
PYRH AND PRNB CRYSTAL STRUCTURES

Walter De Laurentis

A Thesis Submitted for the Degree of PhD
at the

University of St. Andrews

2006

Full metadata for this item is available in
Research@StAndrews:FullText

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/146

This item is protected by original copyright

This item is licensed under a
Creative Commons License

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/146


 

�PyrH and PrnB Crystal Structures� 
 
 
 
 

 
 
 
 
 

 
 
 

 
 

A thesis submitted for the degree of 
 

Doctor of Philosophy 
 
 
 
 
 
 
 
 

School of Chemistry and 
Centre for Biomolecular Sciences 

University of St Andrews 
 

Walter De Laurentis 
December 2006 

 
Supervisor � Prof. J H Naismith 



 ii

ABSTRACT 

Determination of the three-dimensional structure of enzymes at atomic resolution is a key 

prerequisite for elucidation of molecular mechanisms of catalysis and catalysis mechanism 

prediction. X-ray protein crystallography is the most widely used method today for 

determining protein structures. 

 

In this thesis we describe the expression, purification, crystallization and structure 

solution of two new enzymes: PyrH and PrnB. 

 

PyrH is a member of the new emerging family of FADH dependent tryptophan 

halogenases. It catalyzes the regioselective halogenation of tryptophan at the C-5 position 

of the indole ring. Elucidation of its structure (Chapter 2) and comparison with PrnA, a 

regioselective 7th tryptophan halogenase whose structure has already been solved 

confirmed the proposed mechanism of action for this class of enzymes. 

 

PrnB is the only enzyme known to perform exquisite and peculiar ring 

rearrangement chemistry: it converts 7-Cl-tryptophan and tryptophan into respectively 

monodechloroaminopyrrolnitrin and aminophenylpyrrole. We developed a method for 

expression and purification of milligrams of pure and homogeneous recombinant PrnB 

(Chapter 3). We identified suitable crystallization conditions and determined PrnB structure 

(Chapter 4). Analysis of the PrnB structure helped us to propose a reaction mechanism for 

this unique enzyme.   
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1.1 Halogenated Natural Compounds 
With seven outer electrons in their highest occupied energy level the halogens                

(or �salt-formers�) are among the most reactive of the elements and their chemistry is 

dominated by their high electronegativity. In their pure forms, the Group VII elements exist 

as diatomic molecules. With metals they form ionic compounds, with non-metal they form 

covalent compounds. Of the five elements in the group fluorine, chlorine, bromine and 

iodine are found in biological molecules. The least aboundant and the largest halogen, 

astatine, is radioactively unstable and not found in nature. The first report of a halogen-

containing natural product (halometabolite) was that of the iodinated amino acid 

diiodotyrosine from the coral Gorgonia cavolii in 1896 1. Thirty years ago only 200 

organohalogen compounds were documented, today more than 4000 organohalogen 

compounds are described in literature, approximately 2200 organochlorine, 1950 

organobromine, 95 organoiodine and 100 organofluorine 2. Halogenated compounds are 

formed during natural abiogenic processes, such as volcanoes, forest fires, and other 

geothermal processes. Natural halogenated compounds are defined as those produced by 

living organisms. Oceans are the largest source of organohalogens, biosynthesized by 

seaweeds, sponges, corals, tunicates, bacteria. Terrestrial plants, fungi, lichen, bacteria, 

insects, some higher animals, and even humans 3 produce halometabolites.  The number 

of organohalogens metabolites   isolated from living organisms is steadily increasing 4, 

mainly as consequence of the general revitalization of interest in natural products as a 

potential source of new medicinal drugs 3. The ratio of discovery of new organohalogens 

mirrors the ratio of known ones with chlorinated compounds dominating. The best known 

halogenated natural compound is vancomycin, the last resort antibiotic against MRSA, 

which depends on chlorine for its full bactericidal activity 5; 6. Chloramphenicol is a 

dichlorinated broad-spectrum antibacterial antibiotic produced by Streptomyces venezuelae 

and other actinomycetes 7. Rebeccamycin is a potent DNA topoisomerase inhibitor, in 

which the removal of its chlorine atoms results in weaker antiproliferative action 8. 

Cryptophycin A is a newly discovered antimitotic agents isolated from cyanobacteria with in 

vivo potency 100-1000 times more potent than microtubule binding drugs paclitaxel and 

vinblastine 9, where the presence of chlorine is needed to obtain optimal cytotoxicity 10. 

(See Fig. 1.1)  
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Figure 1.1 
 
 

The full biological activity of these compounds depends on how halogenated molecules 

interact with cellular components. Halogen bonding described as oxygen�halogen 

interactions shorter than their respective Van der Waals Radii (RVdW) has been known in 

organic chemistry since the 1950s. A halogen bond in biomolecules can be defined as a 

short C�X···O�Y interaction (C�X is a carbon-bonded chlorine, bromine, or iodine, and 

O�Y is a carbonyl, hydroxyl, charged carboxylate, or phosphate group), see Fig. 1.2.  
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Figure 1.2 
Schematic representation of halogen (X) interaction to various oxygen-containing functional groups (where O�Y can be a carbonyl, 

hydroxyl, or carboxylate when Y is a carbon; a phosphate when Y is a phosphorus; or a sulfate when Y is a sulfur). The geometry of the 

interaction is defined by the normalized RX···O distance [RX···O = dX···O/RvdW(X···O)], the θ1 angle of the oxygen relative to the C�X bond, and 

the θ2 angle of the halogen relative to the O�Y  bond.  
 

A recent survey of the Protein Data Bank (PDB) database (Release July 2004) by Auffinger 

et al. 11 identified 66 different protein and six different nucleic acid structures (with 

resolution between 0.66 and 3.0 Å; average, ~2.1 Å) presenting halogen�oxygen distances 

(RX···O) shorter than their respective van der Waals Radii (RvdW). These short halogen�

oxygen (C�X···O) interactions in proteins and nucleic acids confirms that the halogen bond 

geometries in biological systems conform generally to those seen in small molecules. The 

interaction is defined by distances that are as short as 80% of RvdW of the interacting atoms 

as short as 80% of RvdW and are directional relative to the C�X bond, despite non perfect 

linear angles (θ1=180°). A characteristic perpendicular approach of the halogen toward 

peptide bond oxygen is attributed to the involvement of peptide bonds π electrons. The high 

number of π-system donors identified in the survey shows perpendicular interactions to the 

peptide backbone to be very important in biomolecular halogen interactions. Halogen 

bonding together with the ability of halogens to enhance membrane binding and 

permeation 12 is responsible for the growing interest in halogenated drug like compounds. 

 
 

1.2 Biological Halogenation 
Half of the drugs currently in clinical use are of natural product origin 13.  Chemical 

synthesis of complex natural products such as antibiotics is often too expensive or too 

difficult to be practical so that production of those metabolites relies usually on 
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fermentation. Modification of natural products can be achieved in several ways. The first 

and simplest is to chemically modify the natural product itself by simple functional-group 

transformations. This semisynthetic approach has the benefit of providing analogs rapidly, 

but it is limited in terms of variety. Another possibility is to use genetic engineering to 

reconstruct biosynthetic pathways, the so called combinatorial biosynthetic approach 14. 

Introduction of halogen atom in drug like compounds can positively alter their activity or 

pharmacokinetic parameters. Amplification of chemical diversity by introduction of halogen 

atom in natural products using either chemoenzymatic approaches or combinatorial 

biosynthesis would be possible with a deeper understanding of the mechanisms that 

control regioselective biological halogenation. Only then it will be possible to rationalize the 

introduction of halogens into new and altered structures using nature's biosynthetic 

machinery 15.  

Chloroperoxidase, discovered in 1959, was the first enzymes shown to catalyze 

incorporation of chlorine into natural products 16. Since then chloroperoxidases have been 

recognized as the catalyst involved in biological halogenation reactions. The ease by which 

this enzyme activity could be detected, using a convenient spectrophotometric assay 

developed by the researchers involved in the initial discovery of this class of enzyme, led to 

the discovery of many haloperoxidases from a variety of sources without the need to 

identify their natural substrates 17; 18. However, the broad substrate acceptance, lack of 

regiospecificity and the difficulties in determining Michaelis constants for organic substrates 

were inconsistent with a role for these enzymes in the biosynthesis of complex 

halogenated metabolites 4. The discovery that the halogenating reagent formed during the 

chloroperoxidase-catalysed reaction was hypochlorous acid, which upon release from the 

active site, reacts spontaneously with suitable organic compounds in the surrounding 

medium without any selectivity definitely established that biological chlorination cannot be 

catalyzed by this class of enzyme  4.  In the late 1990s, 45 years after the detection of 

haloperoxidases, Dairi et al. 19 were the first to report the discovery of a gene that did not 

code for a chloroperoxidase, but was required for the halogenation step of chlortetracycline 

biosynthesis. Similarly the identification and functional analysis of the gene cluster for 

pyrrolnitrin biosynthesis in Pseudomonas fluorescens revealed two genes responsible for 

chlorination, neither of which coded for a chloroperoxidase 20; 21. This new class of 
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halogenases is now known as FADH dependent halogenase and is found to catalyze 

regioselective halogenation of aromatic substrates 4. Very recently Walsh and colleagues 

demonstrated the novel halogenating activity of a class of nonheme FeII, α-ketoglutarate-

dependent enzymes that accounts for the regiospecific incorporation of chlorine into 

saturated aliphatic substrates 22. 

