organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,5,6-Triphenyl-8-oxa-7-selena-6-phosphabicyclo[3.2.1]octane-6-selone

Guoxiong Hua, Yang Li, Alexandra M Z Slawin and I. Derek Woollins*

Department of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland Correspondence e-mail: idw3@st-andrews ac uk

Received 18 November 2007; accepted 27 November 2007

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.072; data-to-parameter ratio = 15.6.

The structure of the title compound, C₂₃H₂₁OPSe₂, consists of fused puckered five- and six-membered rings. PSeC₂O and C_5O , respectively, with a C_2O bridgehead. The C_5O ring adopts a chair conformation, whilst the C₂PSeO ring has an envelope conformation.

Related literature

For related literature, see: An et al. (1998); Bhattacharyya et al. (2000, 2001a,b, 2002); Fitzmaurice et al. (1988); Gray, Bhattacharyva et al. (2005), Grav, Slawin et al. (2005); Hua & Woollins (2007); Hua, Li et al. (2006, 2007a,b,c); Shi et al. (2006, 2007).

Experimental

Crystal data

C23H21OPSe2 $M_r = 502.29$ Triclinic, P1

a = 7.6802 (9) Å b = 9.0613 (12) Åc = 14.9070 (16) Å

$\alpha = 84.949 \ (8)^{\circ}$	
$\beta = 75.677 \ (7)^{\circ}$	
$\gamma = 89.266 \ (8)^{\circ}$	
$V = 1001.2 (2) \text{ Å}^3$	
Z = 2	

Data collection

Rigaku Mercury CCD	7092 measured reflections
diffractometer	3805 independent reflections
Absorption correction: multi-scan	3000 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku, 2004)	$R_{\rm int} = 0.031$
$T_{\min} = 0.489, \ T_{\max} = 0.570$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ wR(F²) = 0.072 244 parameters H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.85 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.82 \text{ e} \text{ Å}^{-3}$ 3805 reflections

Mo $K\alpha$ radiation $\mu = 3.78 \text{ mm}^-$

 $0.20 \times 0.20 \times 0.15$ mm

T = 93 (2) K

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick,2003); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Engineering and Physical Science Research Council (EPSRC, UK) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2051).

References

- An, D. L., Higeta, N., Toyota, K. & Yoshifuji, M. (1998). Chem. Lett. pp. 17-18. Bhattacharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2000). Angew. Chem. Int. Ed. Engl. 39, 1973-1974.
- Bhattacharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2001a). Dalton Trans. 300-303.
- Bhattacharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2001b). J. Organomet. Chem. 623, 116-119.
- Bhattacharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2002). Chem. Eur. J. 8, 2705-2711
- Fitzmaurice, J. C., Williams, D. J., Wood, P. T. & Woollins, J. D. (1988). J. Chem. Soc. Chem. Commun. pp. 741-743.
- Gray, I. P., Bhattacharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2005). Chem. Eur. J. 11, 6221-6227.
- Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2005). Dalton Trans. pp. 2188-2194.
- Hua, G., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2006). Org. Lett. 8, 5251-5254.
- Hua, G., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2007a). Eur. J. Inorg. Chem. pp. 891-897.
- Hua, G., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2007b). Chem. Commun. pp. 1465-1467.
- Hua, G., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2007c). Dalton Trans. pp. 1477-1480.
- Hua, G. & Woollins, J. D. (2007). Tetrahedron Lett. 48, 3677-3679.
- Rigaku (2004). CrystalClear. Version 1.36. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shi, W., Fallah, M. S., Anson, C. E. & Rothenberger, A. (2006). Dalton Trans. pp. 2979-2983.
- Shi, W., Fallah, M. S., Zhang, L., Anson, C. E., Matern, E. & Rothenberger, A. (2007). Chem. Eur. J. 13, 598-603.

