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Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding
how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have
been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we
demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear
transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring
nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The
inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known
anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in
auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed
to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to
non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically
validated demonstration of an algorithm to successfully infer neural information flow networks.
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Introduction

Network flow is distinct from network connectivity. Net-
work connectivity describes the static architecture of a
network or, more colloquially, its ‘‘wiring diagram.’’ In
contrast, network flow describes the dynamic utilization of
a network as a transportation or communication medium.
Road maps, electrical grids, Internet backbones, CPU
architectures, and anatomical connections in the brain all
relate to network connectivity; we call these static structures
connectivity networks. But traffic congestion, power blackouts,
packet routing, computation, and animal behavior are all
examples of the phenomena that arise from dynamic flows
over these respective connectivity networks; we call these
dynamic structures flow networks. Although flow networks are
constrained to paths present in the respective connectivity
networks, knowing network connectivity alone is not suffi-
cient to understand how a network is utilized under different
conditions. For example, while a road map shows the physical
road networks, it does not have information about which
roads are heavily traveled, and when. Similarly, while neural
connectivity networks describe the existence of anatomical
connections between different brain regions, they lack
information about which of those paths are utilized during
processing or learning tasks undertaken by the brain. To
understand these phenomena, we need flow networks.

Flow networks can be determined by dynamic observation
of a system. In the case of determining a flow network
describing traffic, this can be done directly by observing
automobiles traveling along roads from a traffic helicopter. In
the case of the brain, such direct observation is considerably
more difficult, requiring monitoring of action potentials
traveling along axons. However, we can collect simultaneous
recordings of activity in brain regions between which

information is flowing. This is analogous in the case of traffic
to counting the number of automobiles passing through
various intersections. From such observation of variables over
time, it is theoretically possible to infer flow networks, or
what we call ‘‘neural information flow networks’’ for the
brain, which broadly represent the set of paths along which
combinations of neural signals (action potentials, end plate
potentials, neurotransmitter release, etc.) are transmitted
between brain regions during specific processing tasks. In
relation to definitions commonly used within the neuro-
imaging field [1,2] but with historical precedents in electro-
physiology [3,4]—where functional connectivity refers to
statistical patterns with no causal implications and effective
connectivity refers to causal neural interactions defined as
transmitted neural signals—we consider a neural information
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flow network to be representing effective connectivity; this is
distinct from the anatomical connectivity network.

Attempts have recently been made to infer neural
information flow networks from simultaneous recordings of
electrophysiology activity in multiple brain regions using
microelectrode arrays [5,6]. Depending on how the data are
processed and where the electrodes are placed, the putative
neural information flow networks that have been inferred
represent the transmission of information between either
individual neurons or populations of neurons, in either the
same or different brain regions. Existing methods are
commonly based on simple cross-correlation or coherence
analyses between pairs of electrodes [5–7], but such methods
cannot resolve direct from indirect flow (flow via one or more
measured intermediary regions), leading to highly intercon-
nected networks [8]. Attempts have been made to limit
network recovery to only direct information flow by analyz-
ing more than two electrodes at a time [8–13]. However, most
of these methods assume linear relationships between
measured neural activities, when such relationships are
known to be nonlinear [8,9] (but see [5] for use of piece-
wise linear methods to approximate nonlinearity). This
mismatch of statistical assumption with biological reality is
a potential source of inaccurate inference. Moreover, none of
the inferred neural information flow networks generated by
any method that we are aware of has been validated against
known anatomy, despite the fact that in certain neural
systems, networks of anatomical connectivity are well-
characterized, providing knowledge of the paths over which
information must flow.

Recently, we [14–17] and others [18] developed, improved,
and demonstrated the ability of dynamic Bayesian network
(DBN) inference algorithms to infer transcriptional regula-
tory networks from gene expression microarray data
collected from simulated gene networks. These inference
algorithms have also been applied to experimental gene
expression data [17,19,20], but the true topologies of tran-

scriptional regulatory networks are generally not known, so
validation is more challenging than with simulated networks
(but see [21] for a recent successful effort to recover a well-
studied signal transduction pathway). Here, we tested and
validated whether the DBN inference algorithm we developed
for inferring transcriptional regulatory networks from gene
expression microarray data would be successful at inferring
information flow networks from microelectrode array data
collected from a neural system of known connectivity—the
songbird auditory pathway [22]. This seemed plausible
because in order to accurately learn complex network
architectures, inference algorithms can require large num-
bers of observations for each variable (e.g., thousands of time
points) [16], which is difficult and expensive to collect with
microarrays but not with microelectrode arrays. We further
reasoned that DBN inference algorithms might be partic-
ularly effective for two reasons. First, Bayesian networks can
model multifactor, combinatorial, and stochastic interactions
that are either linear or nonlinear [23], providing an
appropriate statistical framework for the neural system.
Second, Bayesian networks model only direct statistical
dependencies among included variables, whether these
variables are observed (i.e., measured) or hidden—that is, if
two variables statistically interact only indirectly through a
third variable, Bayesian networks model only the two direct
statistical interactions [23]. In particular, when using a
Bayesian network inference algorithm to infer relationships
among only a set of measured variables, two indirectly
interacting variables will not be connected if the third
intervening variable is also measured. If the third variable is
not measured, it is possible to find a statistical relationship
between the first two; however, DBNs with appropriately
chosen sampling intervals can be used to minimize such
unintended indirect relationships [15,16]. We found that our
DBN inference algorithm, without modification, successfully
infers neural information flow networks that match known
anatomy from electrophysiology data collected from the
auditory pathway of awake, freely moving songbirds. In
contrast, we found that a commonly used linear method,
never before validated against known anatomy, had many
errors.

Results

Inference of Neural Information Flow Networks
We developed linear arrays of eight fluorescently labeled

microelectrodes for recording multi-unit neural activity in
the brains of awake, freely moving songbirds (for details, see
Methods, Protocol S1, and Figure S1). These arrays were
placed in cerebral auditory regions (NCM, L3, L2, L1, CMM,
and CSt; Figure 1A) of six female zebra finches, and voltage
changes in the populations of neurons surrounding the
electrodes were recorded while the birds were presented with
four digitized sound stimuli (Figure 1B) on each of four days
(only three days for bird 1). These stimuli were 20 repetitions
of two natural sounds (two of eight different zebra finch songs
for each day) and two synthetic sounds (white noise and
amplitude-modulated white noise patterned on one of the
zebra finch songs of that day); natural and synthetic sounds
are known to induce different firing responses in the
songbird auditory pathway [24,25]. To estimate the collective
electrical activity of the population of neurons surrounding
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Synopsis