 
 

1.3 Haloperoxidases 
Studies on the biosynthesis of the chlorine containing fungal metabolite caldariomycin   

(See Fig. 1.3) led to the discovery of the first halogenating enzyme from the mold 

Caldariomyces fumago in 1959. For the catalysis of halogenation reactions, this enzyme 

requires hydrogen peroxide and halide ions (only chloride, bromide and iodide 17) and was 

thus named chloroperoxidase.  

 

 
 

Cl Cl
OHHO

Cl H
OO

caldariomycin 2-chloro-1,3-cyclopentadione monochlorodimedone

Cl H
OO

Cl
OHO

Cl Cl
OOCPO

H2O2 / Cl2

A)

B)

Cl H
OO

 
 
 

Figure 1.3 
A): chemical structures of caldariomycin, 2-chloro-1,3-cyclopentanedione, an intermediate in caldariomycin biosynthesis, and the 

synthetic compound monochlorodimedone. Second row B): halogenation of monochlorodimedone has been used for years as the 

standard assay in the search for halogenating enzymes.  CPO: chloroperoxidase 

 

The spectroscopic assay for haloperoxidase detection is based on the chlorination or 

bromination of monochlorodimedone, a synthetic compound with structural similarity to     
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2-chloro-1,3-cyclopentanedione, an intermediate in caldariomycin biosynthesis (See Fig. 

1.3). The assay relies on the loss of A278nm that accompanies the conversion of 

monochlorodimedone to dichlorodimedone 23. Using this assay many other chloro-, bromo- 

and iodoperoxidases have been detected and isolated from bacteria, fungi, marine algae, 

marine invertebrates, and mammals 24; 25. Chloroperoxidase (EC 1.11.1.10) is a secreted 

heavily glycosylated monomeric hemoprotein 26. Biochemical characterization showed that 

Caldariomyces fumago chloroperoxidase contains a cysteine bounded heme cofactor, 

exhibits catalase activity and can catalyzes P450-type reactions 25. The enzyme three-

dimensional structure 27 and biomimetic studies 28 led to the reaction mechanism (See Fig. 

1.4). Heme-type haloperoxidases produce free hypohalous acid as the halogenating agent 

which is produced by the reaction of H2O2 in the presence of the heme cofactor and halide 

ions.  Halogenation by chloroperoxidase requires a low pH (<3) and leads rapidly to the 

inactivation of the enzyme due to reaction with hypohalous acid. Substrates susceptible to 

halogenation include a variety of organic compounds and structures, for example, alicyclic 

ketones, phenols, flavonoids, aromatic acids, polycyclic aromatic hydrocarbons, biphenyls, 

lignin and lignin model steroids acetic and other aliphatic short-chain carboxylic acids as 

well as alkenes and alkynes 24.  
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Figure 1.4  
Reaction mechanism of heme-containing haloperoxidases showing the formation of hypohalous acid. Only the heme ion without the 

porphyrin ring system is shown. (1) enzyme active site in resting state. (2) hydrogen peroxide enters the active site. The reaction 

proceeds by heterolytic cleavage of the O�O peroxide bond facilitated by the glutamate residue 183 (E183) acting as an acid�base 

catalyst. (3) first deprotonating hydrogen peroxide. (4) then reprotonating the heme-bound ionized peroxide, releasing water and (5) 

leaving an oxyferryl centre (compound I). (6) Compound I reacts with Cl, (7) generating a Fe�OCl adduct, and as the chlorination 

reaction proceeds optimally at pH 3, (8) this is most likely protonated to Fe�HOCl. The release of HOCl returns the enzyme to its native 

state and the hypohalous acid reacts with the organic substrate outside the active site 1. 



 14

Following studies on enzymatic halogenation led to the identification of a second class of 

haloperoxidase comprising novel non iron enzymes which had a similar reactivity to 

Chloroperoxidases. These enzymes isolated from marine algae, lichen, and fungi contain 

Vanadium as cofactor 29. Investigation of the reaction mechanism and elucidation of the           

X-ray structure of the vanadium-enzyme from the fungus Curvularia inaequalis showed that 

this enzyme also produces hypohalous acid as the halogenating agent 30 (See Fig 1.5). 

This class of enzyme is known as vanadium dependent chloroperoxidase. 



 15

N

N

VV
-O O-

O-

H

N

N

H404

O

HN

N

N

VV
-O -O

O-

H

N

N

H404

O
O O

HH

H2O2

N

N

VV
-O -O

OO

-O O
H

H

H

N

N

VV
-O

OO O
H

O-

H2O

HN HN

HN

N

N

VV
-O

OO

OCl-

N

N

VV
-O

OO

O

H+

HN

Cl-
H2O

HOCl + H
H2O

1

2 3

14

6 5
H496

K353

H496 H496

H496

K353 K353

K353

H496
H496 K353  

 
Figure 1.5 
Proposed reaction mechanism of vanadium-containing haloperoxidases from the fungus Curvularia inaequalis 30; 31: (1) in resting state 

Vanadium is coordinated by four oxygen atoms and Histidine 496 (H496). The apical oxygen is hydrogen bonded to His404.                         

(2,3) peroxide molecule approaches and gets singly deprotonated. The water molecule leaves the vanadium-coordinated sphere.         

(4) the hydroperoxide coordinates to the vanadium at this empty coordination site. (5) the OH ligand is displaced by peroxide oxygen.   

(6) nucleophilic attack by chloride occurs with consequent formation of hypohalous acid as actual halogenating agent 31; 32; 33. 
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1.4 Perhydrolases 
Using the monochlorodimedone assay, further halogenating enzymes requiring hydrogen 

peroxide for their activity, were identified from halogenated metabolites-producing 

Pseudomonas and Streptomyces. These halogenating enzymes were shown to contain 

neither a heme group nor any other metal ion. Although they required hydrogen peroxide 

for their halogenating activity, they appeared different to the peroxidases class. The three-

dimensional structure of these halogenating enzymes shows a catalytic triad consisting of a 

serine, an aspartate and a histidine residue revealing that they belong to the α/β hydrolase 

fold enzyme family 34; 35. These enzymes catalyze the peroxidation of organic acid to 

peroxoacid in the presence of H2O2 through a reaction mechanism that closely resembles 

transesterification. Subsequently, the halide ion is oxidized by the peroxoacid to 

hypohalous acid, and then non-enzymatic halogenation of organic compounds such as 

monochlorodimedone by the resulting hypohalous acid takes place 36 (See Fig. 1.6). 
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Figure 1.6 
Proposed reaction mechanism of perhydrolase Streptomyces aureofaciens 35. Three residues that make up the catalytic triad, Serine 98 

(S98), Histidine 257 (H297) and Aspartate 228 (D228), catalyze the overall reaction. At the optimum pH 6.0, the active H257 is 

hydrogen-bonded to S98 and shares the proton at Nσ1 with the carboxylate group of D228. (1-2) the first part of the reaction is the 

nucleophilic attack on the carboxyl carbon atom of the organic acid by S98 and the formation of the acyl-enzyme by elimination of water. 

(3-4) the second part shows the hydrolysis of the acyl-enzyme by nucleophilic attack of hydrogen peroxide and the formation of the 

peroxoacid. The mechanism is formulated in analogy to the well-known mechanism of the serine proteases and esterases. (5) the final 

halogenation reaction is nonenzymatic and to proceed by the formation of hypohalous acid where the hydrophobic environment of the 

active site pocket protects the peroxoacid against hydrolysis, while halide is transported to the active site of the enzyme 32. 
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Perhydrolases had been, as a result of this, thought to be involved in the synthesis of 

halogenated metabolites in vivo, and had been called �non-heme haloperoxidases�, to 

distinguish them from the �true� haloperoxidases (heme- or vanadium-dependent enzyme). 

There are now evidences that perhydrolases do not participate in the biosynthesis of 

halogenated compounds. A perhydrolase-deficient mutant of Pseudomonas fluorescens 

yielded a chlorinated metabolite, pyrrolnitrin, like the parent strain 37, and the Streptomyces 

enzyme, which chlorinates tetracycline, is not related to the perhydrolases family  19.  

 

Since, heme/vanadium-containing haloperoxidases and perhydrolases are halogenating 

enzymes without any substrate specificity and regioselectivity; it is very unlikely that 

haloperoxidases and perhydrolases could be involved in the biosyntheses of complex 

halogenated natural products that present exquisite and specific modification. Notably the 

involvement of the haloperoxidases myeloperoxidase, in defense mechanisms, where it 

halogenates molecules in a non specific manner is well established 38. From these 

observations it had been concluded that other halogenating enzymes than haloperoxidases 

must exist 25. 

