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Abstract: Image segmentation is one of the most important tasks in modern imaging applications, which leads to shape recon-
struction, volume estimation, object detection and classification. One of the most popular active segmentation models are level
set models which are used extensively as an important category of modern image segmentation technique with many different
available models to tackle different image applications. Level sets are designed to overcome the topology problems during the
evolution of curves in their process of segmentation while the previous algorithms cannot deal with this problem effectively. As a
result there is often considerable investigation into the performance of several level set models for a given segmentation problem.
It would therefore be helpful to know the characteristics of a range of level set models before applying to a given segmentation
problem. In this paper we review a range of level set models and their application to image segmentation work and explain in detail
their properties for practical use.

1 Introduction

Image segmentation is the process of partitioning the image into
meaningful regions. It is one of the most important tasks in mod-
ern imaging for shape reconstruction, volume estimation, object
detection and classification. Many different algorithms have been
proposed to solve image segmentation problems. In some applica-
tions such as medical image segmentation, highly precise models
are needed where strong assumptions and anatomical prior are often
imposed on the expected segmentation results. The methods based
on statistical theory methods can fail in the presence of noise as
the artificial parameters should be considered as well, while a lot of
physical phenomenon can be described by partial differential equa-
tions (PDEs). Those based on PDE, began with the Snake technique
introduced by Kass in 1987 [1]. The snake model is based on mini-
mization of an energy term to halt the growth of evolving contours
at edges or boundaries. It locks into edges and lines by taking advan-
tage of image forces. Another popular image segmentation method
is the level set, introduced in 1988 by Osher-Sethian [2] to over-
come the shortcomings of the Snake method such as its topological
problem as well as accurate prior knowledge for their initialization.
Since level set models are independent of prior knowledge, they
are very robust segmentation models when there is no ground truth
available. Level set methods are used extensively and have many
different applications. As a result there is often considerable investi-
gation into the performance of several level set methods for a given
problem. It would therefore be helpful to know the characteristics of
a range of level set methods before applying any to a given segmen-
tation problem. Several review papers on level set segmentation are
available but each is focused on one area or specific aspect of imag-
ing applications. Some of these topics are: Region-based algorithms
(Cremers in 2005 [3], Jiang in 2012 [4]); medical imaging (Suri in
2001 [5], Elsa Angilini in 2005 [6]); inverse problems and optimal
design (Burger and Osher in 2005 [7]); piecewise constant applica-
tion (Tai and Chan in region based methods in 2004 [8]); deformable
models in general (Montagnat in 2001 [9], Suri in 2002 [10]); and
a short general review (Bhaidasna in 2013 [11], Vineetha in 2013
[12]).

As image segmentation is a growing area of research many dif-
ferent robust segmentation methods have been developed. Different
methods such as threshold methods, edge based methods, region

based methods, clustering based methods, watershed transforma-
tion, PDE-based methods and neural network methods which can
be equally good and, depending on the choice of user, can perform
well in modifying them in different models for different applica-
tions. This paper reviews a range of different level set models and
their application to image segmentation work and explains in detail
their properties for image segmentation use. The advantages and
disadvantages of each model are discussed and their properties and
limitations when dealing with different images are compared.

There are many different applications for using a level set method.
Sometimes new level set models are proposed to work on different
applications. A review on this topic could be useful especially in
view of the use of level set methods to specific problems. For exam-
ple, in [60], Osher reviews a wide variety of problems involving
external physics such as compressible and incompressible (possi-
bly reacting) flow, Stefan problems, kinetic crystal growth, epitaxial
growth of thin films, vortex-dominated flows, and extensions to mul-
tiphase motion, computer vision and image processing. Also, there
are many novel implementation of level set in different applications
of imaging, such as image registration in [61], inhomogeneous med-
ical image segmentation in [62], image denoising [63] and deep
learning [64].

2 Active Contours

Active segmentation models are popular due to their ability to itera-
tively fit a curve to an image. In general, active contours are growing
boundaries/regions for segmenting different objects or regions in
an image. These sort of curve evolution models within the image
can begin by defining an initial curve, which has the ability to
move (expand or contract) until it reaches the object boundaries.
The curve movement can be parametric/polygon/explicit or geomet-
ric/continuous/implicit. Figure 1 illustrates the concept of geometric
and parametric algorithms where geometric curves are continuous
and parametric curves are polygons. Geometric contours are stored
as coefficients of some function and sampled before each iteration.
Each sample moves explicitly in each iteration to calculate the new
coefficients. However, parametric contours are stored as vertices
which all move iteratively. Geometric active contours in general are
topologically more flexible as they implicitly move the curve. The
main difference between explicit solution results and implicit ones is
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the separability of the dependent variables in an equation. In another
definition, an explicit movement of a curve is independent of other
values for the same level), therefore a single equation is used to eval-
uate new nodal variables for a single time step. An implicit solution
contains information obtained from solving simultaneous equations
for the full grid for each time step. This is computationally more
demanding but allows for larger time steps and better stability [57].

Fig. 1: Movement of a. geometric vs. b. parametric contours.

In Figure 2 the black boundary represents the contour C moving
with force/speed value F and in the normal direction N perpendicu-
lar to the interface, any tangential component will have no effect on
the position of the front.F depends on local propertiesL such as cur-
vature and normal direction, global properties G such as shape and
position of the front and independent properties I that do not depend
on the shape of the front (some physical energies and properties such
as heating on either side of the interface or fluid mechanical effects)
[13, 14]. In general, the force or speed is the negative value of the
energy field, F = −∇E. If the curve moves inward, then the speed
value would be negative F < 0 and if it moves outward, it would be
positive F > 0.

