
J. Fluid Mech. (2002), vol. 469, pp. 287–315. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112002001854 Printed in the United Kingdom

287

The merger of vertically offset
quasi-geostrophic vortices

By J. N. R E I N A U D AND D. G. D R I T S C H E L
Mathematical Institute, University of St Andrews, North Haugh, St Andrews, KY16 9SS, Scotland

(Received 7 February 2002 and in revised form 16 May 2002)

We examine the critical merging distance between two equal-volume, equal-potential-
vorticity quasi-geostrophic vortices. We focus on how this distance depends on the
vertical offset between the two vortices, each having a unit mean height-to-width
aspect ratio. The vertical direction is special in the quasi-geostrophic model (used to
capture the leading-order dynamical features of stably stratified and rapidly rotating
geophysical flows) since vertical advection is absent. Nevertheless vortex merger may
still occur by horizontal advection.

In this paper, we first investigate the equilibrium states for the two vortices as a
function of their vertical and horizontal separation. We examine their basic properties
together with their linear stability. These findings are next compared to numerical
simulations of the nonlinear evolution of two spheres of potential vorticity. Three
different regimes of interaction are identified, depending on the vertical offset. For
a small offset, the interaction differs little from the case when the two vortices are
horizontally aligned. On the other hand, when the vertical offset is comparable to
the mean vortex radius, strong interaction occurs for greater horizontal gaps than
in the horizontally aligned case, and therefore at significantly greater full separation
distances. This perhaps surprising result is consistent with the linear stability analysis
and appears to be a consequence of the anisotropy of the quasi-geostrophic equations.
Finally, for large vertical offsets, vortex merger results in the formation of a meta-
stable tilted dumbbell vortex.

1. Introduction
Stably stratified, rapidly rotating turbulence, as commonly found in the atmosphere

and the oceans, is largely governed by the interaction between coherent vortical
structures (see for example McWilliams 1990; Dritschel & de la Torre Juárez 1999;
Koudella, Dritschel & McMullan 2002; Reinaud, Dritschel & Koudella 2003). Some
aspects of the behaviour of these complex flows may be understood by studying
how vortices interact. Indeed, it is principally through such interactions that these
flows evolve. Similar statements, previously made in the context of two-dimensional
turbulence, led numerous authors to focus on one aspect of vortex interactions: vortex
merger, see Dritschel (1995) and references therein. Vortex merger has been thought
to be responsible for the physical or vortical-space ‘inverse energy cascade’, i.e. energy
flowing from small scales to large ones, as commonly observed in the spectral space
statistics. One of the best-known results is that two identical uniform-vorticity circular
vortices will merge if their separation distance is less than 3.3 times their initial radius
(see Waugh 1992 and references therein).

Vortex merger has since been examined in more realistic, albeit more complicated
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geophysical flow models, most commonly in the ‘quasi-geostrophic’ model (Polvani,
Zabusky & Flierl 1989; Verron, Hopfinger & McWilliams 1990; von Hardenberg et
al. 2000; Dritschel 2002). The quasi-geostrophic (QG) model is based on approximate
hydrostatic and geostrophic balance, yet contains the main vortex-dynamical features
of stably stratified and rapidly rotating flows. Under the QG approximation and
neglecting diabatic and frictional effects, such flows are fully described by the spatial
distribution of the materially conserved potential vorticity, hereinafter referred to
as PV, from which the velocity field is obtained by a simple linear inversion relation.
Notably the vertical component of the velocity field is negligible, rendering the motion
‘layerwise two-dimensional’.

Early computations examined vortex interactions in two-layer QG flows (Polvani et
al. 1989; Verron et al. 1990). However, two-layer flows cannot account for important
dynamical features found in continuously stratified QG flows, in particular vortex
merger (Dritschel 2002). More recently, simulations of vortex merger in continuously
stratified flows have been carried out by von Hardenberg et al. (2000) and Dritschel
(2002). These authors considered the interaction of two identical PV ellipsoids, centred
initially on the same vertical plane. As in the original two-dimensional problem, these
authors sought to determine the critical horizontal separation distance below which
the two vortices merge or otherwise strongly interact. Now however the problem
depends on the initial vortex height-to-width aspect ratio. The limit where this aspect
ratio is taken to infinity was thought to be relevant to the two-dimensional merger
problem, according to the two-layer results (Verron et al. 1990; von Hardenberg
et al. 2000). However, Dritschel (2002) showed that no such two-dimensional limit
exists for continuously stratified unbounded flows. Instead, the vortices break down
baroclinically, or three-dimensionally, with merger occurring over a relatively small
vertical range between the two original vortices. This result appears to be related
to the ‘tall-column’ instability (Dritschel & de la Torre Juárez 1996), which results
in the breakdown of vortex columns of sufficiently great height-to-width aspect
ratio.

These studies were restricted to horizontally aligned vortices. In complex flows,
such as turbulence, the location of vortices is likely to be random and therefore little
can be drawn from these studies about vortex interactions in general.

In this paper, we go a step further by additionally considering a vertical offset
between two identical uniform-PV vortices. We aim to determine the critical merging
distance as a function of both the horizontal and vertical offsets. Note that, in the
QG model, the flow is constrained to horizontal layerwise motion, and thus only the
PV at equal height can merge; vortices that are vertically separated (do not share
any common vertical level) cannot merge. A vertical offset between the two vortices
is therefore expected to be significant.

Here we take two approaches. In the first, co-rotating equilibrium states are gener-
ated numerically. These states are then analysed for their linear stability. Instability
is here associated with merger or a strong interaction. In the second approach, we
simply take two identical vortex spheres, which are not in mutual equilibrium, and
study their nonlinear interaction by direct numerical simulation.

Recently, Reinaud et al. (2002) showed that vortices with a height-to-width aspect
ratio slightly less than unity (around 0.8) are statistically most likely to be found in
quasi-geostrophic turbulence, in a coordinate system stretched in the vertical by the
ratio of the buoyancy frequency to the Coriolis frequency. For the sake of simplicity,
we limit our investigation to vortices that have a unit height-to-width aspect ratio.
Moreover we will focus on equal-volume vortices. The full vortex interaction problem
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depends on the vortex aspect ratios, volume ratio, and the horizontal and vertical
separation – five parameters even for equal, uniform PV!