One of the challenges in the area of brain research is to decipher
networks describing the flow of information among communicating
neurons in the form of electrophysiological signals. These networks
are thought to be responsible for perceiving and learning about the
environment, as well as producing behavior. Monitoring these
networks is limited by the number of electrodes that can be placed
in the brain of an awake animal, while inferring and reasoning about
these networks is limited by the availability of appropriate
computational tools. Here, Smith and Yu and colleagues begin to
address these issues by implanting microelectrode arrays in the
auditory pathway of freely moving songbirds and by analyzing the
data using new computational tools they have designed for
deciphering networks. The authors find that a dynamic Bayesian
network algorithm they developed to decipher gene regulatory
networks from gene expression data effectively infers putative
information flow networks in the brain from microelectrode array
data. The networks they infer conform to known anatomy and other
biological properties of the auditory system and offer new insight
into how the auditory system processes natural and synthetic
sound. The authors believe that their results represent the first
validated study of the inference of information flow networks in the
brain.
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an electrode, a root mean square (RMS) transformation of the
recorded multi-unit neuronal voltages was computed in 5-ms
time intervals (Figure 1B); this time interval was chosen
because it takes an estimated 5–10 ms for a neural signal to
travel through one synaptic connection [26], and simulation
studies with our DBN algorithm revealed that there is an
optimal sampling rate for the most accurate inference
possible, and that this sampling rate should be equal to or
slightly smaller than the time required for a variable to affect
a directly adjacent variable in the network [15,16]. Discretiza-
tion permits us to learn arbitrary combinatoric (i.e., any form
of linear or nonlinear) relationships between measured
activities at the electrodes, and so the RMS voltage data from
the 20 repetitions of a stimulus (;20,000 data points on
average) on each day were discretized with a quantile-based
method into three states (Figure 1B) and then provided to our
DBN inference algorithm. This yielded a total of 16 networks
for each bird (four stimuli on each of four days; 12 networks
for bird 1). These networks represent the simplest models for
suitably explaining the statistical relationships among the
measured activities of neuron populations near each elec-
trode over time.

When supplied with the discretized RMS electrophysiol-
ogy data, the algorithm successfully produced networks with

interactions that were significantly consistent for each of the
six birds (Figure 2; p , 0.02, Monte Carlo analysis). The term
interaction refers to a significantly reoccurring link across the
16 networks per bird (12 for bird 1), while the term link
refers to a directed relationship between two electrodes
found in an individual network—i.e., putative transmission
of neural signals between the measured neuronal popula-
tions. The majority of links in the inferred networks (65%–
83%, depending upon the bird) contributed to these
significantly consistent interactions. No two birds had
identical networks, which was expected because no two
birds had identical electrode placements (within or across
brain regions) due to the variable nature of microsurgery
(Figure 2A). The differences in interactions among birds and
among electrodes within the same brain region in individual
birds may be explained by the known medial–lateral
topography in connectivity of the songbird auditory system
[22]; interactions between electrodes which happened to be
in the same medial–lateral plane would be more likely to
interact. This appeared to be the case, as birds with similar
electrode placements appeared to have more similar net-
works; for example, birds 4 and 5 had the closest similarity
of electrode placements across brain regions and within the
medial-to-lateral plane (Figure S1C), and their networks

Figure 1. Electrophysiological Recording from Songbird Auditory Forebrain

(A) Electrode placements. Zebra finch drawing shows a sagittal brain section (to scale, ;1.1 cm in length); the boxed area highlights the auditory
regions, magnified on the right. Microelectrode arrays were placed in a linear posterior–anterior orientation (asterisks [*] indicate electrode locations), in
nearly all known major auditory pallial (nidopallium caudale mediale [NCM], fields L3, L2, L1, and caudal medial mesopallium [CMM]) and striatal (caudal
striatum [CSt]) regions. Of the 48 electrodes placed in the six birds, two ended up outside of the auditory pathway (one in the lateral striatum [LSt] and
one in the meninges [men]). The anatomical terms used are those of the new avian brain nomenclature [56]. Solid lines, brain subdivisions; dashed lines,
auditory regions.
(B) Data processing. From left to right: amplitude envelope of a song stimulus above measured voltage changes sampled from an L2 electrode during
stimulus presentation; magnification of the voltage changes; RMS values of these voltages; three-state discretization of these RMS values (presented
with jitter for clarity). Shaded region, sound; triangles, onset and offset of sound.
doi:10.1371/journal.pcbi.0020161.g001
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Figure 2. Generation of Information Flow Networks from Songbird Brain Using a DBN Algorithm

(A) Inferred neural information flow networks. Networks show significant interactions compiled across the 16 (or 12 for bird 1) inferred networks from
hearing all stimuli across all days. Line thickness is proportional to the square of link occurrence frequency; numbers denote average influence scores.
The order of the variables in the recovered DBN is the order of electrodes in the brain from posterior (left) to anterior (right). Multiple electrodes were
sometimes within the same region. Brain regions are color-coded to highlight differences in electrode placement across birds. Bird 3 had two electrodes
that were short-circuited and transmitted no signal; thus, these are not shown.
(B) Consensus flow network compiled from the interactions of all birds from (A). Each oval represents one region. Lines connecting a region to itself
represent those between two or more electrodes in the same region; those directed to the right indicate an interaction from one electrode to another
anterior to it in the same region; those to the left indicate the reverse. Green lines, known anatomical paths; blue lines, predictions about anatomical
connections between regions where connectivity is currently unknown. It was not possible to recover internal interactions in L1 or CSt, as no bird had
more than one electrode in these regions. Fractions represent the number of birds in which such an interaction occurred out of the number of birds in
which such an interaction was possible. Line thickness is proportional to the square of these fractions.
(C) Consensus connectivity network of known anatomical connections of auditory forebrain regions determined across many birds from multiple
studies [22,25,57–59]. Connectivity of CSt is not well-characterized and therefore not shown.
(D) The four anatomical connections among auditory regions known not to exist.
doi:10.1371/journal.pcbi.0020161.g002
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appeared to be more similar to each other than to other
birds’ (Figure 2A). Another possibility is that different
networks are due to true physical anatomical connectivity
or connection density differences across birds, although this
remains to be tested.

To rule out the possibility that the DBN algorithm would
infer links simply by chance, we supplied it with three types of
randomized data: 1) the real RMS values collected from each
electrode but shuffled randomly to destroy possible depend-
encies, 2) simulated random values with the same range as the
real RMS values but generated independently for each
electrode to preclude possible dependencies, and 3) simu-
lated random values with the same range and same first-order
temporal dependencies as the real RMS values but generated
independently for each electrode. In all three cases, no links
were ever inferred by our DBN inference algorithm, suggest-
ing that the links inferred from the real electrophysiology
data are not the product of chance.

