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Abstract

The cytosolic second messenger D-myo-inositol 1,4,5-trisphosphate (InsP3), has the

ability to mobilise Ca2+ from intracellular stores. Ca2+ controls a wide range of

cellular processes, such as cell division and proliferation, apoptosis, fertilisation,

gene transcription and muscle contraction. A number of potent InsP3 receptor

agonists are currently known; however, no selective InsP3Rs antagonists have been

reported to date. Using the X-ray crystal structure of the mouse type 1 InsP3R, a

range of analogues (below) has been designed with the intention of these

compounds acting as competitive InsP3Rs antagonists. The successful syntheses of

these compounds are reported herein.
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1 Introduction

1.1 History

1.1.1. Phospholipids and InsP3

In 1850 Scherer1 isolated from heart muscle an optically inactive cyclitol possessing

an empirical formula of a carbohydrate [Cn(H2O)n], which was termed “inosit”, after

the greek root inos, “muscle”. The compound name was then translated into the

English “inositol”, and more recently identified as one of nine possible stereoisomers

and named myo-inositol (1, Figure 1.1).

Figure 1.1. The structures of myo-inositol (1) and InsP3 (2).

The existence of inositol phosphates has been known for over eighty years. The first

milestone in the discovery of InsP3-signalling was in 1949 when Folch and co-

workers2 isolated a lipid preparation which they called “diphosphoinositide”. They

assumed that the extract was only one compound; however, the preparation was, in

fact, an almost equimolar mixture of phosphatidylinositol (PtdIns),

phosphatidylinositol 4-phosphate [PtdIns(4)P] and phosphatidylinositol 4,5-

bisphosphate [Ptd(4,5)InsP2], the latter being the phospholipid responsible for the

release of InsP3 (2, Figure 1.1) by enzymatic hydrolysis, following receptor

stimulation (vide infra). The metabolic behaviour of diphosphoinositide and other

phospholipids was investigated by several groups, but it was not until 1953 that

receptor-stimulated lipid turnover was demonstrated by the Hokins.3

1.1.2. The “PI” effect

While carrying out studies on the in vitro secretion of amylase from respiring

pancreas slices stimulated by cholinergic drugs, Lowell and Mabel Hokin found that

the addition of acetylcholine stimulated the active secretion of the enzyme, but not

its synthesis (as there was no incorporation of 32P into RNA).3 Analysing the

discarded “junk”, they found that the lost radioactivity was in the phospholipid

fraction and, using a method that allowed the separation and analysis of
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diacylglycerophospholipids,4 they showed that the radiolabel was incorporated only

in inositol lipids and phosphatidic acid (PtdOH). This became known as the

“phosphoinositide” effect (“PI” effect).

In the following 20 years several hypotheses with the intent of explaining the

significance of the “PI effect” were developed; this led to some controversies, due to

the indirect measurements of the stimulated hydrolysis of inositol lipids.5 In fact, for

many years the PI effect was considered as an event strictly connected with

secretion (i.e. of enzymes such as amylase); noticeably, at the same time a number

of findings linked the stimulated inositol lipid turnover with some aspects of cell

proliferation.5 It was not until 1964 that Hokin and Hokin6 deduced that stimulated

inositol lipid hydrolysis, with phosphatidylinositol as the presumed substrate, was the

initial reaction.

1.1.3. Inositol lipids metabolism is linked to Ca2+ homeostasis

Durell and co-workers were first to consider polyphosphoinositol lipids to be involved

in receptor-stimulated events.7 However, detailed studies from Ata Abdel-Latif and

Hawthorne8 on acetylcholine-stimulated phosphodiesteratic cleavage of

Ptd(4,5)InsP2, in rabbit iris smooth muscle, apparently showed that there was a

requirement for extracellular Ca2+ in order to enable the hydrolysis process.9 This

put the phosphoinositol lipids downstream of the Ca2+ increase, and therefore

remote from the receptors.

In 1975 Michell10 noticed the coincidence of inositol lipid metabolism with changes in

Ca2+ homeostasis, and suggested that there was a causal link. Four years later,

Berridge and Fain11 provided the first evidence for Michell’s idea; using blowfly

salivary glands, organs which are unique in being very permeable to inositol, they

were able to prove that the 5-hydroxytryptamine-stimulated breakdown of

Ptd(4,5)InsP2 generated inositol phosphates and subsequently mobilised Ca2+ from

the glands. These inositol phosphates were identified through the measurement of

labelled inositol formed by the activity of a dephosphorylating enzyme. Prolonged

stimulation resulted in the glands losing their Ca2+, and the response could be

restored by supplying inositol to the glands. In the same year Nishizuka and

colleagues12 discovered protein kinase C (PKC) and showed it was a

phosphatidylserine-dependent enzyme. In their experiments they found that the

huge variability in the efficacy of different batches of phosphatidylserine was due to

the presence of various amounts diacylglycerol (DAG) as an impurity. Therefore
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they proposed that PKC could be regulated in vivo by DAG, which was also one of

the product of Ptd(4,5)InsP2 hydrolysis.

These findings led Michell et al.13 to put phosphoinositol lipids, and in particular

Ptd(4,5)InsP2, upstream of the Ca2+ release, as primary substrate for

phosphoinositol-lipid-specific phospholipase C (PI-PLC).

1.1.4. The first evidence for InsP3 - Ca2+ mobilising capabilities

In 1983 Berridge and co-workers14 published their findings on inositol phosphates

and Ca2+ release; their observations provided the missing link between two events,

the PI effect (vide supra) and Ca2+ signalling, which they correctly proposed to be

InsP3 acting as a second messenger to mobilise internal Ca2+ stores.

Using permeabilised rat pancreatic acinar cells, Berridge and co-workers first

demonstrated that InsP3 releases Ca2+ only from membrane-bound cellular stores,

as InsP3 was unable to release Ca2+ from cells that had been pre-treated with a Ca2+

ionophore to deplete intracellular Ca2+. In order to identify which intracellular store

was sensitive to InsP3, inhibitors of Ca2+ uptake were used to reduce the amount of

Ca2+ available in the store. Cells incubated in the presence of mitochondrial Ca2+

inhibitors antimycin A and oligomycin were still sensitive to InsP3, but cells pre-

treated with vanadate (which inhibits the Ca2+ uptake in the non-mitochondrial pool)

did not respond to InsP3. Although this did not clarify which of the non-mitochondrial

pools was sensitive to InsP3, it was clear that Ca2+ was not released from the

mitochondrial store.

Although these experiments were important to prove InsP3 mediated-Ca2+ release,

the key experiment was the one that proved InsP3 to be a second messenger.

Permeabilised cells were treated with carbachol, a compound known to mobilise

intracellular Ca2+ by binding to external cell-membrane receptors, and InsP3, at

different concentrations and in different sequence. The sum of the Ca2+ released by

carbachol and InsP3 was constant, and in the presence of saturating concentrations

of exogenous InsP3 carbachol could no longer release Ca2+, indicating that both the

compounds were acting on the same pool of releasable Ca2+. This also indicated

that carbachol-induced Ca2+ release was mediated by InsP3.

Another important experiment was to study the specificity of the Ca2+-releasing

response by testing the effect of myo-inositol 1,4-bisphosphate [Ins(1,4)P2], inositol

1,2-cyclic phosphate (cIMP) and myo-inositol; these compounds did not release

Ca2+; moreover, when InsP3 was hydrolysed at 100 °C for 30 minutes in the



Introduction

32

presence of 5 M hydrochloric acid (conditions which randomised the phosphates by

bond migration)15 there was a 50% reduction of Ca2+-release activity, confirming the

high specificity in the structure of InsP3.

The evidence of InsP3 being responsible of Ca2+ mobilisation increased the interest

in Ca2+ signalling and inositol chemistry and a flood of subsequent reports extended

and consolidated the status of InsP3 as a second messenger.16

1.2 Inositols and inositol phosphates - structure, nomenclature

and natural occurrence

myo-Inositol 1 represents one of nine possible stereoisomers of hexahydroxy

cyclohexane (Figure 1.2).

Figure 1.2. The nine isomers of inositol.

The stereisomers myo-inositol 1, allo-inositol 3, cis-inositol 4, epi-inositol 5, scyllo-

inositol 6, neo-inositol 7, muco-inositol 8, (Figure 1.2) contain internal elements of

symmetry are therefore optically inactive. The two stereoisomers L-(-)-chiro-inositol

9 and D-(+)-chiro-inositol 10 are unsymmetrical and form an enantiomeric pair.

myo-Inositol 1 is a meso compound and is the most naturally abundant stereoisomer

of the possible nine isomers; for this reason it is generally accepted that the term

“inositol” without a prefix refers to myo-inositol 1, whereas the term “inositols” refers

to all the nine stereoisomers. The stereoisomer D-(+)-chiro-inositol 10 is found in

some biological molecules and small quantities of scyllo-inositol 6 and neo-inositol 7

are present in neuronal tissues.17,18 Due to the highly symmetric nature of myo-

inositol 1 and its stereoisomers, there has been much confusion in the scientific
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literature surrounding inositol phosphates, complicated to the initial strict adherence

to the IUPAC rules, in that the addition or removal of a phosphate group would

necessitate a swap between the D- and the L- numbering system. In order to

circumvent the confusions, Agranoff’s turtle19 has been used (Figure 1.3).

Figure 1.3. Agranoff’s turtle rules for numbering inositols (picture taken from Irvine and Schell,
2001).20

myo-Inositol 1 is represented in its more thermodynamically stable chair

conformation; the head of the turtle resemble the axial hydroxyl group of myo-

inositol, defined as the 2-position. The D-ring numbering is assigned by using the

right front limb of the turtle to define the D-1-position on the myo-inositol ring;

continuing anticlockwise the left front limb becomes the D-3-position, and so on. In a

similar way, the L-ring numbering is assigned by defining as L-1 the left front limb of

the turtle, L-2 the head and then proceeding clockwise (Figure 1.3).21

1.3 Ca2+ signalling and InsP3 intracellular cascade

The first evidence for Ca2+ as active compound in the cell goes back to 1883, when

Ringer22 discovered that Ca2+ salts were needed in order to allow the contraction of

isolated rat hearts. Despite the importance of the discovery, it did not attract

particular attention, until the end of the 1950s, when two important discoveries were

made: the demonstration by Weber23 that the binding of Ca2+ to myofibrils activated

actomyosin; and the finding in the laboratories of Ebashi and Lipmann24,25 and

Hasselbach and Makinose26 that isolated sarcoplasmic reticulum vesicles

accumulated Ca2+ by using an ATP-energised system. Thanks to these early

discoveries the interest in the signalling role of Ca2+ rapidly increased. Today the

importance of Ca2+ as intracellular messenger is well established.27,28 Ca2+ is

responsible for controlling a wide variety of cellular and physiological processes as
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diverse as cell division and proliferation, apoptosis, fertilisation, gene transcription

and muscle contraction. At a very basic level, Ca2+ exerts its action when its basal

concentration of 100 nM raises to 1000 nM. The versatility arises from the use of an

extensive molecular set of components that constitute a so-called Ca2+ toolkit. Such

a system is structured in order to create Ca2+ signals with different spatial and

temporal profiles, which activate and regulate many different cellular responses.28

The intracellular concentration of Ca2+ is elevated in two ways. Either by influx of

external Ca2+ through transmembrane ion channels, or by release of Ca2+ from

intracellular stores, subsequent to the activation of ligand gated ion channels. Two

components of the Ca2+ toolkit, InsP3 and cyclic adenosine diphosphate ribose

(cADPR), activate the InsP3 receptors (InsP3Rs)14 and the ryanodine receptors

(RyRs),29 respectively, releasing Ca2+ from the endoplasmic reticulum (ER) or

sarcoplasmic reticulum (SR). Other components of the Ca2+ toolkit that can release

Ca2+ from internal stores include nicotinic acid adenine dinucleotide phosphate

(NAADP), that may operate by activating a channel on a lysosome-related organelle

and sphingosine 1-phosphate (S1P), which is thought to release Ca2+ through a

pathway that is independent of InsP3Rs and RYRs.28

The intracellular release of Ca2+ stimulates a number of Ca2+-dependent events

controlled by the variation in the temporal and spatial aspects of the Ca2+ signal.

The variability of these signals depends on different degrees of excitability of the

InsP3Rs and RYRs, controlled by different levels of the appropriate Ca2+-mobilising

messenger. Weak stimulation of InsP3Rs leads to individual channels opening to

give Ca2+ blips, where higher levels of stimulation give Ca2+ puffs.28 For the RYRs, a

weak stimulation produces Ca2+ quarks and higher stimulation gives Ca2+

sparks.27,28 When most of the InsP3Rs and RYRs are sufficiently sensitive to Ca2+,

the Ca2+ puffs and sparks can excite neighbouring receptors through Ca2+-induced

Ca2+ release, leading to an intracellular Ca2+ wave. These events can trigger and

coordinate different events within the cytosol, such as activation of Ca2+-dependent

proteins including calmodulin, alteration of the levels of nitric oxide (NO) and

adenosine cyclic 3’,5’-monophosphate (cAMP), or can transduce the signal to an

adjacent cell through gap junctions.28 Once Ca2+ has completed its signalling

functions, a mechanism consisting of pumps and exchangers, brings the intracellular

Ca2+ levels back to the basal concentration.
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Figure 1.4. Schematic representation of the InsP3 signalling cascade.

InsP3 (2, Figure 1.4) is generated by an hydrolytic enzyme, phospholipase C (PLC)

from the lipid membrane precursor phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2].

The several known PLC isoforms are activated by different mechanisms, such as

tyrosine kinase-coupled receptors (that activates PLCγ); an increase in Ca2+ levels

(which activates PLCδ); activation through the RAS gene (PLCε); and G-protein-

coupled receptors (GPCR), that activate PLCβ. External signals such as extracellular

growth factors, hormones or neurotransmitters arriving at the cell surface engage

GPCRs, that are membrane spanning proteins, and activate the G-proteins they are

coupled to upon the external agonist binding. The G-proteins are intracellular signal

transducers proteins that activate PLCβ through an energy-requiring [guanosine 5’-

trisphosphate (GTP) or adenosine 5’-trisphosphate (ATP)] mechanism. PLCβ

hydrolyses PI(4,5)P2 to give DAG and InsP3. The lipophilic DAG remains in the

plane of cell membrane and effects signal transduction by activation of PKC. InsP3,

which is hydrophilic, diffuses into the cytosol and activates InsP3Rs. The binding of

InsP3 to InsP3Rs causes the channel to open releasing Ca2+ into the cytosol from a

distinct store within the ER.
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1.4 InsP3 Receptors

Figure 1.5. Structure of the InsP3R type 1 (one of the four subunits in shown). The protein is
constituted of 2749 amino acid residues and is divided in five functional subunits (from the N-
terminal): the suppressor domain; the InsP3 binding domain; the central modulatory region; the
channel domain and the coupling domain.30

The InsP3Rs are present in a wide range of organisms including humans, and

regulate the level of cytosolic Ca2+ (the other major intracellular Ca2+ channels are

the RYRs). These receptors are situated on the ER (or on the SR in muscle cells)

and have been identified in three isoforms.31 These isoforms possess high

sequence homology (60-70% of amino acid residues are conserved in the three

receptor subtypes), but differ in their Ca2+ dependence, InsP3 affinity and subcellular

distributions. The isoforms are also differentially expressed in certain cell types. The

InsP3R type 1 (InsP3R1) is highly expressed in the central nervous system (CNS),

especially the cerebellum, with the same cerebellar location in three mammalian

species (rat, mouse and hamster).31 The InsP3R type 2 (InsP3R2) is present in many

tissues with particularly high levels found in the spinal cord and glial cells. The

InsP3R type 3 (InsP3R3) is found in the kidney, brain, gastrointestinal tract and

pancreatic islets.31 The differences in the homology and tissue distribution suggest

that each receptor subtype has distinct cellular roles and is possible that interplay

between isoforms may be necessary for a cell to control spatial and temporal aspect

of Ca2+ signalling.31

The InsP3R1 is formed of four large subunits; each subunit consists of 2749 amino

acid residues (313 kDa) and is divided in five functionally distinct regions (from the

N-terminal of the polypeptide chain, Figure 1.5): the InsP3R suppressor domain; the

InsP3 binding domain; the central modulatory region; the C-terminal channel domain

and the coupling regions.30,32-34 The recent studies of Bosanac30,32 revealed the

molecular architecture of the N-terminal region of the InsP3R1, by the elucidation of

the crystal structures of both the InsP3R suppressor domain32 and the InsP3 binding

domain (the latter in complex with InsP3).30 The InsP3R suppressor domain is a

peptide formed of 223 amino acids (residues 1-223), with a shape resembling a

hammer (Figure 1.6). It consists of two subdomains: a head subdomain forming a β-
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trefoil fold; and an arm subdomain that extrudes away from the β-trefoil structure

and features a helix-turn-helix structure (Figure 1.6).32

Figure 1.6. A PyMOL (www.pymol.org) representation of the X-ray crystal structure of the InsP3

suppressor domain of the mouse InsP3R1 (Head-domain in green, Arm-domain in red).32

Immediately adjacent to the InsP3R suppressor domain is the InsP3 binding domain,

formed of 381 amino acids (residues 224-604) and consisting of two subdomains

forming a cleft in which InsP3 binds, the α-domain containing an “armadillo repeat”-

like fold and the β-domain containing the β-trefoil fold (Figure 1.7).30

Figure 1.7. A PyMOL (www.pymol.org) representation of the X-ray crystal structure of the ligand-
binding domain of the mouse InsP3R1 with InsP3 (2) at the binding site (α-domain in blue, β-domain
in orange).30

The central modulatory region that separates the channel domain from the InsP3

binding domain is formed of almost 1600 amino acid residues and has been

described as the modulatory domain.31,33 This contains many sites that are thought
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to regulate the behaviour of the InsP3Rs, including phosphorylation sites (serine

amino acid residues) and binding sites for ATP, Ca2+ and regulatory proteins

[calmodulin, immunophilin FK506-binding protein FBKP)].31,35 The interactions of

these endogenous regulators with the InsP3Rs govern the pattern of Ca2+ release in

a manner that allows the fine tuning Ca2+ signals in the cellular environment. The

channel domain contains the amino acid residues that form the six transmembrane

segments channel of the InsP3Rs. The coupling domain is involved in the assembly

of the InsP3R in the tetrameric form and its targeting to the ER.

The elucidation of both the InsP3R suppressor domain and the InsP3 binding domain

(the latter in complex with InsP3),30,32 together with electron microscopy analysis of

isolated InsP3Rs particles33 and bio-physiological studies on InsP3Rs,34 have

provided some basis for the understanding of the mechanism by which InsP3 effects

the release of Ca2+ from the InsP3Rs, although unambiguous evidence is still

needed.

The InsP3-induced Ca2+ release by InsP3 is positively cooperative,36,37 suggesting

that more than one of the four subunits of the InsP3R must bind to InsP3 in order to

open the channel. There is also evidence that the InsP3Rs respond to different Ca2+

levels,37,38 suggesting that Ca2+ performs as a co-agonist at the InsP3Rs together

with InsP3.37 The binding of InsP3 seems to inhibit the binding of Ca2+ to an inhibitory

site and to promote the binding of Ca2+ to a stimulatory site, promoting channel

opening. Gel filtration experiments on the InsP3R1 showed that a large decrease in

the Stoke’s radius of the cytosolic portion of the receptor occurs upon the InsP3

binding, suggesting that the activation of the receptor is associated with a large

conformational change within the tertiary structure of the protein.34 Further support

to this hypothesis comes from electron cryomicroscopy images39-41 of the whole

InsP3R1 from cerebellum using single-particle analysis. Hamada39 demonstrated

that Ca2+ binding induces a conformational change in the tetrameric receptor from

the closed state to the open state. InsP3 binds in the cleft formed by the α- and the

β-domains in the InsP3 binding domain (Figure 1.7) and in this process it is thought

to bring the two domains together. The small modification in the relative positions of

the two domains would lead to a much larger conformational change in the InsP3R

with the final effect of opening the channel. The suppressor domain is thought to

modulate InsP3 affinity by masking the InsP3 binding site at the binding domain in a

manner that InsP3 cannot approach the cleft between the α- and the β-domains.

This assumption is supported by site-directed mutagenesis experiments, which
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identified a number of surface amino acid residues likely to be involved in

intramolecular interaction with the InsP3 binding domain and therefore in the InsP3-

suppression mechanism.32 As mentioned above, Ca2+ actively participates in

receptor activation, but it is not clear where the Ca2+ sites are located. It has been

recently proposed that the Ca2+ binding sites could be positioned on both the InsP3

suppressor domain and the InsP3 binding domain.32,33,42 It is also known that the

InsP3 suppressor domain binds a number of cellular proteins, such as calmodulin,

which modulate the activity of the receptor43 acting like binding partners, therefore

these proteins could represent at least part of the Ca2+ binding sites.33 These results

indicate that an interplay between the InsP3 suppressor domain and other cellular

binding partners could be operating to regulate the InsP3R functions.

1.5 InsP3 receptor agonists

Prior to the discovery of InsP3 acting as a second messenger and mobilising internal

Ca2+ stores,14 many inositol phosphates had already been synthesised and there

are a number of reviews44,45 and books17,46 describing this synthetic work. The

findings of Berridge and co-workers14 considerably increased the interest in the

biological investigation of inositol phosphates and many efforts were made towards

the synthesis of unnatural InsP3 analogues, in order to establish the key structural

requirements for a compound to act as an InsP3R agonist and define a structure-

activity relationship profile of InsP3.

In 1986 Ozaki and co-workers47 reported the first total synthesis of optically pure

InsP3. Almost immediately a number of phosphorothioate analogues of InsP3 were

synthesised, in which one or more phosphate groups are replaced with the

bioisosteric phosphorothioate groups.48 In 1993 Takahashi and co-workers49

isolated from Penicillium brevicompactum compounds with a chemical structure

resembling InsP3, the adenophostins, that showed a Ca2+-mobilising activity higher

than InsP3. These compounds were fundamental in the basic understanding of

InsP3Rs and related metabolic pathways.

Soon after the first synthesis of InsP3 analogues were completed, it was clear the

need of a method for delivering such highly polar compounds into the cell, as the

only methods known to test InsP3 and analogues activity was to use detergents to

permeabilise the cell membrane or abruptly inject the compounds inside the cell.

Following the efforts of some research groups, membrane-permeant analogues of

InsP3 were synthesised.50
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1.5.1. Phosphorothioate analogues of InsP3

In 1987 Potter and co-workers reported the synthesis of DL-myo-inositol 1,4,5-

trisphosphorothioate 12 (InsP3S3) (Figure 1.8).51 This InsP3 analogue binds with high

affinity to the InsP3Rs and is a potent Ca2+ mobilising agonist, with a potency

approximately 3-4 times less than InsP3.52,53 InsP3S3 is not hydrolysed by the 5-

phosphatase, displaying in fact increased inhibition of the enzyme with respect to

InsP3, with a Ki = 1.7 μM for the D- enantiomer (D-InsP3S3) and a Ki = 0.50 μM for the

L- enantiomer (L-InsP3S3) versus the Ki = 40 μM for InsP3.54 Remarkably, L-InsP3S3

has been found to bind to the 3-kinase enzyme, where D-InsP3S3 is not a substrate

for this enzyme.54 As a result of these properties and despite the fact that L-InsP3S3

possesses no Ca2+-mobilising activity, InsP3S3 is able to produce a sustained Ca2+

release.55

Figure 1.8. Structure of DL-InsP3S3 (12).

DL-myo-Inositol 1,4-bisphosphate-5-phosphorothioate 13 [Ins(1,4)P25PS] (Figure

1.9) was synthesised as a racemic mixture in order to investigate whether the

substitution of the C-5 position phosphate group with a phosphorothioate group

would generate a compound as potent as InsP3 but with increased metabolic

stability.56 Despite the fact that Ins(1,4)P25PS is a full agonist at the InsP3Rs, the

affinity for the receptor is 7-fold lower that InsP3 indicating that 4,5-bisphosphate

groups of InsP3 are crucial for the affinity. Ins(1,4)P25PS is a potent inhibitor of the

5-phosphatase and therefore can produce a sustained Ca2+ release.56

Figure 1.9. Structure of DL-Ins(1,4)P25PS (13).

DL-myo-Inositol 1,4,6-phosphorothioate 14 [Ins(1,4,6)PS3] represents a regioisomer

of InsP3S3 and contains the 1,6-bisphosphorothioate groups resembling the 4,5-

bisphosphate moieties of InsP3 (Figure 1.10). Ins(1,4,6)PS3 is a partial agonist at the
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InsP3Rs and shows a low Ca2+-mobilising activity [the D- enantiomer (D-

Ins(1,4,6)PS3) is thought to be the active species in the racemic mixture]. This result

suggests that the InsP3Rs allow a certain degree of tolerance in the distribution of

the phosphate groups around the inositol ring, being the receptor able to bind to

non-1,4,5-substituted InsP3 analogues.

Figure 1.10. Structure of Ins(1,4,6)PS3 (14).

The compound DL-myo-inositol 1,3,4-phosphorothioate 15 [Ins(1,3,4)PS3] (Figure

1.11) displays a Ca2+-mobilising activity similar to Ins(1,4,6)PS3.57 The enantiomer

L-Ins(1,3,4)PS3 present in the racemate is thought to be responsible for the activity

at the InsP3Rs. This compound can also be called D-myo-inositol 1,3,6-

phosphorothioate 16 [D-Ins(1,3,6)PS3] (Figure 1.11) using the D- numbering and is

clearly similar to D-Ins(1,4,6)PS3. The activity of Ins(1,3,4)PS3 as a partial InsP3Rs

agonist further supports the suggestion that the InsP3Rs can bind to a variety of

InsP3 analogues.57

Figure 1.11. Structures of DL-Ins(1,3,4)PS3 (15) and D-Ins(1,3,6)PS3 (16).

myo-Inositol 1,3,5-trisphosphorothioate 17 [Ins(1,3,5)PS3] is a meso compound

(Figure 1.12), which inhibits the 5-phosphatase enzyme with a Ki = 0.43 μM and

does not release Ca2+ from the InsP3Rs.54 This compound confirms the importance

of the 4,5-bisphosphate moiety as a key structural requirement for the activity at the

InsP3Rs.

Figure 1.12. Structure of Ins(1,3,5)PS3 (17).
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D-myo-Inositol 1-phosphorothioate 4,5-bisphosphate 18 [Ins1PS(4,5)P2],

synthesised as the optically pure enantiomer (Figure 1.13), is a potent Ca2+

mobilising agonist, indicating that the C-1 position phosphate group can tolerate

conservative substitutions. This compound has been successfully used for the

synthesis of a photoaffinity analogue of InsP3 (19, Figure 1.13).58 Such a compound

possesses a similar activity as InsP3 to the InsP3Rs, and contains a fluorescent tag

connected to the C-1 position phosphorothioate group via the sulfur atom. Using this

compound it has been possible to label the InsP3 binding site of the InsP3R.58,59 This

compound has also been used for the preparation of an affinity matrix, which

provides a useful tool for the purification of InsP3Rs.60,61

Figure 1.13. Structure of Ins1PS(4,5)P2 (18) and the photoaffinity InsP3 analogue 19.

1.5.2. The adenophostins

Adenophostins A (20) and B (21) (Figure 1.14) were isolated from Penicillium

brevicompactum49 and have been shown to be full agonists with affinities for

InsP3Rs that are 10-100 fold greater than InsP3.62-64

Figure 1.14. Structures of Adenophostin A (20), adenophostin B (21), acyclophostin (22).

The adenophostins resemble InsP3 in that the trans diequatorial bisphosphate

arrangement flanked by a hydroxyl group, has been identified as a key feature of the

adenophostin and contributes to its high affinity for the InsP3Rs. Therefore all

synthetic adenophostins analogues, to date, have this arrangement conserved.

Attempts to determine which of the remaining structural features of the

adenophostins are responsible for their high affinity interactions with InsP3Rs have

resulted in the synthesis and biological evaluation of several related compounds.63-66
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To date, only the compound acyclophostin (22, Figure 1.14)67 has shown similar

activity.68 These studies showed that the α-D-glucopyranose structure is a good

bioisoster of the myo-inositol backbone of InsP3 and that the three-dimensional

arrangement of the three phosphate groups of adenophostin and its analogues is

essential for biological activity. Furthermore, the adenine moiety is able to enhance

the activity. Because of the three additional hydrogen-bonding sites on the adenine

ring, the high potency of interaction between adenophostin and the InsP3R that is

observed could be explained by the formation of additional hydrogen bonds with

respect to InsP3. In order to elucidate the role of the adenine moiety, a number of

adenophostin analogues in which the adenine is replaced by different moieties have

been synthesised.69 Since the synthesis of adenophostins and their analogues are

more simple than that of optically active InsP3 derivatives, adenophostins provide an

alternative approach to develop high-affinity selective ligands for InsP3Rs.

1.5.3. Membrane-permeant analogues of InsP3

The ionic and high polar nature of InsP3 limits its membrane permeability. Disruptive

techniques such as microinjection, electroporation and permeabilisation with

saponins are required for delivering InsP3 into the cell. Thus, membrane-permeant

derivatives of InsP3 would be useful tools for the pharmacological studies of InsP3

and analogues. In order to neutralise the charge present on the phosphate groups of

InsP3, the phosphates groups should be protected with moieties that render the

whole molecule lipophilic and able to cross the cell membrane. Once the compound

has crossed the membrane and is included in the cytosol, the masking groups

should be removed by a cytosolic metabolising system in order to restore the

phosphate moieties and therefore their biological activity. Various

carbonyloxymethyl groups have been investigated by Tsien and co-workers as

potential phosphate-masking groups.50 The rationale behind this choice is that the

ester moiety of the masking group could be hydrolysed by non-specific esterase

enzymes once in the cytosol, leaving hydroxymethyl phosphate esters that

decompose spontaneously to formaldehyde and the free phosphate group (Figure

1.15).
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Figure 1.15. Carbonylmethoxy-phosphates are lipophilic and can diffuse across the cell membrane.
Cytosolic esterases remove the ester protecting groups, leaving a hydroxymethyl phosphate esters
that spontaneously decompose in the free phosphate groups losing formaldehyde.

The methylene linkers are used in order to remove the steric bulk around the ester

moiety and therefore allow the access by non-specific esterases. The acetoxymethyl

(AM), propionyloxymethyl (PM) and butyryloxymethyl (BM) groups were used to

synthesise the corresponding InsP3 derivatives, InsP3/AM (23), InsP3/PM (24) and

InsP3/BM (25) (Figure 1.16). These compounds were synthesised as racemic

mixtures.50

Figure 1.16. Membrane-permeant analogues of InsP3.

The derivative InsP3/AM 23 was not able to mobilise Ca2+ when the cells were

equilibrated in an extracellular medium containing the compound, whilst

microinjections of InsP3/AM directly into the cell caused the release of Ca2+, most

likely through regeneration of InsP3 mediated by the esterase enzymes.50 To explain

this experimental outcome it was postulated that the AM groups were not sufficiently

lipophilic to allow compound InsP3/AM to cross the cell membrane.
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InsP3/PM 24 was found to be active at an extracellular dosing of 20 μM, and

InsP3/BM 25 was active at an extracellular dosing of 2 μM. However, the time delay

observed between dosing and Ca2+ release was 6 minutes for InsP3/BM and

between 60 and 100 seconds for InsP3/PM. This result appears to be consistent with

the increased steric bulk of the BM esters, which are less accessible to the

esterases and therefore cleaved more slowly than the PM esters, less hindered and

cleaved more rapidly.

The optically pure D- and L- enantiomers of InsP3/BM have been synthesised by

Holmes and co-workers,70 confirming as expected that the enantiomer D-InsP3/BM is

responsible for the Ca2+-mobilising ability of InsP3/BM when applied to the

extracellular medium; the enantiomer L-InsP3/BM does show a little Ca2+-mobilising

activity, which has been attributed to intracellular migration of the phosphate groups.

The racemic InsP3 membrane-permeant derivatives, as well as the optically pure

version, have been successfully used to study InsP3Rs-related Ca2+ signalling.

1.6 InsP3 antagonists

Despite the relative abundance of InsP3Rs agonists with a binding affinity similar to

InsP3, only a few compounds have shown with antagonist activity at the InsP3Rs.

These compounds include heparin, xestospongin C, decavanadate, the antimalarial

drugs chloroquine, quinine and quinidine, 2-APB and an InsP3 C-5 phosphonate

analogue.

1.6.1. Heparin

Heparin, a high molecular weight non-membrane-permeant polysulfated polyanion

(Figure 1.17) known for its anticoagulant properties, is capable of inhibiting the

InsP3-induced Ca2+ release.

Figure 1.17. Structure of heparin.

The potent antagonist activity of heparin has been demonstrated to be competitive

and fully reversible, with an affinity of heparin for the binding site of 3 nM.71 The

ability of heparin to bind the InsP3Rs is different for each receptor, being greater for

the InsP3R3 than InsP3R2 or InsP3R1.72 The density of negative charges,
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contributed by sulfate groups, appears to be important for the effect of heparin and

the inhibition decreases dramatically as the size of the heparin chain is reduced

below 18-24 monosaccaride units.73 In addition to its potent competitive inhibition of

the InsP3Rs, heparin inhibits the coupling between plasma-membrane receptors and

G-proteins,74 the InsP3 3-kinase,75 and stimulates the RYRs.76 The lack of selectivity

of heparin for the InsP3Rs limits the usefulness of the anticoagulant in the study of

InsP3-mediated Ca2+ signalling in intact cells.

1.6.2. Xestospongin C

Xestospongins are bis-1-oxaquinolizidines isolated from the marine sponge

Xestospongia.77 These compounds are potent inhibitors of the InsP3-mediated Ca2+

release, with the IC50 values ranging from 358 nM to 5.9 μM. As these compounds

inhibit the InsP3Rs in a manner that is independent of the concentration of InsP3 and

Ca2+, it has not been possible to obtain indications about the nature of the binding

site. The most potent compound, xestospongin C (26, Figure 1.18), is a membrane-

permeant molecule and possess an IC50 = 358 nM for the InsP3Rs;77 it is also able

to block the nitric oxide synthase,78 to release Ca2+ from intracellular stores79,80 and

at higher concentrations it inhibits RyRs with a IC50 = 10 μM.77

Figure 1.18. Structure of Xestospongin C (26).

1.6.3. Chloroquine, quinine and quinidine

Chloroquine 27, quinine 28 and quinidine 29 (Figure 1.19) are lipophilic, membrane-

permeant antimalarial drugs used against Plasmodium parasites that have shown to

inhibit the InsP3-mediated Ca2+ release from the intracellular Ca2+ stores in

macrophages.

Figure 1.19. Structures of chloroquine (27), quinine (28) and quinidine (29).
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Chloroquine blocks the release of Ca2+ by preventing the binding of InsP3 to the

InsP3Rs, with an IC50 = 10 μM.81 It is not clear whether these antimalarial

compounds exert their action on the Plasmodium organisms by interacting with the

Ca2+ signalling mechanism; however it has been shown that in permeabilised,

isolated Plasmodium chabaudi parasites, chloroquine depletes InsP3-sensitive Ca2+

stores, suggesting that Ca2+ signalling mechanism might be involved in the

regulation of growth and differentiation of the parasites.82 Other properties of these

antimalarial compounds include the ability of blocking nicotinic cholinergic receptors

at the neuromuscular junctions,83,84 the alteration of glucose and insulin metabolism

by blocking ATP-sensitive K+ channels,85,86 inhibition of subclasses of the

cytochrome P450.87 These additional biological properties of the antimalarial drugs

chloroquine, quinine and quinidine clearly exclude the application of these

compounds as InsP3Rs selective antagonists.

1.6.4. Decavanadate

Among different vanadium compounds, decavanadate [(V10O26)-6 at pH 7] inhibits

InsP3-mediated Ca2+ release by preventing the binding of InsP3 to the InsP3Rs.88 It

has been suggested that the inhibitory activity of decavanadate is due to its ability of

bridging the multiple InsP3 binding sites, as oligovanadate and monovanadate, two

other vanadium compounds that do not possess this bridging ability, are not InsP3Rs

inhibitors.36,89 Decavanadate is also able to inhibit the InsP3 5-phosphatase and the

3-kinase;90 this low specificity is prevents decavanadate from being a useful tool to

investigate InsP3 signalling.

1.6.5. 2-Aminoethoxydiphenylborate

Figure 1.20. Structure of 2-aminoethoxydiphenylborate (30).

2-Aminoethoxydiphenylborate (2-APB) (30, Figure 1.20) is a membrane-permeant

compound which inhibits InsP3-mediated Ca2+ release with an IC50 of 42 μM and

with a use-dependent action,91,92 without affecting the binding of InsP3 to the

InsP3Rs.93 2-APB also inhibits store-operated Ca2+ channels (SOC);94 this action is

not due to the action of 2-APB on the InsP3Rs, as it occurs in cells that do not
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express the InsP3Rs.95 It is not clear whether 2-APB interacts directly with the

InsP3Rs as it was originally proposed by Maruyama and co-workers;91 2-APB could

bind directly to a SOC or a SOC-associated regulatory protein,95,96 or with a protein

promoting or regulating the coupling between the InsP3Rs and SOC.97 Furthermore,

when applied to the extracellular medium 2-APB is more effective for inhibiting SOC

than its intracellular application,98 suggesting that an extracellular site might be

needed in mediating the 2-APB inhibitory action on SOC.96

Unlike other InsP3Rs inhibitors, 2-APB is fairly specific, in the sense that several

other Ca2+ channels like the RyRs and voltage-operated Ca2+ channels are not

affected, at least at the concentrations used to inhibit the InsP3-mediated Ca2+

release.91 However, 2-APB is clearly not specific for the InsP3Rs; in some cells

types the inhibition of the InsP3-mediated Ca2+ release in not observed,94 and 2-APB

has been shown to inhibit sarco-endoplasmic reticulum Ca2+ ATPases (SERCAs),

leading to gradual Ca2+ depletion from the stores.99 2-APB also acts as a strong

activator of the transient receptor potential vanilloid cation channels (TRPV) type 1

(TRPV1), type 2 (TRPV1), and type 3 (TRPV3).100

1.6.6. C-5 position methyl phosphonate analogue of InsP3

Figure 1.21. Structure the C-5 position methyl phosphonate InsP3 analogue (31).101,102

The compound shown in Figure 1.21, an analogue of InsP3 in which the phosphate

group at the C-5 position is replaced by a methyl phosphonate, was synthesised as

a racemic mixture and displayed a weak activity as inhibitor of the Ca2+.101,102 This

compound could exert its activity by binding to the InsP3Rs at the same site of InsP3,

and the reduced hydrogen-bonding capabilities of the C-5 phosphonate moiety

could prevent the receptor from undergoing the conformational change thought to be

essential for opening the channel and releasing Ca2+. Compound 31 has been only

tested towards the inhibition of the release of Ca2+, therefore further studies are

necessary to elucidate whether its activity is linked to the inhibition of the InsP3Rs.
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1.7 Summary

Since Scherer isolated myo-inositol,1 many efforts have been made towards the

understanding of the intimate roles and functions of inositol phosphates in the

cellular environment. The discovery by Berridge and co-workers that InsP3 releases

Ca2+ from intracellular stores increased enormously the interest in the field of Ca2+

signalling.14 The Ca2+ signals that InsP3 generates by activating the InsP3Rs have

been shown to be highly organised in spatial and temporal manner, allowing a fine

control of the intracellular effects of Ca2+.28 The action of InsP3 on the InsP3Rs is

modulated by intracellular effectors including ATP, Ca2+, phosphorylating enzymes

and regulatory proteins such as calmodulin and FKBP.31

The investigation of InsP3 agonists such as the InsP3 phosphorothioate analogues

and the natural products adenophostin A and B allowed researchers to establish the

structural requirement for a compound to bind and activate the InsP3Rs.48 These

compounds have found useful applications in the Ca2+ signalling field, as well as

their membrane permeant analogues, which removed the need of injecting the

compound into the cytosol.50 Although these molecules have provided useful

information about structure-activity relationships of InsP3, thus far a compound able

to selectively bind and block the InsP3Rs is still missing. A number of compounds

acting as non-specific InsP3Rs antagonists have been described; the anticoagulant

compound heparin, the natural product xestospongin C, the antimalarials

chloroquine, quinine and quinidine, the inorganic compound decavanadate and 2-

APB have been shown to inhibit the Ca2+ release by blocking the InsP3Rs and also

possess many other biological activities. Although 2-APB has found useful

applications in a number of studies due to its permeability to the cell membrane and

showing no activity at the RyRs and other Ca2+ channels, it interacts with other

components of the Ca2+ toolkit and ion channels, therefore limiting its utility.

In 1991 van Boom and co-workers reported that a compound based on the InsP3

structure was able to inhibit the Ca2+ release.101,102 Although there is no evidence

that the molecule interacts with the InsP3Rs, its resemblance to InsP3 suggests that

the compound may bind to the InsP3 binding site and disrupt some of the important

interactions necessary for the receptor activation.
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2 Results and Discussion (part one)

2.1 Project Aims

Figure 2.1. Structures of the proposed InsP3Rs antagonists.

This project aims to synthesise C-4 position-modified InsP3 analogues that may

behave as InsP3Rs antagonists. In Figure 2.1 are shown the general structures

designed for such compounds. Analysis of the X-ray crystal structure30 of InsP3R1

binding domain complexed with InsP3 provides indications of the structural

requirements for a compound to bind to this receptor (Figure 2.2). This structure

shows that InsP3 (2) binds to the receptor in a cleft formed by two domains, named

the α- and β- domains (Figure 2.2). In this cleft InsP3 binds to a number of basic

amino acid residues; the 1- position (P1) and 5- position (P5) phosphate groups

interact predominantly with the α-domain (Figure 2.2, a, b), whereas the 4- position

phosphate group (P4) binds mainly to the β-domain (Figure 2.2, c). P1 forms

hydrogen-bonds (H-bonds) with residues R568 and K569 (cyan) on the α-domain

(Figure 2.2, a). P5 forms H-bonds with the residues R504, K508, R511 and Y567

(lime), all on the α-domain (Figure 2.2, b). P4 forms H-bonds with the residues T266,

T267 and G268 (violet) on the β-domain (Figure 2.2, c). In addition, the residues

R265 and R269 (wheat) form H-bonds with both P4 and P5 (Figure 2.2, d). Gel

filtration experiments on the InsP3R1 showed that a large decrease in the Stoke’s

radius of the cytosolic portion of the receptor occurs upon the InsP3 binding,

suggesting that the activation of the receptor is associated with a large

conformational change within the tertiary structure of the protein.33,34 Although the

ligand-free crystal structure of the InsP3R has not been reported and it is therefore

not possible to define conclusively which residues move significantly on InsP3

binding, it seems likely that the region that connects the α- and β- domains allows

the two domains to move closer on InsP3 binding and this is thought to evoke the

conformational change which opens the channel and releases Ca2+.
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Figure 2.2. A PyMOL (www.pymol.org.) representations of the X-ray crystal structure of the ligand
binding domain of the mouse InsP3R1.30 a. P1 forms H-bonds with residues R568 and K569 (cyan)
on the α-domain (blue). P5 forms H-bonds with the residues R504, K508, R511 and Y567 (lime) on
the α-domain (blue). P4 forms H-bonds with the residues T266, T267 and G268 (violet) on the β-
domain (orange). Residues R265 and R269 (wheat) form H-bonds with both P4 and P5.

Consequently, any compound that binds to the InsP3Rs in the same or a similar

place to InsP3 but prevents the conformational change will behave as a competitive

InsP3R antagonist.

Figure 2.3. Structure of the C-5 methyl phosphonate InsP3 analogue (31).101,102

This hypothesis may explain the Ca2+ release inhibitory activity of a 5-methyl

phosphonate analogue of InsP3 (31, Figure 2.3).101,102 This compound is thought to

operate by binding the InsP3R and partially disrupting the hydrogen-bond network

required for activating the receptor because of the presence of the C-5 position

methyl phosphonate moiety, which possess a different electronic distribution with

respect to a phosphate group. If the hypothesis is correct, further modifications of
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the InsP3 structure may lead to compounds that can selectively block the InsP3Rs.

Furthermore, considering that L-InsP3 is not an agonist at the InsP3Rs, the optimum

potency for a potential antagonist could be achieved by synthesising the compound

in the pure D-ring form.

In order to develop useful, potent and selective InsP3Rs antagonists a rational

design approach based on the above hypothesis and the InsP3R1 crystal structure

has been adopted. Replacement of the P4 in the InsP3 structure with non-hydrogen

bonding moieties will allow investigations of the structural requirements for InsP3R

antagonist activity. The initial modification in the InsP3 structure will replace the P4

with either a dimethylphosphinyl or a dimethylphosphinothioyl moiety, to give the

compounds shown in Figure 2.1. These moieties approximate the tetrahedral

geometry of the phosphate group but will not form the same H-bonds as P4 with

residues R265, T266, T267, G268, R269 on the β-domain and K569 on the α-

domain (Figure 2.2, a, b, c, d). This modification will prevent the ability of this

analogue to bring the α- and the β-domain together and consequently the receptor

will not be activated. P1 and P5 initially will not be modified, in order to leave the

hydrogen-bonding interactions with the residues R568, K569, R504, K508, R511

and Y567 (Figure 2.2, a, b) unaltered and maintain the affinity of the compound for

the receptor. These alterations to the InsP3 structure will furnish compounds that

may be capable of being recognised by the InsP3Rs and therefore compete with the

InsP3 for binding. These compounds would bind to the α-domain but not to the β-

domain, thus being unable to effect the conformational change in the InsP3Rs which

is thought to open the channel and release Ca2+.
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2.2 Retrosynthesis

Scheme 2.1. Proposed retrosynthesis of InsP3 analogues, allowing modifications at the C-4.

It was proposed that the synthesis of C-4 position-modified analogues of InsP3

would be achieved as shown in the retrosynthetic analysis shown in Scheme 2.1.

The orthogonally protected inositol intermediate 35 represents a versatile

compound, as it could allow the synthesis of at least three classes of InsP3

analogues, modified at the C-1, C-4 and C-5 positions. For the purpose of

introducing modifications at the C-4 position of InsP3, intermediate 36 was

envisaged to be the suitable intermediate to synthesise. The target compound 32

could be prepared by phosphinylation of the alcohol 36 and subsequent

hydrogenolysis of the benzyl groups. Removal of protecting groups PgA and PgB on

intermediate 35, followed by phosphitylation and oxidation of the resulting diol and

deprotection of the group PgC should furnish alcohol 36. Compound 35 could be

synthesised from the camphor acetal 34 by protecting the C-1 hydroxyl group with

the protecting group PgA, followed by cleavage of the camphor acetal auxiliary,

selective benzyl protection of the C-3 hydroxyl group over the C-4 using the tin-

acetal method previously reported by Gigg,103 and protection of the C-4 hydroxyl

group with protecting group PgC. The camphor acetal 34 could be prepared in seven

steps from myo-inositol 1 as previously reported.104,105
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2.3 Synthesis of the enantiopure camphor acetal 34

Scheme 2.2. Synthesis of the camphor acetal 34. Reagents and conditions: i. (EtO)3CH (2.0 equiv),
TsOH·H2O (0.3 equiv), DMF, 100 °C, 77% yield. ii. NaH (1.1 equiv), PMBCl (1.1 equiv), TBAI (0.05
equiv), DMF, 0 °C to RT, 80% yield. iii. NaH (2.5 equiv), BnBr (2.5 equiv), DMF, 0 °C to RT, yield
100%. iv. DIBAL-H (2.5 equiv), CH2Cl2, 0 °C to RT, 94% yield. v. NaH (1.5 equiv), AllBr (1.5 equiv),
imidazole (catalytic amount), DMF, 0 °C to RT, 89% yield. vi. HCl, MeOH, reflux, 86% yield. vii. a. (-)-
(S)-Camphor dimethyl acetal (3.4 equiv), TsOH·H2O (0.05 equiv), CH2Cl2, reflux. b. Silica gel column
chromatography diastereomeric resolution, 25% yield.

Synthesis of the enantiopure camphor acetal 34 was achieved from myo-inositol 1

(Scheme 2.2). Reaction of myo-inositol 1 with triethyl orthoformate in the presence

of 4-toluenesulfonic acid monohydrate gave the adamantane-like derivative 37.

Treatment of the triol 37 with sodium hydride followed by 4-methoxybenzyl chloride

allowed the regioselective protection of one of the two axial hydroxyl groups over the

equatorial hydroxyl group, affording the diol 38 as a racemic mixture.

Scheme 2.3. Mechanism of the regioselective protection of the axial hydroxyl group in intermediate
37.106

The regioselective protection of one of the two axial hydroxyl groups is achieved by

adding 1.1 equivalents of sodium hydride in small portions to a stirred solution of

triol 37 at 0 °C. The high regioselectivity of the reaction is thought to be due to the

formation of the sodium chelate complex shown in Scheme 2.3; in this complex, the

sodium counter-ion belonging to the alkoxide moiety coordinates to the neighbouring

axial hydroxyl group. This stabilises the sodium chelate complex and prevents the

formation of the equatorial sodium alkoxide species. Further studies by Billington106

and co-workers confirmed this experimental outcome, as a loss of regioselectivity is

noticed when either the counter-ion or solvent are changed. The subsequent
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reaction of the sodium chelate with 4-methoxybenzyl chloride affords the

4-methoxybenzyl ether 38 as a mixture of two enantiomers. The X-ray crystal

structure of diol 38 (Figure 2.4) demonstrates that only the axial protected

compound was obtained.

Figure 2.4. A PyMOL (www.pymol.org) representation of the X-ray crystal structure of compound 38
(one of the two enantiomers is shown).

Exhaustive benzylation of diol 38 afforded the fully protected orthoformate 39, which

was then regioselectively reduced to the alcohol 40 by treatment with 2.5

equivalents of diisobutylaluminium hydride (Scheme 2.2).107,108 The alcohol 40 was

then protected by treatment with sodium hydride and allyl bromide in the presence

of a catalytic amount of imidazole, to afford compound 41. Acidic methanolysis

effected the removal of the acetal and 4-methoxybenzyl groups to afford the triol 42.

The enantiopure alcohol 34 was prepared by protection of the 3,4-vicinal diol in

compound 42 with the chiral auxiliary (1S)-(-)-camphor dimethyl acetal 44.105 44 was

prepared by stirring at room temperature (1S)-(-)-camphor 43 and

trimethylorthoformate in the presence of Montmorrilonite® clay K-10 (Scheme 2.4).

The reaction afforded a crude mixture containing 75% of the desired product 44

together with a quantity of unreacted starting material 43. The composition of the

crude mixture was calculated by 1H NMR analysis; comparison of the integrations of

signals for two of the methyl groups of the acetal 44 [δH 0.91 (3H, s) and 0.82 (3H,

s)] and the corresponding methyl groups of (1S)-(-)-camphor 43 [δH 0.92 (3H, s) and

0.84 (3H, s)] indicated a 3:1 ratio in favour of the acetal 44, corresponding to a yield

of 75%.

Scheme 2.4. Synthesis of (1S)-(-)-camphor dimethyl acetal 44. Reagents and conditions: (EtO)3CH
(4.0 equiv), K-10 clay, hexane, RT, 75% yield.
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The crude mixture containing compound 44 was reacted with triol 42 in the presence

of 4-toluenesulfonic acid monohydrate (Schemes 2.2 and 2.5) in dichloromethane

under reflux. The reaction proceeds to completeness overnight, to give a mixture of

the four diastereomers shown in Scheme 2.5.

Scheme 2.5. Synthesis of compound 34. Reagents and condition: (-)-(S)-Camphor dimethyl acetal
(3.4 equiv), TsOH·H2O (0.05 equiv), CH2Cl2, reflux, 25% yield.

Subsequent diastereomeric resolution using silica gel column chromatography

allowed the separation of a fraction consisting of the optically pure intermediate 34

obtained in a yield of 25%, from a fraction consisting of an inseparable mixture of

the diastereomers 45, 46 and 47 (Scheme 2.5), obtained in 72% yield. The

observed specific rotation of 34 ( 20
D][ -11.9) compared well with the literature value

( 22
D][ -11.7).104,105

2.4 Investigation of the C-4 position protecting group

2.4.1. Synthesis of the myo-inositol intermediate 50

Scheme 2.6. Synthesis of the intermediate compound 50. Reagents and conditions: i. NaH (2.0
equiv), PMBCl (2.0 equiv), THF/DMF, 0 °C to RT, 94% yield. ii. AcCl (0.6 equiv), MeOH/CH2Cl2
40/60, RT, 79% yield. iii. Bu2SnO (1.1 equiv), TBAI (1 equiv), BnBr (4.8 equiv), 3 Å molecular sieves,
MeCN, reflux, 72% yield.104,105,109

The secondary alcohol 50, precursor of the inositol intermediates with the general

structure 35 (shown in the retrosynthetic Scheme 2.1) was synthesised in three

steps from the enantiopure alcohol 34 (Scheme 2.6) in a manner similar to that

reported by Lim and co-workers.109 The synthesis began with the reaction of alcohol

34 with sodium hydride in dry N,N-dimethyl formamide and the subsequent reaction
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of the sodium alkoxide with 4-methoxybenzyl chloride to give the 4-methoxybenzyl

ether 48. Using this procedure it was not possible to achieve the yield reported in

the literature.109 In Table 1 are summarised the results obtained from a number of

experiments carried out to improve the yields and find the optimum experimental

conditions for this reaction.

Table 2.1. Optimisation of the experimental conditions for the synthesis of compound 48.

In a first attempt, the alcohol 34 was converted in the corresponding sodium

alkoxide using 1.5 equivalents of sodium hydride in dry N,N-dimethyl formamide and

stirring the mixture overnight at room temperature. The subsequent reaction of the

sodium alkoxide with 4-methoxybenzyl chloride was not complete after 6 hours

(Table 2.1, addition 1-a), as adjudged by the thin layer chromatography analysis.

Furthermore, analysis showed the presence of a compound less polar than the

starting material and the product, suggesting that a side reaction had occurred.

Further amounts of 4-methoxybenzyl chloride and sodium hydride were added to the

mixture in order to maximise the yield of the reaction (Table 2.1, additions 1-b, 1-c,

1-d). A catalytic amount of imidazole was added to the mixture as a nucleophilic

catalyst (Table 2.1, addition 1-b). The reaction mixture was also warmed to 40 °C for

4 hours in order to enhance the rate of the reaction (Table 2.1, addition 1-d). Thin

layer chromatographic analysis after these actions showed the disappearance of the

starting material and the presence of the desired compound and a less polar by-

product. 1H NMR and 13C NMR analysis of this by-product showed a set of signals

ReagentsExperime
nt Add.

NaH PMBCl Other

Time, temperature and
conditions Solvent Co-

solvent Yield

a 1.5
equiv

1.5
equiv

Starting material in dry DMF
stirred overnight with NaH at
RT, then PMBCl added and
resulting mixture stirred for 6 h

b 0.5
equiv Mixture stirred overnight at RT

c 0.5
equiv

0.5
equiv Mixture stirred overnight at RT

1

d 0.5
equiv

0.5
equiv

imidazole
catalytic
amount

Mixture stirred 4 h at 40 °C after
NaH addition, then overnight at
RT after PMBCl addition

dry DMF 17%

a 1.1
equiv

1.5
equiv Mixture stirred overnight at RT

b 1.0
equiv Mixture stirred for 1 h at RT2

c 1.5
equiv

1.0
equiv

TBAI
catalytic
amount

Mixture stirred for 5 h at RT

dry DMF 84%

3 a 1.5
equiv

1.5
equiv

TBAI
catalytic
amount

Mixture stirred overnight at RT dry THF dry DMF 94%
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similar to those expected for the starting material 34 suggesting that an

isomerisation reaction may have occurred; unfortunately mass spectrometry

analysis did not lead to an explanation for this experimental observation.

