportunistic communications [10],
decentralised mechanisms such as identity-based cryptography [23] — where the identity of each node
acts as a key — may allow cryptographic solutions to some of the privacy risks. For example, if nodes
may communicate securely, then reading message content, or tracing message progression through the
network, becomes much more challenging.

But even identity-based cryptography requires a global trusted third party to vouch for new nodes
entering the network (by generating the necessary private keys). This may be infeasible in certain types
of opportunistic network, since access to the wider Internet may be impossible before encountering a new
node. In such scenarios, it may be possible to employ simpler decentralised techniques, such as obfuscating
information at the routing protocol or application layer [21], or utilising trusted social contacts [10].

B. Location privacy

Location privacy has been studied in various contexts, such as sensor networks [15]; pervasive
computing applications [3], [27]; and indeed opportunistic networks [19]. The focus, however, has been
on investigating the trade-offs involved in the protocols which work to preserve privacy, rather than
considering how users’ own privacy-preserving behaviours may affect network performance, as is our
focus here.

In the context of publishing sensed location information, various obfuscation techniques have been
proposed [1], [17], [28]. User studies have also been performed to determine how users respond to various
types of obfuscation [5]. But the focus has been on anonymity, rather than performance of a distributed
system.

Finally, we note that existing location-sharing applications have received recent publicity regarding
inherent privacy threats. For example, the website “Please Rob Me”1 gathered publicly-available
information from Twitter and FourSquare in order to infer whether or not a person was at their home
address [12] — thus raising awareness of a privacy threat of which many users were presumably unaware.

III. EMPIRICAL MODEL OF PRIVACY

To investigate whether privacy concerns may have an impact on opportunistic network routing
performance, it is necessary to have a model of such privacy concerns.

1http://pleaserobme.com/

http://pleaserobme.com/
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Category Proportion in category Location sharing choice
Nobody Friends Everyone

Open 19% (15/80) 7.8% 5.7% 86.5%
Social 49% (39/80) 7.6% 77.8% 14.6%
Closed 23% (18/80) 70.1% 20.4% 9.5%

Variable 10% (8/80) 32.7% 33.0% 34.3%

TABLE I
LOCATION-SHARING BEHAVIOUR ON FACEBOOK, BY PARTICIPANT CATEGORY. 80 PARTICIPANTS CARRIED A LOCATION-SENSING

MOBILE PHONE FOR ONE WEEK AND WERE ASKED WHETHER THEY WOULD SHARE THEIR LOCATION AT VARIOUS TIMES AND PLACES.
ROWS MAY NOT ADD UP TO PRECISELY 100% DUE TO ROUNDING.

A. User study

Developing a model requires data on users’ privacy behaviour in opportunistic networks, but collecting
such data is not straightforward. To collect high-quality data, it may be required to build, deploy, and
measure user behaviour in a real, large-scale opportunistic network. But this may be time-consuming and
impractical — and moreover, privacy behaviour in such an experimental network may not reflect actual
behaviour, since users may be unfamiliar with these new technologies and so act in different ways [20].
Thus, to develop our model, we instead measured privacy behaviour by performing a smaller-scale user
study which investigated the location-sharing privacy preferences of 80 users of the popular online social
network Facebook.2

The purpose of this study was to determine how widely participants would accept their current locations
being broadcast to their friends online. Would a participant be happy to share some locations to the whole
world, while others to select friends or to nobody at all? Are some participants more inclined to share
their locations than other participants? Can we quantify location-sharing behaviours?

Participants in the experiment carried a location-sensing mobile phone for one week of their day-to-
day lives. Due to resource constraints — we had 20 mobile phones available, but 80 participants — we
conducted the experiment in four one-week runs, each with 20 participants. Two runs were conducted in
a small UK town, St Andrews; the other two runs were in a large UK city, London. Participants were
undergraduate students, who were not studying in the Computer Science department (so that they would
not be known by us), and who claimed to use Facebook daily. Further experimental details can be found
in [2].3

Each participant was prompted up to 20 times per day to choose how widely their current location could
be published on Facebook — to everyone, to some or all of their Facebook social contacts (“friends”),
or to nobody at all.

