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Abstract

Acoustic based density estimates are being increasingly used. Usually density es-
timation methods require one to evaluate the effective survey area of the acoustic
sensors, or equivalently estimate the mean detection probability of detecting the
animals or cues of interest. This is often done based on an estimated detection
function, the probability of detecting an object of interest as a function of covari-
ates, usually distance and additional covariates. If the actual survey data and the
data used to estimate a detection function are not collected simultaneously, as in
Marques et al. (2009), the estimated detection function might not correspond to
the detection process that generated the survey data. This would lead to biased
density estimates.

Here we evaluate the influence of ambient noise in the detection and classifica-
tion of beaked whale clicks at the Atlantic Undersea Test and Evaluation Center
(AUTEC) hydrophones, to assess if the density estimates reported in Marques
et al. (2009) might have been biased. To do so we contaminated a data set with
increasing levels of ambient noise, and then estimated the detection function ac-
counting for the noise level as an additional covariate. The results obtained suggest
that for the particular results obtained at AUTEC’s deep water hydrophones the
influence of ambient noise on the beaked whale’s click detection probability might
have been minor, and hence unlikely to have had an impact on density estimates.
However, we do not exclude the possibility that the results could be different under
other scenarios.
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1 Introduction

Marques et al. (2009) presented a method for estimating the density of cetaceans
using passive acoustic detections, using as a case study a set of data on Blainville’s
beaked whale (Mesoplodon densirostris) from the US Navy AUTEC testing range
in the Bahamas. Density was estimated over a 6 day data set. One important com-
ponent of the calculations is to estimate the average probability of detection of a
vocalization (in this case a beaked whale click), given one is produced within some
fixed distance of a study hydrophone. In their paper, Marques et. al used auxil-
iary data from animals fitted with acoustic and acceleration-sensing tags (“DTags”,
Johnson and Tyack (2003)) to estimate a “detection function” – the probability of
detection as a function of distance (and other variables), and then used the esti-
mated detection function to estimate average detection probability. One potential
issue, noted by Marques et al. is that ambient noise might represent a source of
bias in the reported density estimate. The detection function was estimated from
DTag data, and it was assumed that this estimated detection function was rep-
resentative of the conditions observed during the 6 day survey period. However,
especially for beaked whales, DTag’s are usually only deployed in low sea-state
conditions, which could result in lower background ambient noise as compared to
the 6 day data set. If this is true, then the average detection probability would
have been overestimated, and density underestimated.

This report presents an attempt to evaluate the influence of ambient noise
on the detection and classification of beaked whale clicks and the corresponding
impacts on density estimation.

Note that in Ward et al. (in press) we also looked at closely related issues.
However, there is a fundamental difference with respect to the analysis presented
here. In Ward et al. (in press) the classification stage was bypassed, in an at-
tempt to characterize the performance of the detector. So it is important to stress
that while we henceforth refer just to the “detection” process, it actually corre-
sponds, unless the difference is made explicit, to the joint process of detection and
classification.

1.1 Available data sets

Three data sets are available for analysis. The key difference between them relates
to the specific sound processing hardware used as described below:

1. “added noise DTag data”- contains 9 files in total. These correspond to 3 files
with the original data from the dives 2, 3 and 4 of Md07 248b. Additionally,
for each dive there are two other files, labeled SS6 and SS11, correspond-
ing respectively to adding surface ambient noise representing wind speeds
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of 6 m/s (11 knots) and 11 m/s (21 knots) to the original files. These were
processed using a (Naval Undersea Warfare Center) NUWC developed tool
(”wavmcast”) and do not have the higher electronic noise floor of files pro-
cessed in the (Digital Signal Processing) DSP lab (see methods for details).
Note we only have data from 5 unidirectional hydrophones (hydrophones 65,
66, 73 and 74 for dive 2, 66 and 67 for dive 3, and 67 for dive 4).

2. “ambient noise DTag data” - contains 9 files in total, to which no noise was
added. These correspond to 9 dives, namely dives 2 and 3 from Md06 296,
dives 1 to 4 from Md07 248a and dives 2 to 4 from Md07 248b. These files
were processed via playback of Alesis hard disk recordings through the in-lab
M3R DSP chassis and do have the noise floor issue (see methods for details).

3. “6 day ambient noise data” - a single file named “Ambient6day 16Jul10.txt”
containing the ambient noise data over the 6 days data set. Note this file was
also processed via playback of Alesis hard disk recordings through the in-lab
M3R DSP chassis, and so is only internally consistent with the “ambient
noise DTag data”.

