
Design, Implementation and Deployment of State
Machines Using a Generative Approach

Graham N.C. Kirby, Alan Dearle and Stuart J. Norcross

School of Computer Science, University of St Andrews,
North Haugh, St Andrews, Fife KY16 9SX, Scotland

{graham, al, stuart}@cs.st-andrews.ac.uk

Abstract. We describe an approach to designing and implementing
a distributed system as a family of related finite state machines,
generated from a single abstract model. Various artefacts are
generated from each state machine, including diagrams, source-
level protocol implementations and documentation. The state
machine family formalises the interactions between the
components of the distributed system, allowing increased
confidence in correctness. Our methodology facilitates the
application of state machines to problems for which they would not
otherwise be suitable.

We illustrate the technique with the example of a Byzantine-
fault-tolerant commit protocol used in a distributed storage system,
showing how an abstract model can be defined in terms of an
abstract state space and various categories of state transitions. We
describe how such an abstract model can be deployed in a concrete
system, and propose a general methodology for developing
systems in this style.

1 Introduction

The finite state machine (FSM) is a widely used abstraction for describing
and reasoning about distributed algorithms [1]. Here we address the
problem of developing a FSM formulation for an algorithm whose
generality precludes its expression as a single FSM. Instead, the algorithm
may be characterised as a family of related FSMs, each corresponding to a
particular value of some parameter to the general algorithm. Although
family members differ in their individual states and transitions, they share
a common structure dictated by the general algorithm.

Our approach is to develop an abstract model that captures the common
architecture of the family of FSMs. This can be executed with chosen
parameter values to generate any particular member of the FSM family.
The output of the abstract model is a FSM representation, from which
various concrete artefacts may be generated. These include textual FSM
descriptions, FSM diagrams and source-level algorithm implementations.

This approach can also be applied to the generation of a single extended
finite state machine [2,3] from the abstract model.

We describe the approach via the motivating example of a Byzantine-
fault-tolerant (BFT) commit algorithm. We think that the technique could

also be applied to development of other fault-tolerant protocols, making it
directly relevant to the area of architecting critical infrastructures.

2 Background

The motivation for this work arose during development of a particular
algorithm within a distributed storage system [4]. The aim of the ASA
project is to develop a resilient, logically ubiquitous storage infrastructure
with the following attributes:

• ease of use
• operation on non-trusted platforms
• flexibility allowing users to trade-off resilience of data,

performance and capacity
• scalability
• provision of an historical record of data

Several aspects of our approach follow directly from these goals. From the
scalability requirement, we avoid a physically centralised architecture.
From the requirement for operation on non-trusted infrastructure (i.e.
Byzantine fault-tolerance), we avoid reliance on any single node behaving
correctly. Thus all operations invoked by a user must be either intrinsically
verifiable, or involve the agreement of multiple independent nodes.

The high-level ASA architecture is shown in Fig. 1. File system
adapters connect individual user operating systems to a single distributed
abstract file system, which is in turn built on a generic distributed storage
layer. This storage layer is itself implemented on a peer-to-peer (P2P) key-
based routing infrastructure [5], which dynamically maps a given key to a
unique live node, even though nodes may join and leave the network at
arbitrary times.

Fig. 1. Architecture of motivating distributed storage infrastructure

We have developed a P2P application framework, the purpose of which is
to provide functionality useful in implementing various P2P style

applications, and to abstract over the details of particular P2P protocols.
This allows the P2P layer to be varied without affecting the layers above.
Currently we use a Java implementation of the Chord protocol [6]. In
Chord, all participating nodes are organised into a logical circle, and
messages routed around the circle. The protocol takes its name from the
chords across the circle, which are additional ‘short-cut’ links maintained
by each node, yielding routing performance that scales logarithmically
with the size of the network.

The generic key-based storage layer provides resilience by replicating
data and meta-data on multiple P2P nodes, and actively maintaining those
replicas as nodes fail, misbehave or leave the P2P overlay.

The API presented to users by the generic storage layer does not
include any destructive update operation; data can only be appended.
Internal processes manage ‘cleaning’ of the historical record, guided by
user policies controlling the trade-off between completeness of the record
and consumption of resources.

The generic storage layer provides a ubiquitous resilient mutable
storage facility for unstructured data, with an historical record. To support
the historical record, updates are appended rather than being destructive.
The main entities supported are data blocks, PIDs, and GUIDs:

• A data block contains unstructured data. Blocks have arbitrary size
and are immutable.

• A PID (Persistent Identifier) is used to denote a particular data
block. This might correspond to a particular version of a file, a
fragment of a file, or some other object.

• A GUID (Globally Unique Identifier) is used to denote something
with identity, such as a file or object.

Fig. 2. Logical entities in the generic storage layer

The main algorithms operating in the generic storage layer maintain two
distributed services: the data storage service (mapping a PID to an
immutable data block) and the version history service (mapping a GUID
to a sequence of PIDs). In each case, the service is structured as a service
endpoint communicating with a set of collaborating servers. Both services
are required to be Byzantine-fault-tolerant [7].