To determine whether the DBN algorithm would not infer
links between variables known to be conditionally independ-
ent, we passed it electrodes from all six birds simultaneously
(46 electrodes at once), without providing the algorithm with
information about which electrodes came from which birds.
Since the birds’ auditory systems respond to the sound
stimuli, we added one more variable: a binary indicator of the
presence of sound versus silence. Since this variable forms the
only commonality between birds, we know that individual
birds’ electrodes therefore are conditionally independent
given this sound variable. The algorithm correctly inferred
conditional independence across birds: no interactions were
found between electrodes of different birds (Figure S2). As
expected, there were interactions from the sound variable to
the electrodes, but none in the reverse direction, showing
correct direction of causation. Interestingly, interactions
were found from sound to more than just the main auditory
input, L2. Thus there is variability related to sound in the
electrode recordings that cannot be explained by intercon-
nections among them, indicating that we have not sampled
the entire system in any one bird; however, this is a fact we
already knew. Encouragingly, 81 6 5% (mean 6 SE) of the
interactions found within the birds were identical to those
found when analyzing birds individually, indicating that the
addition of a non-neural variable (sound) did not greatly
change the dependency structure.

To test whether there were specific portions of the data
that were most informative for DBN network inference, we
supplied the algorithm with subsets of the data from five
subsections of the stimulus period: before, during, or after
the stimulus, and equally sized subsections covering the onset
and offset transitions of sound stimuli (Figure 3A; this
procedure was performed for each bird individually). We
found that the DBN algorithm inferred networks from all
stimulus subsections (Figure 3A; Figure S3), including the two
silent periods. The inferred networks in the silent periods
suggest that even in a quiet soundproof room, an animal’s
auditory system is processing ambient information and that
the dynamics of baseline brain activity provides sufficient
information to infer network flow. The majority (82 6 3%)
of interactions recovered per bird from each stimulus
subsection matched a subset of the interactions recovered
from the entire stimulus; the remaining 18 6 3% could
represent real information flow differences specific to the

stimulus subsections. While there was no difference across
subsections in the number of significant interactions found,
more links per network were recovered from the onset and
offset transitions (Figure 3B; statistics in Table S1), indicating
that the transition subsections either provided more meas-
urable statistical dependencies for the algorithm or that
more information is flowing during the transitions. However,
the percentage of both interactions and links that matched
interactions from the entire stimulus were similar across all
subsections, indicating that transition and nontransition
subsections provided equivalent information about the top-
ology of the inferred flow network (Figure 3C; Figure S3 and
Table S1).

Validation of Information Flow Networks
We tested whether the inferred links conform to known

properties of the auditory pathway. First, all influence scores
(range �1 to 1; see Methods) were positive (Figure 2A),
consistent with these pallial regions being dominated by
excitatory (glutamatergic) rather than inhibitory (GABAergic)
synaptic neurotransmitter receptors [27,28]. Second, electro-
des accidentally placed outside the auditory pathway (one in
the non-neural meninges [men] of bird 1; one in the
nonauditory lateral striatum [LSt] of bird 5) were the only
electrodes that never linked in any of the networks. Third,
shorter links were found disproportionately more often
(Figure S4; statistics in Table S2), consistent with the fact
that regions in the auditory pathway that are closer to one
another have a higher density of anatomical connections
between them [22]. Finally, the consensus-inferred neural
information flow network generated from networks across all
birds (Figure 2B) conformed to a subset of known anatomical
connections in the connectivity network (Figure 2C), as
desired. Where connections are known to exist, all recovered
significantly consistent interactions matched them (Figure
2B, green lines). Where connections are known not to exist—
NCM does not project axons either to L3, L2, or L1, nor does
L1 project to NCM [22,25]—the DBN algorithm did not
recover interactions and in fact significantly avoided the
corresponding links in three of the four cases (p , 0.001 – p¼
0.009 for links out of NCM, p ¼ 0.3 for L1 to NCM, Monte
Carlo analysis; Figure 2D). Additionally, the fact that there
were no links at all with meninges and LSt represent another
16 consensus interactions that were significantly avoided by
the algorithm (10 for meninges and 6 for LSt; p , 0.001 for
both, Monte Carlo analysis).
Although all recovered interactions that matched known

anatomical paths occurred significantly above chance and no
interactions were found along paths known not to exist in the
anatomy, these comparisons are made against a background
of a high degree of anatomical interconnectivity, possibly
making it easy to find matches to known anatomy by chance
(which will be an issue with most sensory neural systems).
Thus, we performed additional analyses and found that
despite the dense connectivity, it is actually harder than one
may intuit to pass this test. In the consensus network, with 16
possible valid paths and four possible invalid paths, the
probability of choosing 12 interactions which are all valid by
chance is p ¼ 0.014 (hypergeometric test). A more robust
analysis on the actual nodes and interactions within auditory
regions of each bird, where we have 151 possible valid paths
and 19 possible invalid paths, revealed that the probability of
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choosing 38 valid interactions as the algorithm did is p ¼
0.005. When we include the nonauditory regions, there are
then 47 possible places in which to place an interaction that is
known to be false. The DBN algorithm did not place
interactions in any of these 47 places, with the probability
of this occurring by chance being p ¼ 9.2 3 10�6.

The anatomical connectivity of CSt is not well known so we
could not evaluate the accuracy of recovered interactions
between CSt and other auditory regions (Figure 2B, blue
lines). These links represent testable predictions about the
existence of novel anatomical connections. Preliminary
results suggest that CSt does receive connections from at
least L1 and CMM [22], and we found statistically significant
interactions of CSt mainly with CMM. Since anatomical
connections within a single auditory region are not well
known, we also could not validate the interactions within
NCM, L2, or CMM (Figure 2B, blue lines); however, such
interactions are highly plausible given that internal con-
nectivity within brain regions is common.

The inferred flow networks also conformed with measured
physiology of the auditory pathway, specifically onset timing
of neural firing in response to a stimulus. After presentation
of an auditory stimulus to a songbird, the primary auditory

region L2 has on average the quickest onset (;10 ms),
followed by L3, L1, and CMM approximately simultaneously
(;14–15 ms), and followed finally by NCM and CSt (;30 ms)
[29] (Figure S5). This is consistent with our consensus
information flow network (Figure 2B), in which after a neural
signal arrives in L2, activity flows to L3, L1, and CMM
simultaneously, and then to NCM (from both L3 and CMM)
and CSt (from CMM) (Video S1). Although our networks
conform to measured onset timing, the DBN infers more
complex interactions than is possible to infer from onset
timing alone. For example, analysis of onset timing alone
would not be sufficient to infer the pattern of flow from L3
and CMM to NCM, or to infer more complex patterns of flow
such as reciprocal feedback loops. Feedback loops are
important in controlling and stabilizing a multitude of
biological systems, and the neural information flow networks
we recover contain these loops. We observe them between L2
and L3, among multiple regions with CMM, and within NCM,
L2, and CMM in birds for which multiple electrodes were
present in those regions (Figure 2B; Video S1). Taken
together, the above validation against known anatomy and
physiology suggests that the inferred networks reflect real

Figure 3. Analysis of Networks Generated from Birds Hearing Stimulus Subsections

(A) Sample amplitude envelope of a 6-s song stimulus, showing equal size stimulus subsections. Scale bar ¼ 0.5 s.
(B) Average number of links per network for each subsection. Asterisks (*) indicate Bonferroni-corrected significance at a¼ 0.05 (Table S3). Error bars
represent standard errors of the mean.
(C) Significantly consistent interactions recovered from subsections compared with those recovered from the entire stimulus period, for two example
birds. Datasets are shown in columns, interactions in rows. Filled cell indicates that the interaction was significantly consistent (grey, entire stimulus; red,
nontransition subsections; blue, transition subsections). Arrows (!) indicate direction of flow. For multiple electrodes within the same brain region,
higher subscript number indicates more anterior electrode.
doi:10.1371/journal.pcbi.0020161.g003
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neural information flow along anatomical paths among
populations of neurons.

