Accepted Manuscript Full Length Article Nanocrystalline $CeO_{2-\delta}$ coated β -MnO $_2$ nanorods with enhanced oxygen transfer property Xiubing Huang, Guixia Zhao, Yueqi Chang, Ge Wang, John T.S. Irvine PII: S0169-4332(17)33791-1 DOI: https://doi.org/10.1016/j.apsusc.2017.12.197 Reference: APSUSC 38067 To appear in: Applied Surface Science Received Date: 14 October 2017 Revised Date: 8 December 2017 Accepted Date: 21 December 2017 Please cite this article as: X. Huang, G. Zhao, Y. Chang, G. Wang, J.T.S. Irvine, Nanocrystalline $CeO_{2-\delta}$ coated β-MnO₂ nanorods with enhanced oxygen transfer property, *Applied Surface Science* (2017), doi: https://doi.org/10.1016/j.apsusc.2017.12.197 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. # Nanocrystalline $CeO_{2-\delta}$ coated $\beta\text{-MnO}_2$ nanorods with enhanced #### oxygen transfer property Xiubing Huang, a,b Guixia Zhao, Yueqi Chang, Ge Wang a* and John T.S. Irvine b* ^a Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and ^b School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK. *Corresponding authors: Prof. Ge Wang (gewang@mater.ustb.edu.cn) and Prof. John T. S. Irvine (<u>itsi@st-andrews.ac.uk</u>) Technology Beijing, Beijing, 100083, China. Abstract: In this research, β-MnO₂ nanorods were synthesized by a hydrothermal method, followed by a facile precipitation method to obtain nanocrystalline CeO_{2-δ} coated β-MnO₂ nanorods. The as-prepared samples were characterized by XRD, HRTEM, FESEM, XPS and in-situ high-temperature XRD. The HRTEM results show that well dispersed CeO_{2-δ} nanocrystals sized about 5 nm were coated on the surface of β-MnO₂ nanorods. The oxygen storage and transfer property of as-synthesized materials were evaluated using TGA under various atmospheres (air, pure N2, and 5%H₂/95%Ar). The TGA results indicate that CeO_{2-δ} modification could favour the reduction of Mn⁴⁺ to Mn³⁺ and/or Mn²⁺ at lower temperature as compared with pure β-MnO₂ nanorods and the physically mixed CeO₂₋₈-β-MnO₂ under low oxygen partial pressure conditions (i.e., pure N_2 , $5\%H_2/95\%Ar$). Specifically, $CeO_{2-\delta}@\beta-MnO_2$ sample can exhibit 7.5 wt% weight loss between 100 and 400 °C under flowing N₂ and 11.4 wt% weight loss between 100 and 350 °C under flowing 5%H₂/95%Ar. During the reduction process under pure N_2 or $5\%H_2/95\%$ Ar condition, the oxygen ions in β-MnO₂ nanorods are expected to be released to the surroundings in the form of O₂ or H₂O with the coated CeO_{2-δ} nanocrystals acting as mediator as inferred from the synergistic effect between the well-interacted $CeO_{2-\delta}$ nanocrystals and $\beta\text{-MnO}_2$ nanorods. **Keywords**: $CeO_{2-\delta}$; β -MnO₂; oxygen transfer; synergetic effect #### 1. Introduction Oxygen storage materials (OSMs) that can store/release oxygen at elevated temperature or changeable oxygen partial pressure have potential applications in numerous oxygen-related energy and environmental fields, especially in catalysis.[1, 2] For example, OSMs based on ceria can be used as three-way catalysts for the conversion of automobile exhaust emissions (e.g., NO_x, CO, and hydrocarbons) into harmless gases and H₂O.[3] Since fuel (such as methane, CO, soot) oxidation into harmless CO₂ and H₂O is of great importance to environmental protection and energy utilization, it is necessary to develop efficient and effective OSMs for the fuel oxidation reaction at relatively low temperatures. It is also crucial to comprehensively understand the mechanism of oxygen storage, transfer and release in OSMs. In the past several years, OSMs based on transition metal species (e.g., Cu, Fe, Mn, Co) have attracted considerable attention due to their relatively low cost but high catalytic activity, as well as their changeable valences. [4-6] As an important transition metal element with variable oxidation states, manganese oxides (MnO₂, Mn₂O₃, Mn₃O₄, or MnO), especially MnO₂, have been widely studied as catalysts and catalyst supports for oxidation reactions because of their redox capabilities, high oxygen storage capacity in the crystalline lattice, abundant amount, relatively low price and environmental friendliness.[7-12] However, the catalytic activity of pure MnO₂ is still not high enough, which may result from the poor oxygen transfer in pure MnO₂ at low temperature.[13] Various strategies have been adopted to improve the catalytic activity and oxygen transfer of MnO₂, such as reducing their particle size to nanoscale and doping MnO₂ with other metal elements.