
This paper should be referenced as:

Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M. & Morrison, R.
“Persistent Hyper-Programs”. In Proc. 5th International Workshop on Persistent Object
Systems, San Miniato, Italy (1992).

Persistent Hyper-Programs

G.N.C. Kirby, R.C.H. Connor, Q.I. Cutts and R. Morrison
Department of Mathematical and Computational Sciences, University of St Andrews

St Andrews, Scotland

A. Dearle and A.M. Farkas
Department of Computer Science, University of Adelaide

Adelaide, Australia

Abstract

The traditional representation of a program as a linear sequence of text forces a particular style
of program construction to ensure good programming practice. Tools such as syntax directed
editors, compilers, linkers and file managers are required to translate and execute these linear
sequences of text. At some stage in the execution sequence the source text is checked for type
correctness and its translated form linked to values in the environment. When this is per-
formed early in the execution process confidence in the correctness of the program is raised, at
the cost of some flexibility of use.

Persistent systems allow the persistent environment to participate in the program
construction process. This raises the possibility of allowing the representations of source
programs to include direct links to values that already exist in the environment. By analogy
with hyper-text, where a piece of text contains links to other pieces of text, this source
representation is called a hyper-program.

This paper outlines how hyper-programming facilities may be provided within a persis-
tent system, discusses advantages of the technique and proposes some outstanding research
areas. The advantages of hyper-programming over conventional systems include the follow-
ing: it allows more convenient program composition mechanisms; it allows earlier checking;
it provides more flexible linking mechanisms; it allows more succinct program representa-
tions; and it allows procedure closures to be represented at a source code level.

1 Introduction

This work is motivated by a belief that programming language systems could provide
better support for the software engineering process than they do at present. Where the
language is persistent, the persistent store can participate in the program construction
process. The programmer composes programs interactively by navigating the persistent
store and selecting data items to be incorporated into the programs. This requires direct
links to the persistent data items to be represented in the program source. By analogy
with hyper-text, where a piece of text contains links to other pieces of text, this source
representation is called a hyper-program.

Figure 1 shows an example of a hyper-program. The hyper-program contains both
text and a token that denotes a data item in the persistent store, a procedure to write out
strings.

persistent store

writeString

hyper-program

for i = 1 to 10 do
begin
 ("Hello world")
end

Figure 1: A hyper-program

Figure 2 shows how the hyper-program might appear to the programmer during editing.
A more detailed description of a hyper-programming user interface can be found in [1].

Figure 2: A hyper-program editor

The references to values are linked into the hyper-program by selecting each value with a
store browsing tool and then pressing the link button. The system asks the programmer
whether to link the program to the value itself or to the store location that currently
contains the value. The editor then inserts a token at the current text position, represented
by a light-button. The programmer can examine a value in a hyper-program by pressing
the appropriate button in the text, which causes the browsing tool to display a
representation of the value.

The benefits of hyper-programming include:

• increased ease of program composition;
• being able to perform program checking early;

• being able to enforce associations from executable programs to source programs;
• availability of an increased range of linking times;
• reduced program verbosity; and
• support for source representations of procedure closures.

The principal requirement for supporting a hyper-programming system is a persistent
store to contain the program representations and the data items corresponding to the
tokens in the programs. The assumption is made here that the store is stable and that it
supports referential integrity. One consequence of this is that once a reference to a data
item in the store has been established, the data item will remain accessible for as long as
the reference exists.

Secondly, all hyper-program representations, both source and executable, must
consist of denotable values within the persistent programming language environment. A
further consequence is that the compilation process itself must also be supported within
this same environment. One mechanism particularly well suited to realise this is known as
type-safe linguistic reflection, as described in [2].

A third requirement is for tools that provide the programmer with a graphical repre-
sentation of the persistent store. The representation shows the values, locations and types
in the persistent store and the links between them. The programmer can point to the
representations of specific data items and obtain tokens for them to be incorporated into
hyper-programs.

To be useful in practice a hyper-programming system will also have to support addi-
tional facilities for ‘programming in the large’, that is, building large applications from
smaller components. These include facilities for controlling the sharing of components
between applications, for limiting the visibility of some components for protection
reasons, and for imposing a degree of partitioning on the persistent store to aid intellectual
manageability and execution efficiency. A model to support these facilities, the hyper-
world model, is proposed.

2 Motivations and benefits

First some terms used in the following discussion will be defined:

data item: a value, or a location containing a value, in the persistent store;

access path: a description of the position of a data item relative to the root of
the persistent store;

access specification: the access path of a data item together with a description of its
expected type.

The principal benefits of hyper-programming are now described in more detail.

2 .1 Program composition

The primary motivation for providing a hyper-programming system is to allow the
programmer to compose programs interactively, navigating the persistent store and select-
ing data items to be incorporated into the programs. This removes the need to write
access specifications for persistent data items that are accessed by a program.

