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ABSTRACT 

The interferon (IFN) system is a powerful antiviral defense system. Host cell pattern 

recognition receptors (PRRs) recognise pathogen-associated molecule patterns 

(PAMPs) which when activated, lead to the transcription of the IFN-  gene. As a 

consequence IFN is secreted from the cell and activates the JAK-STAT pathway to 

up-regulate the transcription of IFN-stimulated genes (ISGs). The products of many 

ISGs inhibit viral replication and cell proliferation. Viruses encode IFN antagonists 

that dampen down the IFN response, making it less effective. However, within a virus 

population, there are always likely to be naturally occurring mutant viruses that have 

lost the ability to circumvent the host IFN response, and if isolated, these viruses 

would be unlikely to cause severe disease in the host and may therefore be developed 

as live attenuated virus vaccine candidates.  

To develop a methodology to rapidly isolate IFN-inducing mutant viruses, we 

generated an A549 reporter cell-line in which expression of GFP was driven by the 

IFN-  promoter. Using this cell-line, we show that the number of cells that became 

positive for GFP correlated with the amount of IFN secreted by the infected cells and 

the number of defective interfering (DI) particles within the virus preparations. 

However, we were unable to isolate IFN-inducing mutant viruses using the 

A549/pr(IFN- ).GFP cell-line(s). Possible reasons for this may be either that, in cells 

infected by IFN-inducing mutant viruses, an antiviral state was established 

independent of IFN that prevented virus replication in the reporter cells in which the 

IFN-  promoter was activated; or the viruses that activated the IFN-  promoter were 

DIs only which were not be able to replicate without non-defective helper viruses.  

A549/pr(IFN- ).GFP cells are also being used for high throughput assays to screen 

chemical libraries for compounds that block IFN induction. Such compounds may be 

potential candidates for anti-inflammatory drugs. 
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1. INTRODUCTION 

1. INTRODUCTION

1.1 Viruses 

Viruses are small mobile particles which cause infections in host cells. Viruses that 

can parasitise virtually every living organism (bacteria, fungus, plants, animals and 

human), are one of the major causes of infectious diseases leading to significant 

numbers of deaths every year. Viruses contain the essential ‘living’ features of 

reproducibility (replication), inheritability, and mutagenesis. However, because 

viruses do not have the independent ability of self metabolism, they utilise the hosts’ 

biosynthetic machinery to build up genomic structure during viral replication, and 

synthesise viral proteins. Viruses consist of a single type of nucleic acid (either DNA 

or RNA) as its genomic information, capsid proteins and have no cell structure.  

1.2 Paramyxoviridae family 

The Paramyxoviridae family of viruses has been comprehensively reviewed in Lamb 

& Parks, 2006. Paramyxoviruses are a group of negative strand RNA viruses, 

responsible predominantly for a number of important acute respiratory diseases in 

humans and animals. The Paramyxoviridae family includes some of the most 

important viruses causing serious infectious diseases in animals and humans. 

Examples include: measles virus (MeV), one of the most well-known genera, causing 

acute, contagious viral disease, mainly affecting children; mumps virus (MuV), 

commonly causes diseases in children and is still a health threat worldwide; 

respiratory syncytial virus (RSV) causes diseases in the lower respiratory tract in 

infants and children and can cause bronchiolitis and pneumonia; Newcastle disease 

virus (NDV) causes diseases in birds and poultry; parainfluenza virus 5 (PIV5), also 

known as canine parainfluenza (CPI) and Simian virus 5 (SV5), cause diseases in 

dogs; some newly recognised viruses, Hendra virus (HeV) and Nipah virus (NiV), 

cause deadly diseases in animals and in humans. Although there is no existing 

pandemic threat posed by viruses in the Paramyxoviridae family, these viruses infect 

a broad range of host, generate diseases with a significant mortality in humans, and 
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1. INTRODUCTION 

have a heavy economic impact. 

Paramyxoviruses are enveloped, linear, negative sense, single strand RNA viruses. 

The International Committee on Taxonomy of Viruses (ICTV) defined the 

Paramyxorividae family into two subfamilies – Paramyxoviridae and Pneumovirinae,

which are sub-divided into genera. The Paramyxoviridae contains Respirovirus,

Rubulavirus, Avulavirus, Morbillivirus, and Henipavirus. The Pneumovirinae

contains Pneumovirus and Metapneumovirus. The classification is based on 

morphology, genomic structure, and viral protein functions (ICTV, 2005; Lamb & 

Parks, 2006; Figure 1.2.1). 

1.2.1 Replication strategy of paramyxoviruses 

Paramyxovirus transcription and replication are carried out in the cytoplasm. As soon 

as the virus nucleocapsid is released into the cell, the viral RNA-dependent RNA 

polymerase complex (RNAP) sits on the template, recognises the negative sense RNA 

genome. Genomic RNA itself is non-infectious, and it has to be transcribed into 

5’-capped and 3’-polyadenylated mRNAs by viral RNAP (vRNAP). mRNA 

transcription terminates and restarts at each gene junction and is then released after 

polyadenylation and translated into viral proteins. After primary transcription, when 

there is sufficient unassembled nucleocapsid (N) protein present, viral genome 

replication starts. vRNAP ignores all the gene junctions and full length 

complimentary anti-genome (positive strand RNA) copy is replicated and assembled 

in an encapsidated form. The positive strand RNA then works as a replication 

intermediate for further viral genomic RNA (negative strand RNA) synthesis. 

Replicated genomic RNA is either assembled as progeny virus, or used for further 

replication.

1.2.2 The Paramyxoviridae genomes and encoded proteins 

The way in which paramyxoviruses adapt to host varies. However, they share 

genomic structure and functions in common. The virions are enveloped and the 
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1. INTRODUCTION 

shapes are generally spherical. The virion is composed of an envelope, matrix (M) 

protein and a nucleocapsid core; the genomic RNA being encapsidated by the 

nucleocapsid (N) protein (Figure 1.2.2.1). The lipid envelope contains two surface 

glycoproteins: the tetrameric haemagglutinin-neuraminidase glycoproteins (HN, or H 

or G) and the trimeric fusion glycoproteins (F), which are inserted into the viral 

membrane as spikes. The viral matrix protein resides underneath the lipid bilayer 

between the envelope and the nucleocapsid core and is important for maintaining the 

virion structure. Inside the virus, associated with the nucleocapsid, are the large 

polymerase (L) and phosphoprotein (P) proteins and together this complex composes 

the RNA polymerase complex. For most paramyxoviruses, V protein, a cysteine rich 

protein, is only present inside infected cells. However, for rubulaviruses, V protein is 

found as an internal component of the virion (Paterson et al., 1995; Randall & 

Bermingham, 1996). 

The Nucleocapsid Protein 

For paramyxoviruses, excluding pneumoviruses, the nucleocapsid (N) protein is the 

first transcribed gene in the genome. In infected cells, N protein is present in at least 

two forms: either associated with genomic RNA and antigenomic RNA to form the 

helical nucleocapsid template which biologically activates these RNAs and protects 

them from nuclease digestion, or, in an unassembled soluble form termed N0. This 

unassembled N0 is important for encapsidation of nascent RNA during virus 

replication (Horikami et al., 1992; Curran et al., 1995). The N0 protein associated 

with P in a number of viruses, including Sendai virus (Horikami et al., 1992), PIV5 

(Precious et al., 1995), human parainfluenza virus 2 (HPIV2) (Nishio et al., 1999), 

HPIV3 (Zhao & Banerjee, 1995), MeV (Huber et al., 1991; Spehner et al., 1997) and 

RSV (Garcia-Barreno et al., 1996; Mallipeddi et al., 1996), forms a polymerase 

complex, and together they function in an encapsidative manner, and play a central 

role in protecting viral RNA as template for replication.  
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1. INTRODUCTION 

The Phosphoprotein 

Phosphoprotein (P) is important for viral RNA synthesis (Curran et al., 1994; Curran 

et al., 1995). P protein is a crucial factor for vRNAP enzyme (Hamaguchi et al., 1983) 

and also facilitates RNA encapsidation in the N0 nascent chain assembly complex 

during viral replication. The N-terminal domain of P protein faciliates interactions 

with unassembled N0 by preventing N aggregation securing assembly specificity 

(Horikami et al., 1992; Curran et al., 1995). 

The V Protein 

The V protein is a protein found in most paramyxoviruses, and plays an important role 

in viral pathogenesis by targeting host antiviral activities at early infection stages 

(Chapter 1.5.3). V protein acts as a negative regulator of viral RNA synthesis. V 

protein shares an N-terminal domain with the P protein, interacts with the 

unassemblemd soluable N protein - N0 and inhibits assembly through the formation of 

a V-N0 complex. The V-N0 complex negatively regulates assembly in a number of 

viruses, including PIV5 (Precious et al., 1995), Sendai virus (Horikami et al., 1996) 

and MeV (Tober et al., 1998). V protein also binds RNA and inhibits RNA synthesis 

in the case of MeV V protein (Parks et al., 2006). In addition, V proteins also interact 

with cellular proteins to antagonise host antiviral proteins. For example, PIV5 V 

protein interacts with the cellular damage-specific DNA-binding protein 1 (DDB1) to 

target interferon (IFN) signalling pathway (Andrejeva et al., 2002). The V protein 

inhibition of the host IFN response is discussed in Chapter 1.5.3. 

The Large Protein 

The large (L) protein is present in infected cells at low levels (Lamb et al., 1976) and 

is associated with nucleocapsids and virions, and is an important component of 

paramyxovirus RNAP. L protein is involved in nucleotide polymerisation, 5’-capping 

and methylation and 3’-polyadenylation of mRNAs synthesis activity (Gradzelishvili 

et al., 2005; Hercyk et al., 1988; Ogino et al., 2005). 
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The Matrix Protein 

The Matrix (M) protein is the most abundant protein within the virion. M protein is 

localised peripherally in the membrane, and is hydrophobic. M protein is essential for 

virus morphogenesis, due to its contact with the lipidbilayer, nucleocapsid, and 

membrane proteins. The M protein, inserted in the membrane, interacts specially with 

F protein and HN glycoprotein tails in Sendai virus (Sanderson et al., 1993a; 

Sanderson et al., 1993b). M protein interaction with nucleocapsid plays a central role 

in assisting the egression of daughter viral particles (Peeples, 1991).  

Envelope Glycoproteins 

Haemaggultinin-Neuraminidase (HN), haemagglutinin (H) and G glycoproteins are 

responsible for virus adsorption. Haemagglutinin allows viruses to bind to specific 

sialic acid receptor, whereas neuraminidase helps to prevent self-aggregation of new 

viral particles through sialic acid cleavage on the cell membrane upon budding. 

Fusion protein (F) works as an intermediate to fuse virus envelope with the cell 

plasma membrane in order to deliver the viral nucleocapsid into the cytoplasm at 

neutral pH. At later stages of infection, the F protein facilitates fusion between 

infected cells and neighbouring cells. An example of this is the cytopathic effect (CPE) 

in vivo which allows virus spread. The F proteins are inactive when synthesised and 

have to be cleaved by a host cell protease to become biologically activated. 

1.2.3 Parainfluenza virus 5 

PIV5 is a member of the Rubulavirus of the Paramyxioviridae family which has been 

routinely used in our laboratory as a model to study virus infections and host cell 

antiviral responses. PIV5 was originally isolated from cultured primary rhesus 

monkey cells, although its natural host is the dog in which it causes respiratory 

diseases. PIV5 has been isolated from a variety of sources, including humans, 

monkeys and dogs (Chatziandreou et al., 2004). Although PIV5 can infect humans 

(Hsiung, 1972; Goswami et al., 1984) and has been isolated from human sources, 
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1. INTRODUCTION 

such as bone-marrow cells (Goswami et al., 1984), there is no convincing evidence 

that PIV5 infection is associated to human acute respiratory diseases.  

The genome of PIV5 is 15,246 nucleotides (nt) (for isolate W3A) in length and 

contains seven genes that encode eight known viral proteins (NP, P and V, M, F, 

small hydrophobic integral membrane protein (SH), HN and L) (Figure 1.2.3.1). The 

V and P proteins are both transcribed from the V/P gene, as the open reading frames 

of V/P gene are overlapping, therefore resulting in two different gene products. The 

PIV5 V mRNA is transcribed as a complete copy of the V/P gene, whereas the P 

mRNA is transcribed by two additional nontemplated guanosine (G) residues. The 

two structural proteins V and P share the first 164 amino acids at the N-terminus. V 

and P proteins have unique C-termini which are biologically important for viral 

functions (Thomas et al., 1988).  

1.2.4 PIV5 strain isolates 

PIV5 W3, PIV5 V C

Two original PIV5 isolates were isolated from rhesus and cynomolgus monkey kidney 

cell cultures and are referred to as WR and W3A (or W3) as wild-type (wt) viruses 

(Choppin, 1964; Hull et al., 1956). A mutant strain of PIV5 W3 has been isolated 

from a recombinant PIV5 (rSV5) which has deletions at the V protein specific 

C-terminal domain (V C) and thus lost the ability to target STAT1 for 

proteasome-mediated degradation (He et al., 2002). STAT1 is a key trascription factor 

of the Signal Transducers and Activators of Transcription family and plays an 

important role in upregulating of the induction of IFN stimulated genes (ISGs) 

(Chapter 1.4.3 and 1.5.3). 

PIV5 V C (P2) and defective interfering particles (DIs) 

PIV5 V C (P2) was generated from the original PIV5 V C stock by infecting 

confluent Vero cells at a high MOI in order to increase the number of DIs within the 

virus population by Mr Dan Young in our laboratory. PIV5 V C (P2) was 
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characterised to be an extremely good inducer of IFN as it contained large amounts of 

defective interfering particles (DIs). DIs are virus particles which have mutations or 

deletions in their genome. They do not have the ability to replicate on their own, but 

require a helper virus to sustain an infection. DIs interfere with the replication of 

helper virus and compete with their helper virus genomes for the viral replication

substrates. Possibly due to their defective nature, DIs were found to be potent 

inducers of IFN. Some SeV stocks enriched in DIs were reported to be strong 

inducers of IFN (Strahle et al., 2006). However, current studies in our laboratory 

showed that, although DI-rich stock of PIV5 V C was good inducers of IFN, not all 

DIs induce IFN. DI-rich virus stocks were used in this project to activate the IFN-

promoter. 

CPI+, CPI- 

Two canine strains are routinely used in our laboratory as well as PIV5 W3 and PIV5 

V C. One of the strains, termed CPI+, was isolated from the cerebrospinal fluid of a 

dog with incoordination and posterior paralysis (Evermann et al., 1980; Evermann et

al., 1981) and is antigenically related to a prototype strain of canine parainfluenza 

virus. The other PIV5 canine strain CPI- was isolated from the brain tissue of a dog 

experimentally infected with CPI+. This CPI- virus strain establishes persistent 

infections immediately in vitro when compared to the syncytial giant cell-forming 

CPI+ (Baumgartner et al., 1987; Southern et al., 1991) and fails to block IFN 

signalling (Chatziandreou et al., 2002). Antigenic studies have also shown that out of 

53 antibodies tested, MAb P-k was the only antibody that distinguished between cells 

infected with CPI + and CPI- (Southern et al., 1991). MAb P-k has been reported as 

recognising an epitope for both P and V proteins of CPI+ (Thomas et al., 1988) and 

was not able to recognise either P or V proteins of CPI-. Sequence comparison of the 

V protein P/V N-terminal domain of CPI+ with CPI- revealed three amino acid 

substitutions which are responsible for CPI- failure to block IFN signalling 

(Chatziandreou et al., 2002). Immonoblotting data has also shown that both CPI+ and 

CPI- were poor IFN inducers at early infection stage, however, from 21h 
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post-infection (hpi), CPI- became a better IFN inducer than CPI+ (Poole et al., 2002).  

1.3 Immune response to viruses 

One motivation to study the immune system and how viruses overcome the host 

immune response is that virus infections cause severe diseases and kill millions of 

people every year across the world. An example of this is the 1918 Spanish flu 

outbreak; a third of the world population (~500 million people) were infected in the 

1918 Spanish influenza pandemic, and more than 50 million (3% of the world’s 

population at the time) people were estimated to be killed by the virus (Wang & Tao, 

2010). Therefore, it is important to understand the strategies that viruses use to 

subvert the host immune system, and have better solutions in response to emerging 

viruses, for example, the development of a rapid way of generating vaccines (Chapter 

1.6).

The immune system is a complex and integrated group of organs, tissues and cells 

that differentiates self and non-self providing defence against potentially pathogenic 

organisms or substances. Immunity is composed of two cooperative defence systems, 

called non-specific, innate immunity and specific, acquired immunity. The innate 

system is an immediate primary defence mechanism against infection, while the 

adaptive system, which exhibits an immunological memory, acts as a second line of 

defence.

1.3.1 Innate immunity  

The innate response is usually activated when microorganisms are identified by 

specialised sets of pattern recognition receptors (PRRs). The receptors usually 

recognise components of microorganisms (pathogen-associated molecule patterns, 

PAMPs) that are not found in cells of the host, e.g. components of bacterial cell wall, 

bacterial flagella, or viral nucleic acids. PAMP binding to these receptors gives rise to 

a well-established microbial disposal process, such as phagocytosis of harmful foreign 

particles, inactivation of viruses and bacteria by macrophages and neutrophils, or the 
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production of IFNs. Since innate immunity is non-specific, these systems respond to 

pathogens in a universal manner and this system does not establish long-lasting 

immunity against a pathogen. Microorganisms which can overcome this system and 

survive, may cause disease, unless prompt adaptive immune response develops. 

The innate immune system can be seen to comprise of four types of defensive barriers: 

anatomical barriers (e.g. skin - the mechanical barrier preventing entry of 

microorganism), physical barriers (e.g. temperature, pH), inflammation and cellular 

barriers depending primarily on phagocytosis. 

Acute inflammation 

When pathogens overcome epithelial barriers and establish a local infection, the host 

mobilises its defences to the site of infection. Inflammation is one of the first response 

processes of the host immune system to injuries or infections. When a host is infected 

by an injurious agent, phagocytes that reside in all tissues will try to remove these 

agents. At the same time, host cells respond to infection by the initiation of 

inflammation through the release of inflammatory mediators, such as leukocytes and 

cytokines, into the tissues. The prompt arrival of leukocytes in the tissues plays a vital 

role in killing and removing the invading microorganisms. IFNs are important 

cytokines involved in protection against viral infections. Once the infectious agent is 

eliminated, the anti-inflammatory defence is established, the damaged tissue is 

promptly healed, and the pathogen is cleared, the host would typically recover from 

infection.

Phagocytosis

Phagocytosis is another important defence mechanism of innate immunity performed 

by cells called phagocytes. When a pathogen attaches to the host cell, phagocytes 

engulf that microorganism. The microorganism is then ingested by a phagocyte, and 

forms a phagosome. The phagosome fuses with lysosome, the microorganism is 

digested with lysosomal enzymes, and the destroyed materials are released from the 
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cell.

Macrophages and neutrophils are the two major types of phagocytes. They are mobile 

phagocytes that travel throughout the body in search of invading pathogens. 

Macrophages are located in most tissues. Neutrophils, also called polymorphonuclear 

leukocytes (PMN), are primarily found in the bloodstream and comprise the majority 

of circulating leukocytes. During an acute inflammation process, neutrophils move 

promptly through the endothelium onto the site of infection through the blood vessels 

and then through interstitial tissue via a process called chemotaxis. 

Dendritic cells (DC) are phagocytes, found mainly in the skin, and in T cell and B cell 

areas of lymphoid tissues. DCs recognise antigens from all types of sources, and 

present mainly to T cells (Chapter 1.3.2). They play an important role in driving the 

activation of naive T cells and further differentiation into effector T cells (Murphy et

al., 2008). A subset of plasmacytoid DCs (pDCs) play a role in the production of IFN 

upon virus infection. 

1.3.2 Adaptive immunity 

The relatively non-specific innate immune response is a prerequisite to initiate the 

primary adaptive immune response. The adaptive immune response is initiated when a 

pathogen overcomes the innate immune response. The adaptive immune system is 

capable of recognising particular microorganisms and develops a strong immune 

response. Unlike the innate immune system, adaptive immunity is specific to 

particular antigen challenges, which allows for the generation of responses tailored to 

specific pathogens or pathogen-infected cells. The adaptive immune response usually 

results in elimination of the pathogen, and recovery of the host from a disease, as well 

as establishment of an immunological memory in the host, enabling the host to 

respond more rapidly and effectively to any subsequent infection by that particular 

pathogen.
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The adaptive immune system is mediated by special lymphocytes, T cells and B cells. 

Adaptive immunity involves the activation and proliferation of antigen-specific T 

cells and B cells, subsequent cell-mediated immune activity by T cells, and humoral 

immunity mediated by B cells, which involves the production of antibodies in 

response to an antigen. 

T lymphocytes and T cell-mediated immunity 

T cell-mediated immune response is activated in response to an infection when the 

naive T cell encounters an appropriate antigen. Antigens are internalised by 

antigen-presenting cells (APCs) by phagocytosis or endocytosis. APCs then display a 

fragment of the antigen on their membrane in association with major 

histocompatibility complex (MHC) molecules, and present the specific antigen to T 

cells (Figure 1.3.2.1). There are two subpopulations of T cells: T helper (TH) cells and 

cytotoxic T (CTL) cells, which are usually distinguished by differences in membrane 

glycoprotein expression. When a TH cell is activated following antigen presentation 

by APCs, it develops into effector T cells by proliferation, and secretes cytokines. As 

well as producing effector T cells, the proliferation of naive T cells also produce 

memory T cells, which will establish long-term immunity to the specific antigen, and 

generate protective activity whenever re-infection takes place. Cytokines produced by 

TH cells are important in the activation of both the cell-mediated and the humoral 

immune response (Figure 1.3.2.1).  

B lymphocytes and humoral immunity 

The humoral immune response triggers cells to proliferate and secrete large amounts 

of specific antibodies against extracellular microorganisms and prevent the spread of 

intracellular infections. B cells are activated in many cases when a naive B cell 

recognises an antigen, and the antigen is displayed by the B cell as peptide:MHC class 

II complex, which is recognised by and activates TH cells (Figure 1.3.2.1). Activated 

TH cells trigger the naive B cell to differentiate and proliferate into effector B cells, 

known as plasma cells, and memory B cells. Activated B cells produce antibody 
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against the antigen, which would combat such microorganism, and prevent the spread 

of infection. 

1.3.3 Immunological memory 

Pathogens which successfully overcome the generic reactivity of the innate immune 

system will induce the development of the specific adaptive immunity. The initial 

adaptive immune response to a pathogen takes a longer time to establish. T cells and 

B cells, in response to the infection, proliferate and differentiate into effector cells to 

combat the pathogen, which then leads to the clearance of the pathogen. An 

immunological memory is developed at the same time, which protects the host from 

reinfection of the same pathogen. The development of the immunological memory to 

establish protective immunity against reinfection is an important consequence of the 

adaptive immune response. The production of long-lived memory lymphocytes during 

this initial response will generate more prompt response to reinfection of the same 

pathogen.

1.3.4 Vaccines 

Vaccines are inactivated or attenuated virus particles or material derived from viruses. 

Vaccination artificially induces protective immunity, which will respond to and 

eliminate the previously encountered specific antigen upon subsequent infection with 

the natural virus. The development and application of vaccines is probably the most 

remarkable and exceptional achievement in the field of immunology. 

Live attenuated virus vaccines 

Live attenuated virus vaccines are a mutant strain of a wild-type virus, whose ability 

to inhibit host immune responses is impaired. The virus can still infect its natural host, 

but unlike wild-type virus, the virus will not generally cause severe disease. Whole 

virus immunisation can induce immunity to antigens in their natural state. As mutated 

viruses replicate in the host, the number of antigens increases, which means less 

viruses are required for injection to induce protective immunity. Furthermore, they 
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can induce a wide range of immune responses, which includes memory-based cellular 

and humoral immune responses (Carter & Saunders, 2007).  

Potential virus mutant strains are selected by passage in the laboratory over several 

generations under conditions that make them less virulent. The passage process is 

repeated and thus the ability of viruses to cause disease is diminished. Virus strains 

with reduced virulence are then selected as candidates for vaccine development. 

There are shortcomings of using live attenuated virus vaccines. As the attenuated 

virus is a modified form of the wild-type virus, there is always a possibility the 

attenuated strain will revert to the wild-type. The vaccine can cause disease in patients 

who are immunologically compromised. That said, live attenuated vaccines are still 

thought to be the most effective and safe vaccine type, with a large number of live 

attenuated vaccines currently licensed and manufactured. Known examples of live 

attenuated virus vaccine include: mumps and measles vaccine in the MMR (mumps, 

measles and rubella) vaccine; oral polio vaccine derived from strains that have lost its 

ability to infect neurones (Carter & Saunders, 2007); and varicella (chicken pox) 

vaccine.