Acta Cryst. (2008). E64, o184 [doi:10.1107/S1600536807063945]

1,5,6-Triphenyl-8-oxa-7-selena-6-phosphabicyclo[3.2.1]octane-6-selone

G. Hua, Y. Li, A. M. Z. Slawin and J. D. Woollins

Comment

2,4-bis(phenyl)-1,3-diselenadiphosphetane-2,4-diselenide (PhPSe₂)₂, also known as Woollins reagent, **WR**, is a selenium analogue of the well known Lawessons reagent, (*p*-MeOPhPS₂)₂. **WR** has found applications in the synthesis of selenium containing organic molecules, P—Se containing heterocycles and related compounds (Gray, Bhattacharyya *et al.*, 2005; Gray, Slawin *et al.*, 2005, Shi *et al.*, 2006, 2007, Bhattacharyya *et al.* 2000, 2001*a*, 2001*b*, 2002, Hua, Li *et al.* 2006, 2007*a*, 2007*b*, 2007*c*). We report here the synthesis and X-ray structure of a new fused [3,2,1] ring P—Se heterocycle. The title compound, (I), was generated by the reaction of Woollins' reagent with 1,4-diketone. The P = Se bond length (2.0995 (9) Å) and the P – Se distance (2.2278 (10) Å) are consistent with the related selenides-containing P^V= Se bonds (2.08 – 2.12 Å) and P^V—Se single bonds (Fitzmaurice *et al.* 1988, An *et al.* 1998).

Experimental

A red suspension of 1,3-dibenzoylpropane (0.25 g, 1 mmol) and Woollins' reagent (0.54 g, 1 mmol) in dry toluene (10 ml) was refluxed for 16 hr. The yellow suspension was formed along with small amount of grey elemental selenium. Upon cooling to room temperature the mixture was purified by silica gel chromatography (1:9 ethyl acetate/dichloromethane as eluent) to give the title compound in 20% yield. Crystals were obtained from dichloromethane/hexane by diffusion method.

Refinement

All H atoms were included in calculated positions (C—H distances are 0.98 Å for methyl H atoms, 0.99 Å for methylene H atoms and 0.95 Å for aryl H atoms) and were included in the refinement as riding atoms with U so~(H) = 1.2 U~eq~ (parent atom, methylene and aryl H atoms) or U so~(H) = 1.5 U~eq~ (parent atom, methyl H atoms).

Figures

Fig. 1. The structure of (I) with displacement ellipsoids drawn at the 50% probability level; H-atoms have been ignored for clarity.

1,5,6-Triphenyl-8-oxa-7-selena-6-phosphabicyclo[3.2.1]octane-6-selone

Crystal data	
C ₂₃ H ₂₁ OPSe ₂	Z = 2
$M_r = 502.29$	$F_{000} = 500$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.666 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.6802 (9) Å	Cell parameters from 3344 reflections
b = 9.0613 (12) Å	$\theta = 2.3 - 28.4^{\circ}$
c = 14.9070 (16) Å	$\mu = 3.78 \text{ mm}^{-1}$
$\alpha = 84.949 \ (8)^{\circ}$	T = 93 (2) K
$\beta = 75.677 \ (7)^{\circ}$	Block, colorless
$\gamma = 89.266 \ (8)^{\circ}$	$0.20\times0.20\times0.15~mm$
V = 1001.2 (2) Å ³	

Data collection

3805 independent reflections
3000 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$
$\theta_{max} = 25.8^{\circ}$
$\theta_{\min} = 2.3^{\circ}$
$h = -10 \rightarrow 9$
$k = -10 \rightarrow 10$
$l = -15 \rightarrow 19$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.039$
$wR(F^2) = 0.072$
<i>S</i> = 1.00
3805 reflections
244 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0278P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.85$ e Å⁻³ $\Delta\rho_{min} = -0.82$ e Å⁻³ Extinction correction: none

