
An Approach to Ad hoc Cloud Computing
Graham Kirby, Alan Dearle, Angus Macdonald Alvaro Fernandes
 School of Computer Science School of Computer Science
 University of St Andrews, St Andrews, University of Manchester, Oxford Road,
 Fife, Scotland KY16 9SX Manchester, United Kingdom M13 9PL
 +44 1334 463253 +44 161 306 9280

 {graham,al,angus}@cs.st-andrews.ac.uk a.fernandes@manchester.ac.uk

ABSTRACT

We consider how underused computing resources within an enter-

prise may be harnessed to improve utilization and create an elastic

computing infrastructure. Most current cloud provision involves a

data center model, in which clusters of machines are dedicated to

running cloud infrastructure software. We propose an additional

model, the ad hoc cloud, in which infrastructure software is distri-

buted over resources harvested from machines already in exis-

tence within an enterprise. In contrast to the data center cloud

model, resource levels are not established a priori, nor are re-

sources dedicated exclusively to the cloud while in use. A partici-

pating machine is not dedicated to the cloud, but has some other

primary purpose such as running interactive processes for a par-

ticular user. We outline the major implementation challenges and

one approach to tackling them.

1. INTRODUCTION
Computational and storage resources within organizations are

often under-utilized. This is likely to increase with further adop-

tion of cloud services. A volunteer cloud infrastructure, support-

ing what we term ad hoc cloud computing, would allow cloud

services to run on existing heterogeneous hardware.

If available, such infrastructure could improve organizations’

resource utilization while offering some of the benefits of more

conventional public and private clouds. This could yield signifi-

cant cost savings. The model is analogous to volunteer computing

as exemplified by Condor [21] and BOINC [22], although it poses

considerable additional implementation challenges.

In particular, we are interested in increasing utilization of general-

purpose computers in offices and laboratories. As a motivating

example, the (small) University of St Andrews operates in the

region of ten thousand machines in offices and labs. In aggregate,

their unused processing and storage capacity represent a major

untapped computing resource.

The recent Draft NIST Working Definition of Cloud Computing

[20] defines both public and private cloud models. Both may be

termed data center models, in which clusters of machines are

dedicated to running cloud infrastructure software. We propose to

introduce an additional deployment model, the ad hoc cloud, in

which infrastructure software is distributed over resources har-

vested from machines already in use. By ad hoc we mean that the

set of machines comprising the cloud changes dynamically, as

does the proportion of each machine’s computational and storage

resources that can be harnessed at a given point in time. Thus, in

contrast to the data center cloud model, resource provisioning

levels are not established a priori, nor are resources committed

exclusively to the cloud while in use. A participating machine is

not dedicated to the cloud, but has some other primary purpose

such as running interactive processes for a particular user, albeit

often for a small proportion of the time. One of the most impor-

tant research issues is how to reduce the impact of cloud opera-

tions on such processes to an acceptable level.

The availability of ad hoc clouds could yield various benefits to

individual enterprises. Firstly, it could reduce the numbers of ma-

chines that need to be purchased. Such costs are borne directly by

enterprises employing private clouds, and indirectly by those us-

ing external cloud providers1.

The use of ad hoc clouds could also reduce the need for specia-

lized infrastructure for resilience, such as redundant power and

cooling systems, battery backup, etc. This represents 25% of data

center costs [13]. Rather than ensuring resilience of a small num-

ber of physical buildings, the grain of resilience could be ex-

panded by using more widely distributed machines and tolerating

individual building failures.

Ad hoc clouds could reduce overall power consumption. One fac-

tor is a reduction in the total number of machines required—

significant since the energy cost of manufacture for a computer

has been estimated as four times that used during its lifetime [23].

Another is that since machines comprising an ad hoc cloud infra-

structure are situated in working spaces, the power consumed is

partially offset (in temperate climates) by a reduction in the power

required for heating. Conversely, machines are housed at lower

densities than in data centers, so less active cooling is required.