Inactivated virus vaccines

Inactivated virus vaccines share common features with live attenuated vaccines, and 

both provide the whole virus in some way. Viruses are killed or inactivated by heat 

shock or chemicals such as formaldehyde. Inactivated virus will not cause disease, but 

the strain is still able to trigger an immune response. A typical example of an 

inactivated vaccine is the original Salk polio vaccine. The vaccine is generated by 

treating the wild-type virus with formaldehyde, so that the virus is unable to 

reproduce in the vaccinated individuals. If inactivation is efficient, the advantage of 

these vaccines is that very low level of infection is generated. Additionally, this 

vaccine can be used safely on immunocompromised individuals. 
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The problem with inactivated virus vaccines is that during the inactivation process, 

the viruses may be over inactivated and consequently become non-immunogenic. In 

addition, finding the ideal chemical concentration, reaction time (Carter & Saunders, 

2007), temperature and other pertinent conditions to inactivate the virus is difficult. 

Finally, to stimulate sufficient immunity, a large amount of virions are essential, since 

the virus cannot replicate, and periodic boosters are required to maintain immunity. 

Subunit vaccines 

Subunit vaccines are derived from viral antigens free of viral nucleic acid, and contain 

only a small portion of the viral protein, rather than the whole virus. The vaccine 

protein is the essential part which can stimulate immune response. For example, the 

influenza virus vaccine contains the surface glycoproteins haemaggultinin (HA) and 

neuraminidase (NA) (Carter & Saunders, 2007). To generate this subunit vaccine, 

influenza virus is treated with formaldehyde. Glycoproteins are removed from the 

virus envelope and purified using sucrose gradient centrifugation. As the isolated 

vaccine protein contains no viral genomic RNA, there is no chance of causing a 

disease. The advantages of subunit type vaccines are they are unlikely to trigger an 

adverse reaction, and subunit vaccines are not infectious, so that they can be applied 

to immunosuppressed people. The disadvantages of subunit vaccines are that subunit 

vaccine require multiple doses and adjuvants and may not be able to generate a 

powerful immune response as well as a whole virus vaccine.  

Recombinant vaccines 

Recombinant vaccines have the genes for a desired viral antigen, which is 

immunogenic and crucial to virus function introduced into a vector, with a view to 

induce a protective immune response. The gene encoding the antigen is cloned into 

bacteria, yeast, mammalian cells or viruses for expression in large quantities. The 

purified gene product is then used as the vaccine. To generate a recombinant vaccine, 

low virulence or harmless vectors can be chosen, antigen which would not induce 

protective immunity is eliminated, and only a single non-virulence antigen is 
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expressed. Therefore, it is unlikely for the vaccinated individuals to become ill from 

the vaccine. However, generation of such recombinant vaccines is costly and 

time-consuming. One example of licensed recombinant vaccines for human is the 

Hepatitis B Virus (HBV) vaccine. An alternative method to generate recombinant 

vaccine is the production of hybrid virus vaccines. A well-known example for this is 

vaccinia. The idea is to introduce foreign DNA into a plasmid vector containing the 

vaccinia virus genome. The resulting recombinant vector is then transfected into cells 

infected with vaccinia viruses, resulting in the formation of a stable recombinant virus. 

The advantages of hybrid virus vaccines are they induce a wide range of immune 

responses and are relative easy to be produced. However, virulence tends to increase 

over times as live vaccines. 

1.4 IFN system 

As described in Chapter 1.3, the immune system is an amazingly effective system 

which recognises, kills and disposes of non-self molecules. The development of an 

effective immune response involves the secretion of cytokines, which bind to specific 

receptors on cells in response to various stimuli, to trigger the signal transduction 

pathway between cells (Kindt et al., 2006).  

The IFN system (Figure 1.4.1), which has been comprehensively reviewed by Randall 

& Goodbourn, 2008, provides essential defence against viral infections at an early 

stage (hours to days) in the immune response. IFNs are a group of cytokines secreted 

in response to viral infections, which have antiviral and immunomodulatory functions. 

When a cell recognises it is infected, it produces IFNs, which then exert their effect 

on neighbouring cells and itself. This leads to the upregulation of hundreds of ISGs, 

which may have direct or indirect antiviral functions. The result is the establishment 

of an antiviral state which limits the capability of viruses to replicate effectively. 

Three major classes of IFNs exist based on their amino acid sequences: are classified 

into three major classes: Type I, Type II and Type III IFNs. Type I IFNs (Isaacs & 
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Lindenmann, 1957) consist of IFN- , - , - , - , - , -  and –  and are directly induced 

in virus-infected cells; Type II IFN (IFN- ), is a pro-inflammatory IFN which 

produced by activated T cells and natural killer (NK) cells; Type III IFNs comprise 

IFN- 1, - 2 and - 3, also known as interleukin-29 (IL-29), IL-28A and IL-28B, 

respectively (Platanias, 2005). All IFNs are induced in response to viral infections, 

but with limited tissue distributions (Meager et al., 2005; Mennechet & Uze, 2006; 

Zhou et al., 2007). 

.

1.4.1 Activation of IFN-  promoter for gene transcription 

Induction of type I IFN genes (IFN-  and IFN- ) is an important host response to 

virus infections. PRRs present in host cells detect viral components in the form of 

viral proteins or viral nucleic acids and triggers activation of the IFN-  promoter 

(Chapter 1.4.2). IFN-  subsequently signals both the infected cells and neighbouring 

cells. This leads to the expression of IFN-stimulated genes (ISGs) with antiviral 

functions to establish an antiviral state.  

The IFN-  promoter region serves as a platform to assemble transcription factors and 

regulate the activation of IFN-  gene in response to viral infections. The IFN-

promoter region is composed of multicomponent transcription factors, which are 

collectively termed the enhanceosome and initiate transcription in a cooperative way.  

As illustrated in Figure 1.4.1.1, the transcription factors that bind the IFN-  promoter 

are the nuclear factor kappa-light-chain-enhancer of activated B cells (NF- B), IFN 

regulatory factor family (IRFs) (IRF-3, IRF-7) and activating transcription factor 2 

(ATF-2)/c-Jun complexes, which assemble cooperatively at the enhancer to initiate 

transcription (Merika & Thanos, 2001). The activation of IFN-  without the binding 

of NF- B and ATF-2/c-Jun has also been reported (Goodbourn et al., 1985; Ellis & 

Goodbourn, 1994; King & Goodbourn, 1994; Peters et al., 2002), while IRF-3 

binding appears to be essential (Kawai & Akira, 2006). Each transcription factor has 

an influence on IFN-  gene induction, although the impact may vary in cell types and 
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inducers. The assembly requires the essential mediating protein – the high mobility 

group (HMG) I protein - HMGI(Y) to bind DNA to form the enhanceosome (Thanos 

& Maniatis, 1995) and assists the binding of NF- B and ATF-2/c-Jun. HMGI(Y) 

binding to the promoter bends the DNA, allowing the activators to bind to the DNA 

for enhanceosome assembly. Cooperation is essential for IFN-  gene activation, as 

individual activators have limited binding affinity to the promoter, and would not be 

able to induce optimal IFN-  gene activation. The assembled enhanceosome then 

recruits the transcriptional coactivator cAMP-responsive-element-binding-protein 

(CREB)-binding protein (CBP) and p300 (CBP/p300) to assemble the basal 

transcriptional machinery for the initiation of IFN-  transcription (Merika et al.,

1998).

1.4.2 IFN induction 

Host PRRs are proteins expressed by cells to distinguish non-self molecules and act as 

the first line of defence against invading organisms. Certain PRRs such as the 

membrane-associated Toll-like receptors (TLRs), and the cytoplasmic RNA helicases 

(retinoic acid inducible gene-I (RIG-I) and/or melanoma differentiation associated 

gene 5 (mda-5), are crucial factors in the induction of IFN.  

1.4.2.1 TLR-dependent pathway 

TLRs have been grouped into a super family with the interleukin-1 receptors (IL-1Rs), 

and are generally termed Toll/IL-1R (TIR) receptors. The TLRs and IL-1Rs share a 

common structure of around 200 amino acids in their cytoplasmic regions, known as 

the TIR domain (Akira & Takeda, 2004). There are 13 mammalian TLRs, and they are 

distributed in a variety of tissue types. TLRs 1, 2, 4, 5, 6 and 11 are located on the cell 

surface and they recognise lipids, lipoproteins or peptidedoglycans presented by 

bacteria, fungi or protozoa. TLRs 3, 7, 8, and 9 are found in intracellular membranes 

`and these are involved in the detection of bacterial and viral nucleic acids (Baccala et 

al., 2007). Different TLRs induce IFN production by recognising specific ligands – 

TLR3 recognises dsRNA and a synthetic analog of viral dsRNA - 
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polyinosinic-polycytidylic acid (polyI:C). TLR7 and 8 detect ssRNA, and TLR9 for 

unmethylated CpG-containing DNA (Baccala et al., 2007). The CpG motif refers to 

DNA containing cytosine (C) and a guanosine (G) linked by a phosphodiester bond 

(p).

TLR3-dependent signalling pathway 

TLR3 is an important factor in antiviral defence. Evidence has shown that induction 

of IFN is reduced in TLR3-deficient mice infected with murine cytomegalovirus 

(MCMV) (Tabeta et al., 2004). The broad tissue distribution of TLR3 enables the 

detection of viral nucleic acid presented to the cell surface in fibroblasts, or produced 

by uncoating or degradation of the internalised viral particles on endosomes 

(Matsumoto et al., 2003; Johnsen et al., 2006) (Figure 1.4.2.1.A). Upon ligand 

binding, TLR3 is tyrosine phosphorylated (Sarkar et al., 2004). TLR3 then recruits 

Toll-interleukin (IL)-1-resistance (TIR)-domain-containing adaptor protein inducing 

IFN-  (TRIF), which acts as a scaffold to recruit kinases required for either the IRF-3 

or the NF- B pathway.  

On the IRF-3 side of IFN induction (Figure 1.4.2.1.A), TRIF activates tumour 

necrosis factor (TNF) receptor-associated factor 3 (TRAF3); TRAF3 then binds to 

TRAF family member-associated NF- B activator (TANK); TANK interacts with 

TANK-binding kinase 1 (TBK-1)/inhibitor of NF- B (I B) kinase (IKK)  complex. 

Studies have shown that the NF- B-activating kinase (NAK)-associated protein 1 

(NAP1) is a subunit of TBK-1/IKK , associated with TRIF. NAP1 interacts with 

TBK-1/IKK  to assist the activation of IRF-3 (Sasai et al., 2005) for IFN-  gene 

expression. NAP1, as well as TANK and another protein (less well understood) - 

similar to NAP1 TBK1 adaptor (SINTBAD) all participate in the activation of IRF-3 

(Sasai et al., 2005; Guo & Cheng, 2007; Ryzhakov & Randow, 2007). However, the 

mechanisms remain unclear. The IRF-3 carboxyl-domain is activated via

phosphorylation by TBK-1/IKK  upon viral infection, and forms IRF-3 dimers, 

resulting in exposure of a nuclear-localisation signal (NLS) (Lin et al., 1998, Dragan 
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et al., 2007; Panne et al., 2007). IRF-3 translocates into the nucleus, and induces 

IFN-  gene transcription with the cooperation of CBP/p300 (Akira & Takeda, 2004), 

NF- B and ATF-2/c-Jun. IRF-3 is utilised to directly induce the activation of primary 

IFN genes (IFN-  and IFN- 4), which positively feedback onto cells and induce the 

production of IRF-7, under continuous infection. Production of IRF-7 promotes the 

enhanced activation of primary IFN genes IFN-  and IFN- 4 at the transcription level, 

and the transcription of secondary IFN genes (IFN-  genes) (Marie at al., 1998; Sato 

et al., 1998; Prakash et al., 2005). IFN-  is first produced upon infection, as a primary 

response, whereas, IFN-  is released in the amplification stage of an IFN response 

(Marie et al., 1998). However, IFN-  gene induction is less well understood. As a 

consequence of positive feedback of IFN-  gene activation, IRF-7 is activated by the 

TBK-1/IKK  complex as in the IRF-3 pathway (TLR3-dependent). IRF-7 translocates 

into the nucleus upon activation, and binds to the IFN-  promoter site along with 

other transcription factors (NF- B, ATF-2/c-Jun) (Chapter 1.4.1) to activate the IFN-

gene transcription cooperatively. 

The NF- B side of the TLR3-dependent pathway (Figure 1.4.2.1.A), through TRIF, 

essentially involves the activation of TRAF6 and receptor-interacting protein 1 (RIP1). 

TRAF6 and RIP1 activation gives rise to polyubiquitination of both factors (Chen, 

2005). TRAF6 and RIP1, by complexing with transforming growth factor -activated

kinase (TAK1), TAK1-binding protein (TAB)2, and TAB3, activate IKKs. NF- B, 

when associated with the NF- B inhibitor - I B, is inactive in the cytoplasm. 

Activated IKKs phosphorylate I B, allowing NF- B to be released and transported 

into the nucleus. The translocated NF- B binds to the IFN-  promoter at a different 

site from IRF-3 and induces the IFN-  gene transcription.  

TLR7- and TLR9-dependent signalling pathways 

TLR7 and TLR9, which recognise various nucleic acid ligands produced by viruses 

are also key receptors participating in innate immunity to viruses. TLR7 and TLR9 

are indispensable in certain cell types, which do not express TLR3. A subset of DCs, 
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known as pDCs, produce a significant amount of IFN, in response to some viral 

infections (ssRNA viruses), but they do not express TLR3. pDCs are one of the few 

cell types that express TLR7 and TLR9. TLR7 and TLR9 share the same myeloid 

differentiation factor 88 (MyD88)-dependent pathway of IFN induction. MyD88 plays 

an important role as a scaffold to mediate IRF-7 and NF- B activation, in response to 

ssRNA recognition by TLR-7, and CpG DNA recognition by TLR9 (Kawai & Akira, 

2006). The MyD88-dependent pathway (Figure 1.4.2.1.B) involves the activation of 

IL-1-R associated kinases (IRAKs), and TRAF6. Once activated, IRAK1 and TRAF6, 

in turn, through complexing with TAK1, TAB2, and TAB3, activate IKKs, which 

leads to the activation of NF- B to induce IFN. 

pDCs also express a high level of IRF-7 (Kerkmann et al., 2003; Prakash et al., 2005; 

Haller et al., 2006), providing another IFN induction pathway. In the IRF-7 pathway, 

MyD88 recruits IRAK1 and IRAK4, TRAF6 and RIP1. The 

MyD88-IRAK1-IRAK4-TRAF6 complex binds IRF-7 (Honda et al., 2004; Kawai et

al., 2004; Uematsu et al., 2005). TRAF6 recruits IRF-7 through IRF-7 

polyubiquitination (Kawai et al., 2004) with IRF-7 interacting with polyubiquitinated 

RIP1 (Huye et al., 2007). IRF-7 is then phosphorylated by IRAK1 and translocates to 

the nucleus, still associating with MyD88, TRAF6 and IRAK1, where it binds to the 

IFN-  promoter region to activate gene expression. However, this model is different 

from the positive feedback model of IRF-7 activation under IRF-3 iuduction (Chapter 

1.4.2.1 TLR3-dependent signalling pathway). IRF-7 is further upregulated in response 

to primary IFNs production, mediated by IRF-3 through the TLR-3-dependent 

pathway. In myeloid-derived dendritic cells (mDCs), instead of IRF-7, IRF-1 is 

utilised to assist the activation of IFN-  in response to TLR-9 ligand CpG (Negishi et

al., 2006, Schmitz et al., 2007) through MyD88 adaptor and IRAKs.  

1.4.2.2 RIG-I & mda-5 pathway (TLR-independent pathway) 

Receptor-mediated detection of pathogen-derived nucleic acids requires a broad range 

of receptors to participate in this event. TLRs are mainly involved in nucleic acids 
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recognition in the endosomal compartments. However, in contrast to TLRs, RIG-I 

and/or mda-5 RNA helicases act as crucial sensors which detect viral dsRNA in 

cytoplasm in a replication-dependent manner. RIG-I and mda-5 contain a C-terminal 

DExD/H-box RNA helicase domain, which binds dsRNA through its ATPase activity, 

and two N-terminal caspase recruitment domain (CARD) domains (Gitlin et al., 2006; 

Childs et al., 2007). The N-terminal CARD domains, mediate protein-protein 

interaction upon dsRNA binding to the helicase domain, causing domain 

conformational changes (Yoneyama et al., 2004). RIG-I and mda-5 can both 

recognise RNA viruses and polyI:C in cytosol, and their activities are not redundant. 

Studies of RIG-I and mda-5 in response to polyI:C show that in vivo type I IFN 

induction can be impaired in mda-5 deficient mice, but rapid induction of type I IFN 

has been detected in wild-type and RIG-I deficient mice (Kato et al., 2006). In 

contrast, dsRNA transcribed in vitro does not induce significant amounts of IFN-  in 

RIG-I deficient mouse embryonic fibroblasts (MEFs), but in mda-5 knocked-out 

MEFs (Kato et al., 2006). RIG-I can also recognise RNA with 5’-triphosphate. During 

the replication events of many viruses, RNA synthesis generates transient cytosolic 

viral uncapped unmodified 5’-triphosphate RNA intermediates, which can be detected 

by RIG-I (Hornung et al., 2006). The C-terminal regulatory domain of RIG-I binds 

viral 5’-triphosphate RNA, dimerises RIG-I and activates RIG-I ATPase (Cui et al.,

2008). RIG-I and mda-5 also play different roles in the recognition of viruses. Studies 

have shown that, mda-5 is the dominant sensor for picornaviruses (Gitlin et al., 2006; 

Kato et al., 2006) such as encephalomyocarditis virus (EMCV) (Kato et al., 2008), 

and  also for MeV (Berghall et al., 2006). RIG-I recognises other RNA viruses, such 

as paramyxovirus and rhabdovirus families (Kato et al., 2008), and Influenza A Virus 

(FLUAV) (Kato et al., 2006). It is well accepted that the cysteine-rich C-terminus of 

the paramyxovirus PIV5-V protein targets mda-5, but not RIG-I, neutralising host 

defence (Andrejeva et al., 2004). This may explain why RIG-I is the primary route for 

inducing IFN response to the majority of negative stand RNA viruses, including 

paramyxovirus. Enhanced type I IFN production has been detected in response to 

NDV, and vesicular stomatitis virus (VSV) following RIG-I overexpression (Gitlin et
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al., 2006). Some viruses, for example, Dengue virus and reovirus are recognised by 

both RIG-I and mda-5 (Loo et al., 2008; Kato et al., 2008). 

Cytoplasmic viral RNA, generated by viral replication, activates the RIG-I/mda-5 

pathway (Figure 1.4.2.1.C) by binding to RIG-I/mda-5 C-terminal RNA helicase 

domains. Both RIG-I and mda-5 N-terminal CARD domains recruit the cellular 

protein – IFN-  promoter stimulator (IPS)-1, also known as mitochondrial antiviral 

signalling protein (MAVS), CARD adaptor inducing IFN-  (CARDIF), or 

virus-induced signalling adaptor (VISA) (Kawai et al., 2005; Meylan et al., 2005; 

Seth et al., 2005; Xu et al., 2005). IPS-1 is found in the outer mitochondrial 

membrane (Gitlin et al., 2006), and regulates the activation of IRF-3, IRF-7, NF- B

and ATF-2/c-Jun pathways, which finally leads to the expression of IFN- /  genes 

(Figure 1.4.2.1.C). The N-terminus of IPS-1, containing a CARD-like domain, 

interacts with the CARD domain of RIG-I/mda-5 (Kawai et al., 2005), and activates 

IRF-3 and IRF7 through TBK1/IKK . TBK-1/IKK  in turn phosphorylates the 

transcription factor IRF-3 and IRF-7. The IFN induction cascades through TLR3 and 

RIG-I/mda-5 share the TBK1/IKK  pathway. Phosphorylated IRF3 and IRF-7 then 

translocate into the nucleus as homodimers, where they bind to the IFN- /  promoter 

region to initiate type I IFN gene transcription with the assistance of other 

transcription factors. In parallel, downstream of RIG-I/mda-5, IPS-1 triggers the 

NF- B pathway via the adaptor Fas-associated death domain (FADD) and the kinase 

RIP1, which in turn, activates IKKs (IKK ) (Kawai et al., 2005). Like NF- B

activation through the TLR-dependent pathway, NF- B becomes active through the 

degradation of I B and translocates to the nucleus for IFN-  and inflammatory 

cytokine genes activation. Production of IFN- /  upregulates RIG-I/mda-5 (Kato et

al., 2006), which can lead to propagation of the IFN signal in the continued presence 

of viral nucleic acid. 

1.4.3 IFN signalling 

The classical IFN signalling pathway has been extensively studied. The signalling 
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pathway is activated by the binding of IFN- /  to type I IFN receptors. This leads to 

the activation of the receptor-associated Janus/just another kinase (JAK) family and 

the signal transducers and activators of transcription (STATs) pathway, which plays a 

important role for the induction of ISGs. 

The biological activity of IFN- /  is initiated by binding to cell surface heterodimeric 

IFN receptors - IFNAR1 and IFNAR2 (Figure 1.4.3.1) at the cell surface. In the 

absence of IFN, there is no close association between IFNAR1 and IFNAR2. Prior to 

ligand binding, the intracellular domains of IFNAR1 and IFNAR2 are also physically 

associated with the cytoplasmic JAKs - cytoplasmic signalling tyrosine kinase 2 

(Tyk2) (associated to IFNAR1) and JAK1 (associated to IFNAR2) (Figure 1.4.3.1). 

STAT2 is associated with IFNAR2 prior to receptor stimulation, and weakly interacts 

with STAT1 (Stancato et al., 1996; Precious et al., 2005a; Tang et al., 2007). IFN- /

binding to IFNAR2 results in the association of IFNAR2 and IFNAR1. Tyk2 then 

phosphorylates IFNAR1 (Tyr 466), thus providing a docking site for STAT2. The 

STAT2 molecule itself then becomes tyrosine-phosphorylated (Tyr 690), creating a 

binding site for STAT1. JAK1 tyrosine-phosphorylates STAT1 (Tyr 701), and the 

phosphorylation allows STAT1 and STAT2 to form a stable heterodimer. Prior to 

phosphorylation, STAT2 is primarily localised in the cytoplasm. Phosphorylation of 

STAT2 causes STAT2 nuclear import (Frahm et al., 2006) by creating a novel NLS, 

so that STAT1/2 dimers are imported into and retained in the nucleus, until their 

dephosphorylation (Reich & Liu, 2006). The STAT1/2 heterodimer recruits IRF-9, 

which contains a helix-turn-helix domain at N-terminus for DNA binding (Tang et al.,

2007). STAT1/2 and IRF-9 form the IFN- /  stimulated gene factor 3 (ISGF3) 

heterotrimer. ISGF3 binds to the IFN-stimulated Response Element (ISRE) site, 

which locates in the promoter region of most IFN-inducible genes, to induce ISG 

transcription. 

Type III IFN signalling is similar to that of type I IFN and uses IL-10R2 and IFN-

receptor 1 (IFNLR1) as receptors. Upon binding of type III IFN to the receptors, Tyk2 

 23



1. INTRODUCTION 

associated IL-10R2 and JAK1 associated IFNLR1 activate STAT1 and STAT2 by 

phosphorylation using a similar strategy as described in the type I IFN signalling 

pathway (Figure 1.4.3.1).  

IFN-  induced type II IFN signalling, triggers STAT activation in a different manner. 

In this case, only STAT1 protein is involved in this process (Figure 1.4.3.1), by 

forming a homodimer rather than the heterodimer in the IFN- /  pathway. IFN-

receptors IFNGR1 and IFNGR2, associate with each other weakly in an inactive state. 

The IFN-  binding to IFNGR1 and IFNGR2, activates the signalling pathway, and 

causes IFNGR1 and IFNGR2 to dimerise. Stimulation of receptors brings JAK1 

(associated with the cytoplasmic domain of IFNGR1) and JAK2 (associated with the 

cytoplamic domain of IFNGR2), to close proximity, and activates JAK2, which in 

turn activates JAK1 by trans-phosphorylation. The activated JAKs phosphorylate the 

IFNGR1 cytoplasmic domain, and provide a pair of binding sites for STAT1. Two 

STAT1s form a homodimer via their Src-homology-2 (SH2) domains (a protein motif 

mediates/assists the signalling transduction by the interaction with 

tyrosine-phosphorylated sequences), and are phosphorylated (Tyr 701), which allows 

for two STAT1 molecules to dissociate from the receptor and migrate to the nucleus. 