Existing languages that allow a program to link to persistent data items at any time
during its execution, such as PS-algol [3] and Napier88 [4], require it to contain code to
specify the access path and type for each data item. The access path defines how the data
is found by following a particular route through the persistent store starting from a root of
persistence. The type specifies the expected type of the data at that store position. When
a program is compiled the compiler checks that subsequent use of the data is compatible
with its expected type. When the program is executed the run-time system checks that the
data is present at the declared position and that it does have the expected type.

This mechanism gives flexibility because a program can link to data in the store at any
time during its execution. However in many cases the programmer knows that a particu-
lar data item is present in the store at the time the program is written. Although the
programming system could obtain all the information in the access specification by
inspecting the data item at that time, the programmer must still write the access specifica-
tion.

In a hyper-programming system the programmer has the option of linking existing
data items into a program by pointing to graphical representations rather than writing
access specifications. Note that the ability to link to data items at run-time is still required
in the cases where data becomes available only after a program is written.

2 .2 Early checking

Hyper-programming can provide improved safety in several ways. One of these is that it
allows some program checks to be performed earlier than normal, subsequently giving
increased assurance of program correctness. This is possible because data items accessed
by a program may be available for checking before run-time. Referential integrity then
ensures that the checked data remains available at run-time.

Checking can be performed at several stages in the program development process in
existing systems. The principal opportunities are at compilation-time when a program is
translated into an executable program, and at run-time when the executable program is
executed. Categories of checking include checking programs for syntactic correctness and
type consistency, and checking persistent data access. Usually the program checks are
performed at compilation-time, although in some syntax directed programming systems
[5] type consistency is verified as a program is constructed.

2.2.1 Checking persistent data access

In conventional strongly typed persistent systems a program contains an access specifica-
tion for each persistent data item used. These access specifications are checked at run-
time: at that time the system verifies that each data item is present in the store, with the
previously declared access path and type. This is illustrated in Figure 3:

access path
type

use p1 : t1, p2 : t2, p3 : t3 as x in access
specification

program

persistent store

type t1

type t2 type t3

path p1

path p2

path p3

persistent root

d 1

d2 d3

check against
store at run-
time

Figure 3: Access specification with run-time checking

In the program the identifier x is introduced to denote the data item obtained by traversing
the access path p1 : t1, p2 : t2, p3. In the diagram this data item is labelled d3. The type of
x is declared to be t3. Each component of the path—p1, p2 and p3— is a fragment of code
that defines a route between two data items. p1 is first applied to the persistent root to
give data item d1, then p2 is applied to d1 to give d2, and finally p3 to d2 to give d3. The
types of the intermediate data items, t1 and t2, also form part of the access path. Note that
there may be other routes to d3 apart from the one shown. At compilation-time the system
checks that the access specification is consistent with the rest of the program. At run-time
it checks that the access specification is valid with respect to the current state of the store,
i.e., that d3 can be accessed along the given path at that time, and that it does have the
declared type t3.

A program execution will fail if the store does not contain a route to a data item corre-
sponding to the access path specified in the program. Thus even if it is known at the time
of writing that a particular program will execute correctly, it cannot be predicted when it
may fail on some future execution.

The use of hyper-programs as source representations allows the checking of access
specifications to be performed before run-time. Each token embedded in a hyper-program
denotes a data item that exists in the store at the time the hyper-program is composed. The
process of checking the access path is moved from run-time to program composition time.
The access path is established incrementally as the programmer manipulates the graphical
representations of the data in the store to locate the required data item. Once the path has
been established the data item at the end of it is linked into the hyper-program and the path
need not be followed again at execution time. This is illustrated in Figure 4. The hyper-
program will be unaffected if the access path is then removed. This might occur, for
example, due to the link from d2 to d3 being overwritten by a link to some other data item.

persistent store

type t1

type t2
type t3

path p1

path p2

path p3

persistent root

d1

d2 d3

use as x in

hyper-program

token

access path followed when token is
incorporated into hyper-program

Figure 4: Access path with hyper-program

The access path part of the access specification is established during hyper-program
composition. The other part, the type specification of the data item, is checked when the
type consistency of the hyper-program is verified at or before compilation-time. The
system checks that the type of the data item denoted by the token is compatible with the
use of the token in the program.

Creating direct links from a hyper-program to values in the store, with the attendant
safety benefits described above, is only applicable where values are present in the store at
hyper-program composition time. Added flexibility can be gained by using tokens to
denote mutable locations in the store. Linking a location into a hyper-program involves
the same processes as for linking a value, with the difference that the value associated
with the token changes when the location is updated. Updates to the location may occur at
any time after the composition of the hyper-program. Strong typing ensures that the type
of any value assigned to a location is compatible with the type of its original contents.
This allows the type checking of persistent locations to be performed at compilation-time.
The values in locations associated with the tokens in a hyper-program can vary but their
types will always remain compatible. Where a token denotes a location, that location is
linked directly into the executable program produced from the hyper-program, so that
updates to the location also affect the executable program.