Comparison with a Linear Inference Algorithm
We wanted to see if the performance achieved by the DBN

algorithm might be achieved by other algorithms applied to
the same datasets, so we compared it to a state-of-the-art
linear inference algorithm: partial directed coherence (PDC)
[11]. PDC is an advanced form of a lineage of linear
coherence analyses that have been developed for electro-
physiological analysis, building upon previous work in
Granger causality [30], directed coherence [31], and the
directed transfer function [32]; e.g., [8,10,12]. We first applied
PDC to the first two types of random data that we supplied to
the DBN algorithm (the third type is not applicable to PDC,
see Methods). In the case of simulated random values, PDC
inferred some spurious links at a low frequency: only two
links across all the simulated random datasets. However, in
the case of shuffled datasets, while there were only two links
inferred across the datasets from five of the birds, the other
bird (1) had 41 links. In this bird, a Monte Carlo analysis
found four significant interactions (three involving the non-
neural meninges). Therefore, unlike the DBN, PDC inferred
spurious interactions from randomly shuffled data, indicating
a tendency to produce false positives from random data, a
behavior also noted by its authors [33].

When we applied PDC to the real data and generated
summary networks as before, it produced networks from each
of the 16 (12 for bird 1) datasets per bird, and these networks
had significantly consistent interactions (Figure 4A). How-
ever, when compared with known anatomy, both when using
all data and when excluding those segments where PDC
diagnostics indicated a poor model fit (see Methods), PDC
performed suboptimally (Figure 4B versus Figure 2C). First,
the PDC networks contained significantly consistent, but
apparently false, interactions between auditory electrodes
and both non-neural and nonauditory electrodes (meninges
in bird 1; LSt in bird 5), in conflict with known anatomy and
brain function. Second, within the auditory pathway electro-
des, PDC found significantly consistent, but apparently false,
interactions from NCM to L3 and L2, two of the four
connections known not to exist, in conflict with known
auditory pathway anatomy. Third, the inferred networks
produced by PDC tended to be dominated by interactions
originating or terminating at one electrode, often at L2 (birds
1, 2, 5, and 6; Figure 4A). The dominance of information flow
into L2 is opposite to the hypothesis (confirmed by onset
timing) that neural signals in the auditory pathway have a net
flow away from L2 into higher-order areas and is inconsistent
with the knowledge that L2 is the main auditory input into
the cerebral part of the pathway [22,25,29]. Although this
tendency to find interactions to L2 indicates that PDC can be
consistent across birds, many of the features recovered do not
represent known anatomy.

Properties of Songbird Auditory Information Flow
Networks

Given that our DBN algorithm is successful at recovering
networks that appear to represent neural flow over anatom-
ical paths, we tested whether we could use it to reveal new
insights into how the songbird brain processes auditory
stimuli. We asked if information flow networks differ when

birds process different groups of auditory stimuli. We did
this by comparing edit distances (see Methods) across two
groups to edit distances within each group. Edit-distance
analysis revealed significant differences between inferred
information flow networks produced from data collected
while birds were listening to noise stimuli versus song stimuli
(Figure 5A; statistics in Table S3). Breaking apart the noise
group, we found no significant difference in networks
produced across hearing plain white noise versus ampli-
tude-modulated white noise (Figure 5B; Table S3). Breaking
apart the song group into two groups of networks produced
by two arbitrarily chosen groups of songs, as a control
analysis, we would not expect to find significant differences
across the groups, and we did not (Figure 5C; Table S3). Thus,
the inferred information flow networks had significantly
different topologies across noise and song stimuli, but not
across different types of noise. However, for both these
comparisons there were differences in the variability within
groups. The song stimuli generated more variability (higher
edit-distance values) within networks than the noise stimuli
(Figure 5A; Table S3). Similarly, the amplitude-modulated
noise generated more variability within networks than the
plain white noise (Figure 5B; Table S3). These differences
could be due to the fact that the networks in the more
variable groups were produced by a greater number of
distinct stimuli as well as greater relative differences among
those distinct stimuli: one plain white noise stimulus versus
four modulated noise stimuli with variation in amplitude
(Figure 5B); these five noise stimuli versus eight songs with
variation in both amplitude and frequency (Figure 5A).
Variation was found (edit distance ¼ 5.2 6 0.6; mean 6 SE)
among networks produced from the same plain noise
stimulus over four days (Figure 5B). This variation is not
due to variability in the heuristic search component of the
DBN inference algorithm, as the same dataset run ten times
gives the same result (unpublished data). The variation could
thus represent any combination of small differences over
days, such as neural habituation to familiar sound stimuli
[34], variability in the exact location of the electrodes due to
slight movement across days, or inherent variability in neural
flow networks in response to the same sound stimulus at
different times.
Edit distance only measures aggregate differences between

information flow networks, so we need other analyses to
isolate the specific differences themselves. Examining overall
network topology, there was no individual interaction that
was differentially present or absent in networks recovered
from noise versus song stimuli. However, when calculating
the proportion of links which occurred in response to
different stimulus presentations, we found that noise stimuli
were accompanied by higher probability of inferred infor-
mation flow among L3, L2, and CMM (Figure 5D), whereas
song stimuli were accompanied by higher probability of
inferred information flow among NCM, L3, and CMM (Figure
5E). These differences were in the posterior to anterior
direction, where inferred flow from L3 to L2 and from L2 to
CMM was prominent when hearing noise (Figure 5D, orange
lines), and flow from NCM and L3 to CMM was prominent
when hearing song (Figure 5E, blue lines). These results
suggest that after being processed in L2, noise stimulus
signals are preferentially passed directly to CMM, whereas
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song stimulus signals are preferentially processed in L3 and
NCM before being passed to CMM (Video S1).