The paper is organized as follows. Section 2 briefly reviews the quasi-geostrophic
model. In § 3, the equilibrium states for two unit height-to-width aspect ratio vortices
are discussed, including the method used to generate them. Section 4 presents the
linear stability analysis of these vortices, and § 5 addresses the numerical simulation
results for the nonlinear interaction of two spheres of PV. Our conclusions are given
in § 6.

2. The quasi-geostrophic equations
The quasi-geostrophic equations are obtained from an asymptotic expansion of

Euler’s equations for ε = H/L� 1, where H and L are the characteristic vertical and
horizontal length scales, and for Fr2 � Ro � 1 where Fr and Ro are respectively
the Froude and Rossby numbers, see e.g. Gill (1982) for a complete discussion. We
denote the Coriolis frequency by f, and the buoyancy frequency by N. Following von
Hardenberg et al. (2000), Dritschel (2002), and many previous studies, we take both
f and N to be constant.

In rescaled coordinates in which the vertical coordinate is stretched by the factor
N/f, the governing equations read

Dq

Dt
= 0, (1)

∆ψ = q, (2)

u = −∂ψ
∂y
, v =

∂ψ

∂x
, (3)

where q(x, y, z, t) is the PV, ψ is the streamfunction and (u, v) is the horizontal
velocity. In (1), D/Dt = ∂/∂t+ u∂/∂x+ v∂/∂y stands the material derivative, and ∆
is the three-dimensional Laplace operator. Here, in absence of diabatic and dissipative
effects, PV is materially conserved as stated by (1). Moreover, PV is constrained to
move in horizontal layers (i.e. tangent to stratification surfaces).

In this work, we consider vortices having uniform PV. In this case, the dynamics
of the flow can be fully described through knowledge of the vortex boundary shape.
This is arguably the simplest context for the study of vortex merger.

3. The steady states
We seek the equilibrium shapes of two steadily rotating vortices having equal uni-

form PV and equal volume and having a prescribed vertical and horizontal separation.
The vortices are stationary in a uniformly rotating reference frame, rotating at an
angular velocity Ω. The numerical method used here was originated by Pierrehumbert
(1980) and was further developed by Dritschel (1985) and Dritschel (1995) in planar
two-dimensional flows and by Polvani & Dritschel (1993) for two-dimensional flows on
the surface of a sphere. The numerical procedure used here for the three-dimensional
QG problem derives straightforwardly from the latter work and is outlined in the
Appendix.

Several basic quantities are calculated for the converged solutions. The first is the
angular impulse of the flow. In QG flows, the angular impulse (a conserved quantity)
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Figure 1. Top view of the mid-layer in each of the two vortices and definition of parameters used
to define the steady states. θ is the angle with respect to the positive x-axis.

is defined by

I =

∫∫∫
ρ2q dv, (4)

and may be reduced to contour integrals. The second is the excess energy defined by

T = − 1
2

∫∫∫
qψ dv. (5)

This is also conserved and may be reduced to contour integrals. These two quantities
are important in the analogous two-dimensional study (Dritschel 1995), and turn out
to be important here as well.

3.1. Small to moderate vertical offsets

The steady states obtained for the two equal-volume, equal-uniform-PV vortices are
now presented. For the computations, each vortex is discretized by 25 horizontal
contours and each contour by 238 nodes. The total volume of PV is the same for all
the simulations and is set to 4π/3. The PV itself within each contour is set to 2π. The
contour areasAk are set by the condition that the vortices have a unit height-to-width
aspect ratio; that is, the areas correspond to those of a perfectly spherical vortex
spanning the same height range. Note that an infinite isolated column of PV has
a rotation period of 4π/|q| while a sphere has a period of 6π/|q|. Steady solutions
for a large range of both horizontal δx and vertical δz offsets, defined below, are
investigated.

The centroids of the vortices lie in the plane y = 0 and the vortices are symmetric
across the plane y = 0 (see figure 1). Consequently, iterative corrections to find the
steady state are only computed on half of each contour. For each vertical offset
between the vortex centroids δz, the calculation is initialized using two well-separated
identical spheres of radius R ≡ (3V/4π)1/3 = 2−1/3 where V = 2π/3. This is justified
by the fact that an isolated radial distribution of PV is indeed a steady state. The first
guess for the background rotation rate is given by the equivalent point-vortex formula
Ωp = 2π/(3(δx2 + δz2)3/2) obtained for two point vortices of strength qV = 4π2/3.
The initial horizontal offset between the vortices δx is set to 3.5. When a steady state
is found, the horizontal separation distance between the two vortices is reduced and
the numerical procedure is resumed for this new separation distance. The new first
guess for this configuration is obtained by linear extrapolation from the previous two
steady states. This decreases the number of iterations necessary to reach the next
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Figure 2. Illustration of the steady states with (a) δz/R = 0 and δx = 2.286, (b) δz/R = 0.4 (5
layers) and δx = 2.277, (c) δz/R = 0.8 (10 layers) and δx = 2.243 and (d ) δz/R = 1.2 (15 layers)
and δx = 2.164. The contours are viewed orthographically, at an angle of 45◦ from the vertical.
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Figure 3. Scaled background rotation Ω/(2π) versus the horizontal gap δ. In this and the figures 4–8
(except where noted), the upper curve corresponds to δz/R = 0 and the bottom curve to δz/R = 1.44,
while the increment in δz/R between the curves is 0.08.

steady state. Note that the iterative procedure corrects the value of δx. Hereinafter,
δx will refer to the converged value of the horizontal offset.

Families of steady states (spanned by δx) have been studied for 19 different vertical
offsets δz in increments of the layer thickness starting from δz = 0 and ending at
δz = 18∆z (i.e. δz/R = 1.44). Recall that each vortex is spanned by 25 layers. Note
here that, unlike the horizontal offset, δz is unchanged by the iterative procedure.

