Using Generative Programming to Visualise Hypercode in
Complex and Dynamic Systems

Katherine Mickan

Ron Morrison
Dharini Balasubramaniam

Graham Kirby
Evangelos Zirintsis

School of Computer Science
University of St Andrews,
North Haugh, St Andrews, Fife KY16 9SS, Scotland,
Email: {kath, ron, graham, dharini, vangelis}@dcs.st—and.ac.uk

Abstract

The research presented here takes place in the context of the
EC Funded ArchWare project which focuses on innovative
architecture-centric languages, frameworks and tools for en-
gineering evolvable software systems. Of particular interest
are complex and dynamic systems characterised by the need
to evolve to meet changing requirements without total shut-
down or the loss of state information. The ArchWare approach
uses the unique combination of a pi-calculus based architec-
ture description language, persistence and hypercode. Hyper-
code provides the essential base technology for composing and
decomposing system components without losing state. The
contribution of this work is an implementation of hypercode
using generative programming techniques to produce different
hypercode visualisations.

Keywords: hypercode, structural reflection, genera-
tive programming, system evolution.

1 Introduction

Hypercode was introduced by Kirby et al., (Kirby,
Connor, Cutts, Dearle, Farkas & Morrison 1992), in
work motivated by the search for better programming
language support for the software engineering process.
By unifying the concepts of source code, executable
code and data in a programming system, hypercode
eases the task of the programmer, who is presented
with a simpler environment in which the conceptu-
ally unnecessary distinction between these forms is
removed. In terms of Brooks’ essences and accidents,
(Zirintsis 2000), this distinction is an accident result-
ing from inadequacies in existing programming tools;
it is not essential to the construction and understand-
ing of software systems. In a hypercode system the
user composes hypercode and the system executes it.
The user only sees a single view of the system and
underlying operations are abstracted over.

A hypercode program is constructed from a mix-
ture of text and hyperlinks. The text is normal pro-
gram source code and the hyperlinks point to exist-
ing values. In a hypercode system the user can com-
pose programs interactively, navigating the environ-
ment and selecting data items, including functions,

Copyright (©2004, Australian Computer Society, Inc. This pa-
per appeared at the 27th Australasian Computer Science Con-
ference, The University of Otago, Dunedin, New Zealand. Con-
ferences in Research and Practice in Information Technology,
Vol. 26. V. Estivill-Castro, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

This work is supported by the EC Framework V project Arch-
Ware (IST-2001-32360) and the ORS Award Scheme.

to be incorporated into their program as hyperlinks,
(Kirby et al. 1992). Clicking on a hyperlink allows the
user to see a hypercode representation of the value.
The artificial distinction between source and executa-
bles is removed, therefore a hypercode view can be
generated for any value in the system, (Morrison,
Connor, Cutts, Dearle, Farkas, Kirby, McGettrick &
Zirintsis 1999).

The first hyper-programming system, imple-
mented for Napier88, (Kirby et al. 1992), demon-
strated how the technique could ease the task of re-
flective programming and provide support for source
representations of procedure closures. Farkas &
Dearle (1994), presented a mechanism called Octopus,
that permitted the types of values to be abstracted
over and values to be manipulated in a type indepen-
dent manner. Octopus comprised a set of operations
over a dynamic infinite union type, essentially pro-
viding higher level tools based on the structural re-
flection in the langauge. Another aspect of their work
was partially resolved hyper-programming, which en-
abled the production of templates. The templates al-
lowed programs to be constructed and compiled with-
out the requirement that the values used by the pro-
gram be present. In this manner, individual compo-
nents could be constructed independently and later
assembled to form a complete application. Zirintsis,
Dunstan, Kirby & Morrison (1999), constructed a
hypercode system for Java and established the hyper-
code operations, through which a user interacts with
hypercode.

The arena of complex and dynamic systems
presents itself as a new application for hypercode
technology. Greenwood, Robertson & Warboys
(2000), use the term co-evolution to describe the
symbiotic relationship between dynamically changing
commercial environments and the software that sup-
ports them. In these systems there is an ever present
demand to accommodate change over time. As re-
quirements change, software needs the capacity to
adapt to the altered environment in which it is used,
in order to avoid increasing redundancy. This evo-
lutionary potential is particularly relevant to large,
long-lived systems which are expensive to build and
deploy.

The conventional path to evolution involves edit-
ing source code, recompiling and rebinding. However,
this may not always be acceptable. In large or long-
running systems the source code, for the components
which are to be changed, may no longer be available.
Even if the source code is obtainable, it may be im-
possible to rebind the system without other compo-
nents’ sources. Perhaps more importantly this evo-
lution by redefinition style may lose valuable data.
When the current version of a component is replaced
by its new redefined version, local data, representing
the current system state, can be lost, (Morrison, Bal-
asubramaniam, Greenwood, Kirby, Mayes, Munro &

Warboys 2000a).

Applying hypercode to evolution results in desir-
able properties lacking in the traditional approach.
Firstly, hypercode is able to capture closure and con-
sequently, a hypercode program can be evolved with-
out total system shutdown or loss of state. Secondly,
it abstracts over the distinction between source code
and values, thereby guaranteeing that a component’s
source code will be accessible.