Since we are interested in the effect of noise on detection, we only used the first
data set, the only one to which noise was added. Additionally, the first set was
used to avoid inconsistencies attributed to differences in processing procedures for
these 3 data sets. The sole exception is in section 3.2, where some details about
the other two data sets is presented.

For the estimation of the detection function in Marques et al. (2009), DTag
data from 4 whales, 13 dives were used. Here only data from 3 dives (over 1 whale)
was available, and even for the dives with available data, a much smaller number of
hydrophones were represented in the data set. Since a small subset of the original
data were used, the same results would not be necessarily obtained, even if the
same analysis was implemented.

2 Acoustic data processing

The reader is referred to Ward et al. (in press) for additional details about the
acoustic data processing.

2.1 Measuring noise

Ambient noise levels across the range vary with time and location. The noise level is
spatially dependent upon hydrophone depth, proximity to noise producing physical
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features such as waves crashing on a reef, and variations in system hardware.
Extracting sound file cuts from enough hydrophones to fully represent this dynamic
environment would be extremely time consuming, so consequently an alternative
method of extracting ambient noise levels was developed using existing and readily
available Fast Fourier Transform (FFT) detection archives.

The FFT detector implements a 2048-point FFT with 50 % overlap at a sample
rate of 96 kHz on data received from the hydrophones through the onshore signal
processing system. This results in a detection time resolution of 10.7 ms and a
frequency resolution of 46.875 Hz over a bandwidth of 0 to 48 kHz. An indepen-
dent noise-variable threshold based on a simple exponential average is run on each
FFT bin. Bins that exceed the threshold are considered “detections” and set to a
1, while the remaining bins are set to 0. Detection reports which document the
receiver, time of detection, maximum bin energy level, and the binary (1/0) state
of each FFT bin are archived. In the absence of a signal, ambient noise in the en-
vironment triggers random frequency bins resulting in “sprinkles”, defined as (false
positive) detection reports, each consisting of a single positive frequency bin with
a corresponding threshold level that represents the in-band noise level. Since the
“sprinkles” occur randomly across the entire frequency band, these measurements
can be accumulated over time to produce an ambient noise spectrum level curve
over the entire frequency band. The “sprinkles” approach was shown to provide an
adequate representation of the ambient noise (Ward, unpublished data).

Over the time period of interest, FFT detector“sprinkles”are accumulated over
successive five minute increments. An empirical cumulative distribution function
(CDF) is calculated for each 2 kHz interval. For each frequency bin the 10 % CDF
value is taken as representative of the baseline ambient noise level (referred as
NL(f) in the formula below). An empirical evaluation of the data indicated that
the use of this 10% CDF value removes the effect of outliers and minimizes the
likelihood of man-made noise contamination. The ambient noise spectrum (ANS)
for frequency f is calculated as:

ANS(f) (dB re 1 µPa) = NL(f) +Gain+ 10 log10(2000/46.875) (1)

The low frequency (ANl) and high frequency (ANh, sometimes referred as
noise1) ambient noise criteria is the summation of spectrum levels (dB) less and
greater than 24 kHz, respectively, such that:

ANl = 10 log10(

24kHz∑
f=0

(10ANS(f)/10)) (2)
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ANh = 10 log10(
48kHz∑

f=24kHz

(10ANS(f)/10)) (3)

Note in the current report we only analyze ANh, as that corresponds to the
frequency band where most of the energy from beaked whale clicks is present.

The hydrophones at AUTEC have four distinct classes of hardware with cor-
responding array names: Whiskey 1, Whiskey 2, Advanced Hydrophone Replace-
ment Program (AHRP) Uni-directional, and AHRP Bi-directional. The Whiskey
1 and 2 arrays are extremely variable with poor documentation of gain levels;
therefore, these were not analyzed. AHRP bidirectional and unidirectional hy-
drophones have different response curves but similar gain values. Therefore, the
following hydrophones were evaluated from the six day data set:

• AHRP Bi-directional: 15, 45

• AHRP Uni-directional: 25, 31, 34, 45, 65, 66, 67, 73, 74, 76, 80, 91.

Recall that, as stated above, this “6 day ambient noise data” is not currently
considered in detail in this report.