2.1 Data Storage

To store a new data block, the service endpoint calculates a unique PID for
the data using a secure hashing algorithm (SHA1 [8]). It then determines
which participating nodes should store replicas of the data, by applying a
globally known function that deterministically generates a set of keys from
a single PID. The service endpoint then uses the P2P routing layer to
locate the nodes managing those keys. In the current prototype, the key

generation function returns a set of keys that are evenly distributed in key
space. The number of keys is determined by the data replication factor.
Having located the replication nodes, referred to as the peer set for the
data key, the service endpoint sends a copy of the data to each of the hosts.
To achieve Byzantine fault tolerance, the storage operation completes
once (r-f) nodes have replied indicating that they have successfully stored
the data, where r is the replication factor and f is the maximum number of
faulty nodes that can be tolerated. In common with all Byzantine fault
tolerance schemes, r must be greater than 3f. This ensures that even if the
(r-f) replies include f misleading ones from faulty nodes, at least (f+1)
correctly functioning nodes have stored replicas of the data.

To retrieve a data block for a given PID, the replica nodes are located
as above. It is then sufficient to pick a single replica node (at random, or
guided by some ‘closeness’ metric) and request the data block from it. The
secure hash function can then be used to verify that the block received
does indeed correspond to the requested PID. If this check fails, another
node can be tried.

2.2 Version History

The motivating example for this paper is provided by the commit protocol
used to record a new GUID-PID mapping in the version history. The
algorithm is executed by all members of the current peer set for the
specified GUID; these are the nodes on which that GUID’s version history
is replicated.

Peer set members are located in a similar manner to that already
described for the data storage service. Since the addition of a new version
to the version history is an update operation, it is necessary to operate a
serialisation algorithm to ensure that a globally consistent view emerges in
the face of concurrent updates. Otherwise, it would be possible for
different members of the peer set for a given GUID to record different
orderings in the version history. This means that it is necessary for the
members of each peer set to maintain contact with one another, and to
adjust their views of the set membership as the topology of the P2P
network changes. When a request to store a new version is received by the
members of a peer set they execute a commit protocol amongst
themselves, only completing once all have agreed which is the next
version to be recorded in the global history. Again, this protocol is tolerant
of Byzantine nodes in the peer set.

On retrieval of a particular version, it is not possible for the service
endpoint to verify the integrity of the result from any individual member
of the peer set, since there are no constraints on what PID may be mapped
to by a given GUID. It is thus necessary to compare the results as they
arrive from the peer set members, and to select the (only possible) one that
is returned consistently by at least f+1 nodes.

We now sketch the operation of the commit protocol1. To simplify peer
set maintenance, all members of a peer set have equal status, so that there
is no need for a leader election process when membership changes. The

1 Further details are available at http://asa.cs.st-andrews.ac.uk/abstractmodel/.

protocol is essentially a majority voting consensus algorithm, in which
peer set members vote among potentially competing update requests for
the GUID. The result is an agreed ordering of the requests among all peer
set members. This agreed ordering is achieved as follows:

The protocol proceeds in two phases, involving the counting of vote
and commit messages among peer set members respectively. When a
client issues an update for a particular GUID, a request is sent to all
members of the peer set for that GUID. Each peer set member votes for
particular updates in the order in which it receives the requests. Voting
involves sending a vote message to all of the other members. Once a
particular candidate update receives 2f+1 votes, all members agree that the
update should be the next to be appended to the global history. This
agreement is established by the exchange of commit messages. Consistent
ordering arises since each committed update has been approved by a
majority of the non-faulty members (of which there are between 2f+1 and
3f+1), and by allowing an update voted for by a sufficiently high number
of other peer set members to proceed ahead of a previous locally selected
update. Since there is no guarantee that any one of a set of concurrent
updates will gain enough votes to reach this threshold, the algorithm may
deadlock. It is thus necessary for the service endpoint to operate a
timeout/retry scheme. Various schemes such as random or exponential
back-off, or fixed or random server ordering, could be used to attempt to
reduce the probability of repeated deadlocks.

The protocol is tolerant to Byzantine-faulty behaviour by members of
the peer set, to the extent that at least 3f+1 members are needed to give
tolerance to f failures. Hence for a replication factor r, yielding r replicas
of each version history, the protocol tolerates at most floor((r-1)/3) faulty
participants. Some examples of practical values for r and f are given in
section 4.4.

Background processes regenerate missing replicas and replace faulty
nodes, thus here the limit of f tolerable failures applies to the duration of a
particular execution of the commit protocol, rather than to the lifetime of
the system. Additional replicas need to be generated whenever the set of
nodes storing replicas of a given data item is temporarily reduced. This
may occur due to fail-stop faults, which are straightforwardly detected
through timeouts, or due to the detection of malicious nodes. Such nodes
are eventually detected, with high probability, using periodic cross-checks
between replica nodes.

3 General Approach to State Machine Generation

3.1 Mapping Algorithm to State Machine

Initially, we designed a single generic algorithm that appeared to meet the
requirements outlined in the previous section, parameterised by the
replication factor. In an effort to gain greater insight into its operation, we
then developed a FSM model for a selected replication factor—four, being
the simplest scheme to yield a BFT algorithm. Although neither the

algorithm (about 500 lines of pseudo-code) nor the FSM (33 states with 3-
4 transitions from each) is especially complex, they are non-trivial.

The original algorithm maintains the following variables for every
ongoing commit operation:

• update_received: a flag recording whether an update request for the
given update has been received

• votes_received: a count of vote messages received
• vote_sent: a flag recording whether a vote message has been sent
• commits_received: a count of commit messages received
• commit_sent: a flag recording whether a commit message has been

sent
• could_choose: a flag recording whether a future update could be

voted for: this is false if another update is currently in progress
• has_chosen: a flag recording whether the update currently in

progress was voted for locally.

The upper bound on both votes_received and commits_received is one less
than the number of participants, which itself is given by the replication
factor. Thus in total there are five boolean variables and two integer
variables that range from 0 to r-1 for replication factor r.

