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SUMMARY.  Double-observer line transect methods are becoming increasingly 

widespread, especially for the estimation of marine mammal abundance from aerial and 

shipboard surveys when detection of animals on the line is uncertain.  The resulting data 

supplement conventional distance sampling data with two-sample mark-recapture data. 

Like conventional mark-recapture data, these have inherent problems for estimating 

abundance in the presence of heterogeneity.  Unlike conventional mark-recapture 

methods, line transect methods use knowledge of the distribution of a covariate which 

affects detection probability (namely distance from the transect line) in inference.  This 

knowledge can be used to diagnose unmodelled heterogeneity in the mark-recapture 

component of the data.  By modelling the covariance in detection probabilities with 

distance, we show how the estimation problem can be formulated in terms of different 

levels of independence.  At one extreme, full independence is assumed, as in the Petersen 

estimator (which does not use distance data);  at the other extreme, independence only 

occurs in the limit as detection probability tends to one.  Between the two extremes, there 

is a range of models, including those currently in common use, which have intermediate 

levels of independence.  We show how this framework can be used to provide more 

reliable analysis of double-observer line transect data.  We test the methods by 
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simulation, and by analysis of a dataset for which true abundance is known.  We illustrate 

the approach through analysis of minke whale sightings data from the North Sea and 

adjacent waters.  

 

KEY WORDS: Distance sampling; Double-observer methods; Full independence; Limiting 

independence; Line transect sampling; Point independence. 
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1. Introduction 

Distance sampling (Buckland et al., 2001) is widely used for estimating animal 

abundance.  In line transect sampling, an observer travels along each of a number of 

lines, laid out according to some randomised (usually systematic random) scheme, and 

records each detected animal, together with its perpendicular distance from the line.  One 

of the key assumptions of the method is that animals on the line are certain to be detected. 

A number of authors have considered so-called double-observer or double-

platform methods to extend line transect sampling to the case that not all animals on the 

line are detected (e.g., Buckland and Turnock, 1992;  Palka, 1995;  Alpizar-Jara and 

Pollock, 1996;  Manly et al., 1996;  Quang and Becker, 1997;  Chen, 2000;  Innes et al., 

2002).  The double-observer data can be regarded as two-sample mark-recapture.  

However, heterogeneity in detection probabilities generates bias in abundance estimates, 

just as heterogeneity in capture probabilities generates bias in mark-recapture estimates 

of abundance.  Authors have attempted to minimize this bias, for example by modelling 

the effects of covariates (Borchers et al., 1998a,b;  Borchers, 1999;  Schweder et al., 

1999;  Laake and Borchers, 2004;  Borchers et al., 2006), or by assuming independence 

in the detections of instantaneous cues (such as whale blows) rather than of animals 

(Skaug and Schweder, 1999;  Schweder et al., 1999). 

In the absence of any heterogeneity in detection probabilities, we might assume 

that observer j detects any given animal in the surveyed strip with probability , 

, and that the probability that both observers detect a given animal is .  

This is the ‘full independence’ assumption.  However, in line transect sampling, we allow 

detection probability to fall off with distance y from the line so that .  Thus it 

is natural to apply the full independence assumption at each distance from the line, so that 

for an animal at y, we assume 

jp

2,1=j 2112 ppp =

)(ypp jj =

)()()( 2112 ypypyp = . 
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Laake (1999) introduced the concept of ‘point independence’ to reduce the impact 

of unmodelled heterogeneity in detection probabilities.  Knowledge of the distribution of 

distances allows the full independence assumption to be weakened, as outlined below.  

(For the moment, we ignore variables other than distance for simplicity.) 

A double-observer line transect survey generates both conventional distance 

sampling data and mark-recapture data.  Under the assumption of uniform animal 

distribution perpendicular to the transect line (achievable by random line placement or 

systematic placement with a random start), the shape of the probability density function 

of observed distances is the same as that of the detection function (Buckland et al., 

2001:52-53). The mark-recapture data provide additional information on the shape of the 

detection function based on an assumption of independence of detection probabilities 

without any assumption about the distribution of perpendicular distances of animals.  If 

we retain the assumption of uniform perpendicular distance distribution, discrepancies 

between the shapes can be interpreted as failure of the assumption of independence 

between detection probabilities.  

We diagnose dependence by (a) modelling the shape of observer j’s detection 

function ( , ) under the uniform perpendicular distance assumption, (b) 

modelling the conditional probability  that observer j detects an animal at y, 

given that observer  detected it (

)(yp j 2,1=j

)('| yp jj

'j jjj −== 3',2,1 ) and (c) modelling the covariance in 

the observers’ detection probabilities as a function of y using a function )(yδ  defined 

below.  

For real data, typically  does not decline as steeply as .  Hence 

the full independence assumption ( = ) cannot be made at each distance.  