F = F (L,G, I) (1)

Fig. 2: Contour evolution with speed value of F in normal direction
to the contour C.

Active contour model, also called snake is one of the first intro-
duction to an explicit energy minimization contour. A snake model
evolves a contour by dividing it into markers/points (parametris-
ing the contour/getting a number of samples of it). Its contour C
is shaped based on tracking point positions in a Lagrangian frame-
work that move with the value of the energy field (energy between
the inside and outside of the contour).

Snake can be formulated by minimizing an energy functional con-
sisting of an internal elastic energy term Einternal as well as an
external edge-based energy term Eexternal while C represents the
2D contour of segmentation as C(s) = (x(s), y(s)), s=0,..,1 which
should be initialised first by the user close to the edges of interest:

ESnake = Einternal + Eexternal (2)

The internal energy defines the length of each contour which
adjusts the deformations made to the snake. It controls the stiffness,
rigidity and elasticity of the curve. The external energy helps in min-
imizing the high-gradient areas in the image, it controls the contour
to be better fitted onto the image. Equation 2 can be expanded into
Equation 3, where the first two derivative terms refer to the internal
energy and the final term represents the external energy.

ESnake = α

∫1

0
|C

′
|2ds+ β

∫1

0
|C

′′
|2ds+ γ

∫1

0
|∇I(C)|2ds

(3)
where I represents the image in x− y plane, C represents the

contour of segmentation, C
′

= dC
ds

2
the first derivative and C

′′
=

d2C
ds2

2
the second derivative. α and β are a composition of the con-

tinuity and the smoothness of the contour which are defined by the
user. α which can control the continuity of the curve by defining the
distance between sampling points in the curve. A larger value of α
can stretch the curve more. β controls the amount of curvature, a
large value of it can lead to less oscillations in the contour. γ is the
weight of external energy or the edge functional which is based on
the image gradient which is set to −1.

Snake model suffer from numerous shortcomings that the level
set method overcomes [58]:

1. Dealing with topological changes: In situations where the curve
merges with another curve or splits into two or more segments their
performance is poor.
2. Self intersection and overlap: The explicit definition of a snake
limits its re-gridding or re-parametrisation process and causes over-
laps or self-intersection during the evolution.
3. Dependency on initialization: Their sensitivity to the first esti-
mation of contour position and shape, which is because the non-
convexity characteristic in the energy functional restricts further
shape deformation.
4. Extension: Snake models are not able to be developed into other
further segmentation applications using colour, texture or motion.
5. Sensitivity to noise: Snake performs weakly in a noisy gradi-
ent field as its main formulation does not use region-based statistics
whilst level set does.

3 Fundamentals of Level Set

The level set was initially designed as an Eulerian formulation of a
propagating front, which grows with the speed F perpendicular to
the curve. Level set implicitly provides the propagation of the con-
tour with good tracking of the topological changes. In other words,
level set embeds a curve in 2D while growing in 3D, shown in
Figure 3, where the z axis represents values of function φ(x, y, t)
to match the evolution of the interface. The reason of having another
dimension compared to snake is for better tracking of parametrisa-
tion points that collide in snake. However, level set can stand at each
point (x, y) and adjust the height of the z function which vanishes
the topological problem. Such a level set is a growing or shrinking
contour based on curvature-dependent speed for propagating fronts.
It uses Hamilton-Jacobi equations to reconstruct complex shapes.

z = φ(x, y, t) (4)
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Fig. 3: Level set function in blue, and zero level set surface in
yellow.

In this framework, at any time t, the front Γ(t), implicitly defined
by Equation 5, which shows that at each iteration, the new level set
would be relocated at zero level again (called re-initialization). This
is easily performed by recalculating the distance, z = 0, of every
point from the contour, however it is computationally expensive.

Γ(t) = {(x, y)|φ(x, y, t = 0) = 0} (5)

Figure 3 illustrates the formation of a level set function. It defines
the propagating boundary/region as the zero level set, φ(x, y, t = 0),
of a higher dimension on function φ(x, y, t), where t is time as
the curve is evolving. The height (z axis) corresponds to the min-
imum distance from each point in a rectangular coordinate (image
plane) from the contour C, based on the signed distance d from each
point on (x, y) to the initial front, choosing a positive distance from
outside the region and a negative direction from inside.
φ(x, t = 0) is required as the initial value (initialization) to start.

Level set can be initialized automatically or semi-automatically in
two or more phases depending on the decision of the user on how
many different batches of segmentation are expected in an image.
The two-phase level set method segments the image into two regions.
Wherever three or four-phase level set methods exist, they can divide
into three or four categories respectively by applying two separate
level set functions at the same time. By considering only one level
set function in 4.a. the yellow region represents the level set front at
t = 0 which is mapped to 4.b. on a contour on the 2D image. The
inner parts of the contour represented with negative values which
then decrease when they get farther from the zero level set and the
outer points have positive value.

Fig. 4: Level set and its mapping in image plane.

In order for the points to always move/ride on the edge of the
interface, level set should be re-initialised to zero level in each
iteration of movement, Equation 6.