Furthermore, the yield of the reaction with respect to the desired compound was

only 17% (Table 2.1, reaction 1). In a second attempt to perform the protection of

compound 34, the starting material was stirred for one hour with sodium hydride at

room temperature in dry N,N-dimethyl formamide and then overnight after the

addition of

4-methoxybenzyl chloride and a catalytic amount of tetra-n-butylammonium iodide

(Table 2.1, addition 2-a). After this time the reaction was not complete and further

amounts of sodium hydride and 4-methoxybenzyl chloride were added (Table 2.1,

additions 2-b, 2-c). The final thin layer chromatography analysis showed that only

the desired compound was formed. The yield of the reaction was 84% (Table 2.1,

experiment 2). In further attempts to reduce the required amount of sodium hydride

and 4-methoxybenzyl chloride the dry N,N-dimethyl formamide solvent was replaced

with dry tetrahydrofuran. The alcohol 34 was converted to the sodium alkoxide in dry

tetrahydrofuran using sodium hydride. After the subsequent addition of 4-

methoxybenzyl chloride and a catalytic amount of tetra-n-butylammonium iodide

(Table 2.1, experiment 3), the reaction mixture was stirred for 2 hours. The thin layer

chromatographic analysis indicated that no reaction had occurred. This result can be

explained by the low solubility of the alkoxide in tetrahydrofuran. After adding N,N-

dimethyl formamide as co-solvent (Table 2.1, reaction 3) the reaction was complete

after overnight stirring at RT in a yield of 94%. The experiments performed on the

4-methoxybenzyl protection of compound 34 show that this reaction can be carried

out using dry tetrahydrofuran as solvent with dry N,N-dimethyl formamide as co-

solvent to increase the solubility of the sodium alkoxide. The low yield obtained in

the first attempt of this reaction (Table 2.1, experiment 1) can be explained by

assuming that the starting material was consumed in a side-reaction due to the

prolonged exposure of alcohol 34 to sodium hydride in N,N-dimethyl formamide.

The resulting camphor acetal 48 was converted to diol 49 by acidic methanolysis of

the chiral auxiliary moiety using acetyl chloride in a methanol/dichloromethane

mixture (Scheme 2.6). The resulting compound 49 was regioselectively protected at

the C-3 hydroxyl group using di-n-butyltin oxide, tetra-n-butylammonium iodide and

benzyl bromide, furnishing the alcohol 50 in a yield of 72% (Scheme 2.6).103,104



Results and Discussion (Part One)

62

2.4.2. C-4 Position acetyl myo-inositol intermediates

Scheme 2.7. Synthesis of the myo-inositol derivative 53. Reagents and conditions: i. DMAP (0.3
equiv), AcCl (12 equiv), pyridine, RT, 81% yield. ii. a. Wilkinson’s catalyst, Hunig’s base, EtOH,
reflux; b. AcCl, CH2Cl2/MeOH (3:2), RT; c. CAN, MeCN/H2O (4:1), RT; yield over steps a, b and c
72%. iii. a. Bis(benzyloxy)-N,N-diisopropylamino phosphine (5.0 equiv), 1H-tetrazole (5.0 equiv),
CH2Cl2, RT; b. mCPBA (5.0 equiv), - 78 °C to RT, 66% yield.

The esterification of alcohol 50 using acetyl chloride and 4-dimethylaminopyridine

furnished the intermediate 51 in 81% yield (Scheme 2.7). The structure of this

compound was confirmed by X-ray crystallography (Figure 2.5).

Figure 2.5. A PyMOL (www.pymol.org) representation of the X-ray crystal structure of compound 51.

The allyl group of compound 51 was selectively removed by isomerisation of the C-5

position allyl group using Wilkinson’s catalyst to the corresponding vinyl ether

intermediate and subsequent alcoholysis of both vinyl and 4-methoxybenzyl groups

using 1.0 M hydrochloric acid in ethanol. Using these experimental conditions, the

partial hydrolysis of the acetyl group occurred, furnishing the desired compound 52

in 9% yield. A different procedure was developed involving the use of Wilkinson’s

catalyst. The treatment of the intermediate vinyl ether with acetyl chloride in

methanol/dichloromethane and the oxidative cleavage of the 4-methoxybenzyl group

using ceric ammonium nitrate in acetonitrile/water (Scheme 2.7), furnishing the

desired compound 52 in 72% yield. Using the experimental conditions previously

reported by Painter,104 the diol 52 was phosphitylated and oxidised to afford

compound 53 in 66% yield (Scheme 2.7).

In the first attempt to remove the acetyl group in the presence of the phosphate

groups in compound 53, the experimental conditions previously used by Lim were
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employed,110 involving the treatment with potassium carbonate (1.1 equivalents) in a

5/3/2 methanol/tetrahydrofuran/water mixture for 5 hours (Scheme 2.8 and Table

2.2, experiment 1). The thin-layer chromatographic analysis indicated that no

reaction had occurred and further potassium carbonate (1.0 equivalent) was added.

The mixture was analysed after 24 hours (by thin-layer chromatography) and no

reaction had occurred. Three more equivalents of potassium carbonate were added,

and after 3 hours the thin-layer chromatographic analysis indicated the presence of

the starting material and a mixture of more polar compounds, likely to be

decomposition products. The potassium carbonate was quenched using a saturated

aqueous solution of ammonium chloride. After the aqueous work up, the crude

mixture was used as starting material in a further attempt to remove the acetyl group

in compound 53 (Scheme 2.8 and Table 2.2, experiment 2). The crude mixture was

treated with 1.0 equivalent of sodium hydroxide in methanol for 1.5 hours. The thin-

layer chromatographic analysis indicated that no reaction had occurred and further

sodium hydroxide (1.0 equivalent) was added to the mixture. Thin-layer

chromatographic analysis after 1.5 hours indicated that no reaction had occurred, so

the mixture was warmed to 35 ºC for a period of 20 hours. The mixture was

analysed by thin-layer chromatography that indicated the complete disappearance

of the starting material and the presence of a complex mixture of more polar

compounds. Purification by silica gel column chromatography afforded a number of

fractions that were analysed by 1H NMR spectrometry, which indicated that the

starting material had decomposed.

Scheme 2.8. The attempted synthesis of compound 54 through the deprotection of the acetyl group
in compound 53. Reagent and conditions: as described in Table 2.2.
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Table 2.2. Experimental condition used for the removal of acetyl group in compound 53.

In order to develop the optimal experimental conditions for the removal of the acetyl

group in the presence of the phosphate groups in the inositol derivative 53, the

model compound 57 was synthesised in two steps starting from (±)-1,2-trans-

dihydroxycyclohexane 55 (Scheme 2.9).

Scheme 2.9. Synthesis of the model compound 57. Reagents and conditions:
i. 4-Dimethylaminopyridine (0.3 equiv), pyridine (1.1 equiv), acetyl chloride (1.1 equiv), CH2Cl2, 0 ºC
to RT, 60% yield; ii. a. Bis(benzyloxy)-N,N-diisopropylamino phosphine (2.5 equiv), 1H-tetrazole (2.5
equiv), CH2Cl2, RT; b. mCPBA (2.5 equiv), - 78 °C to RT, 87% yield.

Using 4-dimethylaminopyridine as a nucleophilic catalyst, the acetyl protection of

one hydroxyl group was achieved by adding a solution of acetyl chloride in

dichloromethane to a solution of the starting material dissolved in a large volume of

dichloromethane over the period of one hour, in order to reduce the acetylation of

both the hydroxyl groups. The resulting mono-acetylated compound 56 was

phosphitylated and oxidised to afford the model compound 57 in 87% yield (Scheme

2.9). Table 2.3 shows a number of different reaction conditions that where examined

for the removal of the acetyl group in compound 57. In a first attempt compound 57

was stirred for 2.5 hours in a 9/1 methanol/water solution containing 2.1 equivalents

of potassium carbonate (Table 2.3, experiment 1). Using these conditions the

alcohol 58 was recovered in 59% yield; however, an undesired trans-esterification

side reaction occurred at the phosphate moiety, leading to the by-product 59 in 22%

yield (Figure 2.6).

Experiment Reagent Solvent Time, Temperature Yield

K2CO3 (1.1 equiv) 5 h, RT

K2CO3 (1.0 equiv) 24 h, RT1

K2CO3 (3.0 equiv)

MeOH/THF/H2O 5/3/2

3 h, RT

Partial
decomposition of
starting material

NaOH (1.0 equiv) 1.5 h, RT
2

NaOH (1.0 equiv)
MeOH/H2O 9/1

1.5 h, RT
then 20, 35 °C

Decomposition of
starting material

3 LiOH (2.1 equiv) MeOH/H2O 9/1 12 h, RT
Partial

decomposition of
starting material

4 Lipase VII Hexane/wet Et2O 5/1 7 days, 37.7 °C No reaction
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Figure 2.6. Compounds obtained from the deprotection of the acetyl group in model compound 57.

In order to minimise the unwanted side-reaction, milder carbonates and different

solvent systems were then investigated; unfortunately compound 57 was found to

be inert towards these reaction conditions (Table 2.3, experiments 2-7). The strong

base lithium hydroxide in methanol/water proved to be effective, furnishing the

desired compound 58 in a reasonable yield (Table 2.3, experiment 8), together with

a small amount of the by-product 59 (6% yield). To overcome the formation of

compound 59 it was attempted to carry out the reaction in the presence of lithium

hydroxide using benzyl alcohol as solvent, in order to obtain only the desired

product 58 from trans-esterification side reaction (Table 2.3, experiment 9).

Unfortunately under these experimental conditions no reaction was detected.

The enzyme Lipase VII from candida rugosa (Table 2.3, experiments 10-11) was

also investigated. In a first attempt the enzyme was suspended in hexane/water and

the mixture shaken for 4 days (Table 2.3, experiment 9). The reaction was found to

be incomplete, however the desired compound 58 was obtained in 42% yield. A

slight improvement in the final yield was obtained by replacing the solvent with a

hexane/wet diethyl ether mixture (Table 2.3, experiment 11).

Table 2.3. Experimental condition used in model studies on compound 57.

Experiment Reagent Solvent Time, Temperature Yield

1 K2CO3 (2.1 equiv) MeOH/H2O 9/1 2.5 h, RT 59%

2 BaCO3 (2.1 equiv) MeOH/H2O 9/1 4 days No
reaction

3 CaCO3 (2.1 equiv) MeOH/H2O 9/1 4 days No
reaction

4 Na2CO3 (2.1 equiv) EtOH/H2O 9/1 5 days No
reaction

5 Na2CO3 (2.1 equiv) THF/H2O 9/1 5 days No
reaction

6 K2CO3 (2.1 equiv) EtOH/H2O 9/1 5 days No
reaction

7 K2CO3 (2.1 equiv) THF/H2O 9/1 5 days No
reaction

8 LiOH (2.1 equiv) MeOH/H2O 9/1 30 min, RT 62%

9 LiOH (2.1 equiv) BnOH/H2O 9/1 2 days, RT No
reaction

10 Lipase VII Hexane/H2O 5/1 4 days, 37.7 ºC 42%

11 Lipase VII Hexane/wet Et2O 5/1 3 days, 37.7 ºC 53%
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The experimental conditions developed using model compounds 57 were tested on

compound 53 (vide supra, Table 2.2, experiments 3-4). Compound 53 was

dissolved in a methanol/water mixture in the presence of lithium hydroxide (Table

2.2, experiment 3) and the reaction followed by thin-layer chromatography analysis,

for a period of 12 hours. Using these conditions the result was the partial

decomposition of the starting material. The enzyme Lipase VII was then used to

attempt the hydrolysis of the acetyl group in compound 53 (Table 2.2, experiment 4),

but after 7 days no conversion had occurred. These last results led to the decision to

investigate a different protecting group for the C-4 position.

2.4.3. C-4 Position trichloroacetyl myo-inositol intermediates

Scheme 2.10. Synthesis of compound 61. Reagents and conditions: i. Trichloroacetyl chloride (1.5
equiv), pyridine, RT, 30 min, 96% yield; ii. DDQ, CH2Cl2, RT, 91% yield.

The trichloroacetyl protecting group, due to the inductive effect of the three chlorine

atoms vicinal to the carbonyl carbon atom, is much more reactive than the acetyl

group towards acidic and basic hydrolysis. Therefore, compound 50 was reacted

with trichloroacetyl chloride in pyridine to afford the trichloroacetyl-protected

compound 61 in 96% yield (Scheme 2.10). For the removal of the C-1 position

4-methoxybenzyl group it was first attempted the reaction with ceric ammonium

nitrate in a mixture of acetonitrile/tetrahydrofuran/water. Using these reaction

conditions compound 61 was obtained in a yield of 64%. Due to its reactivity, the

trichloroacetyl group was adjudged to be too sensitive to the slightly acidic

environment generated by the ceric ammonium nitrate. This was confirmed by a

second attempt to remove the 4-methoxybenzyl group by using 2,3-dichloro-5,6-

dicyanobenzoquinone; this procedure was more successful, furnishing compound

61 in a yield of 91% (Scheme 2.10).
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Scheme 2.11. The attempted synthesis of compound 62. Reagents and conditions: a. Wilkinson’s
catalysts (0.6 equiv), Hunig’s base (1.0 equiv), EtOH, reflux, 1.5 h. b. Acetyl chloride (0.6 equiv),
CH2Cl2/MeOH, RT, 47% yield.

Compound 61 was reacted with Wilkinson’s catalyst in ethanol under reflux in order

to isomerise the double bond of the allyl group (Scheme 2.11). After 1.5 hours the
1H NMR analysis indicated that a reaction had occurred at the double bond, but the

signals appeared to be inconsistent with the expected signals for the intermediate

vinyl ether. However, the crude material was reacted with a catalytic amount of

acetyl chloride in methanol/dichloromethane for 2 hours (Scheme 2.11). After

purification by silica gel column chromatography, the undesired triol 63 was isolated,

indicating that the cleavage of the trichloroacetyl group had occurred under the

described reaction conditions. It was thought that the acidic conditions used for the

methanolysis of the intermediate vinyl ether were incompatible with the

trichloroacetyl group. Therefore, in a further attempt the milder acidic catalyst 4-

toluenesulfonic acid was used. After the double bond isomerisation, the crude

material was dissolved in methanol/dichloromethane, 4-toluenesulfonic acid added

at 0 °C and the mixture stirred for 3 hours at room temperature. TLC analysis

indicated the presence of a complex mixture of compounds, likely to be due to

decomposition of the starting material, and it was not possible to isolate the desired

compound 62. As a result of the above experimental outcomes, the trichloroacetyl

protecting group was judged to be unsuitable for the protection of the C-4 position.

2.4.4. C-4 Position chloroacetyl myo-inositol intermediates

The next protecting group selected was the chloroacetyl group, as this group is

more reactive than an acetyl group towards acidic and basic hydrolysis but much

less reactive than the trichloroacetyl group. In addition, the chloroacetyl group has a

unique deprotection protocol that is based on the reactivity at the carbon atom

bearing the chlorine atom and not at the carbonyl centre.111,112 Furthermore, this

deprotection scheme has been previously used by Fraser-Reid to remove the
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chloroacetyl group in carbohydrate derivatives,113 therefore it seemed to be a

suitable protecting group. The mechanism for this reaction is shown in Scheme

2.12.112

Scheme 2.12. Mechanism of the deprotection of the chloroacetyl group using thiourea.112

The sulfur atom of thiourea 64 effects the nucleophilic substitution of the chlorine

atom in generic compound 65 (Scheme 2.12) leading to the intermediate 66. This

compound undergoes an addition-elimination reaction, releasing the desired alcohol

and 2-imino-4-thiazolidinone 67.

Model studies were carried out in order to test the feasibility of removing the

chloroacetyl group in the presence of a neighbouring phosphate group, therefore the

model compound 70 was synthesised (Scheme 2.13).

Scheme 2.13. Synthesis of compound 58. Reagents and conditions: i. Chloroacetic anhydride (1.2
equiv), DMAP (0.2 equiv), pyridine (1.2 equiv), CH2Cl2, RT, 40% yield. ii. a. Bis(benzyloxy)-N,N-
diisopropylamino phosphine (3.0 equiv), 1H-tetrazole (7.0 equiv), CH2Cl2, RT, 30 min, then H2O (0.7
equiv). b. mCPBA (5.0 equiv), - 78 °C to RT, 62% yield. iii. Thiourea (10.0 equiv), NaHCO3 (10.0
equiv), MeOH/CH2Cl2, 55 °C, 2 h, 61% yield.

(±)-1,2-trans-Dihydroxycyclohexane 55 was converted to compound 68 using

chloroacetic anhydride and 4-dimethylaminopyridine in a large volume of

dichloromethane to decrease the esterification of both the hydroxyl groups (Scheme

2.13). Compound 68 was then phosphitylated and oxidised using the protocol

previously reported by Watanabe;114 this involves the use of bis(benzyloxy)-N,N-

diisopropylamino phosphine and 1H-tetrazole to phosphitylate compound 68,

followed by treatment with water before oxidising the intermediate phosphite to the

corresponding phosphate 69 (Scheme 2.13). Using this procedure compound 69

was synthesised in a yield of 62%. Following the method previously reported by

Fraser-Reid,113 the chloroacetyl group was removed from compound 69 using

thiourea to afford compound 98 in 61% yield (Scheme 2.13).
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Given the promising results obtained in the model studies on compound 69

(Scheme 2.13), the inositol intermediate 50 was treated with chloroacetic anhydride

in pyridine to afford compound 71 in a yield of 90% (Scheme 2.14).

Scheme 2.14. Synthesis of compound 72. Reagents and conditions: i. Chloroacetic anhydride (1.5
equiv), pyridine, RT, 90% yield. ii. DDQ (2.0 equiv), CH2Cl2, RT, 87% yield.

The removal of the C-1 position 4-methoxybenzyl group using 2,3-dichloro-5,6-

dicyanobenzoquinone in dichloromethane afforded compound 72 in a yield of 87%

(Scheme 2.14). The removal of the C-5 position allyl group was attempted by using

Wilkinson’s catalysts to isomerise the double bond and acetyl chloride in methanol

as source of hydrochloric acid for the methanolysis of the intermediate vinyl ether.

Compound 72 was subjected to these conditions (Scheme 2.15) and the preliminary

data collected during the characterisation of the isolated product seemed to provide

evidence that compound 73 had been synthesised. Although the thin-layer

chromatography indicated the presence of only one spot, further 1H NMR analysis

suggested that the C-4 position chloroacetyl group had migrated to the C-5 position

hydroxyl group under the isomerisation-methanolysis reaction conditions, furnishing

an inseparable mixture of the two regioisomers 73 and 74 (Scheme 2.15).

Scheme 2.15.The attempted synthesis of compound 73. Reagents and conditions: a. Wilkinson’s
catalysts (0.6 equiv), Hunig’s base (1.0 equiv), EtOH, reflux, 1.5 h. b. Acetyl chloride (0.6 equiv),
CH2Cl2/MeOH, RT.

Having assessed that the chloroacetyl protecting group was unsuitable for the

protection of the C-4 position, it was decided to investigate a different class of

protecting groups.
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2.4.5. C-4 Position triisopropylsilyl myo-inositol intermediates

Scheme 2.16. Synthesis of the compound 76. Reagents and conditions: i. Triisopropylsilyl triflate (1.5
equiv), 2,6-luditine (4.0 equiv), CH2Cl2, 0 ºC to RT, 94% yield. ii. a. Wilkinson’s catalyst (0.6 equiv),
Hunig’s base (1.0 equiv), EtOH, reflux, 2.5 h. b. Acetyl chloride (0.6 equiv), CH2Cl2/MeOH, RT. c.
DDQ, CH2Cl2, RT, yield over 3 steps 62%.

The triisopropylsilyl group was chosen as a potential candidate for the protection of

the C-4 position of compound 50 because of its relative stability towards the reaction

conditions employed to remove the C-1 position 4-methoxybenzyl group and the C-5

position allyl group. The possibility of selectively removing the triisopropylsilyl moiety

using tetra-n-butylammonium fluoride, after having installed the phosphate groups,

seemed also reasonable. Therefore, alcohol 50 was treated with triisopropylsilyl

triflate to afford compound 75 in excellent yield (Scheme 2.16). The C-5 position allyl

group in compound 75 was removed using Wilkinson’s catalyst to isomerise the

double bond and acetyl chloride in methanol/dichloromethane to cleave the

intermediate vinyl ether (Scheme 2.16). The crude material was then treated with

ceric ammonium nitrate, affording the desired diol 76 in a yield of 38%. A better

result was obtained by using 2,3-dichloro-5,6-dicyanobenzoquinone as oxidising

agent, which allowed the synthesis of compound 76 in a yield of 62% (Scheme

2.16). Compound 76 was then reacted with bis(benzyloxy)-N,N-diisopropylamino

phosphine and 1H-tetrazole in dichloromethane in order to install the phosphate

groups at the C-1 and C-5 positions and synthesise the bisphosphate compound 77

(Scheme 2.17). These reaction conditions did not furnish the desired compound 77;

purification by silica gel column chromatography furnished a compound which was

proposed to be the monophosphate 78, indicating that the phosphitylating reagent

reacted only with the C-1 position hydroxyl group (Scheme 2.17). It was proposed

that the steric hindrance of the C-4 position triisopropylsilyl group shields the C-5

position hydroxyl group, preventing the latter reacting with the phosphitylating

reagent (Scheme 2.17).
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Scheme 2.17. The attempted synthesis of compound 77. Reagents and conditions: a.
Bis(benzyloxy)-N,N-diisopropylamino phosphine (5.0 equiv), 1H-tetrazole (5.0 equiv), CH2Cl2, RT. b.
mCPBA (5.0 equiv), - 78 °C to RT, 13% yield.

The lack of success in finding a optimal protecting group for the C-4 position in the

inositol intermediate 50 led to a revision of the protection strategy used thus far; the

modifications adopted are described in the next paragraph.

2.5 C-1 Position acetic esters: an alternative route to C-4

position InsP3 analogues

Scheme 2.18. Synthesis of compound 81. Reagents and conditions: i. Acetic anhydride (1.2 equiv),
DMAP (0.3 equiv), pyridine, RT, 74% yield. ii. Acetyl chloride (0.6 equiv), MeOH/CH2Cl2, RT, 79%
yield. iii. Bu2SnO (1.1 equiv), TBAI (1 equiv), BnBr (4.8 equiv), 3 Å molecular sieves, MeCN, reflux,
56% yield.

In order to solve the chemical problems related to the C-4 position protecting

groups, it was decided to synthesise a series of C-1 position acetic esters, as shown

in Scheme 2.18. The rationale for this new chemical route is that the

4-methoxybenzyl protection of the C-4 position hydroxyl group would lead to the fully

protected inositol intermediate 82 (Scheme 2.19), which is a regioisomer of

compound 51, the chemical behaviour of which has been previously described in

this chapter. The advantage of compound 82 is that the C-1 position acetyl group

and the C-5 position allyl group can be removed using basic hydrolysis and the

isomerisation-methanolysis reactions, respectively, without affecting the C-4 position

4-methoxybenzyl group. After having installed the two phosphate groups, the C-4

position 4-methoxybenzyl group could be removed by using ceric ammonium nitrate

without affecting the neighbouring phosphate groups, as previously reported.109,115

Thus, compound 34 was acetylated at the C-1 position using acetic anhydride in
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pyridine to give intermediate 79 (Scheme 2.18). Removal of the chiral camphor

acetal auxiliary by acid-catalised methanolysis furnished the diol 80 in a yield of

79%. Selective benzyl protection of the C-3 position hydroxyl group using

di-n-butyltin oxide chemistry gave the desired alcohol 81 in a yield of 56%.

Scheme 2.19. The attempted synthesis of compound 82. Reagents and conditions: NaH (1.1 equiv),
PMBCl (1.1 equiv), DMF, 0 °C to RT, 24 h.

The 4-methoxybenzyl protection of compound 81 was attempted using sodium

hydride and 4-methoxybenzyl chloride (Scheme 2.19); the analysis of the resulting

product indicated the presence of a mixture of two isomers, which are likely to be

compounds 82 and 51 (as judged by 1H NMR and mass spectrometry analysis; m/z

(ES+) 676 [M+Na]+ single peak). It was proposed that the treatment of compound 81

with sodium hydride could set up a series of intermolecular transesterification

reactions of the newly formed sodium alkoxide of compound 81 with the acetyl ester

at the C-1 position in another molecule of compound 81, leading to the two

regioisomers 82 and 51 after the reaction with 4-methoxybenzyl chloride (Scheme

2.19).

Scheme 2.20. Synthesis of 4-methoxybenzyl 2,2,2-trichloroacetimidate 84. Reagents and conditions:
50% aqueous KOH, Cl3CCN (1.1 equiv), TBAS (0.01 equiv), CH2Cl2, - 10 °C to RT, 2 h, 36% yield.

To overcome the problem of the transesterification reaction, the 4-methoxybenzyl

protecting group could be installed at the C-4 position by using a highly-reactive

reagent that would not require the activation of the C-4 position hydroxyl group by

conversion to the correspondent sodium alkoxide. The reagent 4-methoxybenzyl

2,2,2-trichloroacetimidate 84 has been previously used to install the 4-

methoxybenzyl protecting group in compounds sensitive to sodium hydride.116 This

compound was synthesised from 4-methoxybenzyl alcohol 83 using

trichloroacetonitrile under phase-transfer catalysis conditions (Scheme 2.20).
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Scheme 2.21. The attempted synthesis of intermediate 82. Method A. Reagents and conditions: 4-
methoxybenzyl 2,2,2-trichloroacetimidate 84 (2.0 equiv), CSA (catalytic amount), CH2Cl2, 0 °C to RT,
15 h. Method B. Reagents and conditions: 4-methoxybenzyl 2,2,2-trichloroacetimidate 84 (2.0 equiv),
TfOH (0.01), Et2O, RT, 1 day.

In a first attempt the compound 81 was stirred in dichloromethane in the presence of

4-methoxybenzyl trichloroacetimidate 84 and camphorsulfonic acid for 15 h

(Scheme 2.21, method A). TLC analysis indicated the presence of a complex

mixture of compounds which could not be purified by column chromatography. The

reaction was repeated using triflic acid as catalyst and diethyl ether as solvent

(Scheme 2.21, method B). TLC analysis indicated the presence of an inseparable

mixture of compounds.

As a result of this experimental outcome, the C-1 position acetic esters were judged

to be not suitable for the synthesis of C-4 position-modified InsP3 analogues.
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2.6 Selected Reaction Mechanisms

2.6.1. Diisobutylaluminium hydride-mediated cleavage

Scheme 2.22. Mechanism of the diisobutylaluminium deuteride-mediated cleavage of orthoformate
39.107,108

The diisobutylaluminium deuteride (DIBAL-D) mediated-cleavage of orthoformate 39

has been previously investigated by Holmes107,108 and the proposed mechanism is

shown in Scheme 2.22. DIBAL-D can behave as a Lewis acid since has an empty

3p orbital on the aluminium atom. This orbital coordinates to the C-5 position oxygen

atom over the C-1 position and the C-3 position oxygen atoms. The C-5 position

oxygen atom is thought to be more accessible than the other two oxygen atoms of

the orthoformate moiety due to the presence of the C-2 position benzyl group, which

is free to rotate around the C-O bond, generating a hindered environment proximal

to the C-1 position and the C-3 position oxygen atoms. Therefore DIBAL-D can

coordinate only to the C-5 position oxygen atom to give the intermediate 85. This

rearranges to the oxacarbenium species 86, which is thermodynamically unstable

due to the unfavourable 1-3 diaxial interactions between the transient C-5 position

aluminium moiety and the acetal ring and thus undergoes a ring flip, leading to the

more stable boat conformer 87. This intermediate reacts with the second equivalent

of diisobutylaluminium deuteride which donates a deuteride atom exclusively from

the less hindered face of the acetal moiety. The reaction with the deuteride reagent

affords nearly 100% yield of the alcohol 88.107,108
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Scheme 2.23. Mechanism of trimethylaluminium-mediated cleavage of orthoformate 39.107,108

The reaction of orthoformate 39 with trimethylaluminium has also been investigated

by Holmes.107,108 This reaction leads to compound 91, as shown in Scheme 2.23.

Trimethylaluminium is a Lewis acid, much less hindered than diisobutylaluminium

hydride, and reacts with 39 forming a chelate complex with the C-2 position oxygen

atom and either the C-1 position or the C-3 position oxygen atoms, to give the

intermediate 89. This rearranges to the oxacarbenium species 90, which reacts with

the methyl carbanion donated from the other equivalent of trimethylaluminium,

affording compound 91.

The use of a bulky reagent as diisobutylaluminium hydride or a regent with reduced

steric hindrance as trimethylaluminium allows to modify the reaction outcome and

achieve a different selectivity in the cleavage of the orthoformate moiety in

compound 39, allowing the development of different synthetic strategies.

2.6.2. Phosphitylation and oxidation of alcohols to phosphates

Scheme 2.24. Mechanism of the 1H-tetrazole catalysed phosphitylation of alcohols.117,118
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The mechanism of the phosphitylation-oxidation procedure in shown in Scheme

2.24. The most used catalyst in phosphoramidite chemistry is 1H-tetrazole, because

of its behaviour as both acidic and nucleophilic catalyst. As established by kinetic

studies on phosphitylation of alcohols,117,118 the phosphoramidite 92 is first

protonated by 1H-tetrazole, then a second, anionic, 1H-tetrazole reacts with the

partially positive-charged phosphorus atom to give the tetrazolide intermediate 93,

which is the reactive species that effects the phosphitylation of the alcohol 94,

yielding the phosphite 95.117,118 This is not usually isolated, but oxidised directly to

the corresponding phosphate 96 by treatment with an oxidising agent such as 3-

chloroperoxybenzoic acid (mCPBA in Scheme 2.24).

2.6.3. Selective benzylation of the C-3 position with di-n-butyltin oxide

Scheme 2.25. Mechanism of the selective protection of diol 49.103,104

The highly regioselective protection procedure was previously reported by Gigg and

co-workers.103 This method involves the use of di-n-butyltin oxide in acetonitrile

under reflux (Scheme 2.25) to form the stannane acetal 98 in situ (in order to assist

the stannane acetal formation a Soxhlet extractor filled with activated 3 Å molecular

sieves was used to remove the formed water from the reaction mixture).103 Although

the reaction mechanism has not been unambiguously proven, studies of stannane

derivatives using 119Sn NMR spectroscopy suggest that the 119Sn atom is penta- or

hexa- coordinated.119 While in the solid state it is known that penta-coordinated

stannane compounds exist as dimers (Scheme 2.25), in solution and in the

presence of a polar solvent such as acetonitrile the stannane acetal could exist as a

penta-coordinated complex (98, Scheme 2.25). In this complex the two oxygen

atoms at the C-3 and C-4 positions are differentiated; the C-3 position oxygen atom

lies on the apical position of the complex, the C-4 position oxygen atom occupies
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the equatorial position. In this configuration, the apical bond of the complex is longer

than the equatorial bond. In the presence of benzyl bromide, the C-3 position apical

oxygen atom reacts preferentially over the C-4 position oxygen atom, and this can

be explained by assuming that the C-3 oxygen atom is more accessible to a bulky

alkylating reagent such as benzyl bromide than the C-4 oxygen atom, and also more

reactive being the apical, which has a longer oxygen-tin bond than the equatorial

one. The reaction proceeds quantitatively to furnish a mixture of the C-3 position

(50) and

C-4 position (97) benzyl-protected compounds (Scheme 2.25).

Figure 2.7. 1H NMR spectrum of a crude mixture of compounds 50 and 97 after the benzyl protection
using the tin acetal method.

1H NMR analysis of the crude mixture indicated a 5:1 ratio mixture of the two

compounds, in favour of the desired regioisomer 50. This ratio was assessed by

comparing the integrations of the two signals for the 4-methoxybenzyl group of the

C-3 position 50 and C-4 position 97 benzyl-protected compounds [δH 4.43 (OCH3,

compound 50) and 4.39 (OCH3, compound 97)] as shown in Figure 2.7. The same

result was obtained by comparison of the integrations of the signal for the hydroxyl

group in the two isomers 50 and 97 [δH 2.42 (OH, compound 50) and 2.12 (OH,

compound 97)] (Figure 2.7).
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Figure 2.8. 1H NMR spectrum of a crude mixture of compounds 50 and 97 after treatment with D2O.

Assignment of the signals at δH 2.42 and δH 2.12 to the hydroxyl groups of the

corresponding compounds was performed by 1H NMR analysis of a sample from the

crude of the reaction, after treatment with deuterium oxide. The two hydroxyl groups

signals disappeared as result of the exchange of the hydrogen/deuterium atoms

(Figure 2.8).
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2.7 Summary

The analysis of the crystal structure of the InsP3R1 binding domain provided

essential information about the structural requirements for a compound to behave as

an InsP3R antagonist. C-4 position-modified InsP3 analogues with the general

structure 32 and 33 (Figure 2.9), prepared as pure D-enantiomers, are proposed to

be InsP3Rs antagonists. In order to synthesise such compounds, a chemical route

starting from myo-inositol has been designed; this route makes use of a previously

reported method for the separating the D-inositol enantiomers from the L-

enantiomers.104,105

The protecting groups examined for masking the C-4 position in inositol

intermediates were all found to be not suitable for synthesising C-4 position-modified

InsP3 analogues. A different approach, involving the use of an acetyl group to mask

the C-1 position of the inositol ring was found to be incompatible with the reaction

conditions used through the synthetic steps.

The next chapter describes the modifications adopted to complete the synthesis of

C-4 position-modified InsP3 analogues.

Figure 2.9. Structures of the proposed InsP3Rs antagonists.
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3 Results and Discussion (part two)

Figure 3.1. Structure of the C-4 position-modified InsP3 analogue 32.

The C-4 position-modified InsP3 analogue 32 shown in Figure 3.1 has been

proposed as a competitive antagonist of the InsP3R (vide supra). As described in

chapter 2, it was not possible to achieve the synthesis of such compound using the

proposed route, due to problems encountered during the later stages in the

synthetic procedure. The strategy used thus far was therefore revised and a new

plan for the synthesis developed. The retrosynthetic analysis in Scheme 3.1

describes the new proposed synthesis of C-4 position-modified InsP3 analogues

starting from myo-inositol.

3.1 Retrosynthesis

Scheme 3.1. Proposed retrosynthesis of InsP3 analogues, allowing modifications at the C-4.

It was proposed that compounds with the structure 99 could be prepared in five

steps from intermediate 101 by deprotection of the allyl groups, phosphitylation and

oxidation of the resulting C-1 and C-5 hydroxyl groups, deprotection of the 4-

methoxybenzyl group, phosphinylation of the resulting C-4 position hydroxyl group

and final hydrogenolysis of the benzyl groups (Scheme 3.1). The use of two allyl
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protecting groups at the C-1 and the C-5 positions would allow the installation of the

required phosphate groups in one synthetic step and would also allow the use of the

4-methoxybenzyl group for protecting the C-4 position hydroxyl group (intermediate

101). In chapter 2, the 4-methoxybenzyl group was shown to be stable to the

reaction conditions used to remove allyl groups; furthermore, it has been previously

reported that the 4-methoxybenzyl can be removed in the presence of phosphate

groups using oxidising agents, such as ceric ammonium nitrate.115 Therefore,

compound 101 could be prepared by 4-methoxybenzyl protection of the C-4 position

hydroxyl group in compound 100, which in turn could be synthesised from the

camphor acetal 34 by allyl protection of the C-1 hydroxyl group, removal of the

camphor acetal auxiliary and selective benzyl protection of the C-3 hydroxyl group

using the di-n-butyltin oxide method.103

It was envisaged that compound 100 could be a useful intermediate, as it would

allow the synthesis of compound 99 in four steps. The synthesis could be achieved

by phosphinylation of the C-4 position hydroxyl group to give compound 102,

followed by removal of the allyl groups, phosphitylation and oxidation of the resulting

diol and final hydrogenolysis of the benzyl groups (Scheme 3.1). This procedure

would also shorten the synthetic route by avoiding the use of a protecting group for

the C-4 position hydroxyl group in compound 100. The camphor acetal 34 required

for the proposed synthetic route could be prepared in seven steps from myo-inositol

1 as previously described in chapter 2.104,105

3.2 Synthesis of the bis-allyl myo-inositol derivative 100

Scheme 3.2. Synthesis of compound 100. Reagents and conditions: i. Allyl bromide (1.2 equiv),
sodium hydride (1.2 equiv) imidazole (catalytic amount), TBAI (catalytic amount), THF/DMF, 0 °C to
RT, 91% yield. ii. Acetyl chloride (0.6 equiv), MeOH/CH2Cl2, RT, 88% yield. iii. Bu2SnO (1.1 equiv),
TBAI (1.0 equiv), BnBr (4.8 equiv), 3 Å molecular sieves, MeCN, reflux, 71% yield.

Compound 100 was synthesised in three steps from the enantiopure compound 34

(Scheme 3.2). Allyl protection of the C-1 position hydroxyl group of intermediate 34

afforded compound 103 in high yield. The removal of the camphor acetal auxiliary

using acetyl chloride in dichloromethane/methanol as a hydrochloric acid source

furnished the diol 104 in 88% yield; this compound was selectively benzylated at the
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C-3 position using di-n-butyltin oxide and benzyl bromide. 1H NMR analysis of the

crude reaction mixture indicated the presence of two compounds; estimation of the

relative ratio of the compounds, and therefore of the selectivity, was not possible,

due to the signals for the two compounds not being fully resolved. Hovever,

purification of the crude mixture afforded intermediate 100 in 71% yield.

3.3 Synthesis of (-)-1D-4-O-methyl-myo-inositol 1,5-

bisphosphate (sodium salt) 109

Scheme 3.3. Synthesis of compound 107. Reagents and conditions: i. MeI (1.1 equiv), NaH (1.1
equiv), THF, 0 °C to RT, 91% yield. ii. a. Wilkinson’s catalyst, Hunig’s base, EtOH, reflux. b. AcCl,
CH2Cl2/MeOH (3:2), RT, 79% yield. iii. a. Bis(benzyloxy)-N,N-diisopropylamino phosphine (5.0
equiv), 1H-tetrazole (5.0 equiv), CH2Cl2, RT. b. mCPBA (5.0 equiv), - 78 °C to RT, 66% yield.

The C-4 position-modified InsP3 analogue (-)-1D-4-O-methyl-myo-inositol 1,5-

bisphosphate (sodium salt) 109 was synthesised in order to both obtain preliminary

information about the biological activity at the InsP3Rs and test the experimental

conditions to be used for the final hydrogenolysis of the benzyl protecting groups.

Compound 105 was synthesised from intermediate 100 using sodium hydride and

methyl iodide in tetrahydrofuran (Scheme 3.3). Wilkinson’s catalyst was used to

isomerise the allyl groups to the corresponding vinyl ethers, followed by acidic

methanolysis to furnish compound 106 in good yield. Phosphitylation and oxidation

of diol 106 gave the perbenzylated compound 107 in 66% yield.

Scheme 3.4. Synthesis of compound 108. Reagents and conditions: H2, Pd/C (10%) (0.4 equiv),
EtOH, RT, 10 h. These reaction conditions may have caused the transesterification of the free
phosphate groups to the neighbouring hydroxyl groups.

The final hydrogenolysis of the benzyl groups was first attempted by using palladium

on activated carbon as a catalyst (Scheme 3.4) under an atmosphere of hydrogen in

ethanol. This procedure should furnish the final compound 108 with the two

phosphate groups in the free phosphoric acid form. The reaction yielded a material
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possessing the same molecular mass as compound 108 [m/z (ES+) 377 (M+Na)+;

(ES-) 353 (M-H)-].

Figure 3.2. 1H NMR spectrum of the material obtained from catalytic hydrogenolysis of compound
107 as described in Scheme 3.4.

Figure 3.3. 31P NMR spectrum of the material obtained from catalytic hydrogenolysis of compound
107 as described in Scheme 3.4.

1H NMR analysis indicated the presence of broad inositol proton signals (Figure

3.2), and 31P NMR analysis revealed a very broad signal centred around the

phosphate signals region (Figure 3.3). The line broadening in both the 1H NMR and

the 31P NMR spectra was attributed to the presence of the two free phosphoric acid

groups in compound 108; however, the signal broadening hampered the correct

assignment of the NMR signals to the structure of compound 108. Any

inhomogeneity in the composition of the final compound 108, resulting from

phosphate group migration, would be reflected in the biological activity
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assessments, leading to flawed results. Therefore, an accurate and unambiguous

assignment of the 1H NMR and 31P NMR signals is essential.

A previously reported method109 for the hydrogenolysis of benzyl groups in inositol

phosphate intermediates involves the use of palladium black in tert-butanol/water in

the presence of sodium hydrogen carbonate. This method would furnish the final

compounds as sodium salts; the function of the sodium hydrogen carbonate is to

convert the newly formed phosphoric acid groups in sodium phosphates and

therefore minimise the undesired transesterification reaction. The phosphates have

been shown to give sharp 1H and 31P NMR signals.104 In addition the sodium salts of

phosphates can often be lyophilised to give solid products.

Scheme 3.5. Synthesis of compound 109. Reagents and conditions: H2, Pd black (20.0 equiv),
NaHCO3 (4.0 equiv),tBuOH/H2O 6/1, RT, 4 h, yield 82% yield.

The hydrogenolysis reaction was attempted using compound 107 (Scheme 3.5),

furnishing the desired final compound (-)-1D-4-O-methyl-myo-inositol 1,5-

bisphosphate (sodium salt) 109 in 82% yield. 1H NMR analysis confirmed the

presence of the expected signals for the inositol ring (Figure 3.4). The 31P NMR

spectrum showed two sharp signals at δP 3.6 and δP 3.0, indicating that the two

phosphate groups had not migrated (Figure 3.5).
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Figure 3.4. 1H NMR spectrum of (-)-1D-4-O-methyl-myo-inositol 1,5-bisphosphate (sodium salt) 109.

Figure 3.5. 31P NMR spectrum of (-)-1D-4-O-methyl-myo-inositol 1,5-bisphosphate (sodium salt) 109.
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3.4 Development of a phosphinylation method for the synthesis

of myo-inositol derivatives

Having developed the synthesis of a C-4 position-modified inositol analogue, it was

necessary to develop conditions for the installation of the dimethylphosphinyl moiety

on compound 100.

3.4.1. In situ generation of the phosphinylating reagent

Figure 3.6.The dimethylphosphinate 110 and dimethylphosphinothioate 111 model compounds.

The cyclohexyl dimethylphosphinate 110 and the cyclohexyl

dimethylphosphinothioate 111 (Figure 3.6) were synthesised as model compounds

to develop the conditions required for the phosphinylation of myo-inositol

intermediates.

Scheme 3.6. Synthesis of cyclohexyl dimethylphosphinate 110. Reagents and conditions: i. N,N-
Diisopropylamine (2.0 equiv), Et2O, - 10°C to RT, 73% yield. ii. MeLi (3.1 equiv), Et2O, - 78 °C to RT.
iii. Cyclohexanol (0.5 equiv), imidazole (2.0 equiv), CH2Cl2, - 78 °C to RT. iv. mCPBA (2.0 equiv),
CH2Cl2, - 78 °C to RT. Yield over steps ii, iii and iv 63%.

The synthesis of compound 110 was achieved from phosphorus trichloride (Scheme

3.6). Treatment with N,N-diisopropylamine in diethyl ether afforded, after Kugelrohr

distillation, compound 112 in a yield of 73%. Dialkylation with methyl lithium yielded

the presumed intermediate 113, as judged by 31P NMR (δP 8.7), which was

converted in situ to the presumed intermediate phosphinite 114 (δP 112.0), by

addition to cyclohexanol and imidazole in dichloromethane and then oxidised to the

desired product 110.

The established phosphoramidite chemistry has been considered in order to

rationalise the mechanism of the phosphinylation reaction of cyclohexanol (Scheme

3.7).117 In Scheme 3.6 imidazole is used as the catalyst in place of 1H-tetrazole.

Since two equivalents of imidazole are added, a possible reaction mechanism is
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proposed shown in Scheme 3.7. By analogy with the phosphitylation mechanism,

the rate-limiting step is likely to be the protonation of the nitrogen atom of the N,N-

diisopropylamine moiety, as the second equivalent of imidazole can easily trap the

developing phosphorus cation to give the intermediate imidazolide 115 (Scheme

3.7). This species then reacts with cyclohexanol to give the phosphinite 114. This

hypothesised mechanism seems to be reasonable if compared with the nucleophilic

catalysis in phosphoramidite alcoholysis previously discussed (Scheme 2.24).117,118

Intermediate 114 is oxidised to the phosphinate 110 by treatment in situ with two

equivalents of 3-chloroperoxybenzoic acid (Scheme 3.7).

Scheme 3.7. Proposed mechanism for the phosphinylation of cyclohexanol.

Compound 110 displayed analytical and spectroscopic data consistent with the

assigned structure. As expected, in the 1H NMR spectrum (Figure 3.7) the signal of

the six hydrogen atoms on the two methyl groups was split into a doublet as a result

of the coupling with the phosphorus atom (JP-H 13.8).

Figure 3.7. 1H NMR spectrum of cyclohexyl dimethylphosphinate 110.
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The analysis of the 13C NMR spectrum (Figure 3.8) showed the expected couplings

of the carbon atoms with the phosphorus atom: the C-1 position carbon atom is

coupled (2J constant) with the phosphorus atom; the C-2 and C-6 position carbon

atoms are coupled (3J constant) with the phosphorus atom; the large 1J constant

confirms the two methyl groups bonded to the phosphorus atom. The 31P NMR

spectrum shows one signal (δP 52.0), which correlates well with data for a similar

compound.120

Figure 3.8. 13C NMR spectrum of cyclohexyl dimethylphosphinate 110.

Scheme 3.8. Synthesis of cyclohexyl dimethylphosphinothioate 111. Reagents and conditions: i.
N,N-Diisopropylamine (2.0 equiv), Et2O, - 10°C to RT, 73% yield. ii. MeLi (3.1 equiv), Et2O, - 78 °C to
RT. iii. Cyclohexanol (0.5 equiv), imidazole (2.0 equiv), CH2Cl2, - 78 °C to RT. iv. Molecular sulfur
(2.0 equiv), CH2Cl2, RT. Yield over ii, iii and iv steps 53%.

The cyclohexyl dimethylphosphinothioate 111 was synthesised following the same

synthetic route used for the synthesis of compound 110. Starting from phosphorus

trichloride, the presumed cyclohexyl dimethylphosphinite 114 was prepared and

oxidised in situ using two equivalents of molecular sulfur (Scheme 3.8). In the 1H

NMR spectrum (Figure 3.9) the six methyl group hydrogen atoms were coupled with

the phosphorus atom (2JP-H 13.3).
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Figure 3.9. 1H NMR spectrum of cyclohexyl dimethylphosphinothioate 111.

The 13C NMR spectrum showed the following couplings (Figure 3.9). The C-1

position (2J constant), C-2 position and C-6 position (3J constant) carbon atoms

were coupled with the phosphorus atom, and the two methyl groups carbon atoms

were coupled with a 1J value of 75.0 Hz. The 31P NMR spectrum shows one signal

(δP 91.0). These data are in good agreement with the literature values.121,122

Figure 3.10. 13C NMR spectrum of cyclohexyl dimethylphosphinothioate 111. The signal at δC 128.0
was assigned to of C6DXHY, present as contaminant of the locking solvent C6D6.

3.4.2. Phosphinylation using a pre-synthesised phosphinylating reagent

The above method for the installation of the dimethylphosphinyl functional group

proved to be efficient on simple alcohols such as cyclohexanol; however, it was

envisaged that the use of an excess of methyl lithium could limit the application of
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the method to inositol intermediates containing functional groups sensitive to such

strong bases. Therefore, a milder and more general procedure for the

phosphinylation of alcohols was developed. This involved the synthesis and

purification of compound 113 following a literature procedure (Scheme 3.9).123

Scheme 3.9. Synthesis of Diisopropylamino dimethylphosphine 113. Reagents and conditions: i.
N,N-Diisopropylamine (2.0 equiv), Et2O, - 10 °C to RT, 73% yield. ii. Methyl magnesium bromide (3.0
equiv), Et2O, - 78 to RT, 1h, 58% yield.

Compound 113 was prepared as described above by treating phosphorus trichloride

with N,N-diisopropylamine. Dialkylation of 112 with methyl magnesium bromide in

diethyl ether afforded, after Kugelrohr distillation under inert atmosphere, pure

diisopropylamino dimethylphosphine 113 (δP 8.3).

Scheme 3.10. Synthesis of cyclohexyl dimethylphosphinate 110. Reagents and conditions: i.
Diisopropylamino dimethylphosphine 113 (2.5 equiv), 1H-tetrazole (2.5 equiv), CH2Cl2, - 78 °C to RT,
1.5 h. ii. mCPBA (2.5 equiv), CH2Cl2, - 78 °C to RT, 90% yield.

The freshly synthesised compound 113 was used as phosphinylating reagent

(Scheme 3.10). Cyclohexanol was added to a solution of the phosphine 113 and

1H-tetrazole in dry dichloromethane at - 78 °C. After stirring the resulting mixture at

room temperature for 1.5 hours, the presumed intermediate phosphinite 114 was

shown to be present in the mixture by 31P NMR analysis (δP 112.3). Oxidation of the

phosphinite 114 with 3-chloroperoxybenzoic acid gave the phosphinate 110 in 90%

yield. Using this procedure it was possible to improve the yield of the

phosphinylation reaction.
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3.5 Towards the synthesis of C-4 position-modified InsP3

analogues

The phosphinylation method described above was used for the installation of the

dimethylphosphinyl moiety at the C-4 position in the inositol intermediate 100.

3.5.1. Synthesis of the intermediate C-4 position dimethylphosphinyl myo-

inositol derivative 102

Scheme 3.11. Synthesis of dimethylphosphinate 102. Reagents and conditions: a. Diisopropylamino
dimethylphosphine (2.5 equiv), 1H-tetrazole (2.5 equiv), CH2Cl2, RT. b. mCPBA, CH2Cl2, 0 °C to RT,
94% yield.

The phosphinylation procedure described above was used to synthesise compound

102 (Scheme 3.11). Alcohol 100 was added to a solution of diisopropylamino

dimethylphosphine 113 and 1H-tetrazole in dry dichloromethane at - 78 °C. The

reaction was monitored using 31P NMR, which indicated the presence of the

presumed intermediate 116 in the reaction mixture (δP 130.0). Oxidation with 3-

chloroperoxybenzoic acid gave the dimethylphosphinate 102 in high yield.

Scheme 3.12. Synthesis of compound 117. Reagents and conditions: as shown in Table 3.1.

In a first attempt to remove the allyl groups and synthesise the diol 117 (Scheme

3.12), Wilkinson’s catalyst was used to isomerise the allyl groups to the

correspondent vinyl ether groups (Table 3.1, experiment 1). After heating compound

102 under reflux in the presence of the Wilkinson’s catalyst, 1H NMR analysis

indicated that a change had occurred in the set of signals for the allyl protons;

however, it was not possible to establish whether the allyl groups had been

converted to the vinyl ether groups. The crude material obtained after removing the

solvent was treated with acetyl chloride in methanol/dichloromethane. TLC analysis

indicated the presence of a mixture of compounds more polar than the starting

material; the attempted purification by column chromatography failed, and 1H NMR
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and 31P NMR analysis of the crude mixture indicated that decomposition of the

starting material had occurred (lack of the expected signals for the

dimethylphosphinyl group). It was proposed that the dimethylphosphinyl moiety may

interact with the rhodium atom in the catalyst, leading to undesired side reactions.

Consequently, a series of experimental conditions were investigated in order to

remove the two allyl groups on compound 102 and synthesise compound 117

(Scheme 3.12 and Table 3.1).

Table 3.1. Experimental condition investigated for the removal of allyl groups in compound 102.

Following the procedure recently reported by Chen,124 compound 102 was dissolved

in a mixture of methanol/water and heated under reflux in the presence of palladium

on activated carbon and 4-toluenesulfonic acid monohydrate (Table 3.1, experiment

2). According to this procedure, the palladium catalyst would effect the isomerisation

of the allyl groups, that would then be cleaved by the solvent under acidic catalysis

conditions promoted by the 4-toluenesulfonic acid. After 20 hours the TLC analysis

indicated the complete disappearance of the starting material and the presence of a

number of more polar compounds. Purification by column chromatography furnished

a material that was characterised by 1H NMR and 31P NMR analysis; it was

proposed that this material consisted of the two regioisomeric compounds 117 and

118 shown in figure 3.11.

Figure 3.11. Structures of the two presumed regioisomeric compounds 117 and 118.

Experiment Reagents Solvents Time,
Temperature Yield

1
i. Wilkinson’s catalyst,

Hunig’s base
ii. Acetyl chloride

i. EtOH
ii. MeOH/CH2Cl2

i. 4 h, reflux
ii. 3 h, RT

Decomposition of the
starting material

2 Pd/C (10%), TsOH·H2O MeOH/H2O 8/3 20 h, reflux Allyl removed, product
isomerised

3 SmI2, TEA, H2O THF 2 days, RT No reaction

4 SmI2,
iPrNH2, H2O THF 2 days, RT No reaction

5 Pd/C (10%), TsOH·H2O MeOH/H2O 8/3 8 h, reflux No reaction

6 Pd/C (10%), TsOH·H2O MeOH/H2O 8/3 24 h, 60 °C 21% yield
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This result was explained by assuming that the prolonged heating in methanol in the

presence of the acidic catalyst 4-toluenesulfonic acid monohydrate promoted the

isomerisation of compound 117 to compound 118 by intramolecular

transesterification of the C-4 position dimethylphosphinyl group to the newly formed

C-5 position hydroxyl group.

Samarium iodide has recently been shown to effect the selective reductive cleavage

of unsubstituted allyl protecting groups in carbohydrates.125 The method seemed to

be a mild and effective approach to achieve the synthesis of compound 117.

Compound 102 and dry triethylamine (20 equiv) were dissolved in a 0.1 M solution

of samarium iodide (5 equiv) in dry tetrahydrofuran and water (15 equiv) was added

in order to initiate the reaction (Table 3.1, experiment 3). After stirring the mixture for

two days TLC analysis indicated that no reaction had occurred. The reaction was

repeated using the same procedure and conditions but using dry isopropylamine as

a base which, according to the literature procedure,125 should have increased the

reaction rate (Table 3.1, experiment 4). After two days the starting material was

found to be unreacted by TLC analysis. It was proposed that the reactivity of the

samarium iodide reagent could be decreased by interactions with the C-4 position

dimethylphosphinyl group.

The removal of the allyl groups using the palladium on activated carbon in the

presence of 4-toluenesulfonic acid could be the method of choice if it was possible

to control and avoid the undesired transesterification of the C-4 position

dimethylphosphinyl group. It was therefore attempted to carry out the reaction by

heating under reflux compound 102 in methanol/water for a period of 8 h (Table 3.1,

experiment 5). TLC analysis indicated that no reaction had occurred, suggesting that

a prolonged reaction time was needed. The reaction was repeated by heating the

methanol/water mixture to 60 °C for a period of 24 hours (Table 3.1, experiment 6).

TLC analysis indicated that the starting material had been completely consumed

and that a number of more polar compounds were present. Purification by column

chromatography afforded the crude diol 117 in 21% yield.