A similar idea, that of Nebulas, was proposed in [4]. Here we

outline a specific approach to developing such ad hoc infrastruc-

ture. Section 2 outlines requirements and the principal implemen-

tation challenges; Section 3 surveys related work; Section 4 de-

scribes our proposed approach to the problem.

2. RELATED WORK
The approach we describe can be compared and contrasted with

grid and volunteer computing, and provider-specific clouds.

Grid computing emerged principally to address requirements from

e-Science, in which there was a growing need for software plat-

forms that supported sharing of resources to support collaborative

data analysis in computationally intensive science. Grid compu-

ting provides facilities for the sharing of computational resources,

often across administrative domains, with a view to enabling ef-

fective collaboration between the owners of data or computational

resources. To support such capabilities, grid toolkits (e.g. Globus

[9]) provide core facilities that support operating system style

functionalities such as file access, job execution and authentica-

1 It has been estimated that 45% of data center costs are incurred

in purchasing servers [13].

tion, across heterogeneous platforms. These can be used to sup-

port higher-level services such as distributed file systems (e.g.

SRB [18]), workflow execution (e.g. Condor-G [12]) and

workflow management (e.g. Pegasus [8]). Higher-level grid func-

tionalities, such as abstract workflow specification in Pegasus,

often make use of lower-level platforms (e.g. Pegasus uses Con-

dor-G for managing dependencies between multiple jobs, which

in turn uses Globus for job execution and file replica manage-

ment).

Grids have been a focus of considerable research, development

and commercial activity for a decade, giving rise to a range of

approaches and emphases. A significant portion of the work fo-

cuses on connecting high-end, heterogeneous computational re-

sources across multiple administrative domains, with a view to

supporting virtual organisations, for example [11]. This emphasis

has not been substantially changed by the move towards service-

oriented grid architectures (e.g. [10]), in which resources are vir-

tualised as web services, and thus grid functionalities are made

available as part of a wider, service-oriented architecture. As such,

the grid community has considerable experience in the develop-

ment of techniques for providing abstractions over heterogeneous

platforms.

The cloud vision has elements in common with the objectives of

grid computing, in particular a reduction in costs through resource

sharing, and improvements in flexibility and reliability. However,

different starting points have given rise to differing architectures

and emphases. Broadly, grids have sought to support coordinated

use of distributed resources for carrying out computationally in-

tensive tasks for modest numbers of users, whereas clouds have

focused on coordinated use of largely centralised resources for

large numbers of less demanding requests from distributed users.

Volunteer computing (VC), sometimes described as a desktop

grid, uses individual users’ machines to perform computationally

intensive tasks. It is particularly suited for ‘embarrassingly paral-

lel’ problems, e.g. SETI@home, one of a number of popular

projects based on the BOINC framework [22]. Ad hoc clouds

share the goal of ‘stealing cycles’ from user machines, but target

more diverse applications. They can be viewed as offering the

resource utilisation benefits of VC while avoiding the limitations

of low or fluctuating volunteering rates, and providing the elastici-

ty to workloads that make the cloud vision appealing.

The Condor platform [21] also supports resource harvesting for

highly parallel tasks. However, Condor is concerned with task

scheduling whereas our approach targets a more general applica-

tion-hosting model, in particular the support of interactive and

data-centric applications.

The best-known examples of Cloud computing, such as those of

Amazon, Google, Yahoo! and Microsoft, have several aspects in

common. For example, early clouds have been developed to sup-

port scale-out: the execution of large numbers of typically con-

strained requests over potentially huge data sets. This in turn has

led to the development of simplified but scalable computational

models, such as Google’s MapReduce framework [6], which pro-

vides a simple model for distributing highly parallelisable prob-

lems over large machine clusters. The implementation abstracts

over the details of distributing input data to individual machines

and collecting results, and has been widely adopted by other cloud

platforms, which often make use of Hadoop [3], an open-source

implementation of the MapReduce model. MapReduce, in com-

mon with early cloud data management platforms such as Ama-

zon’s Simple Storage Service (S3) and SimpleDB [2], and

Google’s Bigtable storage system [5], provides carefully con-

strained capabilities. Google AppEngine also provides a con-

strained model, specifically targeting web applications.