φ(x(t), y(t), t) = 0 (6)

Since the interface always corresponds to the place where φ = 0,
therefore outside of the edge dφ,t)

dt = 0. For better understanding
this, consider tracking a particle ~x = (x, y, z) on the surface in 3D
over time:

dφ(~x, t)

dt
= 0 (7)

from the chain rule, Figure 5 illustrates this:

Fig. 5: The chain rule demonstration of tracking a particle ~x =
(x, y, z) on the surface in 3D over time.

then,

dφ

dt
= 0 −→ ∂φ

∂x
· dx
dt

+
∂φ

∂y
· dy
dt

+
∂φ

∂z
· dz
dt

+
∂φ

∂t
= 0 (8)

when, the directional derivative of a function∇f(x, y, z) is:

∇f =
∂f

dx
~x+

∂f

dy
~y +

∂f

dz
~z (9)

and the derivative of a vector ~x = (x, y, z) is:

d~x

dt
=
dx

dt
+
dy

dt
+
dz

dt
(10)

thus Equation 8 becomes:

∇φd~x+
∂φ

dt
= 0 (11)

Since the signed distance of the level set at each point is required,
therefore the surface normal at each point on the evolving front to its
new position is necessary to be considered. d~xdt is also known as the
speed function ~F that defines the speed of the level set function and
how it evolves. It may also be written as ~F , while it comprised of the
normal and tangential components.

~F = FN ~N + FT ~T (12)

As shown in Figure 6, FN and FT are scalar terms specifying the
speed in the normal and tangential direction. The vector F is the sum
of the normal FN , and tangential FT , F = FN + FT .
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Fig. 6: Specifying the speed concept of level set method in the nor-
mal and tangential direction in 3D space: a. level set in 3D and in its
zero level: b. a surface in 2D.

thus, 11 may be written as:

∂φ

∂t
+∇φ · ~F = 0 (13)

which is a linear partial differential equation. Expanding 13:

∂φ

∂t
+∇φ(FN ~N + FT ~T ) = 0 (14)

As stated in [15], the tangential component has no effect, it van-
ishes into leading the scalar term FN to only specify the speed
function in the normal direction. Equation 14 thus becomes:

∂φ

∂t
+∇φVN ~N = 0 (15)

also normal is the gradient scaled in unit length:

~N =
∇φ
|∇φ| (16)

substituting Equation 15 into Equation 16:

∂φ

∂t
+∇φFN

∇φ
|∇φ| = 0 (17)

∂φ

∂t
+ FN

∇φ2

|∇φ| = 0 (18)

replacing ∂φ
∂t with φt, therefore:

φt + FN |∇φ| = 0 (19)

Re-initialization is repeated during evolution to prevent the occur-
rence of sharp corners and prevent flatness by calculating new φ
values depending on the specified speed function. Therefore each
iteration grows already knowing the old level set and the penalty
value defined.

φ(x, y, t+ 1) = φ(x, y, t) + ∆φ(x, y, t) (20)

Osher-Sethian designed the motion based on magnitude of the
gradient and mean curvature flow, which solves the level set geome-
try problem as a PDE. Curvature plays the role of smoothing the level
set to smooth the contours with the front symbolizing the boundary
of the object when the propagation comes to a halt. The speed in the
neighbourhood of the contour controls the motion of the front and
should stop the propagation by tending towards zero at the limit of
propagation. The speed is expressed as:

∂φ

∂t
= |∇φ(x, y)|(ν + εk(φ(x, y))) (21)

where ν is a fixed parameter used to control the shrinkage or
expansion and ε balances the regularity, robustness of evolution and

k(φ(x, y)) is the mean curvature of the level set function that stops
leakage into small noisy parts. This can be calculated from:

k(φ(x, y)) = div(
∇φ
|∇φ| ) =

φxxφ
2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)3/2

(22)
where φx and φy represent the first-order PDEs of x and y respec-

tively and φxx and φyy denote the second-order PDEs of each for
the level set first function φ(x, y). This model is the initial repre-
sentation of the level set presented by Osher-Sethian, which exploits
information from the curvature to increase the performance of the
stopping point of the growing contours. Computation time as well
as parameter setting and adjustment are the key limitations of this
model.

The Key advantages of level set are [13, 58]:

1. The process can be fully-automatic or semi-automatic.
2. They do not need parametrisation of the contour.
3. They are less sensitive to noise than Snake.
4. They are easily extendible to higher dimensions.
5. Level set methods can easily segment sharp corners and change
topological structure (topological flexibility) during propagation
[13].
6. Good numerical stability.

The growth of a level set is simple and can be listed as follows:

1. Initialization of the level set by initializing the front.
2. Calculating the level set speed and growing model.
3. Iterate.
4. Matching the stopping criteria.

The differences between the various level set methods are mostly
in the second step that will be explained and discussed in greater
detail in the following sections.

3.1 Initialization

There are three main ways of initializing an active contour or level
set:

1. Naive initialization.
2. Manual initialization.
3. Automatic initialization.

Naive initialization is when any random or simple geometric
shape is chosen as the initial contour/boundary anywhere in the
image. This method is easy and fast to initialize but it can result in
lengthy convergence to the desired boundary and might take many
iterations to calculate the proper segmentation. It can also converge
to the wrong object in an image and lead to divergence. Manual ini-
tialization would be when the user chooses to initialize the contour or
interior point manually. This model can be time-consuming and dif-
ficult for the user but is faster for propagation to reach the desired
boundary. This model fails in high dimensional imagery because
of the user’s limitation in visualizing these high dimensions. Auto-
matic initialization can be performed in different ways, one major
model is called centres of divergence (CoD) [16]. The other auto-
mated methods are force field segmentation (FFS) [17] and poisson
inverse gradient (PIG) initialization [18].

4 Different Level Set Methods

Since its introduction, level set has developed in different categories
and for different applications. These categories are discussed below.
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4.1 Osher-Sethian Model

Geodesic Active Contours- In this model, first introduced by
Caselles in 1997 [22], the level set stops at high-gradient locations by
attenuating the speed, and the propagation is faster at smooth loca-
tions. This is achieved by adding an addition term to Osher-Sethian’s
model, g(|∇I|), which relates the speed term to the inverse of the
gradient of the image. More formally:

∂φ

∂t
= |∇φ|g(|∇I|)(div(

∇φ
|∇φ| ) + ν) (23)

where ν is always positive and,

g(|∇I(x, y)|) =
1

1 + |∇Gσ(x, y) ∗ I(x, y)|2 (24)

whereGσ is a Gaussian convolution filter with standard deviation
σ.