[14, 15] Recently, it has been indicated that modifying the surface of MnO₂ with noble metals or other metal oxides is an effective strategy to improve their catalytic performance and oxygen transfer property;[16-18] however, the high prices of noble metals limit their wide use. Ceria has been widely utilized as an oxygen carrier owing to the unique redox properties and high oxygen transfer property between CeO_2 and $CeO_{2-\delta}$, but itself has low oxygen storage capacity (OSC).[19-23] Therefore, it can be imagined that modifying MnO_2 nanomaterials with $CeO_{2-\delta}$ could be an effective strategy to enhance the oxygen transferring by utilizing $CeO_{2-\delta}$ as a possible mediator.[18, 24, 25] Even though the enhanced catalytic performance in CO, C_3H_8 , NO, Hg^0 and soot oxidation on Ce-Mn mixed oxides has been contributed to the synergistic effect between Ce and Mn,[24, 26-30] the exact mechanism of synergistic effect between $CeO_{2-\delta}$ and MnO_2 , as well as the relationship with surrounding atmospheres is still not clear enough, and needs further exploring. Herein, we focus on the understanding of oxygen transfer properties between $CeO_{2-\delta}$ and β -MnO₂, as well as their relationship with the surrounding atmospheres. Nanocrystalline $CeO_{2-\delta}$ modified β -MnO₂ nanorods were chosen as the object system, in which β -MnO₂ and $CeO_{2-\delta}$ could mutually benefit by facilitating the oxygen mobility, resulting in enhanced oxygen transfer and release at relatively low temperatures. The understanding of the synergistic effect between $CeO_{2-\delta}$ and β -MnO₂ is also of great importance for the potential applications in catalytic fields. #### 2. Experimental Section #### 2.1. Materials synthesis β -MnO₂ nanorods were synthesized according to the reported procedure.[31] In a typical synthesis, 0.008 mol of MnSO₄·H₂O (99%, Alfa Aesar) and 0.008 mol of (NH₄)₂S₂O₈ (99%, Alfa Aesar) were dissolved into 24 mL of de-ionized water. After 10 min stirring, the mixture was transferred into 40 mL Telfon-lined stainless steel autoclave and kept at 140 °C for 12 h. After cooling down to room temperature, the black powder was separated by centrifugation, washed with water 5 times, followed by drying at 80 °C for 12 h. The obtained powder was referred to as β -MnO₂-H. The $CeO_{2-\delta}$ nanocrystals modified β -MnO₂ nanorods were prepared by a room-temperature precipitation method followed by heat-treatment. In a typical process, 0.10 g of obtained β -MnO₂-H was firstly dispersed in the mixture of 70 mL of H₂O and 60 mL of ethanol by ultrasonication for 30 min. After stirring for 2 h, a mixture of 5 mL of H₂O and 0.10 g of Ce(NO₃)₃·6H₂O (99%, Sigma-Aldrich) was slowly added into the above solution and the solution was kept stirring for 3 h. Then, a mixture of 5 mL of H₂O and 1 mL of 35 wt% NH₃·H₂O (Fisher Chemical UK) was added to the above solution. After stirring at room temperature for 24 h, the suspension was separated by centrifugation, washed with H₂O and ethanol for several times. The final product was obtained by drying at 80 °C for 1 h, then at 400 °C under static air for 4 h and referred to as CeO_{2-δ}@β-MnO₂. For comparison, pure β-MnO₂-H nanorods were treated at 400 °C under static air for 4 h to obtain β-MnO₂. Pure $CeO_{2-\delta}$ nanocrystals were synthesized via a precipitation method.[32] In a typical procedure, 16 mmol of $Ce(NO_3)_3 \cdot 6H_2O$ (99%, Sigma-Aldrich) was dissolved in 5 mL of H_2O in a beaker. Then 35 mL of NaOH (Laboratory reagent grade, Fisher Chemical UK) solution (7 mol/L) was added to the beaker, without stirring or titrating. The suspension was then left at room temperature and pressure for 24 h. The product was washed three times with distilled water and dried at 80 °C for 24 h, followed by calcination at 400 °C for 4 h. Then quantitative amounts of calcinated $CeO_{2-\delta}$ nanocrystals and β-MnO₂ nanorods were physically mixed by grinding in a mortar using a pestle. The obtained physical mixture was referred to as $CeO_{2-\delta}$ -β-MnO₂, in which the weight ratio of $CeO_{2-\delta}$ to β-MnO₂ is almost the same as that of $CeO_{2-\delta}$ @β-MnO₂. #### 2.2. Characterization Powder X-ray diffraction (XRD) patterns were recorded at room temperature on a M21X diffractometer (MAC Science Co. Ltd., Japan) using Cu K alpha radiation (λ = 1.541 Å). In situ high-temperature XRD was performed using Mo K alpha radiation (λ = 0.7097 Å) as source under pure N₂ atmosphere from room temperature to 800 °C with 100 °C as interval. The morphologies of all samples were observed on a ZEISS SUPRA 55 Field Emission Scanning Electron Microscopy (FESEM). High-resolution transmission electron microscope (HRTEM) was performed using a JEOL JEM-2010 electron microscope equipped with energy-dispersive X-ray spectroscopy (EDS) at 200 kV. The samples were prepared by depositing and evaporating a droplet of the sample ethanol solution on a carbon-coated copper grid. Their thermochemical stability and OSC were analyzed by thermogravimetric analysis (TGA) on a NETZSCH STA449C instrument (NETZSCH-Geraetebau GmbH, Selb, Germany) under various gas atmospheres (e.g., air, pure N₂, 5%H₂/95%Ar) with different temperature programs. X-ray photoelectron spectra (XPS) experiments were performed on an ESCALAB 250 spectrometer using Al K alpha radiation. Charging effects were corrected by adjusting in accordance with the binding energy of C1s peak of 284.8 eV. Temperature-programmed reduction with H₂ (H₂-TPR) was performed on an AutoChem II 2920 (Micromeritics, USA). 