By analogy to existing location-sharing applications, and the publicity surrounding information leakage
(see Section II-B), we believe that privacy choices for location-sharing behaviour when broadcasting
locations via Facebook will not be dissimilar to those for an opportunistic network participant. One
privacy risk associated with participation in an opportunistic network is the loss of location privacy.
Should privacy threats due to information leakage in a real opportunistic network deployment receive
similar publicity to similar threats in extant systems, then we believe that these location-sharing choices
will converge to those for location broadcast, as we have measured in this user study.

B. Analysis

As is common in other privacy models [25], we segment the participants into categories according
to their privacy behaviour, i.e., their responses to the prompted questions (see Table I). We define four
categories:

2http://www.facebook.com/
3This paper describes two of the four runs — the two St Andrews runs — since it was published part-way through running the experiment.

http://www.facebook.com/
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• Open: Participants usually shared their location publicly with everyone, in over 50% of responses.
• Social: Participants usually shared their location with some or all of their Facebook friends, in over

50% of responses.
• Closed: Participants usually did not share their location to anybody at all, in over 50% of responses.
• Variable: Participants did not have consistent location-sharing behaviour. They would sometimes

share with nobody, with friends, and with everyone.
For each of these four categories, we take the mean of the users’ location sharing choice proportions

(nobody, friends or everyone) by user, in order to obtain Table I.
By simulating users and their sharing choices according to these statistics (Table I), we create a privacy

model for users’ location sharing preferences. This privacy model is dataset-independent, and so may be
applied to a variety of datasets for opportunistic network routing simulations.

IV. ROUTING PROTOCOLS

We now describe how our privacy model can be applied to opportunistic network routing simulations.

A. Node categorisation
At the start of each simulation run, each node (i.e., simulated participant) is randomly assigned to one

of the categories (open, social, closed, variable), according to the proportional size of the category, for
the duration of the run.

B. Routing protocols
We investigate two routing protocols, each with three modes of behaviour: a non-privacy-aware mode

for ground truth, and two privacy-aware modes. The default (non-privacy-aware) versions of the protocols
are:
• Epidemic routing (Epid): Messages are flooded through the network, with copies forwarded during

every encounter [24].
• Simple social network routing (SNR): Each message is forwarded between members of the original

sender’s social graph neighbours (friends). So each message contains a copy of the original sender’s
friends, and is forwarded during encounters between these friends of the original sender.

C. Privacy modes
For each of the two routing protocols, we simulate three modes of privacy behaviour. While it is possible

to think of many more behaviours, we believe that three modes is sufficient for investigating the impact
of privacy, and moreover in previous work we have demonstrated that this constrained number of privacy
choices is a usable compromise for privacy policies for ubiquitous computing environments [16]. Our
chosen three modes are:
• Default (D): Privacy preferences are ignored. We simulate this behaviour for ground truth.
• Friendly (F): Nodes are modelled as being willing to share with their social network friends. If

the overall privacy choice is everyone then the nodes behave as in the default case; if nobody then
messages are not exchanged; if friends then as the default case only if the two nodes involved in
this encounter are friends (otherwise messages are not exchanged).

• PubPriv (PP): Nodes are modelled as either being fully public (no privacy concerns), or fully private
(any privacy concerns result in disregarding the encounter) — with nothing in-between. If the overall
privacy behaviour during an encounter is everyone, then messages are exchanged as in the default case.
Otherwise (i.e., if the overall privacy behaviour is friends or nobody), messages are not exchanged.

During each encounter between a pair of nodes, each of the two nodes randomly picks a privacy
behaviour of {nobody, f riends,everyone}, weighted according to the location sharing proportions
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associated with that node’s category. Messages are then exchanged depending on the chosen privacy
behaviours for that encounter. The overriding choice is the more restrictive of the two nodes’ privacy
behaviours. For example, if one node picks nobody and the other picks everyone, then the overall choice
is the more restrictive nobody.

