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ABSTRACT 

We consider how underused computing resources within an enter-

prise may be harnessed to improve utilization and create an elastic 

computing infrastructure. Most current cloud provision involves a 

data center model, in which clusters of machines are dedicated to 

running cloud infrastructure software. We propose an additional 

model, the ad hoc cloud, in which infrastructure software is distri-

buted over resources harvested from machines already in exis-

tence within an enterprise. In contrast to the data center cloud 

model, resource levels are not established a priori, nor are re-

sources dedicated exclusively to the cloud while in use. A partici-

pating machine is not dedicated to the cloud, but has some other 

primary purpose such as running interactive processes for a par-

ticular user. We outline the major implementation challenges and 

one approach to tackling them. 

1. INTRODUCTION 
Computational and storage resources within organizations are 

often under-utilized. This is likely to increase with further adop-

tion of cloud services. A volunteer cloud infrastructure, support-

ing what we term ad hoc cloud computing, would allow cloud 

services to run on existing heterogeneous hardware. 

If available, such infrastructure could improve organizations’ 

resource utilization while offering some of the benefits of more 

conventional public and private clouds. This could yield signifi-

cant cost savings. The model is analogous to volunteer computing 

as exemplified by Condor [21] and BOINC [22], although it poses 

considerable additional implementation challenges. 

In particular, we are interested in increasing utilization of general-

purpose computers in offices and laboratories. As a motivating 

example, the (small) University of St Andrews operates in the 

region of ten thousand machines in offices and labs. In aggregate, 

their unused processing and storage capacity represent a major 

untapped computing resource. 

The recent Draft NIST Working Definition of Cloud Computing 

[20] defines both public and private cloud models. Both may be 

termed data center models, in which clusters of machines are 

dedicated to running cloud infrastructure software. We propose to 

introduce an additional deployment model, the ad hoc cloud, in 

which infrastructure software is distributed over resources har-

vested from machines already in use. By ad hoc we mean that the 

set of machines comprising the cloud changes dynamically, as 

does the proportion of each machine’s computational and storage 

resources that can be harnessed at a given point in time. Thus, in 

contrast to the data center cloud model, resource provisioning 

levels are not established a priori, nor are resources committed 

exclusively to the cloud while in use. A participating machine is 

not dedicated to the cloud, but has some other primary purpose 

such as running interactive processes for a particular user, albeit 

often for a small proportion of the time. One of the most impor-

tant research issues is how to reduce the impact of cloud opera-

tions on such processes to an acceptable level. 

The availability of ad hoc clouds could yield various benefits to 

individual enterprises. Firstly, it could reduce the numbers of ma-

chines that need to be purchased. Such costs are borne directly by 

enterprises employing private clouds, and indirectly by those us-

ing external cloud providers1. 

The use of ad hoc clouds could also reduce the need for specia-

lized infrastructure for resilience, such as redundant power and 

cooling systems, battery backup, etc. This represents 25% of data 

center costs [13]. Rather than ensuring resilience of a small num-

ber of physical buildings, the grain of resilience could be ex-

panded by using more widely distributed machines and tolerating 

individual building failures. 

Ad hoc clouds could reduce overall power consumption. One fac-

tor is a reduction in the total number of machines required—

significant since the energy cost of manufacture for a computer 

has been estimated as four times that used during its lifetime [23]. 

Another is that since machines comprising an ad hoc cloud infra-

structure are situated in working spaces, the power consumed is 

partially offset (in temperate climates) by a reduction in the power 

required for heating. Conversely, machines are housed at lower 

densities than in data centers, so less active cooling is required. 

A similar idea, that of Nebulas, was proposed in [4]. Here we 

outline a specific approach to developing such ad hoc infrastruc-

ture. Section 2 outlines requirements and the principal implemen-

tation challenges; Section 3 surveys related work; Section 4 de-

scribes our proposed approach to the problem. 

2. RELATED WORK 
The approach we describe can be compared and contrasted with 

grid and volunteer computing, and provider-specific clouds. 

Grid computing emerged principally to address requirements from 

e-Science, in which there was a growing need for software plat-

forms that supported sharing of resources to support collaborative 

data analysis in computationally intensive science. Grid compu-

ting provides facilities for the sharing of computational resources, 

often across administrative domains, with a view to enabling ef-

fective collaboration between the owners of data or computational 

resources. To support such capabilities, grid toolkits (e.g. Globus 

[9]) provide core facilities that support operating system style 

functionalities such as file access, job execution and authentica-

                                                                 

1 It has been estimated that 45% of data center costs are incurred 

in purchasing servers [13]. 



tion, across heterogeneous platforms. These can be used to sup-

port higher-level services such as distributed file systems (e.g. 