Shape Modelling with Front Propagation- Maladi, Sethian and
Vemuri in 1995, improved the early Osher-Sethian level set method
by calculating the speed function based on the entropy-satisfying
upwind finite difference and solving level set PDE function as a
Hamilton-Jacobi type equation of motion [23]. In this model, the
speed function’s stopping criteria is a fulfilment of Osher-Sethian’s
method. In 2000, Leventon introduced a model based on a combi-
nation of prior shape information and level set methods [24]. The
deformable shapes as well as the probability distribution were pre-
sented over the variances of a set of training shapes. At each iteration
of the level set, an estimate is made based on prior shape information.

4.2 Snake-Based Level Set Methods

Li designed a new model based on Snake for solving the inho-
mogeneity in intensity where an edge based level set model was
developed based on gradient flow, which previous methods had dif-
ficulty solving [27]. This model applies the energy minimization
method, by minimizing the fitting energy in segmentation.

This energy is:

E(φ) = µP (φ) + λL(φ) + νA(φ) (25)

where,

P (φ) =

∫

Ω

1

2
(|∇φ| − 1)dxdy (26)

L(φ) =

∫

Ω
g(I)δ(φ)|∇(φ)|dxdy (27)

A(φ) =

∫

Ω
g(I)H(−φ)dxdy (28)

and

g(I) =
1

1 + |∇Gσ ∗ I|p , p ≥ 1 (29)

P (φ) is a penalty term in the energy functional that is used dur-
ing evolution of level set. The stopping operator, g is based on a
Gaussian Kernel that forces the level set to converge to zero when
approaching the edges. σ is the standard deviation, L represents the
length of the contour with respect to the stopping operator of g as its
weight and A is the speed controller of the evolution which makes
the contour to shrink if the ν is positive and tends to expand when
the ν is negative.

The level set PDE function in this model is based on the Gateaux
derivative which is:

∂φ(x, y)

∂t
= −∂E

∂φ
(30)

This equation can be expanded further as:

∂E

∂φ
= − µ(∆φ− div(

∇φ
|∇φ| ))

− λδ(φ)div(g(I)
∇
φ
|∇φ|)

− νgδ(φ)

(31)

therefore,

∂φ

∂t
= µ(∆φ− div(

∇φ
|∇φ| ))

+ λδ(φ)div(g(I)
∇
φ
|∇φ|)

+ νgδ(φ)

(32)

where µ is the penalizing coefficient, λ is the coefficient for length
and ν refers to the area. The ratio of λ and ν defines the stopping
point of level set evolution because both of these terms contain edge
information. The length term keeps the contour tight and the area
helps the expansion of the contour.

Geodesic active contours, introduced by Kichenassamy [28] and
Caselles [22] are based on Snake. In these models, the speed function
is calculated by applying minimal distance curves in a Riemannian
space derived from the image. Given an image, I , and for a given
differentiable curve, C(p), p ∈ [0, 1], they define the energy as:

E(C) =

∫1

0
g(|∇I(C(p))|)|C

′
(p)|dp (33)

The PDE functional calculated via derivation of the Euler-
Lagrange system is therefore:

∂C

∂t
= g(|∇I|)κ ~N − (∇g(|∇I|). ~N) ~N (34)

Threshold Level Set, Taheri applied a threshold level set method
for brain tumour segmentation in 3D which does not depend on den-
sity function estimation by using a global threshold for the speed
function [29]. This semi-automatic model requires a user’s input to
initialize the threshold value for the level set based on information
from a region inside a tumour. For convex tumours, a spherical sur-
face is chosen as the initial level set located in the middle of the
tumour. For concave tumours several spheres are required due to the
complexity of the shape. The threshold updates at every iteration
during the evolution which should decrease as it gets closer to the
boundaries while the contrast between tumour (foreground object)
and non-tumour (background) is increasing. The threshold in this
model can be calculated based on

Ti+1 = µ̂i − kσ̂i, i ≥ 0 (35)

µ̂i =
1

n

n∑

j=1

xij (36)

σ̂i =
1

n− 1

n∑

j=1

(xij − µ̂i)2 (37)

In this model Ti+1 is the threshold which is approximated in each
iteration of (i+ 1)th based on a tailed confidence interval, k repre-
sents the confidence level, µ and σ are mean and standard deviation
respectively and n is the number of samples (xij ) up to the ith

iterations [29]. Therefore, Taheri’s level set PDE is:
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∂φ(x, y, t)

∂t
+ F (x, y, t)‖∇φ(x, y, t)‖ = 0 (38)

F = F0 · F (i)
I − εkφ (39)

where F0 is the constant propagation determined by a positive
number and F (i)

I is based on image characteristics in the (i+ 1)th

iteration. Propagation stops when a boundary is reached. kφ is the
smoothness parameter. The threshold level set specifies the FI for
each sample based on the diversity between the threshold values.
Therefore, the larger diversity leads to faster propagation/speed.

F iI(x, y, z) =
∆

2
[
1 + sgn(∆)

max(∆)
− 1− sgn(∆)

min(∆)
] (40)

where ∆ is equal to I(x, y, z) and sgn represents the sign function
which defines whether the speed function of F iI is inside or outside
of the tumour and classed as positive or negative respectively for
initializing the level set. This process tends to stop near the boundary
of tumours when threshold variation becomes negligible.