The steady states with the smallest horizontal offset δx are illustrated in figure 2
for four different vertical offsets (δz/R = 0, 0.4, 0.8 and 1.2). Note that the vortices
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Figure 4. Rotation ratio Ω/Ωp versus the horizontal gap δ, for 0 6 δz/R 6 1.44. Here, the curves
for different values of δz/R overlap one another.

exhibit sharp inner corners. The contour shapes are similar to the ones that have been
obtained for two-dimensional co-rotating vortices, see e.g. Dritschel (1995), and are
characteristic of unstable configurations. Figure 3 gives the scaled rotation Ω/(2π) of
the two vortices as a function of the horizontal gap δ, that is the horizontal distance
between the innermost edges of the two vortices. In this and the following five figures,
the upper curve corresponds to δz/R = 0 and the bottom curve to δz/R = 1.44, while
the increment in δz/R between two curves is 0.08. The rotation rate Ω increases as
the horizontal gap decreases and the interaction between the two vortices becomes
stronger. Likewise, Ω decreases as the vertical offset δz increases, consistent with the
point-vortex formula Ωp = 2π/(3(δx2 + δz2)3/2). In fact, Ωp is a good approximation
to Ω, as shown in figure 4, which plots Ω/Ωp versus δ for various δz. It is remarkable
that even for almost touching vortices, Ωp is accurate to within 10% of the true value.
This demonstrates that the point-vortex model provides an accurate leading-order
estimate of the vortex interaction.

The dependence of the angular impulse I on the horizontal gap δ is shown in
figure 5 for the 19 families of steady state. It first decreases with δ and reaches a
minimum value Im at a critical gap δ = δm, and thereafter increases. The location of
this minimum value is indicated on the curves by a triangle (see also the close-up
provided in figure 6). Such a minimum in I as a function of δ also occurs in the
analogous two-dimensional problem, cf. Dritschel (1995). Moreover, Dritschel (1995)
found that this minimum occurs at the margin of stability for like-signed vortices
(states with δ < δm are unstable). As shown in the next section, this correspondence
between the minimum of I and linear stability is found here as well. As a function
of the vertical gap δz, the angular impulse decreases as δz increases. Note, from (4),
that the angular impulse is not an explicit function of the vertical offset δz, so the
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Figure 5. Angular impulse I versus the horizontal gap δ. The triangles indicate the location
of the minimum Im. See the caption of figure 3 for details of the curves plotted.
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Figure 6. Close-up: Angular impulse I versus the horizontal gap δ. The triangles indicate
the location of the minimum Im.
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Figure 7. Horizontal centroid separation distance δx versus the horizontal gap δ.

observed variation is due to the changing shape of the vortices with δz. This implies
that, for a given horizontal gap δ, the horizontal offset between the PV-centroids δx
decreases when the vertical offset δz increases.

We next present the horizontal distance between the vortex centroids – the offset δx
– as a function of the horizontal gap δ in figure 7. This confirms that, as suggested by
the dependence of I on δ, δx decreases as δz increases, for a given horizontal gap δ.
Moreover, δx decreases more slowly than does δ, indicating that the vortices become
more deformed as they approach each other. Note also that the distance between the
inner edge and the centroid increases with decreasing δ.

Finally, figure 8 shows the dependence of the excess energy T on the horizontal
gap δ for various vertical offsets δz. The excess energy first increases as the gap δ
decreases, reaches a maximum T = TM at δ = δm, then decreases for δ < δm. The
maximum (indicated by triangles in the figure) occurs at the same point as where
the angular impulse I reaches a minimum. This also occurs in the analogous two-
dimensional problem (Dritschel 1995). For fixed δ, the excess energy decreases with
increasing δz, indicating a weakening of the vortex interaction energy.

3.2. Higher vertical offsets

In the previous subsection, we restricted attention to steady states having small to
moderate vertical offsets 0 < δz/R < 1.44. We have also found families of steady states
for larger vertical offsets. However, for these families, we were unable to reach the
margin of stability, despite trying a number of modifications to our iterative solution
method. When the vortices approach one another and begin to exhibit sharp inner
edges, the numerical procedure becomes unstable and eventually diverges. Similar
numerical difficulties were encountered in Polvani & Dritschel (1993) and in Dritschel
(1995) in the two-dimensional context. We believe that these numerical instabilities



Merger of vertically offset quasi-geostrophic vortices 295

27.0

25.5

24.0
1 2
d

T

0

Figure 8. Excess energy T versus the horizontal gap δ. The triangles indicate the location
of the maximum TM .

are associated with the proximity of another family of steady states, in this case a
single compound vortex.

Evidence for this is provided next. We took the last steady state (with the smallest
δ for δz = 19∆z, corresponding to δz/R = 1.52), and pushed each vortex towards
the other slightly to initialize a nonlinear numerical simulation of the flow evolution.
This steady state is characterized by a background rotation rate Ω = 0.028 007, an
angular impulse I = 34.698, an excess energy T = 26.695 and a horizontal offset
δx = 2.0489. The horizontal gap δ is just 3.3% of the horizontal span of the pair of
vortices, measured here as the distance between their two outer edges. This steady
state has been found to be linearly stable. To initialize the numerical simulation, we
reduced δx by just 0.0002. The simulation was performed using the Contour Surgery
(CS) algorithm, (see Dritschel 2002 and references therein) from which our steady-
state iterative procedure has been developed. The nonlinear evolution of the vortices
is illustrated in figure 9. After a moderately long period of nearly steady motion,
a compound state forms when the two vortices bridge at t = 26.5. This compound
vortex persists for a long period of time but eventually destabilizes and separates into
two asymmetric vortices at t = 131. After a new attempt to form a compound vortex
at t = 133, the vortex separates at t = 136 and has not reconnected at t = 500, the
end of the simulation. The final state consists of an asymmetric pair of vortices with
a volume ratio of 1.72. This result suggests that the last steady state obtained is close
to a new branch of singly connected equilibria, which however are unstable, at least
near the point of bifurcation into a pair of vortices.

Additional simulations starting with two spheres having large vertical offsets are
presented in § 5 and confirm the creation of meta-stable compound states in this
regime.
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Figure 9. Illustration of the nonlinear evolution of the last steady vortices obtained for a vertical
offset of 19 layers (δz/R = 1.52) after being slightly pushed together. Times displayed (left to right,
then top to bottom) are t = 0, 20, 27, 35, 47, 56, 115, 120, 123, 131, 135 and 230. The evolution
was computed using the CS algorithm with time step ∆t = 0.025, dimensionless node separation
parameter µ = 0.150, and large-scale length L = 1.0.
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4. Linear stability
We now present the linear stability of the steady states obtained in the previous

section. Our principal goal here is to determine the horizontal gap δm below which
unstable modes exist for various vertical offsets between the two vortices. This gap δm
gives the limit below which inelastic interactions may be expected to occur between
the vortices.