Although the above described method furnished compound 117 in low yield (Table

3.1, experiment 6), it was decided to attempt the following step consisting in the

phosphitylation and oxidation of diol 117 to compound 119 (Scheme 3.13).
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3.5.2. Towards the synthesis of the C-4 position myo-inositol intermediate

119 - Method A

Scheme 3.13. Attempted phosphitylation and oxidation of compound 117. Reagents and conditions:
a. Bis(benzyloxy)-N,N-diisopropylamino phosphine (5.0 equiv), 1H-tetrazole (5.0 equiv), CH2Cl2, RT.
b. mCPBA (5.0 equiv), - 78 °C to RT. A complex mixture of compound was obtained instead of the
desired compound 119.

In order to install the two phosphate groups on intermediate 117 the well established

phosphoramidite chemistry was employed. Compound 117 dissolved in

dichloromethane was added to a mixture of the phosphitylating reagent

bis(benzyloxy)-N,N-diisopropylamino phosphine and 1H-tetrazole (Scheme 3.13).

After oxidation with 3-chloroperoxybenzoic acid, TLC analysis of the reaction

mixture indicated the presence of a number of compounds. Purification by column

chromatography furnished a compound that was analysed by 1H NMR and
31P NMR. The analysis indicated the obtained material was constituted of a mixture

of at least two compounds; these compounds could be isomers of either the starting

material 117 or the desired product 119, or compounds deriving from the partial

phosphitylation and oxidation of compound 117. One explanation for the described

experimental outcome was given by considering that acidic catalyst 1H-tetrazole

used in the reaction could promote the transesterification of the C-4 position

dimethylphosphinyl moiety with the neighbouring hydroxyl groups.
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3.6 Synthesis of the key intermediate (-)-1D-2,3,6-tris-O-benzyl-

myo-inositol 1,5-bis(dibenzylphosphate) 122

Scheme 3.14 Synthesis of compound 122. Reagents and conditions: i. NaH (1.1 equiv), PMBCl (1.1
equiv), TBAI (0.05 equiv), DMF, 0 °C to RT, 95% yield. ii. a. Wilkinson’s catalyst (0.4 equiv), BuLi
(1.6 equiv), THF, reflux, 7 h. b. AcCl (0.6 equiv), CH2Cl2/MeOH (3/2), RT, 89% yield. iii. a.
Bis(benzyloxy)-N,N-diisopropylamino phosphine (5.0 equiv), 1H-tetrazole (5.0 equiv), CH2Cl2, RT. b.
mCPBA (5.0 equiv), - 78 °C to RT, 75% yield. iv. CAN (6.0 equiv), MeCN/H2O (4/1), RT, 2 h, 73%
yield.

As described above, the installation of the dimethylphosphinyl moiety at the C-4

position in intermediate 100 introduced a series of problems related to the stability of

this group towards the experimental conditions to be used in the following synthetic

steps. It was necessary, therefore, to make use of a protecting group at the C-4

position as described in the retrosynthetic Scheme 3.1 (vide supra). The synthesis

of the key intermediate 122 was achieved from compound 100 in four steps

(Scheme 3.14). Protection of the C-4 position hydroxyl group in compound 100 with

4-methoxybenzyl chloride afforded intermediate 101 in high yield. The following

removal of the two allyl groups in compound 101 using the Wilkinson’s catalyst

method furnished the diol 120 in moderate yield (Table 3.2, experiment 1). In order

to find the optimal reaction conditions for the removal of the two allyl groups in

intermediate 101 and improve the reaction yields, a number of different methods

were investigated (Table 3.2).
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Table 3.2. Investigation of different experimental condition for the removal of the allyl groups in
compound 101

The method described by Chen124 using palladium on activated carbon in the

presence of 4-toluenesulfonic acid was developed to remove allyl groups in inositol

intermediates containing one or more 4-methoxybenzyl groups, therefore seemed to

be ideal for the removal of the two allyl groups in compound 101. This procedure

furnished the desired compound 120 in 32% yield (Table 3.2, experiment 2). The

reaction was complete in three hours, and taking into consideration that the

4-methoxybenzyl protecting group is known to be unstable in acidic environments,

the low yield could be due to the decomposition of either the starting material or the

reaction product.

The above method124 was modified by removing the 4-toluenesulfonic acid from the

reaction mixture (Table 3.2, experiment 3), the rationale being that the palladium

catalyst would isomerise the allyl groups to the vinyl ether group, which could then

be removed by using milder reaction conditions. The reaction was monitored by TLC

analysis and reached completion after 15 hours. 1H NMR analysis of the resulting

material revealed loss of the signals for the allyl protons, as well as those for the

aromatic protons, indicating that complete decomposition of the starting material had

occurred. This result was explained assuming that the palladium catalyst in the

presence of the protic solvents methanol and water had effected the reductive

cleavage of the protecting groups on the inositol ring.

Gigg126 reported the isomerisation of allyl groups by using a strong hindered base,

such as potassium tert-butoxide. The reaction was attempted by heating compound

101 to reflux in the presence of potassium tert-butoxide (Table 3.2, experiment 4).
1H NMR indicated that the allyl groups had isomerised, and the resulting material

Experiment Reagents Solvents Time,
Temperature Yield

1
i. Wilkinson’s catalyst,
Hunig’s base
ii. Acetyl chloride

i. EtOH
ii. MeOH/CH2Cl2

i. 3 h, reflux
ii. 3 h, RT 44%

2 Pd/C (10%), TsOH·H2O MeOH/H2O 4/1 3 h, reflux 32%

3 Pd/C (10%) MeOH/H2O 4/1 15 h, reflux Decomposition of the
starting material

4 i. KOtBu
ii. Acetyl chloride

i. Dry DMSO
ii. MeOHl/CH2Cl2

i. 3.5 h, reflux
ii. 3 h, RT 20%

5
i. Wilkinson’s catalyst,
BuLi
ii. Acetyl chloride

i. THF
ii. Methanol/CH2Cl2

i. 6 h, reflux
ii. 3 h, RT 89%
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was treated with acetyl chloride in methanol/dichlorometane to effect the

methanolysis of the vinyl ether groups, furnishing compound 120 in 20% yield.

These reaction conditions were judged to be too harsh, therefore this procedure was

abandoned.

The isomerisation of the allyl groups using Wilkinson’s catalyst provided the best

results, although the yields were moderate (Table 3.2, experiment 1). One known

drawback of Wilkinson’s catalyst promoted isomerisation of allyl groups is that the

allyl ethers are partially reduced to the propyl ethers, which are unreactive towards

the acidic methanolysis necessary to unveil the hydroxyl groups. This could explain

the moderate yield obtained in the experiment 1 shown in Table 3.2. According to

the procedure previously described by Boons,127 treatment of the Wilkinson’s

catalyst with n-butyl lithium furnishes a catalyst that effects the isomerisation of allyl

groups to the corresponding vinyl ether groups without any detectable trace of the

reduced propyl ether by-products. The Wilkinson’s catalyst was therefore pre-

treated with n-butyl lithium and then used to isomerise the allyl groups in compound

101. 1H NMR analysis indicated complete isomerisation of the allyl groups, and the

following removal of the intermediate vinyl ethers furnished the desired diol 120 in

89% yield.

Having found a high-yielding procedure for the synthesis of compound 120, it was

phosphitylated and oxidised to furnish intermediate 121 in good yield, which was in

turn treated with ceric ammonium nitrate in acetonitrile/water to give the desired key

intermediate 122 in 73% yield (Scheme 3.14). The structure and absolute

stereochemistry of compound 122 was confirmed by X-ray crystallography (Figure

3.11).

Figure 3.11. A PyMOL (www.pymol.org) representation of the X-ray crystal structure of compound
122.
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3.7 Synthesis of C-4 position-modified InsP3 analogues

Figure 3.13. Structures of the C-4 position-modified InsP3 analogues to be synthesised.

The key intermediate 122 represents a versatile compound, as it allows the

synthesis of a series of C-4 position-modified InsP3 analogues. Analysis of the

InsP3R1 binding domain crystal structure indicates that the introduction of a moiety

approximating the geometry of a phosphate group but with reduced hydrogen-

bonding capabilities may lead to compounds that are able to antagonise the

InsP3Rs. Figure 3.13 shows the target compounds to be synthesised in order to

assess the structural requirements for the optimum antagonist activity at the

InsP3Rs. The dimethylphosphinyl compound 32, the di-n-butylphosphinyl compound

123, the three phosphoryl compounds 127, 128 and 129 and the mesyl compound

124 approximate the geometry of the C-4 position phosphate group of InsP3, but

possess different electronic distribution and steric bulkiness and will therefore

provide information about the structural requirements needed for achieving a

inhibitory activity at the InsP3Rs. Compound 125 represents the simplest C-4

position-modified InsP3 analogue and will provide basic information on the effect of

removing most of the hydrogen bonding interactions at the C-4 position. Compound

126 will be synthesised in order to investigate whether a phosphate group

positioned away from the inositol ring can be used to lock the α- and β-domains at

the InsP3 binding site in the opened position.
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3.7.1. Model studies on the stability of the dimethylphosphinyl group

towards the hydrogenolysis reaction

Scheme 3.15. Synthesis of the model compound 131. Reagents and conditions: i. NaH (1.1 equiv),
BnBr (1.1 equiv), THF, 0 ºC to RT, 40% yield; ii. a. Diisopropylamino dimethylphosphine (2.5 equiv),
1H-tetrazole (2.5 equiv), CH2Cl2, RT. b. mCPBA, 0 °C to RT, 89% yield.

In view of the forthcoming synthesis of compound 32, it was decided to assess the

stability of the dimethylphosphinyl moiety towards the experimental conditions

previously used for the hydrogenolysis of benzyl groups. Model compound 131 was

synthesised in two steps starting from (±)-1,2-trans-dihydroxycyclohexane 55

(Scheme 3.15). The benzyl protection of one of the two hydroxyl groups furnished

the alcohol 130 that was phosphinylated by using diisopropylamino

dimethylphosphine and oxidised to give compound 131 in high yield.

Scheme 3.16. The hydrogenolysis of the benzyl group in model compound 131. Reagents and
conditions: H2, Pd black (20.0 equiv), NaHCO3 (4.0 equiv), tBuOH/H2O (6/1), RT, 7 h, 92% yield.

The hydrogenolysis of the benzyl group in model compound 131 proceeded

smoothly furnishing compound 70 in 92% yield (Scheme 3.16); the sodium hydrogen

carbonate present in the mixture had no effect on the dimethylphosphinyl moiety,

confirming the efficacy of the method.
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3.7.2. Towards the synthesis of the C-4 position myo-inositol intermediate

119 - Method B

Scheme 3.17. Attempted synthesis of compound 119. Reagents and conditions: a. Diisopropylamino
dimethylphosphine 113 (2.5 equiv), 1H-tetrazole (2.5 equiv), CH2Cl2, RT. b. mCPBA, CH2Cl2, 0 °C to
RT. It is thought that the reaction led to the partial isomerisation of starting material to regioisomer
132.

The previously developed phosphinylation method was used to install the

dimethylphosphinyl group at the C-4 position in compound 122. Intermediate 122

was added to a mixture of diisopropylamino dimethylphosphine 113 and

1H-tetrazole in dichloromethane (Scheme 3.17). After 15 h the 31P NMR analysis

indicated that the signal for the intermediate phosphinite (expected to be in the

region of δP 130-100, as seen in the similar intermediate 116, Scheme 3.11) was not

present. TLC analysis revealed the presence of a small amount of starting material

and a less polar compound. The mixture was treated with 3-chloroperoxybenzoic

acid and purification by column chromatography afforded a 17% of the starting

material and a 33% of the less polar compound. 1H NMR and 31P NMR analysis

indicated that this material could have the structure of compound 132 (Scheme

3.17). Mass spectrometry analysis was also consistent with the proposed structure

[m/z (ES+) 993 (M+Na)+]. The absence of reaction could be explained by assuming

that the bulky phosphinylating reagent could not react with the C-4 position hydroxyl

group because of the steric hindrance of the C-5 position phosphate group. The

isomerisation of compound 122 to compound 132 could be ascribed to an acidic

catalysed transesterification reaction catalysed by the 1H-tetrazole, although it is

possible that the phosphinylating species could be responsible of promoting the

isomerisation reaction.
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3.7.3. Synthesis of (+)-1D-4-O-dimethylphosphinyl-myo-inositol 1,5-

bisphosphate (sodium salt) 32

The developed phosphinylation method using the reagent diisopropylamino

dimethylphosphine 113 failed when applied to compound 122 (Scheme 3.17).

Ramage128 reported the use of dialkyl phosphinates as protecting groups in peptide

synthesis. The procedure used to install such protecting groups involved the

synthesis of a highly reactive dialkyl phosphinic chloride and its reaction with the

compound to be protected in the presence of a base.

Scheme 3.18. Synthesis of dimethylphosphinic chloride 134. Reagents and conditions: Thionyl
chloride (4.8 equiv), toluene, 0 °C to RT, then reflux, 1.5 h, 59% yield.

Following the procedure described by Ramage,128 tetramethyl diphosphine disulfide

133 was treated with thionyl chloride in toluene to give, after purification by

Kugelrohr distillation under inert atmosphere, the desired dimethylphosphinic

chloride 134 (Scheme 3.18).

Scheme 3.19. Synthesis of (+)-1D-4-O-dimethylphosphinyl-myo-inositol 1,5-bisphosphate (sodium
salt) 32. Reagents and conditions: i. Dimethylphosphinic chloride (4.0 equiv), 2,6-lutidine (5.0 equiv),
DMF, - 42 °C to RT, 22 h, 76% yield. ii. H2, Pd black (20.0 equiv), NaHCO3 (4.0 equiv), tBuOH/H2O
(6/1), RT, 7 h, 93% yield.

The dimethylphosphinic chloride reagent 134 was reacted with compound 122 in the

presence of 2,6-lutidine to afford compound 119 in good yield (Scheme 3.19). The

final hydrogenolysis of the benzyl groups was achieved by using palladium black in

the presence of sodium hydrogen carbonate as previously described. The reaction

afforded the final compound (+)-1D-4-O-dimethylphosphinyl-myo-inositol 1,5-

bisphosphate (sodium salt) 32 in excellent yield.
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Figure 3.14. 1H NMR spectrum of compound 32. A - Signals for the two methyl groups of the C-4
position dimethylphosphonate moiety. Each methyl group signal is split in a doublet by the
neighbouring phosphorus atom. B - 31P-decoupled 1H NMR spectrum of compound 32, showing the
signals for the two methyl groups of the C-4 position dimethylphosphonate moiety. The coupling with
the neighbouring phosphorus atom has been removed by the decoupling sequence.

Figure 3.14 is shown the 1H NMR spectrum of compound 32. The expansion A

shows the two doublets for the two diastereotopic methyl groups of the C-4 position

dimethylphosphonate moiety. The expansion B shows the signals for the two methyl

groups as they appear in the 31P-decoupled 1H NMR spectrum of compound 32. The

couplings of the 1H nuclei with the neighbouring 31P nucleus have been removed by

the decoupling sequence.
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Figure 3.15. HSQC 2D-spectrum of compound 32. The expansion shows the signals for the two
methyl groups of the C-4 position dimethylphosphonate moiety. In the magnified area are shown the
correlation signals between 1H and 13C nuclei of the two methyl groups.

Figure 3.15 shows the heteronuclear single quantum correlation (HSQC) spectrum

of compound 32. This technique allowed the assignment of the 1JCP constants for

the C-4 position dimethylphosphinyl moiety by transferring the known 1H nuclei

assignments onto the 13C nuclei.

3.7.4. Synthesis of (-)-1D-4-O-di-n-butylphosphinyl-myo-inositol 1,5-

bisphosphate (sodium salt) 123

The bulky C-4 position di-n-butylphosphinyl InsP3 analogue was synthesised in two

steps from intermediate 122 using the di-n-butylphosphinic chloride reagent 137

(Scheme 3.21).

Scheme 3.20. Synthesis of di-n-butylphosphinic choride 137. Reagents and conditions: i. a.
n-Butylmagnesium bromide (4.0 equiv), Et2O, 0 °C to RT, then reflux, 1 h. b. HNO3 (30%), 0 °C to
RT, then 70 °C, 1 h, 31% yield. ii. Thionyl chloride, toluene, 0 °C to RT, then reflux, 30 min, 84%
yield.

Reagent 137 was synthesised in two steps from thiophosphoryl chloride 135

(Scheme 3.20).128,129 The starting material was reacted with the freshly prepared
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Grignard reagent n-butylmagnesium bromide to furnish a mixture of compounds.

This material could be directly treated with thionyl chloride and converted to

compound 137;129 however, this procedure was not used as the by-products that

could be present in the mixture could lead, over the treatment with thionyl chloride,

to the undesired compound di-n-butylphosphinothioyl chloride, which would be

difficult to separate from the desired compound 137.128 Therefore, the mixture

obtained from the reaction of compound 135 with the Grignard reagent was oxidised

using nitric acid. During the oxidation step the by-products are converted into the

di-n-butylphosphinic acid 136. Chlorination of the pure compound 136 with thionyl

chloride affords, after vacuum distillation, the desired reagent 137 in 84% yield.

Scheme 3.21. Synthesis of (+)-1D-4-O-di-n-butylphosphinyl-myo-inositol 1,5-bisphosphate (sodium
salt) 123. Reagents and conditions: i. Di-n-butylphosphinic chloride (4.0 equiv), TEA (5.0 equiv),
DMAP (catalytic amount), DMF, - 42 °C to RT, 15 h, 65% yield. ii. H2, Pd black (20.0 equiv), NaHCO3

(4.0 equiv), tBuOH/H2O (10/1), RT, 8 h, 95% yield.

Compound 123 was synthesised in two steps from the intermediate 122 (Scheme

3.21). The freshly synthesised di-n-butylphosphinic chloride 137 was reacted with

compound 122 in the presence of triethylamine and 4-dimethylaminopyridine to give

the intermediate 139 in 65% yield; hydrogenolysis in the presence of sodium

hydrogen carbonate furnished the final compound (+)-1D-4-O-di-n-butylphosphinyl-

myo-inositol 1,5-bisphosphate (sodium salt) 123 in high yield.

3.7.5. Synthesis of (+)-1D-4-O-methylsulfonyl-myo-inositol 1,5-bisphosphate

(sodium salt) 124

Scheme 3.22. Synthesis of (+)-1D-4-O-methylsulfonyl-myo-inositol 1,5-bisphosphate (sodium salt)
124. Reagents and conditions: i. Methanesulfonyl chloride (4.0 equiv), TEA (5.0 equiv), DMAP
(catalytic amount), CH2Cl2, 0 °C to RT, 2 days, 56% yield. ii. H2, Pd black (20.0 equiv), NaHCO3 (4.0
equiv), tBuOH/H2O (10/1), RT, 8 h, 91% yield.
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The synthesis of compound 124 was achieved in two steps from the intermediate

122 (Scheme 3.22). Methanesulfonyl chloride was reacted with compound 122 in

the presence of triethylamine and 4-dimethylaminopyridine, furnishing the desired

compound 139 in 56% yield. The hydrogenolysis of the benzyl protecting groups in

the presence of sodium hydrogen carbonate gave the final compound (+)-1D-4-O-

methylsulfonyl-myo-inositol 1,5-bisphosphate (sodium salt) 124 in 91% yield.

3.7.6. Synthesis of (+)-1D-myo-inositol 1,5-bisphosphate (sodium salt) 125

Scheme 3.23. Synthesis of (+)-1D-myo-inositol 1,5-bisphosphate (sodium salt) 125. Reagents and
conditions: H2, Pd black (20.0 equiv), NaHCO3 (4.0 equiv), tBuOH/H2O (5/1), RT, 8 h, 92% yield.

The synthesis of compound 125 was achieved from intermediate 122. The

hydrogenolysis of the benzyl protecting groups by hydrogenolysis in the presence of

sodium hydrogen carbonate furnished (+)-1D-myo-inositol 1,5-bisphosphate (sodium

salt) 125 in 92% yield (Scheme 3.23).

3.7.7. Synthesis of (-)-1D-4-O-(2-phosphoryloxy)ethyl-myo-inositol 1,5-

bisphosphate (sodium salt) 126

Scheme 3.24. Synthesis of (-)-1D-4-O-(2-phosphoryloxy)ethyl-myo-inositol 1,5-bisphosphate (sodium
salt) 126. Reagents and conditions: i. NaH (1.2 equiv), 2-allyloxyethyl bromide 143 (1.2 equiv), TBAI
(catalytic amount), DMF, 0 °C to RT, 15 h, 80% yield. ii. a. Wilkinson’s catalyst (0.1 equiv), BuLi (0.4
equiv), THF, reflux, 6 h. b. AcCl (0.6 equiv), CH2Cl2/MeOH (3/2), RT, 80% yield. iii. a. Bis(benzyloxy)-
N,N-diisopropylamino phosphine (7.5 equiv), 1H-tetrazole (7.5 equiv), CH2Cl2, RT. b. mCPBA (7.5
equiv), - 78 °C to RT, 46% yield. iv. H2, Pd black (20.0 equiv), NaHCO3 (6.0 equiv), tBuOH/H2O (5/1),
RT, 8 h, 89% yield.
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Compound 126 was synthesised in four steps from intermediate 100 (Scheme 3.24).

Alcohol 100 was treated with sodium hydride and then reacted with freshly

synthesised 2-allyloxyethyl bromide 143 to give compound 140 in good yield.

Removal of the three allyl protecting groups using Wilkinson’s catalyst pre-treated

with n-butyl lithium furnished the triol 141 in 80% yield. This was phosphitylated

using the standard phosphoramidite method and oxidised to intermediate 142, which

was hydrogenolysed in the presence of sodium hydrogen carbonate to give the final

compound (-)-1D-4-O-(2-phosphoryloxy)ethyl-myo-inositol 1,5-bisphosphate (sodium

salt) 126 in 89% yield (Scheme 3.24).

3.7.8. Towards the synthesis of the C-4 position dimethylphosphoryl myo-

inositol derivative 144

Scheme 3.25. The attempted synthesis of compound 144. Method A: Reagents and conditions:
Dimethyl chlorophosphate (4.0 equiv), 2,6-lutidine (5.0 equiv), DMAP (catalytic amount), DMF, - 42
°C to RT, 2 days. Method B. Reagents and conditions: a. Dimethyl chlorophosphite 145 (10.0 equiv),
Hunig’s base (20.0 equiv), DMF, - 42 °C to RT, 15 h. b. mCPBA (10.0 equiv), DMF, - 42 °C to RT, 30
min.

The synthesis of the C-4 position dimethylphosphoryl compound 144 was first

attempted using dimethyl chlorophosphate in the presence of 2,6-lutidine (Scheme

3.25, method A). After 2 days the starting material was found to be unreacted. It is

thought that the low reactivity of the phosphorylating reagent dimethyl

chlorophosphate prevented the formation of compound 144. It was therefore

decided to use the more reactive reagent dimethyl chlorophosphite 145. This

compound was freshly synthesised and used for the phosphitylation of compound

122 in the presence of Hunig’s base (Scheme 3.25, method B). The reaction

afforded a mixture of compounds which could not be purified by column

chromatography. 1H NMR analysis indicated the presence of non-inositol related

impurities, and the 31P NMR spectrum showed both signals not related with those

expected for the product, and signals that could correspond to phosphate groups

and therefore to the desired product. Since some of the phosphorus-containing

impurities were present as contaminants in the 31P NMR spectrum of the dimethyl

chlorophosphite reagent 145, this compound was synthesised again and more
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carefully purified by vacuum distillation and the preparation of compound 144 further

attempted. This second experiment yielded a mixture of compounds displaying 1H

NMR and 31P NMR signals similar to those for the mixture obtained from the

previous experiment, indicating that the impurities present in chlorophosphite

reagent 145 could not be removed by vacuum distillation. It is thought that these

impurities could affect the outcome of the phosphinylation reaction of compound

122.

3.7.9. Towards the synthesis of the C-4 position diethylphosphoryl InsP3

analogue 128

Scheme 3.26. Attempted synthesis of compound 128. Reagents and conditions: i. a. Diethyl
chlorophosphite (3.0 equiv), TEA (4.0 equiv), CH2Cl2, - 78 °C to RT, 4 h. b. mCPBA (3.0 equiv),
CH2Cl2, - 78 °C to RT, 30 min, 52% yield. ii. H2, Pd black (20.0 equiv), NaHCO3 (4.0 equiv),
tBuOH/H2O (8/1), RT, 7 h.

The intermediate 146 was synthesised by phosphitylation and oxidation using

diethyl chlorophosphite as phosphitylating reagent. The intermediate 122 was

reacted with diethyl chlorophosphite in the presence of triethylamine (Scheme 3.26).

TLC analysis after four hours indicated the complete consumption of the starting

material and the presence of a less polar compound, which is thought to be the

intermediate phosphite. The reaction mixture was treated with

3-chloroperoxybenzoic acid to furnish compound 146 in 52% yield. The removal of

the benzyl protecting groups was attempted by using the hydrogenolysis procedure

previously described. Treatment of 146 with palladium black in the presence of

sodium hydrogen carbonate yielded a material whose 1H NMR spectrum displayed

very broad signals; moreover, 31P NMR analysis indicated the presence of a number

of signals in the region of the phosphate groups, suggesting that the C-4 position

diethylphosphate group could have undergone an intramolecular transesterification

reaction with the neighbouring hydroxyl group. Although the intermolecular

transesterification is less likely to occur because of the steric hindrance of the

phosphate groups, it could have also contributed to yielding a mixture of

compounds.
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3.7.10. Towards the synthesis of the C-4 position ethylenephosphoryl myo-

inositol derivative 147

Scheme 3.27. Attempted synthesis of compound 147. Method A. Reagents and conditions: i. a. 2-
Chloro-1,3,2-dioxaphospholane (6.0 equiv), TEA (8.0 equiv), CH2Cl2, - 78 °C to RT, 15 h. b. mCPBA
(6.0 equiv), CH2Cl2, - 78 °C to RT, 30 min. Method B. Reagents and conditions: i. a. 2-Chloro-1,3,2-
dioxaphospholane (15.0 equiv), pyridine, - 42 °C to RT, 15 h. b. mCPBA (6.0 equiv), CH2Cl2, - 78 °C
to RT, 30 min.

The synthesis of the C-4 position diethylphosphoryl compound 147 was attempted

by reacting intermediate 122 with 2-chloro-1,3,2-dioxaphospholane in the presence

of triethylamine (Scheme 3.27, method A). After 15 hours TLC analysis could not

establish whether the reaction had occurred, and the reaction mixture was treated

with 3-choroperoxybenzoic acid. Purification by column chromatography afforded

the unreacted starting material. The reaction was attempted again using the 2-

chloro-1,3,2-dioxaphospholane and pyridine as both the base and the solvent

(Scheme 3.27, method B). The pyridine was removed under reduced pressure after

15 hours and keeping the residue under an inert atmosphere, this was dissolved in

dichloromethane and treated with 3-choroperoxybenzoic acid. Purification by column

chromatography furnished the unreacted starting material.
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3.8 Future work

Figure 3.16. Structure of the C-4 position-modified InsP3 analogues compounds to be synthesised.

In order to assess the activity of the C-4 position phosphoryl InsP3 analogues at the

InsP3Rs, it is intended to complete the synthesis of compounds 127, 128 and 129

(Figure 3.16).

Scheme 3.28. Proposed synthesis of compound 148. Reagents and conditions: H2, Pd(OAc)2,
Pd(O2CCF3)2, AcOH, 18 °C.

As previously described, the removal of the benzyl protecting groups from

compound 146 using palladium black in the presence of sodium hydrogen carbonate

failed to furnish the desired compound 128; it is thought that a transesterification

reaction occurred, shifting the diethylphosphate group around the inositol ring.

Tsien50 reported a method for the removal of benzyl groups in inositol intermediates

where the phosphate groups were masked in order to achieve membrane-permeant

properties; this method involves the use of palladium acetate and palladium

trifluoroacetate as catalysts in glacial acetic as solvent. Performing the reaction at

18 °C it was possible to efficiently remove the benzyl protecting groups from the

inositol ring and preserve intact the masked phosphate groups. These reaction

condition will be tested on compound 146 to synthesise compound 148 which will be

obtained with the phosphate groups in the free-acids form (Scheme 3.28).

Scheme 3.29. Synthesis of compound 145 (as reported by Hata).130 Reagents and conditions: BDCP
151, pyridine, RT.

Hata130 has previously reported a procedure for the preparation of dimethyl

chlorophosphite 145 by non-oxidative chlorination of dimethyl hydrogen
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phosphonate 149 using the reagent tris(2,4,6-tribromophenoxy)dichlorophosphorane

(BDCP) (151, Scheme 3.29). The method allows the conversion of compound 149 to

the chlorophosphite 145 in high yield and avoids the formation of by-products.

Scheme 3.30 shows the reaction mechanism proposed by Hata.130

Scheme 3.30. Mechanism of the non-oxidative chlorination of dimethyl hydrogen phosphonate 149 to
dimethyl chlorophosphite 145 as reported by Hata.130

Dimethyl hydrogen phosphonate exists as a mixture of the two tautomeric form 149

and 150 (Scheme 3.30). Compound 150 reacts with BDCP 151 to yield the

intermediate species 152 which collapses to the dimethyl chlorophosphite 145 and

the inert compound tris(2,4,6-tribromophenoxy) phosphate 153.130

Scheme 3.31. Proposed synthesis of compound 154. Reagents and conditions: i. a. BDCP, pyridine,
RT. b. 122, pyridine, - 42 °C to RT. c. mCPBA, CH2Cl2, - 78 °C to RT. ii. H2, Pd(OAc)2, Pd(O2CCF3)2,
AcOH, 18 °C.

The method will be used to attempt the synthesis of dimethyl chlorophosphite 145

from dimethyl hydrogen phosphonate; reagent 145 would be generated in situ, thus

avoiding to introduce impurities in the phosphinylation step of compound 122

(Scheme 3.31); in such a way compound 144 would be purified and rigorously

characterised; final hydrogenolysis using palladium acetate and palladium

trifluoroacetate in glacial acetic acid at 18 °C would afford compound 154, with the

phosphate groups in the free-acids form (Scheme 3.31).
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Scheme 3.32. Synthesis of reagents 156 and 157. Reagents and conditions: A - PBr3, toluene, RT.
B - TMS-I, toluene, RT.

As previously described the phosphinylation of compound 122 using the reagent 2-

chloro-1,3,2-dioxaphospholane failed. To overcome this problem a more reactive

reagent will be used, that is, 2-bromo-1,3,2-dioxaphospholane 156 or 2-iodo-1,3,2-

dioxaphospholane 157 (Scheme 3.32). These compounds could be prepared from

ethylene hydrogen phosphite 155 by bromination with phosphorus tribromide or by

iodination with trimethylsilyl iodide (Scheme 3.32).131,132

Scheme 3.33. Proposed synthesis of compound 158. Reagents and conditions: i. a. 2-bromo-1,3,2-
dioxaphospholane 156 or 2-iodo-1,3,2-dioxaphospholane 157, TEA, CH2Cl2, - 78 °C to RT. b.
mCPBA, CH2Cl2, - 78 °C to RT. ii. H2, Pd(OAc)2, Pd(O2CCF3)2, AcOH, 18 °C.

Compound 122 would be phosphitylated and oxidised to the intermediate 147

(Scheme 3.33). The removal of the benzyl protecting groups by hydrogenolysis

using palladium acetate and palladium trifluoroacetate in glacial acetic acid at 18 °C

would afford compound 158, with the phosphate groups in the free-acids form

(Scheme 3.33).
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3.9 Summary and conclusions

The aim of this project of synthesising a series of C-4 position-modified InsP3

analogues as pure enantiomers has been achieved.

As a result of the studies towards the synthesis of such compounds, a robust

synthetic route starting from myo-inositol has been developed. This route has

allowed the synthesis of the key intermediate (-)-1D-2,3,6-tris-O-benzyl-myo-inositol

1,5-bis(dibenzylphosphate) 122 as pure enantiomer. Using this intermediate, the

C-4 position-modified InsP3 analogues 32, 109, 123, 124, 125 and 126 shown in

Figure 3.17 were synthesised in high yields. These compounds are predicted to act

as InsP3Rs competitive antagonists.

The intermediate 122 will allow the synthesis of a wider range of C-4 position-

modified InsP3 analogues, thus helping the process of both achieving the optimal

biological activity and acquiring more information about the behaviour of InsP3Rs.

Figure 3.17. Structures of the C-4 position-modified InsP3 analogues synthesised.
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4 Experimental Section

4.1 General
1H NMR spectra were recorded on a Bruker Avance 300 (300.1 MHz) instrument,

Bruker Avance 500 (499.9 MHz) instrument or a Varian Gemini 2000 (300.0 MHz)

instrument, using deuteriochloroform (or other indicated solvent) as reference and

internal deuterium lock. The chemical shift data for each signal are given as δ in

units of parts per million (ppm) relative to tetramethylsilane (TMS) where δTMS = 0.00

ppm. The multiplicity of each signal is indicated by: s (singlet); br s (broad singlet); d

(doublet); t (triplet); td (triplet of doublets); dd (doublet of doublets); ddd (doublet of

doublet of doublets); dddd (doublet of doublet of doublet of doublets); ddt (doublet of

doublet of triplets); sp (septet) or m (multiplet). The number of protons (n) for a given

resonance is indicated by nH. Aryl protons are indicated by ArH. Coupling constants

(J) are quoted in Hz and are recorded to the nearest 0.1 Hz.
13C NMR spectra were recorded on a Bruker Avance 300 (75.5 MHz) instrument

using the PENDANT sequence and internal deuterium lock or on a Varian Gemini

2000 (75.5 MHz) instrument using proton decoupling and internal deuterium lock.

The chemical shift data for each signal are given as δ in units of ppm relative to TMS

where δTMS = 0.00 ppm. Aryl carbons are indicated by ArCH and ArC; quaternary

carbons are indicated by Cq. Where appropriate, coupling constants (J) are quoted

in Hz and are recorded to the nearest 0.1 Hz.
31P NMR spectra were recorded on Bruker Avance 300 (121.5 MHz), or Varian

Gemini 2000 (121.4 MHz) instruments using proton decoupling and internal

deuterium lock. The chemical shift data for each signal are given as δ in units of ppm

relative to an external standard of 85% H3PO4.

IR spectra were recorded on a Perkin-Elmer Paragon series 1000 FTIR

spectrometer as thin films between potassium bromide discs or nujol mull or as

potassium bromide disks as indicated. Absorption maxima are reported in

wavenumbers (cm-1). Intensities of the maxima are quoted as strong (s), medium

(m), weak (w).

Melting points were determined using a Gallenkamp MF-370 or an Electrothermal

9100 melting point apparatus and are uncorrected.

Optical rotations were measured using an Optical Activity AA-1000 automatic

polarimeter or a Bellingham+Stanley Ltd ADP220 instrument, in cells with a path
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length of 2 dm or 1 dm. The concentration (c) is expressed in g/100 mL (equivalent

to g/0.1 dm3). Specific rotations are denoted T
D][ and are given in units of 10-1 deg

cm2 g-1 (T= ambient temperature in °C).

Analytical thin layer chromatography (TLC) was carried out on pre-coated 0.25 mm

ICN Biomedicals GmbH 60 F254 silica gel plates. Visualisation was by absorption of

UV light, or thermal development after dipping in either an ethanolic solution of

phosphomolybdic acid (PMA) or an aqueous solution of potassium permanganate,

potassium carbonate and sodium hydroxide.

Flash Column chromatography was carried out on silica gel (Apollo Scientific Ltd 40-

63 micron) or on activated aluminium oxide (Acros, 50-200 micron, neutral) as

indicated, under a positive pressure of compressed air.

Kugelrohr bulb-to-bulb distillations were carried out using a Büchi GKR-51 machine.

Boiling points are the actual oven temperatures.

Dichloromethane was distilled from calcium hydride in a recycling still. Diethyl ether

was distilled from sodium in a recycling still using benzophenone ketyl as an

indicator. Anhydrous N,N-dimethyl formamide was purchased from Aldrich UK and

dried by distillation from 4 Å molecular sieves onto 4 Å molecular sieves under an

atmosphere of nitrogen. Chemicals were purchase from Acros UK, Aldrich UK,

Avocado UK, Fisher UK or Fluka UK. All solvents and reagents were purified and

dried, where necessary, by standard techniques.133 Where appropriate and if not

stated otherwise, all non aqueous reactions were performed under an inert

atmosphere of nitrogen or argon, using a vacuum manifold with nitrogen passed

through 4 Å molecular sieves and self-indicating silica gel. In vacuo refers to the use

of a rotary evaporator attached to a diaphragm pump. Hexane refers to n-hexane

and petroleum ether to the fraction boiling between 40-60 oC. Room temperature

(RT) refers to the temperature of 25 °C.
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4.1.1. 2,4,10-Trioxatricyclo[3.3.1.13,7]decane-6,8,9-triol 37

myo-Inositol 1 (10 g, 55.5 mmol, 1.0 equiv) was dissolved in dry N,N-dimethyl

formamide (160 mL) under an atmosphere of nitrogen. Triethylorthoformate

(18.5 mL, 16.5 g, 111.0 mmol, 2.0 equiv) and 4-toluenesulfonic acid monohydrate

(2.7 g, 14.4 mmol, 0.3 equiv) were added with stirring. The reaction mixture was

heated to 100 °C and stirred for 16 h. The mixture was then cooled to room

temperature and the 4-toluenesulfonic acid quenched with a saturated aqueous

solution of sodium hydrogen carbonate (10 mL). The resulting solid was removed by

filtration and the mother liquor concentrated under reduced pressure. Most of the

sodium 4-toluenesulfonate was removed by crystallisation from methanol, and the

resulting mixture was concentrated under reduced pressure to give a yellow residue.

Purification by silica gel column chromatography, eluting with methanol and

chloroform (10/90), yielded 2,4,10-trioxatricyclo-[3.3.1.13,7]decane-6,8,9-triol 37

(16.2 g yield, 77%) as a colourless solid. Rf 0.52 (ethyl acetate/acetonitrile 80/20);

mp 220 °C dec. (from methanol/chloroform, Lit.106 300-302 °C ); δH (500 MHz; D6-

DMSO) 5.47 (1H, br s, equatorial OH), 5.45 (2H, d, J 1.2, 2 × axial OH), 5.31 (1H, d,

J 6.4, O3CH) 4.30-4.22 (2H, m, inositol ring), 4.08-4.03 (1H, m, inositol ring), 4.02-

3.96 (1H, m, inositol ring), 3.96-3.92 (2H, m, inositol ring). These data are in good

agreement with the literature values.106,134

4.1.2. 6-[(4’-Methoxy)benzyloxy]-2,4,10-trioxatricyclo[3.3.1.13,7]decane-8,9-

diol 38

2,4,10-Trioxatricyclo-[3.3.1.13,7]decane-6,8,9-triol 37 (15.0 g, 79.0 mmol, 1.0 equiv)

was dissolved in dry N,N-dimethyl formamide (250 mL) under an atmosphere of

nitrogen. The resulting mixture was cooled to 0 °C and sodium hydride (3.5 g, 60%

dispersion in mineral oil, 87.0 mmol, 1.1 equiv) was added portionwise with vigorous

stirring. The suspension was allowed to warm to RT and stirred for 2 h. The mixture

was re-cooled to 0 °C and tetra-n-butylammonium iodide (2 mg, 4 μmol, 0.05 equiv)
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and 4-methoxybenzyl chloride (12.2 mL, 13.6 g, 86.8 mmol, 1.1 equiv) were added.

The resulting slurry was allowed to warm to RT and stirred overnight. The sodium

hydride was quenched by addition of water (20 mL) and the resulting mixture was

concentrated under reduced pressure. The resulting oil was reconstituted in ethyl

acetate (80 mL) and water (80 mL), the layers separated and the aqueous layer

extracted with ethyl acetate (3 × 50 mL). The combined organic layers were washed

with brine (50 mL), dried (magnesium sulfate), filtered and concentrated under

reduced pressure. The resulting solid was purified by silica gel column

chromatography, eluting with ethyl acetate and hexane (20/80, then 25/75, then

30/70, then 40/60), to yield 6-[(4’-methoxy)benzyloxy]-2,4,10-trioxatricyclo-

[3.3.1.13,7]decane-8,9 diol 38 (19.5 g yield, 80%) as a colourless solid. Rf 0.32 (ethyl

acetate/hexane 50/50); mp 100-102 °C (from ethyl acetate/hexane, Lit.110 100-101

°C); δH (300 MHz; CDCl3) 7.25 (2H, d, J 8.7, ArH), 6.91 (2H, d, J 8.7, ArH), 5.44 (1H,

d, J 1.2, O3CH) 4.63 (1H, d, JAB 11.5, OCHAHB), 4.58 (1H, d, JAB 11.5, OCHAHB),

4.40-4.39 (2H, m, inositol ring), 4.27-4.19 (3H, m, inositol ring), 4.10 (1H, m, inositol

ring), 3.83 (3H, s, OCH3), 3.79 (1H, d, J 10.5, OH), 3.13 (1H, d, J 11.7, OH). These

data are in good agreement with the literature values.110,135

4.1.3. 8,9-Bis(benzyloxy)-6-[(4’-methoxy)benzyloxy]-2,4,10-

trioxatricyclo[3.3.1.13,7]decane 39

6-[(4’-Methoxy)benzyloxy]-2,4,10-trioxatricyclo-[3.3.1.13,7]decane-8,9 diol 38 (19.8 g,

63.7 mmol, 1.0 equiv) was dissolved in dry N,N-dimethyl formamide (200 mL) under

an atmosphere of nitrogen. The mixture was cooled to 0 °C and sodium hydride (6.4

g, 60% dispersion in mineral oil, 159.4 mmol, 2.5 equiv) was added portionwise. The

mixture was allowed to warm to RT and stirred for 2 h, then re-cooled to 0 °C and

benzyl bromide (27.2 g, 18.9 mL, 159.4 mmol, 2.5 equiv) was added dropwise,

keeping the temperature at 0 °C. The mixture was allowed to warm to RT and stirred

overnight. The sodium hydride was quenched by addition of water (20 mL). The

solvent was removed under reduced pressure and the resulting oil was reconstituted

in ethyl acetate (50 mL) and water (50 mL). The layers were separated and the

aqueous layer was extracted with ethyl acetate (3 × 50 mL). The combined organic

layers were washed with brine (30 mL), dried (magnesium sulfate), filtered and
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concentrated under reduced pressure. The resulting yellow oil was purified by silica

gel column chromatography, eluting with ethyl acetate and petroleum ether (20/80,

then 40/60), to yield 6-[(4’-methoxy)benzyloxy]-2,4,10-trioxatricyclo[3.3.1.13,7]decane

39 as a colourless oil (31.2 g yield, 100%); Rf 0.7 (ethyl acetate/petroleum ether

40/60); δH (300 MHz; CDCl3) 7.40-7.20 (10 H, m, 2 × ArH), 7.13 (2H, d, J 8.8,

OCH2C6H4OCH3), 6.81 (2H, d, J 8.8, OCH2C6H4OCH3), 5.53 (1H, d, J 1.3, O3CH),

4.65 (2H, s, OCH2Ph), 4.62 (1H, d, JAB 11.8, OCHAHBPh), 4.55 (1H, d, JA’B’ 11.3,

OCHA’HB’-C6H4OCH3), 4.47 (1H, d, JAB 11.8, OCHAHBPh), 4.44-4.40 (2H, m,1 ×

OCHA’HB’-C6H4OCH3 and 1 × inositol ring), 4.35-4.26 (4H, m, inositol ring), 4.05-4.03

(1H, m, inositol ring), 3.81 (3H, s, OCH3). These data are in good agreement with

the literature values.135

4.1.4. 8,9-Bis(benzyloxy)-6-[(4’-methoxy)benzyloxy]-2,4-

dioxatricyclo[3.3.1.]nonan-7-ol 40

8,9-Bis(benzyloxy)-6-[(4’-methoxy)benzyloxy]-2,4,10-trioxatricyclo[3.3.1.13,7]decane

39 (17.0 g, 34.7 mmol, 1.0 equiv) was dissolved in dry dichloromethane (150 mL)

under an atmosphere of nitrogen. The resulting mixture was cooled to 0 °C and a

1.0 M solution of diisobutylaluminium hydride in hexanes (86.9 mL, 86.9 mmol, 2.5

equiv) was added dropwise, keeping the temperature at 0 °C. The mixture was

allowed to reach the RT and then stirred for 4 h. The reaction mixture was

cannulated onto a vigorously stirred 1.0 M aqueous solution of sodium potassium

tartrate (100 mL) and saturated aqueous solution of ammonium chloride (100 mL).

The resulting mixture was stirred overnight to destroy the aluminium salts. The

combined organic layers were washed with brine (50 mL), dried (magnesium

sulfate), filtered and concentrated under reduced pressure to yield 8,9-

bis(benzyloxy)-6-[(4’-methoxy)benzyloxy]-2,4-dioxatricyclo-[3.3.1.]nonan-7-ol 40

(16.1 g yield, 94%) as a colourless oil. Rf 0.29 (ethyl acetate/hexane 40/60); δH (300

MHz; CDCl3) 7.31-7.17 (10 H, m, 2 × ArH), 7.12 (2H, d, J 8.7, OCH2C6H4OCH3),

6.76 (2H, d, J 8.7, OCH2C6H4OCH3), 5.48 (1H, d, J 5.1, O3CHH), 4.60 (1H, d, JAB

12.0, OCHAHBPh), 4.59 (1H, d, J 5.1, O3CHH), 4.54 (2H, s, OCH2Ph), 4.53 (1H, d,

JA’B’ 11.5, OCHA’HB’-C6H4OCH3), 4.50 (1H, d, JAB 12.0, OCHAHBPh), 4.43 (1H, d,

JA’B’ 11.5, OCHA’HB’-C6H4OCH3), 4.38-4.32 (2H, m, inositol ring), 4.22-4.20 (1H, m,
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inositol ring), 3.96-3.90 (2H, m, inositol ring), 3.88 (1H, d, J 10.2, inositol ring), 3.73

(3H, s, OCH3), 2.90 (1H, d, J 10.2, OH). These data are in good agreement with the

literature values.135

4.1.5. 8,9-Bis(benzyloxy)-6-[(4’-methoxy)benzyloxy]-7-(allyl)-2,4-

dioxatricyclo-[3.3.1.]nonane 41

8,9-Bis(benzyloxy)-6-[(4’-methoxy)benzyloxy]-2,4-dioxatricyclo-[3.3.1.]nonan-7-ol 40

(27.0 g, 54.6 mmol, 1.0 equiv) was dissolved in dry N,N-dimethyl formamide

(250 mL) under an atmosphere of nitrogen. The resulting mixture was cooled to 0 °C

and sodium hydride (3.3 g, 60% dispersion in mineral oil, 82.3 mmol, 1.5 equiv) was

added portionwise with stirring. The resulting mixture was allowed to warm to RT

and stirred for 2 h, then it was re-cooled to 0 °C and imidazole (catalytic amount)

and allyl bromide (9.9 g, 7.1 mL, 82.3 mmol, 1.5 equiv) were added. The resulting

mixture was allowed to warm to RT and stirred overnight. The sodium hydride was

quenched by addition of water (30 mL). The solvent was removed under reduced

pressure and the residue reconstituted in ethyl acetate (100 mL) and water

(100 mL). The layers were separated and the aqueous layer extracted with ethyl

acetate (3 × 100 mL). The combined organic layers were washed with brine (50 mL),

dried (magnesium sulfate), filtered and concentrated under reduced pressure. The

resulting yellow oil was purified by silica gel column chromatography, eluting with

ethyl acetate and hexane (30/70) to yield 8,9-bis(benzyloxy)-6-[(4’-

methoxy)benzyloxy]-7-(allyl)-2,4-dioxatricyclo-[3.3.1.]nonane 41 as a colourless oil

(26.1 g yield, 89%). Rf 0.43 (ethyl acetate/hexane 40/60); δH (300 MHz; CDCl3) 7.42-

7.28 (10 H, m, 2 × ArH), 7.26 (2H, d, J 8.7, OCH2C6H4OCH3), 6.89 (2H, d, J 8.7,

OCH2C6H4OCH3), 5.90 (1H, ddt, J 17.2, 10.3, 5.6, CH=CH2), 5.25 (1H, ddt, J 17.2,

1.8, 1.5, CH=CHH), 5.20 (1H, d, J 5.4, O3CHH), 5.18 (1H, ddt, J 10.3, 1.8, 1.3,

CH=CHH), 4.84 (1H, d, J 5.4, O3CHH), 4.68 (1H, d, JAB 11.8, OCHAHBPh), 4.66 (2H,

s, OCH2Ph), 4.61 (1H, d, JAB 11.8, OCHAHBPh), 4.61 (1H, d, JA’B’ 11.5,

OCHA’HB’C6H4OCH3), 4.54 (1H, d, JA’B’ 11.5, OCHA’HB’C6H4OCH3), 4.28-4.24 (2H, m,

inositol ring), 4.15 (2H, ddd, J, 5.6, 1.5, 1.3, OCH2CH=CH2), 3.84 (1H, t, J 2.0

inositol ring), 3.82 (3H, s, OCH3), 3.54 (1H, t, J 5.6, inositol ring). These data are in

good agreement with the literature values.135
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4.1.6. (±)-5-O-Allyl-2,6-O-dibenzyl-myo-inositol 42

8,9-Bis(benzyloxy)-6-[(4’-methoxy)benzyloxy]-7-(allyl)-2,4-dioxatricyclo-[3.3.1.]

nonane 41 (27.8 g, 52.1 mmol, 1.0 equiv) was dissolved in methanol (400 mL) and

concentrated hydrochloric acid (48 mL) was added. The mixture was heated under

reflux for 6 h, then cooled to 0 °C. The hydrochloric acid was quenched by cautious

addition of sodium hydrogen carbonate (50 g). The formed solid was removed by

filtration and the solvent evaporated under reduced pressure. Purification by silica

gel column chromatography, eluting with ethyl acetate and hexane (30/70, then

40/60) and then ethyl acetate furnished (±)-5-O-allyl-2,6-O-dibenzyl-myo-inositol 42

as a colourless solid (18.0 g yield, 86%). Rf 0.41 (ethyl acetate); mp 118-120 °C

(from ethyl acetate/hexane, Lit.135 111-112 °C); δH (300 MHz; CDCl3) 7.35-7.20 (10

H, m, 2 × ArH), 5.90 (1H, ddt, J 17.2, 10.3, 5.6, CH=CH2), 5.23 (1H, ddt, J 17.2, 1.8,

1.5, CH=CHH), 5.12 (1H, ddt, J 10.3, 1.8, 1.3, CH=CHH), 4.85 (1H, d, JAB 11.5,

OCHAHBPh), 4.81 (1H, d, JA’B’ 11.3, OCHA’HB’Ph), 4.70 (1H, d, JA’B’ 11.3,

OCHA’HB’Ph), 4.67 (1H, d, JAB 11.5, OCHAHBPh), 4.35-4.20 (2H, m, OCH2CH=CH2),

3.93 (1H, t, J 2.8, 2-H), 3.77-3.62 (2H, m, inositol ring), 3.53-3.46 (1H, m, inositol

ring), 3.43-3.35 (1H, m, inositol ring), 3.14 (1H, t, J 9.0 inositol ring), 2.56 (1H, br s,

OH) 2.34 (1H, d, J 6.9, OH), 2.28 (1H, d, J 4.9, OH). These data are in good

agreement with the literature values.135

4.1.7. (1S)-(-)-Camphor dimethyl acetal 44

(1S)-(-)-Camphor (25.0 g, 164.2 mmol, 1.0 equiv), trimethylorthoformate (69.7 g,

71.9 mL, 656.9 mmol, 4.0 equiv) and Montmorillonite K-10 clay (45.0 g) were stirred

in hexane (200 mL) under an atmosphere of nitrogen for 24 h. The clay was

removed by filtration and washed with hexane (2 × 50 mL). The combined organic

extracts were concentrated under reduced pressure to yield a colourless oil (32.4 g),

which was used without any further purification in the next step. The oil is estimated

to contain 75 % (1S)-(-)-camphor dimethyl acetal 44 and 25 % of (1S)-(-)-camphor,

using NMR analysis. Rf 0.66 (diethyl ether/hexane 30/70); δH (300 MHz; CDCl3) 3.22
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(3H, s, OCH3,), 3.16 (3H, s, OCH3), 2.23-2.15 (1H, m, camphor ring), 1.80-1.62 (3H,

m, camphor ring), 1.41-1.18 (2H, m, camphor ring), 1.75-1.10 (1H, d, J 12.8, 4-H),

0.96 (3H, s, 1-CH3), 0.91 (3H, s, 7-CH3), 0.82 (3H, s, 7-CH3). These data are in

good agreement with the literature values.136

4.1.8. (-)-1D-5-O-Allyl-2,6-bis-O-benzyl-3-O-endo-4-O-exo-(L-1’,7’,7’-

trimethylbicyclo[2.2.1]hept-2’-ylidene)-myo-inositol 34

(±)-5-O-Allyl-2,6-O-dibenzyl-myo-inositol 42 (17.1 g, 42.6 mmol, 1.0 equiv), crude

(1S)-(-)-camphor dimethyl acetal 44 (28.3 g, 75% w/w, 127.8 mmol, 3 equiv) and 4-

toluenesulfonic acid monohydrate (405.1 mg, 2.1 mmol, 0.05 equiv) were dissolved

in dry dichloromethane (200 mL) and heated under reflux under an atmosphere of

nitrogen. After 8 h the reaction was adjudged to be incomplete by TLC analysis and

a further amount of crude (1S)-(-)-camphor dimethyl acetal 44 was added (4.0 g,

75% w/w, 18.0 mmol, 0.4 equiv) and the resulting mixture was stirred overnight. The

solvent was removed under reduced pressure and the crude mixture was stored in

the fridge. The crude mixture was divided in three batches and purified by silica gel

column chromatography eluting with the following solvent system: ethyl acetate and

petroleum ether 5/95 (6000 mL), 6/94 (2000 mL), 7/93 (2000 mL), 8/92 (2000 mL),

9/91 (2000 mL), 10/90 (8000 mL), 20/80 (5000 mL) (the undesired diastereoisomers

were collected with the solvent system 10/90 ethyl acetate/petroleum ether) to afford

the required diastereoisomer (-)-1D-5-O-allyl-2,6-bis-O-benzyl-3-O-endo-4-O-exo-(L-

1’,7’,7’-trimethylbicyclo[2.2.1]hept-2’-ylidene)-myo-inositol 34 as a colourless oil (5.6

g yield, 25%); Rf 0.29 (ethyl acetate/hexane 20/80); 20
D][ -11.9 (c 0.2 in CHCl3;

Lit.135 22
D][ -11.7, c 1.3 in CHCl3); δH (300 MHz; CDCl3) 7.35-7.17 (10H, m, 2 × ArH),

5.88 (1H, ddt, J 17.4, 10.5, 5.6 CH=CH2), 5.24 (1H, ddt, J 17.4, 1.8, 1.5, CH=CHH),

5.09 (1H, ddt, J 10.5, 1.8, 1.3, CH=CHH), 4.93 (1H, d, JAB 11.5, OCHAHBPh), 4.85

(1H, d, JA’B’ 11.1, OCHA’HB’Ph), 4.70 (1H, d, JA’B’ 11.1, OCHA’HB’Ph), 4.60 (1H, d, JAB

11.5, OCHAHBPh), 4.32 (1H, dddd, J 12.8, 5.6, 1.5, 1.3, CHHCH=CH2), 4.16-4.03

(3H, m, 1 × CHHCH=CH2 + 2 × inositol ring) 3.90 (1H, t, J 9.7, inositol ring), 3.65-