At a lower level of abstraction, Amazon Elastic Compute Cloud

(EC2) [2] allows an application to be structured as a set of poten-

tially communicating virtual machine instances. The term ‘elastic’

refers to the flexibility with which instances may be created and

discarded dynamically, allowing the computing resources allo-

cated to applications to scale as required.

Early support for cloud service developers, then, offers two dis-

tinct styles: high-level APIs that significantly constrain service

structure, and low-level machine virtualisation that gives almost

complete freedom but provides little assistance with partitioning

and managing the service across virtualised instances.

From the perspective of the service provider, constrained service

provision offers distinct benefits, as discussed for cloud data ser-

vices in the Claremont Report on Database Research:

“Early cloud data services offer an API that is much more re-

stricted than that of traditional database systems, with a minimal-

ist query language and limited consistency guarantees. This push-

es more programming burden on developers, but allows cloud

providers to build more predictable services, and to offer service

level agreements that would be hard to provide for a full-function

SQL data service. More work and experience will be needed on

several fronts to explore the continuum between today’s early

cloud data services and more full-functioned but probably less

predictable alternatives.” [1]

More recently, Amazon and Microsoft have introduced full rela-

tional database facilities, while the Windows Azure platform [17]

offers a rather richer set of APIs to programmers. The cloud infra-

structure remains targeted at dedicated servers.

3. RESEARCH ISSUES
Ad hoc clouds can be thought of as a generalization of public or

private data center clouds, in which certain assumptions are re-

laxed. These include the degree of homogeneity and availability

of servers, and the presence of non-cloud processes on cloud

hosts. Ad hoc clouds could host and coordinate services that are

more diverse than those currently associated with high-level cloud

APIs, while providing the service developer with richer support

for service partitioning and management than machine virtualisa-

tion approaches. They would operate over shared, heterogeneous

resources, thus giving rise to requirements for more complex au-

tomatic management and more sophisticated quality of service

handling.

We identify a resulting set of issues that would need to be ad-

dressed:

Core functionality:

 What are the architectural requirements for an ad hoc cloud

infrastructure?

 What mechanisms are needed to allow convenient access to

services, without single points of failure?

 How can membership of the set of machines in an ad hoc

cloud be controlled? In which situations should an ad hoc

cloud be scaled out or contracted?

 For some application classes, current cloud approaches scale

well in stable environments—to what extent can these re-

strictions be relaxed while retaining scalability?

Automatic adaptation:

 Can speculative plans for actions that might improve ad hoc

cloud operation be generated automatically?

 What techniques are needed in order to model ad hoc cloud

behavior to enable useful estimates of the consequences of

possible autonomic reconfiguration?

 How should planning and modeling processes be coordi-

nated? Where are they executed, and how are their resources

allocated?

 To what extent can planning decisions be improved using

measurements and predictions of previous, current and fu-

ture workloads?

 What model calibration techniques are needed? In what sit-

uations do phase changes in user behavior or the environ-

ment cause a previously accurate model to diverge from re-

ality, and how can this be handled?

 How can the characteristics of a particular application be

taken into account in determining how the ad hoc cloud

adapts to support it?

Quality of service:

 To what extent can useful QoS guarantees be delivered to

ad hoc cloud clients while limiting disruption for machine

owners to acceptable levels?

 In what way does the class of computation supported by a

cloud influence the quality of service guarantees that can be

provided?

 What are the appropriate forms for expression of high-level

policy goals, for an entire ad hoc cloud, and for specific ser-

vices?

 Can high-level goals be translated automatically to corres-

ponding concrete actions?

 How should measured low-level properties be aggregated

for reporting in terms of high-level goals?