Discussion

To our knowledge, our results represent the first demon-
stration of an algorithm for inferring neural information flow
networks that can handle the nonlinearity of real brain
electrophysiology data and, in particular, the first use of a
Bayesian network inference algorithm for inferring neural
information flow networks. Our results also represent the
first systematic validation of an inference algorithm’s
performance against known anatomy. We find that our
DBN algorithm infers networks that represent plausible
information flow networks: the inferred neural flow is
appropriately constrained to the anatomical connectivity
network, it matches physiological features of the expected
flow network, and it is consistent with the measured temporal
dynamics of the system. Since the auditory system of
songbirds in which we have performed this validation follows
a basic design of avian sensory systems and has homologous/

analogous properties with mammalian sensory systems [35,36]
we believe our DBN algorithm can be expected to work
similarly in other systems and other species.
In contrast, the results of the PDC algorithm are strikingly

different. It produces networks with multiple links that are in
conflict with known anatomical connectivity. We believe this
large difference in performance is due to the fact that a
discrete DBN can represent linear or nonlinear relationships
between neural activities, whereas PDC assumes that these are
linear, in contrast to the fact that these relationships are
known to be nonlinear [8,9] (the nonlinearity of our data is
shown in Figure S6). This belief is supported by previous
results from a simulation study of a different linear method
which suggested that applying linear methods to nonlinear
interactions results in poor recovery of causal relationships
[5]. Other existing linear methods are likely to perform
similarly since they are based upon the same foundations as
PDC [8–13]. The multiple false positives found with PDC,
particularly in the bird with recordings from the meninges,
could be due to PDC’s tendency to produce false positives
from unconnected variables [33]. It is possible that improve-

Figure 4. Neural Information Flow Networks Inferred by PDC for Each of the Six Birds (A) and the Resulting Consensus Network (B)

Explanation of networks is the same as in Figure 2A and 2B, respectively. Asterisks (*) indicate the two interactions in individual birds (A) and the
interaction in the consensus network (B) that drop out if data segments showing a poor model fit are removed from the analyses; dashed line
represents the one interaction added when these segments are removed; approximately 10% of the segments for each bird show a poor model fit for
PDC. In (B), green lines, known anatomical paths; blue lines, predictions about connections between regions where connectivity is currently unknown;
red lines, conflicts with known anatomy.
doi:10.1371/journal.pcbi.0020161.g004
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ments to the linear methods, as well as alterations in the
processing of the electrophysiology data, may result in
recovery of more accurate neural flow networks. However,
linear methods will still be limited by the assumption of
linearity.

Recently, within the physical science community as well as
in neuroscience, attention has turned to a number of
additional frameworks for modeling nonlinear interactions
such as dynamic causal modeling, nonlinear extensions of
both multivariate (vector) autoregressive models and Granger
causality, and transfer entropy [37–43]. However, at this time
many of these are restricted to pair-wise interactions, a
particular form of nonlinearity, and/or require predefinition
of a structure or set of structures to be evaluated, which are
not limitations for our DBN approach. Nevertheless, these
methods may prove fruitful for use in conjunction with DBNs
or as bases for extension to nonlinear inference of
information flow networks. For example, one might be able
to use a DBN to find the network structure and a dynamic
causal model to reveal changes in connection strengths.
However, these methods remain to be tested against known
anatomy or on neural systems in some cases.

Our DBN inference algorithm is not likely to be recovering
perfect networks; as with all statistical inference approaches,
the networks we generated are statistical approximations of
the true neural flow networks, and as approximations they
are not likely to be perfect. However, because they are

significantly more biologically plausible than the linear and
pair-wise methods that have been utilized to date, the
algorithm seems to be the most useful method to date for
generating testable hypotheses about how information flows
among populations of neurons during various information
processing tasks.
Nevertheless, challenges remain. The microelectrode array

we developed had only eight electrodes, but in animals with
larger brains like monkeys arrays of hundreds of electrodes
have been used [44], and it seems inevitable that larger arrays
will be available in the future for songbirds as well. Inference
of DBNs over large numbers of variables poses two challenges,
one statistical and the other computational. Statistically, the
number of variables is not per se problematic. The Bayesian
scoring metric used is influenced not by the total number of
variables in the network, but locally by the number of parents
of a variable. Increasing the number of variables increases the
search space for the algorithm, but does not influence the
statistical power of the score. In this regard, we know from
simulation studies that our DBN algorithm scales well with an
increasing number of variables and explores the search space
sufficiently to accurately learn networks with hundreds of
variables [14,17], surpassing the largest electrode arrays that
have been used in the brain to date [44]. The ability to
statistically infer accurate networks depends primarily on the
interaction density of the network (i.e., the number of parents
of each variable), which is likely to be high in neural systems

Figure 5. Neural Information Flow Differences due to Hearing Different Kinds of Stimuli

(A) Edit distances of networks generated from noise and song stimuli, (B) from plain noise and amplitude-modulated noise, and (C) from two different
sets of songs. Error bars represent standard errors of the mean. Asterisks (*) indicate Bonferroni-corrected significance at a¼ 0.05 (Table S3).
(D,E) Differences in information flow between hearing noise and song stimuli, mapped onto the consensus neural flow network of Figure 2B. Colored
lines, present more often for the indicated stimuli in at least n � 1 of n � 4 birds, with no birds showing opposite preference. Line thickness is
proportional to the square of the ratio of presence in noise over song for (D) and in song over noise for (E), averaged across all six birds. The line from L3
to NCM in (E) is set to a maximum thickness, as it had an extreme ratio in one bird for song stimuli.
doi:10.1371/journal.pcbi.0020161.g005
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but depends somewhat on the level of abstraction one adopts
(e.g., multi-unit versus single-unit). When the interaction
density increases, more data will be required for accurate
inference, as is the case with all statistical inference
algorithms. Fortunately, immense amounts of data are
available in this setting. Computationally, both the handling
of large data amounts necessary for more accurate inference
of dense networks and the exploration of large search spaces
with thousands of variables can lead to challenges, perhaps
necessitating large storage devices and cluster computing.

Another challenge may be finding the appropriate sam-
pling interval and number of discretization states for differ-
ent systems being studied. In particular, while a sampling
interval of 5 ms may be a critical choice for most cortical
networks, if physical distances become larger as in cortical–
spinal networks, sampling intervals may need to be increased
or higher-order Markov DBNs considering influence from
measurements spanning more than one sampling interval
into the past may be needed.

Finally, an open question is whether the recovered
networks can be said to be causal, in the sense that one
variable interacts with and directly affects the state of the
other. Some of the predictions of inference algorithms have
been experimentally verified [19,21], and the networks
recovered by inference algorithms are sometimes called
causal [16,45,46]; a large body of literature exists on the
subject of causal inference. However, direct causality is hard
to guarantee in situations where not all relevant variables are
measured, as is true in our setting; when intervening variables
are unmeasured, indirect connections can be recovered [23].
Consequently, we believe that some but not all of the
interactions in the recovered neural flow networks are direct
causal interactions. Since we did not find interactions over
the four paths among auditory regions that do not exist in the
anatomy and since the absence of invalid links occurred
highly significantly above chance, we can reasonably suppose
that our DBN algorithm avoids many, if not all, indirect
interactions between brain regions.