3.54 (2H, m, 2 × inositol ring).3.22 (1H, dd, J 9.7, 1.8, inositol ring), 2.38 (1H, d, J

7.7, OH), 2.07 (1H, dt, J 13.6, 4.0, camphor ring), 1.88-1.77 (1H, m, camphor ring),
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1.70-1.58 (2H, m, 2 × camphor ring), 1.38 (1H, d, J 13.5, camphor ring), 1.21-1.04

(2H, m, 2 × camphor ring), 0.95 (3H, s, CH3), 1.22-1.06 (3H, m, 3 × camphor ring),

0.79 (3H, s, CH3), 0.78 (3H, s, CH3). These data are in good agreement with the

literature values.135

4.1.9. (-)-1D-5-O-Allyl-2,6-bis-O-benzyl-1-O-(4'-methoxybenzyl)-3-O-endo-4-O-

exo-(L-1',7',7'-trimethylbicyclo[2.2.1]hept-2'-ylidene)-myo-inositol 48

Sodium hydride (112 mg, 60 % dispersion in mineral oil, 2.8 mmol, 1.5 equiv) was

suspended in dry tetrahydrofuran (30 mL) under an atmosphere of nitrogen and the

resulting suspension was cooled to 0 °C. A solution of (-)-1D-5-O-allyl-2,6-bis-O-

benzyl-3-O-endo-4-O-exo-(L-1’,7’,7’-trimethylbicyclo[2.2.1]hept-2’-ylidene)-myo-

inositol 34 (1.0 g, 1.9 mmol, 1.0 equiv) in dry tetrahydrofuran (20 mL) was added by

cannula. The resulting mixture was allowed to warm to RT and stirred for 1 h. The

mixture was re-cooled to 0 °C and 4-methoxybenzyl chloride (668 mg, 380 μL, 2.8

mmol, 1.5 equiv), tetra-n-butylammonium iodide (catalytic amount) and dry N,N-

dimethyl formamide (20 mL) were added. The resulting mixture was allowed to

warm to RT and stirred overnight. The sodium hydride was quenched with water

(10 mL), the solvent removed under reduced pressure and the resulting yellow

residue reconstituted in ethyl acetate (20 mL) and water (20 mL). The layers were

separated and the aqueous layer was extracted with ethyl acetate (3 × 20 mL). The

combined organic layers were dried (magnesium sulfate), filtered and concentrated

under reduced pressure to yield a yellow oil. Purification by silica gel column

chromatography, eluting with ethyl acetate/hexane (10/90) afforded (-)-1D-5-O-allyl-

2,6-bis-O-benzyl-1-O-(4'-methoxybenzyl)-3-O-endo-4-O-exo-(L-1',7',7'-trimethyl

bicyclo[2.2.1]hept-2'-ylidene)-myo-inositol 48 (1.2 g yield, 94%) as a colourless oil;

Rf 0.45 (ethyl acetate/hexane 20/80); 22
D][ -18.4 (c 0.5 in CHCl3; Lit.135 22

D][

-20.1, c 2.6 in CHCl3); δH (300 MHz; CDCl3) 7.48-7.28 (10H, m, 2 × ArH), 7.21 (2H,

d, J 8.8, OCH2C6H4OCH3), 6.82 (2H, d, J 8.8, OCH2C6H4OCH3), 5.98 (1H, ddt,

J 17.4, 10.2, 5.6, CH=CH2), 5.33 (1H, ddt, J 17.4, 1.8, 1.5, CH=CHH), 5.17 (1H, ddt,

J 10.2, 1.8, 1.3, CH=CHH), 4.91 (1H, d, JAB 12.3, OCHAHBPh), 4.90 (1H, d,

JA’B’ 10.8, OCHA’HB’Ph), 4.84 (1H, d, JA’B’ 10.8, OCHA’HB’Ph), 4.81 (1H, d, JAB 12.3,
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OCHAHBPh), 4.54 (1H, d, JA’’B’’ 12.2, OCHA’’HB’’C6H4OCH3), 4.50 (1H, d, JA’’B’’ 12.2,

OCHA’’HB’’C6H4OCH3) 4.40 (1H, dddd, J 13.1, 5.6, 1.5, 1.3, CHHCH=CH2), 4.21 (1H,

dddd, J 13.1, 5.6, 1.5, 1.3, CHHCH=CH2), 4.15-4.10 (1H, m, inositol ring), 4.03 (1H,

t, J 9.7, inositol ring), 3.87 (1H, t, J 9.0, inositol ring), 3.72 (3H, s, OCH3), 3.43-3.34

(2H, m, inositol ring), 3.08 (1H, dd, J 9.7, 1.8, inositol ring), 2.14 (1H, dt, J 13.3, 3.3,

camphor ring), 2.00-1.90 (1H, m, camphor ring),1.77-1.68 (2H, m, camphor ring),

1.43 (1H, d, J 13.6, camphor ring), 1.24-1.15 (3H, m, camphor ring),1.03 (3H, s,

CH3), 0.88 (3H, s, CH3), 0.87 (3H, s, CH3). These data are in good agreement with

the literature values.135

4.1.10. (-)-1D-5-O-Allyl-2,6-bis-O-benzyl-1-O-(4-methoxybenzyl)-myo-

inositol 49

(-)-1D-5-O-Allyl-2,6-bis-O-benzyl-1-O-(4'-methoxybenzyl)-3-O-endo-4-O-exo-(L-

1',7',7'-trimethylbicyclo[2.2.1]hept-2'-ylidene)-myo-inositol 48 (386 mg, 585 μmol, 1.0

equiv) was dissolved in methanol (8 mL) and dichloromethane (12 mL) under an

atmosphere of nitrogen and acetyl chloride (28 mg, 25 μL, 70.0 μmol, 0.6 equiv) was

added. The resulting mixture was stirred for 4h at RT, then the generated

hydrochloric acid was quenched by the addition of triethylamine (1 mL) and the

solvent was removed under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/hexane (30/70, then 50/50) and then

ethyl acetate afforded (-)-1D-5-O-allyl-2,6-bis-O-benzyl-1-O-(4-methoxybenzyl)-myo-

inositol 49 as a colourless solid (270 mg, 88% yield); Rf 0.6 (ethyl acetate / hexane

20/80); mp 123-125 °C (from ethyl acetate/hexane, Lit.109 125-126 °C); 22
D][ -26.5 (c

0.4 in CHCl3; Lit.109 22
D][ -26.4, c 1.2 in CHCl3); δH (300 MHz; CDCl3) 7.35-7.12

(12H, m, ArH and 2 × OCH2C6H4OCH3), 6.79 (2H, d, J 9.0, OCH2C6H4OCH3), 5.89

(1H, ddt J 17.2, 10.2, 5.6 CH=CH2), 5.21 (1H, ddt, J 17.2, 1.8, 1.5, CH=CHH), 5.10

(1H, ddt, J 10.2, 1.8, 1.3, CH=CHH), 4.98 (1H, d, JAB 11.5, OCHAHBPh), 4.83 (1H, d,

JA’B’ 10.8, OCHA’HB’Ph), 4.73 (1H, d, JA’B’ 10.8, OCHA’HB’Ph), 4.60 (1H, d, JA’’B’’ 11.3,

OCHA’’HB’’C6H4OCH3), 4.59 (1H, d, JAB 11.5, OCHAHBPh), 4.54 (1H, d, JA’’B’’ 11.3,

OCHA’’HB’’C6H4OCH3), 4.34 (1H, dddd, J 12.4, 5.6, 1.5, 1.3, CHHCH=CH2), 4.20

(1H, dddd, J 12.4, 5.6, 1.5, 1.3, CHHCH=CH2), 3.90 (1H, t, J 2.6, inositol ring), 3.85

(1H, t, J 9.5, inositol ring), 3.74 (3H, s, OCH3), 3.72 (1H, t, J 9.5, inositol ring), 3.36
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(1H, dd, J 9.7, 2.6, inositol ring), 3.30 (1H, dd, J 9.7, 2.6, inositol ring), 3.12 (1H, t, J

9.3, inositol ring), 2.3 (1H, br s, OH), 1.50 (1H, br s, OH). These data are in good

agreement with the literature values.109

4.1.11. (-)-1D-5-O-Allyl-1-O-(4-methoxybenzyl)-2,3,6-tris-O-benzyl-myo-

inositol 50

(-)-1D-5-O-Allyl-2,6-bis-O-benzyl-1-O-(4-methoxybenzyl)-myo-inositol 49 (200 mg,

384 μmol, 1.0 equiv), di-n-butyltin oxide (105 mg, 423 μmol, 1.1 equiv),

tetra-n-butylammonium iodide (142 mg, 384 μmol, 1.0 equiv) and benzyl bromide

(315 mg, 220 μL, 1.8 mmol, 4.8 equiv) were dissolved in acetonitrile under an

atmosphere of nitrogen. The mixture was heated under reflux for 24 h using soxhlet

apparatus filled with 3 Å molecular sieves to remove water generated in the

reaction. The reaction mixture was cooled to RT and the solvent was removed under

reduced pressure. The residue was suspended in water (10 mL) and extracted with

ethyl acetate (3 × 20 mL). The combined organic layers were washed with a

saturated aqueous solution of sodium hydrogen carbonate (10 mL) and the formed

solid was removed by filtration through Celite®. The filtrate was washed with brine,

dried (magnesium sulfate), filtered and concentrated under reduced pressure.

Purification by silica gel column chromatography (twice), eluting with diethyl

ether/petroleum ether (20/80) yielded (-)-1D-5-O-allyl-1-O-(4-methoxybenzyl)-2,3,6-

tris-O-benzyl-myo-inositol 50 as a colourless solid (170 mg yield, 72%). Rf 0.43

(diethyl ether / petroleum ether 60/40); mp 60-61 °C (from diethyl ether / petroleum

ether, Lit.109 60-61 °C); 20
D][ - 0.9 (c 0.4 in CHCl3; Lit.109 20

D][ - 0.6, c 0.4 in CHCl3);

δH (300 MHz; CDCl3, sodium hydrogen carbonate in the NMR tube) 7.34-7.13 (17H,

m, ArH and 2 × OCH2C6H4OCH3), 6.78 (2H, d, J 8.7, OCH2C6H4OCH3), 5.90 (1H,

ddt J 17.2, 10.2, 5.6 CH=CH2), 5.21 (1H, ddt, J 17.2, 1.8, 1.5, CH=CHH), 5.09 (1H,

ddt, J 10.2, 1.8, 1.3, CH=CHH), 4.81 (1H, d, JAB 10.8, OCHAHB), 4.80 (1H, d, JA’B’

12.0, OCHA’HB’), 4.73 (1H, d, JAB 10.8, OCHAHB), 4.70 (1H, d, JA’B’ 12.0, OCHA’HB’),

4.53 (1H, d, JA’’B’’ 11.5, OCHA’’HB’’), 4.52 (1H, d, JA’’’B’’’ 12.0 OCHA’’’HB’’’), 4.47 (1H, d,

JA’’B’’ 11.5, OCHA’’HB’’), 4.46 (1H, d, JA’’’B’’’ 12.0, OCHA’’’HB’’’), 4.34-4.21 (2H, m,

CHHCH=CH2), 4.03 (1H, t, J 9.7, inositol ring), 3.92 (1H, t, J 2.3, inositol ring), 3.89

(1H, d, J 9.5, inositol ring), 3.75 (3H, s, OCH3), 3.25 (1H, dd, J 9.5, 2.3, inositol ring),
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3.16 (1H, t, J 9.3, inositol ring), 3.08 (1H, dd, J 9.5, 2.3, inositol ring), 2.43 (1H, br s,

OH). These data are in good agreement with the literature values.109

4.1.12. (+)-1D-4-O-Acetyl-5-O-allyl-1-O-4-methoxybenzyl-2,3,6-tris-O-benzyl-

myo-inositol 51

(-)-1D-5-O-Allyl-1-O-(4-methoxybenzyl)-2,3,6-tris-O-benzyl-myo-inositol 50 (800 mg,

1.3 mmol, 1.0 equiv) was dissolved in dry pyridine (30 mL) under an atmosphere of

nitrogen. 4-Dimethylaminopyridine (48 mg, 39 μmol, 0.3 equiv) was added, followed

by acetyl chloride (308 mg, 280 μL, 3.9 mmol, 3.0 equiv) and the resulting mixture

was stirred for 6h. The pH of the mixture was adjusted to pH 7 using a 10 %

aqueous solution of ammonium chloride. The solvent was removed under reduced

pressure and the residue reconstituted in ethyl acetate (20 mL) and water (20 mL).

The layers were separated and the aqueous layer extracted with ethyl acetate (3 ×

10 mL). The combined organic layers were dried (magnesium sulfate), filtered and

concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with diethyl ether/hexane (20/80) yielded (+)-1D-4-O-acetyl-

5-O-allyl-1-O-4-methoxybenzyl-2,3,6-tris-O-benzyl-myo-inositol 51 (62 mg yield,

81%) as a colourless solid (Found: C, 73.3; H, 6.85. C40H44O8 requires C, 73.6; H,

6.8); Rf 0.45 (ethyl acetate/hexane 30/70); mp 96-98 °C (from ethyl acetate/hexane);
20
D][ + 4.2 (c 0.54 in CHCl3); νmax (nujol)/cm-1 3036.7 (w), 2926.6 (s), 2856.6 (s),

1732.9 (s, C=O), 1612.7 (w), 1512.8 (m), 1452.7 (m), 1367.7 (m), 1302.6 (w),

1237.6 (s), 1137.5 (m), 1097.5 (m), 1047.5 (m), 1012.5 (w), 927.4 (m), 832.4 (w),

727.3 (s), 692.3 (m); δH (300 MHz; CDCl3) 7.33-7.13 (17H, m, ArH and 2 ×

OCH2C6H4OCH3), 6.77 (2H, d, J 8.7, OCH2C6H4OCH3), 5.78 (1H, ddt J 17.2, 10.5,

5.6 CH=CH2), 5.51 (1H, t, J 10.0, axial 4-H), 5.13 (1H, ddt, J 17.2, 1.8, 1.5,

CH=CHH), 5.03 (1H, ddt, J 10.5, 1.8, 1.3, CH=CHH), 4.80 (1H, d, JAB 10.8,

OCHAHB), 4.79 (1H, d, JA’B’ 12.3, OCHA’HB’), 4.77-4.73 (1H, m, OCHAHB), 4.70 (1H,

d, JA’B’ 12.3, OCHA’HB’), 4.48 (1H, d, JA’’B’’ 11.3 OCHA’’HB’’), 4.45 (1H, d, JA’’’B’’’ 12.0,

OCHA’’’HB’’’), 4.43 (1H, d, JA’’B’’ 11.3, OCHA’’HB’’), 4.34 (1H, d, JA’’’B’’’ 12.0, OCHA’’’HB’’’),

4.21 (1H, dddd, J 12.5, 5.6, 1.5, 1.3, CHHCH=CH2), 4.03-3.95 (2H, m, 1 ×

CHHCH=CH2 and 1 × inositol ring), 3.90 (1H, t, J 2.3, inositol ring), 3.89 (1H, d,

J 9.5, inositol ring), 3.73 (3H, s, OCH3), 3.25-3.15 (3H, m, inositol ring); δC (75 MHz;
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CDCl3) 170.3 (C=O), 159.6 (ArCOCH3), 139.2 (ArC), 139.1 (ArC), 138.4 (ArC),

135.4 (CH=CH2), 130.8 (ArC), 129.7 (ArCH), 128.8 (ArCH), 128.7 (ArCH), 128.6

(ArCH), 128.5 (ArCH), 128.3 (ArCH), 128.1 (ArCH), 128.0 (ArCH), 127.8 (ArCH),

127.7 (ArCH), 117.0 (CH=CH2), 114.2 (ArCH), 81.8 (inositol ring), 81.7 (inositol

ring), 80.6 (inositol ring), 78.6 (inositol ring), 76.2 (CH2), 74.5 (CH2), 74.3 (CH2), 73.7

(inositol ring), 73.6 (inositol ring), 72.8 (CH2), 72.5 (CH2), 55.7 (OCH3), 35.7

[C(O)CH3]; m/z (ES+) [Found: (M+Na)+ 675.2914. C40H44O8Na requires M+,

675.2934], m/z (ES+) 675 ([M+Na]+, 100%), 413 (10).

4.1.13. 1-D-O-Acetyl-2,3,6-tris-O-benzyl-myo-inositol 52

(+)-1D-4-O-Acetyl-5-O-allyl-1-O-4-methoxybenzyl-2,3,6-tris-O-benzyl-myo-inositol 51

(100 mg, 153 μmol, 1.0 equiv) was dissolved in ethanol (8 mL) under an atmosphere

of nitrogen and Wilkinson’s catalyst (43 mg, 46 μmol, 0.3 equiv) and Hunig’s base

(20 mg, 27 μL, 153 μmol, 1.0 equiv) were added. The resulting suspension was

heated under reflux for 1.5 h. The mixture was cooled to RT and an aliquot was

removed for 1H NMR analysis, which indicated that the double bond had isomerised.

The reaction mixture was filtered through Celite® and concentrated under reduced

pressure to yield a dark oil. This material was dissolved in

methanol/dichloromethane (2/3, 8 mL) under an atmosphere of nitrogen and acetyl

chloride (7 mg, 6 μL, 92 μmol, 0.6 equiv) was added. The resulting mixture was

stirred for 2 h at RT. The generated hydrochloric acid was quenched with

triethylamine (20 μL) and the solvent removed under reduced pressure. The residue

was reconstituted in ethyl acetate (10 mL) and water (10 mL) and the aqueous layer

extracted with ethyl acetate (3 × 10 mL). The combined organic layers were dried

(magnesium sulfate), filtered and concentrated under reduced pressure to yield a

yellow residue. This material was dissolved in acetonitrile/water (8/2, 10 mL) and

ceric ammonium nitrate (504 mg, 919 μmol, 6.0 equiv) was added. The resulting

orange solution was stirred for 2h and then concentrated under reduced pressure.

The residue was reconstituted in ethyl acetate (10 mL) and water (10 mL) and the

aqueous layer extracted with ethyl acetate (3 × 10 mL). The combined organic

layers were washed with a saturated aqueous solution of sodium hydrogen

carbonate (10 mL), brine (10 mL), then dried (magnesium sulfate), filtered and
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concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (30/70) afforded 1D-4-O-

acetyl-2,3,5-tris-O-benzyl-myo-inositol 52 as a colourless waxy solid (54 mg yield,

72%); Rf 0.42 (ethyl acetate/petroleum ether); 20
D][ + 17.0 (c 0.35 in CHCl3); νmax

(KBr disc)/cm-1 3445.8 (s), 3031.2 (m), 2878.3 (s), 1747.8 (s, C=O), 1496.3 (m),

1455.6 (m),1372.2 (m), 1237.0 (s), 1025.8 (s), 933.4 (m), 820.1 (w), 735.0 (s) and

697.1 (s); δH (300 MHz; CDCl3) 7.28-7.18 (15H, m, ArH), 5.37 (1H, t, J 9.7, axial 4-

H), 4.93 (1H, d, JAB 11.5, OCHAHB), 4.79 (1H, d, JA’B’ 11.3, OCHA’HB’), 4.73 (1H, d,

JA’B’ 11.3, OCHA’HB’), 4.59 (1H, d, JAB 11.5, OCHAHB), 4.57 (1H, d, JA’’B’’ 12.1

OCHA’’HB’’), 4.48 (1H, d, JA’’B’’ 12.1 OCHA’’HB’’), 3.96 (1H, br s, inositol ring), 3.62 (1H,

t, J 9.2, inositol ring), 3.46-3.40 (2H, m, inositol ring), 3.35 (1H,dd, J 10.0, 1.8,

inositol ring), 2.40 (1H, br s, OH), 2.25 (1H, br s, OH), 2.01 (3H, s, OCH3); δC (75

MHz; CDCl3) 171.6 (C=O), 138.8 (ArC), 138.7 (ArC), 138.2 (ArC), 129.0 (ArCH),

128.9 (ArCH), 128.88 (ArCH), 128.5 (ArCH), 128.46 (ArCH), 128.35 (ArCH), 128.3

(ArCH), 128.2 (ArCH), 127.9 (ArCH), 82.8 (inositol ring), 78.7 (inositol ring), 77.1

(inositol ring), 75.7 (CH2), 75.3 (CH2), 74.6 (inositol ring), 74.0 (inositol ring), 73.0

(CH2), 72.5 (inositol ring), 21.5 [C(O)CH3]; m/z (ES+) [Found: (M+Na)+ 515.2054.

C29H32O7Na requires M+, 515.2046], m/z (ES+) 515 ([M+Na]+, 100%).

4.1.14. Benzyloxy bis(N,N-diisopropylamino)phosphine 159

Phosphorus trichloride (18 mL, 28.3 g, 206.3 mmol, 1.0 equiv) was dissolved in dry

diethyl ether (200 mL) under an atmosphere of nitrogen and dry pyridine (16.3 g,

16.7 mL, 206.3 mmol, 1.0 equiv) was added. The resulting mixture was cooled to

- 78 °C and a solution of benzyl alcohol (22.3 g, 21.3 mL, 206.3 mmol, 1.0 equiv) in

dry diethyl ether (150 mL) was added dropwise over 1 h. The mixture was allowed to

warm to RT and stirred for 1.5 h. The resulting white precipitate was removed by

Schlenk filtration and the remaining solid was washed with dry diethyl ether (40 mL).

The filtrate was placed under an atmosphere of nitrogen and cooled to -10 °C. Dry

N,N-diisopropylamine (85.5 g, 110.7 mL, 845.9 mmol, 4.1 equiv) was added

dropwise over 15 min. The mixture was allowed to warm to RT and stirred overnight.

The resulting white precipitate was removed by Schlenk filtration and the filtrate was
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concentrated under reduced pressure to give the title compound 159 as an oil (51.5

g, 74% yield); δH (300 MHz; CDCl3) 7.31-7.13 (5H, m, ArH), 4.60 (2H, d, J 7.2,

OCH2Ph), 3.56-3.44 [4H, m, NCH(CH3)2], 1.11 [24H, dd, J 6.7, 3.6 NCH(CH3)2];

δP (121 MHz, CDCl3) 124.8. These data are in good agreement with the literature

values.135

4.1.15. Bis(benzyloxy)-N,N-diisopropylamino phosphine 92

Benzyloxy bis(N,N-diisopropylamino)phosphine 159 (3.0 g, 8.7 mmol, 1.0 equiv)

was dissolved in dry dichloromethane (15 mL) under an atmosphere of nitrogen and

1H-tetrazole (0.43 M solution in acetonitrile, 8.2 mL, 3.6 mmol, 0.4 equiv) was

added. Dry benzyl alcohol (957 mg, 916 μL, 8.7 mmol, 1.0 equiv) was slowly added

using a syringe pump over 30 min. The resulting mixture was stirred for 2 h. The

solvent was removed under reduced pressure to give a colourless residue.

Purification by silica gel column chromatography, eluting with triethylamine/ethyl

acetate/petroleum ether (5/15/80) gave the bis(benzyloxy)-N,N-diisopropylamino

phosphine 92 as a colourless oil (2.4 g yield, 78%); δH (300 MHz; CDCl3) 7.31-7.18

(10H, m, ArH), 4.71 (2H, dd, JAB 12.8, JHP 8.4, 1 × OCHAHB and 1 × OCHA’HB’), 4.63

(2H, dd, JAB 12.8, JHP 8.4, 1 × OCHAHB and 1 × OCHA’HB’), 3.69-3.57 [2H, m,

NCH(CH3)2], 1.14 [12H, d, J 6.9, NCH(CH3)2]; δP (121 MHz, CDCl3) 148.8. These

data are in good agreement with the literature values.104

4.1.16. 1-D-O-Acetyl-2,3,6-tris-O-benzyl-myo-inositol 1,5-

bis(dibenzylphosphate) 53

Bis(benzyloxy)-N,N-diisoproplyamino phosphine 92 (357 mg, 1.0 mmol, 5.0 equiv)

was stirred with 1H-tetrazole (0.43 M solution in acetonitrile, 2.4 mL, 1.0 mmol,

5.0 equiv) under an atmosphere of nitrogen for 30 min. (+)-1-D-O-Acetyl-2,3,6-tris-O-

benzyl-myo-inositol 52 (102 mg, 207 μmol, 1.0 equiv) dissolved in dry

dichloromethane (5 mL) was added and the resulting mixture stirred overnight. The

mixture was cooled to - 78 °C and 3-chloroperoxybenzoic acid (60% w/w, 179 mg,
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1.0 mmol, 5.0 equiv) was added. The mixture was allowed to warm to RT and stirred

for 30 min. The 3-chloroperoxybenzoic acid was quenched with a 10% aqueous

solution of sodium hydrogen sulfite (5 mL). The resulting mixture was stirred for

10 min, then the layers were separated and the aqueous layer extracted with

dichloromethane (3 × 5 mL). The combined organic layers were washed with a 10%

aqueous solution of sodium hydrogen carbonate (5 mL), brine (5 mL), dried

(magnesium sulfate), filtered and concentrated under reduced pressure. Purification

by silica gel column chromatography, eluting with ethyl acetate/petroleum ether

(30/70) yielded 1-D-O-acetyl-2,3,6-tris-O-benzyl-myo-inositol 1,5-bis (dibenzyl

phosphate) 53 as a colourless oil (139 mg yield, 66%); Rf 0.47 (ethyl

acetate/petroleum ether 50/50); δH (300 MHz; CDCl3) 7.30-6.95 (35H, m, ArH), 5.59

(1H, t, J 9.8, axial 4-H), 4.85-4.60 (14H, m, OCH2Ph), 4.46-4.26 (2H, m, inositol

ring), 4.20-4.13 (1H, m, inositol ring), 4.09-4.01 (1H, m, inositol ring), 3.28 (1H, dd,

J 10.2, 1.7, inositol ring), 1.79 (3H, s, CH3); δP (121 MHz, CDCl3) -0.39, -0.56; m/z

(ES+) 1035 ([M+Na]+, (100%).

4.1.17. (±)-1-O-Acetyl-1,2-trans-dihydroxycyclohexane 56

(±)-1,2-trans-Dihydroxycyclohexane 55 (5.0 g, 43.04 mmol, 1.0 equiv) was dissolved

in dry dichloromethane (400 mL) under an atmosphere of nitrogen.

4-Dimethylaminopyridine (1.6 g, 12.9 mmol, 0.3 equiv) and dry pyridine (3.7 g,

3.8 mL, 47.3 mmol, 1.1 equiv) were added and the resulting mixture was cooled to

0 ºC. Acetyl chloride (3.7 g, 3.4 mL, 47.3 mmol, 1.1 equiv) dissolved in dry

dichloromethane (100 mL) was added dropwise over 1 h. The mixture was warmed

to RT and stirred overnight. The solvent was removed under reduced pressure and

the residue reconstituted in ethyl acetate (50 mL) and water (50 mL). The layers

were separated and the organic layer extracted with ethyl acetate (3 × 50 mL). The

combined organic layers were washed with brine, dried (magnesium sulfate), filtered

and concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (30/70, then 50/50) gave

the less polar diacetyl derivative (±)-1,2-O-diacetyl-1,2-trans-dihydroxycyclohexane

as a colourless oil (2.4 g yield, 28%). Further elution with ethyl acetate/petroleum

ether (70/30) yielded (±)-1-O-acetyl-1,2-trans-dihydroxycyclohexane 56 as a
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colourless solid (4.1 g yield, 60%); mp 37-39 ºC (from ethyl acetate/petroleum ether,

Lit.137 39-40 ºC), δH (300 MHz; CDCl3) 4.54-4.46 (1H, m, CHOC(O)CH3), 3.52-3.44

(1H, m, CHOH), 2.30 (1H, s, OH), 2.02 (3H, s, CH3), 2.01-1.93 (2H, m,

CH2CHOC(O)CH3), 1.67-1.62 (2H, m, CH2CHOH), 1.30-1.19 (4H, m, CH2CH2).

These data are in good agreement with the literature values.137

4.1.18. (±)-1-O-Acetyl-1,2-trans-dihydroxycyclohexane 2-(dibenzylphosphate)

57

Bis(benzyloxy)-N,N-diisopropylamino phosphine 92 (2.7 g, 7.9 mmol, 2.5 equiv) was

stirred with 1H-tetrazole (0.43 M in acetonitrile, 18.4 mL, 7.9 mmol, 2.5 equiv) under

an atmosphere of nitrogen for 30 min. (±)-1-O-Acetyl-1,2-trans-

dihydroxycyclohexane 56 (0.5 g, 3.2 mmol, 1.0 equiv) dissolved in dry

dichloromethane (20 mL) was added and the resulting mixture stirred overnight. TLC

analysis indicated the reaction to be incomplete and further bis(benzyloxy)-N,N-

diisopropylamino phosphine (0.6 g, 1.6 mmol, 0.5 equiv) was added. The mixture

was stirred for 2 h, then cooled to - 78 ºC and 3-chloroperoxybenzoic acid was

added. The mixture was warmed to RT and stirred for 30 min. The reaction was

quenched with a 10% aqueous solution of sodium hydrogen sulfite (10 mL) and the

resulting mixture stirred for 30 min. The layers were separated and the aqueous

layer extracted with dichloromethane (3 × 20 mL). The combined organic layers

were washed with a 10% aqueous solution of sodium hydrogen carbonate (20 mL),

brine (20 mL), then dried (magnesium sulfate), filtered and concentrated under

reduced pressure. Purification by silica gel column chromatography, eluting with

ethyl acetate/petroleum ether (30/70) gave (±)-1-O-acetyl-1,2-trans-

dihydroxycyclohexane 2-(dibenzylphosphate) 57 as a colourless oil (1.1 g yield,

87%); Rf 0.66 (ethyl acetate); δH (300 MHz; CDCl3) 7.38-7.32 (10H, m, ArH), 5.04-

5.00 (4H, m, OCH2Ph), 4.85-4.78 [1H, m, CHOP(O)(OBn)2], 4.40-4.30 [1H, m,

CHOC(O)CH3], 2.18-2.00 [2H, m, CH2CHOP(O)(OBn)2], 1.90 (3H, s, CH3), 1.73-

1.68 [2H, m, CH2CHOC(O)CH3], 1.58-1.22 (4H, m, CH2CH2); δP (121 MHz, CDCl3)

-0.67; m/z (ES+) [Found: [M+H]+ 419.1617. C22H28O6P requires [M+H]+, 419.1624];
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m/z (ES+) 419 ([M+H]+, (5%), 221 [C8H14O5P]+ (20), 179 [C8H12O4P]+ (10), 141

[C8H13O2]+ (100), 91 [Bn]+ (10).

4.1.19. (±)-1,2-trans-Dihydroxycyclohexane 1-(dibenzylphosphate) 58

Method 1.

(±)-1-O-Acetyl-1,2-trans-dihydroxycyclohexane 2-(dibenzylphosphate) 57 (50 mg,

119 μmol, 1.0 equiv) was dissolved in methanol/water (9/1, 2 mL) and potassium

carbonate (35 mg, 251 μmol, 2.1 equiv) was added. The resulting mixture stirred at

RT for 2.5 h. TLC analysis indicated the reaction to be mostly complete and the

presence of two compounds more polar than the starting material of Rf 0.53 and

0.45 (ethyl acetate). The potassium carbonate was quenched with a saturated

aqueous solution of ammonium chloride to pH 7. The solvent was removed under

reduced pressure and the residue reconstituted in ethyl acetate (2 mL) and water

(2 mL). The layers were separated and the aqueous layer extracted with ethyl

acetate (3 × 5 mL). The combined organic layers were washed with brine (5 mL),

dried (magnesium sulfate), filtered and concentrated under reduced pressure.

Purification by silica gel column chromatography, eluting with ethyl

acetate/petroleum ether (70/30) yielded (±)-1,2-trans-dihydroxycyclohexane

1-(dibenzylphosphate) 58 as a colourless solid (26 mg yield, 59%); mp 81-83 °C

(from ethyl acetate/petroleum ether); δH (300 MHz; CDCl3) 7.36-7.33 (10H, m, ArH),

5.13-5.00 (4H, m, OCH2Ph), 4.10-4.00 [1H, m, CHOP(O)(OBn)2], 3.57-3.49 (1H, m,

CHOH), 3.12 (1H, br s, OH) 2.06-1.99 (2H, m, CH2CHOP(O)(OBn)2], 1.69-1.66 (2H,

m, CH2CHOH), 1.42-1.16 (4H, m, CH2CH2); δP (121 MHz, CDCl3) 0.92; m/z (CI+)

[Found: [M+H]+ 377.1509 C20H26O5P requires [M+H]+, 377.1518]; m/z (CI+) 377

[M+H]+ (50%), 285 [M - Bn]+ (50), 279 [C14H16O4P]+ (70), 189 [C8H14O3P]+ (10), 181

[C6H14O4P]+ (80), 179 [C6H12O4P]+ (50), 171 [C8H12O2P]+ (20), 91 [Bn]+ (100).

Further elution with ethyl acetate/petroleum ether (70/30) gave the more polar

compound yielded (±)-1,2-trans-dihydroxycyclohexane 1-(benzyl methyl phosphate)

59 as a colourless oil (8 mg yield, 22%); δH (300 MHz; CDCl3) 7.42-7.35 (5H, m,

ArH), 5.14-5.10 (2H, m, OCH2Ph), 4.14-4.03 [1H, m, CHOP(O)(OBn)(OMe)], 3.74

(3H, d, J 11.3, OCH3), 3.57-3.50 (1H, m, CHOH), 2.13-2.00 (2H, m,
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CH2CHOP(O)(OBn)(OMe)], 1.75-1.65 (2H, m, CH2CHOH), 1.46-1.20 (4H, m,

CH2CH2); δP (121 MHz, CDCl3) 2.07, 1.96; m/z (CI+) [Found: [M+H]+ 301.1199

C14H22O5P requires [M+H]+, 301.1205]; m/z (CI+) [M+H]+ 301 (30%), 300 [M]+ (15),

209 [M - Bn]+ (10), 203 [C8H12O4P]+ (100), 202, [C8H11O4P]+ (50), 189 [C8H14O3P]+

(10), 171 [C8H12O2P]+ (20), 113 [CH6O4P]+ (40), 91 [Bn]+ (90).

Method 2.

(±)-1-O-Acetyl-1,2-trans-dihydroxycyclohexane 2-(dibenzylphosphate) 57 (50 mg,

119 μmol, 1.0 equiv) was dissolved in methanol/water (9/1, 2 mL) and lithium

hydroxyde (11 mg, 251 μmol, 2.1 equiv) was added. The resulting mixture stirred at

RT for 30 min. TLC analysis indicated the reaction to be mostly complete and the

presence of two compounds more polar than the starting material of Rf 0.50 and

0.44 (ethyl acetate). The reaction was quenched with a saturated aqueous solution

of ammonium chloride to pH 7. The solvent was removed under reduced pressure

and the residue reconstituted in ethyl acetate (2 mL) and water (2 mL). The layers

were separated and the aqueous layer extracted with ethyl acetate (3 × 5 mL). The

combined organic layers were washed with brine (5 mL), dried (magnesium sulfate),

filtered and concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (70/30) yielded (±)-1,2-

trans-dihydroxycyclohexane 1-(dibenzylphosphate) 58 as a colourless solid (28 mg

yield, 62%); mp 79-82 °C (from ethyl acetate/petroleum ether).

Method 3.

(±)-1-O-Acetyl-1,2-trans-dihydroxycyclohexane 2-(dibenzylphosphate) 57 (50 mg,

119 μmol, 1.0 equiv) was dissolved in hexane (10 mL). Lipase VII (from candida

rugosa, 1.0 g, 1140 units) and water (1 mL) were added. The resulting mixture was

shaken at 37.7 ºC for 3 days. TLC analysis indicated the reaction to be incomplete,

and a further amount of Lipase VII (from candida rugosa, 0.5 g, 570 units) and water

(1 mL) were added and the mixture shaken for 1 day at 37.7 ºC. The solvent was

removed under reduced pressure and the resulting residue crushed using a mortar

and pestle. The resulting powder was washed with ethyl acetate (4 × 10 mL). The

combined organic layers were dried (magnesium sulfate), filtered and concentrated

under reduced pressure to give a yellow solid. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (70/30), yielded the title

compound 58 as a colourless solid (19 mg yield, 42%); mp 80-81 °C (from ethyl

acetate/petroleum ether).
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Method 4.

(±)-1-O-Acetyl-1,2-trans-dihydroxycyclohexane 2-(dibenzylphosphate) 57 (50 mg,

119 μmol, 1.0 equiv) was dissolved in hexane (10 mL). Lipase VII (from candida

rugosa, 1.0 g, 1140 units) and wet diethyl ether (2 mL) were added. The resulting

mixture was shaken at 37.7 ºC for 3 days. TLC analysis indicated the reaction to be

incomplete. The solvent was removed under reduced pressure and the resulting dry

residue crushed using a mortar and pestle. The resulting powder was washed with

ethyl acetate (4 × 10 mL). The combined organic layers were dried (magnesium

sulfate), filtered and concentrated under reduced pressure to give a yellow solid.

Purification by silica gel column chromatography, eluting with ethyl

acetate/petroleum ether (70/30), yielded the title compound 58 as a colourless solid

(24 mg yield, 53%); Rf 0.53 (ethyl acetate); mp 81-82 °C (from ethyl

acetate/petroleum ether).

Method 5.

(±)-1-O-Chloroacetyl-1,2-trans-dihydroxycyclohexane 2-(dibenzylphosphate) 69

(40 mg, 88 μmol, 1.0 equiv) was dissolved in a methanol/dichloromethane mixture

(50/50, 4 mL) under an atmosphere of nitrogen. Thiourea (67 mg, 880 μmol,

10.0 equiv) was added and the resulting mixture was stirred at 55 °C for 2 h. The

mixture was cooled to RT, diluted with dichloromethane (10 mL) and washed with a

saturated acqueous solution of sodium hydrogen carbonate (5 mL). The layers were

separated and the acqueous layer extracted with dichloromethane (3 × 5 mL). The

combined organic layers were dried (magnesium sulfate), filtered and concentrated

under reduced pressure. Purification by silica gel column chromatography, eluting

with ethyl acetate/petroleum ether (70/30) furnished (±)-1,2-trans-

dihydroxycyclohexane 1-(dibenzylphosphate) 58 as a colourless solid (20 mg yield,

61%); Rf 0.5 (ethyl acetate); mp 79-81 °C (from ethyl acetate/petroleum ether).

4.1.20. 1-D-4-O-Trichloroacetyl-5-O-allyl-1-O-(4-methoxybenzyl)-2,3,6-tris-O-

benzyl-myo-inositol 60

(-)-1D-5-O-Allyl-1-O-(4-methoxybenzyl)-2,3,6-tris-O-benzyl-myo-inositol 50 (100 mg,

164 μmol, 1.0 equiv) was dissolved in dry pyridine (2 mL) under an atmosphere of
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argon. Trichloroacetyl chloride (45 mg, 28 μL, 246 μmol, 1.5 equiv) was added and

the resulting mixture stirred for 30 min. The trichloroacetyl chloride was quenched

with water (2 mL) and the solvent removed under reduced pressure. The resulting

residue was reconstituted in ethyl acetate (5 mL) and water (5 mL), the layers

separated and the aqueous layer extracted with ethyl acetate (3 × 5 mL). The

combined organic layers were washed with a saturated aqueous solution of sodium

hydrogen carbonate (5 mL), then dried (magnesium sulfate), filtered and

concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (10/90) yielded 1-D-4-O-

trichloroacetyl-5-O-allyl-1-O-(4-methoxybenzyl)-2,3,6-tris-O-benzyl-myo-inositol 60

as a colourless solid (119 mg yield, 96%); Rf 0.62 (ethyl acetate/petroleum ether

40/60); mp 140-142 °C (from ethyl acetate/petroleum ether) δH (300 MHz; CDCl3)

7.32-7.17 (15H, m, ArH), 7.13 (1H, d, J 8.7, OCH2C6H4OCH3), 6.86 (2H, d, J 8.7,

OCH2C6H4OCH3), 5.78 (1H, ddt J 17.1, 10.5, 5.6 CH=CH2), 5.54 (1H, t, J 9.7,

inositol ring), 5.12 (1H, ddt, J 17.1, 1.6, 1.5, CH=CHH), 5.04 (1H, ddt, J 10.5, 1.6,

1.5 CH=CHH), 4.83 (1H, d, JAB 10.7, OCHAHB), 4.74 (2H, s, OCHA’HB’), 4.71 (1H, d,

JAB 10.7, OCHAHB), 4.48 (1H, d, JA’’B’’ 11.5, OCHA’’HB’’), 4.45-4.42 (3H, m, 1 ×

OCHA’’HB’’ and 2 × OCHA’’’HB’’’), 4.25 (1H, ddt, J 12.0, 5.6, 1.6, CHHCH=CH2), 4.10-

3.98 (2H, m, 1 × CHHCH=CH2 and 1 × inositol ring), 3.88 (1H, t, J 2.1, inositol ring),

3.74 (3H, s, OCH3), 3.40-3.30 (2H, m, inositol ring), 3.24 (1H, dd, J 9.7, 2.3, inositol

ring); δC (75 MHz; CDCl3) 161.0 (C=O), 159.3 (ArCOCH3), 138.6 (ArC), 138.4 (ArC),

137.3 (ArC), 134.4 (CH=CH2), 130.1 (ArC), 129.3 (ArCH), 128.35 (ArCH), 128.3

(ArCH), 128.1 (ArCH), 127.9 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 127.53 (ArCH),

127.5 (ArCH), 127.4 (ArCH), 116.91 (CH=CH2), 113.8 (ArCH), 90.2 [C(O)CCl3], 81.4

(inositol ring), 80.4 (inositol ring), 79.9 (inositol ring), 79.0 (inositol ring), 77.9

(inositol ring), 75.7 (CH2), 74.3 (CH2), 74.1 (CH2), 73.2 (inositol ring), 72.4 (CH2),

72.3 (CH2), 55.2 (OCH3); m/z (ES+) 777 ([M+Na]+, 100%), 779 (95).

4.1.21. 1-D-4-O-Trichloroacetyl-5-O-allyl-2,3,6-tris-O-benzyl-myo-inositol 61

1-D-4-O-Trichloroacetyl-5-O-allyl-1-O-(4-methoxybenzyl)-2,3,6-tris-O-benzyl-myo-

inositol 60 (49 mg, 64 μmol, 1.0 equiv) was dissolved in dichloromethane (3 mL).
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2,3-Dichloro-5,6-dicyanobenzoquinone (29 mg, 129 μmol, 2.0 equiv) was added and

the mixture stirred for 2 h. The mixture was diluted with dichloromethane (5 mL) and

washed with a saturated aqueous solution of sodium hydrogen carbonate (5 mL).

The layers were separated and the aqueous layer extracted with dichloromethane

(3 × 5 mL). The combined organic layers were dried (magnesium sulfate), filtered

and concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (20/80) gave

1-D-4-O-trichloroacetyl-5-O-allyl-2,3,6-tris-O-benzyl-myo-inositol 61 as a colourless

gum (37 mg yield, 91%); Rf 0.5 (ethyl acetate/petroleum ether 40/60); δH (300 MHz;

CDCl3) 7.45-7.26 (15H, m, ArH), 5.90 (1H, ddt J 17.1, 10.5, 5.6 CH=CH2), 5.62 (1H,

t, J 10.0, inositol ring), 5.24 (1H, ddt, J 17.1, 1.8, 1.5, CH=CHH), 5.15 (1H, ddt, J

10.5, 1.5, 1.3 CH=CHH), 4.97 (1H, d, JAB 11.5, OCHAHB), 4.87 (1H, d, JA’B’ 11.1,

OCHA’HB’) 4.78 (1H, d, JA’B’ 11.1, OCHA’HB’), 4.65 (1H, d, JAB 10.7, OCHAHB), 4.62

(2H, s, OCHA’’HB’’), 4.34 (1H, dd, J 11.8, 5.6, CHHCH=CH2), 4.20 (1H, d, J 11.8, 5.6,

CHHCH=CH2), 4.07 (1H, t, J 2.6, inositol ring), 3.86 (1H, t, J 9.2, inositol ring), 3.58-

3.44 (3H, m, inositol ring); m/z (ES+) 657 ([M+Na]+, 100%), 659 (95).

4.1.22. 1-D-4-O-Chloroacetyl-5-O-allyl-1-O-(4-methoxybenzyl)-2,3,6-tris-O-

benzyl-myo-inositol 71

(-)-1D-5-O-Allyl-1-O-(4-methoxybenzyl)-2,3,6-tris-O-benzyl-myo-inositol 50 (50 mg,

82 μmol, 1.0 equiv) was dissolved in dry pyridine (1 mL) under an atmosphere of

nitrogen. Chloroacetic anhydride (21 mg, 123 μmol, 1.5 equiv) was added and the

mixture stirred for 3 h. The chloroacetic anhydride was quenched with water

(200 μL) and the solvent removed under reduced pressure. The resulting residue

was reconstituted in dichloromethane (3 mL) and water (3 mL), the layers separated

and the aqueous layer extracted with dichloromethane (3 × 5 mL). The combined

organic layers were dried (magnesium sulfate), filtered and concentrated under

reduced pressure. Purification by silica gel column chromatography, eluting with

ethyl acetate/petroleum ether (10/90) gave 1-D-4-O-chloroacetyl-5-O-allyl-1-O-(4-

methoxybenzyl)-2,3,6-tris-O-benzyl-myo-inositol 71 (51 mg yield, 90%) as a

colourless solid (Found: C, 69.9; H, 6.65. C40H43ClO8 requires C, 69.9; H, 6.3); Rf
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0.6 (ethyl acetate/petroleum ether 40/60); 22
D][α + 8.06 (c 0.5 in CHCl3); mp 90-91 °C

(from ethyl acetate/petroleum ether); νmax (KBr disc)/cm-1 3033.4 (w), 2916.8 (w),

2969.3 (w), 1759.8 (s), 1512.7 (m), 1453.3 (m), 1363.9 (m), 1306.2 (m), 1246.0 (m),

1196.2 (m), 1138.8 (s), 1094.7 (s), 1011.5 (m), 926.3 (w), 833.3 (s), 726.4 (s), 696.0

(m); δH (300 MHz; CDCl3) 7.35-7.12 (17H, m, 15 × ArH and 2 × OCH2C6H4OCH3),

6.77 (2H, d, J 8.7, OCH2C6H4OCH3), 5.75 (1H, ddt J 17.2, 10.5, 5.6 CH=CH2), 5.52

(1H, t, J 9.7, inositol ring), 5.10 (1H, ddt, J 17.2, 1.6, 1.5, CH=CHH), 5.04 (1H, ddt,

J 10.5, 1.6, 1.5 CH=CHH), 4.82 (1H, d, JAB 10.5, OCHAHB), 4.76 (2H, s, OCHA’HB’),

4.69 (1H, d, JAB 10.5, OCHAHB), 4.50-4.41 (3H, m, 2 × OCHA’’HB’’ and 1 ×

OCHA’’’HB’’’), 4.30 (1H, d, J 12.3, OCHA’’’HB’’’) 4.19 (1H, ddt, J 12.5, 5.6, 1.6,

CHHCH=CH2), 4.07-3.92 (2H, m, 1 × CHHCH=CH2 and 1 × inositol ring), 3.90-3.87

(3H, m, 2 × COCH2Cl and 1 × inositol ring), 3.75 (3H, s, OCH3), 3.30-3.23 (2H, m,

inositol ring), 3.21 (1H, t, J 2.6, inositol ring); δC (75 MHz; CDCl3) 166.3 (C=O),

159.3 (ArCOCH3), 138.7 (ArC), 138.6 (ArC), 137.8 (ArC), 134.8 (CH=CH2), 130.3

(ArC), 129.3 (ArCH), 128.5 (ArCH), 128.3 (ArCH), 128.2 (ArCH), 128.1 (ArCH),

128.0 (ArCH), 127.8 (ArCH), 127.6 (ArCH), 127.4 (ArCH), 116.8 (CH=CH2), 113.8

(ArCH), 81.4 (inositol ring), 80.9 (inositol ring), 80.1 (inositol ring), 78.0 (inositol

ring), 75.8 (CH2), 75.3 (inositol ring), 74.1 (CH2), 74.0 (CH2), 73.3 (inositol ring), 72.5

(CH2), 72.1 (CH2), 55.3 (OCH3), 40.9 [C(O)CH2Cl]; m/z (ES+) [Found: (M+Na)+

709.2531 C40H43O8NaCl requires M+, 709.2544]; m/z (ES+) 709 ([M+Na]+, 100%).

4.1.23. 1-D-4-O-Chloroacetyl-5-O-allyl-2,3,6-tris-O-benzyl-myo-inositol 72

1-D-4-O-Chloroacetyl-5-O-allyl-1-O-(4-methoxybenzyl)-2,3,6-tris-O-benzyl-myo-

inositol 71 (95 mg, 138 μmol, 1.0 equiv) was dissolved in dichloromethane (6 mL)

and 2,3-dichloro-5,6-dicyanobenzoquinone (63 mg, 276 μmol, 2.0 equiv) was added.

The resulting mixture stirred for 2 h, then diluted with dichloromethane (5 mL) and

washed with a saturated aqueous solution of sodium hydrogen carbonate (5 mL).

The layers were separated and the aqueous layer extracted with dichloromethane

(3 × 5 mL). The combined organic layers were dried (magnesium sulfate), filtered

and concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (20/80) yielded 1-D-4-O-
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chloroacetyl-5-O-allyl-2,3,6-tris-O-benzyl-myo-inositol 72 as a colourless gum

(68 mg yield, 87%); Rf 0.48 (ethyl acetate/petroleum ether 40/60); 22
D][α + 9.73 (c 0.5

in CHCl3); νmax (thin film)/cm-1 3548.0 (br s), 3031.2 (m), 2874.5 (s), 1751.9 (s),

1497.4 (m), 1454.4 (s), 1407.6 (m), 1363.9 (m), 1282.0 (s), 1129.8 (s), 1071.1 (s),

927.5 (m), 797.4 (w), 736.1 (s), 698.0 (s); δH (300 MHz; CDCl3) 7.37-7.29 (15H, m,

ArH), 5.87 (1H, ddt J 17.2, 10.5, 5.6 CH=CH2), 5.61 (1H, t, J 9.7, inositol ring), 5.23

(1H, ddt, J 17.2, 1.5, 1.3, CH=CHH), 5.15 (1H, dd, J 10.5, 1.3, CH=CHH), 5.00 (1H,

d, JAB 11.5, OCHAHB), 4.86 (1H, d, JA’B’ 11.3, OCHA’HB’), 4.77 (1H, d, JA’B’ 11.3,

OCHA’HB’), 4.67 (1H, d ,J 11.5, OCHAHB), 4.66 (1H, d, J 12.3, OCHA’’HB’’), 4.50 (1H,

d, J 12.3, OCHA’’HB’’), 4.30 (1H, ddt, J 12.5, 5.6, 1.5, CHHCH=CH2), 4.11 (1H, ddt, J

12.5, 5.6, 1.5, CHHCH=CH2), 4.06 (1H, t, J 2.6, inositol ring), 4.01 (1H, d, J 14.6,

COCHHCl), 3.96 (1H, d, J 14.6, COCHHCl), 3.81 (1H, t, J 9.5, inositol ring), 3.48

(1H, dd, J 9.7, 2.6, inositol ring), 3.42 (1H, dd, J 9.7, 2.3, inositol ring), 3.36 (1H, t, J

9.5, inositol ring); δC (75 MHz; CDCl3) 166.3 (1C, C=O), 138.4 (ArC), 138.3 (ArC),

137.7 (ArC), 134.6 (CH=CH2), 128.5 (ArCH), 128.4 (ArCH), 128.1 (ArCH), 128.0

(ArCH), 127.94 (ArCH), 127.9 (ArCH), 127.8 (ArCH), 127.5 (ArCH), 117.0

(CH=CH2), 81.9 (inositol ring), 80.8 (inositol ring), 78.3 (inositol ring), 76.2 (inositol

ring), 75.6 (CH2), 75.3 (inositol ring), 74.8 (CH2), 74.2 (CH2), 72.4 (CH2), 72.2

(inositol ring), 40.9 [C(O)CH2Cl]; m/z (ES+) [Found: (M+Na)+ 589.1967. C32H35O7Na

requires M+, 589.1969]; m/z (ES+) 589 ([M+Na]+, 100%).

4.1.24. (±)-1-O-Chloroacetyl-1,2-trans-dihydroxycyclohexane 68

(±)-1,2-trans-Dihydroxycyclohexane 55 (1.0 g, 8.6 mmol, 1.0 equiv) was dissolved in

dry dichloromethane (100 mL) under an atmosphere of nitrogen. Dry pyridine (815

mg, 0.8 mL, 10.3 mmol, 1.2 equiv) and 4-dimethylaminopyridine (210 mg, 1.7 mmol,

0.2 equiv) were added, followed by and chloroacetic anhydride (1.8 g, 10.3 mmol,

1.2 equiv), the resulting mixture stirred for 6 h. The chloroacetic anhydride was

quenched with water (10 mL), the layers were separated and the aqueous layer

extracted with dichloromethane (3 × 10 mL). The combined organic layers were

washed with brine (10 mL), dried (magnesium sulfate), filtered and concentrated

under reduced pressure. Purification by silica gel column chromatography, eluting
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with ethyl acetate/petroleum ether (40/60) gave (±)-1-O-chloroacetyl-1,2-trans-

dihydroxycyclohexane 68 as a colourless solid (639 mg yield, 40%); Rf 0.68 (ethyl

acetate); mp 79-81 °C (from ethyl acetate/petroleum ether); δH (300 MHz; CDCl3)

4.64-4.56 [1H, m, CHOC(O)CH2Cl], 4.06 [1H, d, J 14.4, C(O)CHHCl], 4.00 [1H, d,

J 14.4, C(O)CHHCl], 3.58-3.05 (1H, m, CHOH), 2.02-1.98 (2H, m, CH2), 1.68-1.65

(2H, m, CH2), 1.33-1.18 (4H, m, CH2CH2).

4.1.25. (±)-1-O-Chloroacetyl-1,2-trans-dihydroxycyclohexane 2-

(dibenzylphosphate) 69

Bis(benzyloxy)-N,N-diisoproplyamino phosphine 92 (538 mg, 1.6 mmol, 3.0 equiv)

and 1H-tetrazole (253 mg, 3.6 mmol, 7.0 equiv) were dissolved in dry

dichloromethane (5 mL) under an atmosphere of nitrogen. (±)-1-O-Chloroacetyl-1,2-

trans-dihydroxycyclohexane 68 (100 mg, 519 μmol, 1.0 equiv) dissolved in dry

dichloromethane (2 mL) was added by cannulation and the resulting mixture stirred

for 30 min. Water (21 μL) was added and the resulting mixture stirred for 15 min.