 Under what circumstances can conflicting policies be de-

tected and automatically resolved?

 What mechanisms can be used to coordinate potentially

complementary services (e.g. block storage, file systems,

databases), so that they align with one another rather than

competing unnecessarily for resources?

4. OUR APPROACH
An ad hoc cloud should be self-managing in terms of resilience,

performance and balancing potentially conflicting policy goals.

For resilience it should maintain service availability in the pres-

ence of membership churn and failure. For performance it should

be self-optimizing, taking account of quality of service require-

ments. It should be acceptable to machine owners, by minimising

intrusiveness and supporting appropriate security and trust me-

chanisms.

We identify several desirable features for the general ad hoc cloud

architecture:

 Agnostic as to service type: the approach can be applied to

different styles of cloud service, for example infrastructure,

platform or application as service [20].

 Agnostic as to means of control: the approach allows differ-

ent forms of autonomic decision making to be deployed at

different points in the architecture.

 Agnostic as to grain of control: autonomic behaviour may

be coarse or fine-grained at different points. For example, a

dispatcher may balance load only as requests leave queues,

or may change resource allocations for running jobs.

4.1 Core Cloud Functionality
There exist successful architectures for large-scale cloud compu-

ting in the data center style [2, 3, 5, 6]. The principal additional

challenges in supporting ad hoc clouds lie in accommodating

highly dynamic machine membership, and allowing cloud compu-

tations to co-exist satisfactorily with non-cloud processes. Al-

though data center clouds deal with machine failures automatical-

ly, the churn will be significantly higher in ad hoc clouds, arising

from more frequent rebooting of personal machines and the fre-

quent unavailability of portable devices. Machines may also be-

come unavailable to the ad hoc cloud for unpredictable periods,

even though they remain connected and functioning, due to the

higher priority of fluctuating user workloads. Data center clouds

do not support co-existence of cloud and user processes; an ad

hoc cloud architecture must support monitoring of impact on user

processes, rapid relocation or shut-down of cloud processes, and

modelling of cloud computation to allow sensible initial place-

ment of cloud processes.

Here we sketch a possible architecture as a starting point. We

define an ad hoc cloud as the union of a set of cloudlets, each of

which provides a particular service or application. A cloudlet

service may be specified and accessed via Web Services, or any

other convenient protocol. Each cloudlet runs on a potentially

dynamically changing set of physical machines. A given machine

may host parts of multiple cloudlets.

Figure 1. Cloudlets and Cloud Elements

The software running on a particular machine, contributing to a

particular cloudlet, is termed a cloud element. A cloudlet may be

expanded or contracted by altering the number of machines, and

hence cloud elements, assigned to it. The cloud elements compris-

ing a given cloudlet communicate with one another to coordinate

their activity. The cloud elements within a cloudlet may be, but

need not be, homogeneous in terms of their functionality. This

structure is illustrated in Figure 1 (although it may suggest that the

cloud elements assigned to each particular cloudlet run on physi-

cally close machines, this is for convenience of drawing only, and

no such restriction is imposed by the architecture).

Each physical machine available to the ad hoc cloud may host a

number of cloud elements, each assigned to a different cloudlet.

The machine runs cloud infrastructure software, which supports

secure creation, management and destruction of cloud elements.

Finally, the machine also executes non-cloud processes for the

primary user. This is shown in Figure 2.

The cloud infrastructure contains an element manager for creating

and destroying cloud elements. It also contains a model-

ler/manager—which interacts with the host operating system in

order to monitor effects of the local cloud elements on the user

processes, and vice versa—and a broker and dispatcher, whose

functions are described in the QoS section.