In the IFN-  pathway, STAT1/1 homodimer binds to the gamma-activation sequence 

(GAS) element in the nucleus to activate transcription, without the assistance of IRF-9 

(Tang et al., 2007). 

IFN-induced gene transcription is activated in cooperation with some of the other 

co-activators. STAT complexes interact with these factors to assist the activation of 

genes. For example, p300 and CBP (Zhang et al., 1996; Bhattacharya et al., 1996; 

Platanias, 2005), increase IFN-  or IFN- -inducible gene transcription through 

regulating chromatin remodelling. Tang et al. 2007 has revealed that the IFN 

receptors assist the assembly of the transcription machinery. The transcriptional 

cofactor CBP is recruited to the IFNAR chain of the receptor in response to IFN- ,

which is thought to directly or indirectly regulate acetylation of the factors involved in 
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the signalling cascade for gene transcription. CBP catalyses IFNAR2 acetylation on 

lysine (Lys) 399 and STAT2 on Lys 390; IFNAR2 acetylation provides a docking site 

for IRF-9; IRF-9, STAT1 and STAT2 molecules are also acetylated by CBP. 

Acetylation of IRF-9 is indispensable for DNA binding, and acetylation of the STAT 

factors may assist ISGF3 complex assembly.  

1.4.4 IFN-induced antiviral state 

The binding of type I IFN activates the JAK-STAT signalling cascade, which in turn, 

switches on more than 400 ISGs. Upregulation of such ISGs establishes an antiviral 

state (Sadler & Williams, 2008). Not all ISGs are activated by IFN signalling through 

the JAK-STAT pathway. A portion of ISGs are induced in response to enveloped 

viruses by IRF-3, but independent of IFNs (Guo et al., 2000). 

Important ISGs such as protein kinase R (PKR), the 2’,5’-oligoadenylate synthetase 

(OAS), RNase L, and the myxovirus resistance protein (Mx) guanosine triphosphate 

(GTP) GTPases have all been intensively investigated, since they play important roles 

in anti-viral activities. 

PKR

PKR is a serine-threonine IFN inducible protein kinase, which is activated by dsRNA 

or the cellular PKR activating protein (PACT). PKR is constitutively expressed at low 

levels in the cell, and is induced by type I and type III IFNs. Under normal conditions, 

PKR stays inactive as a monomer in cells. PKR is activated by binding of ligands, 

including viral dsRNAs, to dsRNA-binding domain at the N-terminal of PKR, and 

undergoes a conformational change, forms a homodimer, and induces 

autophosphorylation to become an active enzyme (Cole, 2007). Activated PKR 

phosphorylates the  subunit of protein synthesis eukaryotic initiation factor 2 (eIF2 )

at serine (Ser) 51 (Samuel, 1979; Pathak et al., 1988), and inhibits protein synthesis at 

the translation level. eIF2 is an essential factor for protein synthesis, and the substrate 

which is well characterised for PKR antiviral effect. In addition to its antiviral 
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activities, PKR also mediates apoptosis and cell growth control (Der et al., 1997; Lee 

& Estaban, 1994; Chong et al., 1992). 

OAS and RNase L 

OAS is present in the cytoplasm in its inactive monomeric form. OAS is upregulated 

by type I IFN signalling and is activated in response to dsRNA. OAS oligomersises 

ATP resulting in the production 2’,5’-oligodenylates, which in turn activates RNase L. 

RNase L is expressed as an inactive monomer, and activated through 2’,5’-oligomer 

binding to form a homodimer. Activated RNase L targets viral genomic ssRNA to 

prevent replication (Silverman, 2007). Activated RNase L cleaves viral mRNA 

(Austin et al., 2005) to inhibit viral protein synthesis and the cleavage of cellular 

mRNA and rRNA to shut off host protein synthesis (Silverman, 2007).

Mx

Mx proteins are GTPases, which are induced by IFN, have antiviral activities. The Mx 

GTPase family consists of human MxA, MxB proteins, and mouse Mx1 and Mx2 

proteins. Human MxA protein is associated with antiviral activity induced by IFN- / ,

but not IFN-  (Simon et al., 1991; Samuel, 2001), against both cytoplasmic and 

nuclear viruses, such as orthomyxoviruses, paramyxoviruses, rhabdovirues, 

togaviruses and bunyaviruses (Sadler & Williams, 2008). The Mx protein contains an 

N-terminal GTPase domain, a central interacting domain (CID) and a C-terminal 

leucine zipper (LZ) domain. Both CID and LZ are essential for the recognition of the 

viral nucleocapsid-like structure, formed close to the smooth endoplasmic reticulum 

(ER) (Sadler & Williams, 2008). During viral infection, Mx proteins inhibit viral 

replication by preventing transport and localisation of the nucleocapsid-like viral 

proteins, and thus restrict the amplification of viruses in the early stages of infection 

(Kochs & Haller, 1999, Haller et al., 2009). The Mx GTPases prevent the growth of 

FLUAV, such as H5N1 viruses or the pandemic H1N1 virus strain of 1918 (Haller et 

al., 2009).  
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ISG15

ISG15 is one of the most prominent IFN- / -inducible genes (Sadler & Williams, 

2008). ISG15 is a 15kDa protein recognised as a homologue of ubiquitin (Ub), and 

functions in parallel with Ub. ISG15 belongs to a subset of ISGs that are 

transcriptionally induced in parallel with IFN-  as a primary response to viral 

infections stimulated directly via the IRF family, and/or as a secondary cytokine 

response through the IFN signalling pathway. In contrast to type I IFNs, IFN  is a 

poor inducer of ISG15. Like Ub, ISG15 utilises similar strategies to modulate 

post-translational modification of cellular proteins, termed ISGylation. ISGylation 

requires an E1 activating enzyme, an E2 conjugating enzyme and an E3 ligase 

enzyme (Sadler & Williams, 2008). ISGylation and ISG15 appear to play a broad 

spectrum role in inhibition of viral amplification. ISGylation targets substrate proteins 

which are important component in the type I IFN signalling pathway, including RIG-I, 

JAK1, STAT1, MxA, PKR, and RNase L (Zhao et al., 2005), and the enzymes 

involved in the ISGylation process regulated by IFNs. Unlike ubiquitination, ISG15 

does not promote substrate degradation (Liu et al., 2003), but instead activates target 

proteins (Okumura et al., 2006). Evidence has shown that ISG15 enhances IFN-

production by preventing virus-mediated IRF-3 degradation (Lu et al., 2006). Mice 

deficient in ISG15 are hypersensitive to infection by viruses, such as FLUAV, 

influenza B viruses (FLUBV), Sindbis virus (SINV) and herpes simplex virus 1 

(HSV-1) (Lenschow et al., 2007; Harty et al., 2009). Mice deficient in Ubp43, the 

protease required to remove ISG15 from the ISGylation state, are reported to be more 

sensitive to IFN and polyI:C (Malakhova et al., 2003), and are also resistant to 

lymphocytic choriomeningitis virus (LCMV) and VSV (Ritchie et al., 2004). The 

above evidence suggests that ISG15-mediated protein modulation plays a role in 

generating an efficient IFN response.

ISG56

As another prominent member of the ISG family, ISG56 responds strongly to viral 

infections. In untreated cells, p56 (the protein product of ISG56) is expressed at low 
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level. However, expression of ISG56 is greatly increased by virus infection, IFN, and 

dsRNA (Der et al., 1998; Terenzi et al., 2008). Evidence has shown that ISG56 carries 

out its antiviral activity by interacting with the DNA replication origin-binding protein 

E1 of human papillomavirus (HPV), and therefore inhibits the DNA helicase activity 

of E1 and E1 mediated HPV DNA replication (Terenzi et al., 2008). 

1.5 Virus inhibition of the IFN response 

The IFN response is an incredibly powerful innate immune mechanism, establishing 

antiviral defences at different stages to prevent and/or limit viral amplification within 

the host. In order to survive and establish infection in the host, viruses have developed 

strategies to overcome the IFN response. The IFN response against viruses and the 

virus inhibition of IFN response act in such ways as to have a negative effect on each 

other. Many (if not all) viruses express IFN antagonists which may counteract the IFN 

response at multiple levels. IFN antagonists are usually non-structural viral proteins 

which are non-essential for virus amplification. These IFN antagonists are often 

multifunctional proteins which interact with multiple components to inhibit host IFN 

induction and signalling. To allow more efficient inhibition of IFN response, a virus 

may interfere with different pathways by expressing more than one antagonist protein, 

and a single viral protein may be able to target different stages of the IFN response 

(Figure 1.5.1). Although different viruses have different strategies, they do share some 

strategies in common, as described below. 

1.5.1 IFN antagonism 

Although many (if not all) viruses encode factors that antagonise IFN response, there 

are five common strategies that allow viruses to inhibit IFN functioning. Many 

viruses (i) inhibit IFN induction; (ii) inhibit IFN signalling pathway; (ii) inhibit the 

IFN-induced antiviral state; (iv) globally inhibit the transcription or translation for 

preventing host cell ISGs expression; (v) adopt a replication strategy insensitive to 

IFN action. 
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1.5.2 Inhibition of IFN induction 

Viruses adopt a number of ways to interfere with host cell IFN production (Figure 

1.5.1.A). Many viruses limit the production of PAMPs or prevent their recognition by 

the IFN induction machinery. Many viruses produce dsRNA binding proteins to 

prevent dsRNA binding to viral nucleic acid sensors, such as PRRs. The bovine viral 

diarrhoea virus (BVDV) Erns protein is secreted to the outside of the cell, and 

degrades dsRNA, thus preventing TLR3 recognition of dsRNA (Iqbal et al., 2004). 

The N-terminus of NS1 protein of FLUAV sequesters dsRNA through an RNA 

binding domain, thus preventing the activation of IFN production at an early stage 

(ligand recognition and binding) (Wang et al., 2002; Ferko et al., 2004).  

The TLR and RIG-I/mda-5 signalling cascade is also a potential target for some 

viruses. The NS3/4A protease of HCV cleaves the essential TLR3 signalling mediator 

TRIF at cysteine (Cys) 372 in vitro, accelerates TRIF degradation in vivo, and 

consequently disrupts TLR3 signalling (Li et al., 2005a). The V proteins of 

paramyxoviruses bind mda-5, and block the subsequent activation of the IFN-

promoter (Andrejeva et al., 2004). The FLUAV NS1 protein interacts with RIG-I and 

subsequently inhibits IRF-3 translocation into the nucleus induced by RIG-I and 

RIG-I mediated IFN-  promoter activation (Mibayashi et al., 2007). 

Further downstream of the IFN induction pathway, intracellular proteins which 

mediate either the TLR-dependent pathway or the RIG-I/mda-5 pathway are all 

possible intervention sites that IFN antagonists target. As an example of an IFN 

antagonist which interferes with the IFN pathway at various stages, the HCV NS3/4A 

protein cleaves the mitochondrial anchor site of IPS-1 at its C-terminus, and as a 

consequence, the signalling pathway between IPS-I and TBK1/IKK  is abolished (Li 

et al., 2005b; Meylan et al., 2005; Lin et al., 2006a). The V proteins of certain 

paramyxoviruses: PIV5, HPIV2, and MuV act as alternative substrates for 

TBK1/IKK , therefore preventing the downstream phosphorylational activation of 

IRF-3 (Lu et al., 2008).   
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NF- B is a crucial transcription factor to activate the IFN-  promoter gene, many 

viruses encode proteins to target NF- B. The African swine fever virus (ASFV) 

A238L protein, as an I- B homologue, inhibits NF- B activation (Powell et al., 1996; 

Revilla et al., 1998; Tait et al., 2000).  

Viruses have also evolved abilities to interfere with IRF transcription factor family 

binding to IFN-  promoter region. For example, the HPV type 16 (HPV-16) E6 

protein binds to IRF-3 (Ronco et al., 1998; Johnson & Knipe 2009) and inhibits IRF-3 

transcriptional activity (Ronco et al., 1998). The N-terminal protease (Npro) of 

BVDV targets IRF-3 for degradation (Hilton et al., 2006), therefore blocking IFN 

gene transcription. 

1.5.3 Inhibition of IFN signalling 

Viruses have developed strategies to bypass the IFN antiviral response by targeting 

the IFN signalling cascade at different stages (Figure 1.5.1.B).  

Some viruses target IFN signalling prior to IFN binding to the receptors. For example, 

the vaccinia virus (VACV), and most other orthopoxviruses, express proteins that 

interfere with IFN- /  binding to its receptors (Colamonici et al., 1995; Symons et al.,

1995). The VACV protein B18R is secreted to the outside of the cells, and binds IFN, 

therefore preventing the antiviral response in both infected and neighbouring cells 

(Alcami et al., 2000). Poxviruses secrete soluble proteins to sequester IFN-  and 

IFN-  (Colamonici et al., 1995; Symons et al., 1995; Upton et al., 1992; Alcami & 

Smith, 1995; Mossman et al., 1995a; Mossman et al., 1995b), so that IFN binding to 

their receptors is prohibited and receptor activation is prevented. The K3 and K5 

proteins of human herpesvirus 8 (HHV-8) target the IFNGR1 subunit of IFN-

receptor for ubiquitination, endocytosis and degradation (Li et al., 2007). 

Given the fact that STATs play a critical role in the IFN signalling cascade, many 

viruses express viral antagonists that target STATs. STAT function is inhibited by 
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paramyxoviruses primarily through a single virus-encoded protein – V protein. Some 

paramyxoviruses target STATs for protesomal degradation. PIV5 is demonstrated to 

target both IFN- /  and IFN-  by targeting STAT1 for proteasome-mediated 

degradation via the activity of its V protein (Didcock et al., 1999; Precious et al.,

2005b; Precious et al., 2007). MuV and SV41 V proteins use similar strategies, 

targeting STAT1 for degradation. HPIV2 V protein targets STAT2 for degradation, 

therefore, blocking IFN- /  signalling pathway. The paramyxovirus V 

protein-targeted STATs degradation is STAT-dependent. For example, PIV5 target 

STAT1 for degradation only if cells expressing STAT2, whereas HPIV2 fails to 

mediate STAT2 degradation in the absence of STAT1 (Parisien et al., 2002; 

Andrejeva et al., 2002; Stock et al., 2005). STAT proteins are targeted by 

polyubiquitylation and efficient proteasomal degradation. Studies have also shown 

that sufficient amounts (i.e. high levels) of V protein have to be expressed by some 

paramyxoviruses, in order to generate prompt degradation of STAT protein. This is 

supported by infecting both naive and IFN-pretreated cells with UV-inactivated PIV5 

(Didcock et al., 1999; Stock et al., 2005). Low level expression of V protein in 

UV-inactivated PIV5 would target STAT1 for degradation in naive cells, where 

relatively low levels of STAT1 are present. However, in the IFN-pretreated cell, 

where STAT1 is upregulated by IFN treatment, the amount of V protein expressed in 

UV-inactivated virus could not degrade STAT1 completely. 

The V proteins of both Nipah virus (NiV) and Hendra virus (HeV) of the Henipavirus 

genus block both IFN- /  and IFN-  singalling by preventing the nuclear 

translocation of STAT1 and STAT2 (Rodriguez et al., 2003; Stock et al., 2005). The 

Henipavirus V proteins sequester STATs proteins into high molecular weight 

complexes independent of degradation. The NiV V protein behaves as a 

nuclear-cytoplasmic shuttle and alters the distribution of STAT1. The NiV V protein 

moves freely between cytoplasm and nucleus, targets STAT1, shuttles STAT1 back to 

the cytoplasm, resulting in cytoplasmic sequestration of STAT1 (Rodriguez et al.,

2002; Stock et al., 2005).  
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Viruses also block IFN signalling through the downregulation of STAT 

phosphorylation. MeV V protein expression subverts IFN- /  and IFN-  signalling. 

The wild-type MeV V protein interacts with the IFN /  receptor to block IFN 

signalling by preventing the phosphorylation of STAT1 and STAT2, whereas the 

MeV Edmonston vaccine strain (MeVEd) V and C proteins block both IFN- /  and 

IFN-  signalling downstream of STAT phosphorylation (Stock et al., 2005). VACV 

dephosphorylates and deactivates STAT1 via the expression of a viral phosphatase, 

VH1 (Najarro et al., 2001). HCV core protein inhibits STAT1 phosphorylation to 

prevent its association with STAT2, and therefore inhibit ISGF3 formation (Lin et al.,

2006b). HBV and HCV downregulate STAT1 transcriptional activity via upregulation 

of protein phosphatase 2A (PP2A) (Duong et al., 2004; Christen et al., 2007). As an 

enzyme, PP2A inhibits protein arginine methyltransferase 1 (PRMT1). PRMT1 is an 

enzyme that catalyses the methylation of STAT1. Hypomethylated STAT1 increases 

its association with its inhibitor - protein inhibitor of activated STAT1 (PIAS1), and 

becomes less active (Christen et al., 2007). PIAS inhibits STAT DNA binding, and 

thus reduces the transcriptional activation of IFN-stimulated genes (Duong et al.,

2004; Duong et al., 2005; Christen et al., 2007).  

In addition to V protein, viruses also express antagonists to target STATs. HSV-1 

infected cell protein 27 (ICP27) inhibits IFN-induced STAT1 phosphorylation and 

nuclear accumulation (Johnson et al., 2008; Johnson & Knipe, 2009). The inhibition 

of STAT1 phosphorylation is at or before JAK-1 activation (Johnson & Knipe, 2009). 

Apart from STATs, IRF-9 is also targeted by several viruses, due to its role in the 

formation of ISGF3 transcription complexes. Adenovirus (AdV) E1A protein 

decreases IRF-9 expression to inhibit IFN-  signalling (Leonard & Sen, 1996). 

HPV-16 E7 prevents ISGF3 formation by direct targeting of IRF-9 (Barnard & 

McMillan, 1999).  
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1.5.4 Inhibition of IFN-induced antiviral enzymes & global protein synthesis 

As discussed above, IFN induces the activation of a variety of antiviral proteins, such 

as PKR and OAS, in response to dsRNA stimulation. Some viruses, including 

poxvirus, HSV, influenza virus and reoviruses, express viral dsRNA-binding proteins 

to sequester dsRNA away from those antiviral proteins, to prevent the activation of 

such proteins.  

PKR plays a pivotal antiproliferative role in the IFN response, as it is responsible for 

cell growth and proliferation in uninfected cells (Stark et al., 1998). Viruses have 

introduced diverse mechanisms to inhibit the activation and production of PKR. 

FLUAV has two strategies to subvert PKR antiviral activity. PKR is regulated 

through the physical association with its cellular inhibitor p58IPK. p58IPK activity is 

upregulated upon FLUAV infection (Lee et al., 1990; Hale et al., 2010), which results 

in the dissociation of p58IPK from its natural inhibitor - heat shock protein 40kD 

(HSP40) (Melville et al., 1997; Melville et al., 1999; Hale et al., 2010). FLUAV NS1 

protein also binds directly to the N-terminal 230-amino acid region of PKR (Li et al.,

2006) and at positions 123-127 of PKR to prevent PKR activation (Min et al., 2007). 

AdV virus associated RNA I (VAI RNA) forms a complex with PKR to prevent PKR 

autophosphorylation and activation (Katze et al., 1987). OAS/RNase L is targeted or 

inhibited by viral proteins in a dsRNA-independent manner. Human 

immunodeficiency virus (HIV-1) (Martinand et al., 1999) and EMCV (Martinand et

al., 1998) upregulate the cellular RNase L inhibitor to downregulate the activity of 

RNase L. 

In addition to targeting transcription factors, and the inhibition of antiviral enzyme 

activation, viruses also slow down or impair the host mRNA transcription and protein 

synthesis (Goodbourn et al., 2000). Foot-and-mouth disease virus (FMDV) L 

proteinase switches off host protein synthesis. However, increased expression of IFNs 

is detected in cells infected with the attenuated FMDV strains with mutations in genes 

enconding L proteinase (Chinsangaram et al., 1999; Goodbourn et al., 2000). Viruses 
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are also able to mimic or generate host cell protein homologues to reduce the IFN 

production efficiency (Goodbourn et al., 2000). For example, EBV produces a 

homologue of IL-10 to minimise the IFN response (Bejarano & Masucci, 1998). One 

of the biological functions of IL-10 is to inhibit the activation of TH1 cells, as 

activated TH1 cells produce a number of cytokines, including IFN-  (Goodbourn et

al., 2000). Viruses also express antagonists to modulate host cell gene expression. 

FLUAV NS1 is one of the examples, which interacts with the two zinc-finger domains 

of the nuclear 30kDa subunit of cleavage and polyadenylation specificity factor 

(CPSF30). The binding prevents the CPSF30 modulated 3’ ends processing of 

pre-mRNA into polyadenylated mRNAs (Nemeroff et al., 1998; Hale et al., 2010). 

1.6 Aims 

My project aims to develop stable cell-lines that can be used to rapidly isolate mutant 

viruses, which are better inducers of IFN, as live attenuated virus vaccine candidates. 

Cell-lines are used to screen the viruses by specifically responding to the invasion of 

viruses. Using wild-type viruses to infect the engineered cell-lines, cells infected by 

IFN-inducing mutant viruses would activate the IFN-  promoter and a downstream 

reporter gene under the control of the IFN-  promoter. Those mutant virus-infected 

cells will then be selected based on their distinctive characteristics, i.e. green 

fluorescent protein (GFP) expression or cell surface expression of V5 epitope tag. We 

can then isolate mutant viruses from the selected cells using fluorescence-activated 

cell sorting (FACS) (for GFP) or panning (of the V5 epitope). In essence, these 

specifically engineered cell-lines are working as a sorter to select mutant viruses. 

Ideally, this system would be developed as a universal sorter to isolate various types 

of live attenuated vaccine candidates.  

The isolated viruses will be genetically analysed and functionally studied. Whole 

genome sequencing may be carried out to provide information on the location of 

mutations which ablate the viruses’ ability to express a functional IFN antagonist. 

Studying the genetic defects will help us better understand the mechanisms these 
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viruses use to cause diseases in the host. 

Finally, the generated stable cell-line (A549/pr(IFN- ).GFP) has been used routinely 

to screen for compounds that inhibit IFN induction and/or signaling or block the 

activity of viral IFN antagonists with a view to successful antiviral drug discovery. 
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Family Paramyxoviridae

Subfamily Paramyxovirinae
Genus Respirovirus

Genus Rubulavirus

Sendai virus (SeV)
Human parainfluenza virus types 1 & 3 (hPIV1/3)
Bovine parainfluenza virus type 3 (bPIV3)

Simian virus type 5 (SV5)
Simian virus type 41 (SV41)
Mapuera virus (MPRV)
Mumps virus (MuV)
Human parainfluenza virus type 2 (hPIV2)
Human parainfluenza virus types 4a & 4b (hPIV4a/4b)

Genus Morbillivirus
Measles virus (MeV)
Cetacean morbillivirus (CeMV)
Canine distemper virus (CDV)
Peste-des-petits-ruminants virus (PPRV)
Phocine distemper virus (PDV)
Rinderpest virus (RPV)

Genus Henipavirus
Hendra virus (HeV)
Nipah virus (NiV)

Genus Avulavirus
Newcastle disease virus (NDV)
Avian paramyxovirus 1 to 9 (APMV-1 to -9)

Genus “TPMV-like Viruses”
Tupaia virus (TPMV)

Subfamily Pneumovirinae
Genus Pneumovirus

Genus Metapneumovirus

Human respiratory syncytial virus (hRSV) 
Bovine respiratory syncytial virus (bRSV)
Murine pneumonia virus (MPV)

Turkey rhinotracheitis virus (TRTV)

Figure 1.2.1 Classification of the Paramyxoviridae family according to 
the Eighth Report of ICTV (2005).

adapted from Carlos, 2005
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Figure 1.2.2.1 Schematic diagram of a PIV5, a typical paramyxovirus (adapted from 
Carlos, 2005).  

Virions are decorated with two surface glycoproteins, hemagglutinin-neuraminidase 
(HN) attachment glycoprotein and the (F) fusion glycoprotein into the lipid bilayer. 
Underlying the lipid bilayer is the viral matrix (M) protein. The nucleocapsid is 
composed of genomic RNA that interact with the nucleoprotein (N) and the 
components of the viral RNA polymerase complex (phosphoprotein P and large (L) 
protein) The small integral membrane protein, SH, is found only in certain 
rubulaviruses, including PIV5. The V protein is a structural protein, found in 
rubulaviruses.
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Figure 1.2.3.1 Representation of the PIV5 genome, the structure of the V/P gene and 
encoded V and P proteins (modified from Charziandreou, 2002). 