The work here is part of the ArchWare project
which considers evolution from the perspective of soft-
ware architectures - a context in which a system is
constructed from a set of components bound together
by connectors. This compositional nature is reflected
in the evolutionary process, where evolution is based
on the system’s decomposition into components, the
replacing or modifying of those components, and the
recomposition of the evolved system. The compose
and decompose operations have been defined to struc-
ture this process, (Morrison et al. 2000a).

1.1 Generative Technology

We have implemented a hypercode system using gen-
erative technology, (Czarnecki & Eisenecker 2000), to
realise a set of hypercode operations for hypercode
programming. Employing generative techniques,
rather than making changes to the software platform,
separates the orthogonal concerns of the program-
ming language and hypercode.

The evaluate_hypercode operation transforms,
compiles, binds, executes and produces a visualisation
for a hypercode program. Using generators in the im-
plementation implies a set of transformations which
map the original hypercode onto some target code
according to a set of rules. Compiling and execut-
ing the target code completes the evaluate_hypercode
process. Different generators can operate over the
same piece of hypercode to produce different target
code. This paper describes two generator algorithms
used to produce different aspects of the visualisation
of hypercode evaluation.

The first generator produces a program equiva-
lent to the hypercode which can be compiled and
executed. Execution of the program effects a visu-
alisation of evaluate_hypercode’s result. The second
generator produces target code to display an anima-
tion of the evaluation’s progress, a process known as
identifier tracking. During identifier tracking the user
can view values in the closure of the executing code.

2 Hypercode

A sample of hypercode using the language Process-
Base, (Morrison, Balasubramaniam, Greenwood,
Kirby, Mayes, Munro & Warboys 1999), is shown
in Figure 1, where a function, processor, is defined
which contains four hyperlinks. The mixture of text

input1 data
. let processor <- fun()|"]| value
process function |s_| ! ‘
lue [~ process (inputl)
va [~~process (input2)
} input2 data
~a] value

Figure 1: Hypercode contains hyperlinks to existing
values

and links is similar to a page of HTML viewed in a
browser, the essential difference being that the hyper-
links in hypercode point to live objects. In this exam-
ple the links point to values, including functions, but

there is no distinction between them in the user inter-
face: the difference has been abstracted over. Click-
ing on a hyperlink gives the user a hypercode view
of the value. To model sharing, any number of links
are permitted to the same value, shown by the two
separate links to the process function.

User interaction with hypercode has been defined
by Zirintsis (2000), as a set of operations; these are:

explode Reify to reveal a hypercode view of the
value pointed to by a hyperlink.

implode Inverse operation of explode which hides
the view of the value.

evaluate_hypercode Transform, compile, and exe-
cute hypercode with visualisation.

edit Conventional editing facilities.

get root Returns the root of the object graph from
a stable store.

This paper will concentrate on an implementation
of the evaluate_hypercode operation, which abstracts
over the conventional programming tasks of compila-
tion, linking, execution and debugging.

A hypercode system can be considered as operat-
ing within two domains: the entity and representation
domains shown in Figure 2. Hypercode values exist

hypercode
value reify ;
p| View
P —
— —
reflect -
Entity Representation

Figure 2: Hypercode in the entity and representation
domains

and execute in the entity domain, but the user view of
the values is in the representation domain. Switching
between the two domains is achieved with reflection
and reification. The evaluate_hypercode operation can
be defined in terms of the two domains. It involves
reflecting a hypercode representation into the entity
domain where it executes. Then the execution and
its result are reified to produce visualisations in the
representation domain.

An important property of hypercode which un-
derpins its usefulness in the evolutionary context is
its ability to preserve the state and shared data of
a system during evolution. This transpires because
the hypercode source, which is a mixture of text
and links to values in the store, is always avail-
able. When the components in the system are de-
composed, hyperlinks are maintained since they exist
in the hypercode representation as well as in the ex-
ecutable. Underlying persistence guarantees referen-
tial integrity, which implies that the hyperlinks will
always be accessible, therefore state and shared data
can be preserved.

Hypercode supports introspection, consequently
the hypercode view of a value is always available.
Introspection eases the task of writing evolving pro-
cesses, because the user can see a concrete repre-
sentation of the results of decomposition. Evolving
processes can otherwise be hard to write and under-
stand, principally because of the problem of deal-
ing with extant data, which can be particularly se-
vere if the required evolution depends on the cur-
rent state of the process being evolved, (Greenwood,

Balasubramaniam, Cimpan, Kirby, Mickan, Morri-
son, Oquendo, Robertson, Seet, Snowdon, Warboys
& Zirintsis 2003). When introspection is combined
with compilation the technique known as structural
reflection results, (Kirby, Morrison & Stemple 1998).

3 Composition and Decomposition

An essential property of evolutionary systems is the
ability to decompose a running system into its con-
stituent components, and recompose evolved or new
components to form a new system, while preserving
any state and shared data. In this context, the abil-
ity of hypercode to capture closures allows parts of a
system to be represented after decomposition without
losing their state. It provides representations which
can be used for both evolving the components and
recomposing them into the new system.