The reason for this is that at greater distances, only the most detectable animals tend to be 

recorded, and those that are detected by one observer are therefore more likely to be 

)('| yp jj )(yp j

)('| yp jj )(yp j
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detected by the other observer.  Laake (1999) argued that heterogeneity is less of a 

problem on the line, where probability of detection is relatively high, than away from the 

line, so that assuming independence only on the line should yield less biased estimates of 

abundance.  The idea was further developed by Laake and Borchers (2004) and Borchers 

et al. (2006).  

Although we can anticipate less dependence between detections on the line than at 

greater distances, unless detection on the line is certain, it seems possible that some 

dependence remains.  In this paper, we consider levels of independence, and show that 

the independence assumption can be weakened further by assuming that, as detection 

probability tends to unity, dependence tends to zero (i.e., independence).  We term this 

‘limiting independence’. 

We illustrate the methods through analyses of data from a shipboard survey of 

minke whales in the North Sea and adjacent waters. 

 

2. Methods 

Suppose detected animals within a strip extending a distance W either side of the line are 

recorded.  We assume that two observers search independently from the same platform, 

or from two platforms following the same route at almost the same time.  We also assume 

that duplicate detections can be correctly classified, based on time and location of 

animals or animal cues, for example. 

2.1 Independence Assumptions 

At the simplest level, we might assume that observer 1 detects animals in this covered 

strip with probability , while observer 2 independently detects animals with probability 

.  In this ‘full independence’ case, an animal is detected by at least one observer with 

probability .  A Horvitz-Thompson estimator of , the number of 

1p

2p

2121 ppppp −+=• cN
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animals in the strip, is thus ∑
••

==
p
n

p
Nc

1ˆ   where  is the number of animals detected 

by at least one observer.  Note that 

n

1221 nnnn −+=  where  is the number of animals 

detected by observer j, , and  is the number of animals detected by both 

observers.  If we estimate  by 

jn

2,1=j 12n

jp '12 /ˆ jj nnp =  for jjj −== 3',2,1 , and substitute in, we 

find that 
12

21ˆ
n
nnNc = , which is the familiar Petersen estimator.  This is the full maximum 

likelihood estimator of  (Borchers et al., 2002:111), or within a single animal of the 

maximum likelihood estimator, if we allow for the fact that  is integer.  

cN

cN

Now suppose that probability of detection is a function of distance y from the line.  

There may also be dependence on additional covariates z , although we omit this 

dependence below, for clarity.  Full independence applied at each y gives 

, so that a model is now needed for , )()()()()( 2121 ypypypypyp −+=• )(yp j 2,1=j .  

We can then proceed to fit the model, and hence to estimate abundance in the covered 

strip (below). 

We would like to relax the full independence assumption.  Allowing some degree 

of dependence ( )(yδ ), the independence assumption can be expressed more generally 

such that )()()()( 2112 ypypyyp δ= , )()()()()()( 2121 ypypyypypyp δ−+=• , and 

)()()('| ypyyp jjj δ= , jjj −== 3',2,1 .  The function )(yδ  is related to the 

covariance )(12 yσ  between detection probabilities  and  as follows: )(1 yp )(2 yp

)()(]1)([)( 2112 ypypyy −= δσ .  Various alternative expressions can be derived for )(yδ  

including 

)(/)()(/)}()()()({)}()(/{)()( '|1|22|11|22|12112 ypypypypypypypypypypy jjj=−+== •δ  

for .  The latter expressions demonstrate that 2,1=j )(yδ  measures the discrepancy 
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between the conditional detection functions  derived from the mark-recapture 

data and the unconditional detection functions  which are derived from distance 

sampling data with the requirement that  is known for some .   For distance 

sampling with a single observer, the standard assumption is .  With double 

observers, this often untenable assumption can be replaced with the assumption of full 

independence, 

)('| yp jj

)(yp j

)( *yp j
*y

1)0( =jp

1)( =yδ  for all y, or point independence, 1*)( =yδ  at a specified , 

usually  (Laake and Borchers, 2004).  Fitting full independence models to data 

requires a functional form for  and point independence requires the same and a 

model for .  Neither require a model for 

*y

0* =y

)(yp j

)('| yp jj )(yδ .  

 We now relax the assumption that 1*)( =yδ  at a specified .  Instead we 

assume that we achieve independence in the limit as detection probability tends to one. 