The PIV5 genome is single-stranded, non-segmented, negative sense RNA and 
contains seven genes that code for eight proteins (NP, P and V, M, F, SH, HN and L). 
Extragenic regions contain a 3’leader sequence and the 5’ trailer sequence. Each gene 
contains transcription start/stop control sequences as part of the gene. The V/P gene 
codes for two proteins, the V and P proteins. The open reading frames of V and P 
gene overlap, V mRNA is transcribed as a complete copy, whereas the P mRNA is 
transcribed with an addition of two non-templated G residues. As a consequence, V 
and P proteins have the N-terminus in common. However, their C-termini are unique 
for each protein. 
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Figure 1.3.2.1 Flowchart for the overview of the humoral and cell-mediated immune 
response (images modified from Kindt et al., 2006). 

The MHC molecules bind antigens presented by APCs. TH cells recognise class II 
MHC molecules, whereas CTLs recognise antigen with class I MHC molecules. T cell 
is activated by the binding of MHC-antigen, and activated T cell secretes cytokines, 
which activates B cells, CTLs and other cells. B cells interacting with antigen 
differentiate into B memory cells and antibody-secreting plasma cells. Produced 
antibodies neutralise the antigens for clearance. Activated CTLs either develop into T 
memory cells, or lyse the APCs.



Figure 1.4.1

modified from Haller et al., 2006



Figure 1.4.1 The IFN system (modified from Haller et al., 2006). 

The IFN system is an efficient system which responds to virus infections. Certain host 
pattern recognition receptors (PRRs) recognise dsRNA, and activate IFN genes 
through transcription factors IRF-3 and NF- B. IFN induction upregulates the 
JAK-STAT pathway to activate IFN-stimulated genes (ISGs) to inhibit viral 
replication and cell proliferation. 
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Figure 1.4.1.1 Enhanceosome assembly for activation of the IFN-  promoter.  

The intrinsic DNA structure (Panel A) of the promoter needs to be flattened, to allow 
binding of transcription factors (e.g. IRFs, NF- B, ATF-2, c-Jun) to the promoter 
(Panel B). HMG I(Y) assists binding by unbending/straightening the DNA, which 
significantly enhances the transcription factors binding affinity to the enhanceosome. 
Protein–protein interactions (arrows) between all the components, allow the formation 
of a stable nucleoprotein structure (Panel C). 
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Figure 1.4.2.1 
A. TLR3-dependent IFN induction pathway.  
B. TLR7- and TLR9-dependent IFN induction pathway 
C. RIG-I and mda-5-dependent IFN induction pathway 
(adapted from Randall & Goodbourn, 2008). 

In response to the recognition of different viral ligands, these recruit TRIF, 
Cardif/VISA/MAVS/IPS-1 or adaptor proteins respectively, and activate IRF3 (or 
IRF7) and NF- B transcription factors. Activated IRFs and NF- B then translocate to 
the nucleus and bind to different sites on the IFN-  promoter and induce the 
transcription of the IFN-  gene. 



Figure 1.4.3.1

adapted from Sadler & Williams, 2008



Figure 1.4.3.1 IFN signalling pathways (adapted from Sadler & Williams, 2008). 

The interferon-induced JAK-STAT signalling pathway is one of the crucial pathways, 
and utilises three main receptor units to accomplish the process: the heterodimer of 
IFN-  receptor 1 (IFNAR1) and IFNAR2 for type I IFNs; interleukin-10 receptor 2 
(IL-10R2) and IFN-  receptor 1 (IFNLR1) complex for type III IFNs; and IFNGR1 
and IFNGR2 for type II IFN. The binding of IFNs to their recrptors activates 
receptor-associated tyrosine kinases, which in turn activate STATs molecules by 
phosphorylation. With the help of other transcription factors, phosphorylated STATs 
dimers are translocated into the nucleus, bind to their target promoter site, and induces 
the transcription of a number of ISGs. 
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Figure 1.5.1 Virus inhibition of the IFN response. 

A. Virus inhibition of IFN induction. 
B. Virus inhibition of IFN signalling. 
(adapted from Randall & Goodbourn, 2008).  

Viruses have developed methodologies to express IFN antagonists to subvert the host 
IFN response at multiple levels. Different viruses express different IFN antagonists 
targeting the same cellular molecule in the IFN system (e.g. BVDV Npro and HPV-16 
E6 proteins both target IRF-3 in the IFN induction pathway), or a virus express a 
single antagonist targeting various cellular molecules (e.g. PIV5 V targets mda-5 in 
the IFN induction cascade, and STAT1 in the IFN signalling pathway). 



2. MATERIALS & METHODS 

2. MATERIALS & METHODS 

2.1 Mammalian cells & tissue culture 

2.1.1 Cell-lines used in this study 

A549

human lung epithelial cells (European Collection of Cell Cultures (ECACC)). 

A549/Npro 

A549 cells stably expressing the Npro protein of BVDV with an N-terminal V5 tag. 

Vero 

fibroblast-like cells originating from the kidney of an African green monkey (ICN 

Pharmaceuticals Ltd., UK). 

293T

human embryonic kidney cells (provided by Prof. R. Iggo, University of St Andrews). 

MDCK

derived from the kidney of an adult cocker spaniel (ECACC). 

MDCK/V

MDCK cell-line constitutively expressing the V protein of PIV5 (Precious et al.,

2005)

In addition to the basic cell-lines mentioned above, the following permanent cell-lines 

were also generated and used as part of this study: 

A549/pr(IFN- ).GFP

A549 cell-line stably expressing the green fluorescence (GFP) gene under the control 

of the IFN-  promoter. 

A549/pr(IFN- ).GFP/BVDV-NPro 

A549/pr(IFN- ).GFP cell-line stably expressing the Npro protein of BVDV with an 

N-terminal V5 tag. 

A549/pr(IFN- ).GFP/HCV-NS/4A

A549/pr(IFN- ).GFP cell-line stably expressing the NS/4A protein of HCV. 
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A549/pr(IFN- ).GFP/V

A549/pr(IFN- ).GFP cell-line stably expressing the V protein of PIV5 W3 strain. 

Blasticidin is used as mammalian selection marker. 

A549/pr(IFN- ).GFP/KO.STAT1 

A549/pr(IFN- ).GFP cell-line stably expressing shRNA to STAT1. Blasticidin is used 

as mammalian selection marker. 

A549/pr(IFN- ).GFP.V5 

A549/pr(IFN- ).GFP cell-line stably expressing the V5 tag on the cell surface under 

the control of IFN-  promoter. 

A549/pr(IFN- ).GFP.V5/V 

A549/pr(IFN- ).GFP/V cell-line stably expressing the V5 tag on the cell surface 

under the control of IFN-  promoter. 

MDCK/V/Npro 

MDCK/V cell-line stably expressing Npro protein of BVDV. 

2.1.2 Cell maintenance

Cell monolayers were cultured in 25cm2 or 75cm2 tissue culture flasks (Greiner 

Bio-One, UK) in Dulbecco’s modified Eagle’s medium (DMEM) with 10% (v/v) fetal 

calf serum (FCS, Lonza, Belgium) and incubated at 37°C/5% CO2. Depending on the 

growth rate of the cell-line, cells were routinely passaged, trypsinised (Trypsin, 

ethylenediaminetetraacetic acid (EDTA); Becton Dickinson Ltd., UK) and passed 

every 3-5 days as appropriate. 

2.1.3 Cell stock freezing & resuscitation 

Freezing 

Adherent cells were trypsinised, resuspended in a small volume of normal growth 

medium, and pelleted at 1500rpm for 5mins. Cells were then resuspended in freezing 

medium, DMEM supplemented with 30% FCS and 10% (v/v) dimethyl sulfoxide 

(DMSO), and aliquoted into cryovials. The cells were kept in a polystyrene box (to 

slow down temperature decrease) and frozen at -70°C before long-term storage in 
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liquid nitrogen.  

Resuscitation

Cryovials were rapidly thawed at 37°C before centrifugation at 1500rpm. The 

supernatant was aspirated off, and the pellet of cells resuspended and grown in normal 

growth medium at 37°C/5% CO2 overnight. Medium was replaced after 24h in order 

to remove traces of DMSO. 

2.1.4 Treatment of cells 

As required, cells were treated with media supplemented with recombinant human 

IFN /D (PBL Biomedical Labs). For stimulation of IFN-responsive promoters, cells 

were incubated overnight with 103units/ml IFN- . Transfection of cells by plasmids 

(and synthetic dsRNA; polyI:C) was carried out using the FuGENE® 6 transfection 

reagent (Roche Diagnostics, UK), according to the manufacturer’s instructions.

2.1.5 Subcloning 

Subcloning was required to generate homogeous cell-lines. Cells were trypsinised, 

counted using a haemocytometer, and diluted to around 1 cell/100 l in DMEM (10% 

FCS), and plated into 96-well microtitre plates (Greiner Bio-One, UK). To 

compensate for mis-counting, cells were also diluted to 3 cells/100 l, and 1 cell/300 l, 

and plated into 96-well microtitre plates. Cells were normally cultured, replacing 

growth medium every 3-7 days, and observed under the microscope to pick single cell 

colonies growing in single wells. The cells from selected wells were trypsinised, and 

passed into either a 24-well microtitre plate (Nunc A/S, Denmark) or 25cm2 tissue 

culture flask according to the growth rate and cell number. When enough cells were 

obtained from single cell colonies, each candidate was tested under specific drugs 

regimes, or infected with viruses, or western blotted to check whether the protein of 

interest was expressed. Protein expressing colonies were then frozen in DMEM (30% 

FCS, 10% DMSO) at either -70°C, or in liquid nitrogen for long-term storage. 
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2.2 Mammalian viruses & infection of cells 

2.2.1 Main replicating viruses used in this study. 

MuV Enders clone 3/30 

The MuV Enders stock was prepared by plaque-purifying and amplifying the virus by 

passage at low multiplicity of infection (MOI) and the resulting virus being termed 

MuV Enders clone 3/30 (MuV cl3/30) (Young et al., 2009).

MuV Enders (DI) 

The MuV Enders (DI) stock was generated by a high MOI of infection of Vero cell 

which increases the number of DIs, which induces significant IFN production. 

PIV5 W3 

Wildtype laboratory strain of PIV5 (Choppin, 1964). 

PIV5 V C

A strain of PIV5 which has lost the V protein function to target STAT1 (He et al.,

2002)

PIV5 V C (P2) 

The PIV5 V C (P2) is generated by infecting confluent Vero cells with the original 

PIV5 V C at a high MOI in order to increase the number of DIs within the virus 

population.

CPI+

Canine isolate of PIV5 (Evermann et al., 1980; Evermann et al., 1981) 

CPI-

Canine isolate of PIV5 from the brain of a gnotobiotic dog infected with CPI+ virus

which establishes persistent infections more readily than CPI+ in vitro (Southern et al.,

1991). This strain is unable to block IFN signalling and is also reported to induce the 

synthesis of IFN (Poole et al., 2002). 

FLUAV rUd wt 

Recombinant wildtype FLUAV (A/Udorn/72 H3N2) generated and kindly provided 

by Dr. David Jackson (Hale et al., 2006). 

FLUAV rNS1-ran5 

FLUAV rNS1-ran5 mutant virus was generated by Dr. David Jackson in our 
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laboratory using reverse genetics. The segment 8 of the FLUAV Udorn viral genome 

(encodes NS1 and NS2) flanked by the human RNA polymerase I promoter and 

terminator sequences was amplified from the pHH-NS rescue plasmid (used to rescue 

virus) by PCR using the GeneMorph® II random mutagenesis kit (Stratagene, US). 

The PCR products were generated and included in the rescue system in place of the 

pHH-NS rescue plasmid to create different viral stocks containing different random 

mutations. All recovered viruses (rNS1-ran1 – rNS1-ran6) and were then placed onto 

the A549/pr(IFN- ).GFP/V reporter cells. Only the rNS1-ran5 mutant resulted in 

GFP-positive cells, i.e. induced higher level of IFN.

2.2.2 Virus infection 

PIV5

Monolayers of cells were infected with virus suspended in DMEM (2% FCS) at an 

appropriate MOI. Monolayers were washed prior to infection in phosphate buffered 

saline (PBS) to remove all traces of serum. After an adsorption period of 1-2h on a 

rocking platform at 37°C, the virus inoculum (or DMEM only for mock infections) 

was removed and replaced with DMEM (2% FCS). Cells were incubated at 37°C/5% 

CO2 until harvested. 

FLUAV

Monolayers of cells were infected with virud suspended in DMEM (serum free) at an 

appropriate MOI. Monolayers were washed prior to infection in PBS to remove all 

traces of serum. After an adsorption period of 1-2h on a rocking platform at 37°C, the 

virus inoculum (or DMEM only for mock infections) was removed and replaced with 

DMEM (serum free) and 2.5 g/ml N-acetyl trypsin (NAT). For infections where 

determination of infectious virus was not required, trypsin was not added to the 

medium post inoculation. Cells were incubated at 37°C/5% CO2 until harvested. 

2.2.3 Preparation of virus stocks 

Stocks of the paramyxoviruses - PIV5 W3, PIV5 V C, CPI+, and CPI-, were kindly 
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maintained and provided as required by Mr. Dan Young in our laboratory. For 

paramyxovirus virus stock preparation and to obtain sufficient virus for further 

experiments, 90% confluent Vero cells were washed twice in sterile PBS in order to 

remove traces of serum, and then infected with virus suspended in DMEM (2% FCS) 

at an MOI of ~ 0.001 plaque-forming unit (PFU)/cell (wildtype viruses) or 10 

PFU/cell (viruses with DIs). After 1h rocking at 37°C/5% CO2, cells were incubated 

for 3-4 days in 25cm2 tissue culture flasks. The medium was then harvested into a 

centrifuge tube and spun at 4000rpm for 5mins. The supernatant was then added to 

90% confluent Vero cells cultured in roller bottles with 10-15ml DMEM (2% FCS) 

medium for 1 hour virus absorption, replaced by freshly prepared 20-25ml DMEM 

(2% FCS), and incubated at 37°C/5% CO2 for 3-4 days, until a CPE could be 

observed. The medium was again harvested and spun at 4000rpm for 5mins. Virus 

supernatant was aliquoted and stored at -70°C. Virus titre was subsequently 

determined by plaque assay. 

2.2.4 Plaque assay 

PIV5

Monolayers of Vero cells in 6-well plates (Greiner Bio-One, UK) were cultured until 

80-90% confluent. Virus stock was titrated in a series of 10-fold dilutions in DMEM 

(2% FCS). Cells were infected with 1ml of each virus stock dilution per well. Infected 

cells were inoculated for 2h at 37°C, in a sealed gas box (5% CO2) on a rocking 

platform to allow virus binding and spread onto the cells. 5-10ml of overlay 

(autoclaved 0.5% (w/v) carboxy methyl cellulose (Methocel MC; Sigma-Aldrich Co. 

Ltd., UK) and DMEM (2% FCS) was applied onto the cell monolayer in each well, in 

order to prevent virus diffusion. The cells were left in the incubator under 37°C/5% 

CO2 for 10-15 days. When plaques were observed as cell fusions, the medium was 

aspirated off with the aid of vacuum line. Cell monolayers were fixed with 10% (v/v) 

formaldehyde in PBS for more than 30mins. Fixative reagent was replaced by 0.05% 

(w/v) crystal violet. Typically, 10-20mins were required on a rocking platform for 

sufficient colour development. The stained plates were then washed with water to 
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remove any fixative or stain solution. Plaques were then observed as holes surrounded 

by cell fusions. Virus titre (plaque forming unit per virus preparation; PFU/ml) was 

determined by counting the number of plaques in each well with the corresponding 

dilution taken into account. 

FLUAV

Monolayers of Vero cells in 6-well plates were cultured until 80-90% confluent. Virus 

stock was titrated in a series of ten-fold dilutions in DMEM (serum free). Cells were 

infected with 500 l of each virus stock dilution per well. Infected cells were 

inoculated for 1h at 37°C, in 5% CO2 on a rocking platform to allow virus binding 

and spread onto the cells. The virus inoculum was removed, and 2ml of molten 

agarose overlay (serum-free DMEM supplemented with 0.2% (w/v) bovine serum 

albumin (BSA), 2 g/ml NAT, and 0.9% (w/v) agarose (NuSeive GTG; Cambrex, UK) 

was added to each well. The plates were left at room temperature for 15mins for the 

agarose overlay to solidify, and incubated in 37°C, at 5% CO2 for 3-4 days until 

distinct plaques could be visualized. The plates were fixed with 10% formaldehyde in 

PBS on top of the agarose, and left overnight. Plaques were visualised by 

immunostaining. Virus titre was determined by counting the number of plaques in 

each well with the corresponding dilution taken into account. 

2.2.5 Visualisation of virus plaques by immunostaining. 

To visualise paramyxovirus or FLUAV plaques, an immunostaining technique was 

used. Fixed monolayer of cells were permeablised (5% (v/v) NP-40, 10% (w/v) 

sucrose in PBS) for 15mins, and then washed in PBS supplemented with 1% FBS. 

Areas of virus infection (plaques) were visualised by detecting viral structural 

proteins. Monolayers were incubated for 1h at room temperature with 500 l/well of 

appropriately diluted primary antisera (mouse antisera raised against PIV5 (V5 

epitope); or rabbit antisera raised against whole X31 (H3N2); diluted in PBS/1% FBS. 

Cells were washed with PBS/1% FBS, and monolayers incubated for 1h at room 

temperature with 500 l/well of appropriately diluted secondary anti-mouse (PIV5) or 
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anti-rabbit (FLUAV) Immunoglobulin G (IgG) alkaline phosphatase (AP)-conjugated 

antibody (Ab). Monolayers were subsequently washed with PBS/1% FBS, and 

incubated for ~30mins with 500 l/well of AP substrate (as per manufacturer's 

instructions; Sigma-Aldrich Co. Ltd., UK), or until sites of virus infection were easily 

visualised. The reaction was stopped by rinsing with water. 

2.3 Lentivirus-mediated generation of stable cell-lines 

2.3.1 Lentivirus preparation

The 293T cells, a packaging cell-line for lentivirus, were grown in DMEM (10% FCS) 

at 37°C/5% CO2 to obtain 90% confluence. To generate a lentivirus plasmid, a 

reporter gene of interest is cloned into the lentivirus vector sequence containing long 

terminal repeats (LTRs) and the Psi-sequence. The LTRs contains the promoter and 

integration sequences and serves to integrate the reporter gene into the host genome. 

The Psi-sequence is a signal sequence for virus packaging. Plasmid pCMVR8.91 

(pCMV-R) expresses HIV gag gene, encoding virus core protein, and HIV pol gene, 

encoding virus replication enzymes (Zufferey et al., 1997). pMD-G (pVSV-G) 

expresses the vesicular stomatitis virus (VSV) envelope protein (Naldini et al., 1996).

LTRs are replaced with a human cytomegalovirus (CMV) promoter and Psi-sequence 

is deleted from the packaging plasmid. Thus, the packaging sequences will not be 

incorporated into the virion and the virus produced is not able to replicate. The 

lentiviral expression plasmids pCMV-R, pVSV-G and the lentivirus plasmid 

expressing target protein, were co-transfected into 293T cells using FuGENE® 6

overnight (14-16h) at 37°C. Virus was collected after 48 and 72h and filtered through 

0.45 m Tuffryn membrane filters (Invitrogen, UK), and replaced with fresh DMEM 

(10% FCS) each time.  

2.3.2 Transduction of target cells 

The A549 derived reporter cell-lines were established using the lentivirus system to 

obtain stably protein expressing cell-lines. Cell numbers were grown to obtain 

monolayers that were 30-50% confluent on the day of infection. For a 25cm2 tissue
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culture flask, the A549 cells were infected with the lentivirus suspended in DMEM 

(serum free) and polybrene (Sigma-Aldrich Co. Ltd., UK; 8 g/ml). Virus was 

incubated for 1h at 37°C/5% CO2. After inoculation, the virus containing medium was 

added with an equal volume of fresh DMEM (10% FCS) to allow the cells to recover 

for 48h. The cells were then placed under selection drugs - puromycin (2 g/ml 2d) or 

blasticidin (10 g/ml 10d) depending on the mammalian selection marker in the 

genome. 

2.4 Molecular biology 

2.4.1 Agarose gel electrophoresis 

DNA was analysed by gel electrophoresis in horizontal mini-gels of 1% agarose 

(Sigma-Aldrich Co. Ltd., UK) in 1X TBE buffer (5X TBE, 45mM Tris-borate, 1mM 

EDTA). DNA samples were mixed with the appropriate volume of DNA loading 

buffer (Promega Ltd., UK), prior to electrophoresis. Samples were run at 90V in 1X 

TBE buffer (containing 1 g/ml ethidium bromide), until bands were clearly resolved. 

Along with the samples, DNA size markers were also run (100bp ladder and 1kb 

ladder; Promega Ltd., UK). Resolved DNA bands of interest were excised under UV 

light, and DNA was recovered using a QIAquick™ Gel Extraction Kit (following 

manufacturer’s instructions; QIAGEN® Ltd., UK). 

2.4.2 Restriction enzyme digestion of DNA 

Individual backbone vector DNA and purified PCR products were mixed with 2 l

10X enzyme buffer, 0.5 l (5U) each of the desired restriction enzymes (Promega, 

UK), and 0.2 l 10mg/ml acetylated BSA, in a reaction mixture made up to 20 l with 

de-ionised H2O. Reactions were incubated at 37°C (for the majority of enzymes) for 

2-4h, or overnight as appropriate. 

2.4.3 Ligation of DNA fragments (vector/insert) 

Insert and vector DNA were prepared by enzyme digestion/gel purification as 

described above. Insert, vector, ligase buffer and T4 DNA ligase were mixed with 
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de-ionised H2O. Reactions were incubated overnight at 16°C and stored at –20°C until 

ready for use. Ligation reaction products were used for heat shock transformation of 

competent E. coli DH5  cells as described below. 

2.4.4 Heat shock transformation of competent cells 

10 l of ligated reaction mix (or ~1 g pre-purified plasmid) was added directly to 

100 l of thawed, competent cells. After incubation on ice for 1h, cells were 

heatshocked in a 42°C water bath for 2mins before being immediately transferred 

back to ice for a further 2mins. Cells were resuspended in 1ml LB broth and incubated 

at 37°C for 1h (in order to assist cell recovery). The suspension was then plated out 

onto solid LB-agar plates supplemented with an appropriate antibiotic 

(90mm-diameter petri dishes; Scientific Laboratory Supplies Ltd., UK). Plates were 

inverted and incubated at 37oC overnight. Mini-cultures were prepared from selected 

colonies.

2.4.5 Preparation of plasmid DNA 

For small-scale preparations, bacterial cell cultures of 10ml (in LB broth containing 

appropriate antibiotic) were grown overnight at 37°C in a shaking incubator. DNA 

was extracted from cells and purified on silica gel membrane columns using the 

QIAGEN® DNA mini-prep kit (QIAGEN® Ltd., UK), according to the manufacturer’s 

instructions. For large-scale preparations, bacterial cultures of 200- 250 ml were 

grown overnight at 37°C in a shaking incubator, and DNA was extracted from cells 

using the QIAfilter™ Plasmid Maxi Kit (following manufacturer’s instructions; 

QIAGEN® Ltd., UK). The extraction of DNA using these QIAGEN® kits is based on 

the alkaline lysis of bacterial cells, followed by adsorption of DNA onto silica in the 

presence of high salt. 

2.5 Plasmid DNAs 

2.5.1 Plasmids used in this study 

Several plasmids were used in this study, either directly, as backbone vectors for 
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cloning, or to provide DNA sequences for the construction of new plasmids: 

pdl’pr(IFN- ).GFP(puro)

lentivirus vector for expressing green fluorescence protein. Expression is controlled 

by the IFN-  promoter together with a puromycin resistance product for mammalian 

cell selection. 

pdl' BVDV-Npro.V5(N-ter)(puro)

lentivirus vector expressing N-terminally V5-tagged BVDV-Npro with a puromycin 

resistance product for mammalian cell selection. 

pdl’HCV-NS3/4A(puro) 

lentivirus vector expressing NS3/4A protein of HCV with a puromycin resistance 

product for mammalian cell selection. 

pdl’PIV5-V(W3)(bla) 

lentivirus vector expressing V protein of PIV5 (W3) with a blasticidin resistance 

product for mammalian cell selection. 

pLKO.STAT1(bla) 

lentivirus vector expressing shRNA to STAT1 with a blasticidin resistance product 

for mammalian cell selection (generously provided by Dr. Lena Andrejeva, University 

of St Andrews). 