4.1. Formulation

The formulation of the numerical approach is first briefly described. It is based upon
the analysis of small deformations to the contours defining the boundaries of the
vortices, as proposed in two-dimensional flows by Dritschel (1995) and Polvani &
Dritschel (1993). The perturbed boundary of a given PV-contour Ck is written as

ρk(φk, t) = ρe,k(φk) + γk(φk, t)
{dye,k/dφk − dxe,k/dφk}

(dxe,k/dφk)2 + (dye,k/dφk)2
, (6)

where φk represents here the ‘travel time coordinate’, i.e. a quantity proportional to
the time that a fluid particle takes to travel along the contour Ck , ρe,k ≡ (xe,k, ye,k)
is the horizontal position vector describing the equilibrium shape, and γk is the
(infinitesimally small) perturbation in the normal direction to the contour Ck . The
angular coordinate φk is scaled so that 0 < φk < 2π maps each contour. Note that
γk(φk, t) has the dimensions of area. The perturbation γk is governed, at first order,
by the equation

∂γk

∂t
+ Ωe,k

∂γk

∂φk
= −

nc∑
l=1

∆ql
∂

∂φk

∮
Cl
γlGk,l(%) dφ′l , (7)

where Gk,l(%) is the Green function giving the velocity induced in the layer containing
the contour Ck by the PV within the contour Cl , ∆ql is the PV jump across Cl ,
Ωe,k is the constant rotation rate of fluid particles along Ck , % = |ρe,k(φk) − ρe,l(φ′l)|
denotes the horizontal distance between the contour points, and nc denotes the total
number of contours. Equation (7) is the straightforward generalization of the two-
dimensional formula derived in Dritschel (1995) to the three-dimensional QG model
(see also Dritschel & de la Torre Juárez 1996).

The perturbation function γk is expanded in a truncated Fourier series expansion
as

γk(φk, t) = eσt
M∑
m=1

Ak,m cos(mφk) + Bk,m sin(mφk). (8)

Here, we use M = 10 azimuthal modes (the results prove insensitive to doubling M,
except very close to the margin of stability, as to be expected). Equation (7) can then
be written as a matrix eigenvalue problem for σ. Since the matrix order is 2Mnc by
2Mnc, there are 2Mnc eigenvalues, σ = σj (generally complex), with j denoting the
index of the eigenmode. (The corresponding spatial structure of this eigenmode is
given by (8) with Am,k = Aj,m,k and Bm,k = Bj,m,k.) The equilibrium is unstable if there
exists an eigenvalue σj with a positive real part, σrj > 0. Otherwise it is neutrally
stable (all eigenmodes have σrj = 0). Stable eigenmodes with σrj < 0 only occur in

conjunction with unstable modes, and modes with non-zero frequency σij always come

in conjugate pairs (σ = σrj + iσij ⇒ σ = σrj − iσij also). This is a consequence of the
Hamiltonian structure of the original problem.
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Figure 10. The growth rates σr (squares) and frequencies σi (triangles) versus the horizontal gap δ
for (a) δz/R = 0 and (b) δz/R = 1.44 (18 layers).

4.2. Results

We first illustrate the behaviour of the eigenvalues σj for two given vertical offsets,
δz = 0 and δz = 18 layers (δz/R = 1.44), as a function of the horizontal gap δ.
The results are shown in figure 10(a, b). They are representative of all vertical offsets
examined. One of the neutral eigenmodes, hereinafter referred to as the ‘critical mode’,
has a frequency σi which decreases more rapidly than all of the others as the gap
decreases. This frequency (and its conjugate with σi < 0) eventually collapses to zero
at δ = δm and become a stable/unstable mode pair for smaller δ. This mode pair is
non-propagating (σi = 0) for all δ < δm. Similar behaviour occurs in the analogous
two-dimensional problem (Dritschel 1995). The margin of instability δ = δm is found
to correspond the minimum of angular impulse Im and the maximum of excess
energy TM as also found in the two-dimensional problem for like-signed vortices
(Dritschel 1995). Finally we note that the frequency σi with which the neutral critical
mode travels along the vortex for a fixed δ > δm decreases with increasing vertical
offset δz.
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Figure 11. (a) Scaled rotation rate Ω/(2π) at the margin of stability, (b) the minimum angular
impulse Im, (c) the maximum excess energy TM and (d ) the critical horizontal centroid separation
distance δxc, all as functions of δz/R.

Equilibrium properties at the margin of stability are now examined. Figure 11(a–d )
shows the dependence of these properties on the vertical offset δz: in (a) the ‘critical’
background rotation Ωc/(2π), in (b) the minimum angular impulse Im, in (c) the
maximum excess energy TM , and in (d ) the critical horizontal offset δxc. It is found
that Ωc, Im and TM decrease as the vertical offset δz increases. Initially, this decrease is
slow, indicating that small vertical offsets only slightly modify the basic characteristics
of the interaction. But while the vortex centroids are closer horizontally for larger
vertical offsets, in fact the overall distance between the centroids at the margin
of stability, d3D = (δz2 + δx2

c)
1/2, increases with δz – see figure 12. Thus, vortices

offset moderately in the vertical (0 < δz/R < 1.44) destabilize at greater separations
than vortices with no vertical offset. At yet larger vertical offsets, we expect that
this distance should eventually decrease since merging becomes increasingly difficult
(indeed impossible for δz/R > 2).

The increase in the critical separation distance d3D with δz is related to the fact that
the vortices are more deformed (i.e. less spherical) when there is a vertical offset. Note
first that, because of symmetry, the two vortices share the same geometric properties.
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Figure 12. Separation distance d3D at the margin of stability versus δz/R.
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Figure 13. Mean aspect ratio
√

(ab)/c versus d3D for different vertical offsets from δz/R= 0 (upper
curve) to δz/R = 1.44 (18 layers, bottom curve). δz varies by 2∆z = 0.16R between each curve.