The composition of a system S from components
P and Q under rules ® has been defined by Morrison
et al. (2000a) as:

P®Q = SP®Q

The = symbol represents the binding mechanism,
which operates under the rules ®. For example, a
compiler may merge a number of source files with the
program to be compiled. The merging facility is the
binder and the rules under which it operates deter-
mine the order and scoping of the included files. De-
composition is defined as the reverse of composition,
giving the reversible equation:

PRQ < Sreq

Hypercode provides the mechanism to realise the re-
versible composition operation, since it offers intro-
spection and the preservation of shared state and data
throughout the evolutionary process. Normally, en-
capsulated data in a program is difficult to access and
breaking the encapsulation is an irreversible opera-
tion.

To further explain the compose and decompose op-
erations a scenario is modelled in Figure 3. The orig-
inal system, in the bottom left of the figure, can be
thought of as a composition of three filter components
connected by two pipes. Two of the filter components
refer to some data outside of the connected compo-
nents, represented by the star shapes.

-=O

Evolve

O

Decompose Compose

Figure 3: Compose and decompose operations

To evolve the system the first step is to decompose
it into its components; note that the filter components
still maintain their links to the data. Changes may
then be effected on the components so that two of the
filters are combined into a single filter. This new filter
component still maintains links to the data referred
to by the original filters. The three components can
be composed to form a new system.

Figure 3 can be interpreted from both an architec-
tural and a process perspective. From the architec-
tural perspective, the diagram captures the structure

of the current and evolved systems and the relation-
ships between them in terms of which components are
unchanged, modified or replaced. From a process per-
spective the diagram captures how to evolve from the
current to the evolved system: decompose into parts,
replace some components and recombine in the new
configuration.

4 Implementation

evaluate_hypercode is part of the hypercode system,
the application which provides all the hypercode op-
erations. It operates on the hypercode in four steps:
transformation, compilation, binding and execution.
Figure 4 shows the progress of evaluate_hypercode. A

Hypercode System

hypercode
program

basic evaluate_hypercode
transformation

identifier tracking
transformation

compilation,

execution

visualisation

Figure 4: evaluate_hypercode process

hypercode program is composed in the user inter-
face. When evaluate_hypercode is called, a program
equivalent to the hypercode, but able to be processed
by the conventional ProcessBase compiler, is gener-
ated through source-to-source transformation. A sec-
ond transformation is performed to insert the code
to manage identifier tracking. Then the transformed
code is compiled, bound and executed. During exe-
cution a visualisation is shown in the user interface,
and afterwards the result is presented as a hypercode
representation.

The two separate transformations in Figure 4 will
be delineated: the basic transformation for evalu-
ate_hypercode generates an executable version of the
hypercode program. The next transformation en-
hances this by generating code to provide a reifica-
tion of the hypercode execution. Because identifiers
in scope from the point of view of the user become
hyperlinks during execution, the latter transforma-
tion is referred to as identifier tracking. After the
transformations, the generated program is compiled
and executed by the hypercode system and the result
of execution reified as a hypercode representation.

ProcessBase, the language used in the implemen-
tation, has a number of properties which support the
work in hypercode:

structural reflection The compiler is available as a
library function.

stable store A populated environment of typed
data. All hypercode programs operate over data
in the stable store and may contain links to ex-
isting values in the store.

first class functions Functions are first class values
in the language.

All the hypercode operations have been imple-
mented in ProcessBase, forming an environment in
which to program hypercode. ProcessBase is also the
language in which the user composes hypercode pro-
grams. The programming environment consists of a
hypercode system which accepts a request to perform
an operation on some hypercode and returns the re-
sult of the operation if applicable.

Figure 5 shows a short hypercode program as it
appears to the user.

let filter <- fun(in stream: string) -> string
spacer ++ in_stream ++ spacer

filter (in_pipe)

Figure 5: Hypercode representation viewed by the
user

The same hypercode is represented as an XML
string marked up with hyperlinks in Figure 6. The

let filter <- fun(in stream: string) -> string
<hl id="1">spacer</hl> ++ in stream
++ <hl id="1">spacer</hl>

filter(<hl id="2">in pipe</hl>)

Figure 6: Hypercode representation encoded as XML

code defines a function, filter, which concatenates its
input with a spacer on each end and returns the re-
sulting string. Both spacer hyperlinks point to the
same data value. In the final line, filteris called with a
parameter in_pipe, which is a hyperlink. In the XML,
the hyperlinks are marked up with <hl> tags which
label them with ID strings. Each hypercode program
is associated with a list of values in which the ID
string is used to locate the value pointed to by this
hyperlink.

4.1 The evaluate_hypercode Operation

The conventional evaluate operation is comprised
of compilation and execution, whereas evalu-
ate_hypercode involves transformation, compilation,
binding, execution and visualisation. During the op-
eration some hypercode is executed and hypercode is
returned as the result. Figure 7 shows how evaluating
the filter function produces a hyperlink to the result
of execution.

let filter <- fun(in_stream: string) -> string|
spacer ++ in_stream ++ spacer

filter (in pipe)

hyperlink

Figure 7: evaluate_hypercode operation

Figure 8 shows how ewvaluate_hypercode can be de-
fined in terms of the functions applied to the hyper-
code, where h is some hypercode. The compiler is
used to reflect a transformed hypercode program; the

evaluate_hypercode (h) =
visualise (execute (compile (transform (h))))

Figure 8: evaluate_hypercode definition

result of a successful compilation is then executed;
and the result of the execution reified, which produces
a visualisation of the result for the user to view.