This requires a model for 

*y

)( yδ  with the following properties to ensure valid 

probabilities: 

1) )()( yUy ≤δ  where { })(/1),(/1min)( 21 ypypyU = , which ensures that 

. 1)('| ≤yp jj

2) )()( yLy ≥δ  where 
⎭
⎬
⎫

⎩
⎨
⎧ −+

=
)()(

1)()(,0max)(
21

21

ypyp
ypypyL , which ensures that 

. 1)( ≤• yp

If we define { } )}()(/{)()()(0 yLyUyLyy −−= δδ , it is restricted to the unit interval and 

can be represented by an appropriate functional form such as a logistic.  Note also that 

as , , 2 then 1)( →yp j 1=j 1)( →yδ .  
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Using a logistic formulation for )(0 yδ , we can write 
⎭
⎬
⎫

⎩
⎨
⎧

− )(1
)(log

0

0

y
y

e δ
δ  as some 

linear function of .  Full and point independence can be derived as special cases of the 

limiting independence model if we include the following offset 

y

⎭
⎬
⎫

⎩
⎨
⎧

−
−

1)(
)(1log

yU
yL

e  in )(0 yδ  

which fixes 1)( =yδ .  If we consider the following logistic model for limiting 

independence:  

⎭
⎬
⎫

⎩
⎨
⎧

−
−

++=
⎭
⎬
⎫

⎩
⎨
⎧

− 1)(
)(1log

)(1
)(log

0

0

yU
yLy

y
y

ee βα
δ

δ ,  (1) 

then 0=α  specifies point independence at 0* =y , and 0== βα  specifies a full 

independence model.  If 0=β  and 0≠α , a model with constant dependence for all  

can be specified.  Models restricted to independence or positive dependence can be 

achieved by restricting 

y

0,0 ≥≥ βα .  Hence this general formulation provides a model 

selection framework for a range of models with varying degrees of independence. 

 

2.2 Likelihood 

The full likelihood for double-platform data may be expressed as ωLLLLL zyzn |=  where 

 is the component accounting for variation in total number of animals n detected by at 

least one observer,  corresponds to any observation-specific covariates 

nL

zL z ,  

corresponds to the conditional distribution of distances y, given covariates 

zy|L

z , and  

corresponds to the mark-recapture data (Laake and Borchers, 2004).   incorporates 

the assumption of uniform distribution of animals perpendicular to transect lines.  We use 

just two components of the full likelihood:   and .  By doing this, we can avoid 

making distributional assumptions about n and 

ωL

zy|L

zy|L ωL

z , as estimation is not robust to failure of 
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such assumptions.  Instead, we draw inference conditional on n and z , and use a design-

based approach to allow for variation in n.  If there are no covariates z , the full 

likelihood is , and we use the second and third components only (in this case, 

 incorporates the assumption of uniform distribution of animals perpendicular to 

transect lines).  Again for simplicity we consider this latter case;  the extensions to 

include covariates 

ωLLLL yn=

yL

z  are straightforward. 

We have 

 ∏ ∏
= = •

•
• ==

n

i

n

i

ii
iy pE

yypyf
1 1 )(

)()()( π
L  

where  is the pdf of detection distances  of animals detected by at least one 

observer, evaluated at , 

)( iyf• y

iy )()()()()()( 2121 iiiiii ypypyypypyp δ−+=•  is the probability 

that an animal at distance  from the line is detected by at least one observer, iy )( iyπ  is 

the unconditional pdf of distances y in the population (whether detected or not), evaluated 

at , and  (Laake and Borchers, 2004:114).  Random 

positioning of the lines (or of a systematic grid of lines) ensures that 

iy ∫ •• =
w

dyyyppE
0

)()()( π

Wy /1)( =π . 

We also need 

 ∏
= •

=
n

i i

ii

yp
y

1 )(
)|Pr(ω

ωL  

where 

)}()(1){(}|)0,1(Pr{ 21 iiiii yypypy δω −==  

)}()(1){(}|)1,0(Pr{ 12 iiiii yypypy δω −==  

)()()(}|)1,1(Pr{ 21 iiiii yypypy δω ==  

The likelihoods for full, point and limiting independence only differ in the definition of 

)( iyδ .  However, if the full independence assumption holds then it is only necessary to 
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use  (Borchers et al., 1998b) and with the point independence assumption,  and  

can be maximized independently using models for  and  which separate 

into the two respective likelihood components (Borchers et al., 2006).  When the 

likelihood is specified in terms of models for  and 

ωL ωL yL

)('| yp jj )(yp j

)(yp j )(yδ , both components of the 

likelihood must be maximized jointly. 

We assume logistic forms for the detection functions: 

  
)exp(1

)exp(
)(

10

10

y
y

yp
jj

jj
j λλ

λλ
++

+
=  for 1=j  or 2. (2) 

 

2.3 Diagnostic for Reliable Estimation under Limiting Independence 

When fitting limiting independence models, the Hessian matrix is sometimes nearly 

singular, due to high correlation between the estimates of  and )(yp j )(yδ  at .  In 

these cases, the models are unstable, typically yielding very large abundance estimates 

and associated variances.  We can still usefully calculate Akaike’s Information Criterion 

(AIC), but if AIC indicates that a limiting independence model is required, then reliable 

estimation is not possible.  To identify such cases, the following diagnostic check was 

found useful.  If the magnitude of the estimated correlation between 

0=y

α̂  of equation (1) 

and  of equation (2) is found to be large, then estimated abundance should be 

considered unreliable.  The test can be conducted for each of 

j0λ̂

1=j  and , or by 

arbitrarily choosing one of the two;  the two correlations tend to be similar when they are 

close to .  We defined ‘large’ to be greater than 0.99 in section 3 and 0.9 in section 4;  

choices in the range of 0.9 to 0.99 were found to be effective.  Lowering the correlation 

criterion provides a more conservative approach to avoid over-estimation with the only 

cost being potential underestimation due to the unmodelled dependence.      