The mixture was then cooled to - 78 °C and 3-chloroperoxybenzoic acid (75% w/w,

598 mg, 2.6 mmol, 5.0 equiv) was added. The resulting mixture allowed to warm to

RT and stirred for 30 min. The 3-chloroperoxybenzoic acid was quenched with a

10% aqueous solution of sodium hydrogen sulfite (10 mL), the layers were

separated and the aqueous layer extracted with ethyl acetate (3 × 5 mL). The

combined organic layers were washed with a saturated aqueous solution of sodium

hydrogen carbonate (5 mL), brine (5 mL), then dried (magnesium sulfate), filtered

and concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (20/80) yielded (±)-1-O-

chloroacetyl-1,2-trans-dihydroxycyclohexane 2-(dibenzylphosphate) 69 as a

colourless solid (145 mg yield, 62%); Rf 0.3 (ethyl acetate/petroleum ether 40/60);

mp 64-67 °C (from ethyl acetate/petroleum ether); δH (300 MHz; CDCl3) 7.36-7.28

(10H, m, ArH), 4.98-4.85 (4H, m, CH2OPh), 4.83-4.75 (1H, m, CHOP), 4.32-4.18

[1H, m, CHOC(O)CH2Cl], 3.80 [1H, d, J 14.4, C(O)CHHCl], 3.77 [1H, d, J 14.4,

C(O)CHHCl], 2.15-1.90 (2H, m, CH2), 1.70-1.58 (2H, m, CH2), 1.45-1.20 (4H, m,
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CH2CH2); δP (121 MHz, CDCl3) - 0.62; m/z (ES+) 474 ([M+Na]+, 100%), 301 (50)

(C14H15NaOP4).

4.1.26. 1-D-4-O-Triisopropylsilyl-5-O-allyl-1-O-4-methoxybenzyl-2,3,6-tris-O-

benzyl-myo-inositol 75

(-)-1D-5-O-Allyl-1-O-(4-methoxybenzyl)-2,3,6-tris-O-benzyl-myo-inositol 50 (50 mg,

82 μmol, 1.0 equiv) was dissolved in dry dichloromethane (1 mL) under an

atmosphere of argon. The mixture was cooled to 0 °C and 2,6-luditine (35 mg,

38 μL, 327 μmol, 4.0 equiv) and triisopropylsilyl triflate (38 mg, 33 μL, 123 μmol,

1.5 equiv) were added. The mixture was allowed warm to RT and stirred overnight.

The triisopropylsilyl triflate was quenched with water (2 mL) and the mixture was

diluted with dichloromethane (5 mL), the layers separated and the aqueous layer

extracted with dichloromethane (3 × 2 mL). The combined organic layers were dried

(magnesium sulfate), filtered and concentrated under reduced pressure. Purification

by silica gel column chromatography, eluting with ethyl acetate/petroleum ether

(10/90) furnished 1D-4-O-triisopropylsilyl-5-O-allyl-1-O-4-methoxybenzyl-2,3,6-tris-

O-benzyl-myo-inositol 75 as a deliquescent colourless solid (59 mg yield, 94%);

Rf 0.6 (ethyl acetate/petroleum ether 20/80); δH (300 MHz; CDCl3) 7.40-7.23 (17H,

m, 15 × ArH and 2 × OCH2C6H4OCH3), 6.86 (2H, d, J 8.7, OCH2C6H4OCH3), 5.96

(1H, ddt J 17.4, 10.5, 5.4 CH=CH2), 5.25 (1H, ddt, J 17.4, 1.8, 1.5, CH=CHH), 5.13

(1H, dd, J 10.5, 1.8, CH=CHH), 4.90 (1H, d, JAB 10.5, OCHAHB), 4.86 (1H, d, JA’B’

12.0, OCHA’HB’), 4.77 (1H, d, JAB 10.5, OCHAHB), 4.68 (1H, d, JA’B’ 12.0, OCHA’HB’),

4.60 (1H, d, JA’’B’’ 11.3, OCHA’’HB’’), 4.58 (1H, d, JA’’B’’ 11.5 OCHA’’’HB’’’), 4.54 (1H, d,

JA’’B’’ 11.3, OCHA’’HB’’), 4.48 (1H, d, JA’’’B’’’ 11.5, OCHA’’HB’’), 4.47-4.40 (1H, m,

CHHCH=CH2), 4.34-4.25 (2H, m, 1 × CHHCH=CH2 and 1 × inositol ring), 4.05-3.93

(2H, m, inositol ring), 3.85 (3H, s, OCH3), 3.35 (1H, dd, J 9.7, 2.3, inositol ring), 3.20

(1H, t, J 9.0, inositol ring), 3.13 (1H, dd, J 9.5, 2.0, inositol ring), 1.15-1.32 [(21H, m,

3 × CH(CH3)2].
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4.1.27. 1D-4-O-Triisopropylsilyl-2,3,6-tris-O-benzyl-myo-inositol 76

1D-4-O-Triisopropylsilyl-5-O-allyl-1-O-4-methoxybenzyl-2,3,6-tris-O-benzyl-myo-

inositol 75 (56 mg, 73 μmol, 1.0 equiv) was dissolved in ethanol (5 mL) under an

atmosphere of nitrogen. Wilkinson’s catalysts (21 mg, 22 μmol, 0.3 equiv) and

Hunig’s base (9 mg, 13 μL, 73 μmol, 1.0 equiv) were added and the resulting

mixture heated under reflux for 2.5 h. The mixture was cooled to RT and an aliquot

was removed for 1H NMR analysis, which indicated complete isomerisation of the

allyl group. The mixture was filtered through Celite® and the filtrate concentrated

under reduced pressure. The resulting residue was dissolved in

methanol/dichloromethane (2/3, 5 mL) under an atmosphere of nitrogen and acetyl

chloride (9 mg, 8 μL, 117 μmol, 1.6 equiv) was added. The resulting mixture was

stirred for 2 h, then the generated hydrochloric acid was quenched with triethylamine

(20 μL) and the solvent removed under reduced pressure. The resulting solid was

dissolved in dichloromethane (1.5 mL), 2,3-dichloro-5,6-dicyanobenzoquinone

(35 mg, 146 μmol, 2.0 equiv) was added and the resulting mixture stirred at RT for 3

h. The reaction mixture was diluted with dichloromethane (5 mL), washed with a

saturated solution of sodium hydrogen carbonate (5 mL), the layers separated and

the aqueous layer extracted with dichloromethane (3 × 2 mL). The combined organic

layers were washed with brine (5 mL), dried (magnesium sulfate), filtered and

concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (10/90, then 15/85)

yielded 1D-4-O-triisopropylsilyl-2,3,6-tris-O-benzyl-myo-inositol 76 as a colourless oil

(27 mg yield, 62%); Rf 0.32 (ethyl acetate/petroleum ether 20/80); δH (300 MHz;

CDCl3) 7.21-7.22 (15H, m, ArH), 4.88 (1H, d, JAB 11.3, OCHAHB), 4.86 (1H, d,

JA’B’ 11.5, OCHA’HB’), 4.82 (1H, d, JAB 11.3, OCHAHB), 4.70-4.68 (2H, m, OCHA’’HB’’),

4.58 (1H, d, JA’B’ 11.5, OCHA’HB’), 4.24 (1H, t, J 9.0, inositol ring), 4.05 (1H, t, J 2.3,

inositol ring), 3.73 (1H, t, J 9.2, inositol ring), 3.61-3.49 (1H, m, inositol ring), 3.51

(1H, t, J 8.2, inositol ring), 3.33 (1H, d, J 9.2, inositol ring), 1.14-1.10 [(21H, m, 3 ×

CH(CH3)2]; m/z (ES+) 629 [M+Na]+.
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4.1.28. 1-D-4-O-Triisopropylsilyl-2,3,6-tris-O-benzyl-myo-inositol 1-

(dibenzyl)phosphate 78

Bis(benzyloxy)-N,N-diisopropylamino phosphine 92 (125 mg, 360 μmol, 5.0 equiv)

was stirred with 1H-tetrazole (0.43 M in acetonitrile, 837 μL, 360 μmol, 5.0 equiv)

under an atmosphere of for 30 min. 1D-4-O-Triisopropylsilyl-2,3,6-tris-O-benzyl-myo-

inositol 76 (44 mg, 73 μmol, 1.0 equiv) dissolved in dry dichloromethane (5 mL) was

added via cannulation and the resulting mixture stirred overnight. The mixture was

cooled to - 78 °C and 3-chloroperoxybenzoic acid (75% w/w, 104 mg, 360 μmol,

5.0 equiv) was added. The resulting mixture was allowed to warm to RT and stirred

for 30 min. The reaction was quenched with a 10% aqueous solution of sodium

hydrogen sulfite (5 mL) and the resulting mixture stirred for 30 min. The layers were

separated and the aqueous layer extracted with dichloromethane (3 × 5 mL). The

combined organic layers were washed with a 10% aqueous solution of sodium

hydrogen carbonate (5 mL), brine (5 mL), then dried (magnesium sulfate), filtered

and concentrated under reduced pressure to yield a colourless oil. Purification by

silica gel column chromatography, eluting with ethyl acetate/petroleum ether (20/80)

yielded 1-D-4-O-triisopropylsilyl-2,3,6-tris-O-benzyl-myo-inositol 1-(dibenzyl)

phosphate 78 as a colourless oil (8 mg, yield 13%). Rf 0.70 (ethyl acetate/petroleum

ether 40/60); δH (300 MHz; CDCl3) 7.39-7.19 (25H, m, ArH), 5.08 (1H, d, JAB 12.0,

OCHAHB), 4.06 (1H, d, JA’B’ 12.0, OCHA’HB’), 5.03-4.91 (4H, m, 1 × OCHAHB, 1 ×

OCHA’HB’, and 2 × OCHA’’HB’’), 4.84 (1H, d, J 11.0, OCHA’’’HB’’’), 4.79 (1H, d, J 11.0,

OCHA’’’HB’’’), 4.76 (1H, d, J 11.5, OCHA’’’’HB’’’’), 4.71 (1H, d, J 11.5, OCHA’’’’HB’’’’), 4.05

(1H, t, J 2.3, inositol ring), 3.73 (1H, t, J 9.2, inositol ring), 3.61-3.49 (1H, m, inositol

ring), 3.51 (1H, t, J 8.2, inositol ring), 3.33 (1H, d, J 9.2, inositol ring), 1.14-1.10

[(21H, m, 3 × CH(CH3)2]; δP (121 MHz, CDCl3) - 0.70.

4.1.29. Diisopropylphosphoramidous dichloride 112

Phosphorus trichloride (34.6 g, 22.0 mL, 252.2 mmol, 1.0 equiv) was dissolved in

dry diethyl ether (150 mL) under an atmosphere of nitrogen and cooled to -10 °C.
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Dry N,N-diisopropylamine (51.0 g, 70.7 mL, 504.3 mmol, 2.0 equiv) in dry diethyl

ether (100 mL) was added by cannulation over 1.5 h, keeping the temperature

below 0 °C. The resulting mixture was stirred at 0 °C for 2.5 h, then warmed to RT

and stirred for 1 h. The solvent was removed under reduced pressure and the

remaining and the resulting oil purified by Kugelrohr distillation to afford

diisopropylphosphoramidous dichloride 112 as a colourless oil (37.2 g yield, 73%);

bp 70 °C (5 mbar); δH (300 MHz; CDCl3) 3.93 [2H, sp, J 6.9, 2 × CH(CH3)2], 1.28

[12H, d, J 6.9, 2 × CH2(CH3)2]; δP (121 MHz, CDCl3) 170.8 These data are in good

agreement with the literature values.138

4.1.30. Diisopropylamino dimethylphosphine 113

Diisopropylphosphoramidous dichloride 112 (5.0 g, 4.6 mL, 24.7 mmol, 1.0 equiv)

was dissolved in dry diethyl ether (50 mL) under an atmosphere of nitrogen. The

mixture was cooled to - 78 °C and methyl magnesium bromide (3.0 M solution in

diethyl ether, 19.0 mL, 56.9 mmol, 2.3 equiv) was added dropwise over 20 min. The

mixture was allowed to warm to RT and stirred for 1 h. The reaction was adjudged to

be complete by 31P NMR analysis, and the resulting white precipitate removed by

Schlenk filtration. The filtrate was concentrated under reduced pressure and the

resulting oil was purified by Kugelrohr distillation, furnishing diisopropylamino

dimethylphosphine 113 (2.3 g yield, 58%) as a colourless oil; bp 30 °C (13 mbar);

δH (300 MHz; CDCl3) 3.15 [2H, sp, J 6.1, 2 × CH(CH3)2], 0.95 [18H, m, 2 ×

CH2(CH3)2 and 2 × CH3]; δP (121 MHz, CDCl3) 8.3. These data are in good

agreement with the literature values.123

4.1.31. Cyclohexyl dimethylphosphinate 110

Method 1.

Diisopropylphosphoramidous dichloride 112 (474 mg, 433 μL, 2.3 mmol, 2.0 equiv)

was dissolved in dry diethyl ether (20 mL) under an atmosphere of nitrogen. The
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resulting mixture was cooled to - 78 °C and methyl lithium (1.6 M in hexane, 3.0 mL,

4.9 mmol, 4.2 equiv) was added dropwise over 30 min. The resulting mixture was

stirred for 1 h at - 78 °C then warmed to RT when the reaction was adjudged to be

incomplete by 31P NMR analysis. The mixture was re-cooled to - 78 °C and methyl

lithium (1.6 M in hexane, 1.4 mL, 2.3 mmol, 2.0 equiv) was added dropwise over

5 min. The mixture was stirred for 30 min at - 78 °C and then warmed to RT. The

reaction was adjudged to be complete by 31P NMR analysis (δP 8.7) and the reaction

mixture was cannulated onto a stirred solution of cyclohexanol (116 mg, 121 μL, 1.2

mmol, 1.0 equiv) and imidazole (158 mg, 2.3 mmol, 2.0 equiv) in dry

dichloromethane (10 mL) under an atmosphere of nitrogen at - 78 °C. The resulting

mixture was warmed to RT and stirred overnight. The reaction was adjudged to be

complete by 31P NMR analysis (δP 112.0) and cooled to - 78 °C and

3-chloroperoxybenzoic acid (75% w/w, 400 mg, 2.3 mmol, 2.0 equiv) was added.

The resulting mixture was stirred for 10 min at - 78 °C then was warmed to RT and

stirred for 30 min. The 3-chloroperoxybenzoic acid was quenched with a 10%

aqueous solution of sodium hydrogen sulfite (10 mL). The layers were separated

and the aqueous layer extracted with dichloromethane (3 × 10 mL). The combined

organic layers were washed with a saturated solution of sodium hydrogen carbonate

(10 mL), brine (10 mL), dried (magnesium sulfate), filtered and concentrated under

reduced pressure. Purification by silica gel column chromatography, eluting with

triethylamine/ethyl acetate (1/99) then triethylamine/methanol/ethyl acetate (1/4/95)

gave cyclohexyl dimethylphosphinate 110 as a deliquescent solid [175 mg yield,

83% (with respect to cyclohexanol)]; Rf 0.47 (methanol/ethyl acetate 30/70); νmax

(KBr disc)/cm-1 2932.9 (s), 2853.1 (m), 1718.3 (s), 1654.2 (w), 1508.3 (w), 1457.8

(s), 1376.4 (w), 1259.4 (m), 1217.4 (m), 1079.1 (s), 1020.2 (s), 865.0 (w), 801.7 (m),

771.3 (m) and 697.8 (w); δH (300 MHz; CDCl3) 4.35-4.22 (1H, m, OCH), 1.91-1.80

(2H, m, cyclohexane ring), 1.91-1.73 (2H, m, cyclohexane ring), 1.43 (6H, d, JP-H

13.8, 2 × CH3), 1.38-1.08 (6H, m, cyclohexane ring); δC (75 MHz; CDCl3) 73.8 [d, JP-

C 6.6, P(O)OCH], 34.2 (d, JP-C 3.3, C-2 position CH2 and C-6 position CH2), 23.8 (C-

4 position CH2), 22.5 (C-3 position CH2 and C-5 position CH2) 16.6 (d, JP-C 95.0, 2 ×

CH3); δP (121 MHz; CDCl3) 51.9; m/z (ES+) (Found: [M+Na]+ 199.0858.

C8H17O2NaP requires [M+Na]+, 199.0864); m/z (ES+) 375 ([2M+Na]+, 100%),

199 [M+Na]+ (50). These data correlate well with the experimental data for a similar

compound.120
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Method 2.

Diisopropylamino dimethylphosphine 113 (386 mg, 2.4 mmol, 2.5 equiv) and

1H-tetrazole (0.43 M solution in acetonitrile, 5.6 mL, 2.4 mmol, 2.5 equiv) were

dissolved in dry dichloromethane (5 mL) under an atmosphere of nitrogen. The

mixture was cooled to - 78 °C and dry cyclohexanol (96 mg, 100 μL, 960 μmol,

1.0 equiv) was added. The resulting mixture was allowed to warm to RT and stirred

for 1.5 h. 31P NMR analysis indicated the complete conversion to the intermediate

phosphinite (δP 112.3). The mixture was re-cooled to - 78 °C and

3-chloroperoxybenzoic acid (60% w/w, 414 mg, 2.4 mmol, 2.5 equiv) was added.

The resulting mixture was allowed to warm to RT and stirred for 30 min. The

3-chloroperoxybenzoic acid was quenched with a 10% aqueous solution of sodium

hydrogen sulfite (5 mL). The layers were separated and the aqueous layer extracted

with dichloromethane (3 × 5 mL). The combined organic layers were washed with a

saturated solution of sodium hydrogen carbonate (5 mL), brine (5 mL), dried

(magnesium sulfate), filtered and concentrated under reduced pressure. Purification

by silica gel column chromatography, eluting with methanol/ethyl acetate (10/90)

yielded cyclohexyl dimethylphosphinate 110 as a deliquescent solid [152 mg yield,

90% (with respect to cyclohexanol)]; Rf 0.50 (methanol/ethyl acetate 30/70).

4.1.32. Cyclohexyl dimethylphosphinothioate 111

Diisopropylphosphoramidous dichloride 112 (500 mg, 456 μL, 2.5 mmol, 2.0 equiv)

was dissolved in dry diethyl ether (20 mL) under an atmosphere of nitrogen. The

resulting mixture was cooled to - 78 °C and methyl lithium (1.6 M in hexane, 4.6 mL,

8.4 mmol, 6.8 equiv) was added dropwise over 30 min. The resulting mixture was

stirred for 10 min at - 78 °C and then for 30 min at RT when the reaction was

adjudged to be incomplete by 31P NMR analysis. The mixture was re-cooled to

- 78 °C and methyl lithium (1.6 M in hexane, 0.6 mL, 1.0 mmol, 0.8 equiv) of was

added dropwise over 5 min. The mixture was stirred for 10 min at - 78 °C and for

30 min at RT. The reaction was adjudged to be complete by 31P NMR analysis and

the reaction mixture was cannulated onto a stirred solution of cyclohexanol (115 mg,

120 mL, 1.0 mmol, 1.0 equiv) and imidazole (157 mg, 2.3 mmol, 2.0 equiv) in dry
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dichloromethane (15 mL) under an atmosphere of nitrogen at - 78 °C. The resulting

mixture was warmed to RT and stirred overnight. The reaction was adjudged to be

complete by 31P NMR analysis and sulfur (74 mg, 2.3 mmol, 2.0 equiv) was added.

The resulting mixture was stirred for 30 min at RT. The sulfur was quenched with a

10% aqueous solution of sodium hydrogen sulfite (10 mL). The layers were

separated and the aqueous layer extracted with dichloromethane (3 × 10 mL). The

combined organic layers were washed with a saturated solution of sodium hydrogen

carbonate (10 mL), brine (10 mL), dried (magnesium sulfate), filtered and

concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with triethylamine/ethyl acetate/petrol ether (1/4/95) gave

cyclohexyl dimethylphosphinothioate 111 as a colourless solid [116 mg yield, 53%

(with respect to cyclohexanol)]; Rf 0.55 (ethyl acetate/petroleum ether 20/80); mp

59-60 °C (from ethyl acetate/petroleum ether, Lit.121,122 62 °C); δH (300 MHz; CDCl3)

4.50-4.36 (1H, m, OCH), 1.88-1.80 (2H, m, cyclohexane ring), 1.76 (6H, d, JHP 13.3,

2 × CH3), 1.73-1.60 (2H, m, cyclohexane ring), 1.48-1.10 (6H, m, cyclohexane ring);

δC (125 MHz; C6D6) 73.7 [d, JCP 6.2, P(S)OCH], 34.0 (d, JCP 4.1, C-2 position CH2

and C-6 position CH2), 25.2 (C-3 position CH2 and C-5 position CH2), 24.7 (d, JCP

74.7, 2 × CH3), 23.7 (C-4 position CH2); δP (121 MHz; CDCl3) 91.0; m/z (ES+)

[Found: (M) 192.0741. C8H17OPS requires M, 192.0738]; m/z (ES+)

111 ([C2H8OPS]+, 100%), 54 (10), 67 (20), 77 (15), 92 (35), 95 (20). These data are

in good agreement with the literature values.121,122

4.1.33. (-)-1D-5-O-Allyl-2,6-bis-O-benzyl-1-O-(acetyl)-3-O-endo-4-O-exo-(L-

1',7',7'-trimethylbicyclo[2.2.1]hept-2'-ylidene)-myo-inositol 79

(-)-1D-5-O-Allyl-2,6-bis-O-benzyl-3-O-endo-4-O-exo-(L-1’,7’,7’-trimethylbicyclo[2.2.1]

hept-2’-ylidene)-myo-inositol 34 (1.0 g, 1.9 mmol, 1.0 equiv) was dissolved in dry

pyridine (10 mL) under an atmosphere of nitrogen and 4-dimethylaminopyridine

(71 mg, 580 μmol, 0.3 equiv) was added. The mixture was cooled to 0 °C and acetic

anhydride (236 mg, 219 μL, 2.3 mmol, 1.2 equiv) was added dropwise. The mixture

was warmed to RT and stirred for 5 h. The acetic anhydride was quenched with

water (2 mL) and the solvent removed under reduced pressure. The residue was
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reconstituted in ethyl acetate (20 mL) and water (20 mL), the layers separated and

the aqueous layer extracted with ethyl acetate (3 × 15 mL). The combined organic

layers were washed with a saturated aqueous solution of sodium hydrogen

carbonate (15 mL), brine (15 mL), dried (magnesium sulfate), filtered and

concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (5/95) gave (-)-1D-5-O-

Allyl-2,6-bis-O-benzyl-1-O-(acetyl)-3-O-endo-4-O-exo-(L-1',7',7'-trimethylbicyclo

[2.2.1]hept-2'-ylidene)-myo-inositol 79 (821 mg yield, 74%) as a colourless oil

(Found: C, 73.0, H, 7.5; C35H44O7 requires C, 72.9, H, 7.7); Rf 0.4 (ethyl

acetate/petroleum ether 20/80); Rf 0.45 (ethyl acetate/hexane 30/70); 26
D][α - 53.0 (c

0.72 in CHCl3); νmax (KBr disc)/cm-1 3031.8 (w), 2952.0 (s), 2874.7 (s), 1743.9 (s),

1497.6 (w), 1454.2 (m), 1372.1 (m), 1310.2 (m), 1237.0 (s), 1168.9 (m), 1087.9 (s),

1046.7 (s), 925.3 (w), 843.9 (w), 776.6 (w), 736.0 (m), 697.3 (m); δH (300 MHz;

CDCl3) 7.40-7.25 (10H, m, ArH), 5.96 (1H, ddt J 17.2, 10.5, 5.6 CH=CH2), 5.32 (1H,

ddt, J 17.2, 1.8, 1.5, CH=CHH), 5.17 (1H, ddt, J 10.5, 1.8, 1.3, CH=CHH), 4.90 (1H,

d, JAB 11.3, OCHAHB), 4.87 (1H, d, JA’B’ 12.3, OCHA’HB’), 4.85 (1H, dd, J 10.0, 3.1, C-

1 position inositol ring proton), 4.66 (1H, d, JAB 11.3, OCHAHB), 4.63 (1H, d, JA’B’

12.3, OCHA’HB’), 4.40 (1H, dddd, J 12.8, 5.6, 1.8, 1.5, CHHCH=CH2), 4.27, (1H, dd,

J 3.1, 1.8, inositol ring), 4.20 (1H, dddd, J 12.8, 5.6, 1.8, 1.3, CHHCH=CH2), 4.02

(1H, t, J 9.7, inositol ring), 3.88 (1H, dd, J 10.0, 8.4, inositol ring), 3.57 (1H, dd, J

9.7, 8.4, inositol ring), 3.34 (1H, dd, J 10.0, 1.8, inositol ring), 2.19-2.13 (1H, m,

camphor ring), 1.97 (3H, s, CH3CO),1.94-1.88 (1H, m, camphor ring), 1.77-1.67 (2H,

m, camphor ring), 1.49-1.35 (2H, m, camphor ring), 1.27-1.18 (1H, m, camphor

ring), 1.03 (3H, s, CH3-camphor bridge), 0.87 (3H, s, CH3-camphor bridge), 0.86

(3H, s, CH3-camphor bridge); δC (75 MHz; CDCl3) 170.6 (C=O), 139.2 (ArC), 138.6

(ArC), 135.6 (CH=CH2), 128.7 (ArC), 128.2 (ArC), 128.1 (ArC), 127.9 (ArC), 121.7

(ketyl carbon), 117.0 (CH=CH2), 81.3 (inositol ring), 81.1 (inositol ring), 77.5 (inositol

ring), 76.6 (inositol ring), 76.3 (CH2), 74.9 (inositol ring), 74.2 (CH2), 72.3 (inositol

ring), 72.1 (CH2), 53.3 (Cq), 48.7 (Cq), 46.5 (CH2), 45.3 (CH), 29.3 (CH2), 27.1 (CH2),

21.3 (CH3), 20.7 (CH3), 20.6 (CH3), 10.1 (CH3); m/z (ES+) [Found: (M+Na)+

599.2972. C35H44O7Na requires M+, 599.2985], m/z (ES+) 599 ([M+Na]+, 100%).



Experimental Section

152

4.1.34. (-)-1D-5-O-Allyl-2,6-bis-O-benzyl-1-O-(acetyl)-myo-inositol 80

(-)-1D-5-O-Allyl-2,6-bis-O-benzyl-1-O-(acetyl)-3-O-endo-4-O-exo-(L-1',7',7'-trimethyl

bicyclo[2.2.1]hept-2'-ylidene)-myo-inositol 79 (740 mg, 1.3 mmol, 1.0 equiv) was

dissolved in methanol (20 mL) and dichloromethane (30 mL) under an atmosphere

of nitrogen and acetyl chloride (60 mg, 55 μL, 0.8 mmol, 0.6 equiv) was added. The

resulting mixture was stirred for 4h, then the generated hydrochloric acid reaction

was quenched by the addition of triethylamine (1 mL) and the solvent removed

under reduced pressure. Purification by silica gel column chromatography, eluting

with ethyl acetate/petroleum ether (30/70, then 50/50) and then ethyl acetate gave

(-)-1D-5-O-allyl-2,6-bis-O-benzyl-1-O-(acetyl)-myo-inositol 80 (450 mg yield, 79%) as

a colourless solid (Found: C, 67.9, H, 6.8; C25H30O7 requires C, 67.9, H, 6.9); Rf 0.1

(ethyl acetate/petroleum ether 50/50); mp 128-129 °C (from ethyl acetate/petroleum

ether); 26
D][α - 59.3 (c 0.53 in CHCl3); νmax (KBr disc)/cm-1 3428.1 (s), 3066.5 (w),

2909.7 (m), 1735.4 (s), 1458.1 (w), 1368.9 (m), 1238.1 (s), 1161.8 (m), 1130.0 (w),

1058.3 (s), 926.1 (w), 904.5 (w), 730.2 (m), 696.1 (m), 623.5 (w); δH (300 MHz;

CDCl3) 7.46-7.29 (10H, m, ArH), 5.96 (1H, ddt J 17.2, 10.5, 5.6 CH=CH2), 5.29 (1H,

ddt, J 17.2, 1.8, 1.5, CH=CHH), 5.19 (1H, ddt, J 10.5, 1.8, 1.3, CH=CHH), 4.88-4.76

(3H, m, 1 × C-1 position inositol ring proton, 1 × OCHAHB and 1 × OCHA’HB’), 4.70

(1H, d, JAB 11.3, OCHAHB), 4.69 (1H, d, JA’B’ 11.8, OCHA’HB’), 4.40 (1H, m,

CHHCH=CH2), 4.28, (1H, m, CHHCH=CH2), 4.05 (1H, t, J 2.8, inositol ring), 3.97

(1H, t, J 9.5, inositol ring), 3.84 (1H, td, J 9.7, 2.3, inositol ring), 3.58-3.52 (1H, m,

inositol ring), 3.30 (1H, t, J 9.2, inositol ring), 2.56 (1H, br s, OH), 2.30 (1H, d, J 6.7,

OH), 1.96, (3H, s, CH3); δC (75 MHz; CDCl3) 170.3 (C=O), 138.5 (ArC), 138.3 (ArC),

135.0 (CH=CH2), 128.5 (ArCH), 128.4 (ArCH), 127.82 (ArCH), 127.8 (ArCH), 127.74

(ArCH), 127.7 (ArCH), 117.1 (CH=CH2), 82.6 (inositol ring), 79.5 (inositol ring), 77.8

(inositol ring), 75.4 (CH2), 75.3 (CH2), 74.3 (CH2), 73.9 (inositol ring), 73.5 (inositol

ring), 72.1 (inositol ring), 20.9 [C(O)CH3]; m/z (ES+) [Found: (M+Na)+ 465.1888.

C25H30O7Na requires M+, 465.1889], m/z (ES+) 465 ([M+Na]+, 100%).
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4.1.35. (-)-1D-5-O-Allyl-2,3,6-tris-O-benzyl-1-O-(acetyl)-myo-inositol 81

(-)-1D-5-O-Allyl-2,6-bis-O-benzyl-1-O-(acetyl)-myo-inositol 80 (425 mg, 960 μmol,

1.0 equiv), di-n-butyltin oxide (263 mg, 1.1 mmol, 1.1 equiv), tetra-n-butylammonium

iodide (390 mg, 1.1 mmol, 1.0 equiv) and benzyl bromide (787 mg, 548 μL,

4.6 mmol, 4.8 equiv) were suspended in acetonitrile (50 mL) under an atmosphere

of nitrogen. The mixture was heated under reflux for 24 h using soxhlet apparatus

filled with 3 Å molecular sieves to remove water generated in the reaction. The

reaction mixture was cooled to RT and the solvent was removed under reduced

pressure. The residue was suspended in water (20 mL) and extracted with ethyl

acetate (3 × 20 mL). The combined organic layers were washed with a saturated

aqueous solution of sodium hydrogen carbonate (10 mL) and the formed solid was

removed by filtration through Celite®. The filtrate was washed with brine (10 mL),

dried (magnesium sulfate), filtered and concentrated under reduced pressure.

Purification by silica gel column chromatography, eluting with diethyl

ether/petroleum ether (40/60) yielded a mixture of two compounds that was re-

columned eluting with diethyl ether/petroleum ether (20/80) to furnish (-)-1D-5-O-

allyl-1-O-(acetyl)-2,3,6-tris-O-benzyl-myo-inositol 81 as a colourless solid (438 mg

yield, 56%) (Found: C, 72.2, H, 6.8; C32H36O7 requires C, 72.2, H, 6.8); Rf 0.6

(diethyl ether/petroleum ether 60/40); mp 56-57 °C (from diethyl ether/petroleum

ether); 26
D][α - 31.4 (c 0.47 in CHCl3); νmax (KBr disc)/cm-1 3514.7 (s), 3034.1 (m),

2912.8 (s), 1719.0 (s), 1454.1 (m), 1369.9 (m), 1256.2 (s), 1168.4 (m), 1124.0 (s),

1046.0 (s), 940.1 (m), 917.0 (w), 745.8 (s), 696.0 (s), 624.4 (w), 526.9 (w), 473.7

(w); δH (300 MHz; CDCl3) 7.39-7.29 (15H, m, ArH), 6.00 (1H, ddt J 17.2, 10.5, 5.6

CH=CH2), 5.32 (1H, ddt, J 17.2, 1.8, 1.5, CH=CHH), 5.19 (1H, ddt, J 10.5, 1.8, 1.3,

CH=CHH), 4.86 (1H, d, JAB 11.3, OCHAHB), 4.81 (1H, d, JA’B’ 11.8, OCHA’HB’), 4.76

(1H, dd, J 10.2, 12.8, C-1 position inositol ring proton), 4.72 (1H, d, J 11.3,

OCHAHB), 4.70 (1H, d, J 11.8, OCHA’’HB’’), 4.67 (1H, d, J 11.8, OCHA’HB’), 4.61 (1H,

d, J 11.8, OCHA’’HB’’), 4.28-4.26, (2H, m, inositol ring), 4.07-4.00 (2H, m,

CH2CH=CH2), 3.92 (1H, t, J 9.5, inositol ring), 3.25 (1H, dd, J 9.7, 2.3, inositol ring),

3.22 (1H, t, J 9.2, inositol ring) 2.49 (1H, d, J 2.0, OH); δC (75 MHz; CDCl3) 170.9

(C=O), 139.0 (ArC), 138.8 (ArC), 138.2 (ArC), 135.6 (CH=CH2), 129.0 (ArCH), 128.8

(ArCH), 128.7 (ArCH), 128.4 (ArCH), 128.2 (ArCH), 128.12 (ArCH), 128.1 (ArCH),
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117.4 (CH=CH2), 83.2 (inositol ring), 80.5 (inositol ring), 79.8 (inositol ring), 75.9

(CH2), 75.0 (CH2), 74.72 (CH2), 74.7 (inositol ring), 74.3 (inositol ring), 73.1 (inositol

ring), 73.0 (CH2), 21.4 [C(O)CH3]; m/z (ES+) [Found: (M+Na)+ 555.2349.

C32H36O7Na requires M+, 555.2359], m/z (ES+) 555 ([M+Na]+, 100%), 556 (40).

4.1.36. 4-Methoxybenzyl 2,2,2-trichloroacetimidate 84

4-Methoxybenzyl alcohol 83 (10.0 g, 72.4 mmol, 10.0 equiv) was dissolved in

dichloromethane (80 mL), tetra-n-butylammonium hydrogen sulfate (246 mg, 0.7

mmol, 0.01 equiv) and a 50% aqueous solution of potassium hydroxide (80 mL)

were added and the resulting mixture cooled at - 10 °C. Trichloroacetonitrile (12.0 g,

8.3 mL, 82.2 mmol, 1.1 equiv) was added dropwise with vigorous stirring over a

period of 30 min. The resulting mixture was allowed to warm to RT and stirred for

2 h. The layers were separated and the aqueous layer extracted with diethyl ether

(3 × 100 mL). The combined organic layers were dried (magnesium sulfate), filtered

and concentrated under reduced pressure. Purification by activated aluminium oxide

column chromatography, eluting with ethyl acetate/petroleum ether (5/95) furnished

the title compound 84 as a colourless oil (7.4 g yield, 36%); Rf 0.36 (ethyl

acetate/petroleum ether 20/80); δH (300 MHz; CDCl3) 8.37 (1H, br s, HN), 7.39 (2H,

d, J 8.7, ArH), 6.92, (2H, d, J 8.7, ArH), 5.28 (2H, s, OCH2Ph), 3.83 (3H, s, OCH3).

These data are in good agreement with the literature values.139

4.1.37. (-)-1D-1,5-bis-O-Allyl-2,6-bis-O-benzyl-3-O-endo-4-O-exo-(L-1',7',7'-

trimethylbicyclo[2.2.1]hept-2'-ylidene)-myo-inositol 103

(-)-1D-5-O-Allyl-2,6-bis-O-benzyl-3-O-endo-4-O-exo-(L-1’,7’,7’-trimethylbicyclo[2.2.1]

hept-2’-ylidene)-myo-inositol 34 (2.4 g, 4.5 mmol, 1.0 equiv) was dissolved in dry

tetrahydrofuran (20 mL) under an atmosphere of nitrogen, the resulting mixture was

cooled to 0 °C and sodium hydride (219 mg, 60% dispersion in mineral oil,

5.4 mmol, 1.2 equiv) was added. The resulting mixture was allowed to warm to RT
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and stirred for 1 h. The mixture was then re-cooled to 0 °C and imidazole (catalytic

amount) and tetra-n-butylammonium iodide (catalytic amount) were added, followed

by allyl bromide (653 mg, 472 μL, 5.4 mmol, 1.2 equiv) which was added dropwise.

The reaction mixture was allowed to warm to RT, then dry N,N-dimethyl formamide

(30 mL) was added and the resulting mixture stirred overnight. The sodium hydride

was quenched with water (2 mL), the solvent removed under reduced pressure and

the residue reconstituted in ethyl acetate (15 mL) and water (15 mL). The layers

were separated and the aqueous layer extracted with ethyl acetate (3 × 15 mL). The

combined organic layers were washed with brine (10 mL), dried (magnesium

sulfate), filtered and concentrated under reduced pressure to afford a yellow oil.

Purification by silica gel column chromatography, eluting with ethyl

acetate/petroleum ether (5/95) yielded (-)-1D-1,5-bis-O-allyl-2,6-bis-O-benzyl-3-O-

endo-4-O-exo-(L-1',7',7'-trimethylbicyclo[2.2.1]hept-2'-ylidene)-myo-inositol 103

(2.4 g yield, 91%) as a colourless solid. (Found: C, 75.3, H, 8.3; C36H46O6 requires

C, 75.2, H, 8.1); Rf 0.45 (ethyl acetate/petroleum ether 20/80); 26
D][α - 23.0 (c 0.49 in

CHCl3); mp 55-57 °C (from ethyl acetate/petroleum ether); νmax (KBr disc)/cm-1

3064.4 (w), 3025.2 (w), 2932.8 (s), 2868.3 (s), 1647.6 (w), 1453.9 (m), 1366.6 (m),

1309.5 (m), 1203.4 (m), 1092.7 (s), 1048.9 (s), 921.2 (s), 778.2 (w), 747.9 (s), 697.6

(s), 595.8 (w); δH (300 MHz; CDCl3) 7.40-7.25 (10H, m, ArH), 6.06-5.85 (2H, m,

CHX=CHYHZ+ CHX’=CHY’HZ’), 5.35 (1H, ddt, J 17.1, 1.8, 1.5, CHX=CHYHZ), 5.30 (1H,

ddt, J 17.4, 1.8, 1.3, CHX’=CHY’HZ’), 5.19 (2H, ddt, J 10.2, 1.8, 1.3, CHX=CHYHZ +

CHX’=CHY’HZ’), 4.93 (1H, d, JAB 12.3, OCHAHB), 4.88 (1H, d, JA’B’ 10.5, OCHA’HB’),

4.86 (1H, d, JAB 12.3, OCHAHB), 4.84 (1H, d, JA’B’ 10.5, OCHA’HB’), 4.40 (1H, ddt,

J 13.1, 5.4, 1.5, CHvHWCHX=CHYHZ), 4.27-4.20, (2H, m, 1 × CHVHWCHX=CHYHZ +

CHV’HW’CHX’=CHY’HZ’), 4.09-4.02 (3H, m, 1 × CHV’HW’CHX’=CHY’HZ’ + 2 × inositol

ring), 3.85 (1H, t, J 9.2, inositol ring), 3.51 (1H, dd, J 9.5, 8.7, inositol ring), 3.42 (1H,

dd, J 9.7, 3.0, inositol ring), 3.22 (1H, dd, J 9.7, 1.5, inositol ring), 2.16 (1H, dt,

J 13.6, 3.6, camphor ring), 2.02-1.93 (1H, m, camphor ring), 1.77-1.71 (2H, m,

camphor ring), 1.48-1.36 (2H, m, camphor ring), 1.29-1.19 (1H, m, camphor ring),

1.05 (3H, s, CH3-camphor bridge), 0.91 (3H, s, CH3-camphor bridge), 0.88 (3H, s,

CH3-camphor bridge); δC (75 MHz; CDCl3), 139.1 (ArC), 138.5 (ArC), 135.4

(CHX=CHYHZ), 134.9 (CHX’=CHY’HZ’), 128.3 (ArCH), 128.2 (ArCH), 127.9 (ArCH),

127.55 (ArCH), 127.5 (ArCH), 120.4 (ketyl carbon), 117.1 (CHX=CHYHZ), 116.4

(CHX’=CHY’HZ’), 82.8 (inositol ring), 81.2 (inositol ring), 81.0 (inositol ring), 77.2
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(inositol ring), 76.7 (inositol ring), 76.5 (CH2), 73.3 (CH2), 71.7 (CH2), 71.66 (CH2),

70.8 (inositol ring), 52.9 (Cq), 48.2 (Cq), 46.2 (CH2), 45.0 (CH), 29.0 (CH2), 26.8

(CH2), 20.4 (CH3), 20.2 (CH3), 9.7 (CH3); m/z (ES+) [Found: (M+Na)+ 597.3171.

C36H46O6Na requires M+, 597.3192], m/z (ES+) 597 ([M+Na]+, 100%).

4.1.38. (-)-1D-1,5-bis-O-Allyl-2,6-bis-O-benzyl-myo-inositol 104

(-)-1D-1,5-bis-O-Allyl-2,6-bis-O-benzyl-3-O-endo-4-O-exo-(L-1',7',7'-trimethylbicyclo

[2.2.1]hept-2'-ylidene)-myo-inositol 104 (2.4 g, 4.1 mmol, 1.0 equiv) was dissolved in

methanol/dichloromethane 2/3 (50 mL) under an atmosphere of nitrogen. Acetyl

chloride (194 mg, 176 μL, 2.5 mmol, 0.6 equiv) was added and the resulting mixture

stirred for 4 h. The generated hydrochloric acid was quenched with triethylamine

(1 mL), the solvent removed under reduced pressure and the resulting yellow solid

adsorbed onto silica and purified by silica gel column chromatography, eluting with

ethyl acetate/petroleum ether (30/70), to yield (-)-1D-1,5-bis-O-allyl-2,6-bis-O-benzyl-

myo-inositol 104 (1.6 g yield, 88%) as a colourless solid. (Found: C, 70.6, H, 7.6;

C36H46O6 requires C, 70.9, H, 7.3); Rf 0.55 (ethyl acetate); 26
D][α - 16.8 (c 0.64 in

CHCl3); mp 119-120 °C (from ethyl acetate/petroleum ether); νmax (KBr disc)/cm-1

3405.3 (s), 3066.5 (m), 3034.6 (m), 2910.9 (s), 2862.7 (s), 1647.7 (w), 1497.4 (m),

1455.7 (s), 1425.7 (s), 1354.7 (s), 1255.6 (w), 1160.8 (s), 1052.2 (s), 992.8 (s),

928.6 (s), 724.1 (s), 696.4 (s), 576.2 (w), 460.1 (w); δH (300 MHz; CDCl3) 7.43-7.28

(10H, m, ArH), 6.05-5.90 (2H, m, CHX=CHYHZ + CHX’=CHY’HZ’), 5.35 (1H, ddt, J

17.1, 1.8, 1.5, CHX=CHYHZ), 5.30 (1H, ddt, J 17.2, 1.8, 1.5, CHX’=CHY’HZ’), 5.22 (1H,

ddt, J 10.5, 1.5, 1.3, CHX=CHYHZ), 5.14 (1H, ddt, J 10.2, 1.8, 1.3, CHX’=CHY’HZ’),

5.05 (1H, d, JAB 11.8, OCHAHB), 4.90 (1H, d, JA’B’ 10.5, OCHA’HB’), 4.80 (1H, d, JA’B’

10.5, OCHA’HB’), 4.70 (1H, d, JAB 11.8, OCHAHB), 4.41 (1H, ddt, J 12.3, 5.6, 1.5,

CHvHWCHX=CHYHZ), 4.28 (1H, ddt, J 12.3, 5.8, 1.3, CHVHWCHX=CHYHZ), 4.19-4.17,

(2H, m, CHV’HW’CHX’=CHY’HZ’), 4.02 (1H, t, J 2.3, inositol ring), 3.92 (1H, t, J 9.7,

inositol ring), 3.81 (1H, t, J 9.5, inositol ring), 3.42-3.34 (2H, m, inositol ring), 3.19

(1H, t, J 9.2, inositol ring), 2.69 (2H, br s, 2 × OH); δC (75 MHz; CDCl3), 138.7 (ArC),

138.67 (ArC), 135.2 (CHX=CHYHZ), 134.8 (CHX’=CHY’HZ’), 128.4 (ArCH), 128.39

(ArCH), 128.2 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 127.68 (ArCH), 116.95

(CHX=CHYHZ), 116.92 (CHX’=CHY’HZ’), 82.6 (inositol ring), 81.4 (inositol ring), 81.0
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(inositol ring), 77.2 (inositol ring), 75.8 (CH2), 74.8 (CH2), 74.2 (CH2), 73.8 (inositol

ring), 72.1 (inositol ring), 71.9 (CH2); m/z (ES+) [Found: (M+Na)+ 463.2088.

C26H32O6Na requires M+, 463.2097], m/z (ES+) 463 ([M+Na]+, 100%).

4.1.39. (+)-1D-1,5-bis-O-Allyl-2,3,6-tris-O-benzyl-myo-inositol 100

(-)-1D-1,5-bis-O-Allyl-2,6-bis-O-benzyl-myo-inositol 104 (2.0 g, 4.5 mmol, 1.0 equiv),

di-n-butyltin oxide (1.2 g, 5.0 mmol, 1.1 equiv), tetra-n-butylammonium iodide (1.9 g,

4.5 mmol, 1.0 equiv) and benzyl bromide (2.6 mL, 21.8 mmol, 4.8 equiv) were

dissolved in acetonitrile (80 mL) under an atmosphere of nitrogen. The mixture was

heated under reflux for 24 h, using a soxhlet apparatus filled with 3 Å molecular

sieves to remove water generated in the reaction. The reaction mixture was cooled

to RT and the solvent was removed under reduced pressure. The residue was

reconstituted in ethyl acetate (20 mL) and water (20 mL) the layers separated and

the aqueous layer extracted with ethyl acetate (3 × 20 mL). The combined organic

layers were washed with a saturated aqueous solution of sodium hydrogen

carbonate (20 mL) and the resulting solid was removed by filtration through Celite®.

The filtrate was washed with brine (20 mL), dried (magnesium sulfate), filtered and

concentrated under reduced pressure to yield a yellow residue. Purification by

activated aluminium oxide column chromatography (30 cm path), eluting with ethyl

acetate/petroleum ether (50/50) (twice) yielded (+)-1D-1,5-bis-O-allyl-2,3,6-tris-O-

benzyl-myo-inositol 100 (1.7 g, yield 71%) as a colourless solid. (Found: C, 74.5, H,

7.3; C33H38O6 requires C, 74.7, H, 7.2); Rf 0.23 (ethyl acetate/petroleum ether

30/70); 26
D][α + 2.8 (c 0.68 in CHCl3); mp 69-71 °C (from diethyl ether/petroleum

ether); νmax (KBr disc)/cm-1 3530.9 (s), 3258.2 (s), 3064.2 (m), 3030.1 (m), 2893.6

(s), 2862.7 (s), 1648.1 (w), 1497.5 (m), 1454.3 (s), 1350.9 (s), 1210.4 (w), 1128.6

(s), 1069.3 (s), 1027.2 (s), 929.6 (m), 928.6 (s), 755.2 (w), 728.6 (s), 695.4 (s),

565.0 (w); δH (300 MHz; CDCl3) 7.44-7.25 (15H, m, ArH), 6.06-5.87 (2H, m,

CHX=CHYHZ + CHX’=CHY’HZ’), 5.33 (1H, ddt, J 17.2, 1.8, 1.5, CHX=CHYHZ), 5.30

(1H, ddt, J 17.4, 1.8, 1.5, CHX’=CHY’HZ’), 5.20 (1H, ddt, J 10.5, 1.5, 1.3,

CHX=CHYHZ), 5.18 (1H, ddt, J 10.2, 1.8, 1.5, CHX’=CHY’HZ’), 4.90 (1H, d, JAB 12.0,

OCHAHB), 4.89 (1H, d, JA’B’ 10.5, OCHA’HB’), 4.82-4.78 (2H, m, OCHAHB +

OCHA’HB’), 4.63 (1H, d, JA’’B’’ 11.8, OCHA’’HB’’), 4.57 (1H, d, JA’’B’’ 11.8, OCHA’’HB’’),
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4.43-4.30 (2H, m, CHvHWCHX=CHYHZ), 4.16-4.09 (3H, m, CHV’HW’CHX’=CHY’HZ’ + 1

× inositol ring), 4.05 (1H, t, J 2.3, inositol ring), 4.00 (1H, t, J 9.5, inositol ring), 3.29-

3.18 (3H, m, inositol ring), 2.55 (1H, br s, OH); δC (75 MHz; CDCl3), 139.3 (2 × ArC),

138.4 (ArC), 135.8 (CHX=CHYHZ), 135.3 (CHX’=CHY’HZ’), 128.9 (ArCH), 128.8

(ArCH), 128.6 (ArCH), 128.3 (ArCH), 128.2 (ArCH), 128.16 (ArCH), 128.0 (ArCH),

127.8 (ArCH), 117.2 (CHX=CHYHZ + CHX’=CHY’HZ’), 83.3 (inositol ring), 81.8 (inositol

ring), 81.3 (inositol ring), 80.5 (inositol ring), 76.3 (CH2), 74.6 (CH2), 74.4 (CH2), 74.0

(inositol ring), 73.1 (inositol ring), 72.8 (CH2), 72.2 (CH2); m/z (ES+) [Found:

(M+Na)+ 553.2563. C33H38O6Na requires M+, 553.2566], m/z (ES+) 553 ([M+Na]+,

100%).

4.1.40. (-)-1D-1,5-bis-O-Allyl-2,3,6-tris-O-benzyl-4-O-dimethylphosphinyl-myo-

inositol 102

Diisopropylamino dimethylphosphine 113 (76 mg, 471 μmol, 2.5 equiv) and

1H-tetrazole (0.43 M solution in acetonitrile, 1.1 mL, 471 μmol, 2.5 equiv) were

dissolved in dry dichloromethane (3 mL), the resulting mixture was cooled to - 78 °C

and (+)-1D-1,5-bis-O-allyl-2,3,6-tris-O-benzyl-myo-inositol 100 (100 mg, 188 μmol,

1.0 equiv) dissolved in dry dichloromethane (2 mL) was added by cannula. The

resulting mixture was allowed to warm to RT and stirred overnight. 31P NMR

analysis indicated the complete conversion of diisopropylamino dimethylphosphine

in the intermediate phosphinite (δP 130.0). The mixture was re-cooled to - 78 °C and

3-chloroperoxybenzoic acid (60% w/w, 112 mg, 471 μmol, 2.5 equiv) was added, the

resulting mixture warmed to RT and stirred for 30 min. The 3-chloroperoxybenzoic

acid was quenched with a 10% aqueous solution of sodium hydrogen sulfite (5 mL),

the layers were separated and the aqueous layer was extracted with

dichloromethane (3 × 5 mL). The combined organic layers washed with a 10%

aqueous solution of sodium hydrogen bicarbonate (5 mL), brine (5 mL), dried

(magnesium sulfate), filtered and concentrated under reduced pressure. Purification

by silica gel column chromatography, eluting with methanol/ethyl acetate (2/98)

yielded (-)-1D-1,5-bis-O-allyl-2,3,6-tris-O-benzyl-4-O-dimethylphosphinyl-myo-

inositol 102 (107 mg yield, 94%) as a colourless solid; a very pure sample was
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obtained by crystallisation from diethyl ether/dichloromethane/petroleum ether.

(Found: C, 69.3, H, 7.2; C35H43O7P requires C, 69.3, H, 7.1); Rf 0.38 (ethyl acetate);
26
D][α - 1.9 (c 0.27 in CHCl3); mp 122-124 °C (from diethyl ether/dichloromethane/

petroleum ether); νmax (KBr disc)/cm-1 3064.3 (w), 3031.7 (w), 2823.2 (s), 2851.5 (s),

1454.5 (m), 1302.9 (m), 1216.5 (s), 1130.6 (m), 1096.4 (s), 1050.2 (s), 935.2 (s),

866.9 (m), 736.2 (s), 698.9 (w); δH (300 MHz; CDCl3) 7.41-7.28 (15H, m, ArH), 6.04-

5.83 (2H, m, CHX=CHYHZ + CHX’=CHY’HZ’), 5.33-5.25 (2H, m, CHX=CHYHZ +

CHX’=CHY’HZ’), 5.18 (1H, ddt, J 10.5, 1.8, 1.5, CHX=CHYHZ), 5.15 (1H, ddt, J 10.2,

1.5, 1.3, CHX’=CHY’HZ’), 4.88-4.74 (4H, m, OCHAHB + OCHA’HB’), 4.66-4.54 (3H, m,

OCHA’’HB’’ and C-4 position inositol ring),4.39 (1H, ddt, J 12.3, 5.6, 1.5,

CHvHWCHX=CHYHZ), 4.27 (1H, ddt, J 12.3, 5.6, 1.5, CHvHWCHX=CHYHZ), 4.13-4.05

(2H, m, CHV’HW’CHX’=CHY’HZ’), 4.00-3.94 (2H, m, inositol ring), 3.33-3.29 (2H, m,

inositol ring), 3.24 (1H, dd, J 9.8, 2.1, inositol ring), 1.50 [3H, d, JHP 14.1,

P(O)CH3CH3], 1.49 [3H, d, JHP 14.1, P(O)CH3CH3]; δC (75 MHz; CDCl3), 139.1

(ArC), 139.0 (ArC), 138.0 (ArC), 135.3 (CHX=CHYHZ), 135.1 (CHX’=CHY’HZ’), 128.9

(ArCH), 128.9 (ArCH), 128.8 (ArCH), 128.6 (ArCH), 128.4 (ArCH), 128.3 (ArCH),

128.2 (ArCH), 128.1 (ArCH), 127.9 (ArCH), 117.3 (CHX=CHYHZ), 117.1

(CHX’=CHY’HZ’), 81.9 (d, JCP 2.8, inositol ring), 81.7 (inositol ring), 80.7 (inositol ring),

79.4 (d, JCP 2.2, inositol ring), 76.6, (d, JCP 8.3, inositol ring), 76.3 (CH2), 74.7 (CH2),

74.6 (CH2), 73.9 (inositol ring), 73.0 (CH2), 72.1 (CH2), 17.0 [d, JCP 94.0,

P(O)CH3CH3], 16.9 [d, JCP 94.0, P(O)CH3CH3]; δP (121 MHz; CDCl3) 54.8; m/z

(ES+) [Found: (M+Na)+ 629.2643. C35H43O7NaP requires M+, 629.2644], m/z (ES+)

629 ([M+Na]+, 100%).

4.1.41. (-)-1D-2,3,6-tris-O-Benzyl-4-O-dimethylphosphinyl-myo-inositol 117

(-)-1D-1,5-Bis-O-allyl-2,3,6-tris-O-benzyl-4-O-dimethylphosphinyl-myo-inositol 102

(314 mg, 517 μmol, 1.0 equiv), was dissolved methanol/water (4/1, 20 mL) and of

4-toluenesulfonic acid monohydrate (30 mg, 155 μmol, 0.3 equiv) and palladium on

activated carbon (loading 10%, 80 mg, 155 μmol, 0.15 equiv) were added. The

resulting mixture was heated at 60 °C for 24 h. Analysis by TLC indicated complete

consumption of the starting material and the mixture was cooled to RT, the
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4-toluenesulfonic acid quenched with triethylamine (1 mL) and the palladium catalyst

removed by filtration onto Celite®. The filtrate was concentrated under reduced

pressure, the residue reconstituted in water (5 mL) and dichloromethane (5 mL), the

layers separated and the aqueous layer extracted with dichloromethane (3 × 5 mL).