30 mg of catalyst samples were heated at a rate of 10 K min⁻¹ from 30 to 800 °C under 10%H₂/90%Ar with a flowing rate of 30 mL/min. #### 3. Results and Discussion 1 presents the X-ray diffraction (XRD) patterns of β-MnO₂, $CeO_{2-\delta}(a)\beta-MnO_2$, $CeO_{2-\delta}-\beta-MnO_2$ and $CeO_{2-\delta}$. All the diffraction peaks in the bottom pattern (Fig. 1a) can be indexed to tetragonal β-MnO₂ with P42/mnm space group (JCPDS card No. 24-0735), indicating that the β-MnO₂ structure was maintained even after heat-treatment at 400 °C. For CeO_{2-δ}@β-MnO₂ (Fig. 1b), the peaks ascribed to (111), (200), (220), (311), (222), (400), (331) and (420) planes of cubic fluorite-structured $CeO_{2-\delta}$ crystals with Fm3m space group (JCPDS card No. 34-0394) were clearly displayed. The obviously broadening peaks which can be ascribed to (200) and (220) of CeO_{2-δ} demonstrate its nanocrystallite nature, while β-MnO₂ maintained its phase structure. In the physical mixture CeO_{2-δ}-β-MnO₂ (Fig. 1c), there are no obvious peaks of CeO_{2-δ} due to its small amount as well as the overlay by β-MnO₂ nanorods. Their mean crystalline sizes were determined from XRD line broadening calculation, using the Scherrer Equation: $D = k\lambda/(\beta\cos\theta)$, in which k is Scherrer constant (k = 0.89), λ is the X-ray wavelength, β is the line broadening at half maximum intensity (FWHM), and θ is the Bragg angle. The calculated mean crystal sizes for pure β -MnO₂ (Fig. 1a) and CeO_{2- δ} in CeO_{2- δ}@ β -MnO₂ (Fig. 1b) were ca. 40 and 5 nm, respectively. Fig. 2 shows the TEM and FESEM images of CeO_{2-δ}, β-MnO₂, $CeO_{2-\delta}@\beta$ -MnO₂ and $CeO_{2-\delta}-\beta$ -MnO₂. The FESEM (Fig. 2a) and TEM (Fig. 2b) images of pure CeO_{2-δ} exhibited nanorod morphology, similar to reported results.[32] The FESEM (Fig. 2c) and TEM (Fig. 2d) images of pure β-MnO₂ shows that β-MnO₂ nanorods sized from 400 to 2000 nm in length and from 20 to 100 nm in diameter were obtained using the hydrothermal method and heat-treatment at 400 °C for 4 h did not change their morphology, similar to reported results.[33] The interplanar spacing of 0.28 nm represented the (001) lattice fringes of β-MnO₂.[34] Both TEM and FESEM results indicate that the surfaces of pure β-MnO₂ nanorods are clean, while the surfaces of β-MnO₂ nanorods in $CeO_{2-\delta}(a)\beta$ -MnO₂ are homogeneously coated with a large quantity of CeO_{2-δ} nanocrystals, as shown in the inset of Fig. 2f. The average particle size of CeO_{2-δ} nanocrystals for CeO_{2-δ}(@β-MnO₂ is ca. 5 nm, in agreement with the calculated results from XRD. As shown in the HRTEM (Fig. 2f), the interplanar spacing of 0.31 nm can be indexed to (111) lattice fringes of CeO_{2-δ} nanocrystals. The FESEM image in Fig. 2g indicates that CeO_{2-δ} nanocrystals and β -MnO₂ nanorods separately existed in CeO_{2- δ}- β -MnO₂ and there are almost no CeO₂ nanoparticles on the surface of the β-MnO₂. The TEM image for physical mixture CeO_{2-δ}-β-MnO₂ composite in Fig. 2h also shows that $CeO_{2-\delta}$ nanocrystals and β -MnO₂ nanorods are independent, and that only small portion of β -MnO₂ nanorods were adhered with CeO_{2- δ} nanocrystals. The results indicate that physically mixed $CeO_{2-\delta}$ nanocrystals and $\beta\text{-MnO}_2$ nanorods do not contact as well as that in $CeO_{2-\delta}(\widehat{a})\beta$ -MnO₂. The XPS spectra of Mn 2p, Ce 3d and O 1s were used to evaluate their oxidation state in $CeO_{2-\delta}@\beta$ -MnO₂, as depicted in Fig. 3. The Mn $2p_{3/2}$ and Mn $2p_{1/2}$ binding energies (Fig. 3a) in $CeO_{2-\delta}@\beta$ -MnO₂ were found to be 642.0 and 653.8 eV, respectively. The two peaks with binding energies of 641.9 eV and 643.6 eV in the deconvolution of Mn $2p_{3/2}$ can be attributed to Mn³⁺ and Mn⁴⁺, respectively, which are in good agreement with those reported for MnO₂,[35-37] indicating the oxidation states of Mn species are Mn³⁺ and Mn⁴⁺ in CeO_{2-δ}@β-MnO₂. Fig. 3b shows the Ce 3d spectra, in which there are six obvious peaks, noted as (V, V", V"") and (U, U", U""), characteristic of Ce⁴⁺ final state corresponding to 3d_{5/2} and 3d_{3/2}, respectively.