Special details

Experimental. Anal. Calcd for C₂₃H₂₁OPSe₂: C, 55.00; H, 4.21. Found: C, 54.86; H, 4.15. ¹H NMR (CDCl₃): 7.72–7.05 (m, 15H, ArH), 2.37 (m, 4H, CH₂), 1.25 (m, 2H, CH₂). ³¹P NMR (CDCl₃): 79.23 (s, *J*(P,Se_{endo}) = 430 Hz, *J*(P,Se_{exo}) = 776 Hz). ⁷⁷Se NMR (CDCl₃): 34.61 (d, *J*(P,Se_{endo}) = 430 Hz), -94.02 (d, *J*(P,Se_{exo}) = 778 Hz).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C2	0.3921 (4)	0.3495 (4)	0.1438 (2)	0.0194 (8)
H2	0.3059	0.4106	0.1799	0.023*
Se2	0.56063 (4)	0.04366 (4)	0.35534 (2)	0.01561 (11)
Se1	0.26388 (4)	0.37283 (4)	0.37994 (2)	0.01944 (11)
P1	0.49881 (10)	0.27352 (10)	0.30698 (6)	0.0137 (2)
01	0.8475 (3)	0.2463 (2)	0.29505 (14)	0.0147 (5)
C10	0.8065 (4)	0.1527 (4)	0.4568 (2)	0.0163 (8)
H10A	0.9283	0.1826	0.4598	0.020*
H10B	0.7710	0.0625	0.4999	0.020*
C18	0.9461 (4)	0.0000 (4)	0.3233 (2)	0.0161 (8)
C1	0.5138 (4)	0.2689 (4)	0.1839 (2)	0.0151 (7)
C12	0.7708 (4)	0.4895 (4)	0.2422 (2)	0.0133 (7)
C11	0.8112 (4)	0.1176 (4)	0.3592 (2)	0.0159 (8)
C8	0.7048 (4)	0.4071 (4)	0.4139 (2)	0.0167 (8)
H8A	0.6044	0.4773	0.4299	0.020*
H8B	0.8170	0.4596	0.4140	0.020*
C6	0.6430 (4)	0.1821 (4)	0.1293 (2)	0.0176 (8)
H6	0.7276	0.1285	0.1560	0.021*
C17	0.6750 (4)	0.6216 (4)	0.2523 (2)	0.0180 (8)
H17	0.5753	0.6289	0.3041	0.022*
C4	0.5238 (5)	0.2527 (4)	-0.0025 (2)	0.0275 (9)
H4	0.5262	0.2462	-0.0660	0.033*
C5	0.6475 (4)	0.1744 (4)	0.0366 (2)	0.0229 (9)
Н5	0.7353	0.1155	-0.0004	0.027*
C21	1.1979 (4)	-0.2146 (4)	0.2626 (2)	0.0217 (9)
H21	1.2835	-0.2883	0.2412	0.026*
С9	0.6751 (4)	0.2765 (4)	0.4882 (2)	0.0165 (8)
H9A	0.6923	0.3096	0.5470	0.020*
H9B	0.5503	0.2389	0.4998	0.020*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C16	0.7245 (4)	0.7418 (4)	0.1872 (2)	0.0207 (8)
H16	0.6582	0.8310	0.1942	0.025*
C22	1.0516 (4)	-0.2490 (4)	0.3370 (2)	0.0228 (9)
H22	1.0371	-0.3465	0.3672	0.027*
C14	0.9652 (4)	0.6018 (4)	0.1018 (2)	0.0217 (8)
H14	1.0655	0.5954	0.0501	0.026*
C19	1.0923 (4)	0.0345 (4)	0.2492 (2)	0.0203 (8)
H19	1.1063	0.1316	0.2184	0.024*
C3	0.3977 (4)	0.3398 (4)	0.0505 (2)	0.0263 (9)
Н3	0.3141	0.3936	0.0232	0.032*
C23	0.9267 (4)	-0.1415 (4)	0.3674 (2)	0.0212 (8)
H23	0.8271	-0.1652	0.4187	0.025*
C7	0.7176 (4)	0.3607 (4)	0.3169 (2)	0.0134 (7)
C13	0.9160 (4)	0.4807 (4)	0.1661 (2)	0.0182 (8)
H13	0.9817	0.3913	0.1582	0.022*
C15	0.8693 (4)	0.7326 (4)	0.1122 (2)	0.0231 (9)
H15	0.9035	0.8154	0.0678	0.028*
C20	1.2179 (4)	-0.0732 (4)	0.2201 (2)	0.0222 (9)
H20	1.3195	-0.0488	0.1700	0.027*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0152 (17)	0.022 (2)	0.0206 (19)	0.0026 (15)	-0.0049 (15)	0.0004 (15)
Se2	0.01333 (18)	0.0149 (2)	0.0184 (2)	-0.00064 (13)	-0.00467 (15)	0.00179 (14)
Se1	0.01320 (18)	0.0222 (2)	0.0215 (2)	0.00329 (14)	-0.00123 (15)	-0.00340 (15)
P1	0.0122 (4)	0.0142 (5)	0.0143 (4)	0.0011 (3)	-0.0029 (4)	-0.0009 (4)
01	0.0150 (11)	0.0130 (14)	0.0160 (12)	0.0019 (9)	-0.0046 (10)	0.0014 (10)
C10	0.0132 (16)	0.022 (2)	0.0150 (17)	-0.0037 (14)	-0.0056 (14)	0.0009 (14)
C18	0.0137 (17)	0.017 (2)	0.0194 (18)	0.0013 (14)	-0.0081 (16)	-0.0017 (15)
C1	0.0130 (16)	0.015 (2)	0.0170 (18)	-0.0060 (14)	-0.0038 (15)	0.0000 (14)
C12	0.0148 (17)	0.013 (2)	0.0144 (17)	-0.0021 (13)	-0.0074 (15)	0.0001 (14)
C11	0.0109 (16)	0.015 (2)	0.0220 (19)	0.0024 (14)	-0.0047 (15)	-0.0018 (15)
C8	0.0149 (16)	0.021 (2)	0.0146 (17)	-0.0017 (14)	-0.0035 (15)	-0.0047 (15)
C6	0.0141 (17)	0.022 (2)	0.0169 (18)	0.0010 (15)	-0.0032 (15)	-0.0030 (15)
C17	0.0168 (17)	0.020 (2)	0.0191 (18)	0.0008 (15)	-0.0074 (15)	-0.0034 (15)
C4	0.029 (2)	0.041 (3)	0.0137 (19)	-0.0014 (18)	-0.0080 (17)	-0.0025 (17)
C5	0.0192 (18)	0.028 (2)	0.0196 (19)	0.0014 (16)	-0.0011 (16)	-0.0051 (16)
C21	0.0178 (18)	0.023 (2)	0.027 (2)	0.0077 (15)	-0.0098 (17)	-0.0090 (16)
C9	0.0174 (17)	0.019 (2)	0.0137 (17)	0.0009 (14)	-0.0047 (15)	-0.0009 (14)
C16	0.0237 (19)	0.014 (2)	0.025 (2)	0.0037 (15)	-0.0079 (17)	-0.0016 (15)
C22	0.026 (2)	0.016 (2)	0.030 (2)	0.0033 (15)	-0.0160 (18)	0.0037 (16)
C14	0.0199 (18)	0.025 (2)	0.0171 (18)	0.0008 (16)	-0.0005 (16)	0.0013 (15)
C19	0.0184 (18)	0.016 (2)	0.025 (2)	0.0001 (15)	-0.0035 (16)	0.0009 (15)
C3	0.027 (2)	0.032 (3)	0.023 (2)	0.0042 (17)	-0.0144 (18)	0.0028 (17)
C23	0.0163 (17)	0.025 (2)	0.0233 (19)	0.0024 (15)	-0.0087 (16)	0.0031 (16)
C7	0.0094 (15)	0.012 (2)	0.0198 (18)	0.0029 (13)	-0.0047 (14)	-0.0054 (14)
C13	0.0149 (17)	0.019 (2)	0.0201 (18)	0.0013 (15)	-0.0033 (16)	-0.0024 (15)