4.3 Region-Based Level Set

Chan-Vese in 1990s improved Osher-Sethian’s model by consider-
ing an energy minimization model instead of PDE, which permits
automatic detection of interior contours [30, 31]. The imprvement of
performance was dur to considering a piecewise constant and piece-
wise smooth optimal approximations proposed by Mumford-Shah
[32]. Mumford-Shah introduced an energy minimization method for
segmentation [32]:

EMS(u,C) =

∫

Ω
(u− u0)2dxdy + µ

∫

Ω\C
|∇u|2dxdy + ν|C|

(41)
Where µ and ν are positive weight values, C is the contour or

closed subset in Ω and u is an approximation of the image u0 in the
optimal piecewise smooth shape. This model can be simplified by
considering u as the piecewise constant function of ci inside of each
connected Ωi (Ω =

⋃
i Ωi

⋃
C) and ci = mean(u0) in Ω0.

E(u,C) =
∑

i

∫

Ωi

(u0 − ci)2dxdy + ν|C| (42)

The problem of segmentation based on the Mumford-Shah model
is that it is not easy to use due to the unknown value of C and also
the problem is not convex.

4.3.1 Two-Phase Chan-Vese without Edges: Chan-Vese
developed their model to a two-phase level set method without edges
that could segment the image into two regions, while performed
robustly in the presence of noise. Their model had a great improve-
ment over the older models while its simplification f the energy
functional is applied based on the mean intensity values in each
region of the level set (inside or outside in two-phase), c1 and c2,
which are defined as:

c1 =

∫
Ω(1−H(φ(x, y)))(I(x, y))dxdy∫

Ω 1−H(φ(x, y))dxdy
(43)

c2 =

∫
Ω(H(φ(x, y)))(I(x, y))dxdy∫

ΩH(φ(x, y))dxdy
(44)

H is the Heaviside function,

H(x) =

{
1 if x ≥ 0
0 otherwise (45)

At each iteration the values of c1 and c2 change and must be recal-
culated based on the level set of a new region to calculate a new
speed function as:

F (c1, c2, φ) =

∫

Ω
(u0 − c1)2H(φ)dxdy

+

∫

Ω
(u0 − c2)2(1−H(φ))dxdy

+

∫

Ω
|∇H(φ)|

(46)

The Chan-Vese level set evolution equation is as follow where δ
represents a one-dimensional Dirac function.

∂φ

∂t
= δ(φ)[νdiv(

∇φ
|∇φ| )− (u0 − c1)2 + (u0 − c2)2)] (47)

One of the benefits of this model is that the initialization is based
on characteristics of the region. However it is not stable for the
inhomogeneous images and the necessary re-initialization makes it
computationally expensive.

4.3.2 Vector-Valued Image Chan-Vese Method: In 2000
[31], Chan-Vese improved their model further into a vector-valued
image which is widely used in different imaging applications such
as texture analysis and colour imaging.

F (c+, c−, φ) = µ.L

+

∫

inside(C)

1

N

N∑

i=1

λ+
i |u0,i − c+i |2dxdy

+

∫

outside(C)

1

N

N∑

i=1

λ−i |u0,i − c−i |2dxdy

(48)

and the PDE is:

∂φ

∂t
= δε[µ.div

∇φ
|∇φ|

− 1

N

N∑

i=1

λ+
i |u0,i − c+i |2dxdy

+
1

N

N∑

i=1

λ−i |u0,i − c−i |2dxdy]

(49)

where λ+ and λ− are weighting parameters and c+i and c−i are
the mean value of ith component of the vector image inside and
outside of the contours. The advantage of this model is its ability to
converge on edges with or without significant gradient. [3, 34, 35].

4.3.3 Multi-Phase Chan-Vese without Edges: Chan-Vese
extended their model even more in 2002 into a multi-phase model
that uses the log numbers of the level set function to separate n
phases, this was still done by using piecewise constant [33]. Figure
7 and the following equations demonstrate this model for four-phase
which consist of two level sets. They are initialized separately but
the same level set function is applied for both initializations. The
mapping plane shows this growth concept in four-phase clearly.
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F (c, φ) =

∫

Ω
(u0 − c11)2H(φ1)H(φ2)dxdy

+

∫

Ω
(u0 − c10)2H(φ1)(1−H(φ2))dxdy

+

∫

Ω
(u0 − c01)2(1−H(φ1))H(φ2)dxdy

+

∫

Ω
(u0 − c00)2H(φ1)(1−H(φ2))dxdy

+

∫

Ω
|∇H(φ1)|

+

∫

Ω
|∇H(φ2)|

(50)

c11 = mean(u0) ∈ {(x, y) : φ1(t, x, y) > 0, φ2(t, x, y) > 0}
c10 = mean(u0) ∈ {(x, y) : φ1(t, x, y) > 0, φ2(t, x, y) < 0}
c01 = mean(u0) ∈ {(x, y) : φ1(t, x, y) < 0, φ2(t, x, y) > 0}
c00 = mean(u0) ∈ {(x, y) : φ1(t, x, y) < 0, φ2(t, x, y) < 0}

(51)

Therefore,

∂φ1

∂t
= δ(φ1)[νdiv(

∇φ1

|∇φ1|
)

−
(

(u0 − c11)2 + (u0 − c01)2)
)
H(φ2)

+
(

(u0 − c10)2 + (u0 − c00)2))
)

(1−H(φ2))]

(52)

∂φ2

∂t
= δ(φ2)[νdiv(

∇φ2

|∇φ2|
)

−
(

(u0 − c11)2 + (u0 − c01)2)
)
H(φ1)

+
(

(u0 − c10)2 + (u0 − c00)2))
)

(1−Hs(φ1))]

(53)

Fig. 7: Multi-phase level set and its mapping in image plane.