2.2.2 Other kinds of checking

Language systems also perform other kinds of checking at run-time, some of which can
be performed earlier in a hyper-programming system. An example of this is dependent
type checking.

A dependent type is a type that depends on a value. In general this requires dynamic
type checking. To determine whether two dependent types are compatible, the language’s
type checker takes account of the associated values as well as their structure. An example
of a dependent type is the generic type map [6], instances of which are associations
between sets of values. The type of a particular map is dependent on the identity of the
procedure which defines equality over the key set. Because of this it is not generally
possible to type-check at compilation-time a program that contains map operations, as the
map values themselves must be tested.

In a hyper-programming system the value on which a dependent type depends may
be linked directly into a program, and may thus be available for checking at compilation-
time. This makes it possible for the system to check operations on dependent types at
compilation-time rather than planting code in the executable program to perform the
checking at run-time. The system may also provide tools that allow the programmer to
verify the type compatibility of selected values before they are linked into the hyper-
program. Transmission of the results of such checks to the compilation system is a topic
for future research.

More generally the programmer may perform arbitrary checks on data values before
linking them into a hyper-program, by writing and executing other programs that compute
over them. If the checks succeed, the code that performs the checking can then be omitted
from the main hyper-program, since the links to the original values are guaranteed to
remain intact.

2 .3 Source code control

2.3.1 Relationships among program forms

Safety can also be improved with respect to the relationships between executable
programs and source programs. In a programming system it is often desirable to maintain
links between executable programs and their corresponding source code programs, to
facilitate debugging and software evolution. These links enable the system to show the
source code corresponding to the point where an error occurs in a running program, or to
supply the source code for a given executable program so that it can be modified and a
new version created.

In existing systems these links operate by conventions and can be corrupted by
programmer actions that do not conform to those conventions. Given a language that
supports executable programs as first class values—for example, procedures—a hyper-
programming system can enforce links from executable code to source code. To illustrate
this, the relationships between these different forms of code and other data values will be
described, first in general and then with particular reference to file-based systems, persis-
tent systems and finally hyper-programming systems.

Application development involves a number of activities including the following:

• constructing source code programs;
• compiling source code to give intermediate programs;
• linking intermediate programs to give executable programs;
• linking existing data items into executable programs; and
• executing linked programs in a run-time environment.

The software entities involved in these activities are:

• source programs;
• intermediate programs—these are not executable since the code in them contains unre-

solved references to other programs;
• executable programs—these can be executed directly; and
• data items that are manipulated during execution.

Language systems support several varieties of relationships between the software entities
listed above. These are causations, associations and direct links.

Causations are one-way ‘cause and effect’ relationships. A causation from an entity
A to another entity B is a relationship mediated by some process having A as input and B
as output. This means that a change to A results in a corresponding but indirect change to
B. An example of a causation is the relationship between a source program and the corre-
sponding compiled version, mediated by the compiler which takes the source program as
input and produces a compiled version. A modification to the source program causes a
corresponding change in the compiled program but only after the process of compilation.

Associations are general relationships between entities. An example is an association
between an executable program and the corresponding source program, maintained by a
source level debugging system. This information is not intrinsic to the associated entities
themselves but is maintained by an external mechanism. In general the accuracy of asso-
ciations depends on adherence to conventions: if changes to the entities are made outside
the control of the external mechanism the associations may become invalid. In the
example the source program could be updated without notifying the debugging system, in
which case its association with the executable program would become invalid.

Direct links are references between entities in the run-time environment. A direct link
from an entity A to another entity B exists if a change to B results in a corresponding and
immediate change to A. This could be implemented by storing the address of B inside A.
The language systems considered here support identity, that is, a reference to a given
entity is guaranteed to remain valid and to refer to the same entity for as long as the
reference exists. Thus a direct link from A to B always remains valid regardless of the
operations performed on B. A change to B has an immediate effect on A without the need
for any intermediate process.

2.3.2 Languages with external storage systems

In languages such as Pascal [7], Ada [8] and C [9], the persistent data, that which
survives for longer than the program execution that creates it, is manipulated differently
from the transient data. It is held in a storage system, separate from the run-time envi-
ronment, with which programs communicate through an interface. An example is the
Unix file system [10].

The program entities listed earlier—source programs, intermediate programs and
executable programs—all reside in the external storage system. Source programs are
compiled to produce intermediate programs. Where necessary a linker is then used to link
in existing intermediate and executable programs from a program library. This linking
involves combining the intermediate program with copies of the library programs to
produce a new executable program. At run-time the resulting executable program is itself
copied into the data space of a run-time environment and evaluated in that context. The
running program may create new data items (values and locations) with direct links
between them. It may also access existing data in the external storage system. The run-
time environment disappears at the end of execution, along with any new data items
created in it.