2=j

1±
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2.4 Estimating Abundance 

Given models for ,  and )(1 yp )(2 yp )(yδ , the likelihood conditional on n, , can be 

maximized, which allows us to estimate .  Estimated abundance in the covered 

area is then  

ωLLy

)( •pE

 
)(ˆ)(ˆ

1ˆ
1 •= •

== ∑ pE
n

pE
N

n

i
c        (3) 

This is a Horvitz-Thompson estimator in which the inclusion probabilities have been 

estimated (Laake and Borchers, 2004:116).  When covariates z  are present, the 

simplification represented by the second equality does not hold.  If the covered area is of 

size a, and the entire survey region of size A, then estimated abundance in the survey 

region is 

 
)(ˆ

ˆˆ
•

==
pE
n

a
AN

a
AN c        (4) 

where  and  is the total length of transect line. wLa 2= L

For our limiting independence model, we cannot use  as defined in 

Borchers et al. (2006), because the conditional and unconditional detection functions 

share parameters under the above formulation.  Adapting their result, we have  

)ˆr(âv cN

 ddθSN
T

c
ˆˆˆ)ˆ()ˆr(âv 12 −+= I  

where 
2

1
2

2

)}(ˆ{
)}(ˆ1{

)}(ˆ{
)(ˆ1)ˆ(

•

•

= •

• −
=

−
= ∑ pE

pEn
pE

pES
n

i
θ , 

θ
θ ˆ

ˆˆ
d
Nd

d c= , and Î−  is the matrix of second 

derivatives of , evaluated at )ln()ln( ωLL +y θ̂ , the vector of parameter estimates. 

Adapting equation (11) of Marques and Buckland (2003),  

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−
−

⎟
⎠
⎞

⎜
⎝
⎛= ∑

=

−
K

k

Tckckk dd
K

LNlNl
L

a
AN

1

1
22

ˆˆˆ
1

)/ˆ/ˆ(
)ˆr(âv I    (5) 
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where 
)(ˆ)(ˆ

1ˆ
1 •= •

== ∑ pE
n

pE
N k

n

i
ck

k

 is estimated abundance for strip k, which has half-width 

w and length , where . kl Ll
K

k
k =∑

=1

An alternative to the above is to use the bootstrap, in which bootstrap resamples 

are generated by sampling the lines with replacement. 

If animals occur in clusters, with  animals in the iis th detected cluster, then the 

above formula gives estimated cluster abundance, and estimated animal abundance is 

given by 

)(ˆ
ˆ 1

•

=
∑

=
pE

s

a
AN

n

i
i

 

Variance can be estimated as before, except that now, ∑
=•

•−
=

n

i
is

pE
pES

1

2
2

2

)}(ˆ{
)}(ˆ1{)ˆ(θ , 

θ
θ ˆ

ˆˆ
d
Nd

d c=  is evaluated using 
)(ˆ

ˆ 1

•

=
∑

=
pE

s
N

n

i
i

c , and in the formula for variance of , N̂

)(ˆ
ˆ 1

•

=
∑

=
pE

s
N

n

i
i

c  and 
)(ˆ

ˆ 1

•

=
∑

=
pE

s
N

kn

i
i

ck . 

 

3. Simulation Study 

Simulations were conducted to evaluate the performance of the limiting independence 

model.  We simulated a population of 1000=N  animals that were uniformly distributed 

in a strip of width two ( ) and undefined length.  For each of 100 simulation 

replicates, we generated capture histories for two observers with identical detection 

probability functions .  We used four different logistic models for  

1=w

)()( 21 ypyp = )(yp j
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and two different logistic models for )(0 yδ  to create eight scenarios.  For models with a 

covariate z, the covariate value was generated from a uniform (0,1) distribution.  We 

fitted the simulated observed data (10, 01, 11 capture histories) with the model that 

generated the data, and with the equivalent models under the point independence and full 

independence restrictions.  We computed the AIC for each of the fitted models.  For 

model fits where the magnitude of the correlation between α̂  and  exceeded 0.99, 

results are not reported. 

j0λ̂

The eight scenarios were as follows.  The offset 
⎭
⎬
⎫

⎩
⎨
⎧

−
−

1)(
)(1log

yU
yL

e  was used in each 

dependence model to simulate and fit the data.  The dependence model 

 was used in scenarios 1, 3, 5 and 7, while  

(representing stronger dependence) was used in scenarios 2, 4, 6 and 8.  The detection 

probability model  was used in scenarios 1 and 2, 

 in scenarios 3 and 4, 

11
0 )1()( −−−+= yeyδ 122

0 )1()( −−−+= yeyδ

,2,1,)1()( 131.1 =+= −+− jeyp y
j

13 )1()( −+= y
j eyp 18417.038417.0 )1(),( −−++= zy

j ezyp  in scenarios 5 

and 6, and 153 )1(),( −−+= zy
j ezyp  in scenarios 7 and 8. 