In the FSM model, each peer set member maintains a separate FSM
instance for every ongoing update. Each instance encodes the possible
values of the variables listed above in its states. For a replication factor of
4, there are 512 possible states, comprising all combinations of 5 boolean
variables and 2 integer variables ranging from 0 to 3. Of these 512 states,
only 33 are actually reachable in practice. Fig. 3 shows three states and
some state transitions from our original state diagram2. The names of the
states encode the number of votes received, votes sent, commits received
and commits sent. In the diagram, a transition from state 1/0/1/0 to 2/1/1/1
is triggered by the receipt of a vote message (labeled <-vote), since the
threshold for committing has been reached (in this case 2 votes and 1
commit received); the node sends a commit message and moves into the
state 2/1/1/1.

Fig. 3. Excerpt from FSM for replication factor 4

2 The diagram was constructed at an early stage in the design process, at which

point it appeared that only four variables were necessary.

Even though we are satisfied (informally) that the FSM is correct, there is
no strong correlation between the code and the FSM—thus its creation
achieves little in terms of building confidence in the algorithm.

The main reason for the disparity between the FSM and the algorithm is
that the former is specific to a fixed replication factor, while the algorithm
is generic. The individual states in the FSM correspond to the counts of
messages that have been sent and received at particular points during the
algorithm’s execution. The maximum values of these counts are dependent
on the replication factor, thus the number of states in the FSM is also
dependent on the replication factor. This implies that it is not possible to
construct a single FSM that is equivalent to the generic algorithm.

3.2 A Spectrum of Possible State Machines

In this approach, the process of transforming an algorithm to a FSM
involves identifying particular ranges of values for the algorithm’s internal
variables, and mapping them to states. A given range corresponds to an
equivalence class, in the sense that the algorithm must behave identically
for all values within that range, since it maps to a single state in the FSM.

In the commit algorithm described, each state in the FSM corresponds
to a single value for each of the discrete (boolean and integer) variables.
Thus the FSM encodes in its states all possible variable values. The
original algorithm and the resulting FSM may be viewed as extremes on a
spectrum trading off number of states against number of variables. The
original algorithm has, effectively, one state and many variables, while the
FSM has many states and no variables.

Intermediate points on this spectrum are also possible. For example,
extended finite state machines (EFSMs) allow transitions and actions to
depend on internal variables as well as states [2,3]. In an EFSM
formulation of an algorithm, the original variable values that map to a
given state are not restricted to an equivalence class, since the transitions
and actions from that state may depend on the internal variables. This
means that an EFSM typically has fewer states than a corresponding FSM.

For a given algorithm, a FSM is likely to be simpler in structure than an
EFSM, but is more likely to suffer from state space explosion. The other
significant difference is that a single EFSM may be used in place of a
family of related FSMs. In the main part of this paper we focus on the use
of FSMs; section 5.3 compares this with the use of EFSMs, and argues
that the generative approach is also beneficial for EFSMs.

3.3 Generation Process

To unify the FSM model and the generic algorithm, the FSM must be
generalised in some way. The key insight is to identify how both the state
space and the state transitions are determined by the replication factor. The
state space is defined straightforwardly by the various combinations of the
possible message counts, themselves bounded by the replication factor.
For transitions, the important point is that some denote simple increments
in message counts, whereas others denote actions to be performed—such

as the sending of messages to other participants in the distributed
algorithm. We term the latter category of transitions phase transitions. By
identifying where in the state diagram phase transitions occur, and relating
these to the replication factor, it is possible to produce a generic
description defining a family of related FSMs.

For our commit algorithm, we proceeded as follows:

• We developed an abstract model that captured the common
structure among the members of the FSM family.

• We executed the abstract model with a replication factor of 4 to
generate an abstract representation of a specific FSM, which we
then checked for consistency with the original FSM.

• Once satisfied with the correctness of the abstract model, we
developed tools to generate various FSM artefacts, including
diagrams and source-level implementations.

The overall generation process is illustrated in Fig. 4.

Fig. 4. State machine generation scheme

The abstract model describes the components of the states, the rules for
state update on message receipt, and the actions to be carried out when
particular state transitions occur. The abstract model is implemented in
Java by a class AbstractModel. The method generateStateMachine() takes
the replication factor as a parameter, and generates a representation of the
corresponding FSM in the form of an instance of class StateMachine. The
FSM contains a collection of states linked by transitions. Both states and
transitions may be annotated for documentation purposes. Transitions also
refer to associated actions to be performed by the FSM. These classes are
outlined in Fig. 5.

class AbstractModel {
 StateMachine generateStateMachine(int replication_factor);
}
class StateMachine {
 String[] messages;
 State[] states;
 State start_state;
 State finish_state;
}
class State {
 String state_name;
 Transition[] transitions;
 String[] annotations;
}
class Transition {
 State resultant_state;
 String[] actions;
 String[] annotations;
}

Fig. 5. Corresponding Java classes

Fig. 6 shows an example of the use of these classes; the code fragment
generates a particular FSM with replication factor 4, and uses another
class, TextRenderer, to render it in a textual format.
AbstractModel abstract_model = new AbstractModel();
StateMachine machine_4 = abstract_model.generateStateMachine(4);

println(new TextRenderer().render(machine_4));

Fig. 6. Generating a FSM

3.4 Defining the Abstract Model

The abstract model is a model of the structure common to all members of
the FSM family. The steps involved in the generation of a particular
member of the family—an instance of StateMachine—are as follows:

1. generate a data structure containing representations of all possible
states

2. for each state, generate the transitions resulting from all possible
messages, and record in the data structure

3. prune any unreachable states
4. combine any sets of equivalent states

The final data structure forms the resulting StateMachine instance. Of
these steps, 1, 3 and 4 can be performed fairly mechanically, whereas step
2 embodies the core logic of the algorithm.