The relationships are illustrated pictorially in Figure 5. Here solid rectangles repre-
sent source programs, rounded rectangles represent intermediate programs, diamonds
represent executable programs and ellipses represent data items that can be denoted in the
programming language.

program
data

program library

intermediate
program

run-time environment

source
program

executable
program

copy of executable code

compilation

copying and
execution

linking

access
through file

system
interface

direct link

causation

association

Key

data item

file system

Figure 5: Relationships in a file-based system

2.3.3 Persistent languages

Persistent languages that support first class procedures are now considered. Examples of
these are PS-algol, Napier88, Galileo [11, 12], P-Quest [13, 14] and STAPLE [15]. The
model of persistence in these languages is persistence through reachability [16]: this
means that a data item will persist at the end of a program’s execution if and only if it is
reachable from one or more persistent roots.

In these languages executable programs can be represented as first class procedures
or functions and can thus be stored in a persistent store rather than a file system. Since
each executable program is a language value it can contain direct links to other data items,
and other values can contain direct links to it. A separate program library is not necessary
since direct links to other executable programs in the store can be incorporated into an
executable program when it is formed. Programming techniques to achieve the effects of
incremental linking in this way are described in [17-20]. As executable programs are
values, incremental linking of code and incremental loading of data reduce to the same
problem and are handled by the run-time system.

Note that although the languages listed above use procedure closures to represent
executable programs this is not essential to the schemes described in this section. All that
is required is some mechanism to denote executable programs as values in the program-
ming language.

The persistent store may subsume the functions of the file system, or the persistent
store and file system may be used together. Figure 6 shows the relationships in a hybrid
system in which source programs are kept in the file system and executable programs in

the store. Here the program library contains only source programs; the corresponding
executable programs reside in the store. The combined ellipses and diamonds in the
diagram represent these procedure values. As the linking process can be achieved without
a separate linker, no intermediate programs are required.

The figure shows causations and associations between source programs and
executable programs as before. There is also a causation from the main executable
program e1 to the data item v1 which is created by execution of that program. Data item v1

contains a direct link to data item v2, as does e1, which also contains direct links to other
executable programs; these direct links replace the associations between executable
programs and library programs shown in Figure 5.

(b)v2

executable
program

compilation

e1

source program

persistent store

v1

data item
execution

direct link

causation

association

Key

file system

program
data

access
through file

system
interface

source program library

data item

Figure 6: Relationships in a hybrid persistent / file-based system

Figure 7 shows the relationships in a persistent system where all components and data
reside in the persistent store. The combined ellipses and rectangles represent source
programs that are denotable values in the programming language. These values may be,
for example, text strings or abstract syntax trees.

direct link

causation

association

Key

(b)v2

persistent store

v1

source program

executable
program

compilation

execution

e1

data item

data item

program library

Figure 7: Relationships in a persistent system

Both schemes shown have the advantage that executable programs are associated with the
others that they use by direct links. Once established these links are guaranteed to remain
in place. In contrast, in a non-persistent system the integrity of the associations between
executable programs that reside in the external storage system depends on the programmer
following certain conventions. For example the deletion of an executable program from
the program library might break these conventions.

The scheme shown in Figure 7 has the further advantage that the source programs,
being in the persistent store, are brought under control of the language. This allows the
system to be self-supporting: the environment in which programs are composed, compiled
and executed can itself be implemented using the same programming language. Functions
that are normally controlled by the operating system can then be integrated with the
programming language. These include source code control and versioning, source level
debugging, controlling the configuration of applications built from multiple components,
documentation, etc. A number of workers are currently addressing the problems of
supporting the whole software engineering process within an integrated persistent system
[20-24]. Type-safe linguistic reflection is needed to implement such a system.

2.3.4 Hyper-programs

Bringing executable programs into the persistent store allows associations between them
to be enforced by direct links. It would be beneficial for the associations between
executable programs and source programs to be replaced by direct links also, for the same
reason, i.e., they could not then be accidentally corrupted. Then each executable program
would contain a direct link to its corresponding source program. As an executable
program can also contain direct links to other data items in the persistent store, a source
program must be able to denote those data items in order to represent the executable
program accurately. This requires the use of hyper-programs as source representations.

Figure 8 shows the relationships in a hyper-programming system. Each executable
program contains a direct link to its source hyper-program. Each of the other direct links
contained in an executable program is duplicated in its corresponding hyper-program.