[38] The doublet V at 882.5 eV and U at 901.1 eV were ascribed to the final state Ce⁴⁺ 4f²3d⁹. Doublet V" at 889.2 eV and U" at 907.3 eV were attributed to the final state Ce⁴⁺ 4f¹3d⁹, while V''' at 898.4 eV and U''' at 916.7 eV were for the final state of Ce⁴⁺ 4f⁰3d⁹. There is another doublet V' at 885.2 eV and U' at 903.9 eV which can be ascribed to the XPS spectra of Ce³⁺,[38, 39] indicating the existence of a small amount of Ce³⁺ in CeO_{2-δ}@β-MnO₂. The results indicate that the oxidation state of Ce in CeO_{2-δ}@β-MnO₂ is mainly Ce⁴⁺ but with some Ce³⁺ due to the sub-stoichiometric state of CeO_{2-x}. The corresponding XPS spectra of O 1s in CeO_{2-δ}@β-MnO₂ is shown in Fig. 3c. By deconvoluting the O 1s spectra, two surface oxygen species (noted as O_{α} and O_{β}) are clearly observed. The main band O_a (about 529 eV) represents the characteristic oxygen peak (O^{2-}) of metal oxides [40] while the shoulder O_{β} with the binding energy around 531 eV may be attributed to the chemisorbed surface species such as O_2^- and O_2^- with low coordination. [41] Temperature-programmed reduction profiles of $CeO_{2-\delta}$, β-MnO₂, $CeO_{2-\delta}$ @β-MnO₂ and $CeO_{2-\delta}$ -β-MnO₂ under flowing $10\%\,H_2/90\%\,N_2$ are shown in Fig. 4. Pure $CeO_{2-\delta}$ exhibits two reduction peaks with low intensity at 442 °C and 690 °C, which correspond to the surface and bulk reduction of CeO_2 , respectively.[29] β-MnO₂ exhibited three reduction peaks at 333, 443 and 549 °C, which can be ascribed to the reduction of MnO_2 to Mn_2O_3 , Mn_3O_4 and MnO. In the cases of $CeO_{2-\delta}$ @β-MnO₂, two reduction peaks in the temperature range of 200-300 °C and 300-400 °C were observed, indicating that the temperature for Mn^{4+} reduction in the $CeO_{2-\delta}$ @β-MnO₂ was greatly decreased compared with β-MnO₂ and physically mixed $CeO_{2-\delta}$ -β-MnO₂ maybe due to the enhanced surface exchange oxygen ion mobility between β -MnO₂ and CeO_{2- δ} species.[29] TGA analysis is further used to evaluate the oxygen storage and transfer property of as-prepared samples under various atmospheres (e.g., air, pure N_2 , 5% $H_2/95\%$ Ar), as shown in Fig. 5 and summarized in Table 1. Fig. 5a shows the TGA results of as-prepared samples under air from room temperature to 800 °C. The small weight loss from room temperature to 300 °C for all these samples under air can be ascribed to the removal of adsorbed water and weakly adsorbed oxygen.[42] The significant weight loss with 6.0-8.3wt% between 550 and 650 °C in β-MnO₂, CeO_{2-δ}@β-MnO₂ and CeO_{2-δ}-β-MnO₂ is due to the reduction of MnO₂ to Mn₂O₃ accompanied by the evolution of oxygen, while in CeO_{2-δ}@β-MnO₂ there is another continuous weight loss (2.2 wt%) from 650 to 800 °C, which is attributed to the further reduction of partial Mn³⁺ to Mn²⁺, indicating the positive effect of CeO_{2-δ} on the oxygen release of β-MnO₂ with elevated temperature under air. Fig. 5b represents the TGA results of as-prepared samples under pure N_2 from room temperature to 800 °C. The TGA curves of $CeO_{2-\delta}$, β -MnO₂ and $CeO_{2-\delta}$ - β -MnO₂ under N_2 are similar to those under air, except that the oxygen evolution temperatures under N_2 are just a bit lower than those under air and that there is another continuous weight loss at high temperature for the reduction of partial Mn^{3+} to Mn^{2+} . However, for $CeO_{2-\delta}@\beta$ -MnO₂, low oxygen partial pressure (i.e., pure N_2) could greatly favour the oxygen evolution at low temperature. The $CeO_{2-\delta}@\beta$ -MnO₂ shows obvious weight loss steps under pure N_2 . There is a weight loss with about 7.5 wt% occurred at a much lower temperature range (100 and 400 °C) than that of pure β -MnO₂ nanorods, which can be ascribed to the removal of oxygen in sub-surface lattices, simultaneously accompanied by the reduction of Mn^{4+} to Mn^{3+} and/or Mn^{2+} . The weight loss at lower temperatures for $CeO_{2-\delta}@\beta$ -MnO₂ could be explained by that $CeO_{2-\delta}$ is easier to release oxygen under inert atmospheres at lower temperature, resulting in quicker oxygen transfer from crystal lattice of β -MnO₂ to $CeO_{2-\delta}$.[42, 43] The TGA curve of as-prepared samples under flowing 5%H₂/95%Ar is shown in Fig. 5c. The total weight loss in pure β-MnO₂ (18.8 wt%) is in accord with the theoretical value 18.4 wt% from MnO₂ to MnO. It also clearly shows that β-MnO₂ in CeO_{2-δ}(âβ-MnO₂ was easier to be reduced to Mn₃O₄ and further to MnO than pure β -MnO₂ and CeO_{2-δ}- β -MnO₂.[44] There is a weight loss of 11.4 wt% in CeO_{2-δ}(@β-MnO₂ between 100 and 350 °C, further indicating the favour of oxygen mobility from β -MnO₂ nanorods to the highly dispersed CeO_{2- δ} nanocrystals on the surface of β-MnO₂.