 

1.5 Flavin Dependent Halogenase 
A convincing example of the non-involvement of haloperoxidases in biological 

halogenations is in the biosynthesis of the antifungal compound pyrrolnitrin by a number of 

Pseudomonas species, in which a new type of halogenating enzyme has been discovered. 

Four genes encode the proteins involved in the biosynthetic pathway to pyrrolnitrin; 

prnABCD  (See Paragraph 1.10) and the functions of the genes have been determined by 

identifying the intermediates that accumulated in cultures of prn deletion mutants 20; 21. The 

gene products of prnA was  proved to catalyze regiospecific chlorination of tryptophan, 

while prnC catalyses the halogenation of monodechloroaminopyrrolnitrin to 

aminopyrrolnitrin 39. Both enzymes required FADH2 for activity and NADH was necessary 

for the reduction of the flavin by a non-specific reductase 18. After the discovery of these 

two enzymes the number of FADH-dependent halogenases involved in the biosynthesis of 

natural halogenated compound has been increasing faster 4, in Table 1.1 are reported 

some of the better characterized enzymes 4; 39; in Figure 1.7 their substrate and products . 
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Producing strains Enzyme Substrates Halometabolite 
Identity to 

 PrnA / PrnC 
Pseudomonas 
fluorescens BL915  

Tryptophan 7-halogenase 
(PrnA) 

L- and D-tryptophan and some 
tryptophan and indole 
derivatives                           (1) 

Pyrrolnitrin  (5) - / 14% 

Lechevalieria 
aerocolonigenes  

Tryptophan 7-halogenase 
(RebH) L- and D-tryptophan             (1) Rebeccamycin   (6) 52% / 12% 

Streptomyces 
rugosporus  

Tryptophan 5-halogenase 
(PyrH) L- and D-tryptophan             (1) Pyrrindomycin   (7) 37% / 13% 

Streptomyces 
albogriseolus  

Tryptophan 6-halogenase 
(Thal) L- and D-tryptophan             (1) Thienodolin   (8) 53% / 16% 

Pseudomonas 
fluorescens BL915  

Monodechloroamino-
pyrrolnitrin 3-halogenase 
(PrnC-Hal) 

Monodechloroamino- 
pyrrolnitrin                           (2) Pyrrolnitrin   (9) 15% / - 

Actinoplanes sp.           
ATCC 33002  HalB 

2-(3,5-Dibromophenyl)pyrrole  
NOT THE PHYSIOLOGICAL 
SUBSTRATE                      (3) 

Pentachloropseudilin   
(10)  17 % / 40% 

Pseudomonas 
fluorescens Pf-5  PltA Pyrrolyl-S-carrier protein    (4) Pyoluteorin   (11) 13% / 16% 

TABLE 1.1 
 
 

 

Through comparisons of the amino acid sequences of PrnA and PrnC with the other 

halogenases it is clear that two classes of FADH2-dependent halogenases are emerging: 

one that halogenates tryptophan and indole (PrnA-type) and the other that halogenates 

phenyl and the more reactive pyrrole (PrnC-type) 18. The majority of the flavin-dependent 

halogenases have only been identified on the basis of sequence homology and not by 

experimental evidence. All flavin-dependent halogenases consist of about 500 amino acids 

and have two absolutely conserved regions. One is the GxGxxG motif located near the 

amino terminal end, which is involved in the binding of the flavin co-substrate, also found in 

flavin dependent monooxygenase enzymes. 
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Recently the crystal structure of PrnA has been resolved by Changjiang Dong in our group, 

shedding new light on the mechanism of tryptophan halogenation 15. Paradoxically, the 

proposed mechanism involves the formation of hypochlorous acid by nucleophilic attack by 

Cl� on flavin hydroperoxide (See Fig. 1.8). The HOCl is not released into the solvent but 

rather travels along to the substrate where aminoacids, conserved in all the know 

tryptophan halogenase, help the hypochlorite mediated halogenation. This type of 

halogenating chemistry is limited to electron rich substrates such as aromatic ring 

containing molecules 4; 18.   
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Figure 1.8  
Proposed reaction mechanism for flavin-dependent halogenases. Tryptophan is shown as an example for a substrate. The mechanism 

was suggested by Dong et al. 15 based on the three-dimensional structure of PrnA and biochemical data. HOCl depicts a hypochlorite 

molecule that is not released from the active site of the enzyme. 

 

 

 



 22

1.6 PrnA a FADH dependent tryptophan 7-halogenase 
PrnA is a regioselective tryptophan halogenase, involved in the biosynthesis of pyrrolnitrin, 

that catalyses incorporation of chlorine into the 7 position of the tryptophan indole ring.  

Discovered in 1997 20; 40 by a genetic approach, it was soon realized that the protein 

required FADH for the catalysis of the halogenation reaction 40. The isolation of pure PrnA 

was achieved in 2000 41. In the first step of the purification protocol, a protein component 

absolutely necessary for the enzyme activity was partially removed. This protein 

component is a flavin reductase that reduces FAD to FADH using NADH. The gene coding 

for this reductase is not part of the pyrrolnitrin biosynthetic cluster. Recently the entire 

genome sequence of Pseudomonas fluorescens Pf-5 strain has been released 42. Analysis 

of the DNA sequence next to the pyrrolnitrin operon revealed the presence of a putative 

protein containing a FAD reductase domain 4.  The Pseudomonas flavin reductase activity 

can be substituted by flavin reductase from other bacteria such as Fre, the E.coli NAD(P)H-

flavin oxidoreductase; Ssue, the flavin reductase component of the alkanesulfonate 

monooxygenase from E.coli or by NADH oxidase from Thermus Thermophilus 41. To 

investigate whether a direct contact between the flavin reductase and the PrnA is 

necessary for the halogenating activity, the two protein components were separated by a 

dialysis membrane. Even under these conditions, chlorination of tryptophan occurred, 

although only with about 60% of efficiency seen normally 43.  The characterization of RebH, 

a FADH dependent tryptophan 7-halogenase, involved in the biosynthesis of rebeccamycin 

RebH has recently been reported by Yeh E., et al. 44. RebH, shares 55% identity with 

PrnA45. Its partner reductase, RebF, has been identified within the rebeccamycin gene 

cluster 44; 45. In vitro assays revealed a very low Kcat for both PrnA 0.1min-1  15 and RebH 

1.4min-1 44. For PrnA the lower turn over number is ascribed to the missing proper 

reductase partner. The fact that PrnA can utilize chemically reduced diffusible FADH 43 

does not exclude a possible interaction between the two components that could give better 

kinetic parameters. Such protein-protein interaction is thought to occur in the case of the 

FADH-dependent 4-hydroxyphenylacetate monooxygenase (HpaB) and its flavin reductase 

(HpaA) from E.coli 46 or the styrene monooxygenase (StyA) and its flavin reductase (StyB) 

from Pseudomonas sp. VLB120 47 but no structural evidences has been reported so far. 

Only in the luciferase/flavin reductase system from Vibrio harveyi a FMNH tunnel system in 
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the donor-acceptor enzyme has been described 48. Another intriguing hypothesis is that a 

third partner protein would function as shuttle between reductase and halogenase 43. 

Speculative reaction mechanisms for the FAD-dependent halogenase family have been 

proposed since its initial purification4 Only when PrnA  structure was solved with bonded 

substrate, product and cofactor 15; 49 a sensible reaction mechanism could be proposed. 

Yeh E. 44 demonstrated that when the RebH/RebF halogenation reaction was prepared 

anaerobically and carried out introducing O2 slowly product formation was increased by 10 

fold. Thus a low pO2 environment could better reflect the bacteria cytoplasmatic 

environment and be more favorable for observing the two component system reaction. 

 

1.6.1 PrnA Overall Structure 
The PrnA monomer (residues 2 to 518) is a single domain protein, formed by a  

parallelepiped �box� with a triangular �pyramid� leaning on one side of it (See Fig. 1.9). The 

�box� (residues 1-102, 159-401) was identify as the FAD binding module (See Fig. 1.10) 

and contains the glycine-rich phosphate binding consensus sequence [GXGXXG] 

conserved at the N-terminal of all the known FAD dependent halogenases. FAD is bound 

in a solvent-exposed groove adjacent to one or the two β sheet present in the domain (See 

Fig. 1.9). A second absolutely conserved motif, [WxWxIP] lies in the middle of the 

enzymes. Located near the flavin the two tryptophan residues are suggested to block the 

binding of a substrate close to the flavin preventing the enzyme from catalyzing  

monooxygenase type reactions 4. The �pyramid� (residues 103-158, 402-518) is formed 

only by helices and represents the substrate binding module residues. 
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Figure 1.9  
PrnA monomer shown in cartoon format. The flavin binding module is colored in blue and the substrate module colored in red. The                

N-terminal is denoted by a yellow sphere and C-terminal by a orange one. FAD and tryptophan are shown as sticks, carbon green, 

oxygen red, nitrogen blue and phosphorous orange . The Cl- ion is shown as a purple sphere. 