Figure 2. Node Structure

Each cloud element running on a machine contains an engine

capable of running the class of computations appropriate to its

cloudlet. The engine in the diagram is labelled W to signify that it

can execute a particular class of workloads W, corresponding to

the cloudlet functionality. An engine may provide application

functionality directly via a user-level API, or support a further

layer of application software loaded onto it. For example, one

engine might provide a SQL API that accepts user queries direct-

ly; other engines might provide MapReduce functionality, or Java

or JavaScript interpreters. In all but the first case a corresponding

program would also be loaded. Each engine runs on an abstract

machine. This might be a VMware-style virtual machine, a Java-

style VM, or something else tailored to the target computation

class. Whatever it is, it must provide sufficient isolation of the

element from the non-cloud processes on the node.

The cloud element also contains its own modeller/manager, which

has knowledge of the semantics of W, and a cost model that al-

lows reasoning about how the computation will be executed. The

purpose of the modeller/manager is to control the operation of its

associated engine such as to minimise disruption to user

processes, to optimise its contribution to cloudlet functionality

within such constraints, and to publish information to support

effective deployment and adaptation of cloud elements.

The infrastructure modeller/manager provides a conduit for com-

munication between cloud element modeller/managers and the

host OS. For example, it allows cloud element modeller/managers

to be aware of the current resource demands of non-cloud user

processes, and hence endeavour to avoid undue disruption. Com-

munication between cloud element modeller/managers is neces-

sary in order to coordinate operations across a cloudlet.

4.2 Automatic Adaptation
The cloud infrastructure should automatically minimize the costs

of:

 deploying, operating and evolving the ad hoc cloud so

that it is both highly-available to ad hoc cloud users and

non-disruptive to primary users

 ensuring that the execution of applications is efficient

and reliable, with high probability, over long periods

This requires the ad hoc cloud to exhibit autonomic capabilities

[14]. It should automatically adapt the extent of each cloudlet and

the placement of its data and computation, driven by appropriate

management policies. The requirement poses a significant scien-

tific challenge, since it involves an understanding of the

cost/benefit ratios associated with any given policy on resource

allocation. Dynamic, multi-objective optimisation is necessary in

order to coordinate resource utilisation policies, and to evolve

policies in response to changing circumstances—about which

knowledge is typically scarce.

Because an ad hoc cloud runs on non-dedicated resources, har-

vesting and harnessing activities must remain acceptably non-

intrusive, requiring stringent constraints on policies and their ac-

tions. Moreover, since the usage patterns of machine owners may

vary widely, policies must be informed by efficient, scalable mon-

itoring and performance modelling from which reliable, robust

cost/benefit ratios can be derived.

4.3 Quality Of Service
To deliver QoS guarantees, two separate services are required: to

make policy decisions based on QoS negotiations with external

parties; and to provide mechanism to implement policy decisions.

We propose to use the Broker and Dispatcher patterns [16]. These

are embodied as distributed services that are structured in the

same way as user-level services, making them autonomic and

capable of changing their behaviour and resource usage in re-

sponse to changing request patterns.

A broker establishes and manages up-front agreements with users

of the cloud, for the provision of services at certain QoS levels for

certain periods. It matches reservation requests against expected

available resources in tandem with other commitments, and in-

forms the requester whether or not the request can be satisfied.

Where the broker reaches an agreement, it seeks to ensure that

resources are pre-configured (e.g. with suitable service deploy-

ments) in a way that enables the agreement to be met.

The requirements of different types of service may need to be

coordinated to meet QoS goals. The broker identifies whether the

resource requirements and their associated constraints can be met.

Such assessment requires access to information on the available

computational resources, their historic loads and availabilities and

other commitments that relate to them. A search must be made for

a future configuration that is predicted to meet the requirements of

the current request and future requests.

A dispatcher exposes the user-level cloud services. Where a re-

quest is made to access a service for which there is an established

agreement, the dispatcher makes use of the resources reserved by

the broker in anticipation of the request. Where there is no pre-

arranged agreement, the request is still directed to a relevant ser-

vice by the dispatcher on a best-effort basis.