Despite the challenges, the inferred neural information
flow networks we recover make useful predictions about the
biological properties of the auditory pathway. They suggest
the dominant direction of putative flow is centrally away
from field L sites onto higher auditory areas farther removed
synaptically, consistent with findings of hierarchical process-
ing in the auditory system [22,25,29,47]. In hierarchical
processing, sounds are sequentially processed from the most
simple to the most complex: L2 acts as a processing unit for
general sound information and as a filter before sending
sound information on to appropriate higher areas that
further process ethologically relevant information, resulting
in flow differences of the kind we found in the processing of
songs versus noise. The differences we observed suggest
preferential processing from NCM and L3 into CMM when
perceptually discriminating species–specific songs versus
other stimuli. These results complement findings that show
that NCM and CMM have more complex auditory firing–
response properties, selective long-term neural physiological
memories, and selective gene regulation, when songbirds hear
songs as opposed to synthetic stimuli [24,48–50]. Our results
further suggest that CMM may be the highest processing area
in the hierarchy.

It is also possible that the algorithm may infer different

scales of neural flow networks when applied to different types
of neural data. Although we applied our DBN inference
algorithm to multi-unit instead of single-unit data due the
technical difficulties of obtaining the latter from awake and
moving animals, we expect our algorithms to be applicable to
single-unit data. We also expect the algorithms to be
applicable to diverse human neural data: from microelec-
trode arrays [51], surface EEG recordings, or fMRI. This is
supported by a previous workshop study [46] that has recently
come to our attention, where the authors used an approach
with similar theoretical underpinnings on human fMRI data
to predict cortical networks involved in processing optic flow
patterns (without validation of the networks against known
anatomy).
Our findings have implications for understanding inter-

actions at multiple levels of biological organization. Just as
microelectrode arrays have stimulated the development of
computational inference algorithms for understanding brain
electrophysiology, the advent of gene expression arrays has
led to computational algorithms for elucidating transcrip-
tional regulatory networks [52,53]. The tasks of recovering
networks of transcriptional regulation and neural informa-
tion flow share a similar goal: to infer possible causal
relationships between variables on the basis of statistical
structure in the observed values of those variables. Indeed,
our DBN inference algorithm was first developed for use
with time-series gene expression data to infer transcriptional
regulatory networks [16,53]; and without further modifica-
tion, the same algorithm was also effective at inferring
neural information flow networks. Provided that sufficient
data are available, DBN algorithms can be applied to a wide
range of systems at multiple spatial and temporal scales, and
may also be effective at recovering networks linking different
levels of biological organization [14,54], such as our test with
sound and electrophysiology data. In summary, we believe
that DBN inference algorithms will prove to be a powerful
tool for understanding how the brain perceives the environ-
ment and produces behavior, for systems biology more
generally, and for any discipline in which the causal
interaction structure among large sets of observable varia-
bles needs to be inferred.

Materials and Methods

Electrophysiology and auditory stimuli. Detailed electrophysiology
methods are described in Protocol S1. In brief, a linear array of eight
fluorescently labeled microelectrodes was chronically implanted into
cerebral auditory regions of each of six female zebra finches
(Taeniopygia guttata) (Figure 1A). A set of four stimuli was played to
the birds as described in the results. Each stimulus consisted of 1.67–
2.17 s of sound, preceded and followed by the same duration of
silence (5–6.5 s total). The order of the four stimuli in each repetition
of the set was randomized. The plain white noise stimulus was the
same across days; the songs and amplitude-modulated noise were
different, to prevent measuring long-term electrophysiological
habituation changes to familiar natural sounds [24]. During stimulus
presentation, multi-unit neuronal voltages were recorded from the
eight electrodes (Figure 1B). The data were captured and stored using
custom-written virtual instruments in LabView 6.0i (National Instru-
ments, http://www.ni.com/), digitized at 20 kHz, band-pass filtered
between 0.22 and 5.9 kHz to capture spike activity, and divided into
5-ms time bins. The voltage levels within each 5-ms bin were
converted to a single RMS voltage over the whole interval (range 0–
0.43 mV); RMS was used to estimate the average magnitude of a
voltage signal that fluctuated both above and below zero. This
produced 995 to 1,296 data points per stimulus presentation (stimuli
ranging from 5–6.5 s due to variations in song length) for the entire
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silence–sound–silence stimulus. At the end of the playback experi-
ments, the birds were sacrificed, the microelectrode arrays removed,
the brains frozen, and 10-lm tissue sections examined under a
fluorescence microscope to determine the anatomical location of
fluorescently labeled electrode sites. All animal procedures were
approved by the Institutional Animal Care and Use Committee of
Duke University.

Data processing. Before being passed to our DBN inference
algorithm, the continuous RMS voltage data were discretized into
three levels using a quantile-based method: the lowest 1/3 of values
were labeled state 0, the middle 1/3 were labeled state 1, and the
highest 1/3 were labeled state 2, i.e., these categories correspond to
low, medium, and high RMS values (Figure 1B). Our DBN algorithm
requires discretized values, because it uses a discrete BN approach.
We chose three-state discretization, as this was typically optimal with
our algorithm [16].

Dynamic Bayesian Network inference algorithm. The DBN
inference algorithm used in this paper is written in Cþþ [16], is
modeled on an algorithm called NetworkInference [14,53], and
consists of four elements: i) a first-order Markov DBN model of
dependence and conditional independence between discrete varia-
bles over time, ii) a Bayesian scoring metric to measure how well a
particular network represents the observed data, iii) a greedy search
procedure with random restarts to identify a network with as high a
score as possible (the inferred network), and iv) an influence score
which assigns a putative strength and sign (þ/�) to each of the
dependencies in the inferred network. The inferred network, thus,
represents dependence relationships, along with their sign and
magnitude, between activity levels in the measured brain regions.
For a particular link, this means that the activity level in one region
is useful for predicting the activity level (at a later time) in another
region; we interpret this biologically to mean neural information
flow from the first to second region is responsible for this statistical
relationship. Because we use a first-order Markov DBN, variables
can only be directly affected by variables at the previous time step.
The captured relationships may be of any aribitrary combinatoric
shape and thus are not restricted to linear nor additive forms. The
direction of the relationships is determined using the time-
dependent feature of DBNs, such that relationships flow only
forward in time. More details on the algorithm are available in
Protocol S1, as well as in Figures S7 and S8. We later developed a
more flexible, efficient, and user-friendly program in Java called
Banjo (Bayesian network inference with Java objects). It can be
licensed free for noncommercial use and is available along with
complete source code from http://www.cs.duke.edu/;amink/software/
banjo/. The Cþþ version is available upon request.