2.2 Adding noise

The surface generated component of ambient noise is largely dependent upon wind
speed. To simulate the effects of increasing surface generated ambient noise on the
probability of detection, synthetic ocean noise was generated and scaled to corre-
spond to the average noise level observed at wind speeds of 11 and 21 knots (5.7
and 10.8 m/s, or SS6 and SS11 in the code). The synthetic ambient noise was
created by filtering white Gaussian noise using a Finite Impulse Response (FIR)
filter (Jarvis, 1993) whose coefficients were determined from a year long ambient
measurements. See Ward et al. (in press) for details regarding the processing of
this year long data set. The resulting scaled synthetic noise has spectral char-
acteristics representative of the year long noise average received at these higher
wind speeds. This noise was then added to the baseline low noise signal. The
sum was output as a wav-format file for processing through the Marine Mammal
Monitoring on Navy Ranges (M3R) detection software toolset (Morrissey et al.,
2006). This process was repeated for each combination of dive, hydrophone and
noise level (see Table 1 in Ward et al. (in press)), hence creating the added noise
files in the “added noise DTag data”.
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3 Exploratory data analysis

3.1 Added noise DTag data set

We used data files provided by Jessica Ward on the 16th June 2010. After reading
these files some minor modifications were made.

Note that the data could have been analyzed by replacing respectively every
2nd and 3rd click in the original files by the corresponding click with noise SS6 and
SS11 added, or by considering multiple instances of the same click. Here, we opted
by the latter option. The choice between these two approaches is likely irrelevant
for the purposes of this report, as the key difference is that rather than having 3
independent measurements for each click (as the current analysis assumes) these
correspond to 3 (no noise added, low noise added and high noise added) repeated
measurements over each click.

In figure 1 we show the values of the original ambient noise over time, for each
of the 3 dives to which noise was added. The effect of the linear interpolation on
measurements made every 5 minutes is clear. In figure 2 we present the original
noise values in dB reµPa @ 1m (hereafter dB) versus the resulting noise levels when
noise (SS6 or SS11) is added. While one might have expected a priori monotonic
relations between these quantities (e.g. see the relation presented for Dive 4), that
seems not to not have been the case at least for dives 2 and 3. This was due
to the process of measuring noise after synthetic ocean noise was added to the
original files. Recall that noise had to be measured, and the measurement was not
error free, as it involved averages of “sprinkles” over 5 minute periods and a linear
interpolation between these.

3.2 Ambient noise

Note that the data in this section are not internally consistent with the data to
which noise was added. Nonetheless, because the data processing was internally
consistent, we compare here the“ambient noise DTag data”and the“6 day ambient
noise data”, to see the extent to which the DTag data was in fact collected during
quieter periods.

We began by reading in both data sets. Histograms for both data sets are
shown in Figure 3. A number of unusually high noise values (ANh>85) in the 6
day data set were considered as outliers and removed from the plot. The plots
appear to show there is a slightly wider range of values over the six day data set,
as expected given these represent a much longer time period.

The original concept was to use wind speed as a proxy for ambient noise over
the 6 day data set. Figure 4, top panel, presents a plot of ANh versus wind speed
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Figure 1: Noise as a function of time, for each of the 3 dives. Each line
represents a different hydrophone. For illustration, 5 minute periods are
represented as dashed lines in the right panel.

considering the DTag data, and the relations are hardly what one might expect.
The weather station at which wind speed was recorded may have been too far
from the hydrophones to expect a good correlation (cf. Figure 1 in Ward et al.
(in press)). Additionally, the system noise floor is necessarily masking some of the
pattern.

3.3 Detection probability as a function of range

The empirical probability of detection as a function of range is shown in Figure 5.
As expected, detection probability decreased as a function of increasing range.

The detection range dependence on dive-hydrophone combinations is shown
in Figure 6. No data were available for distances below 1 km nor between about
3.2 and 4 km. Therefore, potential inferences for those distances were ultimately
unreliable, as they were necessarily based on interpolation or extrapolation.

The detection probability as a function of added noise was also considered, for
the dives to which noise was added (Figure 7). There appeared to be a subtle
decrease in detection probability as expected, with two exceptions (hydrophones
73, Dive 2 and 67, dive 4). Perhaps counterintuitive at first, some additional
noise might improve classification of beaked whale clicks. This tends to happen

9



57.0 57.5 58.0 58.5

6
0
.4

6
0
.8

6
1
.2

6
1
.6

ambient noise

S
S

6

57.0 57.5 58.0 58.5

6
3
.5

6
4
.0

6
4
.5

6
5
.0

ambient noise

S
S

1
1

58.0 58.5 59.0 59.5 60.0

5
9
.7

5
9
.9

6
0
.1

6
0
.3

ambient noise

S
S

6

58.0 58.5 59.0 59.5 60.0

6
3
.4

6
3
.6

6
3
.8

6
4
.0

ambient noise

S
S

1
1

59 60 61 62 63

6
0

6
1

6
2

6
3

ambient noise

S
S

6

59 60 61 62 63

6
4
.0

6
4
.5

6
5
.0

6
5
.5

ambient noise

S
S

1
1

Figure 2: Noise before and after synthetic noise was added. For illustration,
in dive 3, the colors indicate the 2 different hydrophones. Panels in rows 1,
2 and 3 correspond to dives 2, 3 and 4, respectively.