[44] However, the poor contact between CeO_{2-δ} nanocrystals and β-MnO₂ nanorods in physically mixed CeO_{2-δ}-β-MnO₂ lead to a similar weight loss behavior to that of pure β-MnO₂ nanorods. XPS was also used to check the valence of Mn in CeO_{2-δ}@β-MnO₂ after the TGA test from room temperature to 800 °C under flowing N_2 . The energy separation of 11.8 eV between Mn $2p_{3/2}$ (641.4 eV) and Mn $2p_{1/2}$ (653.2 eV) shown in Fig. 6a is consistent with the corresponding values of Mn₃O₄ in the previous references.[45] The deconvoluted peaks centered at 641.2 eV and 643.1 eV in the spectrum of Mn 2p_{3/2} can be attributed to the binding energies of Mn²⁺ and Mn³⁺, respectively.[46] In the Mn 3s XPS spectrum (Fig. 6b), the two peaks at 83.5 eV and 89.1 eV with the separation of 5.6 eV further confirm the existence of $Mn_3O_4.[47]$ As indicated by TGA results under pure N₂, CeO_{2-δ}@β-MnO₂ has a three-step weight loss with the increasing of temperature. To further determine the structure changes of CeO_{2-δ}@β-MnO₂ at different temperatures under pure N₂, in-situ high temperature XRD was adopted increasing temperature from room temperature to 800 °C with 100 °C step, as shown in Fig. 7. The results show that $CeO_{2-\delta}(\alpha)\beta$ -MnO₂ maintained its structure at 100 °C under N₂. However, only a small part of β-MnO₂ was retained at 200 °C and a new phase MnO_x intermediate appeared, indicating β -MnO₂ nanorods in CeO_{2-δ}@β-MnO₂ started to lose lattice oxygen which was located under sub-surfaces of β-MnO₂ at 200 °C. Further increasing the temperature to 300 °C, only trace β-MnO₂ was observed but the intermediate MnO_x disappeared, and Mn₃O₄ began to form, suggesting β-MnO₂ and intermediate MnO_x may be reduced to Mn₃O₄ at 300 °C under pure N₂. Up to 500 °C under pure N₂, there are no obvious changes in the diffraction intensity of $CeO_{2-\delta}$ nanocrystals, revealing the stability of $CeO_{2-\delta}$ nanocrystal size below 500 °C. With further increasing temperature to 800 °C, the diffraction peak positions of $CeO_{2-\delta}$ are shifted to lower angles as compared with the standard $CeO_{2-\delta}$, which is due to the loss of some lattice oxygen of $CeO_{2-\delta}$ under flowing N_2 . In addition, new peaks attributed to tetragonal Mn_3O_4 (JCPDS card no. 24-0734, space group: I41/amd) were observed from 300 °C and diffraction peaks ascribed to β -MnO₂ disappeared, indicating Mn_3O_4 was formed under pure N_2 from 300 °C and their diffraction peaks increased with the increment of temperature. We have also treated pure β -MnO₂ nanorods at 300 °C under flowing N_2 for 2 h for comparison, and the XRD results in Fig. 8 show that there is no phase change and no peaks ascribed to Mn_3O_4 are observed, which confirmed that oxygen can be transferred from β -MnO₂ at such low temperature under N_2 only with the synergetic effect of $CeO_{2-\delta}$. The in-situ high-temperature XRD results further demonstrate the enhanced oxygen transfer in $CeO_{2-\delta}(\Omega)\beta$ -MnO₂ system. Based on the aforementioned results, we propose the arrangement of $CeO_{2-\delta}@\beta$ -MnO₂ and their enhanced oxygen transfer, as shown in Scheme 1. Firstly, β-MnO₂ nanorods from the hydrothermal method were properly homogenously dispersed in the mixture of H_2O and ethanol under continuous stirring. Secondly, after adding $Ce(NO_3)_3 \cdot 6H_2O$, Ce^{3+} cations were adsorbed onto the surface of β-MnO₂ because of the electrostatic interaction between Ce^{3+} cations and negative charged MnO_2 surface from hydrothermal method.[48, 49] Then, OH^- released from $NH_3 \cdot H_2O$ will in situ react with Ce^{3+} on the nanorod surface to form $Ce(OH)_3$ and/or small CeO_2 nanoparticles in amorphous phase or poor crystal structure.[50] Finally, heat treatment at 400 °C for 4 h will result in the growth and better crystallinity of non-stoichiometric $CeO_{2-\delta}$ nanocrystals, as demonstrated by XRD, TEM and XPS results. The in-situ growth of non-stoichiometric $CeO_{2-\delta}$ nanocrystals on the surface of β-MnO₂ nanorods would favour their tight contact and the oxygen transfer between $CeO_{2-\delta}$ nanocrystals and β-MnO₂ nanorods. The synergistic mechanism for enhanced oxygen transfer property in $CeO_{2-\delta}@\beta$ -MnO₂ could be explained by considering the high oxygen removal ability of $CeO_{2-\delta}$ nanocrystals and the closed contact between $CeO_{2-\delta}$ nanocrystals and MnO₂ nanorod surfaces, through which, $CeO_{2-\delta}$ nanocrystals successfully functioned as mediator for the oxygen mobility.