Generating possible states. To generate all possible states, the state space
must be defined in terms of the problem parameters—in our case, the
replication factor. The state comprises the union of the 5 boolean and 2
integer variables listed in section 3.1. Hence the space of possible states,
containing all combinations of values, has the size 25r2. This gives 512
states for the smallest sensible value of r=4. The generateStateMachine()
operation iterates through all of these combinations, generating a list of
State objects. A simplified example of the data structure at this stage is
shown in Fig. 7.

Fig. 7. Data structure after step 1

Generating transitions. The core of the abstract model defines the
transitions between states. For any given state, it determines the effects of
each of the possible messages, in terms of actions performed and the
resulting state. Given that a state transition represents a change in the
variables tracking the messages sent and received, a transition can be
categorised as either a simple state transition or a phase transition.

On a simple state transition, the sole effect is to increment one of the
received message counts; no action is performed. A phase transition
occurs when the receipt of a message causes some threshold to be reached,
triggering an action. For example, in the commit algorithm, when the total
number of votes sent and received reaches the number of non-faulty
nodes, a commit message is sent to all the nodes. Fig. 8 illustrates this
distinction for an abstract state space: thin arrows show simple transitions,
whereas thick arrows show phase transitions.

Fig. 8. Simple transitions and phase transitions

The second step in the generation of a FSM is to iterate over each of the
state representations in the data structure generated during the first step.
For each state, the abstract model determines which transitions would
result from each of the possible messages, if received by the running FSM
in that state. Each transition, along with any corresponding actions, is
recorded in the FSM data structure.

Fig. 9 shows an abstract representation of the entire abstract model,
which defines how the FSM should react on receipt of each of the possible
messages, depending on its current state. In each case the reaction is
defined in terms of reads and writes to the state variables, and outgoing
messages to be sent.
update message
 set update_received
 if could_choose and !has_chosen and vote_sent:
 send vote message, set vote_sent, unset could_choose
 if total votes sent and received reaches threshold:
 if commit_sent:
 send commit message, set commit_sent
 set has_chosen
 send not free message

vote message
 increment corresponding count
 if total votes sent and received reaches threshold:
 if !vote_sent:
 if could_choose:
 set has_chosen, send not free message
 send vote message, set vote_sent, unset could_choose
 if commit_sent:
 send commit message, increment count

commit message
 increment corresponding count
 if total commits received reaches threshold:
 if !vote_sent:
 send vote message, set vote_sent, unset could_choose
 if commit_sent:
 send commit message, set commit_sent
 if has_chosen:
 send free
 finished

free message
 if !vote_sent and !has_chosen:
 set could_choose
 if update_received:
 send vote message, set vote_sent, unset could_choose
 if total votes sent and received reaches threshold:
 if !commit_sent:
 send commit message, set commit_sent
 set has_chosen
 send not free message

not free message
 if !vote_sent and !has_chosen:
 unset could_choose

Fig. 9. Abstract model pseudo-code

The abstract model pseudo-code is now used as a guide to implementation.
Fig. 10 shows the implementation of the operation
generateTransitionOnVote(), defined within the abstract model,
determining the transitions from a given state on receipt of a vote

message3. The control decisions that would be taken dynamically in a
generic algorithm are here being taken at generation time.
void generateTransitionOnVote(State s) {
 List<String> actions = new ArrayList<String>();
 try {
 State s1 = targetOnVoteReceived(s, actions);
 if (reachedNonFaultyThreshold(s1.getTotalVotes())) {
 // Phase transition: vote threshold exceeded.
 if (!s1.getVoteSent()) {
 if (s1.getCouldChoose()) {
 s1 = targetOnHasChosenSet(s1, actions);
 s1 = targetOnNotFreeSent(s1, actions);
 }
 s1 = targetOnVoteSent(s1, actions);
 }
 if (!s1.getCommitSent()) {
 s1 = targetOnCommitSent(s1, actions);
 }
 }
 s.recordTransition(Message.VOTE, actions, s1);
 }
 catch (InvalidStateException e) {
 // Ignore - message not applicable in this state.
 }
}

Fig. 10. Implementation of part of abstract model

The list actions is used to accumulate representations of any outgoing
messages to be sent as the full consequences of receiving the vote message
are elaborated. Utility methods such as targetOnVoteReceived() and
targetOnVoteSent() simply calculate the state reached as a result of the
corresponding state variable change. A series of updates to the state
variable s1 generate all the required state variable changes following
receipt of the vote message. Finally, the resulting state transition is
recorded in the FSM representation of the current state, together with any
necessary actions.

Fig. 11 shows the data structure after representations of the state
transitions have been generated.

Fig. 11. Data structure after step 2

3 Similar logic in the abstract model generates documentation describing the states
and the rationale for each transition.

Pruning unreachable states. Once the complete transition graph has been
generated, a reachability analysis is performed. Depending on the
application, there may exist states that could never be reached via
transitions from the start state. For example, the commit algorithm
completes as soon as f+1 commit messages have been received, thus there
are no reachable states where the commit count exceeds f. For simplicity,
such states are removed from the generated model. With a replication
factor of 4, this step reduces the state space from its initial size of 512 to
48. Fig. 12 illustrates the result of pruning.