(b)

persistent store

source hyper-program

executable
program

compilation

execution

e1

data item

data item

program library

Key

direct link

causation
v2

v1

Figure 8: Relationships in a hyper-programming system

To illustrate the necessity of hyper-programs for providing accurate source representations
of executable programs, consider the situation where multiple executable programs have
direct links to a shared store location as illustrated in Figure 9:

executable
program

persistent store

location

executable
program

Figure 9: Executable programs sharing a location

The problem in conventional systems arises in supplying separate source programs for
each of the executable programs. Unless there is a direct access path to the location from
a persistent root, and in general there does not have to be one, conventional source
representations do not provide any notation with which the location can be denoted in a
source program.

A solution is to change the program notation by introducing hyper-programs as
source representations. It is then possible to denote the shared location in the source
programs by including tokens for the location. This makes it feasible for every executable
program to contain a direct link to its own source hyper-program as illustrated in Figure
10. To preserve the association the source hyper-program is read-only although it can be
copied and the copy edited.

executable
program

persistent store

location
executable
program

… …

source program

…

source program

Figure 10: Executable programs with direct links to hyper-programs

Thus the use of hyper-programs as source representations allows associations from
executable programs to source programs to be replaced by direct links, improving the
robustness of the programming system by eliminating accidental changes to or deletions
of source programs.

2 .4 Flexible linking mechanisms

Programming languages support a number of different mechanisms for establishing direct
links from programs to persistent values, locations and types. The degrees of freedom
include constancy or variability, linking to L-values or R-values [25], and the time at
which the linking takes place. The focus here is on the range of times available. Some
possible times are during program composition, during compilation, during a separate
linking phase, and during execution.

The principal varieties of programming system identified earlier were file-based,
persistent and hyper-programming systems. Another possibility is a compile-time linking
system in which the tokens embedded in a program are associated with data items in the
persistent store when the program is compiled rather than when it is written. The linking
times possible in each of these systems are shown in Figure 11. From here on it will be
assumed that the hyper-programming systems under consideration incorporate facilities
for compile-time linking as well as composition-time linking.

System Linking Time

composition compilation linking phase execution

program data program data program data program data

file-based • •

persistent • • • •

compile-time linking • • • • • •

hyper-programming • • • • • • • •

Figure 11: Comparison of possible linking times in various systems

File-based systems allow links to existing data to be formed only at run-time. Links to
existing programs are formed during a linking phase by copying library programs into the
main program. In persistent systems a linking phase can be implemented using first class
procedures. Since these executable programs are a form of data, linking to both programs
and data can be performed either at link-time or run-time. Compile-time linking systems
support these same linking times and also allow linking to programs and data at
compilation-time.

A hyper-programming system supports all the linking times described. The
programmer can specify various linking times as appropriate for different components of
an application. Deciding when components should be linked into a main program
involves trade-offs between program safety, flexibility and execution efficiency.

Run-time linking gives flexibility as the data (data will now be used to denote both
programs and other kinds of data) accessed does not have to be present in the persistent
store, file system or database before run-time. Indeed the access path to the data may not
be known until run-time. Program safety is low since the data may not be present when
the program is run, causing a run-time failure. Execution overheads are also higher, in
strongly typed systems, since the type of the data must be checked dynamically. This
kind of linking is possible in many systems, for example, C, Pascal, Ada, Smalltalk-80
[26], PS-algol, Napier88.

A distinct linking phase occurs between compilation and execution in some file-based
systems, involving the copying of other executable or intermediate programs into the main
executable program. A similar effect can also be achieved in persistent languages with
higher-order procedures, where all types of data may be linked into an executable program
before run-time. This provides improved safety and efficiency over run-time linking,
since checks for the data’s existence and type are performed before run-time. Flexibility
is reduced since its use requires the data to be present earlier.

Linking at compilation-time increases safety and efficiency, bringing checks further
forward in time, and reduces flexibility correspondingly. With this mechanism the data
linked into an executable program is fixed.

Composition-time linking is the least flexible of the alternatives described as the data
linked to must be present at the time that the program is written. It offers the most safety
since access to the data is always maintained once it is linked into the source code, even if
the source code is edited and re-compiled. This is not true of the other linking styles

where editing of the source code requires all links to be re-established. Efficiency is
slightly increased overall since the access path to the data, whether it is expressed by
textual code or by user gesture, need be followed only once, at composition-time, and not
on every re-compilation.

2 .5 Program succinctness

Persistent systems offer significant savings over non-persistent systems regarding the data
access code required. One empirical study concluded that 30% of the code in a large set
of commercial non-persistent programs was dedicated to transferring data to and from an
external storage system [27]. Recent measurements of Napier88 programs have
suggested that these access specifications occupy around 13% of program code [28], a
considerable reduction on 30%. The intellectual effort required to write the code is also
significant: in writing access specifications in a persistent system the programmer is not
concerned with programming transformations between structured and flattened formats.