[51, 52] #### 4. Conclusions In this research, the positive synergistic effect on oxygen transfer in nanocrystalline $CeO_{2-\delta}$ coated β -MnO₂ nanorods was demonstrated. The results show that the good contact between CeO_{2-δ} nanocrystals and β-MnO₂ nanorods in $CeO_{2-\delta}(a)\beta$ -MnO₂ is important to the enhanced oxygen mobility. The homogeneously dispersed non-stoichiometric CeO₂₋₈ nanocrystals on the surface of β-MnO₂ nanorods could favour the oxygen transfer property in β-MnO₂ nanorods under various gases, especially under inert atmospheres (e.g., N_2) and reductive gases (e.g., $5\%H_2/95\%Ar$) to lower temperatures. CeO_{2-δ}@β-MnO₂ sample could exhibit much higher oxygen storage capacity (e.g., 7.5 wt% weight loss between 100 and 400 °C under flowing N₂ and 11.4 wt% weight loss between 100 and 350 °C under flowing 5%H₂/95%Ar) than that of pure β -MnO₂ nanorods and the physically mixed CeO_{2- δ}- β -MnO₂. It is thought the non-stoichiometic CeO_{2-δ} acts as inter-mediator for the oxygen mobility from β-MnO₂ to CeO₂ then to surroundings. The in-situ high temperature XRD results have demonstrated the phase change of β-MnO₂ to Mn₃O₄ under pure N₂ at about 300 °C. Our research work could provide crucial guidance in the rational design of efficient catalysts with enhanced oxygen mobility at low temperatures. #### Acknowledgements Prof. Ge Wang and Dr. Xiubing Huang acknowledged financial support from the National Key Research and Development Program of China (Grant No. 2016YFB0601100), and Fundamental Research Funds for the Central Universities (FRF-TP-16-028A1). Prof. John T. S. Irvine acknowledged funding from the Engineering and Physical Research Council for research award EP/K036769/1 and Platform Grant EP/K015540/1, the Royal Society Wolfson Merit Award, WRM 2012/R2. #### References - [1] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO₂-based materials, Chem. Rev. 116 (2016) 5987-6041. - [2] D. Zhang, X. Du, L. Shi, R. Gao, Shape-controlled synthesis and catalytic application of ceria nanomaterials, Dalton Trans. 41 (2012) 14455-14475. - [3] A. Trovarelli, J. Llorca, Ceria catalysts at nanoscale: How do crystal shapes shape catalysis?, ACS Catal. 7 (2017) 4716-4735. - [4] M. Yang, D.S. Kim, J.-W. Sim, J.-M. Jeong, D.H. Kim, J.H. Choi, J. Kim, S.-S. Kim, B.G. Choi, Synthesis of vertical MnO₂ wire arrays on hemp-derived carbon for efficient and robust green catalysts, Appl. Surf. Sci. 407 (2017) 540-545. - [5] X. Huang, L. Liu, H. Gao, W. Dong, M. Yang, G. Wang, Hierarchically nanostructured MnCo₂O₄ as active catalysts for the synthesis of N-benzylideneaniline from benzyl alcohol and aniline, Green Chem. 19 (2017) 769-777. - [6] C. Perdomo, A. Pérez, R. Molina, S. Moreno, Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium, Appl. Surf. Sci. 383 (2016) 42-48. - [7] S. Liang, F. Teng, G. Bulgan, R. Zong, Y. Zhu, Effect of phase structure of MnO₂ nanorod catalyst on the activity for CO oxidation, J. Phys. Chem. C 112 (2008) 5307-5315. - [8] G. Zhao, J. Li, X. Ren, J. Hu, W. Hu, X. Wang, Highly active MnO₂ nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue, RSC Adv. 3 (2013) 12909-12914. - [9] R. Xu, X. Wang, D.S. Wang, K.B. Zhou, Y.D. Li, Surface structure effects in nanocrystal MnO₂ and Ag/MnO₂ catalytic oxidation of CO, J. Catal. 237 (2006) 426-430. - [10] S. Xie, H. Dai, J. Deng, H. Yang, W. Han, H. Arandiyan, G. Guo, Preparation and high catalytic performance of Au/3DOM Mn₂O₃ for the oxidation of carbon monoxide and toluene, J. Hazard. Mater. 279 (2014) 392-401. - [11] S.H. Xie, Y.X. Liu, J.G. Deng, X.T. Zhao, J. Yang, K.F. Zhang, Z. Han, H. Arandiyan, H.X. Dai, Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn₂O₃ for the oxidation of methane and o-xylene, Appl. Catal. B-Environ. 206 (2017) 221-232. - [12] Y. Zheng, W. Wang, D. Jiang, L. Zhang, X. Li, Z. Wang, Insights into the solar light driven thermocatalytic oxidation of VOCs over tunnel structured manganese oxides, Phys. Chem. Chem. Phys. 18 (2016) 18180-18186. - [13] J. Jia, P. Zhang, L. Chen, The effect of morphology of α-MnO₂ on catalytic decomposition of gaseous ozone, Catal. Sci. Technol. 6 (2016) 5841-5847. - [14] D. Li, W. Li, Y. Deng, X. Wu, N. Han, Y. Chen, Effective Ti doping of δ -MnO₂ via anion route for highly active catalytic combustion of benzene, J. Phys. Chem. C 120 (2016) 10275-10282. - [15] T. Uematsu, Y. Miyamoto, Y. Ogasawara, K. Suzuki, K. Yamaguchi, N. Mizuno, Molybdenum-doped α-MnO₂ as an efficient reusable heterogeneous catalyst for aerobic sulfide oxygenation, Catal. Sci. Technol. 6 (2016) 222-233. - [16] Y.-X. Miao, L.-H. Ren, L. Shi, W.-C. Li, Hydrothermal synthesis of manganese oxide nanorods as a highly active support for gold nanoparticles in CO oxidation and their stability - at low temperature, RSC Adv. 5 (2015) 62732-62738. - [17] R. Xu, X. Wang, D. Wang, K. Zhou, Y. Li, Surface structure effects in nanocrystal MnO₂ and Ag/MnO₂ catalytic oxidation of CO, J. Catal. 