Fig. 12. Data structures before and after step 3

Combining equivalent states. The generated FSM may be further
simplified by identifying and combining sets of states that are equivalent,
in the sense that the outgoing transitions from each perform the same
actions and lead to the same destination state. With a replication factor of
4, this process results in 33 states. Fig. 13 illustrates the result of this step.

Fig. 13. Data structure before and after step 4

3.5 FSM Artefacts

The abstract representation of a FSM generated by the abstract model can
be rendered to yield various concrete artefacts, including:

• a simple textual representation
• a state transition diagram
• source code for an implementation of the corresponding protocol

Fig. 14 shows the textual representation of an example state and its
outgoing transitions. The name of the state encodes the variable values
(update_received, votes_sent etc) in that state. The commentary describing
the state in terms of the generic algorithm is entirely automatically
generated, derived from annotations specified within the abstract model
implementation. These annotations were omitted from Fig. 10 for brevity;
in the full code, each successive assignment to the state variable s1 is
accompanied by a call to a method that records a textual annotation
describing the reason for the change.
state: T/2/F/0/F/F/F

Description:

Have received initial update from client.
Have not voted since another update has already been voted for.
Have received 2 votes and no commits.
Have not sent a commit since neither the vote threshold (3) nor the
external commit threshold (2) has been reached.
May not choose since another ongoing update has been voted for.
Have not chosen this update since another ongoing update has been
chosen.
Waiting for 1 further vote (including local vote if any) before
sending commit.
Waiting for 2 further external commits to finish.

Transitions:

 message: VOTE
 action: ->vote
 action: ->commit
 transition to: T/3/T/0/T/F/F

 message: COMMIT
 transition to: T/2/F/1/F/F/F

 message: FREE
 action: ->vote
 action: ->commit
 action: ->not free
 transition to: T/2/T/0/T/T/T

Fig. 14. Example generated state description

A FSM may be rendered as a state diagram by generating an XML
diagram representation that can be imported into a diagramming tool (in
this case, Together [9]). Fig. 15 shows an example, with a small part of the
diagram magnified.

Fig. 15. Automatically rendered diagram of generated FSM

A FSM can also be rendered, automatically, as a source code
implementation. Fig. 16 shows a fragment of generated code, comprising
part of the handler method for incoming vote messages. Whenever a vote
message for a particular GUID/PID update is received by a peer set
member, the receiveVote() method of the corresponding FSM instance is
invoked.

The body of the handler message consists of a large case switch on the
current machine state, with a branch for each possible state. Each state is
represented by a generated variable of the form F-0-F-0-F-F-F, encoding
the corresponding values of the state variables. Although the structure
embodied in the generated code is equivalent to that shown in Fig. 14, its
organisation differs in that all possible states are grouped under each
message, rather than vice-versa.

As illustrated in all of the branches shown, the result of executing a
particular branch is to move the FSM into the appropriate new state. In
some branches, as illustrated in the third branch, a number of external

actions are also performed—in this case, the sending of a commit message
to the other members of the peer set. This corresponds to a phase
transition.
void receiveVote() {

 switch (getState()) {

 case (F-0-F-0-F-F-F) : {
 setState(F-1-F-0-F-F-F);
 break;
 }
 case (F-0-F-0-F-F-T) : {
 setState(F-1-F-0-F-F-F);
 break;
 }
 ...
 case (T-1-T-1-F-T-T) : {
 sendCommit();
 setState(T-2-T-1-T-T-T);
 break;
 }
 ...
 }
}

Fig. 16. Example generated source code

Commentary on states and transitions, as illustrated in Fig. 14, is also
included in the generated code.

4 Use in Practice

Having outlined our general approach to designing and implementing a
distributed algorithm as a family of FSMs, we now discuss several
practical issues:

• how to write a source code generator to produce an implementation
from a FSM representation

• when to perform source code generation
• how to incorporate generated code into an application
• the execution cost of generation

4.1 Writing Generative Code

Generative code, which produces a representation of new source code
when executed, is often difficult to write and to understand. Typically,
generative code involves either much hard-to-read string manipulation, or
operations on an abstract syntax tree. In either case, discerning the
intended structure of the generated code from the generator can be
challenging.

Fig. 17 illustrates the most straightforward approach, using a string
buffer to accumulate the code being generated. The code fragment shown
here contains most of the logic involved in rendering a FSM as a source
code implementation. It iterates through each of the message types defined
for the FSM, and generates a handler method for each one. Within each

handler, a case switch over all states is generated—Fig. 16 illustrates one
such handler.
for (String m : machine.getMessages()) {

 buffer.append("void receive" + m + "() {\n");
 buffer.append(" switch (getState()) {\n");

 for (State state : machine.getStates()) {

 Transition t = state.getTransition(m);

 buffer.append(" case (" +
 state.getStateName() + ") : {\n");
 buffer.append(" setState(" +
 t.getResultantState().getStateName() + ");\n");
 buffer.append(" break;\n");
 buffer.append(" }\n");
 }

 buffer.append(" }\n");
 buffer.append("}\n");
}

Fig. 17. Generative code for state machine implementation

Such generative code is undoubtedly unwieldy. We have previously
experimented with the development of GUI tools to assist with the
construction of generative code [10]. Here we take a simpler approach,
restricting ourselves to string manipulation, with a small set of utility
methods to assist with legibility of both generative and generated code, as
outlined in Fig. 18.
// Adds the specified items to the output buffer.
void add(StringBuffer buffer, String... items);