To measure the vortex deformation, we have computed the aspect ratio λ between an
estimated ‘major axis length’ and a ‘mean minor axis length’ for one of the vortices.
These lengths are obtained as follows. We first calculate the second moments of the
vortex, the volume integrals of x̂2, x̂ŷ, x̂ẑ, ŷ2, ŷẑ and ẑ2, where x̂ = (x̂, ŷ, ẑ) ≡ x− X ,
and X is the centroid of the vortex. We then associate these with an ellipsoid having
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Figure 14. Horizontal gap δ at the margin of stability versus δz/R.

the same second moments, centroid and volume. Then λ is calculated from the three
semi-axis lengths a 6 b 6 c of the ellipsoid by λ =

√
ab/c. Note that by definition

λ 6 1. The results are presented in figure 13 which plots λ versus d3D for various
vertical offsets δz. These results demonstrate that the vortices are more deformed
(λ is smaller) when there is a vertical offset between them. We conjecture that the
greater deformation observed for vertically offset vortices is responsible for the lower
frequency of the critical mode observed in figure 10(a, b) and the earlier onset of
the instability with decreasing vortex separation d3D . That is, the greater vortex
deformation makes it more difficult for a disturbance to propagate around the vortex
boundary – this is true at least in the two-dimensional case for an elliptical vortex (cf.
Dritschel 1990).

We next examine the dependence of the critical gap δm on the vertical offset δz.
Figure 14 shows that the gap δm is not a monotonic function of δz. The critical gap
exhibits a maximum around δz/R ' 1.1, indicating that vortices offset vertically by
about one mean radius are the first to become unstable with decreasing horizontal
gap. This observation is important for understanding the nonlinear evolution of two
spheres of PV in the next section.

Finally, we examine the dependence of the growth rate σr on both the vertical
offset and the horizontal gap. Contours of σr in the plane (δz/R, δ) are presented in
figure 15. These have been obtained by extrapolating the analytic relation

σr ' c(δm − δ)1/2, (9)

which approximately holds near the margin of instability. The coefficients c and δm
are obtained by a least-squares fit of (σr)2 to a straight line in δ (there are otherwise
too few points to draw the contours). Instability at the largest horizontal gap δ occurs
around δz/R ' 1.1, as already indicated in figure 14. Note however that for δ just
less than δm, the growth rates increase more steeply for δz/R = 0. The instability
is evidently more vigorous for horizontally aligned vortices than it is for vertically
offset ones.
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Figure 15. Contours of the growth rate, 0.01 < σr < 0.04, with contour interval dσr = 0.003 in the
plane (δz/R, δ). The top contour corresponds to σr = 0.01 and the bottom contour to σr = 0.04.

5. Nonlinear evolution
5.1. Numerical procedure

The nonlinear interaction between two identical spheres of PV is now investigated us-
ing the ‘contour-advective semi-Lagrangian’ (CASL) algorithm (Dritschel & Ambaum
1997). This numerical approach, like CS, makes PV conservation explicit by tracking
material contours of PV in each horizontal layer or vertical level. This approach
benefits from the inherent stability of Lagrangian methods, see Cottet (1996) and
Dritschel et al. (1999), and allows one to use larger time steps than Eulerian methods.
The time step is taken to be inversely proportional to the maximum PV anomaly,
and is typically much larger than the one required in Eulerian methods for numerical
stability. Unlike CS, the CASL algorithm obtains the velocity field by inverting Pois-
son’s equation (2) in spectral space like in the pseudo-spectral approach, and then
interpolates this field at the Lagrangian contour points. Details of the algorithm can
be found in Dritschel & Ambaum (1997).

Each vortex is discretized by 40 horizontal contours of PV. Following Dritschel
(2002) we ensure that the horizontal grid resolution is such that there are at least
10 grid points spanning the diameter of each vortex. The domain is triply periodic
and of dimensions ` × ` × d, with ` = 2π and d = 2π(R + δz). The radius of the
vortices is chosen so that their outer edges touch x = ±1. This mitigates the influence
of the periodic boundary conditions (see Dritschel 2002; Dritschel & Macaskill 2000
for further remarks on the adverse effects of periodicity). The PV of both vortices is
set to Q = 4π and the time step used is ∆t = 0.025 (as recommended in Dritschel &
Ambaum 1997). All simulations are continued until t = 100, which is considered the
‘final’ state.

The shape of the vortices is monitored as follows. We first identify the vortices
present in the flow; they are defined to be contiguous regions of PV. From the
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Figure 16. CM: time evolution left to right, top to bottom (t = 0, 1, 11, 100) with δz/R = 0,
δx/R = 2.55. ρV = 0.0022 at t = 100.

contours making up each identifiable vortex, we calculate the vortex volume V and
the height-to-width aspect ratio h/r. Here, h is the half-height of the vortex and r is
the mean horizontal radius, defined implicitly by V = (4π/3)hr2.

The possible interactions between the two vortices fall into four different regimes,
depending on the initial horizontal and vertical offsets. These regimes are defined in
Dritschel & Waugh (1992) in two-dimensional flows and in Dritschel (2002) for the
three-dimensional case. The first is ‘elastic interaction’ (hereinafter referred to as EI)
and corresponds to an interaction where the vortices never touch (this occurs for
well-separated vortices). In the other cases where the two vortices first merge and
possibly create secondary vortices, we define the relative PV volume ratio ρV :

ρV =
Vtot − Vmax

Vmax
, (10)

where Vtot is the total volume of PV present in the flow and Vmax is the volume of the
biggest vortex. For ρV > 0.9, the interaction is called ‘weak exchange’ or WE. In this
regime, vortices first merge, exchange only a small amount of PV and then eventually
separate. For 0.1 6 ρV 6 0.9, the interaction is called ‘partial merger’ or PM. Finally
for ρV 6 0.1 the interaction is called ‘complete merger’ or CM.

5.2. Results

We first illustrate these interaction regimes with four examples in which the two
vortices are horizontally aligned. The results are presented in figures 16, 17, 18 and
19. The CM regime is illustrated in figure 16, for a horizontal separation δx/R = 2.55.
The two vortices merge rapidly by t ' 1 and from t > 4 create a small amount of
debris. The volume of the final main vortex is 85.8% of the initial total volume of
PV, representing a 70% growth in volume. Note that the height of the main vortex
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Figure 17. PM: time evolution (t = 0, 1, 11, 100) with δz/R = 0, δx/R = 2.6.
ρV = 0.4926 at t = 100.