SRB [18]), workflow execution (e.g. Condor-G [12]) and 

workflow management (e.g. Pegasus [8]). Higher-level grid func-

tionalities, such as abstract workflow specification in Pegasus, 

often make use of lower-level platforms (e.g. Pegasus uses Con-

dor-G for managing dependencies between multiple jobs, which 

in turn uses Globus for job execution and file replica manage-

ment). 

Grids have been a focus of considerable research, development 

and commercial activity for a decade, giving rise to a range of 

approaches and emphases. A significant portion of the work fo-

cuses on connecting high-end, heterogeneous computational re-

sources across multiple administrative domains, with a view to 

supporting virtual organisations, for example [11]. This emphasis 

has not been substantially changed by the move towards service-

oriented grid architectures (e.g. [10]), in which resources are vir-

tualised as web services, and thus grid functionalities are made 

available as part of a wider, service-oriented architecture. As such, 

the grid community has considerable experience in the develop-

ment of techniques for providing abstractions over heterogeneous 

platforms. 

The cloud vision has elements in common with the objectives of 

grid computing, in particular a reduction in costs through resource 

sharing, and improvements in flexibility and reliability. However, 

different starting points have given rise to differing architectures 

and emphases. Broadly, grids have sought to support coordinated 

use of distributed resources for carrying out computationally in-

tensive tasks for modest numbers of users, whereas clouds have 

focused on coordinated use of largely centralised resources for 

large numbers of less demanding requests from distributed users. 

Volunteer computing (VC), sometimes described as a desktop 

grid, uses individual users’ machines to perform computationally 

intensive tasks. It is particularly suited for ‘embarrassingly paral-

lel’ problems, e.g. SETI@home, one of a number of popular 

projects based on the BOINC framework [22]. Ad hoc clouds 

share the goal of ‘stealing cycles’ from user machines, but target 

more diverse applications. They can be viewed as offering the 

resource utilisation benefits of VC while avoiding the limitations 

of low or fluctuating volunteering rates, and providing the elastici-

ty to workloads that make the cloud vision appealing. 

The Condor platform [21] also supports resource harvesting for 

highly parallel tasks. However, Condor is concerned with task 

scheduling whereas our approach targets a more general applica-

tion-hosting model, in particular the support of interactive and 

data-centric applications. 

The best-known examples of Cloud computing, such as those of 

Amazon, Google, Yahoo! and Microsoft, have several aspects in 

common. For example, early clouds have been developed to sup-

port scale-out: the execution of large numbers of typically con-

strained requests over potentially huge data sets. This in turn has 

led to the development of simplified but scalable computational 

models, such as Google’s MapReduce framework [6], which pro-

vides a simple model for distributing highly parallelisable prob-

lems over large machine clusters. The implementation abstracts 

over the details of distributing input data to individual machines 

and collecting results, and has been widely adopted by other cloud 

platforms, which often make use of Hadoop [3], an open-source 

implementation of the MapReduce model. MapReduce, in com-

mon with early cloud data management platforms such as Ama-

zon’s Simple Storage Service (S3) and SimpleDB [2], and 

Google’s Bigtable storage system [5], provides carefully con-

strained capabilities. Google AppEngine also provides a con-

strained model, specifically targeting web applications. 

At a lower level of abstraction, Amazon Elastic Compute Cloud 

(EC2) [2] allows an application to be structured as a set of poten-

tially communicating virtual machine instances. The term ‘elastic’ 

refers to the flexibility with which instances may be created and 

discarded dynamically, allowing the computing resources allo-

cated to applications to scale as required. 

Early support for cloud service developers, then, offers two dis-

tinct styles: high-level APIs that significantly constrain service 

structure, and low-level machine virtualisation that gives almost 

complete freedom but provides little assistance with partitioning 

and managing the service across virtualised instances. 