// Adds the specified items to the output buffer, with newline.
void addLn(StringBuffer buffer, String... items);

// Opens a new block and increases indent level.
void enterBlock(StringBuffer buffer);

// Exits current block and decreases indent level.
void exitBlock(StringBuffer buffer);

// Increases the indent level.
void increaseIndent();

// Decreases the indent level.
void decreaseIndent();

// Resets indentation.
void resetIndent();

Fig. 18. Generation utility methods

While apparently trivial, the use of such methods makes a significant
difference to legibility, by reducing the amount of explicit string
concatenation code, and by avoiding the need to control indentation of the
generated code via white space defined explicitly in the generative code.
Without such simple abstractions, there is a direct trade-off between
readability of generative and generated code. Fig. 19 illustrates the same
generative code as Fig. 17, using these abstractions.

for (String m : machine.getMessages()) {

 addLn(buffer, "void receive" + m + "()");
 enterBlock(buffer);
 addLn(buffer, "switch (getState())");
 enterBlock(buffer);

 for (State state : machine.getStates()) {

 Transition t = state.getTransition(m);

 addLn(buffer, "case (" + state.getStateName() + ") :");
 enterBlock(buffer);
 addLn(buffer, "setState(" +
 t.getResultantState().getStateName() + ");");
 addLn(buffer, "break;");
 exitBlock(buffer);
 }

 exitBlock(buffer);
 exitBlock(buffer);
}

Fig. 19. Generative code using simple abstractions

It would also be possible for generative code to manipulate an abstract
syntax representation. In practice, we have found that this yields less
intelligible generative code.

4.2 When to Perform Generation

Given the ability to generate on demand an implementation of a FSM
solution to a distributed algorithm, for a given parameter value, there are
several options as to when such generation could be performed:

• once, during the initial development of the overall application of
which the solution forms part

• every time the algorithm needs to be executed
• whenever a new value of the parameter is encountered

Clearly, the appropriate point on this spectrum depends largely on the
degree to which the required parameter value varies. We have
incorporated a generated FSM solution for the distributed commit
algorithm into the ASA infrastructure. Since the replication factor is
expected to change only rarely, we executed the abstract model with the
default replication factor, generated source code from the resulting FSM,
and copied that into the code-base.

Should we wish in future to support dynamic change to the replication
factor, this may be achieved by dynamically generating implementations
on the fly. Since such changes are not expected to be frequent in the
distributed storage application, the amortised cost of such regeneration
should not be significant.

Other variants on generation policy include generating an
implementation each time the application is initialised, and caching
generated implementations to avoid the need for regeneration of versions
that have been encountered previously [11].

4.3 Incorporation of Generated Code

For one-off generation followed by copying and pasting into an existing
code base, there is no real issue regarding incorporation of generated code
into the surrounding application. Once added, the generated code is treated
in exactly the same way as previously existing code during the build
process.

For code generated on the fly, however, it is necessary to compile, load
and bind to the resulting executable code dynamically. Various approaches
have been used [11-13]; more recently, Java 6 has provided explicit run-
time access to the compiler [14].

4.4 Execution Cost

As indicated above, given the expected styles of use, the execution cost of
generation is unlikely to be particularly important. Nonetheless, we
performed a short series of measurements, for FSMs supporting various
replication factors in our distributed storage application. The results are
shown in Table 1, which lists the characteristics of FSMs of various
complexities. The columns f and r show the degree of Byzantine-fault-
tolerance and replication factor respectively. The next two columns show
the numbers of states before and after pruning. The final column shows
the approximate wall-clock times taken to generate the FSMs on an Apple
MacBook Pro (3GB, 2.33GHz Intel Core 2 Duo).

Table 1. Times to generate state machines of various complexities

f r initial states final states generation time (s)
1 4 512 33 0.10
2 7 1568 85 0.12
4 13 5408 261 0.38
8 25 20000 901 2.2
15 46 67712 2945 19.1

The size of the initial state space, before pruning, is proportional to the
square of r, the replication factor, since the state space encodes two
independent variables with r legal values. The size of the final pruned
state space appears to grow slightly slower than r2. The relationship
between state space size and generation time cannot be asserted with any
confidence from this small sample. The pragmatic conclusion, however, is
that generation time does not appear likely to be a limiting factor in the
application of this technique.

We have not yet compared the execution efficiency of a running FSM
implementation with that of a non-FSM solution. However, we do not
expect any significant difference, given that very little computation is
required to respond to an incoming message in an algorithm of the style
suitable for the FSM treatment.

5 Methodology

We conclude our discussion of this approach by summarising the key
features, identifying a general methodology that could be applied to
problems other than the original motivating distributed storage system,
and speculating on the scope of such applicability.

5.1 A General Methodology

To recap, the main steps involved in the approach, which we have
illustrated in the context of the commit algorithm, are:

• identify the core variables used in the algorithm, which in
combination define the state space

• identify the messages that can be received by a FSM
• identify the phases intrinsic to the algorithm, and the actions that

should result from phase transitions
• define an abstract model that captures the state transition logic
• encode the above in the form of an abstract model implementation

that can be used to generate FSMs for various parameter values
• define renderers to produce various concrete artefacts from an FSM

representation, the most important of which is a source code
renderer that can generate specific FSM implementations

The resulting abstract model can then be used to produce implementations
as required.

Since completing the abstract modelling process for the ASA
distributed commit algorithm, as illustrated throughout the paper, we have
refined the infrastructure to make it more generic, and thus applicable to
other problems. Since much of the manipulation of FSM representations is
independent of the details of the algorithm being modelled, the
implementation of these steps was extracted into an abstract super-class.
Problem-specific abstract models can be derived from this.