V. EVALUATION AND RESULTS

We now evaluate the routing protocols, to determine the performance impact of the three modes of
privacy behaviour.

A. Datasets
We perform trace-driven simulation using a custom Python opportunistic-network simulator, for two

real-world datasets containing encounters and social networks.
• LocShare: A dataset derived from the location-sharing privacy user study described above. In the

user study, participants interacted with a custom-built Facebook application called LocShare (named
for location share). We derive encounters based on proximity (within 10m) of the participants in
the study, inferred using the locations sensed by the mobile phones which they carried. The social
network information is Facebook friendships.

• Reality Mining: The well-known Reality Mining dataset collected at MIT [9]. 97 university members
(students and staff) carried mobile phones during their daily lives for an academic year. These phones
recorded the results of periodic Bluetooth scans. We define Bluetooth encounters between participant
devices in our simulations as opportunities for message exchange in an opportunistic network. As
in [21], we extract social network information from the mobile phone address books.

We thus perform trace-driven simulation using the encounter traces — i.e., the times at which pairs of
nodes encountered one another — obtained from each dataset.

B. Simulation parameters
We use the following simulation parameters:
• 100 runs per data point.
• 100 messages per run.
• Unicast messages, from the sender to one of the sender’s social network neighbours (friends). Note

that although messages are unicast (destined for one particular recipient), the message may follow
multiple paths through the network in order to reach that recipient.

• TTL of one day.
• One week per simulation.4

• Infinite buffers; infinitely-fast transmission.5

Following [21], messages which arrive in zero-time (i.e., from a direct link between the original
sender and final recipient) are excluded from the analysis because, when sender and recipient are in
proximity, a file-transfer application would be able to exploit more efficient forms of communication than
an opportunistic network. By excluding these transfers, we are able to focus on the performance of the
network in non-trivial opportunistic scenarios.

C. Results
Figures 1–4 show the performance of each of the routing protocols, as measured by two metrics [14]:

4For LocShare, there are four one-week parts to the dataset; we therefore simulate 25 runs with each of the four one-week parts to make
up the 100 runs for each data point. For Reality Mining, we pick a random one-week interval for each of the 100 runs — but, following [21],
we select only one-week intervals where there are sufficient numbers of nodes present for non-trivial routing to be possible.

5We are investigating the performance impact of privacy preferences, so we do not wish to set arbitrary constraints on buffer size or
transmission rate, since these may confound the results.
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Fig. 1. LocShare dataset: delivery ratio. Privacy concerns (Friendly and PubPriv modes) lead to a dramatic fall in the delivery ratio, for
both Epid and SNR.

• Delivery ratio: proportion of delivered messages, out of the total number of unique messages
generated.

• Delivery delay: time taken for a message to first reach its destination.
Figure 1 shows that routing performance is significantly reduced for the LocShare dataset when taking

into account privacy concerns in the Friendly and PubPriv privacy modes, as compared to the baseline
Default mode. For epidemic routing, the median delivery ratio6 falls from 34% to 5% when using the
Friendly privacy mode; the situation is compounded if we assume that users are even more private (PubPriv
mode), where delivery falls further to 1%. SNR shows a similar trend: a fall in median delivery ratio
from 13% (Default) to 2% (Friendly), or to zero (PubPriv). Delivery delay is, however, not significantly
affected for those messages which arrive, as shown in Figure 2: there is wide variation in the delay, and
each mode’s boxes overlap.

Figure 3 shows that a similar trend holds for the Reality Mining dataset. For epidemic routing, the
median delivery ratio falls from 28% (Default) to 8% (Friendly), or to 3% (PubPriv). For SNR, the fall is
from 13% (Default) to 6% (Friendly), or again to zero (PubPriv). Like for the LocShare dataset, Figure 4
shows that the delivery delay is not significantly affected for those messages which arrive.