There are two generators used in the implemen-
tation of evaluate_hypercode which will be focused on
in the next sections. In order to display the result of
evaluate_hypercode to the user, the hypercode must
be compiled and executed. The task of the first gen-
erator is to transform the hypercode into ProcessBase
source so it can be processed by the conventional com-
piler. The second generator carries out a transfor-
mation for identifier tracking, where the hypercode
execution is reified, and which can be used for debug-
ging hypercode. During identifier tracking, identifiers
that come into scope during the execution turn into
hyperlinks, enabling their values to be examined by
the user.

4.2 Compiling Hyperlinks

Part of evaluating hypercode is linking the exist-
ing values pointed to by the hyperlinks into the ex-
ecutable code. The new implementation of evalu-
ate_hypercode for ProcessBase uses the generative pro-
gramming technique known as source-to-source trans-
formation to do this. It makes no changes to the stan-
dard compiler. A function is added which encloses the
hypercode and takes a list of values as its parameter.
When the transformed hypercode is executed, a list
of values pointed to by the hyperlinks is passed to the
function. The example code in Figure 5 will be used
to show how the transformation progresses.

An overview of evaluate_hypercode is depicted in
Figure 9. A hypercode program, shown as it would be

Hypercode
fun (in_stream: str

et filter <- ful
spacer_++ in_stream ++

Evaluate_hypercode
STEP 1

Hypercode —>

code ProcessBase source

list of _ < list
hyperlinks

Source to source
transformation

STEP 2
ProcessBase source —3»
= Compilation
4— executable ———
STEP 3

hyperlinks)

Execution

output €
output

Hypercode

Figure 9: Steps of the evaluate_hypercode operation

rendered for the user, is input to evaluate_hypercode.
The program has three hyperlinks in it pointing to
two values. evaluate_hypercode performs the following
steps:

1. Source-to-source transformation on the input produces
transformed code and a list of hyperlinks.

2. Compiling the transformed code generates a function.
3. Projecting and executing the function with the list of

hyperlinks as its parameter gives a visualisation of evalu-
ate_hypercode.

The final outcome of evaluating the hypercode is out-
put and rendered as a hyperlink.

In the first part of the transformation, Figure 10,
each hyperlink in the hypercode is replaced with a
new unique name: hll replaces spacer and hl2 re-

let filter <- fun(in stream: string) -> string
hll ++ in_stream ++ hll

filter(hl2)

Figure 10: Hyperlinks replaced by names

places in_pipe. Introducing these new identifiers into
the code requires some type coercion. Most of the
code generated by the following transformations is
concerned with this task.

The values pointed to by the hyperlinks are asso-
ciated with their new names in the list of hyperlinks
which was referred to in Figure 9. This list is gener-
ated by the hypercode system as part of step 1. In
step 3, the compiled and transformed hypercode is
called with the list as its parameter. Figure 11 shows
the type of the list, which is a record. It has id field
to hold the name; and an entity field, of the infinite
union type any, to hold the value. Any data struc-
ture could have been used. The use of a list is an
implementation decision.

rec type list_type is view[id: string;
entity: any;
next: loc[list_typell]

Figure 11: Type of the list of hyperlinks

The code fragment in Figure 10 is made into legal
ProcessBase code by including declarations for the
new names, hll and hl2. The values associated with
these identifiers will be part of the list of hyperlinks,
and therefore have type any, so their specific types
are also declared here. hll and hl2 are cast onto their
types as they are declared.

In Figure 12 the type of the parameter list, list_type
is defined; followed by the definition of a function,
getFromList, which will extract a value from the list,
given its name. Next, the types of the hyperlinks are
defined; in this case they are both string. This type
information is acquired using the typerep library func-
tion in ProcessBase. Subsequently a project clause
performs a cast from the infinite union type, which
is the type of the value in the list, onto hlI_type; the
same is done for hl2.

In Figure 13, the generator function is added
around the hypercode; it takes as a parameter the
table of hyperlinks, list. The generator function is so
called because it generates an executable version of
the hypercode.

rec type list_type ...

let getFromList <- fun(id: string) -> any
.... !find the value in the list of parameters

! define the types of the hyperlinks
type hll_type is string
type hl2_type is string

!fetch the values from the list and cast
'them onto their correct types before assignment
let hll <- project getFromList("hli") as X onto
hll_type: X
default: nil(hll_ type)

let hl2 <- project getFromList("hl2") as X onto
hl2_type: X
default: nil(hl2_type)

let filter <- fun(in stream: string) -> string
begin

hll ++ in_stream ++ hll
end

filter(hl2)

Figure 12: Declaring the new identifier

rec type list_type ...

let generator<-fun(list:list_type) -> fun()->any{
let getFromList <- fun(id: string) -> any
...! get a value from the list

type hll_type is string
type hl2_type is string
let hll <- project ...
let hl2 <- project ...

type return_type is string
let wrapper <- fun() -> return type {

let filter <- fun(in stream: string) -> string
hll ++ in stream ++ hll
filter(hl2)

}

! generator returns a function which calls wrapper
fun() -> any
any (wrapper ())

generator

Figure 13: Adding the generator function

generator needs to have a fixed type so it can be
invoked from a fixed context in the hypercode system.
Its return type is fun() — any, a function which re-
turns a value of type any: which can be explained by
looking further down the code to the wrapper func-
tion. This function wraps around the original hyper-
code, so that it can later be executed alone without
the overhead of projections during the execution of
generator. The return type of wrapper is the same
type returned by the original hypercode, return_type.