10



DTag data

Fr
eq

ue
nc

y

60 65 70 75 80 85

0
60

00
0

6 day data

Noise (dB)

Fr
eq

ue
nc

y

60 65 70 75 80 85

0
15

00

Figure 3: Distribution of ambient noise in the beaked whale band (ANh) over
the 6 day data set and the DTag data.

11



64 65 66 67 68 69 70

2
4

6
8

10
12

14

Ambient noise (dB) 

W
in

d 
sp

ee
d 

(m
/s

)

Figure 4: Ambient noise in the beaked whale band (ANh, in dB) as a function
of wind speed. Data was truncated for noise values above 70.

12



1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

slant distance (m)

P
ro

po
rt

io
n 

de
te

ct
ed

14.412.94.16.211.34.26.55.83.2 0 0 0.48.519.84.310.15.12.41.83.1

Figure 5: Observed fraction of detected clicks (i.e. an estimate of detection
probability) as a function of range. The numbers on top of the plot represent
how many thousand values are used to create each data point.)

0 1000 2000 3000 4000 5000 6000

1
2

3
4

5
6

7

slant distance (m)

div
e x

 hy
d

Md07_248b.2.74

Md07_248b.2.65

Md07_248b.2.66

Md07_248b.3.67

Md07_248b.3.66

Md07_248b.4.67

Md07_248b.2.73

Figure 6: Distance range covered by each dive-hydrophone combination.

13



to clicks with high signal to noise ratio (SNR), i.e. typically those closer to the
hydrophone (see section 4 for further details). Therefore it is not surprising that, of
the above dive and hydrophone combinations, the ones for which some noise seems
to increase the probability of detection are the ones which present lowest average
click-hydrophone distance (note that while average distance is not on the plot, it
is reflected on the overall higher detection probabilities for these two hydrophones,
cf. Figure 7).

3.4 Detection probability as a function of added noise

The observed proportions of detected clicks as a function of both distance and
added noise is presented in Figure 8.

The left and right panels seem to suggest that there is an initial increase in
detection probability with noise at smaller distances, while the middle plot appears
to show that only the highest noise level degrades detection probability. At larger
distances (as shown in the left plot) adding noise seems to degrade detectability.
These figures suggest that the effect of noise is really interacting with distance,
but it appears that there is insufficient data, in terms of distances, to disentangle
the two effects.

4 Detection function models

The reader is referred to Marques et al. (2009) for the details regarding the GAM
model used here. A click detection probability was modeled as a function of slant
distance and vertical (vaa) and horizontal (haa) off-axis angles (angles measured
between the whale body axis and the straight line passing by the hydrophone and
the whale).

As a first exploratory analysis, we assessed if clicks from a closer source seem to
be more difficult to correctly classify as beaked whale (this would be the case if the
classifier was misclassifying clicks from a closer sources as “delphinid”). However,
neither a relatively smooth gam (k=4) nor a very wiggly gam (k=10) provide
evidence for this, as the peak of the detection function in both cases is at distance
0 (Figure 9). One must bear in mind that this is a very small data set, and while
that pattern was not present either in the detection function published in Marques
et al. (2009), there is some evidence in the full data set that this might actually be
the case (L. Thomas, unpublished data). This was originally suggested by Walter
Zimmer (pers. comm.).

Given that a subset of the data was used, one must determine if the results
obtained here are consistent with those shown in figure 3 of the JASA paper
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(Marques et al., 2009). Therefore that analysis was reproduced here. As shown in
Figure 10, the results are very similar to those obtained previously. This suggests
any differences in the models which include noise can be attributed to the effect
of the noise.