From the perspective of the service provider, constrained service 

provision offers distinct benefits, as discussed for cloud data ser-

vices in the Claremont Report on Database Research: 

“Early cloud data services offer an API that is much more re-

stricted than that of traditional database systems, with a minimal-

ist query language and limited consistency guarantees. This push-

es more programming burden on developers, but allows cloud 

providers to build more predictable services, and to offer service 

level agreements that would be hard to provide for a full-function 

SQL data service. More work and experience will be needed on 

several fronts to explore the continuum between today’s early 

cloud data services and more full-functioned but probably less 

predictable alternatives.” [1] 

More recently, Amazon and Microsoft have introduced full rela-

tional database facilities, while the Windows Azure platform [17] 

offers a rather richer set of APIs to programmers. The cloud infra-

structure remains targeted at dedicated servers. 

3. RESEARCH ISSUES 
Ad hoc clouds can be thought of as a generalization of public or 

private data center clouds, in which certain assumptions are re-

laxed. These include the degree of homogeneity and availability 

of servers, and the presence of non-cloud processes on cloud 

hosts. Ad hoc clouds could host and coordinate services that are 

more diverse than those currently associated with high-level cloud 

APIs, while providing the service developer with richer support 

for service partitioning and management than machine virtualisa-

tion approaches. They would operate over shared, heterogeneous 

resources, thus giving rise to requirements for more complex au-

tomatic management and more sophisticated quality of service 

handling. 

We identify a resulting set of issues that would need to be ad-

dressed: 

Core functionality: 

 What are the architectural requirements for an ad hoc cloud 

infrastructure? 

 What mechanisms are needed to allow convenient access to 

services, without single points of failure? 



 How can membership of the set of machines in an ad hoc 

cloud be controlled? In which situations should an ad hoc 

cloud be scaled out or contracted? 

 For some application classes, current cloud approaches scale 

well in stable environments—to what extent can these re-

strictions be relaxed while retaining scalability? 

Automatic adaptation: 

 Can speculative plans for actions that might improve ad hoc 

cloud operation be generated automatically? 

 What techniques are needed in order to model ad hoc cloud 

behavior to enable useful estimates of the consequences of 

possible autonomic reconfiguration? 

 How should planning and modeling processes be coordi-

nated? Where are they executed, and how are their resources 

allocated? 

 To what extent can planning decisions be improved using 

measurements and predictions of previous, current and fu-

ture workloads? 

 What model calibration techniques are needed? In what sit-

uations do phase changes in user behavior or the environ-

ment cause a previously accurate model to diverge from re-

ality, and how can this be handled? 

 How can the characteristics of a particular application be 

taken into account in determining how the ad hoc cloud 

adapts to support it? 

Quality of service: 

 To what extent can useful QoS guarantees be delivered to 

ad hoc cloud clients while limiting disruption for machine 

owners to acceptable levels? 

 In what way does the class of computation supported by a 

cloud influence the quality of service guarantees that can be 

provided? 

 What are the appropriate forms for expression of high-level 

policy goals, for an entire ad hoc cloud, and for specific ser-

vices? 

 Can high-level goals be translated automatically to corres-

ponding concrete actions? 

 How should measured low-level properties be aggregated 

for reporting in terms of high-level goals? 

 Under what circumstances can conflicting policies be de-

tected and automatically resolved? 

 What mechanisms can be used to coordinate potentially 

complementary services (e.g. block storage, file systems, 

databases), so that they align with one another rather than 

competing unnecessarily for resources? 

4. OUR APPROACH 
An ad hoc cloud should be self-managing in terms of resilience, 

performance and balancing potentially conflicting policy goals. 

For resilience it should maintain service availability in the pres-

ence of membership churn and failure. For performance it should 

be self-optimizing, taking account of quality of service require-

ments. It should be acceptable to machine owners, by minimising 

intrusiveness and supporting appropriate security and trust me-

chanisms. 

We identify several desirable features for the general ad hoc cloud 

architecture: 

 Agnostic as to service type: the approach can be applied to 

different styles of cloud service, for example infrastructure, 

platform or application as service [20]. 

 Agnostic as to means of control: the approach allows differ-

ent forms of autonomic decision making to be deployed at 

different points in the architecture. 

 Agnostic as to grain of control: autonomic behaviour may 

be coarse or fine-grained at different points. For example, a 

dispatcher may balance load only as requests leave queues, 

or may change resource allocations for running jobs. 