Figure 18. WE: time evolution (t = 0, 1.5, 5, 100) with δz/R = 0, δx/R = 2.8.
ρV = 0.9905 at t = 100.
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Figure 19. EI: time evolution (t = 0, 1, 9, 100) with δz/R = 0, δx/R = 3.0. ρV = 1.

remains unchanged. On the other hand, we have ρV = 0.0022 at t = 100. The PM
regime is illustrated in figure 17 for δx/R = 2.6. The two vortices again merge
rapidly and generate fine-scale debris from t > 5. But here at t = 12.5, the main
vortex splits into two secondary asymmetric vortices with a volume ratio of 2.92.
The debris then rapidly thin and disperse. From t = 28.5, the two secondary vortices
occasionally generate small tertiary vortices; however, the volume of the two vortices
decreases by only 0.55% from 28.5 < t < 100. By t = 100, only two vortices remain,
and their combined volume is 97% of the original total volume, and ρV = 0.4926.
This interaction generates relatively little debris compared to the CM interaction
previously illustrated. In this sense PM is a weaker interaction than CM. Note again
that the vortex height does not decrease for both product vortices. The WE regime
is illustrated in figure 18 for δx/R = 2.8. This interaction consists of a succession of
contacts between the two vortices but very little volume exchange and virtually no
debris. The two vortices remain nearly symmetric and retain most of their original
volume. In this case, ρV = 0.9905 at t = 100. Finally, the EI regime is illustrated in
figure 19, for δx/R = 3.0. Here, the vortices only slightly deform quasi-periodically
in time without ever touching.

We now examine a few examples with a non-zero vertical offset δz. Each example
is taken just inside the CM regime, at the largest or ‘critical’ horizontal separation
for which CM occurs. An example of moderate vertical separation (δz/R = 0.5,
δx/R = 2.5) is shown in figure 20. The two vortices merge at t ' 1 and generate
debris from t > 2.5. By t = 100, the main vortex contains 81.1% of the initial
total volume of PV, compared to the 85.8% in the δz/R = 0 case discussed above,
so that here slightly more debris has been generated. In this case, ρV = 0.0007 at
t = 100. However the phenomenology is similar. Increasing the vertical separation to
δz/R = 1 (δx/R = 2.55) begins to show differences – see figure 21. Merger occurs
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Figure 20. CM: time evolution (t = 0, 1, 7, 100) with δz/R = 0.5, δx/R = 2.5.
ρV = 0.0007 at t = 100.

Figure 21. CM: time evolution (t = 0, 2.5, 17, 100) with δz/R = 1.0, δx/R = 2.55.
ρV = 0.0226 at t = 100.
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Figure 22. CM: time evolution (t = 0, 4.5, 13.5, 100) with δz/R = 1.5, δx/R = 2.4.
ρV = 0.0087 at t = 100.

at about t ' 1 and debris is generated from t > 4.5. The final volume of the main
vortex is 78.4% of the initial volume of PV and ρV = 0.0226 at t = 100. On the other
hand, the vortex no longer spans the total vertical height of the original vortices,
but only 88.3% of it. Part of the original merged vortex detaches at some stage,
reducing the height of the main vortex. For a greater vertical offset, δz/R = 1.5
(δx/R = 2.4), as shown in figure 22, the situation is similar as the main final vortex
spans 88.6% of the original height of the two vortices. The volume of the main
structure becomes 78.3% of the initial volume of PV, and ρV = 0.0087 at t = 100.
Finally for δz/R = 1.7 (δx/R = 2.25), the situation is again different – see figure 23.
In this case the vortices first merge at t = 1.5. Only a negligible amount of debris
is generated around t ' 6.5, and the final vortex volume approximately equals the
initial total volume of PV. As a consequence, the vortex spans the total initial height
spanned by the original vortices. Note too that there has been a significant change
in the structure of the final vortex, from a roughly ellipsoidal shape to a dumbbell
shape.

The location of the four different interaction regimes (EI, WE, PM and CM) in
the parameter plane (δx/R, δz/R) is now examined. The results of all simulations
are summarized in figure 24. The circular arc of radius 2R shown in the figure gives
the limit below which the two vortices initially overlap. It should be noted that for
initially spherical vortices the relative horizontal gap δ/R reduces to δx/R − 2 while
for the steady states δx/R was found to be a function of the vertical offset (cf.
figure 7). Here δ and δx are equivalent measures of the initial horizontal separation
between the vortices.
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Figure 23. CM: time evolution (t = 0, 2.5, 18, 100) with δz/R = 1.7, δx/R = 2.25. ρV = 0.

2

0 1 3
dx/R

dz/R 1

2

Figure 24. Critical merger offsets as estimated from the nonlinear simulations. The squares indicate
CM, inverted triangles PM, triangles WE and crosses EI. The circular arc of radius 2 indicates the
contact curve.

It is noteworthy that the curve dividing the CM and PM regimes is qualitatively
similar in shape to the marginal stability curve for the steady states presented in
figure 14. It is seen that δx/R exhibits a local minimum around δz/R ∼ 1 along
this curve. This confirms that such a vertical separation is most favourable for a
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Figure 25. Critical distances d3D,CM/R (solid line) and d3D,WE/R (dashed line) for the CASL
simulations versus δz/R.

strong interaction. On the other hand, the limit curve for the EI regime has δx/R
monotonically decreasing with δz/R. Note that the PM regime disappears for δz/R
between 1.7 and 1.8. This coincides with the formation of dumbbell vortices in the
CM regime for δz/R > 1.7. The bulge in the width of the PM regime seen just below
δz/R = 1.7 represents interactions which produce temporary dumbbell vortices which
subsequently divide asymmetrically. This asymmetry decreases as δz/R increases, and
eventually a stable, nearly symmetric dumbbell vortex is produced (CM).

Finally, for large vertical offsets (δz/R > 1.8) the horizontal separation required
for CM strongly decreases, while the WE regime exists for a large range of δx/R.