Rather than containing hard-wired definitions of the state components
and messages, these are now represented by a data structure with which
the generic abstract model is initialised. Fig. 20 shows how the abstract
model for the commit algorithm is now configured. Each instance of
IntComponent defines the maximum value of the corresponding state
component.

StateComponent[] state_components = {
 new IntComponent("votes_received",
 replication_factor - 1),
 new IntComponent("commits_received",
 replication_factor - 1),
 new BooleanComponent("update_received"),
 new BooleanComponent("vote_sent"),
 new BooleanComponent("commit_sent"),
 new BooleanComponent("could_choose"),
 new BooleanComponent("has_chosen")};

String[] messages = {"update", "vote",
 "commit", "free", "not_free"};

initAbstractModel(state_components, messages);

Fig. 20. Initialising generic abstract model

The source code renderer is now completely generic with respect to the
algorithm being modelled, so it is possible to apply the methodology to
new algorithms without writing any new generative code. The rendering
code is parameterised with a class defining appropriate action methods,
such as sendCommit() in Fig. 16. The generated class inherits from this
specified class, allowing it to access the action methods.

5.2 Applicability of the Methodology

We believe that the technique of generating FSM families is applicable to
a range of distributed applications that can be broadly characterised as
message counting algorithms. There are a number of different algorithms
that may be characterised in this manner including consensus algorithms,
distributed termination algorithms, distributed garbage collection
algorithms, and threshold signature algorithms.

The algorithm with which we demonstrated the technique in this paper
is essentially a consensus algorithm. Perhaps the best known consensus
algorithm is that proposed by Chandra and Toueg [15]. In that algorithm,
each of n processes counts rounds with a rotating coordinator. In each
round, the participants and the coordinator exchange beliefs upon which
they are trying to agree. Each process maintains three pieces of state: the
actual decision, a counter storing the round number, a belief containing an
estimate of the decision and the round number in which the decision was
made. Like the algorithm described in this paper, the state held at each
node and the messages themselves are relatively simple and amenable to
being processed by a FSM.

A distributed computation may be defined as being terminated when
each process in it has locally terminated and no messages are in transit.
Alternately this may be defined as when the number of messages sent is
equal to the number of messages received [16]. Consequently, most
distributed termination algorithms are based upon message counting.
Furthermore, the state carried in both the messages and held by the
processes is relatively simple. We therefore believe that the techniques
described in this paper may be applied to such algorithms.

Tel and Mattern [17] have shown that at least one distributed
termination algorithm can be automatically derived from a distributed
garbage collection algorithm. In [18], Blackburn et al demonstrate the

reverse mapping, that is the combination of any known distributed
termination algorithm with a centralised garbage collector to produce a
distributed garbage collector. It is therefore unsurprising that we believe
that the technique described here can also be applied to distributed
garbage collection. However, the problems of doing so may outweigh the
benefits. In [18] an algorithm called task balancing is described, in which
each site counts (a) the number of tasks of each job sent by each site to
each other site, and (b) the number of tasks received by and completed at
each site. The encoding of such data structures in a FSM, even one that
has been mechanically derived, may prove overly complex due to an
explosion in the state space. In such cases, EFSMs may be useful, as
discussed in the next section.

5.3 Generating Extended Finite State Machines

As mentioned briefly earlier, the process of mapping an algorithm to a
state machine formulation can be thought of as involving a spectrum of
target state machines. At one end of the spectrum lies the original
algorithm, viewed as a state machine with a single state and multiple
internal variables. At the other end lies the FSM or family of FSMs, with
multiple states and no internal variables. At intermediate points lie various
EFSMs, with a number of internal variables and fewer states than the
FSMs. The designer selects an appropriate point on this spectrum through
decisions on which variables in the original algorithm should be mapped
to variables in the state machine, and which should be encoded in the state
space.

The commit protocol can be implemented as an EFSM in which the
message counting variables are mapped to EFSM variables. The effect is
to coalesce the states within each state phase of the original FSM, so that
all state transitions in the EFSM correspond to phase transitions in the
FSM. For example, all of the FSM states that differ only in the number of
vote messages below the threshold become a single EFSM state. The
resulting EFSM contains 9 states.

Besides the reduction in state space size, the other benefit of the EFSM
formulation in this example is that the EFSM is generic with respect to the
replication factor. Its states do not encode the values of the message
counts, the possible values of which depend on the replication factor, but
simply whether or not they have reached their respective thresholds. The
state space of the EFSM is thus not dependent on the replication factor.

Nonetheless, it is not straightforward to construct the EFSM in this
example. It appears that it may still be beneficial to use a similar approach
to that outlined for FSMs, defining an abstract model and then generating
an EFSM from it.

6 Related Work

This work is obviously strongly related to the extensive literature on
FSMs, for example [1,19]. Traditional FSMs are used to model

computations with fixed numbers of states. EFSMs [2] permit greater
flexibility, by allowing transitions to depend on internal variables.

[3] describes the generation of FSMs from abstract state machines, in
which the states of an abstract state machine are grouped into hyperstates,
corresponding to FSM states. The algorithm is approximate in that some
links or states may be missing; since the method is targeted at very large
state spaces this is an acceptable trade-off for tractability.

Architectural style languages [20,21] allow families of related systems
to be characterised in terms of their shared high level system structure, and
specialised to produce particular instances. The work described here is less
general since it focuses explicitly on the FSM paradigm; the generic
abstract model could be thought of as one particular architectural style.