6Note that the low delivery ratios, in absolute terms, are typical of opportunistic routing simulations: the datasets used, while collected
from real-world users, are from experimental settings that are not as highly-connected or dense as we would expect in a real large-scale
deployment.
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Fig. 2. LocShare dataset: delivery delay. Privacy concerns (Friendly and PubPriv modes) do not dramatically affect delivery delay: there
is wide variation in the delay, and the boxes overlap for each mode.

D. Discussion

Our results suggest that users’ privacy concerns may lead to dramatically lower routing performance
for opportunistic networks. What are the implications for the designers of future systems?

If opportunistic network applications or routing protocols leak information unnecessarily, then users
may become less willing to participate in the network. For example, perhaps the users would act closer
to the PubPriv mode, with the associated very low delivery performance, rather than the Friendly or
Default modes. It would be paramount for protocol designers to minimise the amount of unwanted private
information leaked, in order to allay the privacy concerns of most users, and thus indirectly improve the
performance of the network.

We also note that this may be even more pressing a concern than these results show. The privacy model
described in Section III was derived from a user study involving heavy Facebook users. Perhaps such
users are less privacy-concerned than the average opportunistic network user would be. Alternatively,
the opposite may be true: perhaps such users are more privacy-concerned than the average person —
say from having gained direct experience of privacy breaches through their Facebook experiences. Or
external factors, such as changing privacy social norms or incorporating suitable incentives to encourage
participation in the opportunistic network, may offset the privacy concerns and thus make the issue less
pressing. We highlight this as an area for future research.
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Fig. 3. Reality Mining dataset: delivery ratio. Privacy concerns lead to a dramatic fall in the delivery ratio, for both Epid and SNR.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced an empirically-determined dataset-independent model for users’
location privacy concerns. We demonstrated through simulation with two real-world datasets that these
privacy concerns may significantly impact opportunistic network routing performance, as measured by the
metric of message delivery ratio — potentially reducing the delivery ratio to zero. Message delivery delay
is, however, not significantly affected for those messages which do arrive. Our results raise a number of
open questions for future work.

We plan to investigate more sophisticated privacy models. For instance, is there a correlation between
privacy preferences and the location of an encounter? We have also assumed (Section III-A) that the privacy
behaviour of heavy Facebook users corresponds to that of (potentially-pseudonymous) opportunistic
network users. Future work needs to be conducted to test whether this assumption holds.

Future work might also investigate more complex scenarios — for example, the performance of a
privacy-preserving protocol, which may alleviate users’ location privacy concerns (and hence reduce the
impact on performance from user behaviour) by preserving privacy, but potentially at a performance cost
from the protocol itself.

A potential limitation of our privacy model is that we asked users for their preferences to disclose
their exact location — to the accuracy of a GPS sensor. Should location information be leaked via
participation in opportunistic networks, then perhaps only coarser locations may be discoverable by other
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Fig. 4. Reality Mining dataset: delivery delay. Privacy concerns do not dramatically affect delivery delay.

users. Since coarse locations introduce a degree of obfuscation, thus implicitly providing users with
increased privacy [5], we plan to investigate how user preferences may vary depending on the granularity
of their shared location, within the context of an opportunistic networking application.

If users’ location privacy concerns can have such an impact on opportunistic network performance, might
other privacy concerns (for example, about some malicious node gathering and broadcasting information,
or the possibility of the revelation of users’ friends lists [21]) also have a performance impact? To find
out, we need reliable data on other types of privacy concerns in these networks.

More data on encounters would also be useful: existing datasets used to evaluate opportunistic network
protocols are relatively small-scale compared to the population of a town or city; perhaps evaluation
against a larger-scale (and hence perhaps more-highly-connected) dataset would yield new insights. We
are searching for such datasets.

Finally, we also note that some individuals may wish to heavily participate in the network — either
altruistically [26], [11], or due to another incentive, such as reputation, payment or barter [6], [13], [7].
Perhaps this desire to participate may outweigh their usual location privacy concerns? Future work may
investigate this trade-off.
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