Simulation results appear in Table 1.  Full independence and point independence 

models had substantial negative bias in all scenarios, with full independence models 

consistently more biased than point independence models.  Within a scenario, the bias 

was remarkably consistent, reflected in the very small standard errors of Table 1, but the 

bias varied substantially between scenarios.  Although the data were simulated from 

limiting independence models, significant upward bias was found in six of the eight 

scenarios when the data were analysed using the true model.  However, the size of the 

bias in most cases was substantially smaller than for point independence models.  Model-

averaged estimates had low bias, except for scenarios 3 and 4, for which around 40% of 
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analyses under the limiting independence model were rejected due to high correlation 

between α̂  and .  Figure 1 shows the need to reject such cases;  all of the very high 

abundance estimates obtained correspond to a correlation between 

j0λ̂

α̂  and  very close 

to . In all cases use of AIC correctly diagnosed the presence of unmodelled 

heterogeneity, although in some cases it did not differentiate well between point 

independence and limiting independence scenarios. 

j0λ̂

1±

 

4. Stake Data 

Laake (1999) used data on a population of wooden stakes of known size to illustrate 

independence issues in double-observer surveys.  We use the same dataset here.  The 

surveys were conducted in 1977 and 1978 (Laake, 1978);  as in Laake (1999), we 

consider only the 1977 data.  Multiple observers traversed a 1 km line marked with poles 

at 100 m intervals and searched a strip of sagebrush-grassland habitat 20 m on either side 

of the line for 150 wooden stakes that protruded 30 cm above ground.  The stakes had a 

random uniform distribution throughout the 1000 m × 40 m strip.  Eight observers 

separately surveyed the stakes, remaining on the line.  Distances from the line were 

measured accurately by an assistant. 

 For each pair of observers, we show estimates of abundance in Table 2.  Models 

were fitted corresponding to full independence ( )0== βα , point independence 

( βα ,0=  unconstrained) and limiting independence with 0,0 ≥≥ βα .  In each case, 

three models were fitted:  the first with observer as a factor and distance as a covariate, 

the second with the addition of an interaction term between the two, and the third with 

the squared distance as an additional covariate, together with interaction terms between 

observer and the two continuous covariates. 
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 It is clear from Table 2 that models with all three forms of independence are 

useful for the analysis of these data.  Overall performance is remarkably good, with the 

average of the best estimates (as judged by AIC) coming out close to the true abundance 

of , as does the average of the model-averaged estimates, using AIC weights 

(Buckland et al., 1997). 

150=N

 

5. Shipboard Survey of Minke Whales 

The second Small Cetacean Abundance in the North Sea and adjacent waters 

(SCANS II) survey was a multinational survey conducted in 2005 by ship and aircraft to 

estimate cetacean abundance in the North Sea, Kattegat, Skagerrak, western Baltic, 

English Channel and the Celtic Sea.  Double-observer line transect survey methods were 

used because for many species detection of animals on the trackline was expected to be 

less than unity.  Details of the survey and further information can be found at 

http://biology.st-andrews.ac.uk/scans2/.  Here we analyse only shipboard survey data on 

minke whales.   

The methods used in the SCANS surveys were designed to break up the 

dependence between the two observers, by ensuring that they are not simultaneously 

searching the same patch of sea.  A ‘tracker’ scans with high-powered binoculars well 

ahead of the ship, and tracks detected animals in, to check whether the primary platform, 

searching with hand-held binoculars and naked eye, detects them (so-called duplicate 

detections).  Previously, we have had no means of testing whether the method is 

successful in breaking up the dependence between observers. 

Using a truncation distance of 700 m, the tracker detected 54 minke groups 

totalling 62 animals, while the primary platform detected 57 groups totalling 59 animals;  

17 groups (19 animals) were detected by both tracker and primary platform. 

The full model of Table 3 is defined by  
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)exp(1
)exp(

),(
210

210

zy
zy

zyp
jjj

jjj
j λλλ

λλλ
+++

++
= ,      (6) 

)},(),(){,(),(),( 0 zyLzyUzyzyLzy −+= δδ     (7) 

where 
⎭
⎬
⎫

⎩
⎨
⎧ −+

=
),(),(

1),(),(,0max),(
21

21

zypzyp
zypzypzyL , { }),(/1),,(/1min),( 21 zypzypzyU =  

and 
)exp()},(1{}1),({

)exp()},(1{),(0 yzyLzyU
yzyLzy

βα
βαδ

+−+−
+−

= .  Covariate z  is sea state 

(Beaufort). 