Following the wrapper function, a function is de-
fined which calls wrapper and returns the result in-
side an infinite union type. This function is the value
returned by generator. The generator should return
the wrapper function, so the hypercode can be exe-
cuted without the projections overhead, but the type
of wrapper is only discovered during the source code
transformation. Therefore the call to wrapper is en-

closed in a function which returns a value of type any.
The final line in Figure 13 is generator, hence the re-
sult of executing the code is the generator function
itself.

In summary, when the hypercode system executes
the code in Figure 13, it obtains the generator func-
tion. The execution of generator returns a function,
and executing this function returns the result of exe-
cuting wrapper, which is a string, inside an any. Ex-
ecuting the function returned by generator is equiva-
lent to executing the hypercode.

Having completed the transformation, the gener-
ated code is compiled and executed - this is steps
2 and 3 in Figure 9. Figure 14 shows the section
of code in the hypercode system which acts on the
transformed hypercode. Step 2 is applying the com-

4.3 Identifier Tracking

During identifier tracking, hypercode execution is an-
imated and identifiers in scope from the user’s point
of view become hyperlinks. The user may click on
any identifier and see its value at that point in execu-
tion. This paper concentrates on an animation which
is only updated at user inserted breakpoints.

Figure 15 shows the user view of identifier track-
ing on the function hyphenate. This function declares

let hyphenate <- fun(in_pipe: string) -> string
begin
let divider <- "-"

divider ++ in_pipe
end

hyphenate ("ate")

!call the compiler with code
! (the transformed hypercode)
let compilation result <- compile(code)

!project the result of compilation onto the type
'of generator
project compilation result.result as X onto
fun() -> any: {
let Y <- X() !Y is the generator function

project Y as generator onto
fun(list_type) -> fun()-> any: {
let hypercode_function <- generator(list)

explode (hypercode_result)

fun(list_type) -> fun(): {
let hypercode_function <- generator(list)
hypercode_function()

default: raise exception

}
}

default: raise exception

let hypercode_result <- hypercode function()

Figure 14: Compiling and executing the hypercode

piler to the transformed hypercode. The start of Fig-
ure 14 shows the compiler being called with code, the
transformed hypercode, as its parameter. The com-
piler returns a structure with the executable function
in result. In the first project statement the result of
compilation is projected onto type fun() — any and
executed, which is the start of step 3. The execution
returns Y, which is the generator function, wrapped in
an infinite union type. This is in turn projected onto
the specific type of generator, and then executed. The
parameter list passed to generator is the list of hyper-
links built up during the source transformation. Exe-
cuting generator gives a function, hypercode_function,
and executing this is equivalent to running the hyper-
code. This gives the return value of the hypercode in-
side hypercode_result which has type any. To extract
a value of the correct type from hypercode_result, the
hypercode operation explode, which reifies a value, is
used.

The second part of the project statement, where Y
is projected onto fun(list_type) — fun(), is used when
evaluating a hypercode program which does not re-
turn a value. Then generator returns a function which
returns nothing. The third part of the project state-
ment raises an exception and is chosen when neither
of the previous types matches the value, which would
only occur if the hypercode system failed.

let hyphenate <- fun(in pipe: string) -> string
begin
let divider <- "-"

divider ++ in pipe
end

hyphenate ("ate")

let hyphenate <- fun(in_pipe: string) -> string
begin
let divider <- "-"
L divider ++ in_pipe
end

hyphenate ("ate")

Figure 15: User view of identifier tracking

a string divider and concatenates it to the front of
in_pipe. The black dot to the left of the hypercode
indicates a breakpoint. In the first part of the figure,
(a), execution, indicated by a horizontal line, has not
yet begun and there are no hyperlinks in the code. In
(b), execution continues down to the breakpoint and
stops; the identifiers which are in scope, divider and
in_pipe, become hyperlinks. After executing hyphen-
ate, in (c), only the function call itself is still in scope
and the other identifiers cease to be hyperlinks.

To implement identifier tracking, a generative pro-
cess is applied. Code is inserted which will halt the
execution at breakpoints and restart it on request;
and turn identifiers into hyperlinks when they are in
scope. All identifiers are made into potential hyper-
links, which are only activated while in scope. As a
result of this transformation, the code which executes
is no longer identical to the hypercode that the user is
viewing the execution of. Therefore, the system has
two versions of the hypercode: an executing version
and a separate version which appears to the user.

As part of evaluate_hypercode, the system parses
the hypercode and outputs these two versions. The
process of producing each is explained in the following
sections, which delineate the generation of the code
viewed by the user, and the code which executes, re-
spectively. During identifier tracking these two ver-
sions communicate with each other to coordinate on
breakpoints.

4.3.1 Producing a user view of identifier
tracking

There are two essential elements of the hypercode
that the user views during identifier tracking. Firstly,
every identifier has the potential to be a hyperlink;
and secondly, at a breakpoint, it can be established
which identifiers should be hyperlinks. The rule is
that an identifier turns into a hyperlink when it is in
scope.