5. EXAMPLE
As an example of this architecture we describe the H2O database

system [15]. H2O is a relational database based on the open

source H2 system [19] that is intended for deployment on an ad

hoc cloud. It offers a full set of relational operations including a

user interface and JDBC linkage. Unlike traditional desktop rela-

tional systems such as MySQL, the system resides within hetero-

geneous desktop systems hosted within an enterprise. To under-

stand how the H2O system maps onto the architecture described

in this paper, two components of H2O must be considered sepa-

rately: those corresponding to the cloudlet, and those correspond-

ing to the cloud elements.

The cloud elements each run a complete relational database en-

gine which is responsible for whole or partial relational tables

from the database. This corresponds to the engine component

shown in Figure 2. A Java abstract machine, augmented by a re-

stricted interface to local persistent storage, hosts each database

engine. The modeller/manager element tracks the amount of per-

sistent storage used on the node and the bandwidth usage etc. The

programs that are executed by the engine are SQL fragments that

are delivered to the node either from a local user interface or sent

by another cloud element. In addition to the network interface

exporting SQL functionality, a Java RMI interface provides func-

tionality for configuring both individual cloud elements and dep-

loyments on each node.

The cloudlet component is required to track the individual ele-

ments of the database and maintain the database metadata. For

example, individual relations are autonomically replicated across

multiple cloud elements for resilience. Consequently, when a

query attempts to access a relation for the first time or following a

failure, it must query the cloudlet to bind to the managers running

within an individual cloud element. This functionality is achieved

by running a distributed database manager in the cloudlet above a

P2P infrastructure, with each of the individual components of the

cloudlet being hosted by cloud elements.

The cloud infrastructure on each node provides the ability to in-

stantiate cloud elements on individual nodes. We have developed

technology in earlier systems [7] that permits securely signed

bundles of code and data to be instantiated on machines.

6. CONCLUSIONS
The ad hoc cloud model could allow complex cloud-style applica-

tions to exploit untapped resources on non-dedicated hardware.

We believe that this approach has the potential to:

 enable organizations to reduce IT costs;

 enable organizations to obtain the benefits of cloud

computing in new application areas;

 reduce net energy consumption by IT activities.

We have outlined a case for ad hoc cloud computing, a set of re-

sulting research challenges, and as a starting point, a proposed

architecture.

7. REFERENCES
[1] Agrawal, R., Ailamaki, A., Bernstein, P. A., Brewer, E. A.,

Carey, M. J., Chaudhuri, S., Doan, A., Florescu, D., Franklin, M.

J., Garcia-Molina, H., Gehrke, J., Gruenwald, L., Haas, L. M.,

Halevy, A. Y., Hellerstein, J. M., Ioannidis, Y. E., Korth, H. F.,

Kossmann, D., Madden, S., Magoulas, R., Ooi, B. C., O'Reilly,

T., Ramakrishnan, R., Sarawagi, S., Stonebraker, M., Szalay, A.

S. and Weikum, G. The Claremont Report on Database Research.

SIGMOD Record, 37, 3 (2008), 9-19.

[2] Amazon. Amazon Web Services. (2009)

http://aws.amazon.com/.

[3] Apache Software Foundation. Welcome to Apache Hadoop!

(2009) http://hadoop.apache.org/.

[4] Chandra, A. and Weissman, J. Nebulas: Using Distributed

Voluntary Resources to Build Clouds. In HotCloud 09 USENIX

Workshop on Hot Topics in Cloud Computing. (San Diego, USA)

2009.

[5] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D.

A., Burrows, M., Chandra, T., Fikes, A. and Gruber, R. E. Bigta-

ble: A Distributed Storage System for Structured Data. In 7th

Symposium on Operating System Design and Implementation

(OSDI'06). (Seattle, USA) 2006.

[6] Dean, J. and Ghemawat, S. MapReduce: Simplified Data

Processing on Large Clusters. In 6th Symposium on Operating

System Design and Implementation (OSDI'04). (San Francisco,

USA) 2004.