C15 C20	0.026 (2) 0.0136 (17)	0.021 (2) 0.022 (2)	0.0215 (19) 0.028 (2)	-0.0041 (16) 0.0002 (15)	-0.0064 (17) 0.0006 (16)	0.0048 (16) -0.0033 (16)
Geometric parai	neters (Å. °)					
	(,)	1 201 (5)	C(11/	0.05	00
$C_2 = C_3$		1.391 (5)	C6—	H6	0.95	00 4 (5)
C2C1		1.395 (4)	C1/-	-C16	1.38	4 (5)
C2—H2		0.9500	C1/-	-H1/	0.95	7 (5)
Se2—CII		2.062(3)	C4—	C3	1.37	7 (5)
Se2—P1		2.2278 (10)	C4—		1.38	9(5)
Sel—Pl		2.0995 (9)	C4—.	H4	0.95	00
PI-CI		1.814 (3)	C3—	H5	0.95	1 (5)
PI - C/		1.909 (3)	C21-	-C20	1.37	1 (5)
01		1.425 (4)	C21-	-022	1.38	7 (5)
01 - 07		1.432 (3)	C21-		0.93	00
C10-C11		1.509 (4)	C9—.	119A	0.99	00
C10—C9		1.323 (4)	C9—.	П9Б С15	0.99	5 (4)
C10—H10A		0.9900	C16–	-C13	1.37	3 (4)
C10—I10B		1 291 (5)	C10-	-1110	0.93	2 (5)
C18 - C23		1.381(3)	C22-	-C25 H22	1.30	3(3)
C18—C13		1.514 (4)	C22-	-1122	0.93	2 (A)
		1.314 (4)	C14	-C15	1.30	7 (5)
C1 = C0		1.400(4) 1.387(4)	C14-		0.95	, (<u>5</u>)
C12-C13		1.387 (4)	C14-	-1114 -C20	1 38	3 (4)
C12 - C7		1.525 (4)	C19	-H10	0.95	00
C12 C7		1.525 (4)	C3—	H3	0.95	00
C8 - C9		1.526 (4)	C23-	_H23	0.95	00
C8—H8A		0.9900	C13-	-H13	0.95	00
C8—H8B		0.9900	C15-	_H15	0.95	00
C6-C5		1 381 (4)	C20-	-H20	0.95	00
C_{3} C_{2} C_{1}		119.6 (3)	C5—	С4—Н4	119	9
C3—C2—H2		120.2	C6—	C5—C4	119.	1 (3)
C1-C2-H2		120.2	C6—	С5—Н5	120.	0
C11 - Se2 - P1		88 68 (9)	C4—	С5—Н5	120.	0
C1 - P1 - C7		106 71 (14)	C20-	-C21-C22	119	4 (3)
C1 - P1 - Se1		113.82 (10)	C20-	-C21—H21	120.	3
C7—P1—Se1		114.85 (10)	C22–	-C21—H21	120.	3
C1—P1—Se2		105.00 (11)	C10–		110.	4 (3)
C7—P1—Se2		95.97 (10)	C10–	-С9—Н9А	109.	6
Se1—P1—Se2		118.47 (4)	C8—	С9—Н9А	109.	6
C11—O1—C7		113.5 (2)	C10–	-С9—Н9В	109.	6
C11—C10—C9		111.9 (3)	C8—	С9—Н9В	109.	6
C11—C10—H10	A	109.2	H9A-	—С9—Н9В	108.	1
C9-C10-H10A		109.2	C15–	C16C17	120.	3 (3)
C11—C10—H10	В	109.2	C15–	-C16-H16	119.	9
C9—C10—H10B		109.2	C17–	-C16—H16	119.	9
H10A—C10—H1	0B	107.9	C23–	-C22-C21	120.	0 (3)
C23—C18—C19		119.7 (3)	C23–	-С22—Н22	120.	0