The normalized three-dimensional distance below which CM and WE occur,
d3D,CM/R and d3D,WE/R respectively, are plotted as functions of δz/R in figure 25. It
is seen that d3D,CM/R generally increases with δz even for large vertical offsets, except
for the final sudden collapse when δz/R > 1.8. On the other hand d3D,WE/R increases
(less steeply) with δz even for δz/R close to 2, beyond which only EI is possible.
These tendencies, at least in the range 0 < δz/R < 1.44 agree qualitatively with the
linear stability findings presented in § 4 (cf. figure 12).

We next examine the properties of the final main vortex for the largest δx/R in the
CM regime, as a function of the relative vertical offset δz/R. We focus attention on
the volume V and the height-to-width aspect ratio h/r of the vortex. For comparison,
note that perfect merger with no debris would result in identical initial and final total
volume and an aspect ratio of

h/r = (h/r)ideal =
1√
2

(
1 +

δz

2R

)3/2

. (11)
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Figure 26. Height-to-width aspect ratio h/r of the first CM versus δz and the ratio of the
half-height h to the maximum one hmax. hideal is also plotted for comparision.

We recall that r is related to the volume and the height of the vortex by V = (4π/3)hr2.
In figure 26, we show both the ratio between the actual half-height h of the vortex
and the maximum possible one (hmax = R + δz/2) and the aspect ratio h/r; (h/r)ideal

is also plotted for comparison (dashed line). For δz/R 6 0.8, the actual aspect ratio
of the main vortex is greater than (h/r)ideal and h ' hmax. This is a consequence of the
formation of lateral debris that reduces the mean horizontal radius r of the vortex,
increasing h/r. For 0.8 < δz/R < 1.7, the ratio h/r is less than (h/r)ideal and h < hmax.
In this range, the nonlinear evolution tends to limit the aspect ratio by ejecting PV
from the vertical extremities of the initially formed compound vortex. Similar results
are found in Dritschel (2002) for tall, horizontally aligned vortices. This behaviour
reduces h/r for all vortices, consistent with the ‘tall column’ instability described in
Dritschel & de la Torre Juárez (1996). Finally, for δz/R > 1.7, h/r ' (h/r)ideal and h '
hmax. Here a dumbbell vortex is formed with little debris. However we emphasize, as
seen from figure 24 for δz/R = 1.9, that the compound vortex may be meta-stable – the
interaction often ends as a WE because the vortex eventually separates (cf. figure 9).

The ratio of final to initial total volume of PV is shown in figure 27. This also
indicates a distinct change in the nature of the interaction for δz/R > 1.7. For such
vertical offsets, the vortex volume ratio is nearly unity. For δz/R 6 1.7 the mean
volume ratio is approximately 0.8, which means that the typical interaction of this
type leads to a 60% increase in the vortex volume. However, this sort of increase
is not typical of the PM and WE regimes, which arguably are more likely to be
encountered in flows with many interacting vortices.

6. Conclusion
In this study, we have found the equilibrium shapes of two identical uniform-PV

quasi-geostrophic vortices, offset both horizontally and vertically. Next, we determined
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Figure 27. Volume ratio (Vmax/V ) for the first CM versus δz.

their linear stability, and finally we examined the nonlinear interaction of spherical
vortices, roughly approximating the equilibrium states.

The equilibrium shapes exhibit a perhaps surprising trend. Normally, as the three-
dimensional separation distance between vortices increases, one would expect the
deformation of each vortex to decrease, since the mean straining of one vortex on
the other decreases. However, we have found that this deformation increases at first
when we hold the horizontal offset constant and increase the vertical offset from zero.
Maximum deformation occurs when the vertical offset is comparable to the mean
vortex radius.

The linear stability results furthermore indicate that vortices offset moderately in
the vertical destabilize sooner (with increasing horizontal offset) than do horizontally
aligned vortices. As a function of the vertical offset, the critical horizontal offset for
instability increases only weakly, but it increases nonetheless, and the implication
is that vortices destabilize from greater overall separation distances when they are
offset moderately in the vertical. Evidently, the deformation of the vortex is the
most important factor affecting stability. The nonlinear results furthermore support
this finding: moderately vertically offset vortices merge at slightly greater horizontal
offsets than do horizontally aligned vortices.

What could be the explanation for this? We hypothesize that the observed be-
haviour is fundamentally due to the anisotropy of the quasi-geostrophic equations, in
particular the lack of vertical motion. This anisotropy was examined in Reinaud et
al. (2003), who analysed the results from a number of high-resolution simulations of
quasi-geostrophic turbulence, and who also developed a simple model for the mean
shape (height-to-width aspect ratio) of a vortex in a random background straining
flow. It was found that vortices exhibit a mean aspect ratio of 0.8 (after scaling on
f/N), this value being the result of both a detailed statistical analysis and the simple
model. The simple model considered a single ellipsoidal vortex in a linear background



312 J. N. Reinaud and D. G. Dritschel

flow (McKiver & Dritschel 2003), approximating the leading-order effects of another
vortex arbitrarily positioned in space. In such a linear flow, the ellipsoid remains an
ellipsoid, but in general deforms. Reinaud et al. (2003) found that an ellipsoid with
a mean aspect ratio of 0.8 is best able to survive in this background flow, or is least
likely to be torn apart (be extended indefinitely).

If the quasi-geostrophic equations were isotropic, then vortices would exhibit a
mean aspect ratio of 1. Anisotropy – the lack of vertical advection – is responsible for
the lower observed value. Anisotropy appears as a difference between the effects of
vertical shear (the vertical gradient of the horizontal flow) and the effects of horizontal
shear (the horizontal gradient of the horizontal flow). Vertical shear tilts a vortex,
increasing its overall extension, and in particular increases the three-dimensional
distance between its vertical extremities. Horizontal shear squashes the vortex hor-
izontally, and instead increases the distance between its horizontal extremities. In
general, both vertical and horizontal shear are present. The unit aspect ratio vortices
considered in the present study have a larger aspect ratio than the observed mean
value of 0.8, and this implies that they are more sensitive to the effects of vertical
shear, which arises once the vortices are offset vertically. Generally, such vortices are
more easily deformed than vortices having an aspect ratio of 0.8.