 
Sequence alignment shows that only the flavin binding module is conserved in the 

halogenase superfamily 15. The flavin binding module of PrnA shows significant similarity to 

the structure of p-hydroxybenzoate hydroxylase (PHBH) from Pseudomonas fluorescens 15 

(See Fig 1.10 and 1.11),   A Cl� anion is bound next to the isoalloxazine ring.  No other Cl� 

was identified in the structure despite the presence of 50 mM NaCl in the crystallization 

solution. Complexes with tryptophan and 7-chlorotryptophan show that both the reaction 

substrate and the reaction products lie 10Å apart from the isoalloxazine ring in the same 

position. The indole ring keeps the tryptophan in place being stacked between aromatic 

residues W455 and H101 on one face and F103 on the opposite one. E346 forms a 

hydrogen bond with 7 tryptophan position. (See Fig. 1.13). 
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Figure 1.10  
Sequence alignment based on structural superposition of PrnA on the p-hydroxybenzoate hydroxylase (PHBH) using the Protein 

structure comparison service SSM at European Bioinformatics Institute (http://www.ebi.ac.uk/msd-srv/ssm) 50 Shaded in red identical 

residues, in blue similar ones. The yellow box indicate the GxGxxG nucleotide binding motif. The red thick lines indicate the substrate 

binding domain regions present only in Prna.   
 

 
Figure 1.11 
Superposition of PrnA and PHBH using the SSM algorithm of WinCOOT 51. PHBH in cyan and PrnA, in blue the flavin binding module 

and in red the substrate binding module. FAD molecules are shown as a stick representation, yellow in PHBH green in PrnA.   
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1.6.2 PrnA Proposed Reaction Mechanism 
Structural similarity to flavin-dependent monooxygenases helped to formulate a reaction 

mechanism for PrnA. The mechanism of these monooxygenases is well established 52; 53. 

The enzyme is first reduced to give FADH2, which then binds molecular oxygen to form a 

spectroscopically characterized highly reactive peroxide-linked flavin 52; 53. This reactive 

intermediate is decomposed by the nucleophilic attack of an adjacent aromatic substrate, 

resulting in the transfer of an oxygen atom. Consistent with this established mechanism in 

PrnA FADH2 should bind molecular oxygen forming the same peroxide-linked isoalloxazine 

ring (See Fig. 1.12). In PrnA, unlike PHBH, there is no room for an organic molecule to 

bind adjacent to the isoalloxazine ring, due to the presence of the conserved tryptophan 

residues W272 and W274. Cl- is ideally positioned to make a nucleophilic attack on the 

flavin peroxide, resulting in the formation of hydroxylated FAD and HOCl (See Fig. 1.12, 

1.13).  
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Generation of HOCl. Reduced flavin is generated by flavin reductase. The formation of the peroxy-flavin molecule is known to occur in 

related monooxygenase enzymes. The generation of HOCl by PrnA requires a nucleophilic attack of Cl- on the peroxy-flavin.  
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Very recently Walsh et al. were able to detect the peroxyflavin species generated during 

RebH (7 tryptophan halogenase) catalytic cycle 54 in accordance with the enzyme 

proposed mechanism. The substrate is 10Å distant at the end of a tunnel (See Fig 1.13). 

Within the tunnel there are no residues which would be predicted to be oxidized or 

chlorinated by HOCl (See Fig. 1.13). HOCl, after its formation, is prevented from diffusing 

into solvent by the protein structure and instead enters the tunnel, moving towards 

tryptophan. In the native PrnA structure, K79 makes a hydrogen bond with a water 

molecule located at the end of the tunnel adjacent to the Cl atom of 7-chlorotrypotphan 

(See Fig. 1.13 and 1.14).  

 

 

 

 

 

 

 

 

Figure 1.13 
A tunnel connects the FAD and tryptophan binding sites. WaterN#1(W1), shown as an orange sphere, is found in all structures. 

WaterN#2 (W2) is a second water molecule found only in the native structure, where it is hydrogen bonded to K79. It has been placed in 

this figure to illustrate the path followed by HOCl through the protein tunnel from Cl- (Purple sphere) to tryptophan substrate. W2 is 

absent in both co-complexes because it would sterically clash with the ligands. The interaction of E346 with 7 position of tryptophan is 

shown as a black dotted line. 

 

K79 may hydrogen bond to HOCl and thus position it to react with tryptophan; while E346 

would help deprotonation of indole ring 7 position (See Fig. 1.13 and 1.14) The controlled 

spatial presentation of HOCl to substrate has been proposed as the base for regioselective 

halogenation 4; 15. Consistent with this proposed mechanism chlorinating activity could not 
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be detected in a PrnA K79→A79 mutant enzyme. While the Kcat of the PrnA E346→Q376 

mutant decrease by two order of magnitude without affecting the KM 15. 
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Figure 1.14 
Proposed halogenation of tryptophan proceeds by electrophilic aromatic substitution at the 7 position. The complex shown in [] would be 

stabilized by interaction with E346. The indole ring stacks with W455 and H101 on one face and F103 on the other which may further 

stabilize the intermediate. 

 

 

In Chapter 2 I describe the purification to crystal trial standard, the crystallization and 

structure of PyrH a tryptophan 5 halogenase member of the family of flavin dependent 

halogenases. I started this work to confirm the way this new class of enzymes achieve 

substrate halogenation and to shed light into the way tryptophan regioselective 

halogenation is accomplished. 
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1.7 Non-heme FeII α-ketoglutarate and O2-dependent halogenases 
In only very few case the substrate of the halogenated natural products are known or 

available. Due to this lack of knowledge in vitro halogenase activity could only be 

demonstrated for a few halogenases. This explains why progress on the investigation of 

halogenases involved in halometabolite biosynthesis has been slow and has only been 

accomplished with tryptophan halogenases so far 4. There are only two examples where 

genes of flavin-dependent halogenases have been detected in gene clusters for the 

biosynthesis of chlorinated aliphatic compounds. One is cmlS from chloramphenicol 

biosynthesis and the other is ORF3 from the neocarzilin biosynthetic gene cluster. While 

chloramphenicol contains a dichloracetyl moiety of yet unknown origin, neocarzilin has a 

trichloromethyl group. A number of halometabolites from various cyanobacteria contain 

trichloromethyl groups, but no genes for flavin-dependent halogenases have been found in 

their biosynthetic gene clusters 4.  The mechanism of enzymatic chlorination of aliphatic 

compounds has been examined in the Pseudomonas syringae pv. Syringae produced 

phytotoxic lipodepsipeptide syringomycin E 7 18; 22, and in the cyanobacterium, Lyngbya 

majuscula, produced  molluscicidal compound barbamide 18; 55. Biosynthetic investigations 

using isotope labelled compounds indicated that the biosynthetic origin of the                

4-chlorothreonine residue in syringomycin E 7 is threonine and the trichloromethyl group of 

barbamide originates from the pro-S methyl group of leucine (See Fig. 1.15). 
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Figure 1.15 
 
Such precursors are not obvious substrates for FADH2-dependent halogenases. Feeding 

experiments with deuterated leucine demonstrated that C3 and C4 of leucine remain 

saturated during its incorporation into barbamide, thus the pro-S methyl group is not 

activated prior to chlorination, suggesting a halogenating mechanism involving radicals 18. 

Similarities have been identified between the deduced amino acid sequences of 

BarB1/BarB2 in the barbamide gene cluster and SyrB2 in the syringomycin gene cluster. 

These proteins belong to a class of nonheme FeII, α-ketoglutarate-dependent enzymes and 

recently Walsh and colleagues demonstrated the novel halogenating activity of SyrB2, 

which chlorinates L-Thr linked to the peptidyl carrier protein SyrB1 but does not chlorinate 

free threonine 56. Elucidation of the crystal structure of SyrB2 with both a chloride ion and 

α-ketoglutarate coordinated to the iron at 1.6Å resolution helped Walsh and colleagues to 

propose a rection mechanism for this new class of non heme                 
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FeII, α-ketoglutarate-dependent halogenases 22 (See Fig. 1.16). Presumably the BarB1 and 

BarB2 enzymes, that have been shown to catalyze in vitro the triple chlorination of their 

substrate 55, catalyze the chlorination of leucine via a similar radical mechanism. This 

radical halogenating mechanism is able to chlorinate aliphatic unreactive substrates. 

 

FeII

His
His O

OCl
H2O

A

O

COO-

αKG

H2O

Substrate

H3C R H3C R

FeII

His
His O

O
Cl

B

O

RI O2

H3C R

FeII

His
His O

O
Cl

C

O

RI

O
O

H2C R

FeIV

His
His O

Cl

D

RI

O

O

H
CO2

H2C R

FeIII

His
His O

Cl

E

RI

OH

O

αKG, Cl-

CO2

CO2

R
ClH2C
Product

+ Succinate +

 
 
 

Figure 1.16 
Walsh proposed mechanism for halogenation by SyrB2. As observed crystallographically, αKG, chloride and water coordinate the iron in 

the resting Fe(ii) state (A). L-Thr-S-SyrB1 binding would then exclude water from the active site and allow dioxygen to bind, (B and C). 