2.5.2 Plasmids generated in this study 

Novel plasmids were generated for transfections, and the isolation of stable cell-lines. 

The integrity of all new constructs was confirmed by immunofluorescence prior to 

use:

pDisplay.V5

cDNA coding for the V5 epitope of PIV5 (W3) expressed on the cell surface. The 

commercial pDisplay™ vector backbone was purchased from Invitrogen, UK. 

pdl’pr(IFN- ).V5

lentivirus vector expressing V5 protein of PIV5 (W3) on the cell surface under the 

control of IFN-  promoter with a puromycin resistance product for mammalian cell 

selection.
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2.6 Protein analysis 

2.6.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein samples were prepared in SDS-PAGE disruption buffer (6M Urea, 2M 

-mercaptoethanol, 4% (w/v) sodium dodecyl sulfate (SDS), bromophenol blue) and 

heated at 100°C for 2mins prior to analysis. Polypeptides were separated through 

4-12% NuPAGE polyacrylamide gradient gels (Invitrogen, UK) by electrophoresis at 

180V until maximum resolution of polypeptide bands was noted. 

2.6.2 Antibodies 

Antibodies used for western blotting and immunofluoresence. 

Primary antibodies 

Target protein/Tag Manufacturer

-actin Sigma-Aldrich Co. Ltd. 

MuV-NP Abcam 

PIV5-V (polyclonal) Serum produced by Diagnostics 

Scotland. Affinity-purified by Dr 

Bernard Precious. 

V5 (reacts with PIV5-V protein, 

monoclonal)

Serotec

V5 (HPR-conjugated, monoclonal) Serotec

STAT1  p91 (monoclonal) Santa Cruz Biotechonology 

X31 (H3N2, polyclonal) Dr. Alan Douglas (National Inititute of 

Medical Rereach, UK) 

IFIT1 (N-16) (goat polyclonal) - ISG56 Santa Cruz Biotechonology 

Secondary antibodies 

Anti-mouse IgG Texas Red and fluorescein isothiocyanate (FITC) conjugated 

antibodies were from Oxford Biotechnology Ltd., UK. Anti-mouse IgG and 

anti-rabbit IgG horseradish peroxidase (HRP)-conjugated antibodies were from 
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Amersham Bioscience, UK. Goat anti-rabbit IgG AP-conjugated antibody was from 

Santa Cruz Biotechnology, USA. 

2.6.3 Immunoblotting

Polypeptides were separated by SDS-PAGE as described in 2.6.1, and transferred to 

polyvinylidene difluoride (PVDF) membrane using the XCell II Blot Module 

according to the manufacturer’s instructions (Invitrogen, UK). Following transfer, 

membranes were blocked for 30mins in 5% (w/v) skimmed milk powder, 0.1% (v/v) 

Tween20 in PBS (blocking buffer), and incubated for 1h with the appropriate primary 

antibodies diluted (in blocking buffer) as directed by the supplier. After extensive 

washing with 0.1% Tween20 in PBS, the protein:antibody interactions were detected 

by incubation for 1h with HRP-conjugated anti-mouse or anti-rabbit IgG (Amersham 

Bioscience, UK) diluted appropriately in blocking buffer. Following final washing in 

0.1% Tween20 in PBS, specific polypeptide bands were visualised by enhanced 

chemiluminescence (ECL) (Amersham Biosciences Ltd., UK) according to the 

manufacturer's protocol. 

2.6.4 Immunofluorescence

On coverslips 

Monolayer of cells (~70-90%) were cultured on 10mm coverslips in 5% 

formaldehyde, 2% sucrose in PBS, and permeabilised with 0.5% NP-40, 10% sucrose 

in PBS for 5mins. The permeabilising buffer helps antibody to penetrate the cell 

membrane for sufficient binding. Cells were washed three times with PBS containing 

1% FCS. Cells were incubated with primary antibody for 1h, and washed with PBS to 

remove unbound antibody. Cells were incubated with Texas Red or FITC-conjugated 

secondary antibody (Oxford Biotechnology Ltd., UK) was added onto the monolayer 

(1/100 dilution) for 1h at room temperature. For DNA/nuclei staining, DNA-binding 

fluorochrome 4’,6-diamidino-2-phenylindole (DAPI); 0.5 g/ml) was added with 

secondary antibody solution. Cells were then washed once in permeabilisation buffer, 

and three times in PBS (1% FCS, 1% (w/v) sodium azide). For fluorescence, cells 
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were fixed with fixative (PBS, 5% formaldehyde, 2% sucrose), and washed with PBS 

(1% FCS, 1% sodium azide). Finally, before microscopy observation, cells were 

mounted in Citifluor AF-1 mounting solution (Citifluor). Stained features such as GFP, 

viral antigen, nuclei, could be visualized using specific filters using a Nikon 

Microphot-FXA microscope. 

2.7 Miscellaneous assays 

2.7.1 polyI:C induction 

4 g of polyI:C, 6 l of FuGENE® 6 and 200 l of OPTI-MEM were mixed and 

incubated at room temperature for 30mins and then added to a monolayer of cells in a 

25cm2 tissue culture flask with 4ml DMEM (10% FCS). 

2.7.2 Transient trasfection 

3 l of FuGENE® 6, 2 g of DNA were mixed with serum free DMEM in a sterile 

eppendorf tube in a total volume of 100 l and incubated at room temperature for 

30mins. The transfection mix was added to 4ml of DMEM (10% FCS) before adding 

to a preformed monolayer of 293T cells in a 25 cm2 tissue culture flask and 

incubating for 48h. The cells were then subjected to testing. 

2.7.3 CPE reduction bioassay for IFN 

The amount of IFN secreted by cells was estimated by using a biological 

EMCV-inhibition assay in A549/Npro cells. Culture supernatants from infected cells 

were harvested, centrifuged at 1500xg for 10min to pellet cellular debris, UV-treated 

to inactivate residual virus. 50% confluent Vero cells in 96-well plates were 

pre-treated with UV-inactivated 2-fold serial dilutions of culture media containing 

IFN for 24h prior to infection with EMCV (0.05 PFU/cell) (sensitive to IFN). The 

development of CPE was monitored 36hpi by crystal violet staining. Units of IFN 

were estimated as the dilution of media required to reduce the CPE by ~50%. 
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2.7.4 Flow cytometry

Following desired treatment, adherent A549 cells were trypsinised and agitated to 

keep them in suspension. GFP was measured using FL1 and FL2 detectors 

respectively on a FACSCalibur flow cytometer (BD Biosciences, USA). Cells positive 

for GFP were sorted into single cell, and separated into 96-well microtitre plates (1 

cell/well).

2.7.5 Panning 

Tissue culture petri dish 

Two 60mm tissue culture petri dishes were either pre-incubated with anti-PIV5-V 

antibody (10 g/sample) or with PBS (control) at 4oC overnight and then washed with 

ice-cold PBS (control) to wash away any unbound antibodies. Monolayers of 293T 

cells which had been transfected with pDisplay.V5 construct were cultured in two 

75cm2 tissue culture flask and treated with EDTA (1mM) in PBS at 37oC for 5mins to 

detach cells from the surface of the tissue culture flask. Cells were pipetted into single 

cells suspension and centrifuged to remove EDTA/PBS at 1500rpm and then 

resuspended to single cell suspension with 4ml/sample of ice-cold PBS. Cells were 

added to either the petri dish pre-coated with anti-PIV5-V antibody or the control 

plate and incubated at 4oC for 1h to allow cells binding to the antibody. Each plate 

was washed with PBS to wash away any unbound cells. Any cells expressing V5 

epitope on their surface would bind to the antibody attached to the surface of the plate 

and therefore remained on the plate. 

Dynabeads® Protein A 

Monolayer of A549/pr(IFN ).GFP.V5/V cells cultured in 75cm2 tissue culture flasks 

were infected with PIV5 W3 with an MOI of 1 PFU/cell for 12h. Infected cells were 

treated with 5mM EDTA at 37oC for 5mins, and pipetted into single cell suspension, 

and incubated with UV-inactivated mouse anti-PIV5-V antibody (5 g/ml) for 1h at 

4°C with tumbling. The cell suspension was incubated with 10 l pre-washed 

Dynabeads® Protein A (Invitrogen Ltd., UK) in 1ml 1mM EDTA/PBS buffer for 1h at 
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4°C with tumbling. Cells expressing V5 epitope tag on their surface bound to the 

Protein A of the beads and were separated from the unbound cells with a magnet. The 

beads migrated to towards the magnet and any unbound cells remained in the 

supernatant were removed by washing with PBS. Selected cells were added onto a 

preformed monolayer of A549/pr(IFN- ).GFP/V cells in a 25cm2 tissue culture flask 

to allow virus propagation for ~3 days when a CPE was observed. Culture medium 

was collected and virus titre was determined by plaque assay.  
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3. RESULTS  

When infected by viruses, the host immune system generates protective products to 

eliminate the viruses. The innate immune response is activated upon virus infection, 

and induces the production of IFN- / . The IFN then signals neighbouring cells to 

activate the JAK-STAT pathway, which in turn, switches on the expression of ISGs to 

establish an antiviral state. In order to survive, viruses target the host IFN induction 

and/or signalling cascades to prevent them from functioning properly. However, there 

are always naturally occurring mutants in the virus population that have lost their 

ability to circumvent the host immune response. Such mutant viruses would not be 

able to cause severe disease in the host, and thus may be used as live attenuated virus 

vaccine candidates. 

My project was to develop a cell-line that can be used isolate mutant viruses that 

stimulate IFN production. In other words, to develop a rapid method for selecting 

mutant viruses that are good IFN inducers. 

3.1 Generation of the A549/pr(IFN- ).GFP reporter cell-line 

3.1.1 Generation of a reporter cell-line using a lentivirus vector system 

The aim was to develop a methodology using engineered cells to isolate IFN-inducing 

mutant viruses. To achieve this, we generated cell-lines in which reporter protein 

expression is driven by the IFN-  promoter. By selecting cells which express reporter 

proteins, the aim was to use them to identify and isolate the IFN-inducing mutant 

viruses from wildtype viruses. 

A lentivirus vector pdl’pr(IFN- ).GFP (plasmid generated by Dr Mara Rodrigues in 

our laboratory), which expresses the enhanced green fluorescence protein (eGFP) and 

puromycin resistant gene (pac) under the control of IFN-  promoter (Figure 3.1.1.1), 

was used to transfect 293T cells. The lentivirus construct map and the generation of 

the reporter cell-lines are illustrated in Figure 3.1.1.1 and Figure 3.1.1.2, respectively. 
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Lentiviruses are complex retroviruses whose distinguishing ability is to integrate into 

non-dividing cells without disassembly of the nuclear membrane. Lentivirus plasmid 

pdl’pr(IFN- ).GFP and packaging plasmids pCMVR8.91 and pVSV-G were 

co-transfected into 293T cells to produce the designed lentivirus. The harvested 

recombinant viruses were then used to infect A549 cells which were then subjected to 

selections to generate a cell-line, in which the reporter proteins are expressed in the 

cells when the IFN-  promoter is activated. For this pdl’pr(IFN- ).GFP construct, we 

used two strategies to activate the IFN-  promoter: (i) IFN induction by dsRNA, (ii) 

infect cells with a MuV Enders strain preparation enriched with defective interfering 

(DI) particles – MuV Enders (DI), which has been indentified as a good IFN inducer.  

Cells were transfected with synthetic dsRNA - polyI:C, to activate the IFN-  promoter. 

dsRNA is recognised by intracellular sensor RIG-I and/or mda-5, which activates the 

IFN signalling cascade to switch on IFN production (Chapter 1.4.2.2). If the lentivirus 

infection is successful, GFP expression should be detectable by both methods. 

Puromycin selection process was preformed post polyI:C transfection to remove the 

non-successfully transduced cells, i.e. cells that did not express GFP when the IFN-

promoter was activated. 

3.1.2 Puromycin selection of lentivirus transduced cells 

The lentivirus-infected A549 cells were transfected with dsRNA to activate the IFN-

promoter. 1 l polyI:C (5 g/ l) and 6 l FuGENE® 6 were mixed with 200 l

OPTI-MEM at room temperature for 40 minutes, and then added to a monolayer of 

the transduced A549 cells growing in a 25cm2 tissue culture flask with 2ml DMEM 

(10% FCS). At 6h post polyI:C transfection, puromycin (2 g/ml) was added to the 

culture medium and maintained for 2 days. When transfected with dsRNA, cells 

which express the pac gene survived puromycin selection, whereas uninfected cells 

died. Approximately 10% of total starting cells survived the selection. The surviving 

cells were grown to confluence and passaged for further characterisation and analysis. 
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3.1.3 FACS sorting and subcloning to generate homogeneous 

A549/pr(IFN- ).GFP reporter cell-lines 

In order to isolate a homogeneous IFN-  promoter tightly regulated, GFP expressing 

cell-line, FACS separation was carried out after the puromycin selection of the 

lentivirus-infected A549 cells. FACS is a type of flow cytometry for sorting a 

heterogeneous mixture of cells based upon the light scattering and fluorescent 

characteristics of each cell. GFP is one of the measurable parameters of FACS sorting. 

Monolayers of the lentivirus-infected A549 cells were transfected with polyI:C for 6h, 

trypsinised and resuspended in DMEM (10% FCS) to obtain a single cell suspension, 

and sorted by FACS to separate the GFP-positive cells and GFP-negative cells. The 

pool of the FACS sorted A549 GFP-positive cells were then subjected to subcloning 

to obtain a homogenous cell population, in which all cells would express GFP in an 

inducible manner. The pool of FACS sorted cells was subcloned into 96-well 

microtitre plates. Colonies were selected from 96-well microtitre plates in which cells 

grew in of roughly 20% of the wells, thereby ensuring that each colony was likely to 

be derived from a single cell. When a reasonable monolayer of cells from the single 

cell became established, cells were trypsinised and passed into a 24-well microtitre 

plate. Cell colonies were subsequently passaged and confirmed microscopically as 

GFP-negative when not treated with dsRNA or infected with viruses enriched with 

DIs (i.e. when the IFN-  promoter is not activated). Individual selected clones were 

then subjected to IFN-induced GFP expression. Cells from each colony were 

separately cultured on coverslips, and infected with MuV Enders (DI) at an MOI of 

10 PFU/cell. Cells were fixed and immunostained for viral antigen (MuV-NP) at 6hpi, 

and examined under a Nikon Microphot-FXA immunofluorescence microscope (data 

not shown). Cells expressing GFP were selected and named with clone numbers. 

From those selected cell-lines, the one which expressed GFP the most rapidly and 

with the most intensity was selected and termed A549/pr(IFN- ).GFP cell-line 

(referred as the naive GFP reporter cell-line in figures). This resulting cell-line was 

amplified and frozen in liquid nitrogen. 

 54



3. RESULTS 

3.2 Characterisation of the A549/pr(IFN- ).GFP reporter cell-line 

As a potential cell-line for isolating IFN-inducing mutant viruses, a series of 

characterisation experiments were performed on the A549/pr(IFN- ).GFP cell-line to 

ascertain how the cell-line would respond to virus infection, and to identify potential 

problems that may arise when isolating IFN-inducing mutant viruses. 

3.2.1 GFP induction assay on A549/pr(IFN- ).GFP reporter cell-line 

FACS and immunofluoresence analysis were performed to determine how quickly the 

IFN-  promoter was activated and GFP expressed following virus infection. The 

A549/pr(IFN- ).GFP cells were cultured on coverslips and in 25cm2 tissue culture 

flasks in parallel, and infected with MuV Enders (DI) at an MOI of 10 PFU/cell to 

guarantee that every cell was infected. Coverslips were were fixed at 2, 4, 6 and 8hpi 

immunostained for viral antigen (MuV-NP) and GFP expression was visualised 

microscopically (Figure 3.2.1.1.A). Infected cells cultured in 25cm2 tissue culture 

flasks were trypsinised into single cell suspension, fixed at 2, 4, 6 and 8hpi (one flask 

of cells per time point), and analysed by LYSYS program on a Becton Dickinson 

FACScan (Figure 3.2.1.1.B). Immunofluorescence result showed that during the time 

course studied, GFP expression was induced at 6hpi in response to MuV Enders (DI) 

infection and a small amount of viral protein was synthesised. At 8hpi, there was a 

significant increase in GFP expression and the amount of MuV-NP viral protein 

synthesised. DAPI stain for nuclei confirmed approximately >90% of the infected 

cells expressed GFP. Quantitative FACS (Figure 3.2.1.1.B) which is more precise was 

in agreement with the immunofluorescence results. By 4hpi, 35% of the total cells 

were weakly positive for GFP. At this stage, GFP was not detectable by 

immunofluorescence. At such an early time point, the GFP expression intensity may 

be too low to be visualised by immunofluorescence. FACS data has also shown that 

by 6hpi, 80% of the cells were positive for GFP, and by 8hpi, about 90% of the cells 

were strongly positive for GFP. 

In order to investigate how well GFP induction correlates with IFN production, 
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A549/pr(IFN- ).GFP cells which had been grown on coverslips in 24-well microtitre 

plates were infected with differing multiplicities of MuV (DI). At 24hpi the number of 

cells expressing GFP was visualised by fluorescence and culture medium was 

collected and any residual viruses were inactivated by UV treatment. IFN level from 

each sample was measured by CPE reduction bioassay for IFN. Results show that the 

number of cells expressing GFP correlated with the amount of IFN produced (Figure 

3.2.1.2 A&B). Also, since GFP is expressed from a transcript which also encodes pac,

these cells will express pac under the control of the IFN-  promoter. 

3.2.2 Effect of knocking out key signalling molecules involved in the IFN 

induction cascade 

To further characterise the A549/pr(IFN- ).GFP reporter cells, we constitutively 

expressed either BVDV-Npro or HCV-NS3/4A in these cells to determine the effects 

of knocking out crucial signalling molecules on IFN induction and GFP expression. 

As discussed in Chapter 1.5.2, BVDV-Npro blocks IRF-3 (a transcription factor 

crucial for IFN promoter activation) from binding to DNA, and targets IRF-3 for 

protein degradation (Hilton et al., 2006). HCV-NS3/4A cleaves 

Cardiff/VISA/MAVS/IPS-1, thereby blocking both mda-5 and RIG-I signalling and 

thus disrupts IRF-3 phosphorylation and NF- B activation (Foy et al., 2005; Sumpter 

et al., 2005; Meylan et al., 2005; Kawai & Akira, 2006). HCV-NS3/4A also mediates 

TRIF cleavage and reduces TRIF abundance, inhibits polyI:C-activated TLR3 

signalling, which consequently leads to the blockage of IRF-3 activation (Li et al.

2005a).

To generate the cell-lines, we infected the A549/pr(IFN- ).GFP cells with lentiviruses 

expressing either BVDV-Npro or HCV-NS3/4A protein. Both lentiviruses have pac as 

their selection marker. The pdl’BVDV-Npro and pdl’HCV-NS3/4A lentiviruses were 

generated by Dr. Yun-Hsiang Chen in our laboratory. Following infections with 

lentiviruses, the A549/pr(IFN- ).GFP cells were treated with puromycin (2 g/ l) for 2 

days. Cells survived the selection were named as A549/pr(IFN- ).GFP/Npro or 
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A549/pr(IFN- ).GFP/NS3/4A cell-line (abbreviated to BVDV/Npro or NS3/4A cells 

in Figure 3.2.2.1). Monolayers of A549/pr(IFN- ).GFP, A549/pr(IFN- ).GFP/Npro

and A549/pr(IFN- ).GFP/NS3/4A cells cultured on coverslips were infected with 

MuV Enders (DI) of an MOI of 10 PFU/cell, and fixed at 16hpi, and immunostained 

for MuV-NP. As shown in Figure 3.2.2.1., GFP expression was significantly reduced 

in cells expressing BVDV-Npro or HCV-NS3/4A, where key signalling molecules of 

IFN induction pathway has been knocked out. Further, for A549/pr(IFN- ).GFP 

reporter cells, GFP expression was up-regulated by the IFN-  promoter in response to 

MuV Enders (DI) virus infection. As expected, both BVDV-Npro and HCV-NS3/4A 

were effective in blocking IFN-  promoter activation, leading to inhibition of GFP 

expression in A549/pr(IFN- ).GFP reporter cells. In addition, BVDV-Npro and 

HCV-NS3/4A blocking GFP expression also confirmed IRF-3 as a crucial factor 

which activates the IFN-  promoter. 

3.2.3 The importance of DIs in the induction of IFN 

The above results confirmed that GFP expression in the A549/pr(IFN- ).GFP reporter 

cell-line works as a reliable marker for measuring the activation of the IFN-

promoter. We next performed virus infection assays to investigate whether virus 

preparations containing few DIs activated the IFN-  promoter, compared to virus 

stocks rich in DIs (Figure 3.2.3.1.A). In addition, culture media collected from the 

infections were used to carry out a CPE reduction bioassay to measure the amount of 

IFN produced (Figure 3.2.3.1.B).  

The MuV Enders (DI) stock, which we know to be a good IFN inducer and has been 

used for our previous studies, was generated by a high MOI of infection of Vero cell 

which increases the number of DIs. The DI-poor MuV Enders stock used in this study 

was prepared by plaque-purifying and amplifying the virus by passage at low MOI – 

the resulting virus being termed MuV Enders clone 3/30 (MuV cl3/30) (Young et al.,

2009). Monolayers of the A549/pr(IFN- ).GFP reporter cells were infected either with 

MuV Enders (DI) or MuV Enders cl3/30 at an MOI of 5 PFU/cell, fixed at 16hpi and 
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immunostained for viral antigen (MuV-NP). Figure 3.2.3.1.A showed that there was 

only a small number of cells expressing GFP in A549/pr(IFN- ).GFP reporter cells 

infected with DI-poor MuV Enders cl3/30 virus. This suggested a small percentage of 

viruses in the MuV Ender cl3/30 virus population were able to induce the production 

of IFN. This subpopulation of viruses may be the IFN-inducing mutant viruses which 

occur naturally in the virus population.  

Culture medium from those virus infections were harvested at 16hpi and 

UV-inactivated to perform a CPE reduction bioassay for IFN (Figure 3.2.3.1.B) to 

measure the amount of IFN produced by the cells post-infection. The amount of IFN 

produced was used to quantify the viruses’ ability to induce IFN. Figure 3.2.3.1.B 

confirmed that the MuV Enders (DI) stock was better able to induce IFN than the 

non-defective MuV Enders cl3/30, in agreement with the immunofluorescence results. 

3.2.4 Puromycin selection of IFN-inducing mutant viruses using 

A549/pr(IFN- ).GFP reporter cell-line 

As alluded to earlier, naturally occurring IFN-inducing mutant viruses have the 

potential to be used as live attenuated virus vaccines. To determine whether the 

A549/pr(IFN- ).GFP cell-line could be used to isolate IFN-inducing mutant viruses 

from the wildtype virus population using one of the selection markers – pac, a model 

system was designed (Figure 3.2.4.1). This selection marker should lead to either (i) 

survival of the cell when the cell is infected by an IFN-inducing mutant virus, or (ii) 

cell death when it is infected by a virus which fails to activate the IFN-  promoter. 

Briefly, if a cell is infected with an IFN-inducing mutant virus, it should not block the 

host IFN response, the IFN-  promoter would be activated, the pac gene expressed, 

and the cell would survive puromycin selection. On the other hand, if a cell is infected 

with a wildtype virus, the functional viral IFN-antagonist(s) would block the 

activation of the IFN-  promoter, the pac gene would not be expressed, and as a 

conquence, the cell would die in the presence of puromycin. 
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In order to select IFN-inducing mutant virus, an additional requirement for this 

system to work is to ensure the cells are not co-infected with a wildtype virus and an 

IFN-inducing mutant virus. If a cell was infected with both an IFN-inducing mutant 

and a wildtype virus, the wildtype virus would express IFN antagonist(s), and would 

block the activation of IFN. Cells then require to be infected at an MOI of 

approximately 1 PFU/cell, so that the majority of the cells are infected but 

co-infection is largely avoided. 