To confirm that it is reasonable to use a single top network from
the search to estimate the statistical dependencies present in the data,
we examined the top 10 networks found for four example datasets.
We found that the links present in the single top network were
present in 9.5 6 0.2 (mean 6 SE) of the top 10; whereas links found in
the top 10 but not present in the single highest-scoring network were
found in only 2.1 6 0.3 of the networks. This indicates that (1) there is
no evidence of a highly different structure that scored similarly, and
(2) the top network represents a consistent summary of the
dependencies, where the other high, but lower-scoring networks
have small and different variations on the same structure.

Neural information flow network inference. We passed the
discretized RMS values from the 20 repetitions of one stimulus on
one day to our DBN inference algorithm. This provided 19,000–
25,920 data points for each network inference task, well above the
2,000 data points we determined through simulation studies to be
sufficient for highly accurate inference [16]. For each dataset, the
algorithm took ;5–10 min using a single Dell PC with a 2.26 GHz
CPU and 1 GB RAM to find a high-scoring network. Because not all
networks generated for each bird were identical, not even those from
the same stimulus, to determine the most robust features over
different datasets, we generated summary networks for each bird
(Figure 2A). These contained interactions that occurred with highly
significant consistency, having repetition across the individual net-
works in greater than the 99th percentile of a Monte Carlo analysis
(see the section Statistical analyses). These interactions were used to
generate a consensus network across birds (Figure 2B).

Data randomization. For testing the DBN algorithm with random
data, three different types of random data were produced from two
datasets of each bird: 1) randomly shuffled RMS values within each
electrode’s data across all 20 repetitions of a stimulus, destroying
the temporal relationships among electrodes but maintaining the
descriptive statistical properties of each electrode, 2) uniformly
distributed random values within the range of the real RMS data for

each electrode, and 3) random values within the range of and having
the same first-order Markov properties as the discretized RMS data
for each electrode, but no correlation across electrodes. For the
third, we produced simulated random data using a Bayesian
network with the data from each variable Xi dependent on the
immediately previous time point. We used the conditional proba-
bility P(Xi (t)jXi (t � 1)) estimated from the real data, and had no
interaction between the variables. For testing PDC with random
data, we used the first two types of random data, using the same
random data we produced for testing the DBN. The third type of
random data is unique to discrete data and so was not used in
evaluating PDC. We additionally made further random data of the
second type for PDC, using all the datasets from two birds to further
investigate possible false positives.

Link length. We determined the number of links of each length (1–
7 electrodes distant) in the 16 (or 12) networks for each bird, with
lengths based on the electrodes’ linear anatomical order. We divided
link lengths by the maximum number of links of that length possible,
to normalize these values (for example, with eight linearly arranged
electrodes, a maximum of 14 directed links of length 1 can be
recovered, but only two of length 7). Only lengths 1–6 were included
in the statistical analysis because the most distant electrodes for bird
3 were only of length 6. Due to the missing electrodes, this bird had a
different distribution of possible link lengths, which was taken into
account.

Edit distance. The edit distance between two networks is defined as
the minimum number of edit operations (insertions and deletions of
links) needed to transform one network into the other. The resulting
number is a measure of how well two networks agree, both on the
links that exist and the links that do not exist; it is equivalent to the
number of links that differ between the two networks. Because these
are dynamic networks, links differing in orientation are unambigu-
ously distinct, and two edits are required to turn one into the other.
We calculated three sets of edit distances among the networks for
each bird: 1) the distances between all pairs of networks within one
group, 2) the distances between all pairs of networks within the other
group, and 3) the distances between all pairs across groups, consisting
of one network from one group and one from the other group. The
average of these edit distances is a measure of the amount of
variation found either within networks of a group (1 and 2) or across
the networks of two groups (3). Because each of the six birds had
different electrode locations, edit distances could not be calculated
between networks from different birds. Thus networks were only
paired within single birds.

Statistical analyses. To determine which links were recovered
significantly across networks for each bird, we performed a Monte
Carlo analysis. The 16 (or 12 for bird 1) recovered networks per bird
were used to generate 1,000 sets of 16 (or 12) random networks per
bird with the same variables and number of links as the recovered
networks. For each of the 1,000 sets of 16 (or 12) random networks
per bird, we counted the number of times each of the possible 56
links among eight variables (30 links among six variables for bird 3
missing two electrodes) occurred within the set. Because in random
networks each of the 56 (or 30) links is equivalent, we combined the
occurrence counts of all links to produce a distribution of
occurrence counts within a set by chance. From this distribution
for each bird, we calculated the minimum number of times a link
would have to occur within the original 16 (or 12) recovered
networks to be above the 99th percentile of the distribution of
chance occurrences (p , 0.02 for a two-tailed test). Only those
interactions meeting this 99th percentile criterion (occurrence in at
least 44%–63% of the networks, depending on the bird) were
considered significantly consistent. This same Monte Carlo analysis
was used to calculate significance values for avoidance of links
representing connections known not to exist in the anatomy. We
produced distributions of the occurrence counts of links for such
nonexisting connections expected randomly across all six birds, by
summing the number of links found between all electrodes of each
nonexisting connection for the 16 (or 12) random networks across
all six birds, for each of the 1,000 random generations. This
distribution was used to calculate a p-value for finding links in as
few or fewer networks than the actual number of times each link
occurred (one-tailed for the directional hypothesis). A hypergeo-
metric test was used to calculate the probability of finding all
inferred interactions matching known anatomical paths. A hyper-
geometric test provides the probability of drawing a particular
number of successes and failures given the size of a sample drawn at
random (without replacement) and the total number of possible
successes and failures in the population. In our case, we looked at
the probability of getting the number of interactions we found
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matching known anatomy (successes) and no interactions violating
known anatomy (failures), based on the total number of anatom-
ically possible paths and paths known not to exist. We looked only
at those interactions and possible paths that could be categorized as
known connections or known nonconnections, i.e., excluding those
of auditory regions with CSt and those between electrodes in the
same brain regions.

When comparing the values of a given variable (e.g., proportion of
links found) across different conditions (e.g., links of different
lengths), we used multiple-way analyses of variance (ANOVA). When
the data lent themselves to it, we used repeated-measures ANOVA,
which compares variables measured from the same subject multiple
times (e.g., one bird listening to several stimuli). We used bird identity
as a factor to statistically control for possible differences among
birds. Pair-wise post-hoc multiple comparisons were performed for
significant ANOVAs using Bonferroni-corrected significance values.
Edit-distance statistics were performed using an ANOVA and pair-
wise multiple post-hoc tests. Thus, two groups of networks would be
considered significantly different only if both an ANOVA shows a
significant difference between the three sets of distances and the
mean distance between groups is significantly greater in pair-wise
tests than both mean distances within either group.