To fulfil the above requirements, each identifier in
the hypercode is marked up with information about

its scope, as well as an ID string, to connect it with
a value in the table when it becomes a hyperlink.
Figure 16 shows how this information is included in
the hypercode as XML. Each identifier is marked up

<hl id="divider00" scope="0:0">divider</hl> ++
<hl id="in_pipe00" scope="0:0">in pipe</hl>

Figure 16: XML representation of the user view of
identifier tracking

as a hyperlink, the attributes of which indicate its
ID and scope. The code in Figure 16 is a sample
of what is generated from a syntactic analysis of the
hypercode from line 4 of Figure 15(a), where each
identifier is replaced with a hyperlink.

The markup included in the hypercode allows the
user interface to determine what view to show the user
depending on the point of execution. When the code
stops at a breakpoint, the user interface receives a
message telling it which breakpoint has been reached.
From this information the scope can be established,
and hence the identifiers which are hyperlinks in that
scope can be shown. Hyperlinks which were included
as part of the composition of the hypercode will al-
ways be hyperlinks.

4.3.2 Producing the executing version

Source transformation to produce the executing ver-
sion of the hypercode involves adding code for a num-
ber of different purposes. Firstly, all the new hyper-
links which have been added to the user view of the
code need to be associated with existing values. This
is done by including code after each declaration to
add the newly created value to a list of values and
hyperlink IDs. Therefore, when the user clicks on a
hyperlink, the correct value can be discovered from
its ID by looking in the table. The value can then be
reified to display as hypercode to the user. Secondly,
the source code for functions needs to be stored, so
that the function values can later be reified. Unlike
other data values, where the hypercode view can be
generated from the value, function source code must
be explicitly saved. Thirdly, code needs to be added
at breakpoints to stop the execution and coordinate
with the user view.

A step by step example of source code transforma-
tion on the hyphenate function from Figure 15 is pre-
sented. The transformation is performed during the
same syntactic analysis which produced the hyper-
code for the user interface described in the previous
section.

The first transformation is inserting code which
will store the values of identifiers as part of the hyper-
code representation, HCR, a data structure contain-
ing the source code and links which represent a hyper-
code program. In Figure 17, each identifier declara-
tion in the hyphenate function is followed by a line
which does this. The addHL function adds a hyper-
link to the HCR. The create HL function makes a new
hyperlink from an ID, e.g. in_pipe00, and a value,
e.g. in_pipe, which is cast as an infinite union type. If
there are already hyperlinks in the code, added dur-
ing the hypercode composition, they do not need to
be added to HCR because they are already part of it.

A hypercode representation, or HCR, is created for
each function in the hypercode program, and added
to the program’s HCR as a hyperlink. Identifiers
within the function become hyperlinks in the func-
tion’s HCR. Figure 18 shows the HCR, being created
for hyphenate in line 3, and added to the program’s

let hyphenate <- fun (in_pipe :
begin
addHL (createHL("in pipe00",any(in pipe)) ,hcr)
let divider <- " - "
addHL (createHL("divider00",any(divider)) ,hcr)
divider ++ in_pipe
end
hyphenate("ate")

string) -> string

Figure 17: Creating hyperlink values and adding
them to the HCR

HCR as a hyperlink in line 4. The source code for
hyphenate is stored in the HCR as a string in lines
6-10. Preserving the source code of hyphenate allows
a hypercode view of the function to be generated.

1 1let hyphenate <- fun (in pipe : string) -> string
2 begin

3 let temp_hcr <- createHCR()
4 addHL (createHL ("hyphenate0" ,any(temp hcr)) ,hcr)

5 addHL (createHL("in pipe00",any(in pipe)) ,temp hcr)

6 ’temp_hcr.source := "fun(in pipe: string)->string
7 begin

8 let divider <- ’>"-2"

9 divider ++ in_pipe

10 end"

11 let divider <- " - "
12 addHL(createHL("divider0O",any(divider)),temp hcr

13 divider ++ in pipe
14 end
15 hyphenate("ate")

Figure 18: Creating a new HCR for the function

A function is added around the code which takes
an HCR as a parameter. Figure 19 shows the defini-
tion of the outer function. Later, outer can be exe-

let outer <- fun(hcr: loc[HCR])
begin

let hyphenate <- fun (in_pipe : string) -> string
end
outer

Figure 19: outer takes an HCR as its parameter

cuted with an existing HCR in scope similar to what
was done with the generator function in section 4.2.
outer is returned at the end of the code so it can be
executed later by the hypercode system.

The final stage of the transformation involves
adding code which will stop the hypercode execution
at the designated breakpoints and wake it up again
on receipt of a message from the user. This is done
using semaphores. On completion of the transforma-
tion the code is compiled and executed using the same
technique as for evaluate_hypercode, which was shown
in Figure 14.

During execution the hypercode system, the ex-
ecuting hypercode and the user communicate to
control the execution. The diagram in Figure 20
shows the communication between the three parties.
Although the executing hypercode and the user in-

Hypercode System Executing Hypercode User Interface

Start thread

[wait |
Reached breakpoint

Wake up thread

[wait]

Restart hypercode

#V Wake up thread

Figure 20: Hypercode system, executing hypercode
and user interface interact during identifier tracking

terface are within the hypercode system, they each
have their own thread, so they are shown separately
in the diagram. Communications between the user
interface and the other two threads are in the form of
messages, shown as dotted lines. The hypercode sys-
tem and executing hypercode communicate through
semaphores.