4.3.4 Other Chan-Vese Based Methods: A new parallel
based level set model for the follow up radiotherapy image anal-
ysis in [36] introduced a novel configuration of level set which
was designed based on the concept of vector-valued imaging was
introduced. The concept of a vector-valued image in level set is intro-
duced first by applying the two-phase Chan-Vese method at the same
time on different images, such as different RGB channels or differ-
ent texture images, and averaging the force value in each image at
each iteration as shown in Figure 8.

Fig. 8: Vector-valued Chan-Vese on RGB channels, [36].

In this model, the same image or feature is used while different
level set models are applied for segmentation as it is illustrated in
Figure 9 and Equations 54 to 57.

Fig. 9: Proposed parallel level sets in vector-valued image, [36].

Figure 9 demonstrates the possible parallel combination of the
Chan-Vese and the Li models while any other models can be used.
This combination helps to exploit the robustness of different models
and let them to compensate each others errors by modifying the force
of level set in each iteration by calculating the average forces of both
methods.

FCV =

∫

Ω
(u0 − c1)2H(φ)dxdy

+

∫

Ω
(u0 − c2)2(1−H(φ))dxdy

+

∫

Ω
|∇H(φ)|

(54)

FLi = µP (φ) + λL(φ) + νA(φ) (55)

Equation 54 and Equation 55 are the forces for Chan-Vese and
Li level set models which are explained in Section 4.2 and 4.3.4 in
more details.

F =
1

2
(FLi + FCV ) (56)

Equation 56 defines the averaging equation for forces which hap-
pens in each iteration that new forces are obtained from each model.
Finally, to reinitialise level set, new φ should be calculated from
Equation 57.
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φ(x, y, t+ 1) = φ(x, y, t) + ∆t.F (57)

where ∆t is the step size.

In 2011, Bara [55] used variational models for solving level
set based on Mumford-Shah and level set methods. This model is
independent to the digital image grids.

Zhang improved the Chan-Vese method by replacing magnitude
of gradient instead of image intensity as the evolution term [37].

∂φ

∂t
= δε(φ)(I ′ − u+ v

2
) (58)

later Zhang further improved this model and defined the energy
function as [38]:

∂φ

∂t
=
αδε(φ)(I ′ − u+v

2 )

max |I ′ − u+v
2 |

(59)

This model is mainly designed for special surgery instruments in
CT images for minimally invasive spinal surgery.

Zhang [39] proposed a local image fitting (LIF) model by consid-
ering image local characteristics to improve the Chan-Vese method,
more advanced than local binary fitting (LBF) introduced by Li [25].
To prevent re-initializations at each iteration, Zhang used a Gaussian
smoother to regularize the level set function. In this work, the local
fitted image fitting function is defined:

ILIF = m1Hε(φ) +m2(1−Hε(φ)) (60)

m1 = mean(I ∈ (x ∈ Ω|φ(x) > 0 ∩Wk(x))) (61)

m2 = mean(I ∈ (x ∈ Ω|φ(x) < 0 ∩Wk(x))) (62)

where Wk(x) is the rectangular window filter, e.g., a constant
window.

ELIF =
1

2

∫

Ω
|I(x)− ILIF (x)|2 dx, dx ∈ Ω (63)

Also again in 2010, Zhang [53] developed a variational multi-
phase level set for segmenting boundaries on MR images. The
process of this model is to find the intensity values based on differ-
ent Gaussian distributions which vary in means and variances, and
transforms the result to other dimensions by using a sliding window
to resist the overlap of different tissues. In the new domain, Zhang
defined the maximum likelihood for each point, which unified in the
whole domain to construct the variational level set evolution.

Liu [40] improved the Chan-Vese method by considering the local
characteristic named local region-based Chan-Vese designed with a
better effectiveness and robustness for inhomogeneous images. The
Energy function is designed as:

ELBF (φ, f1(x), f2(2)) =

λ1

∫

Ω

∫

Ω
g(x− y)(I(y)− f1)2H(φ(y)) dy dx

+ λ2

∫

Ω

∫

Ω
g(x− y)(I(y)− f1)2H(φ(y)) dy dx

+ µ

∫

Ω
δ(φ(x))|∇φ(x)| dx

+ ν

∫

Ω

1

2
(|∇φ(x)| − 1) dx

(64)

f1(x) =

∫
Ω gk(x− y)(H(Φ(x, y)))(I(x, y))dxdy∫

Ω gk(x− y)H(Φ(x, y))dxdy
(65)

f2(x) =

∫
Ω gk(x− y)(1−H(Φ(x, y)))(I(x, y))dxdy∫

Ω gk(x− y)(1−H(Φ(x, y))dxdy)
(66)

where f1(x) and f2(x) are the image approximate intensity
means inside and outside the contour C and g represents the Gaus-
sian Kernel filters.

Xiao-Feng Wanga [41] introduced a local Chan-Vese (LCV)
consisting of three terms: global, local and regularizer. This new
Chan-Vese model which formed based on the techniques of curve
evolution, local statistical function and level set method performs a
robust segmentation on images with intensity inhomogeneity.

ELCV = α · EG + β · EL + ER

= α

∫

(inside(C))
|I − c1|2 dxdy

+ α

∫

(outside(C))
|I − c2|2 dxdy

+ β

∫

(inside(C))
|gk ∗ I − I − d1|2 dxdy

+ β

∫

(outside(C))
|gk ∗ I − I − d2|2 dxdy

(67)

where EG is the global energy, EL is the Local, ER represents
the regularizing term, gk is the averaging convolution operator and
d1 and d2 are the approximate intensity means inside and outside of
the contour with respect to the difference image, gk ∗ I − I .