[7] Dearle, A., Kirby, G. N. C., McCarthy, A. J. and Diaz y Car-

ballo, J. C. A Flexible and Secure Deployment Framework for

Distributed Applications. In Emmerich, W. and Wolf, A. L. eds.

Lecture Notes in Computer Science 3083. Springer, 2004, 219-

233.

[8] Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y., Kesselman,

C., Mehta, G., Vahi, K., Berriman, G. B., Good, J., Laity, A.,

Jacob, J. C. and Katz, D. S. Pegasus: A Framework for Mapping

Complex Scientific Workflows onto Distributed Systems. Scien-

tific Programming, 13, 3 (2005), 219-237.

[9] Foster, I. and Kesselman, C. The Globus Project: a Status Re-

port. Future Generation Computer Systems, 15, 5-6 (1999), 607-

621.

[10] Foster, I., Kesselman, C. and Tuecke, S. The Open Grid Ser-

vices Architecture. In Foster, I. and Kesselman, C. eds. The Grid

2: Blueprint for a New Computing Infrastructure. Morgan Kauf-

mann, 2003, 215-258.

[11] Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the

Grid: Enabling Scalable Virtual Organizations. International Jour-

nal of High Performance Computing Applications, 15, 3 (2001),

200-222.

[12] Frey, J., Tannenbaum, T., Livny, M., Foster, I. and Tuecke,

S. Condor-G: A Computation Management Agent for Multi-

Institutional Grids. In HPDC '01: Proceedings of the 10th IEEE

International Symposium on High Performance Distributed Com-

puting. (San Francisco, USA). IEEE Computer Society, Washing-

ton, DC, USA, 2001, 55.

[13] Greenberg, A., Hamilton, J., Maltz, D. A. and Patel, P. The

Cost of a Cloud: Research Problems in Data Center Networks.

ACM SIGCOMM Computer Communication Review, 39, 1

(2009), 68-73. DOI=10.1145/1496091.1496103.

[14] Kephart, J. O. and Chess, D. M. The Vision of Autonomic

Computing. IEEE Computer, 36, 1 (2003), 41-50.

[15] Macdonald, A., Dearle, A. and Kirby, G. N. C. H2O. (2010)

http://blogs.cs.st-andrews.ac.uk/h2o/.

[16] Menascé, D. A., Ruan, H. and Gomaa, H. QoS Management

in Service-Oriented Architectures. Performance Evaluation, 64, 7-

8 (2007), 646-663.

[17] Microsoft. Windows Azure Platform. (2010)

http://www.microsoft.com/windowsazure/.

[18] Moore, R., Chen, S., Schroeder, W., Rajasekar, A., Wan, M.

and Jagatheesan, A. Production Storage Resource Broker Data

Grids. In 2nd IEEE International Conference on e-Science and

Grid Computing (E-SCIENCE '06). (Amsterdam, Netherlands).

IEEE Computer Society, Washington, DC, USA, 2006, 147.

[19] Mueller, T. H2 Database Engine. (2009)

http://www.h2database.com/html/main.html.

[20] National Institute of Standards and Technology. Draft NIST

Working Definition of Cloud Computing v14. (2009)

http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-

v14.doc.

[21] Thain, D., Tannenbaum, T. and Livny, M. Distributed Com-

puting in Practice: the Condor Experience. Concurrency - Practice

and Experience, 17, 2-4 (2005), 323-356.

[22] University of California. BOINC. (2009)

http://boinc.berkeley.edu/.

[23] Williams, E. Energy Intensity of Computer Manufacturing:

Hybrid Assessment Combining Process and Economic Input-

Output Methods. Environmental Science & Technology, 38, 22

(2004), 6166-6174.

http://aws.amazon.com/
http://hadoop.apache.org/
http://blogs.cs.st-andrews.ac.uk/h2o/
http://www.microsoft.com/windowsazure/
http://www.h2database.com/html/main.html
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v14.doc
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v14.doc
http://boinc.berkeley.edu/

	ht3m