The combined organic layers were washed with a saturated aqueous solution of

sodium hydrogen carbonate (10 mL), brine (10 mL), dried (magnesium sulfate),

filtered and concentrated under reduced pressure. The resulting yellow oil was

purified three time by silica gel column chromatography, eluting with

triethylamine/methanol/dichloromethane (1/2/97) to give (-)-1D-2,3,6-tris-O-benzyl-4-

O-dimethylphosphinyl-myo-inositol 117 (57 mg yield, 21%) as a colourless gum; Rf

0.56 (methanol/dichloromethane 8/92); νmax (thin film)/cm-1 3350.4 (s), 3063.2 (m),

3031.1 (m), 2920.4 (s), 1723.9 (m), 1668.1 (s), 1496.9 (m), 1454.8 (m), 1387.3 (m),

1365.9 (m), 1306.0 (m), 1274.9 (m), 1199.0 (s), 1070.5 (s), 943.8 (s), 876.5 (m),

825.0 (w), 740.5 (s), 700.0 (s), 662.1 (m); δH (300 MHz; CDCl3) 7.43-7.28 (15H, m,

ArH), 5.11 (1H, d, JAB 11.2, OCHAHB), 4.87 (1H, d, JA’B’ 11.8, OCHA’HB’), 4.79 (1H, d,

JA’B’ 11.8, OCHA’HB’), 4.74 (1H, d, JAB 11.2, OCHAHB), 4.63 (1H, d, JA’’B’’ 11.8,

OCHA’’HB’’), 4.51 (1H, d, JA’’B’’ 11.8, OCHA’’HB’’), 4.09 (1H, t, J 2.3, inositol ring), 3.78

(1H, t, J 9.2, inositol ring), 3.67 (1H, t, J 8.7, inositol ring), 3.49 (1H, dt, J 9.5, 2.6,

inositol ring), 3.42 (1H, dd, J 9.7 2.6, inositol ring), 2.35 (1H, d, J 3.8, inositol ring),

1.55 [3H, d, JHP 14.2, P(O)CH3CH3], 1.53 [3H, d, JHP 14.2, P(O)CH3CH3]; δP (121

MHz; CDCl3) 60.6; m/z (ES+) [Found: (M+Na)+ 549.2003. C29H35O7NaP requires M+,

540.2018], m/z (ES+) 549 ([M+Na]+, 100%).

4.1.42. (-)-1D-1,5-bis-O-Allyl-2,3,6-tris-O-benzyl-4-O-methyl-myo-inositol 105

(+)-1D-1,5-bis-O-Allyl-2,3,6-tris-O-benzyl-myo-inositol 100 (150 mg, 283 μmol,

1.0 equiv) was dissolved in dry tetrahydrofuran (8 mL) under an atmosphere of

nitrogen, the mixture was cooled to 0 °C and sodium hydride (13 mg, 60%

dispersion in mineral oil, 311 μmol, 1.1 equiv) was added. The mixture was allowed

to warm to RT and stirred for 2 h, then it was re-cooled to 0 °C and methyl iodide

(44 mg, 19 μL, 311 μmol, 1.1 equiv) was added. The mixture was warmed to RT and

stirred overnight. The sodium hydride was quenched with water (1 mL), the solvent

removed under reduced pressure and the residue reconstituted in ethyl acetate
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(10 mL) and water (10 mL). The layers were separated and the aqueous layer

extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed

with brine (10 mL), dried (magnesium sulfate), filtered and concentrated under

reduced pressure. Purification by silica gel column chromatography, eluting with

ethyl acetate/petroleum ether (10/90) yielded (-)-1D-1,5-bis-O-allyl-2,3,6-tris-O-

benzyl-O-methyl-myo-inositol 105 (184 mg yield, 92%) as a colourless waxy solid.

(Found: C, 75.2, H, 7.4; C34H40O6 requires C, 75.0, H, 7.4); Rf 0.70 (ethyl

acetate/petroleum ether 30/70); mp 35-36 °C (from ethyl acetate/petroleum ether);
26
D][α - 4.05 (c 0.41 in CHCl3); νmax (KBr disc)/cm-1 3064.6 (w), 3030.5 (w), 2925.6

(m), 1647.5 (w), 1496.9 (m), 1454.8 (m), 1357.4 (m), 1207.7 (w), 1132.9 (s), 1088.2

(s), 1028.3 (m), 995.6 (w), 924.5 (m), 734.9 (m), 697.2 (m); δH (300 MHz; CDCl3)

7.36-7.16 (15H, m, ArH), 5.98-5.76 (2H, m, CHX=CHYHZ + CHX’=CHY’HZ’), 5.26-5.18

(2H, m, CHX=CHYHZ + CHX’=CHY’HZ’), 5.11-5.06 (2H, m, CHX=CHYHZ +

CHX’=CHY’HZ’), 4.79 (2H, s, OCH2Ph), 4.78 (1H, d, JA’B’ 10.5, OCHA’HB’), 4.70 (1H, d,

JA’B’ 10.5, OCHA’HB’), 4.61 (1H, d, JA’’B’’ 11.8, OCHA’’HB’’) 4.51 (1H, d, JA’’B’’ 11.8,

OCHA’’HB’’), 4.25 (2H, dt, J 5.6, 1.3, CH2CHX=CHYHZ), 4.02-3.98 (2H, m,

CH2CHX’=CHY’HZ’), 3.90 (1H, t, J 2.3, inositol ring), 3.85 (1H, t, J 9.4, inositol ring),

3.64 (1H, t, J 9.7, inositol ring), 3.58 (2H, s, OCH3), 3.17-3.09 (3H, m, inositol ring);

δC (75 MHz; CDCl3), 139.4 (ArC), 139.36 (ArC), 139.1 (ArC), 135.9 (CHX=CHYHZ),

135.4 (CHX’=CHY’HZ’), 128.8 (ArCH), 128.76 (ArCH), 128.7 (ArCH), 128.5 (ArCH),

128.2 (ArCH), 128.01 (ArCH), 128.0 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 117.1

(CHX=CHYHZ), 116.9 (CHX’=CHY’HZ’), 84.0 (inositol ring), 83.9 (inositol ring), 81.9

(inositol ring), 81.1 (inositol ring), 80.9 (inositol ring), 76.3 (CH2), 75.0 (CH2), 74.8

(inositol ring), 74.4 (CH2), 73.2 (CH2), 72.8 (CH2), 61.8 (OCH3); m/z (ES+) [Found:

(M+Na)+ 567.2716. C34H40O6Na requires M+, 567.2723], m/z (ES+) 567 ([M+Na]+,

100%).

4.1.43. (+)-1D-2,3,6-tris-O-Benzyl-4-O-methyl-myo-inositol 106

(-)-1D-1,5-bis-O-Allyl-2,3,6-tris-O-benzyl-O-methyl-myo-inositol 105 (80 mg,

147 μmol, 1.0 equiv), Wilkinson’s catalyst (41 mg, 44 μmol, 0.3 equiv) and Hunig’s

base (38 mg, 51 μL, 294 μmol, 2.0 equiv) were suspended in ethanol (8 mL) and the

resulting mixture heated under reflux for 3 h. The mixture was then cooled to 0 °C
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and filtered through Celite® and the filtrate concentrated under reduced pressure.

The resulting red residue was dissolved in methanol/dichloromethane (2/3, 8 mL)

and acetyl chloride (7 mg, 6 μL, 88 μmol, 0.6 equiv) was added and the mixture

stirred for 2 h. The generated hydrochloric acid was quenched with triethylamine

(1 mL), the solvent removed under reduced pressure, the residue reconstituted in

ethyl acetate (5 mL) and water (5 mL)the layers separated and the aqueous layer

extracted with ethyl acetate (3 × 5 mL). The combined organic layers were washed

with a saturated aqueous solution of sodium hydrogen carbonate (5 mL), brine

(5 mL), dried (magnesium sulfate), filtered and concentrated under reduced

pressure. Purification by silica gel column chromatography (twice), eluting with ethyl

acetate/petroleum ether (30/70), yielded (+)-1D-2,3,6-tris-O-benzyl-O-methyl-myo-

inositol 106 (54 mg yield, 79%) as a colourless solid. (Found: C, 72.5, H, 6.9;

C28H32O6 requires C, 72.4, H, 6.9); Rf 0.5 (ethyl acetate/petroleum ether 50/50); mp

80-81 °C (from ethyl acetate/petroleum ether); 25
D][α + 2.1 (c 0.45 in CHCl3); νmax

(KBr disc)/cm-1 3474.9 (s), 3032.1 (w), 2914.8 (m), 1719.3 (w), 1605.0 (w), 1496.9

(m), 1454.8 (m), 1357.7 (m), 1206.2 (w), 1119.6 (s), 1070.8 (s), 1027.4 (s), 934.3

(w), 869.9 (w), 727.0 (s), 696.2 (s), 572.0 (w), 518.1 (w); δH (300 MHz; CDCl3) 7.41-

7.29 (15H, m, ArH), 4.99 (1H, d, J 11.5, OCHAHB), 4.90 (1H, d, J 11.5, OCHA’HB’),

4.82 (1H, d, J 11.5, OCHA’HB’), 4.71 (1H, d, J 11.5, OCHAHB), 4.67 (1H, d, J 11.5,

OCH2Ph), 4.03 (1H, t, J 2.3, inositol ring), 3.71-3.59 (5H, m, 2 × inositol ring + 3 ×

OCH3), 3.47 (1H, dd, J 9.5, 2.8, inositol ring), 3.44 (1H, t, J 9.0, inositol ring), 3.36

(1H, dd, J 9.7, 2.3, inositol ring), 2.30 (2H, br s, OH); δC (75 MHz; CDCl3), 138.7

(ArC), 138.6 (ArC), 138.2 (ArC), 128.6 (ArCH), 128.5 (ArCH), 128.4 (ArCH), 128.1

(ArCH), 127.8 (ArCH), 127.79 (ArCH), 127.74 (ArCH), 127.7 (ArCH), 127.5 (ArCH),

82.9 (inositol ring), 81.7 (inositol ring), 80.8 (inositol ring), 77.2 (inositol ring), 75.0

(CH2), 74.9 (inositol ring), 74.7 (CH2), 72.6 (CH2), 72.2 (inositol ring), 61.4 (OCH3);

m/z (ES+) [Found: (M+Na)+ 487.2088. C28H32O6Na requires M+, 487.2097], m/z

(ES+) 487 ([M+Na]+, 100%).
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4.1.44. (+)-1D-2,3,6-tris-O-Benzyl-4-O-methyl-myo-inositol 1,5-

bis(dibenzylphosphate) 107

Bis(benzyloxy)-N,N-diisopropylamino phosphine 92 (353 mg, 1.0 mmol, 5.0 equiv)

was stirred with 1H-tetrazole (0.43 M solution in acetonitrile, 2.4 mL, 1.0 mmol,

5.0 equiv) for 30 min under an atmosphere of nitrogen. (+)-1D-2,3,6-tris-O-benzyl-4-

O-methyl-myo-inositol 106 (95 mg, 204 μmol, 1.0 equiv) dissolved in dry

dichloromethane (8 mL) was added by cannula and the resulting mixture stirred

overnight. The mixture was cooled to - 78 °C and 3-chloroperoxybenzoic acid

(176 mg, 1.0 mmol, 5.0 equiv) was added. The resulting mixture was allowed to

warm to RT and stirred for 30 min. The 3-chloroperoxybenzoic acid was quenched

with a 10% aqueous solution of sodium hydrogen sulfite (5 mL). The layers were

separated and the aqueous layer was extracted with dichloromethane (3 × 10 mL).

The combined organic layers were washed with a saturated aqueous solution of

sodium hydrogen carbonate (5 mL), brine (5 mL), dried (magnesium sulfate), filtered

and concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (30/70, then 40/60, then

50/50), yielded (+)-1D-2,3,6-tris-O-benzyl-4-O-methyl-myo-inositol 1,5-

bis(dibenzylphosphate) 107 (132 mg yield, 66%) as a colourless gum. (Found:

C, 68.25, H, 5.8; C56H58O12P2 requires C, 68.3, H, 5.9); Rf 0.37 (ethyl

acetate/petroleum ether 50/50); 25
D][α + 7.6 (c 0.2 in CHCl3); νmax (thin film)/cm-1

3064.4 (w), 3033.3 (w), 2933.0 (m), 1497.5 (m), 1455.5 (s), 1379.8 (m), 1269.5 (s),

1214.3 (m), 1124.9 (m), 1091.8 (s), 1013.9 (s), 881.1 (m), 800.0 (w), 736.5 (s),

696.6 (s); δH (300 MHz; CDCl3) 7.31-7.00 (35H, m, ArH), 4.98-4.50 (14H, s, 7 ×

OCH2Ph), 4.35-4.24 (2H, m, 2 × inositol ring), 4.18-4.12 (1H, m, inositol ring), 4.00

(1H, t, J 9.4, inositol ring), 3.70 (1H, t, J 9.4, inositol ring), 3.47 (3H, s, OCH3), 3.28

(1H, d, J 9.7, 2.3, inositol ring); δC (75 MHz; CDCl3), 139.0 (ArC), 138.6 (ArC), 138.3

(ArC), 136.6 [d, JCP 7.8, P(O)(OCH2CAC5H5], 136.4 [d, JCP 7.8, P(O)(OCH2CBC5H5)],

136.1 [d, JCP 1.7, P(O)(OCH2CCC5H5)], 136.0 [d, JCP 1.7, P(O)(OCH2CDC5H5)], 129.0

(ArCH), 128.95 (ArCH), 128.9 (ArCH), 128.86 (ArCH), 128.8 (ArCH), 128.7 (ArCH),

128.6 (ArCH), 128.3 (ArCH), 128.2 (ArCH), 128.1 (ArCH), 128.02 (ArCH), 128.0

(ArCH), 127.93 (ArCH), 127.9 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 81.4 (d, JCP 1.7,
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inositol ring), 80.6 (dd, JCP 6.9, 1.6, inositol ring), 80.3 (inositol ring), 78.7 (dd,

JCP 7.7, 4.5, inositol ring), 78.4 (d, JCP 5.5, inositol ring), 76.4 (inositol ring), 75.5

(CH2), 75.1 (CH2), 73.3 (CH2), 69.9 [d, JCP 5.6, P(O)OCAH2Ph], 69.7 [d, JCP 5.4,

P(O)OCBH2Ph], 69.5 [d, JCP 5.3, P(O)OCCH2Ph], 69.4 [d, JCP 5.2, P(O)OCDH2Ph],

61.5 (OCH3); δP (121 MHz; CDCl3) 0.15, - 0.56; m/z (ES+) [Found: (M+Na)+

1007.3288. C56H58O12NaP2 requires M+, 1007.3301]; m/z (ES+) 1007 ([M+Na]+,

100%).

4.1.45. (-)-1D-4-O-Methyl-myo-inositol 1,5-bisphosphate (sodium salt) 109

(+)-1D-2,3,6-tris-O-Benzyl-4-O-methyl-myo-inositol 1,5-bis(dibenzylphosphate) 107

(11 mg, 11 μmol, 1.0 equiv) was dissolved in tert-butanol/water (6/1, 3.5 mL),

sodium hydrogen carbonate (4 mg, 43 μmol, 4.0 equiv) and palladium black (23 mg,

213 μmol, 20.0 equiv) were added and the flask flushed three times with hydrogen,

then stirred for 4h at RT under an atmosphere of hydrogen. The organic layer was

removed by filtration, the dark residue washed with water (3 mL) and the collected

aqueous layer lyophilized to yield (-)-1D-4-O-methyl-myo-inositol 1,5-bisphosphate

(sodium salt) 109 as a colourless solid (4 mg yield, 82%). 22
D][α - 4.6 (c 0.2 in H2O);

νmax (KBr disc)/cm-1 3423.1 (s), 1686.1 (s), 1650.3 (w), 1384.5 (s), 1205.6 (w),

1133.8 (s), 1085.3 (s), 1029.4 (s), 973.2 (s), 917.5 (w), 804.9 (m), 724.8 (m), 595.8

(w), 551.6 (m); δH (300 MHz; D2O) 4.10 (1H, br s, inositol ring), 3.74-3.65 (3H, m,

inositol ring), 3.45-3.39 (4H, m, 1 × inositol ring and CH3), 3.23 (1H, dd, J 10.2, 8.5,

inositol ring); δC (75 MHz; D2O), 81.3 (d, JCP 5.5, inositol ring), 78.0 (dd, JCP 6.1, 1.1,

inositol ring), 74.6 (d, JCP 5.5, inositol ring), 72.2 (d, JCP 6.1, inositol ring), 70.9 (d,

JCP 1.1, inositol ring), 69.6 (d, JCP 1.7, inositol ring), 60.2 (OCH3); δP (121 MHz; D2O)

3.56, 2.99; m/z (ES-) [Found: (M)- 374.9855. C7H14O12NaP2 requires M-, 374.9858];

m/z 352 ([C7H15O12P2]- 100%), 375 [C7H14NaO12P2] (70), 273 [C7H14O9P] (10).
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4.1.46. (+)-1D-1,5-bis-O-Allyl-2,3,6-tris-O-benzyl-4-O-(4-methoxybenzyl)-myo-

inositol 101

(+)-1D-1,5-bis-O-Allyl-2,3,6-tris-O-benzyl-myo-inositol 100 (2.3 g, 4.3 mmol,

1.0 equiv) was dissolved in dry N,N-dimethyl formamide (80 mL) under an

atmosphere of nitrogen, the mixture was cooled to 0 °C and sodium hydride

(191 mg, 60% dispersion in mineral oil, 4.8 mmol, 1.1 equiv) was added. The

resulting mixture was allowed to warm to RT and stirred for 1h, then re-cooled to

0 °C and tetra-n-butylammonium iodide (80 mg, 216 μmol, 0.05 equiv) and

4-methoxybenzyl chloride (747 mg, 647 μL, 4.8 mmol, 1.1 equiv) were added. The

mixture was allowed to warm to RT and stirred overnight. The sodium hydride was

quenched with water (3 mL), the solvent removed under reduced pressure and the

residue reconstituted in ethyl acetate (20 mL) and water (20 mL). The layers were

separated and the aqueous layer extracted with ethyl acetate (3 × 10 mL). The

combined organic layers were washed with brine (20 mL), dried (magnesium

sulfate), filtered and concentrated under reduced pressure to give a pale yellow oil.

Purification by silica gel column chromatography, eluting with ethyl

acetate/petroleum ether (10/90) yielded (+)-1D-1,5-bis-O-allyl-2,3,6-tris-O-benzyl-4-

O-(4-methoxybenzyl)-myo-inositol 101 (2.7 g yield, 95%) as a colourless solid

(Found: C, 75.7, H, 7.4; C41H46O7 requires C, 75.7, H, 7.1); Rf 0.6 (ethyl

acetate/petroleum ether 30/70); 25
D][α + 6.4 (c 0.6 in CHCl3); mp 58-59 °C (from ethyl

acetate/petroleum ether); νmax (KBr disc)/cm-1 3058.8 (w), 3031.8 (w), 2921.3 (m),

1725.6 (w), 1613.9 (m), 1514.1 (s), 1454.3 (m), 1359.1 (m), 1302.1 (w), 1250.3 (s),

1172.6 (w), 1074.4 (s), 1035.6 (s), 917.3 (m), 821.8 (m), 744.7 (s), 697.4 (s), 605.7

(w); δH (300 MHz; CDCl3) 7.37-7.16 (17H, m, 15 × ArH and 2 × OCH2C6H4OCH3),

6.76 (2H, d, J 8.7, OCH2C6H4OCH3), 5.99-5.77 (2H, m, CHX=CHYHZ +

CHX’=CHY’HZ’), 5.26-5.19 (2H, m, 1 × CHX=CHYHZ and 1 × CHX’=CHY’HZ’), 5.12-5.07

(2H, m, 1 × CHX=CHYHZ and 1 × CHX’=CHY’HZ’), 4.81-4-77 (3H, m, 2 × OCHAHB and

1 × OCHA’HB’), 4.73 (1H, d, JA’’B’’ 10.2, OCHA’’HB’’), 4.71 (1H, d, JA’B’ 10.5, OCHA’HB’),

4.67 (1H, d, JA’’B’’ 10.2, OCHA’’HB’’), 4.61 (1H, d, JA’’’B’’’ 11.8, OCHA’’’HB’’’), 4.53 (1H, d,

JA’’’B’’’ 11.8, OCHA’’’HB’’’), 4.28 (2H, dt, J 5.6, 1.5, 2 × CHvHWCHX=CHYHZ), 4.03-3.99

(2H, m, CHV’HW’CHX’=CHY’HZ’) 3.96-3.86 (3H, m, inositol ring), 3.72 (3H, s, OCH3),

3.24-3.18 (2H, m, 2 × inositol ring), 3.12 (1H, dd, J 10.0, 2.3, inositol ring); δC (75
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MHz; CDCl3) 159.6 (ArCOCH3), 139.5 (ArC), 139.4 (ArC), 139.0 (ArC), 135.9

(CHX=CHYHZ), 135.4 (CHX’=CHY’HZ’), 131.5 (ArCH), 130.3 (ArCH), 128.83 (ArCH),

128.8 (ArCH), 128.7 (ArCH), 128.6 (ArCH), 128.3 (ArCH), 128.03 (ArCH), 128.0

(ArCH), 127.8 (ArCH), 117.1 (CHX=CHYHZ), 117.0 (CHX’=CHY’HZ’), 114.2 (ArCH),

83.8 (inositol ring), 82.1 (inositol ring), 81.8 (inositol ring), 81.3 (inositol ring), 81.0

(inositol ring), 76.4 (CH2), 76.1 (CH2), 75.1 (CH2), 74.8 (inositol ring), 74.5 (CH2),

73.3 (CH2), 72.1 (CH2), 55.7 (OCH3); m/z (ES+) [Found: (M+Na)+ 673.3165.

C41H46O7Na requires M+, 673.3141], m/z (ES+) 673 ([M+Na]+, 100%).

4.1.47. (-)-1D-2,3,6-tris-O-Benzyl-4-O-(4-methoxybenzyl)-myo-inositol 120

Wilkinson’s catalyst (22 mg, 24 μmol, 0.4 equiv) was dissolved in dry

tetrahydrofuran (0.5 mL) under an atmosphere of nitrogen, n-butyl lithium (1.6 M

solution in hexanes, 23 μL, 36 μmol, 1.7 equiv) was added and the resulting mixture

stirred for 10 min at RT. The mixture was then cannulated onto a solution of (+)-1D-

1,5-bis-O-allyl-2,3,6-tris-O-benzyl-4-O-(4-methoxybenzyl)-myo-inositol 101 (40 mg,

61 μmol, 1.0 equiv) in dry tetrahydrofuran (0.5 mL) under an atmosphere of nitrogen,

and the resulting mixture heated under reflux for 6 h. The mixture was cooled to RT,

and the solvent removed under reduced pressure to give a dark red residue.
1H NMR analysis indicated that the allyl groups had completely isomerised. The

residue was suspended in ethanol and the resulting mixture filtered through Celite®

(to remove most of the Wilkinson’s catalyst) and the solvent removed under reduced

pressure. The resulting residue was dissolved in a mixture

methanol/dichloromethane (2/3, 1 mL) under an atmosphere of nitrogen, acetyl

chloride (3 mg, 3 μL, 37 μmol, 0.6 equiv) was added and the resulting mixture stirred

for 3 h. The generated hydrochloric acid was quenched with triethylamine (50 μL),

the solvent removed under reduced pressure, the residue adsorbed onto silica gel

and purified by column chromatography, eluting with ethyl acetate/petroleum ether

(20/80) to yield (-)-1D-2,3,6-tris-O-benzyl-4-O-(4-methoxybenzyl)-myo-inositol 120

(31 mg yield, 89%) as a colourless gum. (Found: C, 73.25, H, 6.75; C35H38O7

requires C, 73.66, H, 6.7); Rf 0.54 (ethyl acetate/petroleum ether 50/50); 25
D][α - 6.7

(c 0.56 in CHCl3); νmax (thin film)/cm-1 3555.0 (m), 3449.2 (m), 3055.3 (m), 2924.8

(s), 1612.8 (m), 1586.1 (w), 1514.1 (s), 1455.0 (s), 1364.3 (m), 1265.7 (s), 1250.2
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(m), 1113.2 (m), 1069.2 (s), 1028.0 (m), 933.9 (w), 822.7 (w), 737.3 (s), 701.9 (s); δH

(300 MHz; CDCl3) 7.29-7.18 (17H, m, 15 × ArH and 2 × OCH2C6H4OCH3), 6.79 (2H,

d, J 8.7, OCH2C6H4OCH3), 4.92 (1H, d, JAB 11.5, OCHAHB), 4.84 (1H, d, JA’B’ 11.0,

OCHA’HB’), 4.83 (1H, d, JA’’B’’ 11.4, OCHA’’HB’’), 4.73-4.65 (2H, m, 1 × OCHAHB and 1

× OCHA’’HB’’), 4.62 (2H, s, OCHA’’’HB’’’), 4.61 (1H, d, JA’B’ 11.0, OCHA’HB’), 3.98 (1H, t,

J 2.6, inositol ring), 3.81 (1H, J 9.2, inositol ring), 3.73 (3H, s, OCH3), 3.61 (1H, d, J

9.5, inositol ring), 3.46-3-34 (3H, m, 3 × inositol ring), 2.39 (1H, d, J 2.0, OHX), 2.22

(1H, d, J 6.4, OHY); δC (75 MHz; CDCl3) 159.7 (ArCOCH3), 139.2 (ArC), 139.1 (ArC),

138.6 (ArC), 131.2 (ArC), 130.2 (ArCH), 128.95 (ArCH), 128.9 (ArCH), 128.8

(ArCH), 128.5 (ArCH), 128.22 (ArCH), 128.2 (ArCH), 128.1 (ArCH), 128.0 (ArCH),

114.4 (ArCH), 82.1 (inositol ring), 81.4 (inositol ring), 81.3 (inositol ring), 77.9 (CH2),

77.5 (inositol ring), 77.1 (CH2), 75.4 (inositol ring), 73.1 (CH2), 72.6 (inositol ring),

55.7 (OCH3); m/z (ES+) [Found: (M+Na)+ 593.2504. C35H38O7Na requires M+,

593.2515], m/z (ES+) 593 ([M+Na]+, 100%).

4.1.48. (+)-1D-2,3,6-tris-O-Benzyl-4-O-(4-methoxybenzyl)-myo-inositol 1,5-

bis(dibenzylphosphate) 121

Bis(benzyloxy)-N,N-diisopropylamino phosphine 92 (3.0 g, 8.8 mmol, 5.0 equiv) was

stirred with 1H-tetrazole (613 mg, 8.8 mmol, 5.0 equiv) for 10 min under an

atmosphere of nitrogen at RT. (-)-1D-2,3,6-tris-O-Benzyl-4-O-(4-methoxybenzyl)-

myo-inositol 120 (1.0 g, 1.8 mmol, 1.0 equiv) dissolved in dry dichloromethane

(20 mL) was added by cannula and the resulting mixture stirred overnight. The

mixture was cooled to - 78 °C and 3-chloroperoxybenzoic acid (1.5 g, 8.8 mmol,

5.0 equiv) was added. The resulting mixture was allowed to warm to RT and stirred

for 30 min. The 3-chloroperoxybenzoic acid was quenched with a 10% aqueous

solution of sodium hydrogen sulfite (20 mL). The layers were separated and the

aqueous layer was extracted with dichloromethane (3 × 10 mL). The combined

organic layers were washed with a saturated aqueous solution of sodium hydrogen

carbonate (10 mL), brine (10 mL), dried (magnesium sulfate), filtered and

concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (30/70, then 50/50),
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yielded (+)-1D-2,3,6-tris-O-benzyl-4-O-(4-methoxybenzyl)-myo-inositol 1,5-

bis(dibenzylphosphate) 121 (1.4 g yield, 75%) as a colourless gum. (Found: C, 69.7,

H, 5.8; C63H64O13P2 requires C, 69.35, H, 5.9); Rf 0.39 (ethyl acetate/petroleum

50/50), 25
D][α + 7.5 (c 0.3 in CHCl3); νmax (thin film)/cm-1 3064.2 (m), 3033.0 (m),

2934.8 (m), 1612.8 (m), 1586.4 (w), 1514.3 (s), 1497.6 (m), 1455.6 (s), 1364.6 (m),

1250.1 (s), 1214.6 (m), 1073.8 (w), 1012.2 (s), 880.7 (m), 823.0 (w), 737.3 (s), 696.6

(s); δH (300 MHz; CDCl3) 7.30-6.93 (37H, m, 35 × ArH and 2 × OCH2C6H4OCH3),

6.67 (2H, d, J 8.7, OCH2C6H4OCH3), 4.87-4.62 (14H, m, 7 × CH2), 4.48 (1H, d, JAB

11.5, OCHAHB), 4.43 (1H, d, JAB 11.5, OCHAHB), 4.34 (1H, dd, JHP 18.2, J 9.0,

inositol ring), 4.26 (1H, t, J 2.3, inositol ring), 4.18-4.12 (1H, m, inositol ring), 4.03-

3.93 (2H, m, 2 × inositol ring), 3.67 (3H, s, OCH3), 3.31 (1H, dd, J 9.7, 2.3, inositol

ring); δC (75 MHz; CDCl3) 159.3 (ArCOCH3), 139.0 (ArC), 138.6 (ArC), 138.2 (ArC),

136.5 [d, JCP 4.8, P(O)(OCH2CAC5H5)], 136.4 [d, JCP 4.8, P(O)(OCH2CBC5H5], 136.1

[d, JCP 2.3, P(O)(OCH2CCC5H5], 136.0 [d, JCP 1.8, P(O)(OCH2CDC5H5], 131.0 (ArC),

129.8 (ArCH), 129.0 (ArCH), 128.96 (ArCH), 128.8 (ArCH), 128.75 (ArCH), 128.7

(ArCH), 128.5 (ArCH), 128.2 (ArCH), 128.12 (ArCH), 128.1 (ArCH), 128.0 (ArCH),

127.9 (ArCH), 127.7 (ArCH), 113.9 (ArCH), 80.9 (dd, JCP 7.0, 1.5, inositol ring), 80.4

(inositol ring), 79.1 (d, JCP 2.8, inositol ring), 78.8 (dd, JCP 7.5, 3.3, inositol ring), 78.5

(d, JCP 5.9, inositol ring), 76.3 (inositol ring), 75.5 (CH2), 75.1 (CH2), 75.0 (CH2), 73.1

(CH2), 69.9 (d, JCP 5.7, P(O)OCAH2Ph), 69.7 (d, JCP 5.5, P(O)OCBH2Ph), 69.6 (d, JCP

4.9, 2 × P(O)OCH2Ph), 55.6 (OCH3); δP (121 MHz; CDCl3) - 0.22, - 0.61; m/z (ES+)

[Found: (M+Na)+ 1113.3711. C63H64O13NaP2 requires M+, 1113.3720], m/z (ES+)

1113 ([M+Na]+, 100%).

4.1.49. (+)-1D-2,3,6-tris-O-Benzyl-myo-inositol 1,5-bis(dibenzylphosphate) 122

(+)-1D-2,3,6-tris-O-benzyl-4-O-(4-methoxybenzyl)-myo-inositol 1,5 bis(dibenzyl

phosphate) 121 (327 mg, 0.3 mmol, 1.0 equiv) was dissolved in acetonitrile/water

(4/1, 5 mL) and ceric ammonium nitrate (987 mg, 1.8 mmol, 6.0 equiv) was added at

RT. The resulting orange solution was stirred for 2h. The solvent was removed

under reduced pressure, the residue reconstituted in ethyl acetate (5 mL) and water

(5 mL), the layers separated and the aqueous layer extracted with ethyl acetate
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(3 × 5 mL). The combined organic layers were washed with a saturated aqueous

solution of sodium hydrogen carbonate (10 mL), dried (magnesium sulfate), filtered

and concentrated under reduced pressure to give an orange residue. Silica gel

column chromatography eluting with ethyl acetate/petroleum ether (50/50), followed

by crystallisation from diethyl ether/dichloromethane/petroleum ether, yielded (+)-1D-

2,3,6-tris-O-benzyl-myo-inositol 1,5-bis(dibenzylphosphate) 122 (232 mg yield, 73%)

as a colourless solid (Found: C, 68.1, H, 5.65; C55H56O12P2 requires C, 68.0, H, 5.8);

Rf 0.24 (ethyl acetate/petroleum 50/50), 25
D][α + 1.6 (c 0.6 in CHCl3); mp 125-126 °C;

νmax (thin film)/cm-1 3397.3 (s), 3064.6 (m), 3030.5 (m), 2938.6 (m), 2890.7 (m),

1497.5 (m), 1455.5 (s), 1367.4 (m), 1269.4 (s), 1240.1 (s), 1216.2 (m), 1162.8 (m),

1129.1 (m), 1068.7 (s), 1013.4 (s), 888.8 (m), 737.0 (s), 695.3 (s), 589.3 (w), 554.7

(w), 502.2 (m); δH (300 MHz; CDCl3) 7.37-7.12 (35H, m, ArH), 5.05-4.70 (12H, m, 6

× CH2), 4.62 (1H, d, JAB 11.8, OCHAHB), 4.57 (1H, d, JAB 11.8, OCHAHB), 4.30 (1H, t,

J 2.3, inositol ring), 4.25-4.17 (3H, m, inositol ring), 4.08-3.98 (1H, m, inositol ring),

3.87 (1H, br s, OH), 3.25 (1H, dd, J 9.2, 2.0, inositol ring); δC (75 MHz; CDCl3) 138.6

(ArC), 138.0 (ArC), 137.8 (ArC), 135.8-135.6 [m, 4 × P(O)(OCH2CC5H5)] 128.6

(ArCH), 128.52 (ArCH), 128.5 (ArCH), 128.46 (ArCH), 128.4 (ArCH), 128.25 (ArCH),

128.2 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 127.6 (ArCH), 127.4 (ArCH), 82.4 (dd,

JCP 6.1, 1.9, inositol ring), 79.1 (inositol ring), 78.3-78.0 (m, 2 × inositol ring), 76.0,

(inositol ring), 75.2 (CH2), 75.1 (CH2), 72.9 (CH2), 72.0 (inositol ring), 69.6 [d, JCP

5.2, 2 × P(O)OCAH2Ph)], 69.5 [d, JCP 5.8, P(O)OCAH2Ph], 69.3 [d, JCP 5.5,

P(O)OCBH2Ph]; δP (121 MHz; CDCl3) 1.34, - 0.49; m/z (ES+) [Found: (M+Na)+

993.3147. C55H56O12NaP2 requires M+, 993.3145], m/z (ES+) 993 ([M+Na]+, 100%).

4.1.50. Dimethylphosphinic chloride 134

Tetramethyl diphosphine disulfide 133 (400 mg, 2.3 mmol, 1.0 equiv) was

suspended in dry toluene (3 mL), under an atmosphere of nitrogen. The mixture was

cooled to 0 °C and thionyl chloride (1.2 g, 0.8 mL, 10.3 mmol, 4.8 equiv) was added

dropwise. The resulting mixture was allowed to warm to RT and stirred for 30 min,

then heated under reflux for 1 h. 31P NMR analysis indicated the complete

consumption of the starting material, when the reaction mixture was cooled to RT

and the solvent removed under reduced pressure, keeping the product under an
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atmosphere of nitrogen. The resulting yellow residue was purified using Kugelrohr

distillation. The desired product 134 distilled at 140-150 °C (18 mbar) and was

trapped by keeping the receiving flask at - 78 °C. The title compound, obtained as a

slightly yellow deliquescent solid, was stored in the freezer under an atmosphere of

nitrogen (143 mg yield, 59%); δH (300 MHz; CDCl3) 1.97 (6H, d, JHP 13.7); δP (121

MHz; CDCl3) 61.4. These data are in good agreement with the literature values.140

4.1.51. (+)-1D-2,3,6-tris-O-Benzyl-4-O-dimethylphosphinyl-myo-inositol 1,5-

bis(dibenzylphosphate) 119

(+)-1D-2,3,6-tris-O-Benzyl-myo-inositol 1,5-bis(dibenzylphosphate) 122 (40 mg,

41 μmol, 1.0 equiv) was dissolved in dry N,N-dimethyl formamide (1 mL) under an

atmosphere of nitrogen. 2,6-Lutidine (22 mg, 24 μL, 206 μmol, 5.0 equiv) was added

and the resulting mixture was cooled to - 42 °C. Dimethylphosphinic chloride

(19 mg, 165 μmol, 4.0 equiv) dissolved in dry N,N-dimethyl formamide (0.5 mL) was

added by cannula. The resulting mixture was allowed to warm to RT and stirred for

22 h. The solvent was removed under reduced pressure, the residue adsorbed onto

silica gel and purified by silica gel column chromatography, eluting with

methanol/ethyl acetate (1/99) (three times) to give (+)-1D-2,3,6-tris-O-benzyl-4-O-

dimethylphosphinyl-myo-inositol 1,5-bis(dibenzylphosphate) 199 (33 mg yield, 76%)

as a colourless solid. A very pure sample was obtained by crystallisation from ethyl

acetate/petroleum ether (Found: C, 65.05, H, 5.6; C57H61O13P3 requires C, 65.4, H,

5.9); Rf 0.52 (methanol/ethyl acetate 5/95); 22
D][α + 6.2 (c 0.85 in CHCl3); mp 105-

106 °C (from ethyl acetate/petroleum ether); νmax (KBr disc)/cm-1 3058.8 (m), 3033.4

(m), 2924.4 (m), 2879.5 (m), 1498.2 (m), 1455.4 (m), 1381.0 (w), 1262.8 (s), 1215.8

(s), 1124.5 (w), 1017.2 (s), 939.9 (w), 872.2 (m), 736.4 (s), 695.9 (s), 594.5 (w),

507.5 (w); δH (300 MHz; CDCl3) 7.32-6.95 (35H, m, ArH), 5.05 (1H, dd, JAB 11.8, JHP

6.1, OCHAHB), 4.92-4.59 (12H, m, 11 × OCH2 and 1 × inositol ring), 4.44 (1H, d, JA’B’

11.3, OCHA’HB’), 4.38-4.32 (2H, m, 1 × OCHA’HB’ and 1 × inositol ring), 4.28 (1H, t, J

2.6, inositol ring), 4.21-4.15 (1H, m, inositol ring), 4.01 (1H, t, J 9.5, inositol ring),

3.29 (1H, dd, J 10.0, 2.0, inositol ring), 1.40 [3H, d, JHP 14.0, P(O)CH3CH3], 1.26

[3H, d, JHP 14.0, P(O)CH3CH3]; δC (75 MHz; CDCl3) 138.24 (ArC), 138.2 (ArC),
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136.9 (ArC), 136.0 [d, JCP 7.1, P(O)(OCH2CAC5H5)],135.9 [d, JCP 5.8,

P(O)(OCH2CBC5H5)] 135.6-135.5 [m, 2 × P(O)(OCH2CC5H5)], 128.6 (ArCH), 128.52

(ArCH), 128.5 (ArCH), 128.4 (ArCH), 128.3 (ArCH), 128.2 (ArCH), 128.1 (ArCH),

128.06 (ArCH), 127.9 (ArCH), 127.8 (ArCH), 127.7 (ArCH), 127.6 (ArCH), 127.4

(ArCH), 127.2 (ArCH), 79.4-79.3 (m, inositol ring), 78.1-77.9 (m, 3 × inositol ring),

75.3 (CH2), 74.9 (CH2), 74.8 (inositol ring), 73.3-73.2 (m, inositol ring), 72.2 (CH2),

69.6 [d, JCP 6.2, P(O)OCAH2Ph)], 69.5 [d, JCP 5.5, P(O)OCBH2Ph)], 69.3 [d, JCP 4.9,

2 × P(O)OCH2Ph)], 17.6 (d, JCP 69.7, P(O)CH3CH3], 16.3 (d, JCP 73.5,

P(O)CH3CH3]; δP (121 MHz; CDCl3) 57.3, - 0.17, - 0.54; m/z (ES+) [Found: (M+Na)+

1069.3218. C57H61O13NaP3 requires M+, 1069.3223]; m/z (ES+) 1069 ([M+Na]+,

100%).

4.1.52. (±)-1-O-Benzyl-1,2-trans-dihydroxycyclohexane 130

(±)-1,2-trans-Dihydroxycyclohexane 55 (5.0 g, 43.0 mmol, 1.0 equiv) was dissolved

in dry tetrahydrofuran (300 mL) under an atmosphere of nitrogen. The mixture was

cooled to 0 ºC and sodium hydride (60% w/w, 1.9 g, 47.3 mmol, 1.1 equiv) was

added portionwise over 10 min. The resulting mixture was allowed to warm to RT

and stirred for 1.5 h. The mixture was re-cooled to 0 ºC and benzyl bromide (8.1 g,

5.6 mL, 47.3 mmol, 1.1 equiv) was added dropwise. The mixture was warmed to RT

and stirred for 1 h. Dry N,N-dimethyl formamide (53 mL) was added and the mixture

stirred overnight. The sodium hydride was quenched with water (20 mL), the solvent

removed under reduced pressure and the residue reconstituted in ethyl acetate

(50 mL) and water (50 mL). The layers were separated and the aqueous layer

extracted with ethyl acetate (3 × 50 mL). The combined organic layers were washed

with brine (20 mL), dried (magnesium sulfate), filtered and concentrated under

reduced pressure. Purification by silica gel column chromatography, eluting with

ethyl acetate/petroleum ether (30/70) yielded the (±)-1-O-benzyl-1,2-trans-

dihydroxycyclohexane 130 as colourless oil (3.5 g yield, 40%); Rf 0.55 (ethyl

acetate/petroleum ether 50/50); δH (300 MHz; CDCl3) 7.38-7.28 (5H, m, ArH), 5.07

(1H, d, J 11.5, OCHAHBPh), 4.48 (1H, d, J 11.5, OCHAHBPh), 3.53-3.45 (1H, m,

CHOBn), 3.23-3.15 (1H, m, CHOH), 2.18-1.98 (2H, m, CH2CHOBn), 1.78-1.68 (2H,
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m, CH2CHOH), 1.32-1.18 (4H, m, CH2CH2). These data are in good agreement with

the literature values.141

4.1.53. (±)-1-O-Benzyl-2-O-dimethylphosphinyl-1,2-trans-

dihydroxycyclohexane 131

Diisopropylamino dimethylphosphine 113 (1.2 g, 7.3 mmol, 2.5 equiv) and

1H-tetrazole (0.43 M solution in acetonitrile, 16.9 mL, 7.3 mmol, 2.5 equiv) were

dissolved in dry dichloromethane (10 mL), the resulting mixture was cooled to - 78

°C and (±)-1-O-benzyl-1,2-trans-dihydroxycyclohexane (600 mg, 2.9 mmol,

1.0 equiv) dissolved in dry dichloromethane (5 mL) was added by cannula. The

resulting mixture was allowed to warm to RT and stirred overnight. The mixture was

re-cooled to - 78 °C and 3-chloroperoxybenzoic acid (1.3 g, 7.3 mmol, 2.5 equiv)

was added, the resulting mixture warmed to RT and stirred for 30 min. The

3-chloroperoxybenzoic acid was quenched with a 10% aqueous solution of sodium

hydrogen sulfite (10 mL), the layers separated and the aqueous layer extracted with

dichloromethane (3 × 10 mL). The combined organic layers washed with a saturated

aqueous solution of sodium hydrogen carbonate (10 mL), brine (10 mL), dried

(magnesium sulfate), filtered and concentrated under reduced pressure. Purification

by silica gel column chromatography, eluting with methanol/ethyl acetate (2/98)

furnished (±)-1-O-benzyl-2-O-dimethylphosphinyl-1,2-trans-dihydroxycyclohexane

131 (771 mg yield, 89%) as a colourless oil; Rf 0.3 (methanol/ethyl acetate 5/95); δH

(300 MHz; CDCl3) 7.35-7.28 (5H, m, ArH), 4.65 (1H, d, J 11.8, OCHAHBPh), 4.53

(1H, d, J 11.8, OCHAHBPh), 4.28-4.17 (1H, m, CHOBn), 3.38-3.30 (1H, m, CHOH),

2.20-2.04 (2H, m, CH2CHOBn), 1.73-1.64 (2H, m, CH2CHOH), 1.55-1.20 [10H, m, 6

× P(O)CH3CH3 and 4 × CH2CH2]; δP (121 MHz; CDCl3) 54.4; m/z (ES+) 305

([M+Na]+, 100%).
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4.1.54. (±)-1-O-Dimethylphosphinyl-1,2-trans-dihydroxycyclohexane 70

(±)-1-O-Benzyl-2-O-dimethylphosphinyl-1,2-trans-dihydroxycyclohexane 131 (50

mg, 177 μmol, 1.0 equiv) was dissolved was dissolved in tert-butanol/water (6/1,

2 mL), sodium hydrogen carbonate (60 mg, 708 μmol, 4.0 equiv) and palladium

black (377 mg, 3.5 mmol, 20.0 equiv) were added and the flask flushed three times

with hydrogen, then stirred for 2 h at RT under an atmosphere of hydrogen. The

catalyst was removed by filtration and the collected organic layer concentrated

under reduced pressure to furnish (±)-1-O-dimethylphosphinyl-1,2-trans-

dihydroxycyclohexane 70 (31 mg yield, 92%) as a colourless oil; Rf 0.12

(methanol/ethyl acetate 5/95); δH (300 MHz; CDCl3) 3.95-3.84 (1H, m, CHOBn),

3.46-3.38 (1H, m, CHOH), 2.85-2.05 (2H, m, CH2CHOBn), 1.68-1.62 (2H, m,

CH2CHOH), 1.49 [6H, d, JHP 13.6, P(O)CH3CH3], 1.42-1.12 (4H, m, CH2CH2); δP

(121 MHz; CDCl3) 56.1; m/z (ES+) 215 ([M+Na]+, 100%).

4.1.55. (+)-1D-4-O-Dimethylphosphinyl-myo-inositol 1,5-bisphosphate (sodium

salt) 32

(+)-1D-2,3,6-tris-O-Benzyl-4-O-dimethylphosphinyl-myo-inositol 1,5-bis(dibenzyl

phosphate) 119 (71 mg, 68 μmol, 1.0 equiv) was dissolved in tert-butanol/water (6/1,

12 mL), sodium hydrogen carbonate (23 mg, 271 μmol, 4.0 equiv) and palladium

black (145 mg, 1.4 mmol, 20.0 equiv) were added and the flask flushed three times

with hydrogen, then stirred for 7 h at RT under an atmosphere of hydrogen. The

organic layer was removed by filtration, the dark residue washed with water (4 ×

3 mL) and the collected aqueous layer lyophilized to yield (+)-1D-4-O-

dimethylphosphinyl-myo-inositol 1,5-bisphosphate (sodium salt) 32 as a colourless

solid (32 mg yield, 93%); 22
D][α + 0.81 (c 0.6 in H2O); νmax (KBr disc)/cm-1 3423.3 (s),

2198.8 (m), 1655.3 (w), 1309.1 (w), 1188.8 (s), 1116.1 (s), 1053.1 (s), 950.1 (s),

920.3 (m), 883.9 (m), 811.2 (w), 721.7 (w), 513.8 (m); δH (300 MHz; D2O) 4.29-4.15
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(2H, m, inositol ring), 3.97-3.77 (3H, m, inositol ring), 3.63 (1H, dd, J 9.7, 2.8, inositol

ring), 1.58 [3H, d, JHP 11.0, P(O)CH3CH3], 1.53 [3H, d, JHP 11.0, P(O)CH3CH3]; δC

(75 MHz; D2O) 76.8 (dd, JCP 7.7, 6.3, inositol ring), 76.1-75.9 (m, inositol ring), 74.4

(d, JCP 5.5, inositol ring), 72.2 (d, JCP 7.2, inositol ring), 70.8 (inositol ring), 69.2

(inositol ring), 15.3 (d, JCP 95.0, P(O)CH3CH3), 15.1 (d, JCP 95.0, P(O)CH3CH3); δP

(121 MHz; D2O) 67.1, 1.63, 1.41; m/z (MALDI - matrix 3AQ, internal calculation on

glucose sulfate and ATP) [Found: (C8H18O13P3)- 414.9939. C8H18O13P3 requires M-,

414.9960]; m/z (MALDI - matrix 3AQ, external calculation on glucose sulfate and

ATP) 415 [(C8H18O13P3)-].

4.1.56. Dimethyl chlorophosphite 144

Trimethylphosphite (27.1 mL, 28.4 g, 229.2 mmol, 2.0 equiv) was placed in a flask

under an atmosphere of nitrogen and warmed to 60 °C. Phosphorus trichloride

(10.0 mL, 15.7 g, 114.6 mmol, 1.0 equiv) was added dropwise over a period of 30

min with stirring. The resulting mixture was stirred for a further 30 min at 60 °C, then

cooled to RT. 31P NMR analysis confirmed the presence of the desired compound in

the mixture. Purification by distillation under reduced pressure afforded dimethyl

chlorophosphite 144 (8.2 g yield, 28%) as a colourless oil; bp 40 °C (101-107 mbar)

(Lit.142 30 °C, 46.7 mbar); δP (121 MHz; d6-acetone) 170.2. These data are in good

agreement with the literature values.142

4.1.57. Di-n-butylphosphinic acid 136

Magnesium turnings (5.3 g, 218.9 mmol, 4.0 equiv) were placed in a three-necked

flask under an atmosphere of nitrogen. Iodine (3 pellets) was added and the

magnesium turnings shaken for 20 min at RT. Dry diethyl ether (100 mL) was added

to the flask and n-butyl bromide (23.5 mL, 30.0 g, 218.0 mmol, 4.0 equiv) dissolved

in dry diethyl ether (80 mL) was slowly added, cooling down the reaction mixture

with an ice-bath when the reaction was too vigorous. The resulting mixture was then

heated under reflux for 30 min to complete the formation of the Grignard reagent,

then cooled to 0 °C. Thiophosphoryl chloride (5.5 mL, 9.3 g, 54.7 mmol, 1.0 equiv)
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dissolved in dry diethyl ether (10 mL) was carefully added dropwise with stirring, as

the reaction was very vigorous. The resulting mixture was then heated under reflux

for 1 h, cooled to 0 °C and poured onto water ice. The aqueous layer was acidified

to pH 2 using concentrated hydrochloric acid, the layers were separated and the

aqueous layer extracted with diethyl ether (3 × 50 mL). The combined organic layers

were dried (magnesium sulfate), filtered and concentrated under reduced pressure

to furnish a crude oil (12.0 g). This material was placed in a flask fitted with a

condenser, then cooled to 0 °C and nitric acid (30% aqueous solution, 60 mL) slowly

added with stirring. The resulting mixture was heated to 70 °C for 1 h, then cooled to

RT and diethyl ether (50 mL) added. The layers were separated and the organic

layer washed with water (3 × 50 mL), then extracted with a 10% solution of sodium

hydroxide (2 × 50 mL). The combined aqueous layers were acidified to pH 2 by

careful addition of concentrated sulfuric acid, then extracted with diethyl ether

(3 × 50 mL). The combined organic layers were washed with water (3 × 50 mL),

dried (magnesium sulfate), filtered and concentrated to furnish a slurry which was

kept under reduced pressure at 80 °C for 3 h to give a yellow solid. Crystallisation

from warm petroleum ether gave di-n-butylphosphinic acid 136 (3.1 g yield, 31%

with respect to thiophosphoryl chloride) as a colourless solid; mp 69-70 °C (from

petroleum ether) [Lit.143 70.5-71 °C (from hexane)]; δH (300 MHz; CDCl3) 11.73 (1H,

br s, OH), 1.75-1.52 [8H, m, P(O)(CH2CH2CH2CH3)2], 1.47-1.36 [4H, m,

P(O)(CH2CH2CH2CH3)2], 0.98 [6H, t, J 7.3, P(O)(CH2CH2CH2CH3)2]; δP (121 MHz;

CDCl3) 62.2. These data are in good agreement with the literature values.129,143

4.1.58. Di-n-butylphosphinyl chloride 137

Di-n-butylphosphinic acid 136 (500 mg, 2.8 mmol, 1.0 equiv) was dissolved in dry

toluene (4 mL) under and atmosphere of nitrogen. The resulting mixture was cooled

to 0 °C and thionyl chloride (225 μL, 366 mg, 3.1 mmol, 1.1 equiv) was added and

the mixture heated under reflux for 30 min. The solvent was removed under reduced

pressure and the residue purified by distillation under reduced pressure to give

di-n-butylphosphinic chloride 137 (461 mg yield, 84%) as a colourless oil; bp 100-

105 °C (5 mbar) (Lit.128 103-105 °C, 0.7 mbar); δP (121 MHz; d8-toluene) 69.3.

These data are in good agreement with the literature values.128
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4.1.59. (+)-1D-2,3,6-tris-O-Benzyl-4-O-di-n-butylphosphinyl-myo-inositol 1,5-

bis(dibenzylphosphate) 138

(+)-1D-2,3,6-tris-O-Benzyl-myo-inositol 1,5-bis(dibenzylphosphate) 122 (100 mg,

103 μmol, 1.0 equiv) was dissolved in dry N,N-dimethyl formamide (4 mL) under an

atmosphere of nitrogen and the mixture cooled to - 42 °C. 4-Dimethylaminopyridine

(catalytic amount) was added, followed by dry triethylamine (72 μL, 52 mg,

515 μmol, 5.0 equiv) and di-n-butylphosphinyl chloride (79 μL, 82 mg, 416 μmol,

4.0 equiv). The mixture was allowed to warm to RT and stirred overnight. The

di-n-butylphosphinic chloride was quenched with water (0.5 mL), the solvent was

removed under reduced pressure and the residue reconstituted in ethyl acetate

(2 mL) and water (2 mL). The layers were separated and the aqueous layer

extracted with ethyl acetate (3 × 5 mL). The combined organic layers were dried

(magnesium sulfate), filtered and concentrated under reduced pressure. Purification

by silica gel column chromatography, eluting with ethyl acetate/petroleum ether

(60/40) gave (+)-1D-2,3,6-tris-O-benzyl-4-O-di-n-butylphosphinyl-myo-inositol 1,5-

bis(dibenzylphosphate) 138 as a colourless solid which was recrystallised from ethyl

acetate and petroleum ether (76 mg yield, 65%); Rf 0.25 (ethyl acetate/petroleum

ether 60/40); 25
D][α + 0.5 (c 0.27 in CHCl3); mp 104-105 °C (from ethyl

acetate/petroleum ether); νmax (KBr disc)/cm-1 3064.4 (m), 3030.8 (m), 2930.0 (m),

1457.3 (w), 1381.8 (w), 1261.3 (m), 1211.2 (w), 1160.8 (w), 1127.3 (w), 1037.8 (s),

1015.5 (s), 881.1 (w), 867.1 (w), 135.7 (m), 695.9 (s), 593.0 (w); δH (300 MHz;

CDCl3) 7.28-6.91 (35H, m, ArH), 5.11 (1H, dd, JAB 11.8, JHP 6.1, OCHAHB), 4.92-

4.57 (12H, m, 11 × OCH2 and 1 × inositol ring, 4.45 (1H, d, JA’B’ 11.5, OCHA’HB’),

4.35-4.30 (3H, m, 1 × , OCHA’HB’ and 2 × inositol ring), 4.23-4.16 (1H, m, inositol

ring), 4.02 (1H, t, J 9.5, inositol ring), 3.30 (1H, dd, J 9.7, 1.8, inositol ring), 1.73-0.91

[12H, m, P(O)(C3H6CH3)A(C3H6CH3)B], 0.71 [3H, t, J 7.2

P(O)(C3H6CH3)A(C3H6CH3)B], 0.65 [3H, t, J 7.2 P(O)(C3H6CH3)A(C3H6CH3)B]; δC (75

MHz; CDCl3) 138.3 (ArC), 138.2 (ArC), 137.8 (ArC), 136.2 [d, JCP 8.1,

P(O)(OCH2CAC5H5)],135.9 [d, JCP 6.6, P(O)(OCH2CBC5H5)] 135.6 [d, JCP 7.5,

P(O)(OCH2CCC5H5)], 135.5 [d, JCP 6.9, P(O)(OCH2CDC5H5)], 128.6 (ArCH), 128.5,
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128.4 (ArCH), 128.31 (ArCH), 128.3 (ArCH), 128.13 (ArCH), 128.1 (ArCH), 127.84

(ArCH), 127.8 (ArCH), 127.7 (ArCH), 127.64 (ArCH), 127.6 (ArCH), 127.3 (ArCH),

127.2 (ArCH), 79.6 (d, JCP 6.1, inositol ring), 78.2-77.9 (m, 3 × inositol ring), 75.3

(CH2), 74.72 (inositol ring), 74.7 (CH2), 73.2 (inositol ring), 72.0 (CH2), 69.5 [d, JCP

4.2, 2 × P(O)OCH2Ph)], 69.3 [d, JCP 6.7, P(O)OCAH2Ph)], 69.2 [d, JCP 5.4,

P(O)OCBH2Ph)], 28.7 [d, JCP 30.9, P(O)(CH2C3H7)A(CH2C3H7)B], 27.5 [d, JCP 33.3,

P(O)(CH2C3H7)A(CH2C3H7)B], 24.5 [d, JCP 2.5, P(O)(CH2CH2C2H5)A(CH2CH2C2H5)B],

24.4 [d, JCP 3.6, P(O)(CH2CH2C2H5)A(CH2CH2C2H5)B], 24.1-23.8 [m,

P(O)(CH2C2H4CH3)A(CH2C2H4CH3)B], 13.7 [P(O)(C3H6CH3)A(C3H6CH3)B], 13.6

[P(O)(C3H6CH3)A(C3H6CH3)B]; δP (121 MHz; CDCl3) 62.1, - 0.37, - 0.60; m/z (ES+)

1153 ([M+Na]+, 100%).