Droskey in 2001, presented a multi-grid level set method for
3D medical image processing [45].By applying inter-active mod-
ulation for the speed function this model can deal with non-sharp
boundaries.

Ho in 2003, introduced a software package for level set by
applying gradient based and region competition level set methods
[46].

In 2008, Cheng [49] proposed a model based on the Chan-Vese
level set method that uses shape prior knowledge for liver segmen-
tation. A training set for prior shape is computed based on statistical
models and in contrast to the previous shape prior of models this
model allows the prior shape to be scaled, rotated or translated by
applying an affine transformation.

In 1995, Kichenassamy and Tannenbaum in [28] modified ver-
sion of snake on gradient flows relative to specific new feature-based
Riemannian metrics. This model convergences based on the desired
features that lie at the bottom of a potential well.

Lankton and Tannenbaum proposed a new robust region based
segmentation model using level set which considers local rather
than global statistical characteristics [42]. This model shows a great
improvement in the case of inhomogeneous images.

E(φ) =

∫

Ωx

δφ(x)

∫

Ωy

β(x, y).F (I(y), φ(y))dxdy

+ λ

∫

Ωx

δ(φ(x))||∇φ(x)||dx
(68)

where,

β(x, y) =

{
1 if ||x− y|| ≤ r
0 otherwise (69)

therefore,

∂φ

∂t
(x) = δφ(x)

∫

Ωy

β(x, y).∇φ(y)F (I(y), φ(y))dy

+ λδφ(x)div(
∇φ(x)

|∇φ(x)| )
(70)
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The authors compared their model with three other region based
level set methods and demonstrated an improvement with their
algorithm, the other models compared were uniform modelling
energy as introduced by Chan-Vese [30], the means separation
energy by Yezzi and Tannenbaum [28] and the histogram separation
energy by Michailovich and Tannenbaum [43].

Pereyra exploited information theory to define the Riemannian
structure of the statistical manifold associated with the Chan-Vese
active contour [44]. They used the Fisher information matrix to form
the natural gradient metric of the statistical manifold which con-
verges much faster than the Euclidean gradient descent algorithm. In
this algorithm, log-likelihood for information geometry was defined
as follows:

log(p(I;φ)) = − ΣNi=1
1

2
(Ii − c1)2H(φi)

− ΣNi=1
1

2
(Ii − c2)2H(−φi)

− N

2
log(2π)

(71)

The natural gradient matrix is defined as:

Gε(φ)(i,j) = |δ′ε(φi)|(c1 − c2)2if i=j and 0 otherwise (72)

where δ′ε(x) = −2εx
π(ε2+x2)2

, therefore the re-initializer is based on:

φt+1 = φt + ηtHG−1
ε (φt)δε(φ

t)((Ii − c1)2 − (Ii − c2)2)
(73)

where ηt is the time step at iteration t and H is the spatial
smoothing operator of Hessian. For fast convergence, this model
used the difference between energy functional of each iteration and
the previous one.

In 2012, Yuan represented L2+ Soblev gradient to improve
Chan-Vese model for calculating the energy function which was
computationally more efficient than its traditional models. This work
presents the L2 gradient for minimizing external energy and Soblev
gradient for the internal energy which represents length of curve and
produces the result in one iteration [56].

In 2003 Lefohn et al [47] introduced a new level set model based
on interactive rates on commodity graphics cards (GPUs) for med-
ical image segmentation. This model provides the user immediate
feedback on the parameter settings and let the user to tune them
separately in real time.

Lin [48] in 2004 prepared a new level set model based for medi-
cal image segmentation on new speed function by considering the
region intensity information, instead of the image gradient infor-
mation. The proposed speed function governs the deformation of
interface. Shi [50] introduced a fast two-cycle algorithm in 2008
for the approximation of level-set-based curve evolution which is
suitable for real-time implementation.

In the same year, Cao [51] proposed a new energy functional
used for variational level set approach for SAR images by consid-
ering the statistical model of speckle noise in the energy functional.
Accurately and automatically extracts the regions of interest in SAR
images. Segmentation is based on minimization of the energy func-
tional via level set which is suitable for SAR images due to their
characteristics.

Also, Bernard [52] in 2009 introduced a continuous represen-
tation of a level set based on B-Spline on medical images. The
smoothness in this model can be explicitly controlled via the chosen
B-spline kernel.

In 2010, El Hadji [54] made a variational and prior shape based
level set in medical images by less reinitialization due to considering
a penalization term that forces the level set to be close to a signed
distance function (SDF). This model detects tumour boundaries in
medical imaging while they are not homogeneous and it performs
well in both prior and non prior shape based image segmentation.

5 Tuning Level Set Parameters

In general, the approach of variational or optimization problems is to
assign a cost function to each element to see how this cost solves the
problem, where a low score is a good match and a high score is a bad
match. Once the cost function is designed, it should be noted that it
can be difficult to find the global minima if the cost is not convex.
Gradient descent or steepest descent methods work by initializing
and then descending at each instance, the direction is checked by the
derivative the slope or the curve. By respecting this rule and trying to
keep the optimization equations always in a convex form, the param-
eter setting in active contours and level set methods is simpler. By
finding the most relevant parameters, the level set methods can be
tuned to converge to appropriate boundaries. As previously pointed
out, the lack of gold standard for lung/medical imaging makes find-
ing the optimal parameters more challenging, requiring a greater
depth of image analysis.