C23—C18—C11	119.6 (3)	C21—C22—H22	120.0
C19—C18—C11	120.6 (3)	C13—C14—C15	120.4 (3)
C2—C1—C6	119.7 (3)	C13—C14—H14	119.8
C2—C1—P1	119.6 (2)	C15-C14-H14	119.8
C6—C1—P1	120.7 (2)	C20-C19-C18	119.6 (3)
C13—C12—C17	119.1 (3)	С20—С19—Н19	120.2
C13—C12—C7	121.7 (3)	C18—C19—H19	120.2
C17—C12—C7	119.2 (3)	C4—C3—C2	120.4 (3)
O1—C11—C10	111.8 (3)	С4—С3—Н3	119.8
O1—C11—C18	108.3 (2)	С2—С3—Н3	119.8
C10-C11-C18	113.8 (3)	C18—C23—C22	120.3 (3)
O1—C11—Se2	105.63 (19)	C18—C23—H23	119.9
C10-C11-Se2	109.0 (2)	С22—С23—Н23	119.9
C18—C11—Se2	107.8 (2)	O1—C7—C8	110.9 (3)
С7—С8—С9	113.0 (3)	O1—C7—C12	107.9 (2)
С7—С8—Н8А	109.0	C8—C7—C12	112.2 (3)
С9—С8—Н8А	109.0	O1—C7—P1	104.0 (2)
С7—С8—Н8В	109.0	C8—C7—P1	112.1 (2)
С9—С8—Н8В	109.0	C12—C7—P1	109.4 (2)
H8A—C8—H8B	107.8	C14—C13—C12	120.2 (3)
C5—C6—C1	120.0 (3)	C14—C13—H13	119.9
С5—С6—Н6	120.0	С12—С13—Н13	119.9
С1—С6—Н6	120.0	C16—C15—C14	119.7 (3)
C16—C17—C12	120.3 (3)	C16—C15—H15	120.1
С16—С17—Н17	119.8	C14—C15—H15	120.1
C12—C17—H17	119.8	C21—C20—C19	121.0 (3)
C3—C4—C5	120.3 (3)	С21—С20—Н20	119.5
C3—C4—H4	119.9	С19—С20—Н20	119.5
C11—Se2—P1—C1	104.65 (14)	C23—C18—C19—C20	-0.2 (5)
C11—Se2—P1—C7	-4.46 (13)	C11—C18—C19—C20	177.3 (3)
C11—Se2—P1—Se1	-126.97 (10)	C5—C4—C3—C2	-0.4 (6)
C3—C2—C1—C6	1.6 (5)	C1—C2—C3—C4	-0.8 (5)
C3—C2—C1—P1	-176.7 (3)	C19—C18—C23—C22	-0.7 (5)
C7—P1—C1—C2	-117.1 (3)	C11—C18—C23—C22	-178.2 (3)
Se1—P1—C1—C2	10.6 (3)	C21—C22—C23—C18	0.5 (5)
Se2—P1—C1—C2	141.8 (3)	C11—O1—C7—C8	57.7 (3)
C7—P1—C1—C6	64.7 (3)	C11—O1—C7—C12	-179.0 (3)
Se1—P1—C1—C6	-167.6 (2)	C11—O1—C7—P1	-63.0 (3)
Se2—P1—C1—C6	-36.4 (3)	C9—C8—C7—O1	-52.0 (3)
C7—O1—C11—C10	-59.4 (3)	C9—C8—C7—C12	-172.7 (2)
C7—O1—C11—C18	174.3 (3)	C9—C8—C7—P1	63.7 (3)
C7—O1—C11—Se2	59.0 (3)	C13—C12—C7—O1	3.9 (4)
C9—C10—C11—O1	54.2 (3)	C17—C12—C7—O1	-173.9 (3)
C9—C10—C11—C18	177.4 (3)	C13—C12—C7—C8	126.3 (3)
C9—C10—C11—Se2	-62.2 (3)	C17—C12—C7—C8	-51.5 (4)
C23—C18—C11—O1	-172.4 (3)	C13—C12—C7—P1	-108.6 (3)
C19—C18—C11—O1	10.1 (4)	C17—C12—C7—P1	73.6 (3)
C23—C18—C11—C10	62.5 (4)	C1—P1—C7—O1	-74.6 (2)
C19—C18—C11—C10	-115.0 (3)	Se1—P1—C7—O1	158.24 (15)