Figure 21 shows the portion of code in the hyper-
code system which manages the interactions between
the executing hypercode and the user interface. The

1. let sem <- newSemaphore(0)
2. let executing_hypercode <-
start (fun() ;outer (hcr,sem))

. sem.wait() ! wait for signal from hypercode
. getMessage(restart) ! wait here for user message
5. sem.signal() ! restart hypercode

S~ ow

Figure 21: Hypercode system restarts the hypercode
execution after a signal from the user

code in this figure is not part of the transformation,
but part of the hypercode system which has generated
the transformation. In line 1, a new semaphore ob-
ject is created. The second line starts a new thread to
execute the outer function, i.e. the hypercode, which
has already been compiled by the time this code exe-
cutes in the hypercode system. The definition of the
outer function has also been altered here to take a
semaphore as its second parameter. Figure 22 shows
the code which is added at this stage of the transfor-
mation, and line 1 shows the new definition of outer.
Looking back to line 3 of Figure 21, it can be seen

1. let outer <- fun(hcr: loc[HCR]; sem: semaphore)
2. begin

3. 1let hyphenate <- fun(in_pipe: string)->string
4. begin

5. sendMessage (breakpoint_number,scope)

6. sem.signal() ! wake up main thread

7. sem.wait() ! suspend self

8. end

9. outer

Figure 22: Adding semaphores to stop the code at
breakpoints

that after starting the execution of outer, the hyper-

code system waits. Now the execution passes to the
code in Figure 22, which executes down to the break-
point, at which stage it sends a message to the user
interface, in line 5, to inform it which breakpoint it
has stopped at and what the current scope is. This in-
formation is inserted during the transformation when
the syntax analyser can access the current scope. The
user has defined where the breakpoints are. In line 6,
the hypercode signals the semaphore which wakes up
the main thread, and in the next line it suspends its
own execution. The hypercode system in Figure 21
has been waiting on line 3 for the signal from the
hypercode. Once it receives that, the hypercode ex-
ecution has been suspended and the user is exam-
ining the code halted at the breakpoint. When the
user sends a message to restart the code, which is
waited on in line 4, the hypercode system signals the
semaphore, thereby restarting the execution of the
hypercode thread.

4.4 Implementation Status

The current hypercode implementation for Process-
Base includes the hypercode operations and the gen-
erators described in this paper. The user interface is
still under development.

5 Related Work

5.1 Hypercode

Apart from the work on hyper-programming sys-
tems described in the introduction there are a few
projects which have implemented programming sys-
tems related to the hypercode environment. The
Intentional Programming project at Microsoft Re-
search, (Simonyi 1995) built a development environ-
ment which operates over active source: a graph data
structure representing the program. The behaviour
of the program source is implemented using meth-
ods operating on this graph. Nodes of the graph can
be elements from different programming languages,
each node is associated with a declaration of inten-
tion which corresponds to the syntax definition of the
programming language. Identifier declarations are as-
sociated with their uses in the source graph.

Other projects such as the CodeProcessor, (Vanter
& Boshernitsan 2000) built at Sun Microsystems aim
to improve programming environments by manipulat-
ing source code to exploit the formal structure of the
programming language. These tools can use infor-
mation derived via linguistic analysis to offer services
that are impractical for purely text-based tools. How-
ever, they fall short of including live data values in the
programiming process.

5.2 Architectural evolution

There is a growing body of work on the subject of soft-
ware evolution, where complex and dynamic software
systems are of particular interest. These systems have
emergent properties which can result in changes to
the system becoming necessary after deployment. In
addition, the software often operates within a chang-
ing business environment. Lehman’s first law of soft-
ware evolution, (Lehman 1996), states that a software
system embedded in a real world domain must con-
tinually change or becoming increasingly less useful.
The changes are driven by the need to repair soft-
ware faults, cope with new operating environments,
and add or modify functionality.

A flexible software architecture aids the process
of software maintenance and means that a software
system can be configured to meet the needs of users

under various conditions of use. Some researchers ar-
gue that software should be able to meet the needs
of all users, (Kiczales, Lamping, Maeda, Keppel &
McNamee 1993), which leads into work in compliant
architectures, (Morrison, Balasubramaniam, Green-
wood, Kirby, Mayes, Munro & Warboys 20000).
These architectures accommodate, and are thus com-
pliant to, the needs of particular applications and
users.

An explicit run-time representation of a system’s
architecture can aid evolution of the system at run-
time. An implementation of such a system is de-
scribed in (Oreizy & Taylor 1998). ArchStudio is a
tool suite that supports architecture-based develop-
ment. Changes are made to an architectural model
and then reified into implementation by a runtime
architecture infrastructure. However, this system re-
stricts the user to a particular architectural style.

6 Further Work

In future this work will be extended by incorporat-
ing hypercode into the ArchWare system. Hypercode
would provide an interface to the Architecture De-
scription Language defined as part of the project.
It would also provide the means to implement the
compose and decompose operations which characterise
evolution at the architectural level.

7 Acknowledgements

This work is supported by the EC Framework V
project ArchWare (IST-2001-32360) and the Overseas
Research Students Award Scheme (ORS).