Monolayers of A549/pr(IFN- ).GFP reporter cells were cultured to confluence and 

infected either with MuV Enders cl3/30 or MuV Enders (DI) (control) at an MOI of 1 

PFU/cell. At 6hpi, puromycin (2 g/ml) was added to the media and the infected cells 

cultured in the presence of puromycin for 48h. Culture medium containing viruses 

was harvested at 54hpi. A high percentage (>95%) of dead cells were observed 

amongst cells infected with MuV Enders cl3/30, whereas only a small percentage 

(~10%) of cells died in the flask of cells infected with the MuV Enders (DI) (data not 

shown). The harvested viruses were then cultured on preformed monolayers of the 

A549/pr(IFN- ).GFP reporter cells to allow virus amplification. The cells were 

incubated after infection until a CPE was observed and the supernatant was then 

collected. Viruses released from the A549/pr(IFN- ).GFP reporter cells were titrated, 

however the virus titre was 104-fold lower (data not shown) compared to the original 

MuV Enders cl3/30 virus stock. 

It was important to ascertain whether the selected virus population had been enriched 

in IFN-inducing mutant viruses, i.e. whether the isolated viruses were any better in 

their ability to induce IFN than the original virus stock. An immunofluorescence assay 

was performed to examine whether there was an increase in the number of 

GFP-positive cells in cells infected with the isolated virus population compared to 

cells infected with the original MuV Enders cl3/30 virus (Figure 3.2.4.2). Monolayers 

of A549/pr(IFN- ).GFP reporter cells were cultured to confluence and infected with 

MuV Enders cl3/30, MuV Enders (DI), and the rescued virus of MuV Enders cl3/30 at 
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an MOI of 5 PFU/cell, fixed at 16hpi and immunostained for MuV-NP. 

We show that A549/pr(IFN- ).GFP reporter cells infected by MuV Enders (DI) 

induced intensive GFP expression, however, surprisingly only a few cells infected 

with rescued virus expressed GFP. There was also no significant increase in the 

number of GFP expressing cells, when comparing the isolated virus with the original 

MuV Enders cl3/30 infected cells. Unfortunately, puromycin selection of 

IFN-inducing mutant viruses using the A549/pr(IFN- ).GFP cell-line was not 

successful. One possible reason for this may be that the mutant viruses which were 

isolated may have been lost during the amplification process using 

A549/pr(IFN- ).GFP reporter cells post puromycin selection. Further characterisation 

experiments were carried out to follow this up. 

3.2.5 Characterisation of the A549/pr(IFN- ).GFP reporter cell-line for the 

ability to support virus replication 

Careful examination of immunofluoresence studies showed that there was little viral 

antigen present in cells in which GFP was activated (Figure 3.2.4.2 MuV Enders (DI)). 

In striking contrast, in cells that were negative for GFP, a lot of viral antigen could be 

detected (Figure 3.2.4.2 MuV Enders cl3/30). There may be a number of reasons for 

this. One potential explanation is that the GFP-positive cells have been infected by 

defective viruses which cannot replicate and therefore cannot be amplified. Or 

secondly, an antiviral state is induced in the cells in which IFN-  promoter has been 

activated that inhibits virus replication. To address the question about establishment of 

an antiviral state, subsequent plaque assays were performed. 

Plaque assays were designed to visualise virus spread vs production of IFN by 

infecting A549 cells with PIV5 V C, a strain of PIV5 which has lost the V protein 

function to target mda-5 (He et al., 2002), at an MOI of 0.01 PFU/cell. Monolayers of 

cells were fixed at 2, 4 and 6 days post-infection (dpi). MxA, an IFN-induced antiviral 

protein, was used as a monitor of IFN induction. Immunofluorescence (Figure 3.2.5.1) 
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showed that a significant amount of MxA was produced at 4 and 6dpi in the 

surrounding cells of an observed virus plaque. In addition, no significant plague 

development (increase in the number of infected cells) was observed (Figure 3.2.5.1 4 

& 6dpi). In conclusion, virus amplification may have been eliminated by the 

production of IFN by A549 cells. In other words, the establishment of an antiviral 

state induced via IFN pathway prevented virus replication. 

3.2.6 Modifications of the A549/pr(IFN- ).GFP reporter cell-line 

In the A549/pr(IFN- ).GFP cell-line, expression of GFP does not alter its native 

ability either to respond to or to produce IFN. As observed previously (Chapter 3.2.4), 

the IFN-inducing mutant viruses we hoped to isolate may be sensitive to IFN. A549 

cells produce a significant amount of IFN following infection with IFN-inducing 

mutant virus which may establish an antiviral state. Therefore, it may not be possible 

to use the A549/pr(IFN- ).GFP reporter cell-line to isolate IFN-inducing mutant 

viruses. Consequently, we modified this cell-line so that it became non-responsive to 

IFN. Since STAT1 is an essential transcriptional factor needed for IFN signalling, the 

A549/pr(IFN- ).GFP reporter cell-line was modified to prevent IFN signalling by 

targeting STAT1. Two approaches were used to knock out STAT1. The first was to 

generate an analogous cell-line expressing shRNA to knock out STAT1. Secondly, a 

cell-line which constitutively expresses the V protein of PIV5, which targets STAT1 

for proteasome-mediated degradation (Didcock et al., 1999; Precious et al., 2005b; 

Precious et al., 2007) was isolated. 

The A549/pr(IFN- ).GFP cell-line was infected with either lentiviruses expressing 

shRNA to STAT1 (KO.STAT1) or PIV5-V protein (Figure 3.2.6.1). Both lentivirus 

vectors had blasticidin as their selection marker. The pLKO.STAT1(bla) lentivirus 

was generated by Dr Lena Andrejeva and pdl’PIV5-V(W3)(bla) lentivirus has been 

generated by Dr. Yun-Hsiang Chen in our laboratory. Following infection with 

lentiviruses, the GFP reporter cells were treated with blasticidin (10 g/ l) for 10 days. 

Cells surviving blasticidin selection were analysed by immunofluoresence (Figure 
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3.2.6.2.A) and western blotting (Figure 3.2.6.2.B) for STAT1 to confirm STAT1 

expression had been inhibited. The cell-lines were named 

A549/pr(IFN- ).GFP/KO.(knocked-out)STAT1 cell-line (abbreviated to KO.STAT1 

reporter cell-line in figures) and A549/pr(IFN- ).GFP/V cell-line (abbreviated to 

GFP/V cell-line in figures). Generation of the cell-lines is illustrated in Figure 3.2.6.1.  

Immunofluorescence results (Figure 3.2.6.2.A) shows STAT1 expression had been 

significantly reduced in A549/pr(IFN- ).GFP/KO.STAT1 and A549/pr(IFN- ).GFP/V 

cell-lines. Encouragingly, western blot data (Figure 3.2.6.2.B) suggested STAT1 could 

not be detected with the A549/pr(IFN- ).GFP/V cell-line (+IFN & -IFN) as expected. 

In contrast, while there was a significant reduction of STAT1 with the shRNA 

expressing cells, a small amount of STAT1 was still present nevertheless. Thus we had 

successfully modified the cells and found that the V expressing cell-line a better 

cell-line to knock out IFN signalling, compared to the shRNA expressing cell-line. 

Therefore, the A549/pr(IFN- ).GFP/V cell-line was used in subsequent studies rather 

than the A549/pr(IFN- ).GFP/KO.STAT1 cell-line. The modified cells were then 

infected by MuV Enders (DI) which confirmed that the cells were still able to express 

GFP in response to virus infection (data not shown). 

3.2.7 Investigation of the A549/pr(IFN- ).GFP/V reporter cell-line as a 

permissive cell-line for virus growth 

Once the A549/pr(IFN- ).GFP/V cell-line had been generated, it was important to 

confirm that it was permissive for the growth of mutant viruses that were sensitive to 

IFN. The strains used to carry out this study were CPI+ and CPI-. CPI+ is a canine 

isolate of PIV5 (Evermann et al., 1981). CPI- (Poole et al., 2002) is a mutant of CPI+ 

which is IFN sensitive, and no longer able to produce a functional V protein that 

targets STAT1 (Chatziandreou et al., 2002). If plaques of CPI- were able to develop in 

the A549/pr(IFN- ).GFP/V cell-line, but not in the A549/pr(IFN- ).GFP cell-line, 

then it would provide evidence that the A549/pr(IFN- ).GFP/V could support the 

propagation of IFN-sensitive viruses and thus may be used as a potential cell-line for 
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isolating IFN-inducing mutant viruses. 

A549/pr(IFN- ).GFP and A549/pr(IFN- ).GFP/V cells were infected with either CPI+ 

or CPI- at an MOI of 0.01 PFU/cell. Cells were fixed at 2, 4 and 6dpi and 

immunostained for PIV5-NP&P. The results (Figure 3.2.7.1) illustrated that the 

A549/pr(IFN- ).GFP/V cell-line was better able to support the replication of CPI- 

compared to the A549/pr(IFN- ).GFP reporter cell-line in terms of plaque 

development, i.e. CPI- virus replicated relatively more efficiently in the V protein 

expressing GFP reporter cells than in the A549/pr(IFN- ).GFP reporter cell. Based on 

these findings, the A549/pr(IFN- ).GFP/V cell-line, may be considered a potential 

cell-line for isolating IFN-inducing mutant viruses.   

3.3 FACS selection of IFN-inducing mutant viruses

3.3.1 FACS selection of IFN-inducing mutant viruses using 

A549/pr(IFN- ).GFP/V reporter cell-line 

Having generated and characterised the A549/pr(IFN- ).GFP/V reporter cell-line, we 

next attempted to use the system to isolate IFN-inducing mutants of PIV5 and FLUAV. 

The FLUAV rNS1-ran5 mutant virus used in this study was generated by Dr. David 

Jackson in our laboratory using reverse genetics. The segment 8 of the FLUAV Udorn 

viral genome (encodes NS1 and NS2) flanked by the human RNA polymerase I 

promoter and terminator sequences was amplified from the pHH-NS rescue plasmid 

(used to rescue virus) by PCR using the GeneMorph® II random mutagenesis kit. Six 

PCR products were generated and included in the rescue system in place of the 

pHH-NS rescue plasmid to create 6 different viral stocks containing different random 

mutations. All recovered viruses (rNS1-ran1 – rNS1-ran6) and were then placed onto 

the A549/pr(IFN- ).GFP/V reporter cells. Only the rNS1-ran5 mutant resulted in 

GFP-positive cells. Therefore, FLUAV rNS1-ran5 mutant virus was used in the FACS 

sorting experiment as a positive control (Figure 3.3.1.1 and 3.3.1.2.A). In this 

procedure, on the basis of GFP expression, FACS was used to separate cells in which 

the IFN-  promoter had been activated from cells in which it had not. The advantage 
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of FACS is that we should be able to isolate single viruses from single cells. FACS 

sorting will separate GFP-positive cells either as a bulk population or as single cells 

into 96-well microtitre plates. The potential advantage of sorting cells into a 96-well 

microtitre plate is that individual mutant viruses may be isolated, while from the 

pooled population of GFP-positive cells, it is likely that a mixture of viruses would be 

isolated. The reason for using the A549/pr(IFN- ).GFP/V cells for rescuing any 

potential mutant viruses is that not only would the cells not enter an IFN-induced 

antiviral state once IFN has been released from the GFP-positive cells, but also it 

should be possible to rapidly determine whether IFN-inducing mutant viruses had 

indeed been selected. Prior to virus isolation, the GFP-positive cells were either 

pooled, or were sorted into individual cells in a 96-well microtitre plate. Following 

FACS isolation of the GFP-positive cells, the selected cells were co-cultured with 

preformed monolayers of A549/pr(IFN- ).GFP/V cells in order to rescue virus from 

cells in which the IFN-  promoter had been activated.  

FACS sorting experiments for GFP cells were carried out at the University of 

Edinburgh, UK. Prior to sorting, monolayers of the A549/pr(IFN- ).GFP/V cells were 

cultured to confluence in 75cm2 tissue culture flasks for infection. The 

A549/pr(IFN- ).GFP/V reporter cells were infected with FLUAV rNS1-ran5 mutant 

viruses or PIV5 W3 at an MOI of 1 PFU/cell. Infected reporter cells were trypsinised, 

resuspended as single cell suspensions in serum free DMEM, and sorted by FACS at 

12hpi (Figure 3.3.1.2). Approximately 13% of the A549/pr(IFN- ).GFP/V reporter 

cells were sorted as GFP-positive for FLUAV rNS1-ran5 mutant virus and about 0.3% 

of the A549/pr(IFN- ).GFP/V reporter cells were sorted as GFP-positive for PIV5 W3. 

GFP-positive cells were collected either pooled and co-cultured with 

A549/pr(IFN- ).GFP/V cells grown as monolayers in 25cm2 flasks, or individual 

GFP-positive cells were sorted into single wells of a 96-well microtitre plate with 

preformed monolayers of A549/pr(IFN- ).GFP/V cells. These were transported back 

to St Andrews in a sealed CO2 gas box, transferred into a tissue culture incubator 

(37°C, 5% CO2) for 16h to allow settlement/attachment of the sorted cells. Cells were 
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then incubated on a platform rocker, the medium was harvested when a CPE was 

observed and the virus titrated. The A549/pr(IFN- ).GFP/V reporter cells were then 

infected either with the original viruses (PIV5 W3 or FLUAV rNS1-ran5 mutant virus) 

or their rescued viruses at 5 PFU/cell to determine whether the selected virus 

population had been enriched with IFN-inducing mutant viruses. If successful, there 

would have been a significant increase in the number of GFP-positive cells in 

monolayers infected with the rescued virus population (Figure 3.3.1.3 (FLUAV data 

not shown)). Infected cells were fixed at 24hpi and monitored both for GFP 

expression and for viral antigen (PIV5-P&V) following immunostaining. However, 

disappointingly, there was no significant increase in the number of GFP expressing 

cells when infecting the A549/pr(IFN- ).GFP/V reporter cell-line with the isolated 

virus population. Similarly, no IFN-inducing mutants of FLUAV rNS1-ran5 were 

isolated in parallel experiments (data not shown). 

The FACS-based method to isolate infectious mutant viruses using 

A549/pr(IFN- ).GFP/V reporter cells was not successful. Mutant viruses which are 

IFN inducers may have been initially selected for, since we were able to separate 

GFP-positive cells as a small population from GFP-negative cells. However, if so, the 

viruses selected were not subsequently amplified during co-cultivation of the 

GFP-positive cells with the A549/pr(IFN- ).GFP/V cells. Therefore, further 

characterisation assays were undertaken to confirm if this cell-line had the ability to 

support the growth of rescued mutant viruses (see below). 

3.3.2 Further investigation of the A549/pr(IFN- ).GFP/V reporter cell-line as a 

permissive cell-line for virus growth 

We were able to isolate virus-induced GFP-positive cells using FACS, however the 

only virus that was isolated was non-defective wildtype virus that failed to activate 

the IFN response. One possible reason for the failure to isolate mutant viruses from 

GFP-positive cells, is that, although the IFN-induced antiviral activity would have 

been prevented, the A549/pr(IFN- ).GFP/V cells responsible for the activation of the 

 65



3. RESULTS 

IFN-  promoter may still not be able to support the growth of the mutant viruses. A 

suggestion that this might be the case came from examining the activation of the 

IFN-  promoter during plaque development (Figure 3.3.2.1). The 

A549/pr(IFN- ).GFP/V reporter cells were infected with CPI+ (Chapter 3.2.7) virus 

at an MOI of 0.01 PFU/cell, fixed at 2dpi and the expression of GFP and the presence 

of virus antigen (PIV5-NP&P), following immunostaining individual cells were 

visualised by fluorescence microscopy. The results shown in Figure 3.3.2.1 suggested 

that within a developing plaque of CPI+ in A549/pr(IFN- ).GFP/V cells, although an 

antiviral state induced by IFN was prevented, the virus antigen level was still low in 

cells that were positive for GFP, and the cells strongly positive for viral antigen were 

negative for GFP. There are two possibilities for this. Firstly, GFP-positive cells may 

have been infected with DIs, which cannot replicate without the help of a 

non-defective virus within the same cell. Secondly, since IRF-3 activates a subset of 

ISGs as well as the IFN-  promoter, GFP-positive cells in which the IFN-  promoter 

was activated may have been in an IFN-independent antiviral state, and were thus 

unable to support efficient viral replication.  

The A549/pr(IFN- ).GFP/V cells were further characterised to examine whether an 

antiviral state can be induced in them independently of IFN. The A549/pr(IFN- ).GFP, 

A549/pr(IFN- ).GFP/V, A549/Npro cells, and Vero cells were used in this study. 

A549/pr(IFN- ).GFP/V cells constitutively express PIV5-V protein which targets 

STAT1 for proteasome-mediated degradation (Didcock et al., 1999; Precious et al.,

2005b; Precious et al., 2007) and therefore IFN signalling is blocked in these cells. 

A549/Npro cells constitutively express the Npro protein of BVDV which target IRF-3 

for degradation and thus the induction of IFN as well as any antiviral activity induced 

via IRF-3 is prevented. Vero cells are IFN-deficient (Desmyter et al., 1968), they 

cannot produce any IFN in response to virus infections. Unpublished data generated 

in our laboratory by Dr Lena Andrejeva has also suggested that Vero cells are IRF-3 

deficient. Therefore, any antiviral response activated though IRF-3 is impaired in Vero 

cells. The virus used in this study was PIV5 V C (P2). PIV5 V C is a strain of PIV5 
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W3 which produces a C-terminus truncated V protein of PIV5 (He et al., 2002). The 

PIV5 V C (P2) was generated from the original PIV5 V C stock by infecting 

confluent Vero cells at a high MOI in order to increase the number of DIs within the 

virus population.  

In this study, PIV5 V C (P2) viruses were diluted in a series of 10-fold dilutions, 

starting with an MOI of 10 PFU/cell. Each diluted stock was then used to infect 

A549/pr(IFN- ).GFP cells or A549/pr(IFN- ).GFP/V cells. In addition, to monitor 

virus replication, A549/Npro cells or Vero cells were also infected with the same virus 

stock in parallel. Virus-infected cells were fixed at 16hpi and immunostained for viral 

antigen (PIV5-NP&P). GFP expression and viral protein synthesis were then 

visualised using fluorescence microscopy. Figure 3.3.2.2 (10 PFU/cell) showed the 

majority of A549/pr(IFN- ).GFP and A549/pr(IFN- ).GFP/V cells were strongly 

positive for GFP when all the cells were infected, however the amounts of viral 

proteins synthesised were low in both cells which showed intensive GFP expression. 

The pattern of viral protein synthesis was shown as dots. In contrast, both Vero cells 

and A549/Npro cells showed high levels expression of viral antigen (Figure 3.3.2.2 

10-1 and 10-2 PFU/cell).The viral proteins were synthesised in an evenly distributed 

pattern in the cytoplasm. This indicates these cells are better able to support the virus 

replication compared to A549/pr(IFN- ).GFP/V cells, suggesting that the mutant 

viruses that activate the IFN response also induce an IFN-independent antiviral state 

though IRF-3 activation. 

As well as being essential for the activation of the IFN-  promoter, IRF-3 can also 

up-regulate the expression of a subset of ISGs directly, independent of IFN, including 

ISG56 (Grandvaux et al., 2002). Therefore, we also determined the level of ISG56 

expression in order to further investigate the establishment of an IFN-independent 

antiviral state induced by IRF-3 following the previous studies. Thus, if ISG56 

expression can be detected in cells in which IFN signalling is inhibited (A549/V cells) 

but not in cells where IRF-3 is degraded (A549/Npro cells), this would confirm that 
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antiviral state is induced directly via IRF-3 but independent of IFN. If this was the 

case then the A549/pr(IFN- ).GFP/V cells may enter in an antiviral state following 

activation of IRF-3 by mutant viruses that activate the IFN-  promoter. This may also 

therefore help explain the reason why very low levels of viral antigen were detected in 

A549/pr(IFN- ).GFP/V cells that were strongly positive for GFP. In this study of 

ISG56 expression, the virus stocks used were MuV Enders cl3/30 and MuV Enders 

(DI). The MuV Enders (DI) stock has been characterised as a good IFN inducer in 

previous studies. A549, A549/V and A549/Npro cells were mock infected or infected 

with MuV Enders cl3/30 or MuV Enders (DI) at 5 PFU/cell. At 24hpi, expressions of 

ISG56 and actin were detected in the total cell extracts by immunoblot analysis. 

Results shown in Figure 3.3.2.3 revealed that cells intact for IFN and IRF-3 (A549s) 

and cells deficient in IFN (A549/Vs) induced a significant amount of ISG56 in 

response to DIs, whereas in cells deficient in IRF-3 pathway (A549/Npros) did not, 

confirming that ISG56 expression could occur independently of IFN pathway through 

the activation of IRF-3. This also provides evidence for the establishment of an 

antiviral state in the PIV5-V expressing cells via an IFN-independent pathway. 

Having undertaken a series of characterisations and modifications of the GFP reporter 

cells, we conclude that (i) expression of BVDV-Npro in the A549/pr(IFN- ).GFP 

reporter cells blocks the activation of IRF-3, therefore the reporter cells are no longer 

able express GFP (Figure 3.2.2.1); (ii) expression of PIV5-V protein in the 

A549/pr(IFN- ).GFP reporter cells prevents the antiviral activity via IFN response, 

however the antiviral state induced via IRF-3 still occurred. As a consequence, we 

may be able to use the A549/pr(IFN- ).GFP/V cell-line to initially isolate mutant 

viruses by FACS, but we may need to use other cell-lines deficient in their 

IFN-independent antiviral response to grow the isolated mutant viruses. Unfortunately, 

by knocking our IRF-3 we lose the opportunity to monitor the mutant viruses’ ability 

to induce IFN by GFP expression during the amplification process. 
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3.4 Generation of the A549/pr(IFN- ).GFP.V5 and the A549/pr(IFN- ).GFP.V5/V 

reporter cell-lines 

There are safety issues about sorting virus-infected cells by FACS. Therefore we 

developed an alternative strategy for isolating cells in which the IFN-  promoter had 

been activated. The strategy was to express an epitope tag on the cell surface when the 

IFN-  promoter was activated, thereby facilitate antibody selection of cells expressing 

the epitope tag. The V5 epitope of PIV5 was chosen because of the availability of the 

antibody in the laboratory (The V5 epitope tag is derived from a small epitope (Pk) 

present on the P and V proteins of PIV5). The surface expression of the epitope was 

achieved by cloning the epitope tag sequence into a commercially available vector 

pDisplay™ (Invitrogen Ltd., UK) (Figure 3.4.1.1). The expressed epitope is flanked at 

its N-terminus with Ig -chain leader sequence in the pDisplay™ vector, which 

directs the protein to the secretary pathway, and at its C-terminus with the platelet 

derived growth factor receptor (PDGFR) transmembrane domain, which anchors the 

protein to the plasma membrane, displaying the V5 tag on the extracellular side. The 

gene sequence encoding the epitope tag fused to the transmembrane domain was 

subcloned into a pdl’pr(IFN- ).GFP lentivirus vector such that its expression was 

under the control of IFN-  promoter. The generated lentivirus plasmid was then used 

to make lentiviruses and infect cells to generate a reporter cell-line, in which the 

epitope tag would be used as a selection marker and expressed on the cell surface 

driven by the IFN-  promoter.  

In more detail, two complementary oligonucleotides (Eurogentec Ltd., UK) encoding 

the V5 epitope tag were made, 

Forward

5’-GATCTGGAAAGCCGATCCCAAACCCTCTATTAGGTCTGGACTCCACCCTGCA-3’

Reverse

3’-ACCTTTCGGCTAGGGTTTGGGAGATAATCCAGACCTGAGGTGGG-5’  

These were annealed at 95oC, slowly cooled down to room temperature and then 

cloned into the pDisplay™ vector between the BglII and PstI sites. 6 g of the 
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construct and 9 g of FuGENE® 6 were mixed with 100 l of serum free DMEM, 

incubated at room temperature for 30 mins and then used to transfect a monolayer of 

293T cells growing in a 25cm2 tissue culture flask. Transfected 293T cells were fixed 

and immunostained for V5. Figure 3.4.1.2 Step 3a showed 10% of the transfected 

cells expressed V5 epitope on their surface, confirming the cloning of V5 epitope 

sequence into the pDisplay™ vector was successful. The successfully cloned 

construct was named as pDisplay.V5.  

In order to test whether cells which express V5 epitope tag on their surface can be 

separated from the ones do not, using an antibody-dependent selection method, a 

panning experiment was carried out. Pre-incubation of petri dish with antibody 

facilitates the binding of antibody to the plastic. Two 60mm dishes were either 

incubated with PIV5-V antibody (10 g/sample) or with PBS (control) at 4oC

overnight. Both petri dishes were then rinsed with ice-cold PBS (control) to wash 

away any unbound antibodies. Two 75cm2 tissue culture flasks of 293T cells 

transfected with pDisplay.V5 construct were treated with EDTA (1mM) in PBS at 

37oC for 5 mins to detach the cells from the surface of the tissue culture flask. The 

cell suspension was centrifuged to remove EDTA/PBS, resuspended to single cell 

suspension with 4ml/sample of ice-cold PBS, added to either the plate pre-coated with 

anti-PIV5-V antibody or the control plate and incubated for 1h to allow cells to bind 

to the antibody. Each plate was rinsed with PBS to wash away any unbound cells. 