4.1.60. (-)-1D-4-O-Di-n-butylphosphinyl-myo-inositol 1,5-bisphosphate

(sodium salt) 123

(+)-1D-2,3,6-tris-O-Benzyl-4-O-di-n-butylphosphinyl-myo-inositol 1,5-bis(dibenzyl

phosphate) 138 (79 mg, 70 μmol, 1.0 equiv) was dissolved in tert-butanol/water (5/1,

12 mL), sodium hydrogen carbonate (24 mg, 280 μmol, 4.0 equiv) and palladium

black (149 mg, 1.4 mmol, 20.0 equiv) were added and the flask flushed three times

with hydrogen, then stirred for 8 h at RT under an atmosphere of hydrogen. The

organic layer was removed by filtration, the dark residue washed with water

(3 × 5 mL) and the collected aqueous layer lyophilized to yield (-)-1D-4-O-di-n-

butylphosphinyl-myo-inositol 1,5-bisphosphate (sodium salt) 123 as a colourless

solid (39 mg yield, 95%); 25
D][α - 1.43 (c 0.5 in H2O); νmax (KBr disc)/cm-1 3428.6 (s),

2959.6 (s), 2930.0 (s), 2868.3 (s), 1650.3 (m), 1457.3, (w), 1376.2 (w), 1236.4 (w),

1114.6 (s), 972.2 (s), 900.7 (w), 800.0 (w), 724.5 (w), 576.2 (w), 537.1 (w); δH (300

MHz; D2O) 4.28-4.25 (1H, m, inositol ring), 4.20 (1H, t, J 9.2, inositol ring), 3.86-3.72

(3H, m, inositol ring), 3.63 (1H, dd, J 9.7, 2.8, inositol ring),1.97-1.77 [4C, m,

P(O)CH2C2H4CH3)2], 1.51-1.22 [8H, m, P(O)CH2C2H4CH3)2], 0.82-0.76 (6H, m,

P(O)CH2C2H4CH3)2], δC (75 MHz; D2O) 76.4 (dd, JCP 8.3, 6.6, inositol ring), 76.2-

76.1 (m, inositol ring), 74.3 (d, JCP 5.5, inositol ring), 72.2 (d, JCP 7.7, inositol ring),

70.9 (inositol ring), 69.4 (inositol ring), 23.6-23-1 [m, P(O)C3H6CH3)2], 13.0 [d,
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JCP 1.1, P(O)(C3H6CH3)A(C3H6CH3)B], 12.8 [d, JCP 1.1, P(O)(C3H6CH3)A(C3H6CH3)B];

δP (121 MHz; D2O) 70.3, 3.9, 3.0; m/z (ES+) [Found: [C14H29O13Na3P3]+ 567.0522.

C14H29O13Na3P3 requires M+, 567.0514]; m/z (ES+) 567 [C14H29O13Na3P3]+, 100%).

4.1.61. (+)-1D-2,3,6-tris-O-Benzyl-4-O-methylsulfonyl-myo-inositol 1,5-

bis(dibenzylphosphate) 139

(+)-1D-2,3,6-tris-O-Benzyl-myo-inositol 1,5-bis(dibenzylphosphate) 122 (70 mg,

72 μmol, 1.0 equiv) was dissolved in dry dichloromethane (4 mL) under an

atmosphere of nitrogen and the mixture cooled to - 78 °C. 4-Dimethylaminopyridine

(catalytic amount) was added, followed by dry triethylamine (50 μL, 36 mg,

360 μmol, 5.0 equiv) and methanesulfonyl chloride (22 μL, 33 mg, 288 μmol,

4.0 equiv). The mixture was allowed to warm to RT and stirred for 2 days. The

methanesulfonyl chloride was quenched with a saturated aqueous solution of

sodium hydrogen carbonate (2 mL). The layers were separated and the aqueous

layer extracted with dichloromethane (3 × 5 mL). The combined organic layers were

dried (magnesium sulfate), filtered and concentrated under reduced pressure.

Purification by silica gel column chromatography, eluting with ethyl

acetate/petroleum ether (50/50, then 70/30) gave (+)-1D-2,3,6-tris-O-benzyl-4-O-

methylsulfonyl-myo-inositol 1,5-bis(dibenzylphosphate) 139 (42 mg yield, 56%) as a

colourless gum (Found: C, 64.0; H, 5.3. C56H58O14P2S requires C, 64.1; H, 5.6); Rf

0.25 (ethyl acetate/petroleum ether 50/50); 25
D][α + 1.5 (c 0.94 in CHCl3); νmax (thin

film)/cm-1 3064.4 (s), 3033.2 (s), 2931.9 (s), 1956.3 (w), 1884.7 (w), 1813.1 (w),

1726.8 (m), 1606.2 (w), 1497.6 (s), 1455.6 (s), 1355.1 (s), 1272.3 (s), 1214.7 (m),

1176.6 (m), 1124.5 (w), 1099.3 (w), 1014.2 (m), 880.9 (m), 847.7 (w), 736.2 (s),

696.5 (s), 599.6 (m); δH (300 MHz; CDCl3) 7.39-7.00 (35H, m, ArH), 5.14-4.41 (16H,

m, 14 × OCH2 and 2 × inositol ring, 4.37 (1H, 7, J 2.3, inositol ring), 4.26-4.17 (1H,

m, inositol ring), 4.09 (1H, t, J 9.5, inositol ring), 3.40 (1H, dd, J 10.2, 2.0, inositol

ring), 2.91 [3H, 2, S(O)2CH3]; δC (75 MHz; CDCl3) 138.1 (ArC), 138.0 (ArC), 136.6

(ArC), 135.9 [d, JCP 7.7, P(O)(OCH2CAC5H5)], 135.7 [d, JCP 6.8, P(O)(OCH2CBC5H5)]

135.5 [d, JCP 7.0, P(O)(OCH2CCC5H5)], 128.6 (ArCH), 128.4 (ArCH), 128.34 (ArCH),
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128.3 (ArCH), 128.2 (ArCH), 128.1 (ArCH), 128.01 (ArCH), 128.0 (ArCH), 127.9

(ArCH), 127.85 (ArCH), 127.8 (ArCH), 127.3 (ArCH), 79.9 (d, JCP 4.5, inositol ring),

78.1 (dd, JCP 8.1, 1.5, inositol ring), 77.7-77.6 (m, inositol ring), 77.1 (inositol ring),

75.3 (CH2), 74.9 (CH2), 74.8 (inositol ring), 72.6 (CH2), 69.9 [d, JCP 5.5,

P(O)OCAH2Ph)], 69.6 [d, JCP 5.6, P(O)OCBH2Ph)], 69.5-69.4 [d, JCP 5.4, 2 ×

P(O)OCH2Ph)], 39.3 [S(O)2CH3]; δP (121 MHz; CDCl3) - 0.22, - 0.53; m/z (ES+)

1071 ([M+Na]+, 100%).

4.1.62. (+)-1D-4-O-Methylsulfonyl-myo-inositol 1,5-bisphosphate (sodium

salt) 124

(+)-1D-2,3,6-tris-O-benzyl-4-O-methylsulfonyl-myo-inositol1,5-bis(dibenzyl

phosphate) 139 (73 mg, 70 μmol, 1.0 equiv) was dissolved in tert-butanol/water

(10/1, 11 mL), sodium hydrogen carbonate (24 mg, 280 μmol, 4.0 equiv) and

palladium black (149 mg, 1.4 mmol, 20.0 equiv) were added and the flask flushed

three times with hydrogen, then stirred for 8 h at RT under an atmosphere of

hydrogen. The organic layer was removed by filtration, the dark residue washed with

water (3 × 5 mL) and the collected aqueous layer lyophilized to yield (+)-1D-4-O-

methylsulfonyl-myo-inositol 1,5-bisphosphate (sodium salt) 124 as a colourless solid

(32 mg yield, 91%); 22
D][α + 1.64 (c 0.3 in H2O); νmax (KBr disc)/cm-1 3448.9 (s),

2969.2 (s), 2924.4 (s), 1655.1 (m), 1340.9 (m), 1158.0 (s), 1107.8 (s), 973.7 (s),

942.6 (w), 869.9 (w), 802.8 (w), 724.5 (w), 598.6 (w), 539.9 (w); δH (300 MHz; D2O)

4.60 (1H, t, J 9.5, inositol ring), 4.33 (1H, m, inositol ring), 4.00-3.91 (1H, m, inositol

ring), 3.82-2.80 (2H, m, inositol ring), 3.75 (1H, dd, J 10.2, 3.0, inositol ring), 3.25

[3C, s, S(O)CH3]; δC (75 MHz; D2O) 83.8 (d, JCP, 6.6, inositol ring), 75.0 (d, JCP 5.5,

inositol ring), 74.2 (d, JCP 5.5, inositol ring), 72.3 (d, JCP 7.7, inositol ring), 70.8

(inositol ring), 68.3 (inositol ring), 38.9 [S(O)CH3]; δP (121 MHz; D2O) 4.7, 4.1; m/z

(ES-); 343, (100%), 439 [C7H14NaO14P2S]- (5), 417 [C7H15O14P2S]-, (15),365 (20),

321 (40), 303 (15), 208 (15).
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4.1.63. 2-Allyloxyethyl bromide 143

Phosphorus tribromide (5.6 mL, 16.7 g, 60.0 mmol, 0.35 equiv) was placed in a flask

under an atmosphere of nitrogen and cooled to 0 °C. A mixture of 2-allyloxyethanol

(18.2 mL, 17.4 g, 17.0 mmol, 1.0 equiv) and dry pyridine (4.8 mL, 4.7 g, 60.0 mmol,

0.35 equiv) was added dropwise with stirring over a period of 1.5 h. The resulting

mixture was stirred for 30 min at 0 °C and for 2 h at RT. Distillation under reduced

pressure furnished 2-allyloxyethyl bromide 143 (9.8 g yield, 35%) as a colourless oil;

bp 30-35 °C (6-8 mbar); δH (300 MHz; CDCl3) 5.92 (1H, ddt J 17.4, 10.5, 5.6

CH=CH2), 5.30 (1H, ddt, J 17.4, 1.7, 1.5, CH=CHH), 5.22 (1H, ddt, J 10.5, 1.7, 1.2,

CH=CHH), 4.34-4.21 (2H, ddd, J 5.6, 1.5, 1.2 CHHCH=CH2), 3.77 (2H, t, J 6.1,

OCH2CH2Br), 3.45 (2H, t, J 6.1, OCH2CH2Br). These data are in good agreement

with the literature values.144

4.1.64. (-)-1D-1,5-Bis-O-allyl-4-O-(2-allyloxy)ethyl-2,3,6-tris-O-benzyl-myo-

inositol 140

(+)-1D-1,5-Bis-O-allyl-2,3,6-tris-O-benzyl-myo-inositol 100 (170 mg, 320 μmol,

1.0 equiv) was dissolved in dry N,N-dimethyl formamide (5 mL) under an

atmosphere of nitrogen. The resulting mixture was cooled to 0 °C and sodium

hydride (60% w/w, 15 mg, 384 μmol, 1.2 equiv) added with stirring. The mixture was

allowed to warm to RT and stirred for 2 h, then re-cooled to 0 °C and tetra-n-

butylammonium iodide (catalytic amount) and 2-allyloxyethyl bromide (48 μL, 63 mg,

384 μmol, 1.2 equiv) were added. The resulting mixture was allowed to warm to RT

and stirred overnight. The sodium hydride was quenched with water (0.5 mL), the

solvent removed under reduced pressure and the residue reconstituted with ethyl

acetate (10 mL) and water (10 mL). The layers were separated and the aqueous

layer extracted with ethyl acetate (3 × 5 mL). The combined organic layers were

washed with brine (10 mL), dried (magnesium sulfate), filtered and concentrated

under reduced pressure. Purification by silica gel column chromatography, eluting

with ethyl acetate/petroleum ether (10/90) gave (-)-1D-1,5-bis-O-allyl-4-O-(2-

allyloxy)ethyl-2,3,6-tris-O-benzyl-myo-inositol 140 (158 mg yield, 80%) as a
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colourless oil; Rf 0.6 (ethyl acetate/petroleum ether 30/70); 25
D][α - 7.8 (c 0.51 in

CHCl3); νmax (thin film)/cm-1 3064.0 (m), 3031.6 (m), 2984.1 (s), 2869.3 (s), 1647.2

(w), 1496.9 (w), 1454.9 (m), 1421.2 (w), 1266.0 (s), 1208.6 (w), 1131.9 (m), 1086.6

(s), 1028.1 (m), 996.0 (w), 926.4 (m), 737.3 (s), 699.3 (m); δH (300 MHz; CDCl3)

7.43-7.29 (15H, m, ArH), 6.06-5.83 (3H, m, CHX=CHYHZ + CHX’=CHY’HZ’ +

CHX’’=CHY’’HZ’’), 5.32-5.12 (6H, m, CHX=CHYHZ + CHX’=CHY’HZ’ + CHX’’=CHY’’HZ’’),

4.86 (2H, s, CHAHB), 4.85 (1H, d, JA’B’ 10.2, OCHA’HB’), 4.78 (1H, d, JA’B’ 10.2,

OCHA’HB’), 4.72 (1H, d, JA’’B’’ 11.8, OCHA’’HB’’), 4.59 (1H, d, JA’’B’’ 11.8, OCHA’’HB’’),

4.43-4.28 (2H, m, CHvHWCHX=CHYHZ), 4.10-4.06 (2H, m, CHV’HW’CHX’=CHY’HZ’),

4.02-3.89 (6H, m, 2 × CHV’’HW’’CHX’’=CHY’’HZ’’ + 2 × OCH2CH2OAll + 2 × inositol

ring), 3.82 (1H, t, J 9.5, inositol ring), 3.61 (2H, t, J 4.9, OCH2CH2OAll), 3.29 (1H, d,

J 9.2, inositol ring), 3.27 (1H, dd, J 9.7, 5.9, inositol ring), 3.18 (1H, dd, J 9.7, 2.3,

inositol ring); δC (75 MHz; CDCl3) 139.05 (ArC), 139.0 (ArC), 138.7 (ArC), 135.6

(CHX=CHYHZ), 135.0 (CHX’=CHY’HZ’), 134.9 (CHX’’=CHY’’HZ’’), 128.33 (ArCH), 128.3

(ArCH), 128.1 (ArCH), 127.8 (ArCH), 127.6 (ArCH), 127.5 (ArCH), 127.3 (ArCH),

116.8 (CHX=CHYHZ), 116.6 (CHX’=CHY’HZ’), 116.4 (CHX’’=CHY’’HZ’’), 83.1 (inositol

ring), 82.5 (inositol ring), 81.6 (inositol ring), 80.53 (inositol ring), 80.5 (inositol ring),

75.9 (CH2), 74.6 (CH2), 74.5 (inositol ring), 74.0 (CH2), 72.9 (CH2), 72.7 (CH2), 72.0

(CH2), 71.7 (CH2), 69.9 (CH2); m/z (ES+) [Found: (M+Na)+ 637.3140. C38H46O7Na

requires M+, 637.3141], m/z (ES+) 637 ([M+Na]+, 100%).

4.1.65. (-)-1D-4-O-(2-Hydroxy)ethyl-2,3,6-tris-O-benzyl-myo-inositol 141

Wilkinson’s catalyst (53 mg, 49 μmol, 0.1 equiv) was dissolved in dry

tetrahydrofuran (1.0 mL) under an atmosphere of nitrogen, n-butyl lithium (1.6 M

solution in hexanes, 308 μL, 207 μmol, 0.4 equiv) was added and the resulting

mixture stirred for 10 min at RT. The mixture was then cannulated onto a solution of

(-)-1D-1,5-bis-O-allyl-4-O-(2-allyloxy)ethyl-2,3,6-tris-O-benzyl-myo-inositol 140

(303 mg, 493 μmol, 1.0 equiv) in dry tetrahydrofuran (0.5 mL) under an atmosphere

of nitrogen and the resulting mixture heated under reflux for 6 h. The mixture was

cooled to RT and the solvent removed under reduced pressure to give a dark red

residue. 1H NMR analysis indicated that the allyl groups had completely isomerised.

The residue was dissolved in a mixture methanol/dichloromethane (2/3, 5 mL) under
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an atmosphere of nitrogen, acetyl chloride (21 μL, 23 mg, 296 μmol, 0.6 equiv) was

added and the resulting mixture stirred for 2 h. The generated hydrochloric acid was

quenched with triethylamine (0.2 mL), the solvent removed under reduced pressure,

the residue adsorbed onto silica gel and purified using silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (60/40), to give (-)-1D-4-

O-(2-hydroxy)ethyl-2,3,6-tris-O-benzyl-myo-inositol 141 (195 mg yield, 80%) as a

colourless solid. A very pure sample was obtained by crystallisation from ethyl

acetate and petroleum ether (Found: C, 70.4, H, 6.8; C29H34O7 requires C, 70.4, H,

6.9); Rf 0.46 (ethyl acetate/petroleum ether 60/40); 25
D][α - 0.45 (c 1.1 in CHCl3); mp

92-93 °C (from ethyl acetate/petroleum ether); νmax (KBr disc)/cm-1 3398.6 (s),

3064.4 (w), 3025.2 (w), 2911.9 (m), 2873.9 (m), 1496.9 (w), 1454.7 (m), 1364.5 (m),

1249.1 (w), 1208.9 (w), 1131.7 (s), 1085.6 (s), 2068.5 (s), 1023.2 (s), 928.7 (w),

723.3 (s), 969.8 (s), 607.0 (w), 539.9 (w); δH (300 MHz; CDCl3) 7.37-7.29 (15H, m,

ArH), 5.00 (1H, d, JAB 11.8, OCHAHB), 4.89 (1H, d, JA’B’ 11.3, OCHA’HB’), 4.80 (1H, d,

JA’B’ 11.3, OCHA’HB’), 4.70 (1H, d, JA’B’ 11.8, OCHAHB), 4.69 (2H, s, OCHA’’HB’’), 4.05-

3.46 (9H, m, 4 × OCH2H2OH and 5 × inositol ring), 3.37 (1H, dd, J 9.7, 2.3, inositol

ring), 3.30 (1H, br s, OH), 3.06 (1H, br s, OH), 2.26 (1H, d, J 7,4, OH); δC (75 MHz;

CDCl3) 138.5 (ArC), 138.49 (ArC), 137.8 (ArC), 128.6 (ArCH), 128.55 (ArCH), 128.5

(ArCH), 128.1 (ArCH), 127.95 (ArCH), 127.93 (ArCH), 127.9 (ArCH), 127.8 (ArCH),

127.7 (ArCH), 82.1 (inositol ring), 81.5 (inositol ring), 80.6 (inositol ring), 77.2

(inositol ring), 75.0 (CH2), 74.91 (CH2), 74.9 (inositol ring), 74.7 (CH2), 72.8 (CH2),

72.3 (inositol ring), 62.2 (CH2OH); m/z (ES+) [Found: (M+Na)+ 517.2192.

C29H34O7Na requires M+, 517.2202], m/z (ES+) 517 ([M+Na]+, 100%).

4.1.66. (+)-1D-4-O-(2-Dibenzylphosphoryloxy)ethyl-2,3,6-tris-O-benzyl-myo-

inositol 1,5-bis(dibenzylphosphate) 142

Bis(benzyloxy)-N,N-diisopropylamino phosphine 92 (1 mg, 2.9 mmol, 7.5 equiv) was

stirred with 1H-tetrazole (0.43 M solution in acetonitrile, 6.9 mL, 2.9 mmol, 7.5 equiv)

for 30 min under an atmosphere of nitrogen. (-)-1D-4-O-(2-Hydroxy)ethyl-2,3,6-tris-

O-benzyl-myo-inositol 141 (195 mg, 394 μmol, 1.0 equiv) dissolved in dry
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dichloromethane (8 mL) was added by cannula and the resulting mixture stirred

overnight. The mixture was cooled to - 78 °C and 3-chloroperoxybenzoic acid

(510 mg, 2.9 mmol, 7.5 equiv) was added. The resulting mixture was allowed to

warm to RT and stirred for 30 min. The 3-chloroperoxybenzoic acid was quenched

with a 10% aqueous solution of sodium hydrogen sulfite (10 mL). The layers were

separated and the aqueous layer was extracted with dichloromethane (3 × 10 mL).

The combined organic layers were washed with a saturated aqueous solution of

sodium hydrogen carbonate (10 mL), dried (magnesium sulfate), filtered and

concentrated under reduced pressure. Purification by silica gel column

chromatography, eluting with ethyl acetate/petroleum ether (40/60, then 60/40),

gave (+)-1D-4-O-(2-dibenzylphosphoryloxy)ethyl-2,3,6-tris-O-benzyl-myo-inositol

1,5-bis(dibenzylphosphate) 142 (232 mg yield, 46%) as a colourless oil (Found: C,

66.7, H, 5.8; C71H73O16P3 requires C, 66.9, H, 5.8); Rf 0.54 (ethyl acetate/petroleum

ether 80/20); 25
D][α + 9.7 (c 0.88 in CHCl3); νmax (thin film)/cm-1 3064.3 (w), 3033.2

(w), 2948.6 (m), 2885.2 (m), 1497.5 (m), 1455.6 (s), 1273.7 (s), 1214.7 (m), 1012.1

(s), 920.3 (w), 881.7 (m), 736.5 (s), 696.4 (s); δH (300 MHz; CDCl3) 7.28-6.97 (45H,

m, ArH), 4.98-4.50 (14H, s, 7 × OCH2Ph), 4.89-4.59 (19H, m, 18 × OCH2Ph and 1 ×

inositol ring), 4.46 (1H, d, JAB 11.8, OCHAHB), 4.37 (1H, d, JAB 11.8, OCHAHB), 4.15

(1H, t, J 2.0, inositol ring), 4.09-3.84 (5H, m, 2 × OCH2CH2O and 3 × inositol ring),

3.74 (2H, t, J 9.5, OCH2CH2O), 3.09 (1H, dd, J 9.7, 2.0, inositol ring); δC (75 MHz;

CDCl3), 138.5 (ArC), 138.1 (ArC), 137.7 (ArC), 136-135.5 [m, 6 ×

P(O)(OCH2CC5H5], 128.52 (ArCH), 128.5 (ArCH), 128.4 (ArCH), 128.3 (ArCH),

128.24 (ArCH), 128.2 (ArCH), 128.1 (ArCH), 127.84 (ArCH), 127.8 (ArCH), 127.7

(ArCH), 127.6 (ArCH), 127.5 (ArCH), 127.4 (ArCH), 127.3 (ArCH), 80.4 (d, JCP 6.6,

inositol ring), 79.9 (d, JCP 1.7, inositol ring), 79.3 (inositol ring), 78.1 (dd, JCP 11.4,

4.0, inositol ring), 77.9 (d, JCP 5.9, inositol ring), 76.0 (inositol ring), 75.1 (CH2), 74.6

(CH2), 72.7 (CH2), 71.6 (d, JCP 7.8, OCH2CH2O), 69.4 [d, JCP 5.9, P(O)OCH2Ph],

69.3-69.2 [m, 3 × P(O)OCH2Ph], 69.0 [d, JCP 5.7, 2 × P(O)OCH2Ph], 66.9 (d, JCP 6.1,

OCH2CH2O); δP (121 MHz; CDCl3) 0.38, - 0.35, - 0.61; m/z (ES+) 1297 ([M+Na]+,

100%).
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4.1.67. (-)-1D-4-O-(2-Phosphoryloxy)ethyl-myo-inositol 1,5-bisphosphate

(sodium salt) 126

(+)-1D-4-O-(2-Dibenzylphosphoryloxy)ethyl-2,3,6-tris-O-benzyl-myo-inositol 142 1,5-

bis (dibenzylphosphate) (97 mg, 76 μmol, 1.0 equiv) was dissolved in

tert-butanol/water (5/1, 12 mL), sodium hydrogen carbonate (38 mg, 455 μmol,

6.0 equiv) and palladium black (162 mg, 1.5 mmol, 20.0 equiv) were added and the

flask flushed three times with hydrogen, then stirred for 8 h at RT under an

atmosphere of hydrogen. The organic layer was removed by filtration, the dark

residue washed with water (3 × 5 mL) and the collected aqueous layer lyophilized to

yield (-)-1D-4-O-(2-phosphoryloxy)ethyl-myo-inositol 1,5-bisphosphate (sodium salt)

126 as a colourless solid (40 mg yield, 89%); 25
D][α - 2.95 (c 0.44 in H2O); νmax (KBr

disc)/cm-1 3290.0 (s), 2963.6 (m), 2930.0 (m), 1655.1 (s), 1639.2 (s), 1093.2 (s),

978.3 (s), 802.8 (w), 721.7 (w), 550.5 (m); δH (300 MHz; D2O) 4.30 (1H, br s, inositol

ring), 4.11-4.06 (1H, m, inositol ring), 3.81-3.69 (6H, m, 4 × OCH2CH2O and 2 ×

inositol ring), 3.58-3.45 (2H, m, inositol ring); δC (75 MHz; D2O) 81.3 (d, JCP, 6.0,

inositol ring), 78.4 (d, JCP 5.4, inositol ring), 74.8 (d, JCP 5.7, inositol ring), 73.2 (d,

JCP 7.3, OCH2CH2O), 72.8 (d, JCP 7.0, inositol ring), 70.9 (inositol ring), 69.9 (inositol

ring), 64.2 [d, JCP 4.5, OCH2CH2O]; δP (121 MHz; D2O) 5.2, 4.9, 4.1; m/z (ES+); 289

(100%), 597 [M+H]+ (50).

4.1.68. (-)-1D-2,3,6-Tris-O-benzyl-4-O-diethylphosphoryl-myo-inositol 1,5-

bis(dibenzylphosphate) 146

(+)-1D-2,3,6-tris-O-Benzyl-myo-inositol 1,5-bis(dibenzylphosphate) 122 (100 mg,

103 μmol, 1.0 equiv) was dissolved in dry dichloromethane (2 mL) under an

atmosphere of nitrogen and the mixture cooled to - 78 °C. Dry triethylamine (57 μL,

42 mg, 412 μmol, 4.0 equiv) was added, followed by diethylchlorophosphite (45 μL,
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48 mg, 309 μmol, 3.0 equiv). The mixture was allowed to warm to RT and stirred for

4 h. TLC anaysis indicated complete consumption of the starting material and the

presence of a less polar spot. The mixture was re-cooled to - 78 °C and 3-

chloroperoxybenzoic acid (53 mg, 309 μmol, 3.0 equiv) added. The resulting mixture

was allowed to wam to RT and stirred for 30 min. The 3-chloroperoxybenzoic acid

was quenched with a 10% aqueous solution of sodium hydrogen sulfite (2 mL) and

the mixture stirred for 30 min, then the layers were separated and the aqueous layer

extracted with dichloromethane (3 × 5 mL). The combined organic layers were

washed with asaturated aqueous soluton of sodium hydrogen carbonate (5 mL),

dried (magnesium sulfate), filtered and concentrated under reduced pressure.

Purification by silica gel column chromatography, eluting with ethyl

acetate/petroleum ether (60/40) gave (-)-1D-2,3,6-tris-O-benzyl-4-O-

diethylphosphoryl-myo-inositol 1,5-bis(dibenzylphosphate) 146 (59 mg yield, 52%)

as a colourless solid (Found: C, 63.8; H, 5.9. C59H65O15P3 requires C, 64.0; H, 5.9).

A very pure sample was obtained by crystallisation from diethyl ether, ethyl acetate

and petroleum ether; Rf 0.48 (ethyl acetate/petroleum ether 80/20); 25
D][α - 1.3 (c 1.1

in CHCl3); mp 94-95 °C (from diethyl ether/ethyl acetate/petroleum ether); νmax (thin

film)/cm-1 3064.4 (w), 3036.4 (w), 2937.3 (m), 1498.1 (m), 1455.5 (m), 1382.4 (w),

1261.5 (s), 1216.1 (w), 1160.7 (m), 1104.9 (m), 1037.8 (s), 10238. (s), 877.1 (m),

730.6 (m), 695.9 (m), 497.3 (w); δH (300 MHz; CDCl3) 7.33-6.89 (35H, m, ArH), 5.05

(1H, dd, JAB 11.8, JHP 6.6, OCHAHB), 4.90 (1H, dd, JAB 11.8, JHP 6.6, OCHAHB), 4.84-

4.37 (14H, m, 12 × OCH2 and 2 × inositol ring), 4.26 (1H, t, J 2.0, inositol ring), 4.21-

4.15 (1H, m, inositol ring), 4.06-3.82 [5H, m, 4 × P(O)(CH2CH3)2 and 1 × inositol

ring], 3.35 (1H, dd, J 10.0, 2.3, inositol ring), 1.06 [3H, td, J 7.2, JHP 1.3,

P(O)(CH2CH3)A(CH2CH3)B], 1.00 [3H, td, J 7.2, JHP 1.3, P(O)(CH2CH3)A(CH2CH3)B];

δC (75 MHz; CDCl3) 138.3 (ArC), 138.29 (ArC) 137.5 (ArC), 136.2 [d, JCP 8.1,

P(O)(OCH2CAC5H5)],135.9 [d, JCP 7.5, P(O)(OCH2CBC5H5)] 135.6 [d, JCP 2.7,

P(O)(OCH2CAC5H5)], 135.5 [d, JCP 2.4, P(O)(OCH2CAC5H5)], 128.6 (ArCH), 128.5

(ArCH), 128.32 (ArCH), 128.3 (ArCH), 128.2 (ArCH), 128.1 (ArCH), 127.9 (ArCH),

127.8 (ArCH), 127.7 (ArCH), 127.6 (ArCH), 127.1 (ArCH), 79.2-79.0 (m, inositol

ring), 78.0-77.9 (m, 2 × inositol ring), 77.6 (inositol ring), 77.4 (inositol ring), 75.3

(CH2), 75.2 (inositol ring), 74.5 (CH2), 72.3 (CH2), 69.5-69.1 [m, 4 × P(O)OCH2Ph)],

64.1 [d, JCP 6.4, P(O)(CH2CH3)A(CH2CH3)B], 63.8 [d, JCP 5.9,

P(O)(CH2CH3)A(CH2CH3)B], 16.0 [P(O)(CH2CH3)A(CH2CH3)B], 15.9
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[P(O)(CH2CH3)A(CH2CH3)B]; δP (121 MHz; CDCl3) - 1.67, - 1.70, - 1.88; m/z (ES+)

1129 ([M+Na]+, 100%).

4.1.69. (+)-1D-myo-Inositol 1,5-bisphosphate (sodium salt) 125

(+)-1D-2,3,6-tris-O-Benzyl-myo-inositol 1,5-bis(dibenzylphosphate) 122 (100 mg,

103 μmol, 1.0 equiv) (92 mg, 94 μmol, 1.0 equiv) was dissolved in

tert-butanol/water (5/1, 10 mL), sodium hydrogen carbonate (32 mg, 377 μmol,

4.0 equiv) and palladium black (201 mg, 1.9 mmol, 20.0 equiv) were added and the

flask flushed three times with hydrogen, then stirred for 8 h at RT under an

atmosphere of hydrogen. The organic layer was removed by filtration, the dark

residue washed with water (3 × 5 mL) and the collected aqueous layer lyophilized to

yield (+)-1D-myo-inositol 1,5-bisphosphate (sodium salt) 125 as a colourless solid

(37 mg yield, 92%); 25
D][α + 5.7 (c 0.53 in H2O) [Lit.145 + 6.0 (c 0.5 in H2O)]; νmax (KBr

disc)/cm-1 3423.5 (s), 2930.0 (m), 1655.1 (m), 1560.7 (w), 1376.3 (w), 1094.1 (s),

968.2 (s), 897.9 (w), 808.6 (m), 718.9 (m), 568.0 (m); δH (300 MHz; D2O) 4.18 (1H, t,

J 2.8, inositol ring), 3.87-3.81 (1H, m, inositol ring), 3.75-3.64 (3H, m, inositol ring),

3.53 (1H, dd, J 9.5, 2.8, inositol ring); δC (75 MHz; D2O) 78.3 (d, JCP 5.6, inositol

ring), 74.6 (d, JCP 5.1, inositol ring), 72.6 (d, JCP 1.5, inositol ring), 71.9 (t, JCP 5.0,

inositol ring), 71.6 (inositol ring), 71.0 (inositol ring); δP (121 MHz; D2O) 5.4, 4.5; m/z

(ES-) 259 ([C6H12O9P]- 100%), 405 [C6H10Na3O12P2]- (15), 383 [C6H11Na2O12P2]-

(20), 361 [C6H12NaO12P2]- (50), 339 [C6H13O12P2]- (45), 281 [C6H11NaO9P]- (70).

These data are in good agreement with the literature values.145
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Appendix 1 - Selected NMR Spectra
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Appendix 2 - Crystallographic Data

6-[(4’-Methoxy)benzyloxy]-2,4,10-trioxatricyclo[3.3.1.13,7]decane-8,9-diol 38

Crystal structure of compound 38.

Crystal data and structure refinement for 38

Empirical formula C15 H18 O7 Index ranges -21<=h<=20, -9<=k<=9,
-11<=l<=11

Formula weight 310.29 Reflections collected 8472
Temperature 125(2) K Independent reflections 2487 [R(int) = 0.0478]

Wavelength 0.71073 Å Completeness to theta
= 25.38° 97.6 %

Crystal system Monoclinic Absorption correction MULTISCAN

Space group P2(1)/c Max. and min.
transmission 1.00000 and 0.889515

Unit cell dimensions
a = 17.782(5) Å α= 90°
b = 8.040(2) Å
β=93.521(5)°
c = 9.693(3) Å γ = 90°

Refinement method
Full-matrix

least-squares on F
2

Volume 1383.1(6) Å
3 Data / restraints /

parameters 2487 / 2 / 209

Z 4 Goodness-of-fit on F
2

0.937

Density (calculated) 1.490 Mg/m
3 Final R indices

[I>2sigma(I)]
R1 = 0.0389, wR2 =

0.0789

Absorption coefficient 0.119 mm-1
R indices (all data) R1 = 0.0777, wR2 =

0.0909
F(000) 656 Extinction coefficient 0.017(2)

Crystal size .1 × .1 × .02 mm
3 Largest diff. peak and

hole 0.207 and -0.179 e.Å-3

Theta range for data
collection 2.78 to 25.38°.
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Atomic coordinates (× 10
4
) and equivalent isotropic displacement parameters (Å

2
× 10

3
) for 38.

U(eq) is defined as one third of the trace of the orthogonalized U
ij

tensor

x y z U(eq)
O(1) 4568(1) 4234(2) 1390(1) 21(1)
C(1) 4337(1) 3951(2) 2784(2) 18(1)
C(2) 3625(1) 2907(2) 2709(2) 17(1)
O(2) 3765(1) 1248(2) 2273(1) 20(1)
C(3) 3038(1) 3790(2) 1765(2) 19(1)
O(3) 3340(1) 4100(2) 436(1) 21(1)
C(4) 2835(1) 5482(2) 2363(2) 20(1)
O(4) 2471(1) 5154(2) 3593(1) 23(1)
C(5) 3567(1) 6491(2) 2542(2) 20(1)
O(5) 3842(1) 6638(2) 1158(1) 21(1)
C(6) 4199(1) 5646(2) 3430(2) 19(1)
O(6) 4023(1) 5364(2) 4818(1) 23(1)
C(7) 3999(1) 5050(2) 585(2) 21(1)
C(8) 2032(1) 6519(2) 4038(2) 26(1)
C(9) 1655(1) 5993(2) 5314(2) 22(1)
C(10) 897(1) 6324(3) 5483(2) 27(1)
C(11) 560(1) 5834(3) 6658(2) 30(1)
C(12) 971(1) 4965(2) 7692(2) 24(1)
C(13) 1725(1) 4629(2) 7552(2) 23(1)
C(14) 2060(1) 5159(2) 6364(2) 22(1)
O(12) 582(1) 4528(2) 8812(1) 31(1)
C(15) 999(1) 3757(3) 9950(2) 34(1)

Bond lengths [Å] and angles [°] for 38

O(1)-C(7) 1.402(3) C(6)-H(6A) 1.0000 O(1)-C(1)-C(2) 108.96(15)
O(1)-C(1) 1.453(2) O(6)-H(6O) 0.9799(11) O(1)-C(1)-C(6) 107.65(14)
C(1)-C(2) 1.517(3) C(7)-H(7A) 1.0000 C(2)-C(1)-C(6) 111.03(15)
C(1)-C(6) 1.526(2) C(8)-C(9) 1.502(3) O(1)-C(1)-H(1A) 109.7

C(1)-H(1A) 1.0000 C(8)-H(8A) 0.9900 C(2)-C(1)-H(1A) 109.7
C(2)-O(2) 1.426(2) C(8)-H(8B) 0.9900 C(6)-C(1)-H(1A) 109.7
C(2)-C(3) 1.521(3) C(9)-C(14) 1.383(3) O(2)-C(2)-C(1) 111.80(15)

C(2)-H(2A) 1.0000 C(9)-C(10) 1.393(3) O(2)-C(2)-C(3) 112.60(16)
O(2)-H(2O) 0.9798(11) C(10)-C(11) 1.377(3) C(1)-C(2)-C(3) 108.08(15)
C(3)-O(3) 1.447(2) C(10)-H(10A) 0.9500 O(2)-C(2)-H(2A) 108.1
C(3)-C(4) 1.531(3) C(11)-C(12) 1.392(3) C(1)-C(2)-H(2A) 108.1

C(3)-H(3A) 1.0000 C(11)-H(11A) 0.9500 C(3)-C(2)-H(2A) 108.1
O(3)-C(7) 1.400(2) C(12)-O(12) 1.369(2) C(2)-O(2)-H(2O) 110.3(15)
C(4)-O(4) 1.415(2) C(12)-C(13) 1.382(3) O(3)-C(3)-C(2) 109.74(15)
C(4)-C(5) 1.535(3) C(13)-C(14) 1.396(3) O(3)-C(3)-C(4) 107.06(14)

C(4)-H(4A) 1.0000 C(13)-H(13A) 0.9500 C(2)-C(3)-C(4) 110.87(16)
O(4)-C(8) 1.429(2) C(14)-H(14A) 0.9500 O(3)-C(3)-H(3A) 109.7
C(5)-O(5) 1.461(2) O(12)-C(15) 1.432(3) C(2)-C(3)-H(3A) 109.7
C(5)-C(6) 1.532(3) C(15)-H(15A) 0.9800 C(4)-C(3)-H(3A) 109.7

C(5)-H(5A) 1.0000 C(15)-H(15B) 0.9800 C(7)-O(3)-C(3) 110.84(14)
O(5)-C(7) 1.426(2) C(15)-H(15C) 0.9800 O(4)-C(4)-C(3) 106.51(14)
C(6)-O(6) 1.418(2) C(7)-O(1)-C(1) 110.84(14) O(4)-C(4)-C(5) 115.56(16)

C(3)-C(4)-C(5) 107.07(16) C(11)-C(10)-C(9) 121.1(2) O(12)-C(15)-H(15A) 109.5
O(4)-C(4)-H(4A) 109.2 C(11)-C(10)-H(10A) 119.5 O(12)-C(15)-H(15B) 109.5
C(3)-C(4)-H(4A) 109.2 C(9)-C(10)-H(10A) 119.5 H(15A)-C(15)-H(15B) 109.5
C(5)-C(4)-H(4A) 109.2 C(10)-C(11)-C(12) 120.2(2) O(12)-C(15)-H(15C) 109.5
C(4)-O(4)-C(8) 113.47(14) C(10)-C(11)-H(11A) 119.9 H(15A)-C(15)-H(15C) 109.5
O(5)-C(5)-C(6) 106.06(15) C(12)-C(11)-H(11A) 119.9 H(15B)-C(15)-H(15C) 109.5
O(5)-C(5)-C(4) 105.60(15) O(12)-C(12)-C(13) 124.66(19) H(8A)-C(8)-H(8B) 108.4
C(6)-C(5)-C(4) 114.67(16) O(12)-C(12)-C(11) 115.52(19) C(14)-C(9)-C(10) 118.01(18)

O(5)-C(5)-H(5A) 110.1 C(13)-C(12)-C(11) 119.81(18) C(14)-C(9)-C(8) 120.26(19)
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C(6)-C(5)-H(5A) 110.1 C(12)-C(13)-C(14) 119.2(2) C(10)-C(9)-C(8) 121.73(19)
C(4)-C(5)-H(5A) 110.1 C(12)-C(13)-H(13A) 120.4 C(1)-C(6)-H(6A) 109.4
C(7)-O(5)-C(5) 111.69(14) C(14)-C(13)-H(13A) 120.4 C(5)-C(6)-H(6A) 109.4
O(6)-C(6)-C(1) 107.31(14) C(9)-C(14)-C(13) 121.7(2) C(6)-O(6)-H(6O) 108.7(14)
O(6)-C(6)-C(5) 113.98(15) C(9)-C(14)-H(14A) 119.1 C(13)-C(14)-H(14A) 119.1
C(1)-C(6)-C(5) 107.21(16) O(6)-C(6)-H(6A) 109.4 C(12)-O(12)-C(15) 117.28(17)

Anisotropic displacement parameters (Å
2
× 10

3
) for 38. The anisotropic displacement factor

exponent takes the form: -2π
2
[h

2
a*

2
U

11
+ ... + 2 h k a* b* U

12
]

U
11

U
22

U
33

U
23

U
13

U
12

O(1) 26(1) 21(1) 16(1) 1(1) 5(1) 0(1)
C(1) 24(1) 18(1) 13(1) -1(1) 4(1) 2(1)
C(2) 27(1) 11(1) 14(1) -2(1) 5(1) 1(1)
O(2) 31(1) 11(1) 19(1) -2(1) 2(1) 2(1)
C(3) 23(1) 20(1) 14(1) 0(1) 4(1) -2(1)
O(3) 29(1) 20(1) 15(1) 0(1) 1(1) -1(1)
C(4) 24(1) 19(1) 17(1) 3(1) 4(1) 2(1)
O(4) 28(1) 18(1) 22(1) 2(1) 11(1) 6(1)
C(5) 35(1) 12(1) 14(1) 0(1) 7(1) 1(1)
O(5) 36(1) 14(1) 13(1) 1(1) 7(1) -1(1)
C(6) 27(1) 17(1) 12(1) -2(1) 3(1) -4(1)
O(6) 40(1) 16(1) 12(1) 0(1) 3(1) 0(1)
C(7) 31(1) 17(1) 16(1) 0(1) 5(1) 0(1)
C(8) 30(1) 20(1) 27(1) 2(1) 7(1) 8(1)
C(9) 27(1) 17(1) 23(1) -3(1) 3(1) 1(1)
C(10) 27(1) 31(1) 24(1) 2(1) 1(1) 5(1)
C(11) 19(1) 42(1) 30(1) 2(1) 4(1) 6(1)
C(12) 28(1) 22(1) 22(1) -5(1) 7(1) -3(1)
C(13) 28(1) 19(1) 24(1) -2(1) 2(1) 2(1)
C(14) 21(1) 20(1) 26(1) -4(1) 5(1) 3(1)
O(12) 29(1) 39(1) 25(1) 6(1) 6(1) 0(1)
C(15) 36(2) 41(1) 25(1) 7(1) 2(1) 0(1)

Hydrogen coordinates (×10
4
) and isotropic displacement parameters (Å

2
× 10

3
) for 38

x y z U(eq)
H(1A) 4746 3354 3338 22
H(2A) 3433 2857 3656 20
H(2O) 3907(14) 1240(30) 1313(8) 57(8)
H(3A) 2575 3086 1640 23
H(4A) 2475 6068 1693 24
H(5A) 3462 7619 2920 24
H(6A) 4668 6331 3418 22
H(6O) 3952(14) 6441(14) 5270(20) 60(8)
H(7A) 4186 5232 -356 26
H(8A) 1647 6831 3301 31
H(8B) 2359 7494 4244 31
H(10A) 608 6897 4776 33
H(11A) 45 6090 6763 36
H(13A) 2011 4044 8255 28
H(14A) 2580 4941 6273 27
H(15A) 1210 2703 9646 51
H(15B) 663 3545 10695 51
H(15C) 1408 4496 10287 51
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Torsion angles [°] for 38

C(7)-O(1)-C(1)-C(2) 59.05(18) C(2)-C(1)-C(6)-C(5) -58.27(19)

C(7)-O(1)-C(1)-C(6) -61.45(19) O(5)-C(5)-C(6)-O(6) -178.66(14)

O(1)-C(1)-C(2)-O(2) 69.08(19) C(4)-C(5)-C(6)-O(6) -62.5(2)

C(6)-C(1)-C(2)-O(2) -172.52(15) O(5)-C(5)-C(6)-C(1) -60.06(18)

O(1)-C(1)-C(2)-C(3) -55.40(18) C(4)-C(5)-C(6)-C(1) 56.05(19)

C(6)-C(1)-C(2)-C(3) 63.00(19) C(3)-O(3)-C(7)-O(1) 61.39(18)

O(2)-C(2)-C(3)-O(3) -68.85(19) C(3)-O(3)-C(7)-O(5) -62.29(19)

C(1)-C(2)-C(3)-O(3) 55.14(19) C(1)-O(1)-C(7)-O(3) -62.16(19)

O(2)-C(2)-C(3)-C(4) 173.09(14) C(1)-O(1)-C(7)-O(5) 61.27(19)

C(1)-C(2)-C(3)-C(4) -62.92(18) C(5)-O(5)-C(7)-O(3) 62.5(2)

C(2)-C(3)-O(3)-C(7) -57.90(19) C(5)-O(5)-C(7)-O(1) -61.9(2)

C(4)-C(3)-O(3)-C(7) 62.50(19) C(4)-O(4)-C(8)-C(9) 177.93(17)

O(3)-C(3)-C(4)-O(4) 174.23(15) O(4)-C(8)-C(9)-C(14) 45.3(3)

C(2)-C(3)-C(4)-O(4) -66.1(2) O(4)-C(8)-C(9)-C(10) -134.8(2)

O(3)-C(3)-C(4)-C(5) -61.59(19) C(14)-C(9)-C(10)-C(11) -0.1(3)

C(2)-C(3)-C(4)-C(5) 58.08(19) C(8)-C(9)-C(10)-C(11) 180.0(2)

C(3)-C(4)-O(4)-C(8) -160.61(17) C(9)-C(10)-C(11)-C(12) -1.3(3)

C(5)-C(4)-O(4)-C(8) 80.6(2) C(10)-C(11)-C(12)-O(12) -179.59(19)

O(4)-C(4)-C(5)-O(5) 178.82(14) C(10)-C(11)-C(12)-C(13) 1.5(3)

C(3)-C(4)-C(5)-O(5) 60.37(18) O(12)-C(12)-C(13)-C(14) -179.23(18)

O(4)-C(4)-C(5)-C(6) 62.4(2) C(11)-C(12)-C(13)-C(14) -0.5(3)

C(3)-C(4)-C(5)-C(6) -56.0(2) C(10)-C(9)-C(14)-C(13) 1.2(3)

C(6)-C(5)-O(5)-C(7) 60.90(19) C(8)-C(9)-C(14)-C(13) -178.90(18)

C(4)-C(5)-O(5)-C(7) -61.20(19) C(12)-C(13)-C(14)-C(9) -0.9(3)

O(1)-C(1)-C(6)-O(6) -176.25(15) C(13)-C(12)-O(12)-C(15) 3.9(3)

C(2)-C(1)-C(6)-O(6) 64.6(2) C(11)-C(12)-O(12)-C(15) -174.87(19)

O(1)-C(1)-C(6)-C(5) 60.92(19)

Hydrogen bonds for 38 [Å and °]

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

O(2)-H(2O)...O(6)#1 0.9798(11) 1.960(17) 2.7728(18) 139(2)

O(6)-H(6O)...O(5)#2 0.9799(11) 1.787(2) 2.7660(18) 177(2)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z-1/2 #2 x,-y+3/2,z+1/2
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(+)-1D-4-O-Acetyl-5-O-allyl-1-O-4-methoxybenzyl-2,3,6-tris-O-benzyl-myo-
inositol 51

Crystal structure of compound 51.

Crystal data and structure refinement for 51

Empirical formula C40H44O8 Index ranges -10<=h<=16, -6<=k<=8,
-21<=l<=21

Formula weight 652.75 Reflections collected 14320
Temperature 93(2) K Independent reflections 5785 [R(int) = 0.0331]

Wavelength 0.71073 Å Completeness to theta
= 25.35° 98.9 %

Crystal system Monoclinic Absorption correction MULTISCAN

Space group P2(1) Max. and min.
transmission 1.0000 and 0.9144

Unit cell dimensions
a = 13.384(3) Å α= 90°.
b = 7.3188(15) Å β=
96.621(4)°.
c = 17.493(4) Å γ = 90°.

Refinement method
Full-matrix least-
squares on F

2

Volume 1702.1(6) Å
3 Data / restraints /

parameters 5785 / 1 / 437

Z 2 Goodness-of-fit on F
2

1.124

Density (calculated) 1.274 Mg/m
3 Final R indices

[I>2sigma(I)]
R1 = 0.0458, wR2 =
0.0901

Absorption coefficient 0.088 mm-1 R indices (all data) R1 = 0.0548, wR2 =
0.0966

F(000) 696 Absolute structure
parameter 0.6(9)

Crystal size
0.2000 × 0.0300 ×
0.0300 mm

3 Extinction coefficient 0.0165(18)

Theta range for data
collection 2.03 to 25.35°. Largest diff. peak and

hole 0.215 and -0.212 e.Å-3
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Atomic coordinates (× 10
4
) and equivalent isotropic displacement parameters (Å

2
× 10

3
) for 51.