The parameter setting of each model defines a specific range for
each parameter, therefore it is usually based on the model as well as
the images used, each model presents different parameters for dif-
ferent images. Some evolutionary algorithms applied with level set
for better parameter settings are based on genetic algorithm [19],
particle swarm optimization [20], or ant colony optimization [21].

The Table 1 summarizes the history of the discussed papers and
some other important papers using level set.

Table 1 A summary table showing a chronology of the key contribution of the
most relevant level set papers

Year Author(s)-Paper Contribution

1987 Kass [1] Snake as an active contour
1988 Osher-Sethian [2] Original level set method
1997 Caselles [22] Geodesics active contours
1995 Kichenassamy [28] Gradient flows and geometric active contour
1999 Chan-Vese [30] Simplified level set using Mumford-Shah functional
2000 Chan-Vese [31] Vector-valued images
2000 Leventon [24] Statistical shape in geodesic active contours
2001 Droskey [45] Multi-grid level set method for 3D medical imaging
2002 Chan-Vese [33] Multi-phase using Mumford Shah
2003 Vemuri [61] Image registration
2003 Ho [46] Software package for user-guided geodesic snake
2003 Lefohn [47] GPU-based level set for medical imaging
2004 Lin [48] Model based level set for medical imaging
2008 Zhang [37] Chan-Vese model using magnitude of gradient
2008 Li [25] Region-based snake model
2008 Lankton [42] Local rather than global statistical level set
2008 Shi [50] Real time level-set-based curve evolution
2008 Cao [51] Statistical model based level set for SAR images
2008 Cheng [49] Shape prior knowledge Chan-Vese for liver MRI
2009 Bernard [52] Level set based on B-Spline on medical images
2010 Zhang [53] Variational multi-phase level set in medical imaging
2010 El Hadji [54] Less reinitialization
2010 Wang [41] Chan-Vese model using local statistical function
2010 Zahng [39] Local image fitting (LIF) energy
2010 Taheri [29] Threshold level set in 3D tumour segmentation
2011 Bara [55] Variational models using Mumford-Shah
2012 Yuan [56] L2+ Soblev gradient in Chan-Vese internal energy
2012 Liu [40] Local region-based Chan-Vese
2013 Dong [62] Inhomogeneous medical image segmentation
2013 Pereyra [44] Riemannian structure of the statistical manifold
2014 Ehrhardt [63] Image denoising
2017 Rahmat [36] Parallel usage of different level set models
2017 Hu [64] Level set in deep learning

6 Conclusion

In this paper, initial presentation and developed level set models
for medical imaging applications are reviewed. Level set models
are propagating fronts which are widely used in shape and contour
evolution which led to several developments in 2D and 3D image
segmentation. The literature review shows that there are still some
problems for level set image segmentation models. The segmenta-
tion result depends on the initial contour placement and the choice
of its parameters.
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segmentation. Pattern Recognition. 2010 Mar 1;43(3):603-18.

42 Lankton S, Tannenbaum A. Localizing region-based active contours. IEEE trans-
actions on image processing. 2008 Nov;17(11):2029-39.

43 Michailovich O, Rathi Y, Tannenbaum A. Image segmentation using active con-
tours driven by the Bhattacharyya gradient flow. IEEE Transactions on Image
Processing. 2007 Nov;16(11):2787-801.

44 Pereyra M, Batatia H, McLaughlin S. Exploiting information geometry to improve
the convergence properties of variational active contours. IEEE Journal of Selected
Topics in Signal Processing. 2013 Aug;7(4):700-7.

45 Droske M, Meyer B, Rumpf M, Schaller C. An adaptive level set method for
medical image segmentation. In Biennial International Conference on Informa-
tion Processing in Medical Imaging 2001 Jun 18 (pp. 416-422). Springer, Berlin,
Heidelberg.

46 Ho S, Cody H, Gerig G. Snap: A software package for user-guided geodesic snake
segmentation. Submitted to MICCAI 2003. 2003 Apr.

47 Lefohn A, Cates J, Whitaker R. Interactive, GPU-based level sets for 3D segmen-
tation. Medical Image Computing and Computer-Assisted Intervention-MICCAI
2003.

48 Lin P, Zheng CX, Yang Y. Model-based medical image segmentation: a level set
approach. In Intelligent Control and Automation, 2004. WCICA 2004. Fifth World
Congress on 2004 Jun 15 (Vol. 6, pp. 5541-5544). IEEE.

49 Cheng K, Gu L, Xu J. A novel shape prior based level set method for liver
segmentation from MR images. In Information Technology and Applications in
Biomedicine, 2008. ITAB 2008. International Conference on 2008 May 30 (pp.
144-147). IEEE.

50 Shi Y, Karl WC. A real-time algorithm for the approximation of level-set-based
curve evolution. IEEE transactions on image processing. 2008 May;17(5):645-56.

51 Cao Z, Pi Y, Yang X, Xiong J. A variational level set SAR image segmentation
approach based on statistical model. In Synthetic Aperture Radar (EUSAR), 2008
7th European Conference on 2008 Jun 2 (pp. 1-4). VDE.

52 Bernard O, Friboulet D, ThÃl’venaz P, Unser M. Variational B-spline level-set: a
linear filtering approach for fast deformable model evolution. IEEE Transactions
on Image Processing. 2009 Jun;18(6):1179-91.

53 Zhang K, Zhang L, Zhang S. A variational multiphase level set approach to simul-
taneous segmentation and bias correction. In Image Processing (ICIP), 2010 17th
IEEE International Conference on 2010 Sep 26 (pp. 4105-4108). IEEE.

54 Diop EH, Ba SO, Jerbi T, Burdin V. Variational and Shape PriorâĂŘbased Level
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