Partial directed coherence. We obtained the Matlab code for the
PDC algorithm [11] from its creators, Drs. Baccalá and Sameshima at
the University of São Paulo, Brazil. We applied PDC to our
undiscretized RMS voltage values using options corresponding to
the normalized PDC of Equation 18 in [11]. Our datasets had features,
such as noncontiguous repetitions and large changes in firing rate,
with which PDC has difficulty dealing. We corresponded with Drs.
Baccalá and Sameshima to determine the optimal method to apply
PDC to our datasets and learned that 1) because PDC cannot handle
sections of noncontiguous data in a single analysis, we needed to
perform PDC analyses on each of the 20 repetitions of a stimulus
during one day separately, and 2) because PDC requires stationary
data recorded from a single steady state, we needed to perform PDC
analyses on each 1/3 subsection of the silence–sound–silence stimuli
separately. This led to a total of 60 analyses per dataset (20 repetitions
of the three subsections).

PDC does not provide a method of combining multiple analyses to
produce a single network representing the neural information flow
inferred from the dataset. We needed a single network per dataset to
compare the PDC with the DBN analysis. To generate one, we
expanded upon the heuristic threshold PDC uses to determine links
between variables, namely, a link is considered to exist between two
variables if the maximum PDC across all frequencies is greater than
0.1 [33,55]. We extended this reasoning as follows: if the average of
the maximum PDC between two electrodes of the 20 repetitions was
greater than 0.1 for any of the 1/3 subsections, this is considered a link
for that stimulus presentation. This produced one network for each
stimulus presentation, equivalent to the output of our DBN. From
this point forward, we used the same Monte Carlo method as before
to determine interactions recovered significantly across the 16 (or 12)
stimulus presentations. We also examined the effect of removing
analyses where either of the two diagnostics provided by PDC
indicated a poor fit of the model (Passk � 0.1 or Portk¼ 0). This was
performed before determining the average of the maximum PDC
over 20 repetitions. Subsequent steps were unchanged.

Supporting Information

Figure S1. Electrophysiological Recordings

(A) Female zebra finch with implanted electrodes.
(B) Removed skull of one bird showing below it the eight implanted
electrodes and ground wire.
(C–E) Approximate locations of all electrodes in all birds. Drawings
represent sagittal sections at (C) ;0.4 mm, (D) ;0.6 mm, and (E) ;0.8
mm from the midline. Electrode locations from different birds are
indicated with different symbols. The lateral striatum (LSt) electrode
of bird 5 was in a plane further lateral than our drawings. The CSt
electrode of bird 2 is in a plane between (D) and (E). The front of the
brain is to the right and the dorsal part is to the top. Abbreviations
are as in Figure 1, with additional terms: S, septum; HA, hyperpallium
apicale; HF, hippocampal formation; M, mesopallium.

Found at doi:10.1371/journal.pcbi.0020161.sg001 (893 KB PDF).

Figure S2. Significant Interactions When Measurements from All Six
Birds (Each Colored with a Different Color) Were Pooled Together
(46 Electrodes) along with One Node Representing the Sound

Stimulus: A Binary Variable Indicating the Silent versus Sound
Portion of the Stimulus

Bird 1 is red, 2 purple, 3 grey, 4 yellow, 5 pink, and 6 green. Numbers
next to each link represent the number of times it repeated across the
12 networks (as one bird had data from only three days, this analysis
was done using only these three days for all birds), and link thickness
is scaled to the square of this value. As can be seen from the figure, no
links were found between electrodes in different birds, and no links
were found to the sound stimulus variable.

Found at doi:10.1371/journal.pcbi.0020161.sg002 (380 KB PDF).

Figure S3. Networks Inferred from Subsections of Data across All
Stimuli, in Comparison with Entire Stimuli, for Two Example Birds

Consistent interactions are shown as described in the legend of
Figure 2A.

Found at doi:10.1371/journal.pcbi.0020161.sg003 (123 KB EPS).

Figure S4. Proportion of Links of Each Length Found Relative to the
Maximum Number of Links of That Length Possible

There was a significant difference in the proportion of links of each
possible length, with shorter links predominating (statistics in Table
S2). The length of a link is defined as the electrode number difference
between two pairs of electrodes. Error bars represent standard errors
of the mean.

Found at doi:10.1371/journal.pcbi.0020161.sg004 (16 KB EPS).

Figure S5. Response Latencies to Hearing Sound across Different
Brain Regions Simultaneously Recorded

Plotted are mean latencies to response onset for each brain region.
Response onset was defined as the time of the first of five consecutive
1-ms bins in which the RMS response was three standard deviations
above baseline activity (using the responses from four different
sessions in which white noise was used as an auditory stimulus). Error
bars represent standard errors of the mean. Additional details will be
published separately (TVS and EDJ).

Found at doi:10.1371/journal.pcbi.0020161.sg005 (79 KB PDF).

Figure S6. Nonlinear Relationships between Electrodes

Shown are the RMS values from all eight electrodes of bird 4, plotted
against each other, using data from the 20 repetitions of modulated
white noise. Note that all the scatter plots have a wide range of
relationships, not following any particular line (i.e., they are
nonlinear). The two details show electrodes with either two distinct
relations (blue) or a broad range of relations (red).

Found at doi:10.1371/journal.pcbi.0020161.sg006 (147 KB PNG).

Figure S7. Dynamic Bayesian Network in the Auditory Pathway

A putative causal network of neural information flow (top) can be
represented as a DBN at two time slices 5 ms apart (bottom).
Discretized RMS values at all electrode locations at time t þ 5 ms in
the DBN are predicted by both themselves and their putative inputs
at time t. Note a cyclic interaction between L3 and L2 is represented
by acyclic interactions across time in the DBN.

Found at doi:10.1371/journal.pcbi.0020161.sg007 (52 KB EPS).

Figure S8. DBN Inference Algorithm

The algorithm uses a greedy search with random restarts to find an
inferred network with a high score. Then, influence scores are
calculated for all links in the inferred network. Numbers denote
order of steps.

Found at doi:10.1371/journal.pcbi.0020161.sg008 (118 KB EPS).

Protocol S1. Supporting Methods

Found at doi:10.1371/journal.pcbi.0020161.sd001 (89 KB DOC).

Table S1. Statistics for Analysis of Subsections of Stimulus from Main
Text and in Figure 3B and 3C

Found at doi:10.1371/journal.pcbi.0020161.st001 (62 KB DOC).

Table S2. Statistics for Comparison of Proportion of Links of Each
Length in Figure S4

Found at doi:10.1371/journal.pcbi.0020161.st002 (51 KB DOC).

Table S3. Statistics for Edit-Distance Comparisons in Figure 5A–5C

Found at doi:10.1371/journal.pcbi.0020161.st003 (57 KB DOC).
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Video S1. Interpretation of Dynamic Neural Flow Based upon the
DBN Recovered Networks and Known Biology

Found at doi:10.1371/journal.pcbi.0020161.sv001 (47 KB PPT).
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