Decarboxylation of KG would lead to the formation of a high-energy ferryl-oxo intermediate (D), which would then abstract a hydrogen 

atom from the substrate. The substrate radical would abstract the chlorine atom (E), producing chlorinated L-Thr-S-SyrB1 and 

regenerating the reduced Fe(ii) centre. After formation of the substrate carbon radical, however, some competition between transfer of 

Cl• and OH• would be expected. None threonine hydroxylation side reaction has been detected, indicating that Cl• transfer is greatly 

favoured. There are several possible explanations for this selectivity, including the positioning of the substrate in the active site during 

the reaction, and the lower potential of Cl• versus OH•22. 
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1.8 Nucleophilic chlorination: Methyl-Tranferase 
Halomethanes, particularly chloromethane, are produced by fungi, algae and higher plants. 

Investigations of cell-free extracts have led to the identification of methyl transferase 

enzymes, which transfer a methyl group from S-adenosylmethionine (SAM) to a chloride, 

bromide or iodide ion (See Fig. 1.17). Most of these enzymes are labile, making purification 

and characterization difficult. Kinetic measurements indicate that the preference of halides 

is I > Br > Cl, although the concentration of halide ions in the environment probably 

determines the proportions of the halomethanes produced by the organism. The 

biosynthesis of halomethanes may regulate the concentrations of halide ions in algae or 

contribute to halotolerance adaptations in plants 1. 
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Figure 1.17 
Reaction catalyzed by S-adenosylmethionine: halide ion methyl transferase 
 
As the enzyme can only utilize S-adenosylmethionine as methyl donor, it is limited to a 

single product. 
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1.9 Nucleophilic chlorination: Fluorinase 
Fluorine, the most electronegative element, has a van der Waals radius similar to hydrogen 

Incorporating fluorine into an organic compound can alter its electronic properties without 

substantial steric effects. Fluorinated compounds have different biological activities than 

their non-fluorinated analogues. Thus many pharmaceutical compounds contain fluorine, 

such as the anticancer drug fluorouracil, the serotonin uptake inhibitor fluoxetine (Prozac®, 

Eli Lilly) and fluoroquinolone antibiotics such as ciprofloxacin 1. An enzyme that catalyses 

the formation of C�F bonds under relatively mild conditions would be a very useful 

biocatalyst. Enzymatic formation of C�F bonds is possible with active-site mutants of 

glycosidase enzymes, where a nucleophilic glutamate residue is replaced with glycine, 

alanine or serine. The requirement for a nucleophile in the active site is satisfied by fluoride 

at high concentrations (2M), but the glycosyl fluorides formed are transitory 57.                

The bacterium Streptomyces cattleya produces fluoroacetate and 4-fluorothreonine as 

secondary metabolites from fluoride ion 1. During the last few years the enzyme 

responsible the formation of the C�F bond in S. cattleya has been identified 58 and its 

crystal structure solved 59. The enzyme, also known as �fluorinase� (E.C. 2.5.1.63), 

catalyses the synthesis of 5 -fluoro-5 -deoxyadeonsine from S-adenosylmethionine and F- 

via an SN2 reaction mechanism (See Fig 1.18). More recently it has been shown that can 

also utilize Cl- as substrate generating 5 -chloro-5 -deoxyadeonsine (See Fig 1.18). The 

reactions with both F- and Cl- are reversible. The equilibrium of the chlorination reaction lies 

substantially in favour of the substrates and was only possible to detect the chlorinated 

product using a coupled assay 60. 
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Figure 1.18 
Nucleophilic chlorination and fluorination of SAM catalyzed by the fluorinase from S. cattleya 

Interestingly, the discoveries of bacteria that biosynthesize fluorinated compounds were 

fortuitous and was a consequence of fluoride impurities present in the culture medium. It is 

very likely that other microorganisms have similar biosynthetic capabilities and a screening 

programme for such compounds would therefore be worthwhile 1. 
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1.10 Pyrrolnitrin 
Pyrrolnitrin is one one the best known and most studied halogenated natural products.                

It constitutes the active ingredient of drugs for the treatment of superficial dermatophytic 

fungal infections and was used as lead structure for the development of the world marketed 

phenylpyrrol antifungal Fludioxonil 61. Research on pyrrolnitrin antifungal and antibacterial 

activity, mode of action and biosynthesis has been conducted during the last 40 years. 

Despite that the enzymatic mechanisms that lead to its synthesis have not been completely 

elucidated, yet 61.  

 

1.10.1 Discovery of Pyrrolnitrin 
Pyrrolnitrin (3-chloro-4-(2'-nitro-3'-chlorophenyl)pyrrole; (See Fig. 1.19) is a tryptophan 

derived secondary metabolite with broad-spectrum anti-fungal activity which was first 

isolated in 1964 from Pseudomonas pyrrocinia 62. Subsequently, pyrrolnitrin has been 

identified in several isolates of Pseudomonas and Burkholderia (previously Pseudomonas) 

and has been implicated as an important mechanism of biological control of soil-borne 

fungal plant pathogens by these strains 63; 64; 65. Pyrrolnitrin production has also been 

documented for strains of Enterobacter agglomerans 66, Myxococcus fulvus 67, 

Corallococcus exiguous 67, Cystobacter ferrugineus  67 and Serratia spp 68.  
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Figure 1.19 

 

Tryptophan was identified as pyrrolnitrin precursor, feeding cultures with isotopically 

labelled compounds. Both D- and L-tryptophan isomers were efficiently incorporated into 
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pyrrolnitrin. Interestingly only the D-isomer was shown to be able to increase the antibiotic 

production 61; 69. Early attempts to identify the pyrrolnitrin biosynthetic gene cluster using a 

genetic approach resulted in identification of Pseudomonas secondary metabolism global 

regulators 20; 70. Only in 1997 van Peé and co-workers  were able to identify the pyrrolnitrin 

biosynthetic gene cluster from Pseudomonas fluorescens BL915 20; 21; 61 elucidating the 

definitive pyrrolnitrin biosynthetic pathway. 

 

1.10.2 Pyrrolnitrin Biosynthetic Gene Cluster and Pathway 
P. fluorescens BL915 is a biological control strain described by Hill et al. 70. It has been 

reported to produce pyrrolnitrin and to be an effective biocontrol agent for plant diseases 

caused by fungal pathogens including the damping-off pathogen Rhizoctonia solani.         

Van Peé and co-workers 20; 21 isolated a 6.2-kb genomic DNA fragment from this strain 

containing a cluster of four genes (prnABCD) required for the biosynthesis of pyrrolnitrin 

(See Fig 1.20). P. fluorescens BL915 deletion mutants in any of the four genes resulted in 

a pyrrolnitrin -nonproducing phenotype. Reintroduction of the entire prnABCD gene cluster 

in a prnABCD- mutant was shown to complement the pyrrolnitrin-nonproducing phenotype. 

One by one introduction of the four prn genes in a prnABCD- mutant was shown to 

complement the enzymatic activity proposed for each of the four genes. Furthermore, 

transfer of the entire prnABCD cluster to E. coli resulted in the production of pyrrolnitrin, 

thereby demonstrating that the four genes were the only ones required to encode the 

pathway for pyrrolnitrin biosynthesis  20; 21; 70. 

 

 

 
 

Figure 1.20  

 

prnA prnB prnC prnD 

1617bp 1086bp 1704bp 1092bp 
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The succession of the prn genes in the operon is identical to the order of the reactions in 

the biosynthetic pathway proposed by van Peé (See Fig. 1.21): the prnA gene product 

catalyzes the chlorination of L-TRP to form 7-chloro-L-TRP.  
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The prnB gene product catalyzes a ring rearrangement and a decarboxylation converting 

7-chloro-L-TRP to monodechloroaminopyrrolnitrin (MDA). The prnC gene product 

chlorinates MDA at position 3 of the pyrrole ring to form aminopyrrolnitrin (APRN). The 

prnD gene product catalyzes the oxidation of the amino group of APRN to a nitro group to 

form pyrrolnitrin.  

 
 

1.10.3 The Pyrrolnitrin Biosynthetic Gene Cluster is Conserved 
More recently, the prnABCD cluster from P. fluorescens BL915 was used to identify 

homologous gene clusters from the pyrrolnitrin producing bacteria Pseudomonas 

pyrrocinia, Burkholderia cepacia LT4-12-W and Myxococcus fulvus Mx f147 71. The prnA 

gene fragment from strain BL915 was used to clone prnA homologues from Pseudomonas 

fluorescens CHA0 and Pseudomonas aureofaciens ACN 71.  Both orientation and length of 

the prnABCD genes appear to be conserved within the pyrrolnitrin biosynthetic gene 

clusters. The only exception is the position of M. fulvus prnA, which is located on the 

operon antisense strand downstream of prnD (See Fig. 1.22). 

 

 

Figure 1.22 
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With the exception of M. fulvus prnA, the deduced amino acid sequences are >59% similar 

among the strains. This indicates that the biochemical pathway for pyrrolnitrin biosynthesis 

is highly conserved (See Table 1.2).  