4.1 Core Cloud Functionality 
There exist successful architectures for large-scale cloud compu-

ting in the data center style [2, 3, 5, 6]. The principal additional 

challenges in supporting ad hoc clouds lie in accommodating 

highly dynamic machine membership, and allowing cloud compu-

tations to co-exist satisfactorily with non-cloud processes. Al-

though data center clouds deal with machine failures automatical-

ly, the churn will be significantly higher in ad hoc clouds, arising 

from more frequent rebooting of personal machines and the fre-

quent unavailability of portable devices. Machines may also be-

come unavailable to the ad hoc cloud for unpredictable periods, 

even though they remain connected and functioning, due to the 

higher priority of fluctuating user workloads. Data center clouds 

do not support co-existence of cloud and user processes; an ad 

hoc cloud architecture must support monitoring of impact on user 

processes, rapid relocation or shut-down of cloud processes, and 

modelling of cloud computation to allow sensible initial place-

ment of cloud processes. 

Here we sketch a possible architecture as a starting point. We 

define an ad hoc cloud as the union of a set of cloudlets, each of 

which provides a particular service or application. A cloudlet 

service may be specified and accessed via Web Services, or any 

other convenient protocol. Each cloudlet runs on a potentially 

dynamically changing set of physical machines. A given machine 

may host parts of multiple cloudlets. 

 



 
Figure 1. Cloudlets and Cloud Elements 

The software running on a particular machine, contributing to a 

particular cloudlet, is termed a cloud element. A cloudlet may be 

expanded or contracted by altering the number of machines, and 

hence cloud elements, assigned to it. The cloud elements compris-

ing a given cloudlet communicate with one another to coordinate 

their activity. The cloud elements within a cloudlet may be, but 

need not be, homogeneous in terms of their functionality. This 

structure is illustrated in Figure 1 (although it may suggest that the 

cloud elements assigned to each particular cloudlet run on physi-

cally close machines, this is for convenience of drawing only, and 

no such restriction is imposed by the architecture). 

Each physical machine available to the ad hoc cloud may host a 

number of cloud elements, each assigned to a different cloudlet. 

The machine runs cloud infrastructure software, which supports 

secure creation, management and destruction of cloud elements. 

Finally, the machine also executes non-cloud processes for the 

primary user. This is shown in Figure 2. 

The cloud infrastructure contains an element manager for creating 

and destroying cloud elements. It also contains a model-

ler/manager—which interacts with the host operating system in 

order to monitor effects of the local cloud elements on the user 

processes, and vice versa—and a broker and dispatcher, whose 

functions are described in the QoS section. 

 

 
Figure 2. Node Structure 



Each cloud element running on a machine contains an engine 

capable of running the class of computations appropriate to its 

cloudlet. The engine in the diagram is labelled W to signify that it 

can execute a particular class of workloads W, corresponding to 

the cloudlet functionality. An engine may provide application 

functionality directly via a user-level API, or support a further 

layer of application software loaded onto it. For example, one 

engine might provide a SQL API that accepts user queries direct-

ly; other engines might provide MapReduce functionality, or Java 

or JavaScript interpreters. In all but the first case a corresponding 

program would also be loaded. Each engine runs on an abstract 

machine. This might be a VMware-style virtual machine, a Java-

style VM, or something else tailored to the target computation 

class. Whatever it is, it must provide sufficient isolation of the 

element from the non-cloud processes on the node. 

The cloud element also contains its own modeller/manager, which 

has knowledge of the semantics of W, and a cost model that al-

lows reasoning about how the computation will be executed. The 

purpose of the modeller/manager is to control the operation of its 

associated engine such as to minimise disruption to user 

processes, to optimise its contribution to cloudlet functionality 

within such constraints, and to publish information to support 

effective deployment and adaptation of cloud elements. 

The infrastructure modeller/manager provides a conduit for com-

munication between cloud element modeller/managers and the 

host OS. For example, it allows cloud element modeller/managers 

to be aware of the current resource demands of non-cloud user 

processes, and hence endeavour to avoid undue disruption. Com-

munication between cloud element modeller/managers is neces-

sary in order to coordinate operations across a cloudlet. 

4.2 Automatic Adaptation 
The cloud infrastructure should automatically minimize the costs 

of: 

 deploying, operating and evolving the ad hoc cloud so 

that it is both highly-available to ad hoc cloud users and 

non-disruptive to primary users 

 ensuring that the execution of applications is efficient 

and reliable, with high probability, over long periods 

This requires the ad hoc cloud to exhibit autonomic capabilities 

[14]. It should automatically adapt the extent of each cloudlet and 

the placement of its data and computation, driven by appropriate 

management policies. The requirement poses a significant scien-

tific challenge, since it involves an understanding of the 

cost/benefit ratios associated with any given policy on resource 

allocation. Dynamic, multi-objective optimisation is necessary in 

order to coordinate resource utilisation policies, and to evolve 

policies in response to changing circumstances—about which 

knowledge is typically scarce. 