The benefits of field methods to break up heterogeneity are immediately apparent 

from Table 3.  AIC favours models with full independence ( 0== βα ), and selects the 

model with identical detection functions for the two observers, and sea state as a 

covariate.  Estimation is largely unaffected by whether we assume full independence or 

point independence.  If we also relax the assumption of point independence, AIC values 

are larger, but estimation is not greatly affected, with the exception of model 2. 

Estimation is very similar to that reported by Burt et al. (unpublished).  In that 

analysis, no covariates were included, and point independence was assumed.  Abundance 

was estimated as  with .  The most comparable of our analyses 

is model 7 of Table 3, for which  and .  AIC favours model 12, 

and corresponding fits are shown in Figure 2. 

13281ˆ =N 4780)ˆ( =Nse

16192ˆ =N 4446)ˆ( =Nse

It is surprising that AIC favours models which assume the same detection 

function for the two observers, given that the tracker is searching much further ahead of 

the ship than the primary platform.  However, estimation is barely affected by whether 

we make this assumption or not.  The distribution of distances from the line of detections 

from the two platforms is clearly very similar out to the truncation distance of 700m 
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(Figure 2), although beyond this distance, the tracker detects more animals than the 

primary platform. 

 

6. Discussion 

Our methods allow assessment of whether the full independence or point independence 

assumptions are reasonable.  The methods also provide a means of analysing double-

observer surveys without having to assume independence between the observers’ 

detection probabilities, even at distance zero.  However, strong dependence between the 

observers’ detection probabilities can lead to unreliable estimation.  If possible, field 

methods should be developed to ensure that there are not animals in the population that 

are very unlikely to be detected, even if they are on the line.  However, this strategy can 

create problems for identifying duplicate detections, so that in some circumstances, it 

may be preferable to estimate the proportion of animals that are essentially undetectable.  

For example in aerial surveys of marine mammals, the observers might record only those 

animals that are at the surface as they pass abeam, and a separate study might be used to 

estimate the proportion of animals at the surface at any time. 

Extension of the methods to point transect sampling is straightforward.  We now 

have  if points are positioned randomly.  In (4), the covered area a is now 

, where K is the number of points.  For , we obtain a similar result to 

(5) by adapting equation (3.48) from Marques and Buckland (2004). 

2/2)( wyy =π

2wKa π= )ˆr(âv N

It is knowledge of )(yπ  that allows us to weaken the full independence 

assumption.  In principle, the same approach could be applied to conventional mark-

recapture models, if )(yπ  were known for some explanatory variable y, although this 

seems unlikely in most applications. 
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If there is responsive movement prior to detection so that the distances y available 

for detection differ in an unknown way from that prior to movement (i.e. from )(yπ ), 

then (a) )( yδ  cannot be interpreted as above and (b) under the assumption of full 

independence, )( yδ  can be interpreted as a measure of deviation from )(yπ  due to 

responsive movement.  This can be seen from the following.  The pdf of observed 

distance for observer j is dyyyypyyypyf jjjjj ∫ −−= )()()(/)()()()( 1
'|

1
'| πδπδ .  If we 

assume full independence, then  is equal to the unconditional detection function 

for observer j, and hence  is proportional to the pdf of y after movement.  

Note that while the interpretation of 

)('| yp jj

1)()( −yy δπ

)( yδ  is different in this case from the case with no 

responsive movement, the abundance estimator is still valid.  

It is worth noting that although )( yδ  is superficially similar to )(zα  of Chen 

(1999) and α  of Chen and Lloyd (2000), it is in fact quite different.  To see this, consider 

a situation in which distance y and other variables u  affect detection probability but only 

y is recorded (in this case )(zα  is a constant).  Whereas )(zα  and α  quantify the 

heterogeneity due to y, )( yδ  quantifies the heterogeneity at y due to the unrecorded 

variables u .  This is an important difference because the formulations of Chen (1999) 

and Chen and Lloyd (2000) do not accommodate heterogeneity due to the unrecorded 

variables u , and it is precisely this heterogeneity that is at issue here.  Chen (1999) and 

Chen and Lloyd (2000) assume that )()()()()( 2121 ypypypypyp −+=•  whereas we 

assume that )()()()()()( 2121 ypypyypypyp δ−+=• .  It is the discrepancy between the 

shapes of  and  (j=1,2) which provides the basis for modelling 

heterogeneity due to the unrecorded variables (together with knowledge of 

)(yf j )('| yp jj

)(yπ );  the 

formulations of Chen (1999) and Chen and Lloyd (2000) model  but do not include )(yf j
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)('| yp jj  and are therefore unable to exploit the information in the discrepancy between 

the two.  This applies equally to the case in which additional variables z  are recorded 

(but u  remains unrecorded). 