Table 1.2 
 

 P. fluorescens 
BL915 

P. aureofaciens 
ACN 

P. fluorescens 
CHA0 

P. pyrrocinia B. cepacia 

prnA      
M. fulvus 44.7 45.5 44.1 44.5 45.2 
B. cepacia 89.4 90.1 88.5 92.2  
P. pyrrocinia 94.4 93.1 92.9   
P. fluorescens CHA0 94.8 93.1    
P. aureofaciens ACN 95.0     
prnB      
M. fulvus 61.6   61.9 59.4 
B. cepacia 80.9   85.6  
P. pyrrocinia 86.2     
prnC      
M. fulvus 79.3   79.5 79.2 
B. cepacia 93.7   94.2  
P. pyrrocinia 95.2     
prnD      
M. fulvus 62.1   62.0 61.2 
B. cepacia 87.4   87.9  
P. pyrrocinia 91.2     
 
Predicted aminoacid sequences were compared among the strain using the CLUSTAL alignment algorithm.  The values shown are the 

percentage similarity. Adapted from Hammer et al 1999 71. 

 
Further pyrrolnitrin biosynthetic operons have been identified in recently sequenced 

Pseudomonas related strain such as  Pseudomonas fluorescens Pf-5 42, Burkholderia 

ambifaria AMMD, Burkholderia pseudomallei strains 1710a,1710b, 688,1655, S13 (Source 

DOE Joint Genome Insitute Integrated Microbial Genomes webpages).  

 

1.10.3.1 prnA 

The prnA gene product PrnA, a member of the family of FADH2 dependent halogenases, 

catalyzes the chlorination of L-tryptophan to form 7-chloro-L-tryptophan and has been 

discussed earlier in Paragraph 1.6.  
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1.10.3.2 prnB 

The prnB gene product catalyzes the conversion of 7-chloro-L-tryptophan to 

monodechloroaminopyrrolnitrin coupling the rearrangement of the indole ring to a 

phenylpyrrole and a decarboxylation. Van Peé et al. have reported that this enzyme is 

active on tryptophan too 21. The predicted prnB product codes for a 361aa protein with an 

Mw of about 39KDa. This predicted protein does not contain any known signature 

sequence, cofactor binding site or conserved motif. Furthermore, it has not any statistically 

significant similarity profile match with any known protein included in any public protein 

database 20; 21. Interestingly prnB GTG initiation codon overlaps with prnA gene stop 

codon, suggesting translational coupling of the two genes reflecting a close                

metabolic regulation between 7-Cl-Tryptophan synthesis and its conversion to 

monodechloroaminopyrrolnitrin 20.  

 

PrnB is a new unique enzymatic protein completely uncharacterized so far. In Chapter 3 

we describe PrnB cloning, over-expression and purification to crystal trial standard and in 

Chapter 4 its crystallization and structure solution. This work is a step foward in the 

understanding of the mechanism of action of the enzyme and the complete elucidation of 

the pyrrolnitrin biosynthetic pathway. 

 
 
 

1.10.3.3 prnC 

The prnC gene product is a 65KDa protein (567aa), which chlorinates 

monodechloroaminopyrrolnitrin at position 3 of the pyrrole ring to form aminopyrrolnitrin. 

The aminoacid sequences of the two chlorinating enzymes PrnC and PrnA show an 

identity of 18% and a similarity of 26%. The low sequence similarity could explain the 

different substrate specificity. Despite that, both PrnC and PrnA contain two FAD-

dependent halogenase conserved motifs. The nucleotide binding site with the consensus 

[GxGxxG] motif and the double tryptophan motif [WxWxIP], suggesting that the two 

enzymes work in a similar way 20; 21.  
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1.10.3.4 prnD 

The prnD gene product encodes a 363aa protein with a Mw of 40KDa.  It catalyzes the final 

oxidation step of the amino group to a nitro group in APRN to form pyrrolnitrin. The N-

terminal sequence of the enzyme contains two conserved motifs characteristic of the family 

of Rieske type non-heme oxygenases. The first motif, a Rieske type iron sulphur centre, 

consist of the consensus  [CxH 15-17aa CxxH]  and is involved in the binding of a [2Fe-2S] 

cluster. The second one, 90aa apart from the first motif, is the highly conserved 

[DxxHxxxxH] sequence which binds the mononuclear nonheme Fe(II) that binds molecular 

oxygen (See Fig. 1.23).  

 

 
Figure 1.23 
Sequence alignment of PrnD from P. fluorescens (a) B. cepacia (b) M. fulvus (c) B. pyrrocina (d); Rieske type iron sulphur binding motif 

highlited in black, iron binding motif highlighted in blue. Shaded in red identical residues, in blue similar ones (threshold 100%). 

 
PrnD is a member of the dioxygenase superfamily. Despite that, it shows less than 20% 

homology to any known oxygenase structure and performs completely different chemistry 
20; 21. First attempts to obtain PrnD over-expression in E.coli led to production of insoluble 

protein 21. More recently soluble MBP tagged prnD over-expression in E.coli has been 

10 20 30 40 50 60 70 80 90 1
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . .

a MN-DIQ--LDQASVKKRPSGAYDATTRLAASWYVAMRSNELKDKPTELTLFGRPCVAWRGATGRAVVMDRHCSHLGANLADGRIKDGCIQCPFHHWRYD
d MN-DVQ--LDQARTEEHPPGVYDATTRLAASWYVAMRSDDLKDKPTELMLFGRPCVAWRGATGRAVVMDRHCSHLGANLADGRVEDGCIQCPFHHWRYD
b MD-DVQFQLQQADAREQPSGAYDATTRVAASWYVAMRSDDLKDKPLELTLFGRPCVAWRGAMGRAVVMDRHCSHLGANLADGQVKDGCIQCPFHHWRYD
c MSGNIH---QEPERIRQASGVNDLTTQTAASWYVAMRSDALRGKPVAIKLFGQPLVAWRDGGGRPVVMERYCSHLGASLAKGKVVEGCIQCPFHNWRYD
Consensus *. :::  :::.   .:..*. * **: **********: *:.**  : ***:* ****.. **.***:*:******.**.*:: :********:****

110 120 130 140 150 160 170 180 190 2
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . .

a QGQCVHIPGHNQAVRQLEPVPRGARQPTLVTAERYGYVWVWYGSPLPLHPLPEISAADVDNGDFMHLHFAFETTTAVLRIVENFYDAQHATPVHALPIS
d QGQCVHIPGHSSAVSRLEPVPRGARQPTLVTAERYGYVWVWYGSPQPLHPLPEIAAADVDNGDFMHLHFAFETTTAVLRIVENFYDAQHANPVHALPIS
b QGQCVHIPGHSEAVHRLEPVPRGARQPTLVTTERYGYVWVWYGSPQPLHPLPDIAAADVDNGDFMHLHFAFETTTAVLRIVENFYDAQHAHPVHALPIS
c TGACSHVPGHSTEVPRLEPIPPTARQSVYPVMERYGFVWVWYGTKAPLFPLPEMPEAESSE-SHQSLRFAYETTTSVLRIIENFYDAQHAAPVHQLPIS
Consensus  * * *:***.  * :***:*  ***..  . ****:******:  **.***::. *: .: ..  *:**:****:****:********* *** ****

210 220 230 240 250 260 270 280 290 3
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . .

a FELKLFDDWRQWPEVESLALAGAWFGAGIDFTVDRYFGPLGMLSRALGLNMSQMNLHFDGYPGGCVMTVALDGDVKYKLLQCVTPVSEGKNVMHMLISI
d FELKLFDDWRQWPEVESLARAGAWFGAGIDFTVDRYFGPLGMLSRALGLSMSQMNLHFDGYPGGCVMTVALDGDFKYKLLQCVTPVSDGKNVMHMLISI
b FELKLCDDWRPWPEVEPLARAGAWFGAGIDFTVNRYFGPLGMLSRALGLSMSQMNLHFDGYPGGCVMTVALDGDAKYKLLQCVTPVSDGRNVMHMLISI
c FELKLFDESSPPPGQEALARDGAWFGAGIDFHVDRYFGPLGVISRTLGLSMSRMQLHFDGYPGGCIMTVSLDGDVKYRLLQCVTPVDKEETVMHMLLAI
Consensus ***** *:    *  *.**  ********** *:*******::**:***.**:*:**********:***:**** **:********.. ..*****::*