Hyper-programming gives a further improvement in conciseness as the access
specifications can in some cases be replaced by tokens that denote persistent data items.
The information that was specified in the access specifications is provided through the
interactive gesturing by which the programmer points out data items to be linked in. The
measurements of Napier88 programs found around 20% of identifiers referring to persis-
tent data. Further work is required to measure the proportion of this data that is available
for linking at hyper-program composition time.

Figure 12 summarises the nature of the persistent data access code that appears in
source programs in the various cases:

System Access path code

non-persistent file access + importing + exporting

persistent access path + type description

hyper-programming

(data present at composition time)

(data not present at composition time)

token

access path + type description

Figure 12: Comparison of access path code

2 .6 Procedure representations

Since hyper-programs can contain direct links to values and locations in the persistent
store they can be used to represent executable programs, including those with links to
shared locations. This provides a convenient representation format for procedure values.

As described earlier, associations between executable programs and source programs
can be replaced by direct links. When a procedure value is created the compilation system
can insert a direct link to its source hyper-program. Given referential integrity, the source
code will then remain accessible for as long as the procedure value.

The use of hyper-program source representations allows browsing tools to display
meaningful representations of procedure values, showing both source code and direct
links to persistent data items. This may aid software reuse since documentation in the

form of the original source code can be made available for every procedure value in the
persistent store.

Hyper-programs allow separate procedure source representations since shared loca-
tions can be denoted by tokens. A further consequence is that one of a group of
procedures that share values or locations can be replaced by a refined version without the
need to replace the others. This reduces the cost of modifying applications that are
composed of multiple procedures.

The use of hyper-programs to represent procedures with shared locations will be
illustrated with an example. Figure 13 shows a Napier88 program that places in the per-
sistent store two procedures that share an integer location:

let i := 0

in PS() let inc := proc() ; i := i + 1
in PS() let get := proc(→ int) ; i

Figure 13: Procedures with a shared location

The program first initialises an integer variable i with the value 0. It then creates two
persistent procedures that operate on i, the first incrementing it by 1 and the second return-
ing its current value. The procedures are made persistent by declaring them in the context
of the persistent root environment, obtained by calling the pre-defined procedure PS.
Although the store location corresponding to the variable i is not declared in the persistent
environment, it will persist because it is reachable from the procedures inc and get which
are themselves persistent. The result of executing this program is that the persistent store
contains the two procedures and the shared integer location which is not directly accessi-
ble from the persistent root.

Figure 14 shows the links between the procedures, their hyper-program source rep-
resentations and the shared location:

incexecutable
program

persistent store

location

executable
program

get

i

proc(→ int) ;

source program

proc() ; := + 1

source program

Figure 14: Hyper-programs with a shared location

The use of hyper-program source representations for procedures in this way avoids
having to replace all procedures that share locations when a single one is changed.
Another advantage is that the same shared locations are retained after the replacement of a
procedure. Without hyper-program source representations not only do all the procedures
have to be replaced in order to preserve sharing, but new shared locations must be created
and the values that were previously shared copied into the new locations.

3 Hyper-worlds

There are a number of components that a persistent programming environment should
support if it is to provide for the software engineering process as a whole. These include:

• program composition, compilation and execution;
• storing of source and compiled versions of programs;
• debugging;
• documentation;
• decomposition of large application programs into components, and organisation of

those components;
• navigating the persistent store to locate programs and other data with given attributes;
• querying of the types of programs and data in the persistent store.

The model of hyper-programming as described so far allows source programs to contain
links to any other data in the persistent store. In large scale systems this generality may
lead to several problems. Firstly, the store may become intellectually unmanageable as the
number of links increases. Secondly, evolution of application programs by substituting
new versions of their components becomes difficult to manage if unrestricted linking to
the components is permitted—it may be necessary to locate each data item linked to the
component being substituted and determine whether a new version of the data item is
required in turn. In addition the model described does not provide a uniform framework
for storing meta-data about application components.

One research topic is the provision of additional structure over a basic hyper-
programming system to address these needs. The hyper-world model offers the
programmer a loose coupling mechanism to offset the disadvantages of the tight coupling
made possible by hyper-programming. In this model, based in part on that described in
[29], the persistent store is partitioned into a number of application spaces or hyper-
worlds. Each hyper-world contains the program components and data used by an appli-
cation, and a schema that describes their relationships. Each hyper-world has a single
visible component which may be linked to from outside the hyper-world; no other
components inside the hyper-world may be linked to from outside.

The schema includes documentation information, a type description and hyper-
program source for each component. It also includes a representation of the component
linking topology, and a list of type definitions local to the hyper-world. This allows the
programmer to perform various queries over the components, and to determine the impli-
cations of replacing a component with a changed version.

The partitioning supported by hyper-worlds may reduce problems such as keeping
track of inter-component links to a manageable scale, by restricting the region of interest
from the entire persistent store to the hyper-world. It may also allow type-checking to be
performed more efficiently.