8 Conclusion

This work shows the use of generative technology
to implement a hypercode system. Two separate
source-to-source transformations have been applied
to a piece of hypercode to generate different visuali-
sations of the hypercode evaluation. Compilation of
hyperlinks was facilitated by the basic transforma-
tion. The transformation for identifier tracking en-
abled the user to view a representation of the hyper-
code execution and access the values of identifiers in
scope.

Generative technology facilitates an unlimited set
of transformations on hypercode. These could in-
clude: conversion into an XML Infoset; inclusion of
dynamic traces; and customised display of data types.
Generators for such purposes assume the input of
properly formed hypercode and alter it to produce
different visualisations and useful formats. Alterna-
tively, the application of transformations to improp-
erly formed hypercode can be considered, allowing the
user to enter programs in any appropriate format. For
example, mathematical formulae could be entered in
a formula editor, or a graphical tool could assist in
designing a program.

Also presented here were the benefits of hyper-
code when applied to the evolution of software archi-
tectures: because hypercode represents closure and
offers a unified view of the system it can be used to
underpin the compose and decompose operations.

References

Czarnecki, K. & FEisenecker, U. (2000), Generative
Programming: Methods, Tools, and Applica-
tions, Addison-Wesley.

Farkas, A. & Dearle, A. (1994), ‘The Octopus model
and its implementation’, Australian Computer
Science Comm. — Proc. 17th Annual Computer

Science Conf., ACSC 16(1), 581-590.

Greenwood, M., Robertson, I. & Warboys, B. (2000),
A support framework for dynamic organizations,
in R. Conradi, ed., ‘Proceedings of the 7th Euro-
pean Workshop in Software Process Technology
(EWSPT 2000)’, Vol. 1780 of Lecture Notes in
Computer Science, Springer, Kaprun, Austria,
pp. 6-20.

Greenwood, R., Balasubramaniam, D., Cimpan, S.,
Kirby, G., Mickan, K., Morrison, R., Oquendo,
F., Robertson, I., Seet, W., Snowdon, B., War-
boys, B. & Zirintsis, E. (2003), ‘Process sup-
port for evolving active architectures’, 9th Furo-
pean Workshop on Software Process Technology
(EWSPT 2003), Helsinki, Finland .

Kiczales, G., Lamping, J., Maeda, C., Keppel, D.
& McNamee, D. (1993), The need for cus-
tomizable operating systems, in ‘Proceedings of
the Fourth Workshop on Workstation Operat-
ing Systems’, IEEE Computer Society Techni-
cal Committee on Operating Systems and Ap-
plications Environment, IEEE Computer Society
Press, pp. 165-169.

Kirby, G., Connor, R., Cutts, Q., Dearle, A.,
Farkas, A. & Morrison, R. (1992), Persistent
hyper-programs, in ‘Persistent Object Systems’,
Springer-Verlag, pp. 86-106.

Kirby, G., Morrison, R. & Stemple, D. (1998), ‘Lin-
guistic reflection in Java’, Software - Practice
and Ezperience 28(10), 1045-1077.

Lehman, M. (1996), Laws of software evolution re-
visited, in ‘5th European Workshop on Software
Process Technology, EWSPT’, Nancy, France,
pp. 108-124.

Morrison, R., Balasubramaniam, D., Greenwood, M.,
Kirby, G., Mayes, K., Munro, D. & Warboys,
B. (1999), ProcessBase reference manual (ver-
sion 1.0.6), Technical report, Universities of St
Andrews and Manchester.

Morrison, R., Balasubramaniam, D., Greenwood, R.,
Kirby, G., Mayes, K., Munro, D. & Warboys, B.
(2000a), ‘An approach to compliance in software
architectures’, IEE Computing and Control En-
gineering Journal, Special Issue on Informatics
11(4), 195-200.

Morrison, R., Balasubramaniam, D., Greenwood, R.,
Kirby, G., Mayes, K., Munro, D. & Warboys,
B. (20000), ‘A compliant persistent architecture’,
Software - Practice and Ezxperience, Special Issue
on Persistent Object Systems 30(4), 363-386.

Morrison, R., Connor, R., Cutts, Q., Dearle, A.,
Farkas, A., Kirby, G., McGettrick, R. & Zir-
intsis, E. (1999), Current directions in hyper-
programming, in ‘Lecture Notes in Computer
Science 1755’, Springer-Verlag, pp. 316-340.

Oreizy, P. & Taylor, R. (1998), On the role of software
architectures in runtime system reconfiguration,
in ‘Proceedings of the International Conference
on Configurable Distributed Systems (ICCDS
4)’, Annapolis MD.

Simonyi, C. (1995), The death of computer languages,
the birth of intentional programming, Technical
Report MSR-TR-95-52, Microsoft Research Mi-
crosoft Corporation.

Vanter, M. L. V. D. & Boshernitsan, M. (2000), Dis-
playing and editing source code in software en-
gineering environments, in ‘Second International

Symposium on Constructing Software Engineer-
ing Tools (CoSET2000)’.

Zirintsis, E. (2000), Towards Simplification of the
Software Development Process: The Hyper-
Code Abstraction, PhD, University of St An-
drews.

Zirintsis, E., Dunstan, V. S., Kirby, G. N. C. & Mor-
rison, R. (1999), Hyper-programming in Java, in
R. Morrison, M. Jordan & M. P. Atkinson, eds,
‘Advances in Persistent Object Systems’, Mor-
gan Kaufmann, Tiburon, California.