We have used AIC to select between models.  We have estimated detection 

functions by maximum likelihood, but abundance is estimated using a Horvitz-Thompson 

estimator in which the inclusion probabilities have been estimated (by maximum 

likelihood).  As the components of the abundance estimators that are not estimated by 

maximum likelihood (corresponding to sample size, and to extrapolation from the 

covered area to the entire survey area) are common across models, it seems not 

unreasonable to use AIC to select between abundance estimators.  However, when some 

inclusion probabilities are very small, modest error in estimating them can generate large 

positive bias in the abundance estimate, which would be undetectable by AIC. 
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Table 1. 
Mean (standard error in parentheses) of 100 abundance estimates under full 
independence (FI), point independence (PI) and limiting independence (LI) models for 
the eight simulation scenarios.  The expected capture history frequencies are shown for 
each scenario.  Also shown is pAIC, the proportion of times each model was selected by 
AIC, and model-averaged (MA) estimates, obtained by taking a weighted average of 
estimates from the above three models, using AIC weights.  Where an LI model was 
deemed to be parameter-redundant ( 99.0)ˆ,ˆ(correl 01 >λα ), the model was not 

considered even if it had the best AIC value, and the weighted average was over the FI 
and PI models only.  The mean and standard error for LI models is across only those 
runs for which the model was not deemed to be parameter-redundant.  The number of 
runs (Nr) out of 100 contributing to the LI results under each scenario is shown.  True 
abundance is 1000.  *Bias significant at 5% level. 
 
 
          Exp. capture      FI          PI                 LI   MA 
          history freqs 
Scenario    10  01  11        Mean      pAIC          Mean      pAIC         Mean      pAIC       Nr          Mean  
 
  1     101 101 315    607* 0.00    819* 0.23   1074* 0.77  95    1020   
                        (3)          (6)         (14)              (16) 
  2      33  33 383    450* 0.00    692* 0.04   1037* 0.96  97    1020   
                        (1)          (4)         (18)              (18) 
  3      89  89 126    499* 0.00    616* 0.93    971  0.07  60     685*  
                        (4)          (6)         (21)               (7) 
  4      34  34 180    290* 0.00    454* 0.54    963  0.46  63     664*  
                        (3)          (4)         (21)              (21) 
  5      87  87 135    512* 0.00    650* 0.65   1437* 0.35  76    1021   
                        (4)          (6)        (124)              (96) 
  6      34  34 189    296* 0.00    465* 0.23   1149* 0.77  86     962   
                        (3)          (5)         (42)              (41) 
  7      77  77 579    770* 0.00    915* 0.55   1064* 0.45  82    1001   
                        (2)          (3)         (15)              (14) 
  8      29  29 629    689* 0.00    850* 0.12   1057* 0.88  94    1032*  
                        (2)          (4)         (11)              (12) 
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Table 2. 
Estimates of abundance for the stake data for all combinations of the 8 observers under full independence, 
FI ( )0== βα , point independence, PI ( βα ,0=  unconstrained) and limiting independence, LI with 

0,0 ≥≥ βα .  Covariate model 1 has covariate structure observer + distance, model 2 has structure 
observer * distance, and model 3 has structure observer * (distance + distance2).  ‘Best’ 
corresponds to the model with the smallest AIC (indicated by ‘#’, with standard error in parentheses), and 
‘MA’ is the model-averaged estimate, using AIC weights.  True abundance is 150.  LI fits with 

9.0)ˆ,ˆ(correl 01 >λα  were not used for the best or model-averaged estimates, and are indicated by ‘!’. 

 
                            Cov model 1        Cov model 2        Cov model 3 

Obs1 Obs2        FI    PI    LI     FI    PI    LI     FI    PI    LI     Best  (se)   MA 1n 2n 12n
 