310 320 330 340 350 360 370 380
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a KVGGILRRATDFVLFGLQTRQAAGYDVKIWNGMKPDGGGAYSKYDKLVLKYRAFYRGWVDRVASER-----------------
d KVGGALRRATDYVLFGLQTRQAAGYDVKIWNGMKPDGGGAYSKYDKLVLKYRAFYRDWVDRVAEATARPRRRE----------
b KAGGPVRRAIDYVLFGLQTRQAAGYDVKIWNGMKPDGGGAYSKYDKLVLKYRAFYRGWVDRVASSERQGVSRRS---------
c KGDGVVRSAANFILYGLQTWAAAGYDVAIWNSMKADGGGAFSKYDQLILKYRAFYRRWVNKVALENSGREKDSRADPRKGAHG
Consensus * .* :* * :::*:****  ****** ***.**.*****:****:*:******** **::**                    
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reported together with the cleavage of the MBP tag and reconstitution of the iron sulphur 

cluster 72. Availability of reconstituted enzymatically active prnD helped to propose the first 

enzyme mechanism for the conversion of arylamines into arylnitro compounds in which the 

enzyme catalyzes at least three consecutive reactions 73 (See Fig. 1.24). 
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Figure 1.24 
Proposed PrnD reaction mechanism 72; 73. Due to the difficulties in obtain APRN 4-aminobenzylamine (pABA) was used as substrate for 

the enzyme. Since Rieske-oxygenase are typically comprised of two protein components: a terminal oxygenase and a flavin reductase 

E.coli Ssue reductase was added to reconstituted PrnD together with NADPH, FMN and pABA. 4-hydroxylaminobenzylamine (pHABA) 

and 4-nitrosobenzylamine (pNOBA) and 4-nitrobenzylamine (pNBA) were detected into the reaction mixture. Appropriate negative and 

positive controls together with kinetic analysis lead to the definition of PrnD reaction mechanism were conversion of arylamine into 

arylnitro compounds proceeds with two monooxygenation steps and one dehydrogenation step via hydroxylamine and nitroso compound 

as intermediates. 
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Chapter 2 
 
 

Expression, Purification and Structure of PyrH  
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2.1 Summary 
PyrH, a member of the flavin dependent halogenase family, regioselectively chlorinates 

tryptophan at the C-5 position of the indole ring (See Fig. 2.1). The protein is involved in 

the biosynthesis of the pyrroindomycin B antibiotic in Streptomyces rugosporus 74. The 

PyrH gene was overexpressed in Pseudomonas and PyrH purified to homogeneity. The 

pure protein has been crystallized and a dataset at 2.4Å collected. The enzyme 

structure reveals the same FAD binding module as PrnA but differences in the substrate 

binding modules. The comparison of PyrH and PrnA structure gives insight into the 

mechanism that controls regioselectivity inside the tryptophan halogenase family. 
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Figure 2.1 

2.2 FADH dependent tryptophan halogenases 

Among the numerous FADH dependent tryptophan halogenases identified so far 4, in 

vitro activity has been confirmed only for the tryptophan 7-halogenase from the 

pyrrolnitrin biosynthetic pathway PrnA 40; the 7-halogenase from rebeccamycin 

biosynthetic pathway RebH 44; the 5-halogenase from pyrroindomycin B biosynthetic 

pathway and the 6-halogenase ThaL from the thienodolin biosynthetic pathway 4. The 

tryptophan halogenases similarity and homology values compared to PrnA are shown in 

Table 2.1. 

              
             Table 2.1 

To PrnA Similarity (%) Identity (%) 

RebH 66 52 

PyrH 50 36 

ThaL 67 53 

              Similarity and homology values from the sequence aligment in Fig. 2.2  
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The sequence alignment of these proteins is shown in Figure 2.2. 

   

 
Figure 2.2 
Sequence alignment of PrnA from P. fluorescens BL91540; RebH from Lechevalieria aerocolonigenes45; ThaL from Streptomyces 

albogriseolus4 and PyrH from Streptomyces rugosporus. Highlighted in black the two halogenase conserved motifs. Highlighted by a 

star are aa essential for PrnA reaction mechanism: in purple aa constituting the HOCl channeling tunnel; in green E347 and K79. 

Shaded in red identical residues, in blue similar ones (threshold 100%). 

 

Due to the high homology between the proteins and the proposed reaction mechanism it 

has been suggested that the regioselectivity of the tryptophan halogenating family is 

regulated by the way the substrate (tryptophan) binds into the active site such that the 

indole ring position to be halogenated will face the hypochlorite 4; 15.  
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. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

prnA ----MNKPIKNIVIVGGGTAGWMAASYLVRALQQQVNITLIESAAIPRIGVGEATIPSLQKVFFDFLGIPEREWMPQVNGAFKAAIKFVNWRKSPDPSRE
rebH ----MSGKIDKILIVGGGTAGWMAASYLGKALQGTADITLLQAPDIPTLGVGEATIPNLQTAFFDFLGIPEDEWMRECNASYKVAIKFINWRTAGEGTSE
Thal KENNVDNRIKTVVILGGGTAGWMTAAYLGKALQNTVKIVVLEAPTIPRIGVGEATVPNLQRAFFDYLGIPEEEWMRECNASYKMAVKFINWRTPGEGSPD
pyrH -------MIRSVVIVGGGTAGWMTASYLKAAFDDRIDVTLVESGNVRRIGVGEATFSTVR-HFFDYLGLDEREWLPRCAGGYKLGIRFENWSEPGE----
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prnA ---------DYFYHLFGSVPNCDGVPLTHYWLRKREQG-FQQPMAYACYPQPGALDGKLAPCLADG-------------------TRQMSHAWHFDAHLV
rebH ARELDGG-PDHFYHSFGLLKYHEQIPLSHYWFDRSYRGKTVEPFDYACYKEPVILDANRSPRRLDG-------------------SKVTNYAWHFDAHLV
Thal PRTLDDGHTDTFHHPFGLLPSADQIPLSHYWAAKRLQGETDENFDEACFADTAIMNAKKAPRFLD---------------------RATNYAWHFDASKV
pyrH ----------YFYHPFERLRVVDGFNMAEWWLAVGDRR---TSFSEACYLTHRLCEAKRAPRMLDGSLFASQVDESLGRSTLAEQRAQFPYAYHFDADEV

210 220 230 240 250 260 270 280 290 300
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prnA ADFLKRWAVER-GVNRVVDEVVEVQLNDRGYISTLLTKEGRTLEADLFIDCSGMRGLLINQALKEPFIDMSDYLLCDSAVASAVPNDDAREGVEPYTSAI
rebH ADFLRRFATEKLGVRHVEDRVEHVQRDANGNIESVRTATGRVFDADLFVDCSGFRGLLINKAMEEPFLDMSDHLLNDSAVATQVPHDDDANGVEPFTSAI
Thal AAFLRNFAVTKQAVEHVEDEMTEVLTDERGFITALRTKSGRILQGDLFVDCSGFRGLLINKAMEEPFIDMSDHLLCNSAVATAVPHDDEKNGVEPYTSSI
pyrH ARYLSEYAIAR-GVRHVVDDVQHVGQDERGWISGVHTKQHGEISGDLFVDCTGFRGLLINQTLGGRFQSFSDVLPNNRAVALRVPRENDED-MRPYTTAT
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prnA AMNSGWTWKIPMLGRFGSGYVFSTKFTSRDQATADFLKLWGLS-DNQQLNQINFRVGRNKRAWVNNCVSIGLSSCFLEPLESTGIYFIYAALYQLVKHFP
rebH AMKSGWTWKIPMLGRFGTGYVYSSRFATEDEAVREFCEMWHLDPETQPLNRIRFRVGRNRRAWVGNCVSIGTSSCFVEPLESTGIYFVYAALYQLVKHFP
Thal AMEAGWTWKIPMLGRFGSGHVYSDHFATQDEATLAFSKLWGLDPDNTEFNHVRFRVGRNRRAWVRNCVSVGLASCFVEPLESSGIYFIYAAIHMLAKHFP
pyrH AMSAGWMWTIPLFKRDGNGYVYSDEFISPEEAERELRSTVAPGRDDLEANHIQMRIGRNERTWINNCVAVGLSAAFVEPLESTGIFFIQHAIEQLVKHFP
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. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

prnA DTSFDPRLRDAFNAEIVYMFDDCRDFVQAHYFTTSREDTPFWLANRHELRLSDAIQEKVERYKAGLPLTTTSFDDS-TYYETFDYEFKNFWLNGNYYCIF
rebH DKSLNPVLTARFNREIETMFDDTRDFIQAHFYFSPRTDTPFWRAN-KELRLADGMQEKIDMYRAGMAINAPASDDAQLYYGNFEEEFRNFWNNSNYYCVL
Thal DKTFDKVLVDRFNREIE---EDTRDFLQAHYYFSPRVDTPFWRAN-KELKLADSIKDKVETYRAGLPVNLPVTDEG-TYYGNFEAEFRNFWTNGSYYCIF
pyrH GERWDPVLISAYNERMAHMVDGVKEFLVLHYKGAQREDTPYWKAA-KTRAMPDGLARKLELSAS----HLLDEQTIYPYYHGFETYS---WITMN-----

510 520 530 540 550 560 570
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . .

prnA AGLGMLPDRSLPLLQHRPESIQKAEAMFASIRREAERLRTSLPTNYDYLRSRRDGDAQLSRNQHGPTLAAQERQ
rebH AGLGLVPDAPSPRLAHMPQATESVDEVFGAVKDRQRNLLETLPSLHEFLR-----------QQHGR--------
Thal AGLGLMPRNPLPALAYKPQSIAEAELLFADVKRKGDTLVESLPSTYDLLR-----------QLHGAS-------
pyrH LGLGIVPERPRPALLHMDP--APALAEFERLRREGDELIAALPSCYEYLA-----------SIQ----------

* * *

* * *
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2.3 PyrH a FADH dependent tryptophan 5 halogenase 

PyrH is a regioselective tryptophan 5 halogenase involved in the chlorination of the 

pyrroloindole moiety of the pyrroindomycin B (See Fig. 2.4) antibiotic in Streptomyces 

rugosporus 74.  
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Figure 2.4 
The pyrroindomycin are composed of a pyrroindole entity linked via an ester bond to an unbranched deoxytrisaccharide. A polyketide 

macro-ring system containing a is connected to the other end of the trisaccharide through a glycosidic linkage. Whereas 

pyrroindomycin B contain a cholrine ato, pyrroindomycin is the nonhalogenated derivative. 