Figure 3.4.1.2 Step 3b showed a significant number of cells bound to the plate 

pre-coated with antibody, whereas only a few cells bound to control plate. This 

confirmed that using an antibody based method to separate cells expressing the V5 

epitope tag on their surface was possible.  

The fragment enconding the V5 tag linked to the transmembrane domain of 

pDisplay™ vector was digested from the pDisplay™ backbone vector between the 

BamHI and NotI sites and ligated into the pdl’pr(IFN- ).GFP lentivirus backbone 

vector (Figure 3.1.1.1) by replacing eGFP between the BamHI and NotI sites. The 
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resulting lentivirus vector (Figure 3.4.1.2 Step 4) contains the cell surface-expressing 

V5 epitope and pac gene under the control of IFN-  promoter. In order to test whether 

the molecular cloning of the pDisplay.V5 fragment into the pdl’pr(IFN- ).GFP 

lentivirus backbone vector was successful, the lentivirus plasmid together with 

packaging plasmids pCMVR8.91 and pVSV-G were co-transfected into 293T cells to 

produce the lentivirus, which was to be tested. Supernatant containing lentiviruses 

was harvested at 2 days post transfection and then used to infect A549/pr(IFN- ).GFP 

or A549/pr(IFN- ).GFP/V cells. Both reporter cell-lines were used as parental 

cell-lines. As a consequence, the generated cell-line would not only express GFP in 

the cytoplasm, but also express V5 epitope tag on the cell surface, when the IFN-

promoter was activated. After infection with lentiviruses, a small portion of the cells 

were separately cultured on coverslips and transfected with dsRNA to activate the 

IFN-  promoter (refer to Chapter 3.1.2 polyI:C transfection). At 24h post transfection, 

the cells were fixed, immunostained for V5 and examined microscopically (data not 

shown) for cell surface V5 epitope expression. The immunofluorescence data 

confirmed 10% of cells expressed V5 epitope on the cell surface and therefore the 

molecular cloning of pDisplay.V5 fragment into the pdl’pr(IFN- ).GFP lentivirus 

backbone vector was successful. The lentivirus plasmid was termed as 

pdl’pr(IFN- ).V5. Both the A549/pr(IFN- ).GFP and the A549/pr(IFN- ).GFP/V cells 

infected with pdl’pr(IFN- ).V5 lentivirus were then subjected to subcloning to 

generate  homogenous cell-lines, in which the V5 epitope was expressed on the cells 

when the IFN-  promoter was activated. Lentivirus-infected cells were directly 

subcloned into 96-well microtitre plates and the process was the same as for the 

generation of A549/pr(IFN- ).GFP cell-line (Chapter 3.1.3). One cell colony from 

both the A549/pr(IFN- ).GFP cell-line and the A549/pr(IFN- ).GFP/V cell-line which 

also expressed the V5 epitope on cell surface with the highest percentage of cells that 

was V5-positive was selected. A549/pr(IFN- ).GFP.V5 cell-line (referred to as 

GFP.V5 cell-line in figures) and a A549/pr(IFN- ).GFP.V5/V cell-line (referred to as 

GFP.V5/V cell-line in figures) were generated. Subsequent characterisation assays 

were carried out to further investigate the properties of the cell-lines. 
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3.5 Characterisation of A549/pr(IFN- ).GFP.V5 reporter cell-line 

To initially characterise the A549/pr(IFN- ).GFP.V5 cells, immunofluorescence was 

performed to determine how quickly the V5 epitope tag was expressed on the cells 

surface when the IFN-  promoter was activated following virus infection. 

A549/pr(IFN- ).GFP.V5 cell cultured on coverslips were either mock infected or 

infected with PIV5 V C (P2) at an MOI of 5 PFU/cell and fixed at 4, 8, 16 and 24hpi. 

GFP-positive cells and cell surface expression of V5 epitope tag, following 

immunostaining, were visualised by fluorescence microscopy. Immunofluorescence 

results (Figure 3.5.1) confirmed both the surface V5 expression and GFP expression 

were induced when the IFN-  promoter was activated. These studies showed an 

increase in the expression of GFP starting from 4hpi to 8hpi and which remained 

stable until at least 24hpi. The expression of the surface V5 epitope however was not 

as stable as GFP. There was an increase in the intensity of the surface V5 epitope 

signal starting from 8hpi. Although the expression was strong at 16hpi, this was 

significantly reduced by 24hpi. Given the fact that further mutant virus isolation 

would be based on the expression of surface V5 epitope, this expression peak should 

be taken into account.  

One explanation for the above results is that following infection with PIV5 V C (P2), 

the IFN-  promoter is activated, but subsequently it gets switched off, and that the 

stability of the V5 tagged protein is much less than GFP. To compare the stability of 

GFP and surface V5 expression further, and characterise the expression half-life of the 

V5 epitope tag, a comparable immunofluorescence experiment was carried out. 

A549/pr(IFN- ).GFP.V5 cells grown on coverslips were either mock infected or 

infected with MuV Enders (DI) at an MOI of 5 PFU/cell. Cycloheximide (CHX) 

(50 g/ml) was added into the culture media at 12hpi to block further protein synthesis. 

In the presence of CHX, we can compare the stability of GFP with the V5 epitope. 

Cells were then fixed at 12(0), 16(4), 20(8) and 24(12)hpi (post CHX treatment) and 

immunostained for V5. Results (Figure 3.5.2) were in accordance with the original 

characterisation experiment (Figure 3.5.1), and re-confirmed the cell surface 

 72



3. RESULTS 

expression of the V5 epitope tag was transient. The expression peaked between 

12-16hpi, and decreased from 20hpi. In contrast, cells remained GFP-positive even at 

12h post CHX treatment. In conclusion, if the V5 surface expression is to be used as a 

selection marker for isolating mutant viruses, then the isolation process should be 

performed within 12-16hpi to separate the V5 positive cells from cells that are 

negative for V5. 

3.6 Panning selection of IFN-inducing mutant viruses using 

A549/pr(IFN- ).GFP.V5/V reporter cell-line

Having generated and characterised the A549/pr(IFN- ).GFP.V5/V cell-line, we then 

tried to use A549/pr(IFN- ).GFP.V5/V cell-line to isolate mutant viruses that induce 

an IFN response. The strategy was to infect the cell-line with PIV5 W3 virus and use 

antibody selection of V5 expressing cells. Any cell infected with a mutant virus within 

the wildtype virus population that induces the IFN-  promoter would express V5 

epitope tag on the cell surface. To separate those V5 epitope tag expressing cells from 

the cells that were not, a panning selection was carried out using Dynabeads ® Protein

A.

Monolayers of A549/pr(IFN- ).GFP.V5/V cells cultured in 75cm2 tissue culture flasks 

were infected with PIV5 W3 with an MOI of 1 PFU/cell. At 12hpi, infected cells were 

treated with EDTA (5mM) in PBS to detach the cells from the surface of the tissue 

culture flask. The cell suspension was centrifuged to remove EDTA/PBS, resuspended 

to single cell suspension with 1ml/sample of ice-cold EDTA (1mM) in PBS. 

Anti-PIV5-V antibody (5 g/ml) was added to the cell suspension and incubated with 

tumbling for 30 mins. During the incubation, anti-PIV5-V antibody bound to the V5 

epitope displayed on the cell surface. The unbound antibody was then washed away 

with ice-cold PBS by centrifugation. Supernatant was removed and the cell pellet was 

resuspended into single cell suspension with 1ml fresh ice-cold PBS. Dynabeads ®

Protein A (10 l/sample) were added to cell suspension and incubate for 30 mins to 

allow antibody binding to the protein A of the beads. Each sample was then placed 
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again on a magnet. The beads migrated towards the magnet side, any unbound cells 

remained in the supernatant and were removed by washing with PBS. Selected cells 

were added onto a preformed monolayer of A549/pr(IFN- ).GFP/V cells in a 25cm2

tissue culture flask to allow virus propagation approximately for 3 days until a CPE 

was observed. Culture medium was collected and virus was titrated. Fresh monolayers 

of A549/pr(IFN- ).GFP/V were infected with PIV5 W3, rescued PIV5 W3 or PIV5 

V C (P2) (control) at an MOI of 5 PFU/cell and fixed at 16hpi. GFP expression and 

viral antigen (PIV5-NP&P), following immunostaining, were visualised using 

fluorescence microscopy. Results (data not shown) were the same as what we 

observed from FACS mutant virus isolation. There was no significant increase in the 

number of GFP-positive cells infected by viruses rescued from the magnetic beads 

separation. Unfortunately, using a panning method to isolate mutant viruses was not 

successful. The reason(s) for this may be the same as why we failed to isolate mutant 

viruses from the FACS sorting experiment and will be considered in the Discussion. 

3.7 Applications of the A549/pr(IFN- ).GFP reporter cell-line(s) 

3.7.1 Screening for compounds that inhibit IFN induction 

Compounds that inhibit IFN production may be developd as anti-inflammatory 

compounds to treat certain autoimmune diseases where there is over-inflammation 

caused by over-production of IFN and may be harmful to individuals. These 

compounds may potentially be used in the laboratory as potential drugs to mimic 

virus antagonists that inhibit IFN production. Therefore, development of a rapid 

method for high throughput screening assays to search for compounds that inhibit IFN 

production may be of pharmaceutical companies’ interest in the aspect of drug 

development. Potentially, the A549/pr(IFN- ).GFP cell-line could be used for high 

throughput screening assays to screen compounds that inhibit IFN production by 

monitoring GFP expression. Collaborative studies have been carried out with Medical 

Research Council Technology (MRCT) at Mill Hill, UK. In an independent project 

they identified a TBK-1 inhibitor, known as compound X, as a potential anti-cancer 

agent. TBK-1 is critical for the phosphorylation of IRF-3 (McWhirter et al., 2004; 
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3. RESULTS 

Oganesyan et al., 2006) and causes its activation and nuclear translocation to induce 

IFN- . In order to demonstrate the potential of the A549/pr(IFN- ).GFP cell-line for 

high throughput screening and also to characterise compound X’s ability to inhibit 

IFN induction (potentially binding to TBK-1), a series of GFP screening assays were 

performed using the A549/pr(IFN- ).GFP cell-line. Monolayers of the cells grown on 

coverslips in a 24-well microtitre plate were pretreated with compound X of various 

concentrations (0-10 M) for 30 mins and then either mock infected or infected with 

PIV5 V C (P2) in the presence of X at an MOI of 10 PFU/cell. If TBK-1 is targeted 

by X, then GFP expression should be inhibited in the A549/pr(IFN- ).GFP cells when 

infected with PIV5 V C (P2). The infected A549/pr(IFN- ).GFP cells were fixed at 

10hpi. GFP expression and viral antigen (PIV5-V) synthesis, following 

immunostaining, were visualised by fluorescence microscopy (Figure 3.7.1.A). 

Culture media of the infected cells was collected and inactivated by UV treatment to 

kill any residual viruses at 10hpi, and IFN level from each sample was measured by 

CPE reduction bioassay for IFN (Figure 3.7.1.B). Both fluorescence microscopy and 

CPE reduction bioassay for IFN showed that PIV5 V C (P2) induced GFP expression 

(Figure 3.7.1.A) and IFN production (Figure 3.7.1.B) in the absence of compound X. 

Compound X inhibited IFN induction (Figure 3.7.1.B) and GFP expression (Figure 

3.7.1.A) but also led to cell death at concentrations of 5 M and above (Figure 

3.7.1.A). The optimal concentration of compound X to inhibit IFN induction was 

2.5 M. Based on these findings, A549/pr(IFN- ).GFP cells are eligible as a 

methodology to test drugs which target the IFN induction cascade. 
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Figure 3.1.1.1



Figure 3.1.1.1 Schematic representation of the pdl’pr(IFN- ).GFP lentivirus vector. 

The pdl’pr(IFN- ).GFP lentivirus vector expressing GFP and puromycin resistance 
gene (pac) under the control of the IFN-  promoter. An internal ribosome entry site 
(IRES) is located downstream of GFP and upstream of pac, to allow for translation 
initiation in the middle of an mRNA sequence for protein synthesis. 
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Figure 3.1.1.2 Generation of the A549/pr(IFN- ).GFP cell-lines. 

Step 1. The lentivirus plasmid pdl’pr(IFN- ).GFP was co-transfected into 293T cells 
with packaging plasmids: pCMVR8.91 and pVSV-G. The lentivirus supernatant was 
harvest at 48 & 72h post transfection. The resulting supernatant was then centrifuged 
to remove cell debris.  

Step 2. Then the lentivirus supernatant was used to infect naive A549 cells. 

Step 3. To activate the IFN-  promoter, lentivirus transduced cells were transfected 
with polyI:C, and at 6h post polyI:C stimulation, puromycin was added to the culture 
medium to kill any non-transduced cells. 

Step 4. The lentivirus transduced cells were then further sorted by FACS machine for 
GFP-positive cells when the IFN-  promoter is activated. 

Step 5. The FACS sorted cells were subcloned using 96-well microtitre plates to 
generate homologous cell-lines – the A549/pr(IFN- ).GFP cell-lines. 
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Figure 3.2.1.1 Characterisation of the A549/pr(IFN- ).GFP reporter cell-line in the 
ability to induce GFP regulated by IFN-  promoter. 

A. Immunofluoresence visualisation of GFP expression vs viral protein (MuV-NP) 
synthesis at various time points. 

B. FACS analysis of GFP expression intensity vs time. 

Monolayers of A549/pr(IFN- ).GFP cells were infected with MuV Enders (DI) of an 
MOI of 10 PFU/cell. Cells were fixed at 2, 4, 6 & 8hpi. 

MuV viral protein expression was detected from 6hpi by immunofluorescence and 
GFP expression was observed from 8hpi. FACS analysis showed 35% of the cells 
were GFP-positive by 4hpi and significant increases in the number of GFP-positive at 
6 & 8hpi.  
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Figure 3.2.1.2 GFP induction assay on A549/pr(IFN- ).GFP reporter cell-line. 

A. MuV Enders (DI) virus infection with multiple MOIs on A549/pr(IFN- ).GFP
reporter cells. 

B. CPE reduction bioassay for IFN for the analysis of GFP and IFN correlation. 

Monolayers of A549/pr(IFN- ).GFP reporter cells were cultured on coverslips in 
24-well microtitre plates, and infected with MuV Enders (DI) at MOIs of 10, 2, 0.4 or 
0.08 PFU/cell. The culture supernatants were harvested, and UV-inactivated to kill 
any residual viruses at 24hpi. CPE reduction bioassay for IFN was performed to 
determine the amount of IFN produced by each infection unit. The coverslips were 
fixed and immunostained for MuV-NP. 
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Figure 3.2.2.1 Effect of knocking out key signalling molecules involved in the 
IFN-induction cascade. 

The A549/pr(IFN- ).GFP reporter cells were engineered to constitutively express 
either BVDV-Npro or HCV-NS3/4A to determine the effect of knocking out crucial 
signalling molecules on IFN induction and GFP expression. A549/pr(IFN- ).GFP, 
A549/pr(IFN- ).GFP/BVDV-Npro and A549/pr(IFN- ).GFP/HCV-NS3/4A cells were 
individually infected by MuV Ender (DI) virus at an MOI of 10 PFU/cell, and fixed at 
16hpi and immunostained for MuV-NP.  

The assay demonstrated that GFP expression was under the control of IFN-  promoter. 
Expression of either BVDV-Npro or HCV-NS3/4A prevented induction of GFP 
expression following infection of the cells with MuV Enders (DI).  
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Figure 3.2.3.1 Investigation of DI-rich and DI-poor virus preparations in the ability to 
activate the IFN-  promoter using A549/pr(IFN- ).GFP reporter cells. 

A. GFP expression following infections of A549/pr(IFN- ).GFP reporter cells with 
MuV Enders cl3/30 (DI-poor) or MuV Enders (DI) (DI-rich). 

B. CPE reduction bioassay for IFN to quantify the IFN produced by the 
A549/pr(IFN- ).GFP reporter cells in response to MuV Enders cl3/30 or MuV 
Enders (DI) infection.  

Monolayers of the A549/pr(IFN- ).GFP reporter cells were infected with MuV Enders 
cl3/30 or MuV Enders (DI) at an MOI of 5 PFU/cell. Cells were fixed at 16hpi and 
immunostained for MuV-NP. Supernatants were harvested and UV-inactivated to 
perform the CPE reduction bioassay to quantify the IFN produced by the cells.  

DIs have better ability to induce IFN (>90% green cells) and the amount of IFN 
produced by MuV Enders (DI) infected cells was 8-fold higher than MuV Enders 
cl3/30 infected cells. A small portion of viruses within the MuV Enders cl3/30 
population were able to induce IFN, but is significantly lower than the DIs.  
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Figure 3.2.4.1 Schematic representation of post-infection puromycin selection 
process in the A549/pr(IFN- ).GFP reporter cell-line that should ultimately lead to the 
selection of IFN-inducing mutant viruses from a wildtype virus population. 
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Figure 3.2.4.2 Investigation of the puromycin selected viruses in the ability to induce 
IFN.

The A549/pr(IFN- ).GFP reporter cells were infected with MuV Enders (DI), MuV 
Enders cl3/30 or resuced MuV Enders cl3/30 viruses at an MOI of 5 PFU/cell. Cells 
were fixed at16hpi and immunostained for MuV-NP.  

The rescued MuV Enders cl3/30 viruses were no better at inducing IFN (number of 
green cells vs virus infected cells) than the original MuV Enders cl3/30. 
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Figure 3.2.5.1 Investigation of IFN production in establishing an antiviral state to 
inhibit virus growth. 

A549 cells were set up in 6-well plates and infected with PIV5 V C at an MOI of 
0.01 PFU/cell. Monolayers of infected cells were fixed at 2, 4 & 6dpi and 
immnostained for PIV5-NP&P (Texas red) and MxA (FITC).  

No significant virus plaque development was observed. However, an antiviral state 
(MxA) had been established and spread in cells neighbouring infected cells, 
confirming the production of IFN by virus-infected and neighbouring cells. 
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Figure 3.2.6.1 Generation of the A549/pr(IFN- ).GFP/KO.STAT1 and the 
A549/pr(IFN- ).GFP/V cell-lines. 

Step 1. The lentivirus plasmids expressing shRNA to STAT1 or PIV5-V(W3) were 
co-transfected into 293T cells with packaging plasmids: pCMVR8.91 and pVSV-G. 
The lentivirus supernatant was harvested at 48 & 72h post transfection. This 
supernatant was centrifuged to remove cell debris.  

Step 2. The lentivirus supernatant was used to infect the A549/pr(IFN- ).GFP reporter 
cells.

Step 3. Lentivirus transduced cells were selected using blasticidin. The selection was 
performed 48h post lentivirus infection. 

Step 4. The lentivirus transduced cells were then further characterised for inhibition of 
STAT1 expression (Figure 3.2.6.2). 
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Figure 3.2.6.2 Expression of shRNA to STAT1 or PIV5-V significantly reduced 
STAT1 expression in A549pr(IFN- ).GFP reporter cells. 

Monolayers of A549pr(IFN- ).GFP reporter cells transduced with shRNA to STAT1 
or PIV5-V lentiviruses were cultured on coverslips in 24-well microtitre plates and 
were pre-treated with IFN-  (Roferon A) (104IU/ml) overnight. 

A. Lentivirus transduced cells cultured on coverslips were fixed and immunostained 
for STAT1. 

B. Lentivirus transduced cells cultured in 24-well microtitre plates were harvested. 
Lysates were subjected to SDS-PAGE and western blot. 

Immunofluoresence and western blot date showed successful expression of shRNA to 
STAT1 or PIV5-V in A549pr(IFN- ).GFP reporter cells reduced STAT1 expression in 
A549pr(IFN- ).GFP/KO.STAT1 cells or inhibited it in A549pr(IFN- ).GFP/V cells. 
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Figure 3.2.7.1 Plaque assay comparison of the abilities of A549/pr(IFN- ).GFP and 
A549/pr(IFN- ).GFP/V cell-lines in the ability to support the growth of viruses. 

A549/pr(IFN- ).GFP and A549/pr(IFN- ).GFP/V reporter cells were infected with 
CPI+ or CPI- at an MOI of 0.01 PFU/cell, fixed at 2, 4 & 6dpi and immunostained for 
PIV5-NP&P.  

The immunofluorescence assay demonstrated that the A549/pr(IFN- ).GFP/V reporter 
cells was better able to allow CPI- replication, than the A549/pr(IFN- ).GFP reporter 
cells, as the development of plaques (plaque size) was observed in the 
A549/pr(IFN- ).GFP/V reporter cells, but not in the A549/pr(IFN- ).GFP reporter 
cells.
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Figure 3.3.1.1 Schematic representation of FACS selection for IFN-inducing mutant 
virus-induced GFP-positive cells. 

Monolayers of A549/pr(IFN- ).GFP.V reporter cells were infected with wildtype 
viruses at an MOI of 1 PFU/cell, trypsinised, and resuspended into single cell 
suspension, ready for FACS sorting. GFP-positive cells were separated by FACS into 
single cells into 96-well microtitre plates, or as a pooled population into 25cm2 tissue 
culture flasks with preformed monolayers of the A549/pr(IFN- ).GFP.V reporter cells. 
Sorted cells were cultured on platform rockers, and visualised microscopically for 
GFP expression. 
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Figure 3.3.1.2 FACS sorting of GFP-positive cells to isolate IFN-inducing mutant 
viruses.

75cm2 tissue culture flasks of A549/pr(IFN- ).GFP/V reporter cells were infected 
with (A) FLUAV rNS1-ran5 random mutants, or (B) PIV5 W3 at an MOI of 1 
PFU/cell. Samples were then analysed by FACS at 18hpi. Before cells were sorted by 
fluorescence intensity, all cells were (1) gated by FSC (forward scatter) and SSC (side 
scatter). This means cells were selected by size and granule intensity to prevent dead 
and/or aggregated cells being analysed. (2) Selected cells from the gated portions 
were analysed for GFP intensity. The histogram shows the intensity of GFP with the 
number of total cells designated on the x-axis. (3) The gated cell population was 
determined and sorted as GFP-positive or GFP-negative, with x-axis representing the 
GFP intensity of individual cells. (4) The sample chart: P1 is the total cell population 
analysed, P2 and P3 both are the cells gated as GFP-positive, P2 is the GFP cell 
population gated further along to the left on the x-axis which shows stronger GFP 
expression than P3. Approximately 13% of the total gated cells (P1) were 
GFP-positive for FLUAV rNS1-ran5 mutant viruses and about 0.3% of the total gated 
cells were GFP-positive for PIV5 W3. Separated GFP-positive cells (P2&P3) were 
inoculated on preformed monolayer of A549/pr(IFN- ).GFP/V reporter cells for the 
rescued virus to amplify.  
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Figure 3.3.1.3 Characterisation of FACS sorting rescued PIV5 W3 virus in the ability 
to induce IFN. 

A549/pr(IFN- ).GFP/V reporter cells infected with PIV5 W3 or rescued PIV5 W3 
viruses of an MOI of 5 PFU/cell. Cells were fixed and immunostained for PIV5-P&V.  

No significant increase in the number of GFP expressing cells was observed when we 
compared FACS rescued viruses to wildtype viruses. FACS selection of IFN-inducing 
mutant viruses was not successful. 
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Figure 3.3.2.1 Virus replication is inhibited in A549/pr(IFN- ).GFP/V cells when 
IFN-  promoter is activated. 

A549/pr(IFN- ).GFP/V reporter cells were infected with CPI+ at an MOI of 0.01 
PFU/cell, fixed at 2dpi and immunostained for PIV5-NP&P.  

Within a developing plaque, very litter viral antigen was detected in cells strongly 
positive for GFP. In conclusion, virus replication is inhibited in the 
A549/pr(IFN- ).GFP/V cells where IFN-  promoter is activated. 
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Figure 3.3.2.2 Investigation of the induction of an IFN-independent antiviral state and 
virus replication. 

PIV5 V C (P2) viruses were diluted in a series of 10-fold dilutions, and each diluted 
stock was used to infect monolayers of the A549/pr(IFN- ).GFP, 
A549/pr(IFN- ).GFP/V, A549/Npro, or Vero cells at MOIs of 10 PFU/cell – 10-3

PFU/cell. Cells were fixed at 16hpi and immunostained for PIV5-NP&P.  