Because an ad hoc cloud runs on non-dedicated resources, har-

vesting and harnessing activities must remain acceptably non-

intrusive, requiring stringent constraints on policies and their ac-

tions. Moreover, since the usage patterns of machine owners may 

vary widely, policies must be informed by efficient, scalable mon-

itoring and performance modelling from which reliable, robust 

cost/benefit ratios can be derived. 

4.3 Quality Of Service 
To deliver QoS guarantees, two separate services are required: to 

make policy decisions based on QoS negotiations with external 

parties; and to provide mechanism to implement policy decisions. 

We propose to use the Broker and Dispatcher patterns [16]. These 

are embodied as distributed services that are structured in the 

same way as user-level services, making them autonomic and 

capable of changing their behaviour and resource usage in re-

sponse to changing request patterns. 

A broker establishes and manages up-front agreements with users 

of the cloud, for the provision of services at certain QoS levels for 

certain periods. It matches reservation requests against expected 

available resources in tandem with other commitments, and in-

forms the requester whether or not the request can be satisfied. 

Where the broker reaches an agreement, it seeks to ensure that 

resources are pre-configured (e.g. with suitable service deploy-

ments) in a way that enables the agreement to be met. 

The requirements of different types of service may need to be 

coordinated to meet QoS goals. The broker identifies whether the 

resource requirements and their associated constraints can be met. 

Such assessment requires access to information on the available 

computational resources, their historic loads and availabilities and 

other commitments that relate to them. A search must be made for 

a future configuration that is predicted to meet the requirements of 

the current request and future requests. 

A dispatcher exposes the user-level cloud services. Where a re-

quest is made to access a service for which there is an established 

agreement, the dispatcher makes use of the resources reserved by 

the broker in anticipation of the request. Where there is no pre-

arranged agreement, the request is still directed to a relevant ser-

vice by the dispatcher on a best-effort basis. 

5. EXAMPLE 
As an example of this architecture we describe the H2O database 

system [15]. H2O is a relational database based on the open 

source H2 system [19] that is intended for deployment on an ad 

hoc cloud. It offers a full set of relational operations including a 

user interface and JDBC linkage. Unlike traditional desktop rela-

tional systems such as MySQL, the system resides within hetero-

geneous desktop systems hosted within an enterprise. To under-

stand how the H2O system maps onto the architecture described 

in this paper, two components of H2O must be considered sepa-

rately: those corresponding to the cloudlet, and those correspond-

ing to the cloud elements. 

The cloud elements each run a complete relational database en-

gine which is responsible for whole or partial relational tables 

from the database. This corresponds to the engine component 

shown in Figure 2. A Java abstract machine, augmented by a re-

stricted interface to local persistent storage, hosts each database 

engine. The modeller/manager element tracks the amount of per-

sistent storage used on the node and the bandwidth usage etc. The 

programs that are executed by the engine are SQL fragments that 

are delivered to the node either from a local user interface or sent 

by another cloud element. In addition to the network interface 

exporting SQL functionality, a Java RMI interface provides func-

tionality for configuring both individual cloud elements and dep-

loyments on each node. 

The cloudlet component is required to track the individual ele-

ments of the database and maintain the database metadata. For 



example, individual relations are autonomically replicated across 

multiple cloud elements for resilience. Consequently, when a 

query attempts to access a relation for the first time or following a 

failure, it must query the cloudlet to bind to the managers running 

within an individual cloud element. This functionality is achieved 

by running a distributed database manager in the cloudlet above a 

P2P infrastructure, with each of the individual components of the 

cloudlet being hosted by cloud elements. 

The cloud infrastructure on each node provides the ability to in-

stantiate cloud elements on individual nodes. We have developed 

technology in earlier systems [7] that permits securely signed 

bundles of code and data to be instantiated on machines. 

6. CONCLUSIONS 
The ad hoc cloud model could allow complex cloud-style applica-

tions to exploit untapped resources on non-dedicated hardware. 

We believe that this approach has the potential to: 

 enable organizations to reduce IT costs; 

 enable organizations to obtain the benefits of cloud 

computing in new application areas; 

 reduce net energy consumption by IT activities. 

We have outlined a case for ad hoc cloud computing, a set of re-

sulting research challenges, and as a starting point, a proposed 

architecture. 
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