It would be worth considering the interaction between vortices of the observed
mean aspect ratio, 0.8 – in this case we conjecture that vortex deformation will decrease
monotonically with increased three-dimensional separation. Vertical shear will then
be less able to deform the vortices.

A complete understanding of vortex interactions, however, will require a much
broader investigation which additionally considers different vortex volumes, different
aspect ratios, etc. A direct attack on this problem appears impossible at present, due
to the high cost of finding equilibrium states and performing nonlinear simulations.
However, an indirect attack, based on an extension of the ellipsoidal model described
above to several interacting vortices, is at present under development and may enable a
comprehensive, qualitative understanding of vortex interactions in a quasi-geostrophic
fluid.

J. N. R. is supported by the UK EPSRC (Grant GR/N11711).

Appendix
The principle of the method is to find the shapes of the contours bounding the vortex

in each horizontal cross-section which coincide with isolines of the streamfunction ψ,
in the relevant rotating reference frame. In this reference frame, the velocity normal
to the boundary is zero, and therefore the contours do not deform in time. Here, each
vortex is represented by a collection of horizontal layers of uniform PV. Each vortex
boundary is thus composed of a set of contours Ck and their associated vertical
thickness ∆z. The thickness is here taken to be the same for every layer although this
choice is not necessary in the method.

The streamfunction in the rotating frame ψ̃k,n along the kth contour (Ck) in the nth
iteration – or nth guess for the vortex shape – takes the form

ψ̃k,n(ρk,n) = ψk,n(ρk,n)− 1
2
Ωnρ

2
k,n, (A 1)

where ρk,n = (xk,n, yk,n) is the horizontal position vector describing the boundary of
the contour Ck while Ωn is the nth estimate for the background rotation, and ψk,n(ρk,n)
is the streamfunction obtained from the inversion of Poisson’s equation (2).
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For the (n+ 1)th iteration, we enforce, approximately, the condition of equilibrium,
namely

ψ̃k,n+1(ρk,n+1) = ck, (A 2)

where ck is a constant (generally different for each contour Ck). Starting from the nth
guess for the equilibrium solution, this equation is partially linearized about ρk,n to
find the correction ρk,n+1 − ρk,n. We use here radial corrections, where the radius is
measured horizontally from the centroid of the vortex to which Ck belongs. We write

ρk,n+1 = ρk,n + ηk,n r̂k,n, (A 3)

where ηk,n is the radial correction or displacement, and r̂k,n is the unit vector in this
direction. Equation (5) is then expanded to first order in η, but ignoring the implicit
change in ψ associated with the change in the contour shapes:

ψ̃k,n+1(ρk,n+1) ' ψk,n(ρk,n)− 1
2
Ωnρ

2
k,n − 1

2
Ω′ρ2

k,n

+ηk,n
[
(r̂k,n · ∇)ψk,n(ρk,n)− Ωnρk,n · rk,n

]
, (A 4)

where

Ω′ = Ωn+1 − Ωn (A 5)

is the correction to the background rotation rate and

ψk,n+1 ' ψk,n (A 6)

is heuristically assumed, following Pierrehumbert (1980). The latter assumption avoids
the large matrix problem that would otherwise result.

Thus, from (5) and (7), the correction ηk,n can be expressed as a simple function of
the set of constants ck and Ω′:

ηk,n =
ck − ψ̃k,n(ρk,n) + 1

2
Ω′ρ2

k,n

ξk,n
, (A 7)

where

ξk,n = (r̂k,n · ∇)ψk,n(ρk,n)− Ωnρk,n · r̂k,n (A 8)

is the azimuthal component of the velocity.
Two other conditions are now imposed to determine the rotation rate correction

Ω′ and the constants ck . The first one is the volume conservation of the vortices. In
the absence of vertical mass transfer in QG flows, volume conservation is equivalent
to the conservation of the area Ak within each contour Ck . This can be expressed
between two iterations, at the first order, by

Ak,n+1 = 1
2

∮
Ck
ρ2
k,n+1 dθ ' Ak,n +

∮
Ck
ηk,nr̂k,n · ρk,n dθ ≡ Ak, (A 9)

where θ is the geometric polar angle, Ak,n is the area of the kth contour at the
nth iteration, and Ak is the prescribed area of Ck (note that Ak,n converges to Ak

as ηk,n → 0). Substituting ηk,n from (A 7), we obtain the following equations for the
constant ck as a function of Ω′:

ck = hk,n − Ω′gk,n (A 10)
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where (with wk,n ≡ ξ−1
k,n rk,n · ρk,n)

hk,n =

Ak − Ak,n +

∮
Ck
ψ̃k,nwk,n dθ∮

Ck
wk,n dθ

and gk,n =
1

2

∮
Ck
ρ2
k,nwk,n dθ∮

Ck
wk,n dθ

. (A 11)

A second constraint is now imposed to determine the rotation rate correction Ω′.
We fix the distance between two given points chosen from the two vortices. This
implies that the sum of the local corrections at these points must vanish:

ηk1 ,n(θ1) + ηk2 ,n(θ2) = 0. (A 12)

Here k1 and k2 refer to the mid-contour of each vortex and the two points (with polar
angle θ1 and θ2) lie along the innermost edges of these contours (see figure 1). Using
equation (A 7) again, we find

Ω′ =

1

ξk1 ,n(θ1)

[
ψ̃k1 ,n(θ1)− hk1 ,n

]
+

1

ξk2 ,n(θ2)

[
ψ̃k2 ,n(θ2)− hk2 ,n

]
1

ξk1 ,n(θ1)

[
1
2
ρ2
k1 ,n

(θ1)− gk1 ,n

]
+

1

ξk2 ,n(θ2)

[
1
2
ρ2
k2 ,n

(θ2)− gk2 ,n

] . (A 13)

The streamfunction ψk,n is obtained from the PV distribution by contour integration
around the Ck (see Dritschel 2002, Appendix A). The integrations, including those in
(A 3), are performed using two-point Gaussian quadrature between contour nodes to
reach high accuracy. Local cubic splines are used to represent Ck between contour
nodes. The iterative scheme is repeated until the correction Ω′ is less than a given
tolerance, namely 10−9 in the present study.
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