C23—C18—C11—Se2	-58.5 (4)	Se2—P1—C7—O1	33.03 (19)
C19—C18—C11—Se2	124.0 (3)	C1—P1—C7—C8	165.6 (2)
P1—Se2—C11—O1	-24.59 (19)	Se1—P1—C7—C8	38.4 (3)
P1—Se2—C11—C10	95.7 (2)	Se2—P1—C7—C8	-86.8 (2)
P1—Se2—C11—C18	-140.2 (2)	C1—P1—C7—C12	40.4 (3)
C2-C1-C6-C5	-1.2 (5)	Se1—P1—C7—C12	-86.7 (2)
P1-C1-C6-C5	177.0 (3)	Se2—P1—C7—C12	148.1 (2)
C13—C12—C17—C16	-0.1 (5)	C15-C14-C13-C12	-0.6 (5)
C7—C12—C17—C16	177.8 (3)	C17—C12—C13—C14	0.6 (5)
C1—C6—C5—C4	0.0 (5)	C7—C12—C13—C14	-177.2 (3)
C3—C4—C5—C6	0.8 (6)	C17-C16-C15-C14	0.4 (5)
C11—C10—C9—C8	-48.4 (4)	C13—C14—C15—C16	0.2 (6)
C7—C8—C9—C10	47.9 (4)	C22-C21-C20-C19	-1.4 (5)
C12—C17—C16—C15	-0.4 (5)	C18—C19—C20—C21	1.3 (6)
C20-C21-C22-C23	0.5 (5)		