U(eq) is defined as one third of the trace of the orthogonalized U
ij

tensor.

x y z U(eq)

C(1) 9229(2) 804(4) 2319(1) 21(1)
O(1) 8513(1) 51(2) 2768(1) 23(1)
C(2) 10248(2) 1031(4) 2799(1) 20(1)
O(2) 10141(1) 2161(2) 3455(1) 21(1)
C(3) 10987(2) 1948(4) 2314(1) 19(1)
O(3) 11929(1) 2321(2) 2746(1) 21(1)
C(4) 10573(2) 3765(4) 2007(1) 18(1)
O(4) 11273(1) 4492(2) 1509(1) 20(1)
C(5) 9550(2) 3549(4) 1531(1) 19(1)
O(5) 9249(1) 5346(2) 1295(1) 22(1)
C(6) 8806(2) 2629(3) 2005(1) 18(1)
O(6) 7893(1) 2324(3) 1511(1) 22(1)
C(7) 8501(2) -1914(4) 2813(2) 26(1)
C(8) 7416(2) -2476(4) 2710(1) 21(1)
C(9) 6957(2) -3198(4) 3307(1) 23(1)
C(10) 5924(2) -3609(4) 3222(2) 23(1)
C(11) 5358(2) -3233(4) 2530(2) 21(1)
O(11) 4337(1) -3511(3) 2382(1) 26(1)
C(12) 5811(2) -2504(4) 1916(1) 23(1)
C(13) 6832(2) -2146(4) 2015(2) 23(1)
C(14) 3852(2) -4203(4) 3008(2) 30(1)
C(15) 10198(2) 1229(4) 4173(1) 26(1)
C(16) 9330(2) 1679(4) 4618(1) 19(1)
C(17) 9355(2) 1048(4) 5370(1) 23(1)
C(18) 8570(2) 1405(4) 5804(2) 29(1)
C(19) 7750(2) 2410(4) 5487(1) 26(1)
C(20) 7718(2) 3052(4) 4742(2) 26(1)
C(21) 8503(2) 2668(4) 4307(1) 22(1)
C(22) 12548(2) 731(4) 2904(1) 24(1)
C(23) 13395(2) 1232(3) 3503(1) 20(1)
C(24) 14384(2) 806(4) 3411(2) 25(1)
C(25) 15165(2) 1320(4) 3960(2) 30(1)
C(26) 14961(2) 2280(4) 4603(2) 31(1)
C(27) 13976(2) 2701(4) 4703(2) 29(1)
C(28) 13198(2) 2187(4) 4156(1) 25(1)
C(29) 11567(2) 6238(4) 1611(1) 21(1)
O(29) 11276(1) 7254(3) 2083(1) 29(1)
C(30) 12299(2) 6736(4) 1060(2) 30(1)
C(31) 8525(2) 5481(4) 626(1) 28(1)
C(32) 8693(2) 7192(4) 203(1) 28(1)
C(33) 9416(2) 8381(4) 381(2) 29(1)
C(34) 7002(2) 2679(4) 1870(1) 22(1)
C(35) 6077(2) 2161(4) 1340(1) 22(1)
C(36) 5141(2) 2451(4) 1593(1) 25(1)
C(37) 4268(2) 1936(4) 1147(2) 30(1)
C(38) 4318(2) 1093(4) 440(2) 32(1)
C(39) 5248(2) 811(4) 180(2) 29(1)
C(40) 6120(2) 1343(4) 628(1) 23(1)
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Bond lengths [Å] and angles [°] for 51

C(1)-O(1) 1.418(3) C(12)-H(12A) 0.9500 C(30)-H(30C) 0.9800

C(1)-C(2) 1.527(3) C(13)-H(13A) 0.9500 C(31)-C(32) 1.485(4)

C(1)-C(6) 1.528(4) C(14)-H(14A) 0.9800 C(31)-H(31A) 0.9900

C(1)-H(1A) 1.0000 C(14)-H(14B) 0.9800 C(31)-H(31B) 0.9900

O(1)-C(7) 1.441(3) C(14)-H(14C) 0.9800 C(32)-C(33) 1.312(4)

C(2)-O(2) 1.434(3) C(15)-C(16) 1.507(3) C(32)-H(32A) 0.9500

C(2)-C(3) 1.531(3) C(15)-H(15A) 0.9900 C(33)-H(33A) 0.9500

C(2)-H(2A) 1.0000 C(15)-H(15B) 0.9900 C(33)-H(33B) 0.9500

O(2)-C(15) 1.425(3) C(16)-C(21) 1.380(3) C(34)-C(35) 1.507(3)

C(3)-O(3) 1.419(3) C(16)-C(17) 1.390(3) C(34)-H(34A) 0.9900

C(3)-C(4) 1.516(3) C(17)-C(18) 1.390(3) C(34)-H(34B) 0.9900

C(3)-H(3A) 1.0000 C(17)-H(17A) 0.9500 C(35)-C(40) 1.389(3)

O(3)-C(22) 1.436(3) C(18)-C(19) 1.383(4) C(35)-C(36) 1.392(3)

C(4)-O(4) 1.453(3) C(18)-H(18A) 0.9500 C(36)-C(37) 1.382(3)

C(4)-C(5) 1.526(3) C(19)-C(20) 1.381(3) C(36)-H(36A) 0.9500

C(4)-H(4A) 1.0000 C(19)-H(19A) 0.9500 C(37)-C(38) 1.389(4)

O(4)-C(29) 1.343(3) C(20)-C(21) 1.395(3) C(37)-H(37A) 0.9500

C(5)-O(5) 1.423(3) C(20)-H(20A) 0.9500 C(38)-C(39) 1.390(4)

C(5)-C(6) 1.525(3) C(21)-H(21A) 0.9500 C(38)-H(38A) 0.9500

C(5)-H(5A) 1.0000 C(22)-C(23) 1.498(3) C(39)-C(40) 1.385(3)

O(5)-C(31) 1.433(3) C(22)-H(22A) 0.9900 C(39)-H(39A) 0.9500

C(6)-O(6) 1.431(3) C(22)-H(22B) 0.9900 C(40)-H(40A) 0.9500

C(6)-H(6A) 1.0000 C(23)-C(24) 1.388(3) O(1)-C(1)-C(2) 110.80(19)

O(6)-C(34) 1.435(3) C(23)-C(28) 1.391(4) O(1)-C(1)-C(6) 107.05(19)

C(7)-C(8) 1.501(3) C(24)-C(25) 1.386(4) C(2)-C(1)-C(6) 111.9(2)

C(7)-H(7A) 0.9900 C(24)-H(24A) 0.9500 O(1)-C(1)-H(1A) 109.0

C(7)-H(7B) 0.9900 C(25)-C(26) 1.380(4) C(2)-C(1)-H(1A) 109.0

C(8)-C(9) 1.377(3) C(25)-H(25A) 0.9500 C(6)-C(1)-H(1A) 109.0

C(8)-C(13) 1.388(3) C(26)-C(27) 1.385(4) C(1)-O(1)-C(7) 115.54(19)

C(9)-C(10) 1.407(3) C(26)-H(26A) 0.9500 O(2)-C(2)-C(1) 109.66(19)

C(9)-H(9A) 0.9500 C(27)-C(28) 1.383(3) O(2)-C(2)-C(3) 108.8(2)

C(10)-C(11) 1.379(3) C(27)-H(27A) 0.9500 C(1)-C(2)-C(3) 109.66(19)

C(10)-H(10A) 0.9500 C(28)-H(28A) 0.9500 O(2)-C(2)-H(2A) 109.6

C(11)-O(11) 1.376(3) C(29)-O(29) 1.209(3) C(1)-C(2)-H(2A) 109.6

C(11)-C(12) 1.399(3) C(29)-C(30) 1.497(3) C(3)-C(2)-H(2A) 109.6

O(11)-C(14) 1.429(3) C(30)-H(30A) 0.9800 C(15)-O(2)-C(2) 115.4(2)

C(12)-C(13) 1.382(3) C(30)-H(30B) 0.9800 O(3)-C(3)-C(4) 106.63(19)

O(3)-C(3)-C(2) 112.33(18) C(3)-C(4)-H(4A) 109.9 O(6)-C(6)-C(5) 107.81(18)

C(4)-C(3)-C(2) 110.32(19) C(5)-C(4)-H(4A) 109.9 O(6)-C(6)-C(1) 109.60(19)

O(3)-C(3)-H(3A) 109.2 C(29)-O(4)-C(4) 117.86(19) C(5)-C(6)-C(1) 110.08(19)

C(4)-C(3)-H(3A) 109.2 O(5)-C(5)-C(6) 112.6(2) O(6)-C(6)-H(6A) 109.8

C(2)-C(3)-H(3A) 109.2 O(5)-C(5)-C(4) 105.63(19) C(5)-C(6)-H(6A) 109.8

C(3)-O(3)-C(22) 113.79(18) C(6)-C(5)-C(4) 110.44(18) C(1)-C(6)-H(6A) 109.8
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O(4)-C(4)-C(3) 107.36(18) O(5)-C(5)-H(5A) 109.4 C(6)-O(6)-C(34) 113.66(17)

O(4)-C(4)-C(5) 108.05(18) C(6)-C(5)-H(5A) 109.4 O(1)-C(7)-C(8) 106.5(2)

C(3)-C(4)-C(5) 111.8(2) C(4)-C(5)-H(5A) 109.4 O(1)-C(7)-H(7A) 110.4

O(4)-C(4)-H(4A) 109.9 C(5)-O(5)-C(31) 116.28(19) C(8)-C(7)-H(7A) 110.4

C(8)-C(9)-H(9A) 119.3 H(14A)-C(14)-H(14C) 109.5 O(1)-C(7)-H(7B) 110.4

C(10)-C(9)-H(9A) 119.3 H(14B)-C(14)-H(14C) 109.5 C(8)-C(7)-H(7B) 110.4

C(11)-C(10)-C(9) 118.9(2) O(2)-C(15)-C(16) 112.6(2) H(7A)-C(7)-H(7B) 108.6

C(11)-C(10)-H(10A) 120.5 O(2)-C(15)-H(15A) 109.1 C(9)-C(8)-C(13) 118.4(2)

C(9)-C(10)-H(10A) 120.5 C(16)-C(15)-H(15A) 109.1 C(9)-C(8)-C(7) 121.6(2)

O(11)-C(11)-C(10) 124.6(2) O(2)-C(15)-H(15B)1 109.1 C(13)-C(8)-C(7) 119.9(2)

O(11)-C(11)-C(12) 114.9(2) C(16)-C(15)-H(15B) 109.1 C(8)-C(9)-C(10) 121.4(2)

C(10)-C(11)-C(12) 120.5(2) H(15A)-C(15)-H(15B) 107.8 C(18)-C(19)-H(19A) 120.1

C(11)-O(11)-C(14) 115.98(19) C(21)-C(16)-C(17) 118.5(2) C(19)-C(20)-C(21) 120.2(2)

C(13)-C(12)-C(11) 119.1(2) C(21)-C(16)-C(15) 122.8(2) C(19)-C(20)-H(20A) 119.9

C(13)-C(12)-H(12A) 120.5 C(17)-C(16)-C(15) 118.7(2) C(21)-C(20)-H(20A) 119.9

C(11)-C(12)-H(12A) 120.5 C(18)-C(17)-C(16) 121.1(2) C(16)-C(21)-C(20) 120.7(2)

C(12)-C(13)-C(8) 121.7(2) C(18)-C(17)-H(17A) 119.4 C(16)-C(21)-H(21A) 119.6

C(12)-C(13)-H(13A) 119.2 C(16)-C(17)-H(17A) 119.4 C(20)-C(21)-H(21A) 119.6

C(8)-C(13)-H(13A) 119.2 C(19)-C(18)-C(17) 119.7(2) O(3)-C(22)-C(23) 108.0(2)

O(11)-C(14)-H(14A) 109.5 C(19)-C(18)-H(18A) 120.1 O(3)-C(22)-H(22A) 110.1

O(11)-C(14)-H(14B) 109.5 C(17)-C(18)-H(18A) 120.1 C(23)-C(22)-H(22A) 110.1
H(14A)-C(14)-

H(14B) 109.5 C(20)-C(19)-C(18) 119.7(2) O(3)-C(22)-H(22B) 110.1

O(11)-C(14)-H(14C) 109.5 C(20)-C(19)-H(19A) 120.1 C(23)-C(22)-H(22B) 110.1
H(22A)-C(22)-

H(22B) 108.4 C(26)-C(27)-H(27A) 119.9 C(32)-C(31)-H(31A) 109.7

C(24)-C(23)-C(28) 118.8(2) C(27)-C(28)-C(23) 120.4(2) O(5)-C(31)-H(31B) 109.7

C(24)-C(23)-C(22) 121.4(2) C(27)-C(28)-H(28A) 119.8 C(32)-C(31)-H(31B) 109.7

C(28)-C(23)-C(22) 119.8(2) C(23)-C(28)-H(28A) 119.8 H(31A)-C(31)-H(31B) 108.2

C(25)-C(24)-C(23) 120.9(3) O(29)-C(29)-O(4) 124.3(2) C(33)-C(32)-C(31) 126.2(2)

C(25)-C(24)-H(24A) 119.6 O(29)-C(29)-C(30) 125.2(2) C(33)-C(32)-H(32A) 116.9

C(23)-C(24)-H(24A) 119.6 O(4)-C(29)-C(30) 110.4(2) C(31)-C(32)-H(32A) 116.9

C(26)-C(25)-C(24) 119.9(2) C(29)-C(30)-H(30A) 109.5 C(32)-C(33)-H(33A) 120.0

C(26)-C(25)-H(25A) 120.1 C(29)-C(30)-H(30B) 109.5 C(32)-C(33)-H(33B) 120.0

C(24)-C(25)-H(25A) 120.1 H(30A)-C(30)-H(30B) 109.5 H(33A)-C(33)-H(33B) 120.0

C(25)-C(26)-C(27) 119.8(2) C(29)-C(30)-H(30C) 109.5 O(6)-C(34)-C(35) 110.46(19)

C(25)-C(26)-H(26A) 120.1 H(30A)-C(30)-H(30C) 109.5 O(6)-C(34)-H(34A) 109.6

C(27)-C(26)-H(26A) 120.1 H(30B)-C(30)-H(30C) 109.5 C(35)-C(34)-H(34A) 109.6

C(28)-C(27)-C(26) 120.2(3) O(5)-C(31)-C(32) 109.8(2) O(6)-C(34)-H(34B) 109.6

C(28)-C(27)-H(27A) 119.9 O(5)-C(31)-H(31A) 109.7 C(35)-C(34)-H(34B) 109.6
H(34A)-C(34)-

H(34B) 108.1 C(35)-C(36)-H(36A) 119.6 C(39)-C(38)-H(38A) 120.2

C(40)-C(35)-C(36) 118.9(2) C(36)-C(37)-C(38) 120.0(2) C(40)-C(39)-C(38) 120.1(3)

C(40)-C(35)-C(34) 123.0(2) C(36)-C(37)-H(37A) 120.0 C(40)-C(39)-H(39A) 120.0

C(36)-C(35)-C(34) 118.1(2) C(38)-C(37)-H(37A) 120.0 C(38)-C(39)-H(39A) 120.0

C(37)-C(36)-C(35) 120.8(2) C(37)-C(38)-C(39) 119.6(2) C(39)-C(40)-C(35) 120.6(2)

C(37)-C(36)-H(36A) 119.6 C(37)-C(38)-H(38A) 120.2 C(39)-C(40)-H(40A) 119.7
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Anisotropic displacement parameters (Å
2
x 10

3
) for 51. The anisotropic displacement factor

exponent takes the form: -2π
2
[h

2
a*

2
U

11
+ ... + 2 h k a* b* U

12
]

U
11

U
22

U
33

U
23

U
13

U
12

C(1) 21(1) 18(2) 23(1) -3(1) 5(1) -6(1)
O(1) 21(1) 21(1) 28(1) -1(1) 9(1) -4(1)
C(2) 21(1) 20(2) 19(1) -1(1) 2(1) 0(1)
O(2) 26(1) 23(1) 14(1) -1(1) 4(1) 0(1)
C(3) 14(1) 23(2) 19(1) -1(1) 1(1) -2(1)
O(3) 17(1) 19(1) 24(1) -2(1) -4(1) -2(1)
C(4) 17(1) 22(2) 14(1) -1(1) 4(1) -4(1)
O(4) 20(1) 23(1) 18(1) 0(1) 4(1) -7(1)
C(5) 22(1) 18(2) 17(1) 1(1) 1(1) -2(1)
O(5) 23(1) 22(1) 20(1) 3(1) -4(1) 0(1)
C(6) 14(1) 20(2) 18(1) -5(1) 0(1) -3(1)
O(6) 14(1) 31(1) 20(1) -3(1) 1(1) 0(1)
C(7) 19(1) 23(2) 36(2) 6(1) 4(1) 1(1)
C(8) 20(1) 14(2) 29(1) 3(1) 2(1) -2(1)
C(9) 25(1) 20(2) 25(1) 3(1) 1(1) -3(1)
C(10) 22(1) 22(2) 26(1) 1(1) 6(1) -2(1)
C(11) 18(1) 15(1) 29(1) -4(1) 5(1) -3(1)
O(11) 19(1) 29(1) 29(1) 5(1) 3(1) -3(1)
C(12) 24(1) 23(2) 21(1) 1(1) 1(1) -3(1)
C(13) 24(1) 20(2) 28(1) 2(1) 9(1) 0(1)
C(14) 23(1) 31(2) 39(2) 6(1) 8(1) -5(1)
C(15) 24(1) 34(2) 20(1) 6(1) 2(1) 5(1)
C(16) 20(1) 19(2) 20(1) -2(1) 2(1) -3(1)
C(17) 21(1) 25(2) 24(1) 2(1) 3(1) 4(1)
C(18) 32(1) 35(2) 21(1) 7(1) 7(1) 2(1)
C(19) 22(1) 32(2) 26(1) 1(1) 7(1) -1(1)
C(20) 18(1) 29(2) 28(1) 2(1) 0(1) 2(1)
C(21) 23(1) 26(2) 17(1) 3(1) 3(1) 1(1)
C(22) 19(1) 25(2) 26(1) -4(1) -2(1) 1(1)
C(23) 19(1) 15(1) 24(1) 5(1) -2(1) -1(1)
C(24) 25(1) 19(2) 32(1) 6(1) 4(1) 2(1)
C(25) 21(1) 32(2) 36(2) 5(1) -4(1) 3(1)
C(26) 22(1) 36(2) 33(2) 10(1) -8(1) -5(1)
C(27) 31(1) 34(2) 21(1) 2(1) 0(1) -7(1)
C(28) 20(1) 27(2) 28(1) 4(1) 3(1) -6(1)
C(29) 20(1) 22(2) 19(1) 4(1) -3(1) -5(1)
O(29) 33(1) 27(1) 28(1) -5(1) 6(1) -7(1)
C(30) 30(1) 34(2) 27(1) 6(1) 6(1) -11(1)
C(31) 24(1) 34(2) 23(1) 4(1) -6(1) -2(1)
C(32) 24(1) 37(2) 21(1) 7(1) -2(1) 7(1)
C(33) 32(2) 29(2) 26(1) 5(1) 3(1) 5(1)
C(34) 16(1) 28(2) 24(1) -2(1) 3(1) -1(1)
C(35) 22(1) 21(2) 22(1) 2(1) 1(1) -1(1)
C(36) 22(1) 26(2) 26(1) -1(1) 4(1) 0(1)
C(37) 20(1) 33(2) 39(2) 4(1) 4(1) 0(1)
C(38) 22(1) 33(2) 39(2) -1(1) -8(1) -3(1)
C(39) 32(2) 27(2) 25(1) -3(1) -4(1) -2(1)
C(40) 19(1) 26(2) 23(1) -2(1) 0(1) 1(1)
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Hydrogen coordinates (× 10
4
) and isotropic displacement parameters (Å

2
× 10

3
) for 51

x y z U(eq)
H(1A) 9306 -33 1878 25
H(2A) 10513 -194 2976 24
H(3A) 11095 1134 1871 22
H(4A) 10515 4626 2444 21
H(5A) 9627 2789 1066 23
H(6A) 8672 3443 2441 21
H(7A) 8831 -2329 3319 31
H(7B) 8862 -2454 2404 31
H(9A) 7347 -3423 3787 28
H(10A) 5620 -4137 3634 28
H(12A) 5423 -2258 1438 27
H(13A) 7141 -1661 1597 28
H(14A) 4150 -5381 3174 46
H(14B) 3133 -4367 2841 46
H(14C) 3939 -3337 3438 46
H(15A) 10835 1561 4487 31
H(15B) 10208 -105 4080 31
H(17A) 9918 363 5591 28
H(18A) 8596 959 6316 35
H(19A) 7211 2658 5780 32
H(20A) 7160 3757 4525 31
H(21A) 8469 3092 3791 26
H(22A) 12816 316 2429 29
H(22B) 12147 -274 3094 29
H(24A) 14529 153 2968 30
H(25A) 15839 1013 3893 36
H(26A) 15495 2652 4976 37
H(27A) 13834 3345 5150 35
H(28A) 12524 2489 4227 30
H(30A) 12386 8065 1056 45
H(30B) 12044 6316 542 45
H(30C) 12948 6152 1222 45
H(31A) 7837 5479 782 33
H(31B) 8590 4415 287 33
H(32A) 8233 7450 -239 33
H(33A) 9894 8183 817 35
H(33B) 9460 9440 73 35
H(34A) 6972 3993 2001 27
H(34B) 7024 1969 2354 27
H(36A) 5102 3010 2079 30
H(37A) 3633 2159 1322 36
H(38A) 3719 711 137 39
H(39A) 5286 254 -306 34
H(40A) 6754 1146 447 27

Torsion angles [°] for 51
C(2)-C(1)-O(1)-C(7) -85.9(3) C(4)-C(5)-C(6)-O(6) -175.12(19)
C(6)-C(1)-O(1)-C(7) 151.8(2) O(5)-C(5)-C(6)-C(1) -173.42(18)
O(1)-C(1)-C(2)-O(2) -57.4(3) C(4)-C(5)-C(6)-C(1) -55.6(3)
C(6)-C(1)-C(2)-O(2) 62.0(2) O(1)-C(1)-C(6)-O(6) -63.1(2)
O(1)-C(1)-C(2)-C(3) -176.7(2) C(2)-C(1)-C(6)-O(6) 175.36(18)
C(6)-C(1)-C(2)-C(3) -57.3(3) O(1)-C(1)-C(6)-C(5) 178.52(19)

C(1)-C(2)-O(2)-C(15) 106.6(2) C(2)-C(1)-C(6)-C(5) 56.9(2)
C(3)-C(2)-O(2)-C(15) -133.5(2) C(5)-C(6)-O(6)-C(34) -139.6(2)
O(2)-C(2)-C(3)-O(3) 55.7(3) C(1)-C(6)-O(6)-C(34) 100.6(2)
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C(1)-C(2)-C(3)-O(3) 175.6(2) C(1)-O(1)-C(7)-C(8) -136.1(2)
O(2)-C(2)-C(3)-C(4) -63.1(2) O(1)-C(7)-C(8)-C(9) -110.4(3)
C(1)-C(2)-C(3)-C(4) 56.8(3) O(1)-C(7)-C(8)-C(13) 64.8(3)

C(4)-C(3)-O(3)-C(22) -164.11(18) C(13)-C(8)-C(9)-C(10) 0.4(4)
C(2)-C(3)-O(3)-C(22) 74.9(2) C(7)-C(8)-C(9)-C(10) 175.7(2)
O(3)-C(3)-C(4)-O(4) 61.9(2) C(8)-C(9)-C(10)-C(11) -1.7(4)
C(2)-C(3)-C(4)-O(4) -175.86(18) C(9)-C(10)-C(11)-O(11) -177.7(2)
O(3)-C(3)-C(4)-C(5) -179.77(18) C(9)-C(10)-C(11)-C(12) 1.8(4)
C(2)-C(3)-C(4)-C(5) -57.5(2) C(10)-C(11)-O(11)-C(14) 1.4(4)

C(3)-C(4)-O(4)-C(29) -131.5(2) C(12)-C(11)-O(11)-C(14) -178.2(2)
C(5)-C(4)-O(4)-C(29) 107.8(2) O(11)-C(11)-C(12)-C(13) 178.8(2)
O(4)-C(4)-C(5)-O(5) -63.1(2) C(10)-C(11)-C(12)-C(13) -0.7(4)
C(3)-C(4)-C(5)-O(5) 179.00(18) C(11)-C(12)-C(13)-C(8) -0.6(4)
O(4)-C(4)-C(5)-C(6) 174.9(2) C(9)-C(8)-C(13)-C(12) 0.7(4)
C(3)-C(4)-C(5)-C(6) 57.0(3) C(7)-C(8)-C(13)-C(12) -174.6(2)

C(6)-C(5)-O(5)-C(31) -81.8(2) C(2)-O(2)-C(15)-C(16) -129.3(2)
C(4)-C(5)-O(5)-C(31) 157.55(19) O(2)-C(15)-C(16)-C(21) 9.0(4)
O(5)-C(5)-C(6)-O(6) 67.1(2) O(2)-C(15)-C(16)-C(17) -172.0(2)

C(21)-C(16)-C(17)-C(18) -0.2(4) C(24)-C(23)-C(28)-C(27) 0.0(4)
C(15)-C(16)-C(17)-C(18) -179.3(2) C(22)-C(23)-C(28)-C(27) -178.3(2)
C(16)-C(17)-C(18)-C(19) -0.3(4) C(4)-O(4)-C(29)-O(29) -1.1(3)
C(17)-C(18)-C(19)-C(20) 0.0(4) C(4)-O(4)-C(29)-C(30) 178.87(19)
C(18)-C(19)-C(20)-C(21) 0.8(4) C(5)-O(5)-C(31)-C(32) -148.6(2)
C(17)-C(16)-C(21)-C(20) 1.0(4) O(5)-C(31)-C(32)-C(33) 3.0(4)
C(15)-C(16)-C(21)-C(20) -179.9(2) C(6)-O(6)-C(34)-C(35) -174.7(2)
C(19)-C(20)-C(21)-C(16) -1.4(4) O(6)-C(34)-C(35)-C(40) 3.9(4)
C(3)-O(3)-C(22)-C(23) -167.30(19) O(6)-C(34)-C(35)-C(36) -178.8(2)
O(3)-C(22)-C(23)-C(24) -131.3(2) C(40)-C(35)-C(36)-C(37) 0.0(4)
O(3)-C(22)-C(23)-C(28) 47.0(3) C(34)-C(35)-C(36)-C(37) -177.4(3)
C(28)-C(23)-C(24)-C(25) 0.0(4) C(35)-C(36)-C(37)-C(38) 1.0(4)
C(22)-C(23)-C(24)-C(25) 178.2(2) C(36)-C(37)-C(38)-C(39) -1.5(4)
C(23)-C(24)-C(25)-C(26) -0.5(4) C(37)-C(38)-C(39)-C(40) 1.0(4)
C(24)-C(25)-C(26)-C(27) 1.0(4) C(38)-C(39)-C(40)-C(35) 0.0(4)
C(25)-C(26)-C(27)-C(28) -1.0(4) C(36)-C(35)-C(40)-C(39) -0.5(4)
C(26)-C(27)-C(28)-C(23) 0.5(4) C(34)-C(35)-C(40)-C(39) 176.8(3)
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(+)-1D-2,3,6-tris-O-Benzyl-myo-inositol 1,5-bis(dibenzylphosphate) 122

Crystal structure of compound 122.
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Crystal data and structure refinement for 122

Empirical formula C55H56O12P2
Theta range for data

collection 2.24 to 25.35°

Formula weight 970.94 Index ranges
-10<=h<=10, -
18<=k<=18, -

19<=l<=20
Temperature 93(2) K Reflections collected 22443

Wavelength 0.71073 Å Independent
reflections 8543 [R(int) = 0.0440]

Crystal system Monoclinic Completeness to
theta = 25.00° 97.1 %

Space group P2(1) Absorption correction Multiscan

Unit cell dimensions
a = 9.0930(13) Å α = 90°.
b = 15.335(2) Å β = 90.224(2)°.
c = 17.377(3) Å γ = 90°.

Max. and min.
transmission 1.0000 and 0.8454

Refinement method
Full-matrix least-

squares on F
2

Volume 2423.1(6) Å
3

Data / restraints /
parameters 8543 / 2 / 627

Z 2 Goodness-of-fit on F
2

0.987

Density (calculated) 1.331 Mg/m
3 Final R indices

[I>2sigma(I)]
R1 = 0.0300, wR2 =

0.0766

Absorption coefficient 0.155 mm-1 R indices (all data) R1 = 0.0305, wR2 =
0.0774

F(000) 1024 Absolute structure
parameter 0.03(4)

Crystal size
0.1500 x 0.1500 x 0.1500

mm
3

Largest diff. peak and
hole 0.175 and -0.218 e.Å-3

Atomic coordinates (× 10
4
) and equivalent isotropic displacement parameters (Å

2
× 10

3
) for

122.
U(eq) is defined as one third of the trace of the orthogonalized U

ij
tensor.

x y z U(eq)

P(1) -8428(1) -5979(1) -8383(1) 15(1)
O(1) -6857(1) -6104(1) -8014(1) 17(1)
C(1) -5693(2) -5471(1) -8139(1) 15(1)
O(2) -4022(1) -6536(1) -8684(1) 20(1)
C(2) -4749(2) -5731(1) -8830(1) 18(1)
O(3) -2635(1) -5174(1) -9561(1) 21(1)
C(3) -3585(2) -5021(1) -8934(1) 17(1)
O(4) -1584(1) -4264(1) -8296(1) 19(1)
C(4) -2607(2) -4951(1) -8218(1) 15(1)
P(5) -1968(1) -3921(1) -6457(1) 15(1)
O(5) -2620(1) -4782(1) -6834(1) 16(1)
C(5) -3550(2) -4763(1) -7512(1) 16(1)
O(6) -5622(1) -5257(1) -6754(1) 17(1)
C(6) -4743(2) -5452(1) -7407(1) 15(1)
O(7) -9435(1) -6512(1) -7825(1) 18(1)
C(7) -9643(2) -6181(1) -7046(1) 20(1)
C(8) -10731(2) -6751(1) -6637(1) 19(1)
C(9) -10665(2) -6814(1) -5840(1) 27(1)
C(10) -11676(2) -7317(1) -5445(1) 34(1)
C(11) -12766(2) -7757(1) -5843(1) 31(1)
C(12) -12840(2) -7694(1) -6638(1) 29(1)
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C(13) -11830(2) -7191(1) -7037(1) 23(1)
O(14) -8393(1) -6557(1) -9122(1) 20(1)
C(14) -9392(2) -6398(1) -9778(1) 25(1)
O(15) -8857(1) -5067(1) -8510(1) 20(1)
C(15) -8478(2) -6331(1) -10496(1) 21(1)
C(16) -7632(2) -5591(1) -10626(1) 25(1)
C(17) -6795(2) -5521(1) -11280(1) 30(1)
C(18) -6790(2) -6194(1) -11821(1) 31(1)
C(19) -7620(2) -6931(1) -11695(1) 31(1)
C(20) -8467(2) -7003(1) -11033(1) 26(1)
C(21) -4761(2) -7312(1) -8955(1) 22(1)
C(22) -4050(2) -7641(1) -9682(1) 20(1)
C(23) -2772(2) -8126(1) -9643(1) 23(1)
C(24) -2073(2) -8400(1) -10309(1) 28(1)
C(25) -2663(2) -8187(1) -11021(1) 31(1)
C(26) -3945(2) -7711(1) -11067(1) 34(1)
C(27) -4643(2) -7440(1) -10400(1) 27(1)
C(28) -3326(2) -5048(1) -10301(1) 27(1)
C(29) -2162(2) -4782(1) -10862(1) 21(1)
C(30) -1634(2) -3926(1) -10861(1) 26(1)
C(31) -567(2) -3669(1) -11376(1) 28(1)
C(32) 12(2) -4266(1) -11893(1) 28(1)
C(33) -506(2) -5113(1) -11902(1) 28(1)
C(34) -1587(2) -5370(1) -11389(1) 25(1)
O(35) -255(1) -3966(1) -6513(1) 20(1)
C(35) 524(2) -3542(1) -7150(1) 22(1)
C(36) 1565(2) -2857(1) -6860(1) 18(1)
C(37) 1061(2) -2016(1) -6712(1) 26(1)
C(38) 2043(2) -1371(1) -6484(1) 33(1)
C(39) 3513(2) -1563(1) -6403(1) 31(1)
C(40) 4034(2) -2392(1) -6544(1) 26(1)
C(41) 3049(2) -3042(1) -6777(1) 21(1)
O(42) -2107(1) -4106(1) -5571(1) 21(1)
C(42) -3559(2) -4146(2) -5245(1) 33(1)
O(43) -2656(1) -3119(1) -6743(1) 21(1)
C(43) -3464(2) -4020(1) -4391(1) 21(1)
C(44) -4515(2) -4409(1) -3928(1) 20(1)
C(45) -4465(2) -4293(1) -3134(1) 24(1)
C(46) -3377(2) -3788(1) -2802(1) 26(1)
C(47) -2336(2) -3391(1) -3262(1) 27(1)
C(48) -2373(2) -3504(1) -4056(1) 26(1)
C(49) -5649(2) -5964(1) -6219(1) 18(1)
C(50) -6622(2) -5759(1) -5544(1) 17(1)
C(51) -6627(2) -6343(1) -4925(1) 21(1)
C(52) -7501(2) -6191(1) -4290(1) 25(1)
C(53) -8390(2) -5452(1) -4258(1) 25(1)
C(54) -8411(2) -4880(1) -4875(1) 23(1)
C(55) -7525(2) -5029(1) -5516(1) 19(1)
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Bond lengths [Å] and angles [°] for 122

P(1)-O(15) 1.4689(12) C(22)-C(23) 1.381(2) O(15)-P(1)-O(1) 114.67(6)

P(1)-O(14) 1.5611(11) C(22)-C(27) 1.392(2) O(14)-P(1)-O(1) 104.14(6)

P(1)-O(7) 1.5668(11) C(23)-C(24) 1.389(2) O(7)-P(1)-O(1) 102.48(6)

P(1)-O(1) 1.5750(11) C(24)-C(25) 1.385(3) C(1)-O(1)-P(1) 121.18(9)

O(1)-C(1) 1.4531(18) C(25)-C(26) 1.378(3) O(1)-C(1)-C(2) 110.70(12)

C(1)-C(2) 1.532(2) C(26)-C(27) 1.387(3) O(1)-C(1)-C(6) 107.29(11)

C(1)-C(6) 1.534(2) C(28)-C(29) 1.499(2) C(2)-C(1)-C(6) 109.82(12)

O(2)-C(2) 1.4236(19) C(29)-C(34) 1.389(2) C(2)-O(2)-C(21) 116.21(11)

O(2)-C(21) 1.4449(19) C(29)-C(30) 1.398(3) O(2)-C(2)-C(1) 110.32(12)

C(2)-C(3) 1.530(2) C(30)-C(31) 1.380(3) O(2)-C(2)-C(3) 108.55(12)

O(3)-C(3) 1.4112(18) C(31)-C(32) 1.387(3) C(1)-C(2)-C(3) 107.34(12)

O(3)-C(28) 1.4418(18) C(32)-C(33) 1.382(3) C(3)-O(3)-C(28) 113.59(12)

C(3)-C(4) 1.531(2) C(33)-C(34) 1.386(3) O(3)-C(3)-C(4) 106.45(12)

O(4)-C(4) 1.4121(18) O(35)-C(35) 1.4691(19) O(3)-C(3)-C(2) 113.51(12)

C(4)-C(5) 1.528(2) C(35)-C(36) 1.500(2) C(4)-C(3)-C(2) 110.65(12)

P(5)-O(43) 1.4657(11) C(36)-C(41) 1.386(2) O(4)-C(4)-C(5) 107.92(12)

P(5)-O(35) 1.5625(12) C(36)-C(37) 1.393(2) O(4)-C(4)-C(3) 110.79(12)

P(5)-O(42) 1.5707(11) C(37)-C(38) 1.389(3) C(5)-C(4)-C(3) 109.90(12)

P(5)-O(5) 1.5879(11) C(38)-C(39) 1.375(3) O(43)-P(5)-O(35) 116.19(7)

O(5)-C(5) 1.4470(17) C(39)-C(40) 1.378(3) O(43)-P(5)-O(42) 116.64(6)

C(5)-C(6) 1.526(2) C(40)-C(41) 1.400(2) O(35)-P(5)-O(42) 97.85(6)

O(6)-C(6) 1.4218(18) O(42)-C(42) 1.441(2) O(43)-P(5)-O(5) 113.53(6)

O(6)-C(49) 1.4295(18) C(42)-C(43) 1.499(2) O(35)-P(5)-O(5) 107.94(6)

O(7)-C(7) 1.4589(18) C(43)-C(44) 1.386(2) O(42)-P(5)-O(5) 102.83(6)

C(7)-C(8) 1.501(2) C(43)-C(48) 1.394(2) C(5)-O(5)-P(5) 122.37(9)

C(8)-C(13) 1.389(2) C(44)-C(45) 1.392(2) O(5)-C(5)-C(6) 107.63(12)

C(8)-C(9) 1.390(2) C(45)-C(46) 1.381(3) O(5)-C(5)-C(4) 108.82(12)

C(9)-C(10) 1.384(3) C(46)-C(47) 1.383(3) C(6)-C(5)-C(4) 111.52(12)

C(10)-C(11) 1.382(3) C(47)-C(48) 1.390(2) C(6)-O(6)-C(49) 111.76(11)

C(11)-C(12) 1.387(3) C(49)-C(50) 1.505(2) O(6)-C(6)-C(5) 110.60(11)

C(12)-C(13) 1.387(2) C(50)-C(55) 1.390(2) O(6)-C(6)-C(1) 110.39(12)

O(14)-C(14) 1.4763(19) C(50)-C(51) 1.400(2) C(5)-C(6)-C(1) 108.24(12)

C(14)-C(15) 1.505(2) C(51)-C(52) 1.383(2) C(7)-O(7)-P(1) 118.05(9)

C(15)-C(16) 1.390(2) C(52)-C(53) 1.393(3) O(7)-C(7)-C(8) 108.88(12)

C(15)-C(20) 1.390(2) C(53)-C(54) 1.386(2) C(13)-C(8)-C(9) 119.52(15)

C(16)-C(17) 1.375(3) C(54)-C(55) 1.396(2) C(13)-C(8)-C(7) 121.38(14)

C(17)-C(18) 1.395(3) O(15)-P(1)-O(14) 115.07(6) C(9)-C(8)-C(7) 119.05(14)

C(18)-C(19) 1.378(3) O(15)-P(1)-O(7) 115.75(6) C(10)-C(9)-C(8) 120.42(16)

C(19)-C(20) 1.392(3) O(14)-P(1)-O(7) 103.07(6) C(11)-C(10)-C(9) 120.08(18)

C(21)-C(22) 1.507(2) C(38)-C(39)-C(40) 120.89(16) C(26)-C(27)-C(22) 120.43(17)

C(10)-C(11)-C(12) 119.75(16) C(39)-C(40)-C(41) 119.22(16) O(3)-C(28)-C(29) 108.13(13)

C(13)-C(12)-C(11) 120.39(17) C(36)-C(41)-C(40) 120.42(15) C(34)-C(29)-C(30) 118.71(16)

C(12)-C(13)-C(8) 119.84(16) C(42)-O(42)-P(5) 118.07(10) C(34)-C(29)-C(28) 121.35(16)
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C(14)-O(14)-P(1) 121.86(10) O(42)-C(42)-C(43) 109.53(13) C(30)-C(29)-C(28) 119.94(16)

O(14)-C(14)-C(15) 108.12(13) C(44)-C(43)-C(48) 119.56(14) C(31)-C(30)-C(29) 120.63(17)

C(16)-C(15)-C(20) 119.38(16) C(44)-C(43)-C(42) 118.76(14) C(30)-C(31)-C(32) 120.06(17)

C(16)-C(15)-C(14) 119.93(15) C(48)-C(43)-C(42) 121.65(15) C(33)-C(32)-C(31) 119.82(16)

C(20)-C(15)-C(14) 120.68(15) C(43)-C(44)-C(45) 120.00(15) C(32)-C(33)-C(34) 120.14(16)

C(17)-C(16)-C(15) 120.48(16) C(46)-C(45)-C(44) 120.42(16) C(33)-C(34)-C(29) 120.62(16)

C(16)-C(17)-C(18) 120.13(18) C(47)-C(46)-C(45) 119.73(15) C(35)-O(35)-P(5) 120.68(10)

C(19)-C(18)-C(17) 119.81(17) C(46)-C(47)-C(48) 120.34(16) O(35)-C(35)-C(36) 111.28(12)

C(18)-C(19)-C(20) 120.09(16) C(47)-C(48)-C(43) 119.93(16) C(41)-C(36)-C(37) 119.43(15)

C(15)-C(20)-C(19) 120.12(17) O(6)-C(49)-C(50) 111.11(12) C(41)-C(36)-C(35) 120.31(14)

O(2)-C(21)-C(22) 110.45(13) C(55)-C(50)-C(51) 119.00(15) C(37)-C(36)-C(35) 120.17(15)

C(23)-C(22)-C(27) 119.08(15) C(55)-C(50)-C(49) 123.04(14) C(38)-C(37)-C(36) 119.97(16)

C(23)-C(22)-C(21) 120.12(15) C(51)-C(50)-C(49) 117.95(14) C(39)-C(38)-C(37) 120.07(17)

C(27)-C(22)-C(21) 120.76(15) C(52)-C(51)-C(50) 120.63(15) C(50)-C(55)-C(54) 120.19(15)

C(22)-C(23)-C(24) 120.63(16) C(51)-C(52)-C(53) 120.24(15) C(26)-C(25)-C(24) 120.14(17)

C(25)-C(24)-C(23) 119.76(16) C(54)-C(53)-C(52) 119.44(15) C(25)-C(26)-C(27) 119.95(17)

C(53)-C(54)-C(55) 120.47(16)

Anisotropic displacement parameters (Å
2
× 10

3
) for 122. The anisotropic displacement factor

exponent takes the form: -2π
2
[h

2
a*

2
U

11
+ ... + 2 h k a* b* U

12
]

U11 U22 U33 U23 U13 U12

P(1) 13(1) 17(1) 15(1) -2(1) 0(1) -1(1)
O(1) 14(1) 18(1) 18(1) 0(1) 0(1) -2(1)
C(1) 14(1) 16(1) 16(1) 0(1) 1(1) -2(1)
O(2) 19(1) 20(1) 22(1) -6(1) -2(1) 2(1)
C(2) 17(1) 22(1) 15(1) -3(1) -1(1) 2(1)
O(3) 16(1) 36(1) 11(1) 0(1) 0(1) 1(1)
C(3) 15(1) 23(1) 14(1) -1(1) 0(1) 1(1)
O(4) 15(1) 21(1) 21(1) -1(1) 1(1) -3(1)
C(4) 14(1) 18(1) 14(1) -2(1) -1(1) -2(1)
P(5) 15(1) 16(1) 13(1) -1(1) 0(1) -1(1)
O(5) 18(1) 17(1) 14(1) 1(1) -3(1) -2(1)
C(5) 16(1) 19(1) 13(1) 0(1) -3(1) 4(1)
O(6) 20(1) 17(1) 14(1) 1(1) 3(1) 1(1)
C(6) 16(1) 17(1) 13(1) -1(1) 0(1) 1(1)
O(7) 18(1) 20(1) 17(1) -3(1) 2(1) -4(1)
C(7) 22(1) 22(1) 17(1) -6(1) 2(1) -4(1)
C(8) 19(1) 17(1) 21(1) 0(1) 3(1) 1(1)
C(9) 28(1) 31(1) 21(1) 0(1) 1(1) -5(1)
C(10) 39(1) 37(1) 26(1) 6(1) 8(1) -4(1)
C(11) 30(1) 24(1) 38(1) 8(1) 13(1) -3(1)
C(12) 23(1) 24(1) 40(1) 3(1) 2(1) -7(1)
C(13) 20(1) 22(1) 26(1) 0(1) -1(1) -2(1)
O(14) 20(1) 25(1) 16(1) -3(1) -2(1) 1(1)
C(14) 19(1) 37(1) 18(1) -6(1) -3(1) -1(1)
O(15) 15(1) 20(1) 24(1) 0(1) 1(1) -1(1)
C(15) 19(1) 27(1) 17(1) -1(1) -5(1) 3(1)
C(16) 27(1) 23(1) 25(1) -3(1) -7(1) 2(1)
C(17) 30(1) 32(1) 28(1) 8(1) -7(1) -3(1)
C(18) 28(1) 46(1) 20(1) 3(1) 1(1) 3(1)
C(19) 32(1) 38(1) 21(1) -9(1) -6(1) 5(1)
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C(20) 27(1) 27(1) 23(1) -4(1) -6(1) -2(1)
C(21) 22(1) 21(1) 24(1) -6(1) 3(1) -3(1)
C(22) 22(1) 16(1) 23(1) -4(1) 0(1) -2(1)
C(23) 28(1) 21(1) 22(1) -1(1) -1(1) 1(1)
C(24) 26(1) 21(1) 36(1) -5(1) 7(1) 4(1)
C(25) 42(1) 24(1) 27(1) -7(1) 11(1) 0(1)
C(26) 47(1) 32(1) 22(1) -4(1) -5(1) 7(1)
C(27) 28(1) 26(1) 26(1) -6(1) -4(1) 8(1)
C(28) 21(1) 48(1) 13(1) 2(1) -5(1) -5(1)
C(29) 19(1) 32(1) 13(1) 3(1) -5(1) -2(1)
C(30) 26(1) 31(1) 21(1) -4(1) -5(1) 2(1)
C(31) 27(1) 28(1) 30(1) 6(1) -6(1) -4(1)
C(32) 20(1) 40(1) 23(1) 11(1) 1(1) 0(1)
C(33) 26(1) 37(1) 21(1) -1(1) 0(1) 7(1)
C(34) 30(1) 24(1) 21(1) 1(1) -2(1) -3(1)
O(35) 18(1) 22(1) 21(1) 2(1) 0(1) -3(1)
C(35) 21(1) 25(1) 19(1) -3(1) 4(1) -8(1)
C(36) 19(1) 19(1) 15(1) -1(1) 1(1) -2(1)
C(37) 18(1) 25(1) 35(1) -3(1) -4(1) 3(1)
C(38) 32(1) 17(1) 50(1) -5(1) -10(1) 3(1)
C(39) 27(1) 22(1) 44(1) 1(1) -8(1) -8(1)
C(40) 17(1) 26(1) 34(1) 4(1) -3(1) -3(1)
C(41) 21(1) 18(1) 23(1) 1(1) 1(1) 1(1)
O(42) 19(1) 29(1) 14(1) -1(1) -2(1) -3(1)
C(42) 23(1) 60(1) 16(1) -2(1) 3(1) -14(1)
O(43) 24(1) 19(1) 21(1) -1(1) -1(1) 2(1)
C(43) 24(1) 26(1) 15(1) 0(1) -2(1) -2(1)
C(44) 23(1) 19(1) 20(1) 1(1) 0(1) 2(1)
C(45) 28(1) 26(1) 19(1) 7(1) 5(1) 5(1)
C(46) 32(1) 34(1) 14(1) -1(1) 0(1) 7(1)
C(47) 34(1) 27(1) 21(1) -4(1) -8(1) -2(1)
C(48) 28(1) 31(1) 19(1) 2(1) -1(1) -8(1)
C(49) 21(1) 17(1) 17(1) 1(1) 0(1) 1(1)
C(50) 16(1) 20(1) 14(1) -1(1) -2(1) -3(1)
C(51) 21(1) 20(1) 23(1) 4(1) -2(1) -1(1)
C(52) 28(1) 28(1) 19(1) 7(1) 1(1) -5(1)
C(53) 25(1) 32(1) 18(1) -2(1) 5(1) -6(1)
C(54) 21(1) 25(1) 24(1) -2(1) 2(1) -1(1)
C(55) 21(1) 19(1) 18(1) 1(1) -1(1) 0(1)

Hydrogen coordinates (× 10
4
) and isotropic displacement parameters (Å

2
× 10

3
) for 122

x y z U(eq)
H(1A) -6132 -4881 -8229 18
H(2A) -5373 -5778 -9303 21
H(3A) -4093 -4450 -9016 21
H(4O) -617(11) -4456(15) -8472(12) 38(6)
H(4A) -2067 -5513 -8141 18
H(5A) -4013 -4175 -7564 19
H(6A) -4271 -6035 -7334 18
H(7A) -10012 -5574 -7066 24
H(7B) -8693 -6183 -6765 24
H(9A) -9921 -6509 -5564 32
H(10A) -11620 -7360 -4901 41
H(11A) -13462 -8101 -5572 37
H(12A) -13588 -7998 -6912 35
H(13A) -11889 -7147 -7581 27
H(14A) -9948 -5851 -9698 29
H(14B) -10104 -6884 -9828 29
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H(16A) -7631 -5131 -10260 30
H(17A) -6220 -5012 -11365 36
H(18A) -6215 -6143 -12274 38
H(19A) -7616 -7391 -12061 37
H(20A) -9038 -7512 -10947 31
H(21A) -5809 -7179 -9057 27
H(21B) -4713 -7770 -8554 27
H(23A) -2367 -8272 -9155 28
H(24A) -1193 -8732 -10277 33
H(25A) -2183 -8370 -11478 37
H(26A) -4352 -7569 -11556 41
H(27A) -5531 -7116 -10434 32
H(28A) -4090 -4591 -10266 33
H(28B) -3799 -5597 -10472 33
H(30A) -2013 -3517 -10502 31
H(31A) -229 -3083 -11377 34
H(32A) 763 -4093 -12239 33
H(33A) -121 -5520 -12260 34
H(34A) -1937 -5953 -11397 30
H(35A) -200 -3271 -7503 26
H(35B) 1080 -3985 -7443 26
H(37A) 45 -1883 -6766 31
H(38A) 1700 -797 -6385 40
H(39A) 4178 -1118 -6248 37
H(40A) 5050 -2520 -6483 31
H(41A) 3399 -3613 -6880 25
H(42A) -4012 -4718 -5361 40
H(42B) -4185 -3685 -5475 40
H(44A) -5269 -4755 -4153 24
H(45A) -5183 -4564 -2818 29
H(46A) -3344 -3714 -2259 32
H(47A) -1593 -3039 -3035 33
H(48A) -1656 -3229 -4370 31
H(49A) -4637 -6081 -6033 22
H(49B) -6014 -6495 -6480 22
H(51A) -6024 -6848 -4942 26
H(52A) -7496 -6592 -3873 30
H(53A) -8976 -5342 -3818 30
H(54A) -9033 -4382 -4862 28
H(55A) -7540 -4630 -5934 23

Torsion angles [°] for 122
O(15)-P(1)-O(1)-C(1) -28.76(12) C(18)-C(19)-C(20)-C(15) 0.1(3)
O(14)-P(1)-O(1)-C(1) 97.86(11) C(2)-O(2)-C(21)-C(22) 102.83(15)
O(7)-P(1)-O(1)-C(1) -155.01(10) O(2)-C(21)-C(22)-C(23) 80.15(18)
P(1)-O(1)-C(1)-C(2) -92.86(13) O(2)-C(21)-C(22)-C(27) -97.85(18)
P(1)-O(1)-C(1)-C(6) 147.33(10) C(27)-C(22)-C(23)-C(24) 0.9(3)

C(21)-O(2)-C(2)-C(1) 93.83(14) C(21)-C(22)-C(23)-C(24) -177.19(15)
C(21)-O(2)-C(2)-C(3) -148.81(12) C(22)-C(23)-C(24)-C(25) -0.1(3)
O(1)-C(1)-C(2)-O(2) -63.48(15) C(23)-C(24)-C(25)-C(26) -0.5(3)
C(6)-C(1)-C(2)-O(2) 54.80(15) C(24)-C(25)-C(26)-C(27) 0.3(3)
O(1)-C(1)-C(2)-C(3) 178.42(11) C(25)-C(26)-C(27)-C(22) 0.4(3)
C(6)-C(1)-C(2)-C(3) -63.30(15) C(23)-C(22)-C(27)-C(26) -1.0(3)

C(28)-O(3)-C(3)-C(4) -165.88(13) C(21)-C(22)-C(27)-C(26) 177.00(16)
C(28)-O(3)-C(3)-C(2) 72.15(17) C(3)-O(3)-C(28)-C(29) 151.76(14)
O(2)-C(2)-C(3)-O(3) 61.21(15) O(3)-C(28)-C(29)-C(34) 102.50(18)
C(1)-C(2)-C(3)-O(3) -179.55(11) O(3)-C(28)-C(29)-C(30) -77.39(19)
O(2)-C(2)-C(3)-C(4) -58.39(15) C(34)-C(29)-C(30)-C(31) 0.4(2)
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C(1)-C(2)-C(3)-C(4) 60.86(15) C(28)-C(29)-C(30)-C(31) -179.75(14)
O(3)-C(3)-C(4)-O(4) 59.49(15) C(29)-C(30)-C(31)-C(32) -1.2(2)
C(2)-C(3)-C(4)-O(4) -176.75(12) C(30)-C(31)-C(32)-C(33) 1.5(3)
O(3)-C(3)-C(4)-C(5) 178.67(12) C(31)-C(32)-C(33)-C(34) -1.0(3)
C(2)-C(3)-C(4)-C(5) -57.57(16) C(32)-C(33)-C(34)-C(29) 0.1(3)

O(43)-P(5)-O(5)-C(5) 13.32(13) C(30)-C(29)-C(34)-C(33) 0.2(2)
O(35)-P(5)-O(5)-C(5) -116.99(11) C(28)-C(29)-C(34)-C(33) -179.70(15)
O(42)-P(5)-O(5)-C(5) 140.25(11) O(43)-P(5)-O(35)-C(35) -33.11(13)
P(5)-O(5)-C(5)-C(6) -141.40(10) O(42)-P(5)-O(35)-C(35) -158.02(11)
P(5)-O(5)-C(5)-C(4) 97.60(13) O(5)-P(5)-O(35)-C(35) 95.70(11)
O(4)-C(4)-C(5)-O(5) -64.37(15) P(5)-O(35)-C(35)-C(36) 119.15(13)
C(3)-C(4)-C(5)-O(5) 174.71(12) O(35)-C(35)-C(36)-C(41) 98.57(17)
O(4)-C(4)-C(5)-C(6) 177.05(11) O(35)-C(35)-C(36)-C(37) -84.93(19)
C(3)-C(4)-C(5)-C(6) 56.13(16) C(41)-C(36)-C(37)-C(38) 0.1(3)

C(49)-O(6)-C(6)-C(5) -124.00(13) C(35)-C(36)-C(37)-C(38) -176.44(17)
C(49)-O(6)-C(6)-C(1) 116.24(13) C(36)-C(37)-C(38)-C(39) -0.2(3)
O(5)-C(5)-C(6)-O(6) 61.66(15) C(37)-C(38)-C(39)-C(40) -0.1(3)
C(4)-C(5)-C(6)-O(6) -179.05(11) C(38)-C(39)-C(40)-C(41) 0.5(3)
O(5)-C(5)-C(6)-C(1) -177.28(11) C(37)-C(36)-C(41)-C(40) 0.3(2)
C(4)-C(5)-C(6)-C(1) -58.00(15) C(35)-C(36)-C(41)-C(40) 176.79(15)
O(1)-C(1)-C(6)-O(6) -56.52(15) C(39)-C(40)-C(41)-C(36) -0.6(3)
C(2)-C(1)-C(6)-O(6) -176.90(11) O(43)-P(5)-O(42)-C(42) 56.67(14)
O(1)-C(1)-C(6)-C(5) -177.70(11) O(35)-P(5)-O(42)-C(42) -178.75(13)
C(2)-C(1)-C(6)-C(5) 61.92(15) O(5)-P(5)-O(42)-C(42) -68.24(13)

O(15)-P(1)-O(7)-C(7) -57.06(12) P(5)-O(42)-C(42)-C(43) -160.74(12)
O(14)-P(1)-O(7)-C(7) 176.43(10) O(42)-C(42)-C(43)-C(44) -150.70(15)
O(1)-P(1)-O(7)-C(7) 68.48(11) O(42)-C(42)-C(43)-C(48) 31.1(2)
P(1)-O(7)-C(7)-C(8) 175.62(10) C(48)-C(43)-C(44)-C(45) -0.9(2)

O(7)-C(7)-C(8)-C(13) -29.1(2) C(42)-C(43)-C(44)-C(45) -179.10(16)
O(7)-C(7)-C(8)-C(9) 153.24(14) C(43)-C(44)-C(45)-C(46) 0.3(2)

C(13)-C(8)-C(9)-C(10) 0.7(3) C(44)-C(45)-C(46)-C(47) 0.4(3)
C(7)-C(8)-C(9)-C(10) 178.36(16) C(45)-C(46)-C(47)-C(48) -0.6(3)
C(8)-C(9)-C(10)-C(11) -0.4(3) C(46)-C(47)-C(48)-C(43) 0.0(3)
C(9)-C(10)-C(11)-C(12) 0.2(3) C(44)-C(43)-C(48)-C(47) 0.7(3)
C(10)-C(11)-C(12)-C(13) -0.2(3) C(42)-C(43)-C(48)-C(47) 178.87(17)
C(11)-C(12)-C(13)-C(8) 0.4(3) C(6)-O(6)-C(49)-C(50) -178.16(11)
C(9)-C(8)-C(13)-C(12) -0.7(3) O(6)-C(49)-C(50)-C(55) 8.5(2)
C(7)-C(8)-C(13)-C(12) -178.29(15) O(6)-C(49)-C(50)-C(51) -172.57(13)

O(15)-P(1)-O(14)-C(14) -31.02(14) C(55)-C(50)-C(51)-C(52) -0.9(2)
O(7)-P(1)-O(14)-C(14) 95.92(12) C(49)-C(50)-C(51)-C(52) -179.83(15)
O(1)-P(1)-O(14)-C(14) -157.38(12) C(50)-C(51)-C(52)-C(53) 0.0(2)
P(1)-O(14)-C(14)-C(15) 127.49(12) C(51)-C(52)-C(53)-C(54) 1.2(3)

O(14)-C(14)-C(15)-C(16) -73.47(19) C(52)-C(53)-C(54)-C(55) -1.5(2)
O(14)-C(14)-C(15)-C(20) 106.48(17) C(51)-C(50)-C(55)-C(54) 0.6(2)
C(20)-C(15)-C(16)-C(17) 0.3(2) C(49)-C(50)-C(55)-C(54) 179.48(15)
C(14)-C(15)-C(16)-C(17) -179.75(15) C(53)-C(54)-C(55)-C(50) 0.6(2)
C(15)-C(16)-C(17)-C(18) 0.0(3) C(16)-C(15)-C(20)-C(19) -0.3(2)
C(16)-C(17)-C(18)-C(19) -0.2(3) C(14)-C(15)-C(20)-C(19) 179.73(15)
C(17)-C(18)-C(19)-C(20) 0.2(3)

Hydrogen bonds for 122 [Å and °]

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

O(4)-H(4O)...O(15)#1 0.977(3) 1.855(8) 2.7939(16) 160(2)

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z