  1    2   81  48  38    136   139   156    132#  134   136    133   138   137     132  ( 11)  134 
  1    3   81  68  60    125   146   160    125   154   195#   120   145   193     195  ( 23)  185 
  1    4   81  51  42    127   158   215#   126   149   176    123   146   196     215  ( 23)  172 
  1    5   81  49  43    127   141#  154    126   136   141!   128   140   142     141  ( 16)  136 
  1    6   81  72  58    126#  134   159    126   134   147    125   135   148     126  ( 10)  133 
  1    7   81  54  47    120   135   204    118   124   138    122#  125   127     122  ( 10)  126 
  1    8   81  84  63    136#  142   156    136   142   155    136   141   157!    136  ( 10)  140 
  2    3   48  68  34    147   154   254    141#  150   166    142   154   181     141  ( 14)  150 
  2    4   48  51  35     86   131#  140     86   130   139     84   131   139     131  ( 18)  133 
  2    5   48  49  38     78   117   124     77   132#  135     75   143   143     132  ( 32)  135 
  2    6   48  72  41    105   149   239    105   142#  144    105   153   161     142  ( 18)  162 
  2    7   48  54  36     92   130#  145     92   129   137     88   127   138     130  ( 17)  131 
  2    8   48  84  46    107   144   197    105   129   141    105   126#  131     126  ( 11)  132 
  3    4   68  51  40    129   157   276    124   152   175#   124   148   164     175  ( 22)  163 
  3    5   68  49  38    143   164   246    141   156   203#   140   155   220     203  ( 46)  181 
  3    6   68  72  55    122   139   177    122   144   166#   122   150   164     166  ( 17)  155 
  3    7   68  54  42    130   166   294    127   157   213#   124   143   185     213  ( 27)  193 
  3    8   68  84  58    136   147   151!   137   153#  172    135   153   171     153  ( 16)  153 
  4    5   51  49  33    105   156   167    105   157#  168    101   156   185     157  ( 17)  160 
  4    6   51  72  46     91   140   351!    93   130   178     94   137#  138     137  ( 15)  144 
  4    7   51  54  36     99   137#  148     99   137   160     97   133   152     137  ( 18)  140 
  4    8   51  84  48    107   141   222    106   124   145#   109   124   130     145  ( 29)  148 
  5    6   49  72  41    115   167#  170    115   176   179    114   177   181     167  ( 27)  171 
  5    7   49  54  39     91   142#  147     91   143   150     87   143   146     142  ( 23)  144 
  5    8   49  84  46    117   148#  163    117   142   156    115   141   158     148  ( 18)  151 
  6    7   72  54  48     96   132   214#    97   126   130     99   120   132     214  ( 39)  164 
  6    8   72  84  66    106   134   159    106   132#  134    106   133   139     132  ( 12)  137 
  7    8   54  84  53     86   152   253#    97   119    96    101   108   108     253  (129)  212 
Average                  114   144   194    113   140   160    113   140   156     158         153 
Std dev.                  19    12    55     18    13    23     18    14    25      34          21 
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Table 3.  Models fitted to the minke whale survey data.  The full model, denoted here by 
LI (Limiting Independence), Platform*(Dist+Beau), is defined by equations (6) and (7).  
The estimates  and  were obtained by appropriate extensions of equations (3) 
and (4) for a stratified design.  Correl for LI models with a platform effect corresponds to 
whichever of 

N̂ )ˆ(Nse

)ˆ,ˆ(correl 01λα  and )ˆ,ˆ(correl 02λα  is closest to 1.  PI indicates Point 
Independence ( 0=α ) and FI denotes Full Independence ( 0== βα ). 

#  Dependence  Covariate model   # par 

 

          N̂ )ˆ(Nse
 

∆  AIC  Correl 

1  LI  Platform*(Dist+Beau)  8 16912  6663  7.4    0.393 

2  LI (β=0)  Platform*(Dist+Beau)  7 26453  18422  7.0  ‐0.805 

3  PI  Platform*(Dist+Beau)  7 17156  5359  5.4  ─ 

4  FI  Platform*(Dist+Beau)  6 17935  5436  3.6  ─ 

5  LI  Platform*(Dist)  6 *  *  13.6  ‐1.000 

6  LI (β=0)  Platform*(Dist)  5 *  *  11.7  ‐1.000 

7  PI  Platform*(Dist)  5 16192  4446  12.3  ─ 

8  FI  Platform*(Dist)  4 15195  3311  10.4  ─ 

9  LI  Dist+Beau  5 16837  7130  3.9    0.073 

10  LI (β=0)  Dist+Beau  4 16091  4365  1.9    0.124 

11  PI  Dist+Beau  4 17337  5647  1.9  ─ 

12  FI  Dist+Beau  3 18173  5534  0.0  ─ 

13  LI  Dist  4 *  *  9.8    1.000 

14  LI (β=0)  Dist  3 *  *  7.9  ‐1.000 

15  PI  Dist  3 16209  4447  8.5  ─ 

16  FI  Dist  2 15202  3313  6.6  ─ 
 
 

* 99.0)ˆ,ˆ(correl 0 >jλα  for  and 2 (models 1-8) or 1=j 99.0)ˆ,ˆ(correl 0 >λα  (models 9-

16) 
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Figure 1.  Plot of  against , illustrating that the very high estimates 

of abundance from the simulations all arose when  was very close to . 
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Figure 2.  Estimated detection functions for minke whales, model 12 (see Table 3).  The 
top left plot is the estimated unconditional detection function for observer 1, and top right 
is the estimated unconditional detection function for observer 2.  The corresponding 
conditional detection functions are shown in the centre.  Under this model, all four of 
these detection functions are identical, but the data in each plot differ.  The estimated 
detection function for the two observers combined is shown at the bottom left.  The bars 
are: relative frequencies of detections made by observer 1 (top left), relative frequencies 
of detections made by observer 2 (top right), proportion of observer 2 detections made by 
observer 1 (middle left), proportion of observer 1 detections made by observer 2 (middle 
right), and relative frequencies of detections made by at least one observer. 
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