Figure 15 shows a representation of a persistent store containing nested hyper-worlds
and linked components:

Hyper-world

Hyper-world Hyper-world

Persistent store

Figure 15: A store with hyper-worlds

4 Implementation status and further research

A prototype Napier88 hyper-programming system has been developed [30], building on
earlier systems developed at St Andrews and Adelaide [22, 23].

Although the concept of hyper-programming has been illustrated using Napier88 it is
not restricted to that language. It could be implemented for any language that supports
first class procedures, orthogonal persistence, run-time linguistic reflection and graphical
user interface tools.

There are several avenues for further research in hyper-programming:
Hyper-worlds: the model described above will be further developed and imple-

mented.
Reflective programming: the implementation of the hyper-programming envi-

ronment is founded on the reflective facilities of Napier88: the ability to write a program
(the programming environment) that constructs another program (the code composed in
the environment by the user) and compiles it dynamically. This is an implementation
issue and one that the user need not be aware of. However, run-time reflection can be a
more generally useful programming tool, and some current research addresses the
problems of how the programmer can express in a comprehensible way the computations
that produce new programs [31]. The possibilities of writing reflective programs that
produce hyper-programs will be investigated.

Programming by gesture: in the existing systems values can be browsed by
gesturing with the mouse but to achieve any updates to the store the user must write and
evaluate new code. Another line of research is to investigate the possibilities of perform-
ing more general computation over the store via a ‘direct manipulation’ approach. It
would not be hard to provide in an ad-hoc manner ways of performing specific pre-
defined actions; the challenge is to develop some more general model.

5 Conclusions

There are many situations when the programmer writes code to access data items in the
persistent store, knowing that those data items are present in the store at the time of
writing. This paper has shown how data can be linked directly into a source program as
opposed to the program containing instructions on how to link to it at run-time. This
gives the benefits provided by interactive languages: greater program safety as there is no
danger of losing access to the data during the time between writing and execution, and
better efficiency as run-time type and access path checks are factored out. The flexibility
of being able to link to the store dynamically when required is retained.

An analysis has been given of the program entities and their inter-relationships in a
hyper-programming system, and compared to those found in file-based and existing
persistent systems. A number of benefits of using hyper-programs have been described.
These include being able to: perform program checking early; enforce associations from
executable programs to source programs with direct links; support an increased range of
linking times; reduce program verbosity; and provide source representations for procedure
closures.

The user interface of a prototype hyper-programming system has been outlined. A
store browser is used by the programmer to navigate the persistent store and identify data
items. Tokens that denote these data items can then be incorporated into the hyper-
program under construction. Facilities for viewing and editing hyper-programs are
provided.

Finally a framework, called hyper-worlds, has been proposed for supporting
‘programming in the large’ in the context of a hyper-programming system. It allows the
programmer to impose a degree of partitioning on the persistent store, in order to aid intel-
lectual manageability and improve execution efficiency.

6 Acknowledgements

This work was supported by ESPRIT III Basic Research Action 6309 – FIDE 2 and
SERC grant GR/F 02953. Richard Connor is supported by SERC Postdoctoral
Fellowship B/91/RFH/9078. Alan Dearle and Alex Farkas are supported by ARC grants
“Controlled Evolution” and “Browsing in Persistent Integrated Programming
Environments”, Adelaide University grant “Persistent Integrated Programming
Environment” and by the DSTO. We thank Dave Stemple for his useful comments.

7 References

1. Farkas AM, Dearle A, Kirby GNC, Cutts QI, Morrison R, Connor RCH.
Persistent Program Construction through Browsing and User Gesture with some
Typing. In: Proc. 5th International Workshop on Persistent Object Systems, San
Miniato, Italy, 1992

2. Stemple D, Stanton RB, Sheard T, Philbrow P, Morrison R, Kirby GNC,
Fegaras L, Cooper RL, Connor RCH, Atkinson MP, Alagic S. Type-Safe
Linguistic Reflection: A Generator Technology. University of St Andrews Report
CS/92/6, 1992

3. PS-algol Reference Manual, 4th edition. Universities of Glasgow and St Andrews
Report PPRR-12-88, 1988

4. Morrison R, Brown AL, Connor RCH, Dearle A. The Napier88 Reference
Manual. University of St Andrews Report PPRR-77-89, 1989

5. Altmann RA, Hawke AN, Marlin CD. An Integrated Programming Environment
Based on Multiple Concurrent Views. Australian Computer Journal 1988;
20,2:65-72

6. Atkinson MP, Lécluse C, Philbrow P, Richard P. Design Issues in a Map
Language. In: P. Kanellakis and J. W. Schmidt (ed) Bulk Types & Persistent
Data. Morgan Kaufmann, 1991, pp 20-32