237 (2006) 426-430. - [18] S. Zhang, Q. Fan, H. Gao, Y. Huang, X. Liu, J. Li, X. Xu, X. Wang, Formation of Fe₃O₄@MnO₂ ball-in-ball hollow spheres as a high performance catalyst with enhanced catalytic performances, J. Mater. Chem. A 4 (2016) 1414-1422. - [19] A. Trovarelli, Catalytic properties of ceria and CeO₂-containing materials, Catal. Rev. 38 (1996) 439-520. - [20] S. Carrettin, P. Concepcion, A. Corma, J.M.L. Nieto, V.F. Puntes, Nanocrystalline CeO₂ increases the activity of an for CO oxidation by two orders of magnitude, Angew. Chem. Int. Ed. 43 (2004) 2538-2540. - [21] J. Guzman, S. Carrettin, A. Corma, Spectroscopic evidence for the supply of reactive Oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO₂, J. Am. Chem. Soc. 127 (2005) 3286-3287. - [22] S.H. Xie, Y.X. Liu, J.G. Deng, X.T. Zhao, J. Yang, K.F. Zhang, Z. Han, H.X. Dai, Three-dimensionally ordered macroporous CeO₂-supported Pd@Co nanoparticles: Highly active catalysts for methane oxidation, J. Catal., 342 (2016) 17-26. - [23] D. Tian, C. Zeng, H. Wang, X. Cheng, Y. Zheng, C. Xiang, Y. Wei, K. Li, X. Zhu, Effect of transition metal Fe adsorption on CeO2 (110) surface in the methane activation and oxygen vacancy formation: A density functional theory study, Appl. Surf. Sci. 416 (2017) 547-564. - [24] X. Huang, C. Ni, G. Zhao, J.T.S. Irvine, Oxygen storage capacity and thermal stability of the CuMnO₂-CeO₂ composite system, J. Mater. Chem. A 3 (2015) 12958-12964. - [25] D. Zhang, L. Zhang, L. Shi, C. Fang, H. Li, R. Gao, L. Huang, J. Zhang, In situ supported MnO_x-CeO_x on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH₃, Nanoscale 5 (2013) 1127-1136. - [26] Q. Shen, L. Zhang, N. Sun, H. Wang, L. Zhong, C. He, W. Wei, Y. Sun, Hollow MnO_x-CeO₂ mixed oxides as highly efficient catalysts in NO oxidation, Chem. Eng. J. 322 (2017) 46-55. - [27] P. Zhang, H. Lu, Y. Zhou, L. Zhang, Z. Wu, S. Yang, H. Shi, Q. Zhu, Y. Chen, S. Dai, Mesoporous MnCeO_x solid solutions for low temperature and selective oxidation of hydrocarbons, Nat. Commun. 6 (2015) 8446. - [28] X. Han, C. Li, X. Liu, Q. Xia, Y. Wang, Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnO_x-CeO₂ composite catalysts, Green Chem. 19 (2017) 996-1004. - [29] D. Jampaiah, K.M. Tur, P. Venkataswamy, S.J. Ippolito, Y.M. Sabri, J. Tardio, S.K. Bhargava, B.M. Reddy, Catalytic oxidation and adsorption of elemental mercury over nanostructured CeO₂-MnO_x catalyst, RSC Adv. 5 (2015) 30331-30341. - [30] D. Jampaiah, P. Venkataswamy, K.M. Tur, S.J. Ippolito, S.K. Bhargava, B.M. Reddy, Effect of MnO_x loading on structural, surface, and catalytic properties of CeO₂-MnO_x mixed oxides prepared by sol-gel method, Z. Anorg. Allg. Chem. 641 (2015) 1141-1149. - [31] X. Wang, Y. Li, Synthesis and formation mechanism of manganese dioxide nanowires/canorods, Chem. Eur. J. 9 (2003) 300-306. - [32] C. Pan, D. Zhang, L. Shi, J. Fang, Template-free synthesis, controlled conversion, and CO oxidation properties of CeO₂ nanorods, nanotubes, nanowires, and nanocubes, Eur. J. Inorg. Chem. 2008 (2008) 2429-2436. - [33] X. Wang, Y.D. Li, Synthesis and formation mechanism of manganese dioxide nanowires/nanorods, Chemistry-a European Journal, 9 (2003) 300-306. - [34] X. Tang, J. Li, L. Sun, J. Hao, Origination of N₂O from NO reduction by NH₃ over β-MnO₂ and α-Mn₂O₃, Appl. Catal. B-Environ. 99 (2010) 156-162. - [35] V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO₂ nanostructures, J. Phys. Chem. B 109 (2005) 20207-20214. - [36] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci. 257 (2011) 2717-2730. - [37] D. Jampaiah, V.K. Velisoju, P. Venkataswamy, V.E. Coyle, A. Nafady, B.M. Reddy, S.K. Bhargava, Nanowire morphology of mono- and bidoped α-MnO₂ catalysts for remarkable enhancement in soot oxidation, ACS Appl. Mater. Interfaces 9 (2017) 32652-32666. - [38] M.V. Rama Rao, T. Shripathi, Photoelectron spectroscopic study of X-ray induced reduction of CeO₂, J. Electron Spectrosc. Relat. Phenom. 87 (1997) 121-126. - [39] D. Jiang, W. Wang, E. Gao, S. Sun, L. Zhang, Highly selective defect-mediated photochemical CO₂ conversion over fluorite ceria under ambient conditions, Chem. Commun. 50 (2014) 2005-2007. - [40] G. Avgouropoulos, T. Ioannides, Effect of synthesis parameters on catalytic properties of CuO-CeO₂, Appl. Catal. B-Environ. 67 (2006) 1-11. - [41] B.M. Reddy, K.N. Rao, P. Bharali, Copper promoted cobalt and nickel catalysts supported on ceria—alumina mixed oxide: Structural characterization and CO oxidation activity, Ind. Eng. Chem. Res. 48 (2009) 8478-8486. - [42] J. Zhang, H. Kumagai, K. Yamamura, S. Ohara, S. Takami, A. Morikawa, H. Shinjoh, K. Kaneko, T. Adschiri, A. Suda, Extra-low-temperature oxygen storage capacity of CeO₂ nanocrystals with cubic facets, Nano Lett. 11 (2011) 361-364. - [43] H.J. Li, G.S. Qi, Tana, X.J. Zhang, X.M. Huang, W. Li, W.J. Shen, Low-temperature oxidation of ethanol over a Mn_{0.6}Ce_{0.4}O₂ mixed oxide, Appl. Catal. B-Environ. 