We have previously used generative techniques to build generic object
browsers [11] and to support highly generic strongly typed code [12].

An alternative strategy is to apply formal specification and verification
techniques to fault-tolerant algorithms. For example, in [22] a protocol is
specified as logical assertions and verified using an interactive proof
checker. In [23] an extended actor algebra is used to specify fault-tolerant
software architectures. These approaches offer the possibility of formal
proofs, whereas here we intend to provide a less formal aid to
understanding, at significantly lower cost.

7 Conclusions

We have outlined an approach to generating an EFSM, or a family of
related FSMs, and corresponding protocol implementations from a
unifying abstract model. In the ASA project this has allowed us to produce
a FSM style description of our original BFT distributed commit algorithm.
This has increased our confidence in the correctness of the algorithm;
indeed several errors in the original version were identified during the
process.

We have applied this approach to a specific BFT distributed algorithm,
and believe the approach to be applicable to other critical infrastructure
problems involving message-counting protocols where the number of
states is dependent on a set of parameters.

8 Acknowledgments

This work was supported by EPSRC grant GR/S44501/01 and by a Royal
Society of Edinburgh / Scottish Executive Support Research Fellowship.
Markus Tauber and Rob MacInnis contributed to the development of the
distributed commit algorithm.

9 References

1. Minsky, L.M.: Computation: Finite and Infinite Machines. Prentice Hall
(1967)

2. Cheng, K.T., & Krishnakumar, A.S.: Automatic Functional Test Generation
using the Extended Finite State Machine Model. In: 30th Design Automation
Conference, Dallas, Texas. pp.86-91 ACM (1993)

3. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating Finite
State Machines from Abstract State Machines. ACM SIGSOFT Software
Engineering Notes, 27,4:112-122 (2002)

4. Kirby, G.N.C., Dearle, A., Norcross, S.J., Tauber, M., Morrison, R.: Secure
Location-Independent Storage Architectures (ASA). http://asa.cs.st-
andrews.ac.uk/ (2004)

5. Dabek, F., Zhao, B.Y., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a
Common API for Structured Peer-to-Peer Overlays. In: 2nd International
Workshop on Peer-to-Peer Systems (IPTPS '03), Berkeley, CA, USA. (2003)

6. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In: ACM
SIGCOMM 2001, San Diego, CA, USA. pp.149-160 (2001)

7. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, 4,3:382-401 (1982)

8. Eastlake, D., & Jones, P.: RFC 3174 - US Secure Hash Algorithm 1 (SHA1).
http://www.faqs.org/rfcs/rfc3174.html (2001)

9. Borland: Borland Together. http://www.borland.com/us/products/together/
(2007)

10. Kirby, G.N.C., Connor, R.C.H., Morrison, R.: START: A Linguistic
Reflection Tool using Hyper-Program Technology. In: Persistent Object
Systems: 6th International Workshop on Persistent Object Systems (POS6),
Tarascon, France. Workshops in Computing pp.355-373 Springer-Verlag
(1994)

11. Dearle, A., & Brown, A. L.: Safe Browsing in a Strongly Typed Persistent
Environment. Computer Journal, 31,6:540-544 (1988)

12. Kirby, G. N. C., Morrison, R., Stemple, D. W.: Linguistic Reflection in Java.
Software - Practice & Experience, 28,10:1045-1077 (1998)

13. Kirby, G.N.C.: Dynamic Java Compiler. http://www-systems.cs.st-
andrews.ac.uk/wiki/Dynamic_Java_Compiler (2005)

14. Sun Microsystems: JavaCompiler Interface.
http://java.sun.com/javase/6/docs/api/javax/tools/JavaCompiler.html (2007)

15. Chandra, T., & Toueg, S.: Unreliable Failure Detectors for Reliable
Distributed Systems. Journal of the ACM, 43,1:225-267 (1996)

16. Mattern, F.: Algorithms for Distributed Termination Detection. Distributed
Computing, 2,3:161-175 (1987)

17. Tel, G., & Mattern, F.: The Derivation of Distributed Termination Detection
Algorithms from Garbage Collection Schemes. ACM Transactions on
Programming Languages and Systems, 15,1:1-35 (1993)

18. Blackburn, S.M., Hudson, R.L., Morrison, R., Moss, J.E.B., Munro, D.S.,
Zigman, J.N.: Starting with Termination: A Methodology for Building
Distributed Garbage Collection Algorithms. In: 24th Australasian Computer
Science Conference (ACSC2001), Gold Coast, Queensland. pp.20-28 (2001)

19. Brand, D., & Zafiropulo, P.: On Communicating Finite-State Machines.
Journal of the ACM, 30,2:323-342 (1983)

20. Garlan, D., Allen, R.J., Ockerbloom, J.: Exploiting Style in Architectural
Design Environments. In: 2nd ACM SIGSOFT Symposium on Foundations
of Software Engineering, New Orleans, Louisiana, USA. pp.175-188 (1994)

21. Medvidovic, N., & Taylor, R. N.: A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 26,1:70-93 (2000)

22. Hooman, J.: Verification of Distributed Real-Time and Fault-Tolerant
Protocols. In: 6th International Conference on Algebraic Methodology and
Software TechnologyLecture Notes in Computer Science 1349 pp.261-275
Springer (1997)

23. Dragoni, N., & Gaspari, M.: An Object Based Algebra for Specifying a Fault
Tolerant Software Architecture. Journal of Logic and Algebraic
Programming, 63:271-297 (2005)