We can now consider a model which also accounts for the effect of noise in
detection. As shown in figure 11, there appears to be a very subtle increase in
detection probability as noise increases, followed by a subtle decrease in detection
probability when further noise is present. This again suggests the notion that
addition of some level of noise might help the overall detection probability. We
must remember that while we refer to the measure of beaked whale clicks received
as a detection probability, what we model is the positive or negative outcome
of a joint process of both detection and classification. What we consider to be ”a
detection” (i.e. a positive event) is, in fact, a sound that is both distinguished from
ambient noise and then further classified as a beaked whale click. Thus, the process
used to specifically isolate the beaked whale clicks has two stages. The first stage
is truly the detection part and it is applied to all acoustic data received. The FFT
detector calculates a time varying threshold for each frequency bin in the FFT.
The threshold is based on the exponential average of the magnitude of the energy
within the bin. A broad band or click detection is declared if more than a certain
number of bins within the FFT have energy which exceeds their thresholds. The
number of bins required for a click detection is heuristically chosen and is currently
set to 10. That is, if 10 bins in a given FFT exceed threshold then a click event has
been detected. Clicks are then coarsely classified based on their frequency content.
The frequency segmentation classifier has 5 bands which correspond to the bands
containing peak energy for various species. Specifically, beaked whale clicks are
known to have most of their energy concentrated in band from 24-48 KHz. The
frequency segmentation rule for beaked whales requires that the majority of bins
above threshold for a detected click are in the 24-48KHz band and that no more
than 5% of the frequency bins below 24 KHz have energy above threshold. In high
signal-to-noise ratio situations, such as at close ranges or in very low sea state,
many beaked whale clicks have sufficient energy detected below 24 kHz that they
fail the <5% criteria. As a result, these clicks are misclassified as another species
(e.g. as a delphinid). The addition of a small amount ambient noise decreases
signal-to-noise ratio more significantly at frequencies below 24 kHz, due to the fact
at frequencies greater than 24 kHz the FFT detector tends to be limited by the
system electrical noise floor rather than ambient noise. This results in a masking
of the portion of the beaked whale click energy below 24 kHz. Thus, a portion of
these loud, close range clicks now begin to meet the <5% criteria and are correctly
classified. As the added noise is increased further, click energy across the entire
spectrum becomes masked and the FFT detector no longer detects 10+ bins. The
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Figure 10: Figure which mimics figure 3 in the JASA paper. Despite the
much smaller data set used here, the overall results are quite similar.
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resulting probability of detection decreases with decreasing signal-to-noise ratio as
expected.

Evaluating the detection function considering all the DTag data (13 dives
and tens of hydrophones), rather than the currently available 3 dives and 5 hy-
drophones, would likely help to understand further the influence of ambient noise
on detection. Nonetheless, the fact that the 3 data sets reported here are not
internally consistent prevents that analysis at this point. As an example, it was
not clear from the model fit to the data presented here or the equivalent model
presented in Marques et al. (2009) that the detection probability decreases for high
SNR (i.e. close) clicks. On the other hand, it is also not clear whether if mea-
surement error associated with noise (cf. figure 2) is making it difficult to extract
patterns from the data. It seems like the actual numerical values obtained after
noise is added are severely constrained by the measurement error coupled with the
linear interpolation. This leads to long sequences of clicks with decreasing noise in
the original files which end up with increasing noise values once noise is added to
them, which is clearly counter intuitive and a by-product of the analysis.

5 Conclusion

The main conclusion of this report is that while there may be an effect of ambient
noise on detection probability, that effect is fainter than one might expect a priori.
The hydrophones used are very deep (>1.5 km), and therefore ambient noise suffers
considerable attenuation before reaching the hydrophones. As shown in section 3.2,
for the ambient noise measures used here, there was a very small difference between
the noise observed during the 6 day data set and the DTag data.

As stated above, the added noise data set analyzed here was processed using
the program wavmcast. On the other hand, the data used in Marques et al. (2009)
was processed using the Alesis ”system” rather than wavmcast, which means that
the effect of noise will be even less than that reported here. This is because the
dynamic range of the Alesis output extends below the dynamic range of the M3R
DSP chassis input Analog to Digital Converters, resulting in a higher electronic
noise floor in the data reprocessed from the Alesis. At higher frequencies, like
those of the beaked whale click, the ambient noise spectrum drops below the noise
floor such that changes in the measured ambient noise are not noticeable until
the added noise level rises above the electronic noise floor. Therefore the effect of
added ambient noise would also be masked by the higher noise floor resulting in a
less pronounced effect of increasing ambient noise on beaked whale probability of
detection.

Therefore, it appears that the word of caution presented in Marques et al.
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Figure 11: Similar GAM model to that published in Marques et al. (2009),
to which ambient noise was added as a smooth. Small black dots represent
existing data.
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(2009), warning against the potential impact of ambient noise in the density re-
sults, may have been just over cautious. This is not to say that under different
scenarios ambient noise might not be an important covariate in explaining detec-
tion probability. An example is given by Marques et al. (in press).
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