A549/Npro and Vero were permissive for virus replication.  
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Figure 3.3.2.3 Determination of ISG56 expression to investigate the establishment of 
an IFN-independent antiviral state induced by IRF-3. 

A549, A549/V, A549/Npro cells were infected with MuV Enders cl3/30 or MuV 
Enders (DI) and harvested at 24hpi. Lysates were subjected to SDS-PAGE and 
western blot for ISG56 expression.. 

Western blot confirmed ISG56 expression can be activated independent of IFN. DIs 
induced activation of ISG56 in cells intact for IFN and IRF-3 (A549s), and in cells 
deficient in IFN signalling (A549/Vs), however, not in cells where IRF-3 pathway is 
targeted (A549/Npros). 
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Figure 3.4.1.1 Map of pDisplayTM vector (adapted from Invitrogen catalog no. 
660-20 Version C). 

pDisplayTM is a commercial vector produced by Invitrogen, Ltd., UK. pDisplayTM is 
a 5.3kb mammalian expression vector which allows display of proteins on the cell 
surface. The target protein expressed from pDisplayTM was fused at its N-terminus to 
the murine Ig -chain leader sequence, which targets protein to secretory pathway and 
at its C-terminus the platelet derived growth factor (PDGFR) transmembrane domain 
(Gronwald et al., 1988). 
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Figure 3.4.1.2 Generation of a lentivirus plasmid expressing the surface V5 epitope 
under the control of IFN-  promoter. 

Step 1. Oligos of complementary strands of V5 epitope were annealed. 

Step 2. V5 epitope sequence was cloned into the pDisplayTM vector.  

Step 3. Plasmid was transfected into 293T cells. 
a. Successful cloning resulted in the surface expression of V5 by 

immunofluorescence.  
b. Panning experiments showed cells expressing the V5 epitope on the surface 

successfully bound to anti-PIV5-V antibody soaked in tissue culture dishes.  

Step 4. The fragment enconding the V5 tag linked to the transmembrane domain of 
pDisplay™ vector was digested from the pDisplay™ backbone vector between 
BamHI and NotI sites and cloned into the pdl’pr(IFN- ).GFP lenvirus vector between 
BamHI and NotI sites by replacing eGFP, under the control of IFN-  promoter, 
generating the pdl’pr(IFN- ).V5 plasmid. 
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Figure 3.5.1 Characterisation of the extracellular V5 epitope tag expression when the 
IFN-  promoter is activated. 

A549/pr(IFN- ).GFP/V5/V cells were infected with PIV5 V C (P2) virus at an MOI 
of 5 PFU/cell, fixed at 4, 8, 16 & 24hpi and immunostained for extracellular PIV5-V. 

The A549/pr(IFN- ).GFP/V5/V reporter cells started to express GFP from 4hpi. The 
expression increased between 4 to 8hpi and remained stable until at least 24hpi. The 
V5 epitope tag was inducible in response to DIs. The V5 epitope cell surface 
expression was transient and expression was strong at 12-16hpi. 
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Figure 3.5.2 Comparison of the stability of GFP vs V5 expression. 

A549/pr(IFN- ).GFP/V5/V cells were infected with MuV Enders (DI) at an MOI of 5 
PFU/cell. Cells were treated with CHX at 12hpi to inhibit viral protein synthesis, 
fixed at 12 (0), 16 (4), 20 (8), 24 (36)hpi (post CHX treatment) and immunostained 
for extracellular PIV5-V. 

Both GFP and V5 epitope expression were under the control of the IFN-  promoter. 
Intense GFP expression was observed at 12hpi and remained stable. By contrast, V5 
epitope expression was detectable at 12hpi, but started to decrease after reaching a 
peak at 16hpi. 
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Figure 3.7.1 Screening for compounds that inhibit IFN induction using 
A549/pr(IFN- ).GFP reporter cell-line. 

A. PIV5 V C (P2) vary in ability to induce GFP expression in the presence of various 
concentrations of TBK-1 inhibitor (compound X) in A549/pr(IFN- ).GFP reporter 
cells.

B. PIV5 V C (P2) vary in ability to induce IFN in the presence of various 
concentrations of TBK-1 inhibitor. 

A549/pr(IFN- ).GFP cells cultured on coverslips in a 24-well microtitre plate were 
pretreated with various concentrations of compound X for 30 mins and infected with 
PIV5 V C (P2) in the presence of compound X at an MOI of 10 PFU/cell. At 10hpi, 
cells were fixed. Viral protein (PIV5-NP&P) synthesis, following immunostaning, 
and GFP expression (Panel A) were visualised using fluorescence microscopy. 
Culture supernatants were collected and the amount of IFN present was measured in 
by CPE reduction bioassay for IFN and IFN production is plotted (Panel B). 

Compound X inhibition of IFN induction was observed by the reduction of IFN 
production and the inhibition of GFP expression. The optimal concentration of 
compound X to inhibit IFN induction was ~2.5 M.
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Characterisation of the A549/pr(IFN- ).GFP and its derivative reporter cell-lines 

demonstrated that (i) following infection of the A549/pr(IFN- ).GFP reporter cells 

with a stock of MuV Enders known to be a good inducer of IFN, approximately 90% 

of the cells became GFP-positive by 6-8hpi, demonstrating the ability of the majority 

of the A549/pr(IFN- ).GFP cells to respond quickly to virus infection; (ii) CPE 

reduction bioassay for IFN showed that the amount of IFN produced by the 

A549/pr(IFN- ).GFP reporter cells correlated with the number of cells that were 

positive for GFP; (iii) the level of IFN induction correlated with the amount of DIs 

present in the virus stock; (iv) expression of the IFN antagonists, BVDV-Npro and 

HCV-NS3/4A, were able to block the induction of IFN-  promoter and thus GFP 

expression.

4.1 IFN-inducing mutant viruses as live attenuated virus vaccines  

Mutant viruses that can induce IFN are considered to be potential candidates for the 

development of live attenuated vaccines. These are viruses with attenuating mutations 

or deletions in genes which encode the viral IFN antagonist(s) that blocks the IFN 

production. In addition, these viruses should still conserve the ability to infect and 

replicate in host cells. However, because these viruses would be unable to circumvent 

the IFN response, the virulence would be reduced dramatically. One of the traditional 

and currently widely used methods of generating live attenuated virus vaccine is 

reverse genetics that could be used to introduce point mutations or deletions in the 

viral genome to knock out the viral IFN antagonist(s). Using reverse genetics, the 

mutation or deletion in the gene would be known and therefore it would be easy to 

monitor the development, utilisation, manufacture, and application of the vaccine. 

However, the artificial engineering of viruses may have potential problems, as the 

process is time consuming and the technology demanding. Also, as IFN antagonists 

are always multifunctional, a deletion in the genes encoding the viral IFN antagonists 

may over-attenuate the virus, and therefore end viruses may not be sufficiently 

 76



4. DISCUSSION 

immunogenic. Moreover, reverse genetics are not available for all viruses. An 

alternative to reverse genetics would be to isolate IFN-inducing mutant viruses from 

wildtype virus population. The mutant viruses of interest would be the naturally 

existing viruses in the wildtype virus population which have deletions or mutations in 

genes that encode viral IFN antagonist(s). 

4.1.1 Using A549/pr(IFN- ).GFP(V) reporter cell-line(s) to try to isolate 

IFN-inducing mutant viruses 

A cell based methodology was developed and characterised to try and isolate 

IFN-inducing mutant viruses. A549 cells were engineered by expressing lentivirus 

vector in which GFP and pac expression were under the control of IFN-  promoter. 

IFN-inducing mutant virus isolation from wildtype virus population was first 

attempted by infecting the cells with MuV Enders cl3/30 virus and subsequently 

selecting cells with puromycin, which would only be present in cells in which the 

IFN-  promoter had been activated. A small percentage (<5%) of MuV Enders cl3/30 

infected cells survived the puromycin selection. The viruses present in these selected 

cells were grown on A549/pr(IFN- ).GFP reporter cells, so that the viruses’ ability to 

induce IFN could be monitored in terms of GFP expression. However, when 

comparing the rescued virus with the original MuV Enders cl3/30 in their ability to 

induce IFN, there was no significant increase in the number of GFP expressing cells 

in the A549/pr(IFN- ).GFP reporter cells infected with the rescued virus. Given that 

we were able to select for pac-positive cells surviving the puromycin selection 

following virus infection, it may have been that these cells had been infected with 

IFN-inducing mutant viruses but that we had subsequently been unable to isolate them 

by growing them on the A549/pr(IFN- ).GFP cells. To investigate this further, we 

subsequently decided to monitor the plaque development following infections with 

PIV5 V C in A549 cells and correlated this with MxA (an antiviral protein induced 

by IFN) induction. The result showed that A549 cells produced a large amount of IFN 

in response to virus infection and signalled to neighbouring cells, which was 

supported by the observation that the cells surrounding these plaques were positive for 

 77



4. DISCUSSION 

MxA and were thus in an IFN-induced antiviral state. Therefore, the failure to isolate 

IFN-inducing mutant viruses using the A549/pr(IFN- ).GFP reporter cell-line showed 

that by activating the IFN-  promoter, we also induced an IFN-dependent antiviral 

state which presumably inhibited the isolation of mutant viruses with defects in their 

IFN antagonist(s). 

In an attempt to overcome the problem of an IFN-dependent antiviral activity induced 

in the A549/pr(IFN- ).GFP reporter cells when trying to isolate IFN-inducing mutant 

viruses, we constitutively expressed PIV5-V protein in the A549/pr(IFN- ).GFP 

reporter cells. As PIV5-V targets STAT1 for proteasome-mediated degradation 

(Didcock et al., 1999; Precious et al., 2005b; Precious et al., 2007) and consequently 

blocks the IFN signalling pathway, the A549/pr(IFN- ).GFP/V cells were no longer 

able to respond to IFN. 

We next compared the A549/pr(IFN- ).GFP/V cells with the A549/pr(IFN- ).GFP 

cells in their ability to support replication of mutant viruses with defects in their IFN 

antagonist(s). Plaque development assay following infections with CPI- (Figure 

3.2.7.1) which cannot target STAT1 for degradation showed that the 

A549/pr(IFN- ).GFP/V reporter cell-line was better able to support CPI- replication 

compared to the A549/pr(IFN- ).GFP reporter cell-line. However, when we then used 

FACS sorting to isolate IFN-inducing mutant viruses using the 

A549/pr(IFN- ).GFP/V reporter cells and FACS technique, we were still unable to 

select any IFN-inducing mutant viruses. Clearly, although we were able to isolate 

GFP-positive cells using FACS sorting, the isolated mutant viruses may not be able to 

replicate in the A549/pr(IFN- ).GFP/V reporter cell-line. 

We noted that within developing plaques in A549/pr(IFN- ).GFP/V cells (Figure 

3.3.2.1) very little virus antigen was detected in cells in which the IFN-  promoter 

had been activated (i.e. those cells which were positive for GFP). Possible reasons for 

this could be that an IFN independent antiviral state may have been induced in the 
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GFP-positive cells that inhibited virus protein synthesis and replication; and/or the 

GFP-positive cells may have been infected with DIs which because of their defective 

nature, could not subsequently be isolated (discussed further below). Since little virus 

antigen was detected in any cell that was positive for GFP expression in the PIV5 V 

expressing cells, it suggested that induction of an antiviral state did occur. This may 

have been because the activation of IRF-3 in the GFP-positive cells resulted in the 

expression of a subset of IRF-3 responsive ISGs independently of the action of IFN. 

To study this further, firstly, we investigated the establishment of an IRF-3-dependent, 

IFN-independent antiviral state by looking at virus replication in A549/pr(IFN- ).GFP 

(naive), A549/pr(IFN- ).GFP/V (these cells express sufficient PIV5 V to block IFN 

signalling but not enough to block IFN induction) and A549/Npro (IRF-3 deficient) 

cells following their infection with PIV5 V C (P2). Viral antigen was expressed at 

significantly higher levels in A549/Npro cells than in the A549/pr(IFN- ).GFP and 

A549/pr(IFN- ).GFP/V cells. Thus, blocking IFN response alone would not 

completely inhibit antiviral activities of the host cell. Therefore, viruses still have 

difficulties replicating in IFN deficient cells. However by blocking antiviral activity 

induced via IRF-3 might allow efficient virus replication. To investigate whether 

viruses that activated the IFN-  promoter could induce an IRF-3-dependent, 

IFN-independent antiviral response, we studied ISG56 expression, a key ISG that can 

also be induced directly via IRF-3. In other words, we examined whether virus stocks 

that were good inducers of IFN could, in the absence of an IFN response, also induce 

the expression of ISG56. In response to MuV Enders (DI) infection, ISG56 expression 

was clearly detected in A549 and A549/V cells, but not in A549/Npro cells where the 

IRF-3 pathway is blocked. We therefore conclude that ISG56 can be activated via

IRF-3, independent of IFN in response to virus infections.  

To conclude, constitutive expression of PIV5 V protein in the A549/pr(IFN- ).GFP/V 

reporter cell-line partially helped prevent an antiviral state induced via the IFN 

pathway. However, IFN-independent antiviral activities induced by IRF-3 have to be 

prevented to generate an ideal reporter cell-line permissive for the growth of 
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IFN-inducing mutant viruses. 

4.1.2 Modifications of the A549/pr(IFN- ).GFP/V reporter cell-line as a 

permissive cell-line for the growth of IFN-inducing mutant viruses

We have shown that blocking IRF-3 aids the replication of PIV5 V C (P2), by 

constitutive expression of BVDV-Npro. However, inhibition of IRF-3 activation also 

leads to inhibition of IFN-  promoter activation and consequently GFP expression. 

Consequently, it is not possible to knock out IRF-3 activation in the 

A549/pr(IFN- ).GFP cells and use of them to isolate IFN-inducing mutant viruses. 

Alternative strategies therefore need to be developed. 

There is evidence to show that ISG56 has a powerful antiviral function independent of 

IFN (Guo et al., 2000), but dependent of IRF-3 (Grandvaux et al., 2002). ISG56 is the 

major gene (Grandvaux et al., 2002; Dr Lena Andrejeva unpublished observations), if 

not sole (e.g. ISG54 and ISG60 (Grandvaux et al., 2002)), induced via IRF-3, 

dependent and independent of IFN. Current studies by Dr. Lena Andrejeva in our 

laboratory also showed that ISG56 is an essential ISG which inhibits PIV5 replication 

(data not shown). Therefore, we would try to express shRNA to ISG56 in the 

A549/pr(IFN- ).GFP/V5/V cell-line, which would knock down the expression of p56 

(the protein product of ISG56). Consequently, by inhibiting ISG56 activation, we 

should therefore significantly prevent the antiviral response induced by IRF-3, which 

may allow better replication of IFN-inducing mutant viruses in the 

A549/pr(IFN- ).GFP/V5/V reporter cells. 

4.1.3 Development of an A549/pr(NF- B).GFP reporter cell-line to isolate 

IFN-inducing mutant viruses

Activation of the IFN-  promoter is dependent on the cooperative binding of several 

transcription factors, of which IRF-3 and NF- B are crucial. We have confirmed that 

upon a viral infection, the host cell can establish an antiviral state via two major 

pathways, the IFN pathway and the IRF-3 pathway (IFN-independent). Therefore, in 
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order to avoid the host cell developing an antiviral activity, we could try to generate a 

reporter cell-line, which would express a reporter protein in response to IFN-inducing 

mutant virus infection, while any IFN-dependent or IFN-independent antiviral 

activities are prevented. One possibility is to isolate mutant viruses that induce IFN 

via the NF- B pathway so we could express GFP as a reporter protein under the 

control of NF- B promoter and knock out IRF-3 in these cells. The idea would be to 

generate an NF- B cell-line similar to the A549/pr(IFN- ).GFP reporter cell-line. To 

achieve this, we could replace the IFN-  promoter with the NF- B promoter sequence 

(Figure 4.1.3.1) in the pdl’pr(IFN- ).GFP lentivirus vector, and infect A549 cells with 

the pdl’pr(NF- B).GFP lentivirus. Lentivirus-infected cells may be subject to 

subcloning to obtain homogenous cell-lines and characterisation of the cell-lines 

performed if necessary. If an A549/pr(NF- B).GFP reporter cell-line was isolated, we 

would then engineer the cell-line to block both the IRF-3-dependent and 

IFN-dependent antiviral activities. As demonstrated previously, constitutive 

expression of PIV5 V targets STAT1 for degradation and therefore IFN signalling 

blocked. We have also provided evidence that by expressing BVDV-Npro, the IRF-3 

pathway is efficiently blocked. Therefore, by blocking both IFN signalling and IRF-3 

pathways to prevent any possible antiviral activities in an A549/pr(NF- B).GFP 

reporter cell-line, we may be able to isolate mutant viruses which induce IFN. 

4.1.4 The role of DIs in the induction of IFN 

As discussed previously (Chapter 4.1.1), possible reasons for the failure to isolate 

IFN-inducing mutant viruses could be: (i) IFN-inducing mutant viruses may induce an 

IRF-3-dependent antiviral state within the cell as a direct response to virus infection, 

and as a consequence, this IFN-independent antiviral activity may inhibit the 

replication of mutant viruses; (ii) activation of the IFN-  promoter may only occur 

following infections of cells with defective interfering viruses (DIs). As DIs always 

have deletions in their genomes, they will not be able to replicate in the absence of 

non-defective helper viruses, which are able to provide gene functions missing in the 

DIs. If this is the case, we may not be able to isolate any mutant viruses that activate 
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the IFN-  promoter. However, at this stage, we are not able to distinguish between the 

two possibilities of why we failed to isolate IFN-inducing mutant viruses, namely the 

induction of an antiviral state or the fact that DIs are an absolute requirement for IFN 

induction. The importance of DIs in the induction of IFN has been previously studied 

and it is believed that presence of DIs within the virus preparation can significantly 

induce high levels of IFN (Johnston, 1981; Poole et al., 2002; Strahle et al., 2006; 

Strahle et al., 2007). The ability of some SeV has long been known to strongly 

activate IFN-  is associated with DI genomes (Johnston, 1981; Poole et al., 2002). 

Studies have shown that the ability of SeV DIs to induce IFN is associated to (i) their 

ability to compete with their helper non-defective viral genomes for their replication 

substrate and consequently result in low levels viral products (e.g. SeV V and C 

proteins) which block the host IFN response to dsRNA; (ii) their copyback DI 

genomes; (iii) the level of DI genome replication (Strahle et al., 2006). Our own 

experiments suggest that DIs may be extremely important for activating the IFN 

response. For example, there are significant differences in the number of 

GFP-positive in the A549/pr(IFN- ).GFP reporter cells when infected with DI-rich 

(MuV Enders (DI)) and DI-poor (MuV Enders cl3/30) viruses. The majority (~90%) 

of the A549/pr(IFN- ).GFP reporter cells infected with MuV Enders (DI) were 

GFP-positive, however, less than 1% of the A549/pr(IFN- ).GFP reporter cells 

infected with MuV Enders cl3/30 were GFP-positive.  

The A549/pr(IFN- ).GFP/(V) reporter cell-lines are currently being used in our 

laboratory to follow the dynamics of IFN induction by viruses. Using these cell-lines, 

we have reported on the dynamics of IFN induction by a variety of negative strand 

RNA viruses, including PIV5, MuV and FLUAV. Infection assays on the 

A549/pr(IFN- ).GFP reporter cells have suggested that wildtype viruses or DI-poor 

virus stocks induce a very limited amount of IFN during the infection process. 

However, viruses enriched with DIs induced significant IFN production. It will be 

important to characterise the DIs and how they activate the IFN response at the 

molecular level. 
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Previous studies have shown that there is heterocellular induction of IFN in response 

to PAMPs (Apostolou & Thanos, 2008; Enoch et al., 1986; Hu et al., 2007; Senger et 

al., 2000; Zawatzky et al., 1985). However, the molecular basis of the cellular 

restriction of induction has not been carefully studied, and it has been generally 

assumed to be a property of the host cell; for example, it has been suggested that only 

cells at certain stages of the cell cycle may be responsive for the induction (Zawatzky 

et al., 1985) and recently it has been suggested that the availability of transcription 

factors (e.g. IRF2, IRF3 or p65) may interfere with the percentage of cells able to 

support induction (Apostolou & Thanos, 2008). However our data has clearly shown 

that the heterocellular induction of IFN is not restricted by either of these assumptions, 

given the fact that GFP can be induced in at least 90% of the A549/pr(IFN- ).GFP

cells. Further observations using the A549/pr(IFN- ).GFP cells have clearly shown 

that the heterocellular induction of IFN is stimulated by the properties of infecting 

virus used in the study.  

4.2 Other applications

The A549/pr(IFN- ).GFP/(V) reporter cell-lines are used to monitor the IFN 

induction activity by GFP expression, directly or indirectly induced by viruses, and 

also as a tool for fundamental studies of how viruses interfere with the host IFN 

system in our laboratory. 

The A549/pr(IFN- ).GFP reporter cell-line is now being used to screen for 

compounds which inhibit the IFN induction pathway in our laboratory. Compounds 

that are IFN induction inhibitors could be potentially developed as anti-inflammatory 

drugs for the treatment of symptoms caused by over-inflammation. Any compound 

that blocks IFN induction will be characterised and investigated to better understand 

the mechanism of inhibition. Similarly, if an A549/pr(NF- B).GFP reporter cell-line 

becomes available, we will use it to screen for compounds that inhibit IFN induction 

via the NF- B pathway. Again, such compounds are potential candidates as 

anti-inflammatory drugs. Furthermore, the reporter cell-lines may be developed as a 
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method to screen for compounds which have novel antiviral activities. For example, 

the A549/pr(IFN- ).GFP/(V) reporter cell-line will be pretreated with the compounds 

of interest then infected with wildtype virus to study the GFP expression. Any 

compound that is capable of inhibiting the viral IFN antagonists may result in the 

activation of the IFN-  promoter and then GFP expression in the reporter cells. 

4.3 Conclusion 

The aim of this project was to develop a cell-line, which could be used to rapidly 

isolate mutant viruses that induce IFN production. Having generated and 

characterised the A549/pr(IFN- ).GFP and its derivative reporter cell-lines, we 

confirmed that those cell-lines were potential reporter cell-lines that could be used to 

monitor the induction of IFN by either GFP expression or cell surface expression of 

V5 epitope. However unfortunately, we were not able to use these cell-lines to isolate 

mutant viruses that activate the IFN-  promoter. One of the major problems may be 

that IRF-3, which is essential for the activation of the IFN-  promoter, also induces 

the activation of a subset of ISGs which can establish an IFN-independent antiviral 

state within the cell as a direct response to virus infection. Consequently, this 

IFN-independent antiviral activity may inhibit the replication of any mutant virus 

which has been isolated using the reporter cell-line(s). To try and overcome this 

problem, we modified the cell-lines to generate cells deficient both in IFN and IRF-3. 

We found that by targeting IRF-3 (by expression of BVDV-Npro or NCV-NS3/4A) 

was not feasible, as the GFP expression was also inhibited (Chapter 3.2.2). However, 

ISG56 is known as one of the major ISGs that induced by IRF-3 (Grandvaux et al.,

2002; Dr Lena Andrejeva unpublished observations) and functions as a crucial factor 

to establish an antiviral state in host cells (Fensterl et al., 2008). Therefore we are 

currently expressing shRNA to knock out ISG56 in the reporter cell-lines and 

hopefully this may prevent the antiviral activities induced via IRF-3 and therefore 

make the reporter cell-lines permissive for the growth of IFN-inducing mutant viruses. 

Any isolated mutant viruses will subsequently be genetically analysed and 

functionally studied. Genetic studies of the defects or mutations of the viruses may 
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provide further insights into the interaction of viruses with the IFN system. Of course, 

it remains possible that IFN is only induced by DIs, and if so it may not be possible to 

isolate self-replicating IFN-inducing mutant viruses. This is also one of the issues that 

we are actively investigating in our laboratory. Finally, the A549/pr(IFN- ).GFP and 

its derivative reporter cell-lines, are being applied as tools to study the fundamental 

side of virus infection and IFN induction, as well as a method to screen for potential 

anti-inflammatory and antiviral compounds. 
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Figure 4.1.3.1



Figure 4.1.3.1 Schematic representation of the pdl’pr(NF- B).GFP lentivirus vector. 

The pdl’pr(NF- B).GFP lentivirus vector expressing GFP and puromycin resistant 
gene (pac) under the control of the NF- B promoter. An IRES is located downstream 
of GFP and upstream of pac, to allow for translation initiation in the middle of an 
mRNA sequence for protein synthesis. 
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