7. Wirth N. The Programming Language Pascal. Acta Informatica 1971; 1,35-63

8. Reference Manual for the Ada Programming Language. U.S. Department of
Defense Report ANSI/MIL-STD-1815A, 1983

9. Kernighan BW, Ritchie DM. The C programming language. Prentice-Hall, 1978

10. Ritchie DM, Thompson K. The UNIX Time-Sharing System. The Bell System
Technical Journal 1978; 63,6:1905-1930

11. Albano A, Cardelli L, Orsini R. Galileo: a Strongly Typed, Interactive Conceptual
Language. ACM ToDS 1985; 10,2:230-260

12. Albano A, Ghelli G, Orsini R. The Implementation of Galileo’s Values
Persistence. In: M. P. Atkinson, O. P. Buneman and R. Morrison (ed) Data
Types and Persistence. Springer-Verlag, 1988, pp 253-263

13. Brown AL, Mainetto G, Matthes F, Müller R, McNally DJ. An Open System
Architecture for a Persistent Object Store. In: Proc. 25th International Conference
on Systems Sciences, Hawaii, 1992, pp 766-776

14. Matthes F, Müller R, Schmidt JW. Object Stores as Servers in Persistent
Programming Environments—The P-Quest Experience. ESPRIT BRA Project
3070 FIDE Report, 1992

15. Davie AJT, McNally DJ. Statically Typed Applicative Persistent Language
Environment (STAPLE) Reference Manual. University of St Andrews Report
CS/90/14, 1990

16. Atkinson MP, Bailey PJ, Chisholm KJ, Cockshott WP, Morrison R. An
Approach to Persistent Programming. Comp. J. 1983; 26,4:360-365

17. Atkinson MP, Morrison R. Persistent First Class Procedures are Enough. In: M.
Joseph and R. Shyamasundar (ed) Lecture Notes in Computer Science 181.
Springer-Verlag, 1984, pp 223-240

18. Atkinson MP, Morrison R. Procedures as Persistent Data Objects. ACM ToPLaS
1985; 7,4:539-559

19. Atkinson MP, Morrison R. Integrated Persistent Programming Systems. In: Proc.
19th International Conference on Systems Sciences, Hawaii, 1986, pp 842-854

20. Dearle A, Cutts QI, Connor RCH. An application architecture using type-safe
incremental linking. Submitted for publication, 1992

21. Cooper RL. On The Utilisation of Persistent Programming Environments. Ph.D.
thesis, University of Glasgow, 1990

22. Farkas AM. ABERDEEN: A Browser allowing intERactive DEclarations and
Expressions in Napier88. University of Adelaide Report Honours Project, 1991

23. Kirby GNC, Cutts QI, Connor RCH, Dearle A, Morrison R. Programmers’
Guide to the Napier88 Standard Library, Edition 2.1. University of St Andrews,
1992

24. Dearle A, Marlin CD, Dart P. A Hyperlinked Persistent Software Development
Environment. In: Proc. Hyper-Oz ’92: A Workshop on Hypertext Activities in
Australia, Adelaide, Australia, 1992

25. Strachey C. Fundamental Concepts in Programming Languages. Oxford
University Press, Oxford, 1967

26. Goldberg A, Robson D. Smalltalk-80: The Language and its Implementation.
Addison Wesley, 1983

27. IBM Report on the Contents of a Sample of Programs Surveyed. IBM, San Jose,
California, 1978

28. Sjøberg D. Measuring Name and Identifier Usage in Napier88 Applications.
ESPRIT BRA Project 3070 FIDE Report FIDE/92/37, 1992

29. Wile DS, Allard DG. Worlds: An Organizing Structure for Object-Bases. In: Proc.
2nd ACM SIGSOFT/SIGPLAN Symposium on Practical Software Development
Environments, Palo Alto, California, 1986

30. Kirby GNC. Reflection and Hyper-Programming in Persistent Programming
Systems. Ph.D. thesis, University of St Andrews, 1992

31. Kirby GNC. Persistent Programming with Strongly Typed Linguistic Reflection.
In: Proc. 25th International Conference on Systems Sciences, Hawaii, 1992, pp
820-831

	Citation
	Title
	Abstract
	1 Introduction
	2 Motivations and benefits
	2. 1 Program composition
	2. 2 Early checking
	2.2.1 Checking persistent data access
	2.2.2 Other kinds of checking

	2. 3 Source code control
	2.3.1 Relationships among program forms
	2.3.2 Languages with external storage systems
	2.3.3 Persistent languages
	2.3.4 Hyper-programs

	2. 4 Flexible linking mechanisms
	2 . 5 Program succinctness
	2 . 6 Procedure representations

	3 Hyper-worlds
	4 Implementation status and further research
	5 Conclusions
	6 Acknowledgements
	7 References