103 (2011) 54-61. - [44] X. Tang, Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, W. Shen, MnO_x–CeO₂ mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature, Appl. Catal. B-Environ. 62 (2006) 265-273. - [45] Z. Yuan, S. Chen, B. Liu, Nitrogen-doped reduced graphene oxide-supported Mn₃O₄: An efficient heterogeneous catalyst for the oxidation of vanillyl alcohol to vanillin, J. Mater. Sci. 52 (2017) 164-172. - [46] M.T. Qamar, M. Aslam, Z.A. Rehan, M.T. Soomro, J.M. Basahi, I.M.I. Ismail, T. Almeelbi, A. Hameed, The influence of p-type Mn₃O₄ nanostructures on the photocatalytic activity of ZnO for the removal of bromo and chlorophenol in natural sunlight exposure, Appl. Catal. B-Environ. 201 (2017) 105-118. - [47] E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, S.N. Kerisit, XPS determination of Mn oxidation states in Mn (hydr)oxides, Appl. Surf. Sci. 366 (2016) 475-485. - [48] Y. Yang, Z.-C. Zhang, P.-P. Wang, J.-C. Zhang, F. Nosheen, J. Zhuang, X. Wang, Hierarchical MnO₂/SnO₂ Heterostructures for a novel free-standing ternary thermite membrane, Inorg. Chem. 52 (2013) 9449-9455. - [49] G. Du, X. Liu, Y. Zong, T.S.A. Hor, A. Yu, Z. Liu, Co₃O₄ nanoparticle-modified MnO₂ nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries, Nanoscale 5 (2013) 4657-4661. - [50] H.-X. Mai, L.-D. Sun, Y.-W. Zhang, R. Si, W. Feng, H.-P. Zhang, H.-C. Liu, C.-H. Yan, Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes, J. Phys. Chem. B 109 (2005) 24380-24385. - [51] X. Liu, K. Zhou, L. Wang, B. Wang, Y. Li, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods, J. Am. Chem. Soc. 131 (2009) 3140-3141. - [52] Y. Wei, J. Liu, W. Su, Y. Sun, Y. Zhao, Controllable synthesis of Ce-doped α-MnO₂ for low-temperature selective catalytic reduction of NO, Catal. Sci. Technol. 7 (2017) 1565-1572. #### **Figure Captions** **Fig. 1.** XRD patterns: (a) β-MnO₂, (b) CeO_{2-δ}@β-MnO₂, (c) CeO_{2-δ}-β-MnO₂, and (d) CeO_{2-δ}. **Fig. 2.** FESEM (a, c, e, g) and TEM (b, d, f, h) images: (a, b) CeO_{2-δ}, (c, d) β-MnO₂, (e, f) CeO_{2-δ}@β-MnO₂, and (g, h) CeO_{2-δ}-β-MnO₂. **Fig. 3.** XPS spectra of CeO_{2-δ}@β-MnO₂: (a) Mn 2p, (b) Ce 3d, and (c) O 1s. **Fig. 4.** H₂-TPR results for CeO_{2-δ}, β-MnO₂, CeO_{2-δ}@β-MnO₂ and CeO_{2-δ}-β-MnO₂. **Fig. 5.** TGA of synthesized samples under flowing (a) air, (b) pure N_2 , and (c) $5\%H_2/95\%$ Ar. **Fig. 6.** (a) Mn 2p and (b) Mn 3s XPS spectra of CeO_{2-δ}@β-MnO₂ after TGA test from room temperature to 800 $^{\circ}$ C under flowing N₂. **Fig. 7.** In-situ high-temperature XRD patterns using Mo K alpha as radiation for $\text{CeO}_{2-\delta}@\beta\text{-MnO}_2$ under N_2 with the increasing of temperature from room temperature to 800 °C with 100 °C step. **Fig. 8.** XRD patterns for β-MnO₂: (a) fresh sample from hydrothermal reaction, (b) treated under flowing N_2 at 300 °C for 2 h. **Scheme 1:** Proposed mechanism of $CeO_{2-\delta}@\beta$ -MnO₂ formation and their enhanced oxygen transfer properties. Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 **Fig. 7** Fig. 8 Scheme 1 **Table 1** Weight loss steps and temperature ranges of samples under various kinds of flowing gases | | | KIIIUS OI | flowing gases | | T | | |----------------------------------------|-------------|-----------|---------------------|--------|-------------------|--------| | | Air | | Pure N ₂ | | $5\% H_2/95\% Ar$ | | | Sample | Temperature | Weight | Temperature | Weight | Temperature | Weight | | | (°C) | loss | (°C) | loss | (°C) | loss | | | | (wt%) | | (wt%) | | (wt%) | | $CeO_{2-\delta}$ | 30-300 | 1.3 | 30-400 | 1.9 | 30-350 | 2.0 | | | 300-650 | 0.7 | 400-650 | 0.6 | 350-550 | 0.5 | | | 650-800 | < 0.1 | 650-800 | < 0.1 | 550-700 | 0.1 | | β-MnO ₂ | 30-300 | 0.7 | 100-400 | 0.3 | 100-350 | 0.5 | | | 550-650 | 8.3 | 400-650 | 11.0 | 300-550 | 10.3 | | | 650-800 | < 0.1 | 650-800 | 3.3 | 550-700 | 8.5 | | CeO _{2-δ} @β-MnO ₂ | 30-300 | 1.2 | 100-400 | 7.5 | 100-350 | 11.4 | | | 550-650 | 6.0 | 400-650 | 4.1 | 350-550 | 4.9 | | | 650-800 | 2.2 | 650-800 | 2.5 | 550-700 | 0.2 | | CeO _{2-δ} -β-MnO ₂ | 30-300 | 2.1 | 100-400 | 2.5 | 100-350 | 3.3 | | | 500-650 | 7.9 | 400-650 | 7.2 | 350-550 | 5.8 | | | 650-800 | < 0.1 | 650-800 | 1.6 | 550-700 | 9.2 | | | | | | | | | | | | | | | | | #### Graphical abstract ### **Highlights** - Nanocrystalline $CeO_{2-\delta}$ coated β -MnO₂ nanorods have been prepared. - CeO_{2- δ} coating facilitates the oxygen transfer in β -MnO₂ nanorods under inert or reductive atmospheres. - CeO_{2- δ} nanocrystals act as oxygen transfer channels between the well-interacted CeO_{2- δ} and β -MnO₂ nanorods.