 

The pyrroindomycins (See Fig 2.4) were first isolated in 1994 from fermentations of 

culture LL-42D005, a strain of Streptomyces rugosporus. Pyrroindomycins posses 

potent antimicrobial activities against methicillin-resistant Staphylococcus aureus 

(MRSA) and vancomycin-resistant Enterococci, and are the first natural products that 

contain the highly unsaturated pyrroloindole moiety 75. Tryptophan is presumed to be the 

precursor for the pyrroloindole moiety 76, and by analogy to pyrrolnitrin and 

rebeccamycin its halogenation should take place as the first step of the pyrroloindole 

synthesis. Starting with this assumption Zhener et al. were able to identify the gene of 

this tryptophan 5-halogenase by PCR using primers derived from conserved regions of 

the tryptophan halogenase genes already identified 74.  The gene named pyrH, was 

cloned and expressed. It showed 5 chloro and 5 bromo halogenase activity both in vivo 

and in vitro. PyrH involvement in pyrroindomycin B biosynthesis was proved by gene 

disruption. A Streptomyces rugosporus ∆pyrH mutant was shown to produce 
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pyrroindomycin A the non chlorinated pyrroindomycin, but failed to produce the 

chlorinated one, pyrroindomycin B 74. 

 

2.4 Aim of our study 
In order to test the reaction mechanism proposed for the tryptophan FAD dependent 

halogenase family we decide to pursue the crystal structure of PyrH together with its 

substrate and/or product.  The structure of PyrH is expected to be highly similar to that 

of PrnA. If the proposed PrnA reaction mechanism is correct we would expect the 

localization of important residues involved in the catalytic mechanism such as those that 

define the hypohalous acid tunnel, base E346 and the lysine K79 to be conserved. 

While differences in the tryptophan binding region should account for the different 

substrate orientation responsible for the enzyme regioselectivity. To achieve this goal 

crystallography quality pure PyrH protein had to be produced and crystallization 

condition obtained. 
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2.5 Materials and Methods 
 

2.5.1 Strains used in this study 
 
Table 2.2  
    N# Strain Relevant genotype   Organism / Use      Supplier/ 

   References 

        1   BL915 ∆ORF1   PRN-  (∆prnA)  kmR 
Pseudomonas fluorescens /    

Expression  
20; 70 

        2 TOP10 

F- mcrA D(mrr-hsdRMS-

mcrBC) f80lacZDM15 DlacX74 

deoR recA1 araD139 D(ara-

leu)7697 galU galK rpsL (StrR) 

endA1 nupG 

Escherichia coli / Cloning  Invitrogen 

       3 S17.1 
TpR SmR recA, thi, pro, hsdR-

M+RP4: 2-Tc:Mu: Km Tn7 λ pir 

 

Escherichia coli / Conjugation 

 

Biomedal 

       4 BL915 ∆ORF1-4 
 PRN-  (∆prnA, ∆prnB, ∆prnC, 

∆prnD)  kmR 

Pseudomonas fluorescens / 

Expression 
20; 70 

 

2.5.2 Plasmids 
 
Table 2.3 

N#        Plasmid      Antibiotic Resistance /  
          Host  

      Type of Vector / 
        Characteristic 

Supplier/      
References 

1 pCIB-HIS-pyrH   
Tetracycline / 

 E.coli; Pseudomonas sp. 

HIS tag expression, Ptac 

promoter 

Broad host range gram -/+  

vector (~22Kbp) 

74 

2 
pCIB-HIS 

(~21Kbp) 

Tetracycline / 

 E.coli; Pseudomonas sp.  

HIS tag expression, Ptac 

promoter 

Broad host range gram -/+  

vector (~21Kbp) 

20; 21; 74; 77; 78 

3 pFastBac HT A 
 

Ampicillin, / E.coli 

cloning for Bacmid generation;  

high copy number ideal for 

subcloning 

(4856bp) 

Invitrogen 

4 pLAH31 
Tetracycline / 

 E.coli; Pseudomonas sp.  

HIS tag expression, T5  

promoter 

Broad host range gram -/+  

vector 

(~21Kbp) 

79; 80; 81 
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2.5.3  Bacterial Growth and Treatments 

2.5.3.1  Media 

Luria-Bertani-Medium (LB) for E. coli: 
 
 
LB-Medium:  10g/l  Tryptone                                   LB-Agar:    LB-medium 
                       5g/l Yeast Extract                                    Agar 15g/l 
                       5g/l NaCl 
 
dissolve in H2O, pH 7,0 with 0,1M NaOH, autoclave 
 
E. coli cells were grown at 37ûC on plates. Liquid cultures were incubated on an orbital 

shaker at about 200rpm at temperatures ranging from 37 to 18ûC. Growth was monitored 

following the A600nm (Spectrophotometer: Pharmacia Biotech Ultrospect 1000). 

 
 
HNB medium for Pseudomonas: 
 
HNB-Medium:   3g/l Meat extract                             HNB-Agar:   HNB-Medium   
                         3g/l Yeast extract                                                 Agar 15g/l 
                         5g/l Peptone from meat 
                         5g/l NaCl 
 
dissolve in H2O, pH 7,0 with 0,1M NaOH, autoclave 
 
 
PMM medium for Pseudomonas: 
 
PMM-Agar:        8,0 g/l K2HPO4  X 3H2O 
                          3,0 g/l KH2PO4 
                          1,0 g/l (NH4) 2SO4 
                          6.7g/l Disodium Succinate 
                          18 g/l Agar 
 
dissolve in H2O, pH 7,0 with 0,1M NaOH, after autoclaved add 1,5ml/l of 1M MgSO4  

                          
Pseudomonas cells were grown at 30ûC on plates. Liquid cultures were incubated on an 

orbital shaker at approximately 180 to 210rpm at 30ûC. 

2.5.3.2 Antibiotics 

The following antibiotics were used when appropriate: 
Antibiotic Stock at Used at 

   Ampicillin Sodium     50 mg/ml in H2O at -20°C 100 µg/ml 

   Kanamycin Sodium sulphate     25 mg/ml in H2O at -20°C 50 mg/ml  

   Spectinomycin     50 mg/ml in H2O at -20°C 100 µg/ml 

   Streptomycin      50 mg/ml in H2O at -20°C 30 µg/ml 

   Tetracycline      5 mg/ml in EtOH at -20°C 15µ g/ml E. coli 

30 µg/ml Pseudomonas sp. 
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2.5.3.3  Glycerol Stocks 

Fresh liquid bacterial cultures were mixed with sterile 60%(v/v) glycerol to a final 

concentration of 30%(v/v). After 5 min incubation on ice the samples were frozen in liquid 

nitrogen and stored at �80 ûC until required.  

 
 

2.5.4 Genetic Techniques 

2.5.4.1 Purification of Plasmid-DNA from Pseudomonas 

Plasmid DNA purification was carried out by using both the QIAprep Spin Miniprep Kit by 

using the microcentrifuge method or the QIAGEN Maxi Plasmid Kit. Because of the big 

plasmid size that reduce the standard yield, miniprep extraction of plasmid pLAH31 and 

pCIBHIS from E.coli and Pseudomonas were carried out starting from 15ml of                  

cultures 82; 83.  

2.5.4.2 Agarose Gel Electrophoresis 

DNA-fragments were analyzed by using 0.6 to 1.4% (w/v) agarose gels, depending on the 

DNA fragment size. Polymerized agarose gels contained 1x buffer TAE and 0.01% 

ethidium bromide. The DNA samples were mixed with 6x loading buffer, loaded onto the 

gel and separated at 5 V/cm in 1x buffer TAE. Afterwards gels were visualized and 

photographed by using a Biorad Geldoc apparatus. 

 
TAE 50X:              242 g Tris Base 

                              57.1 mL Glacial Acetic Acid 

                             100 mL 500 mM EDTA, pH 8.0 

                              600 mL ddH2O 

                              Mix. Bring volume to 1 L. Autoclave 

 

6x Loading buffer: Tris-HCl 60 mM pH 7.6 

                              EDTA 6 mM 

                  Bromphenole Blue 0.03 % (w/v) 

                  Xylene Cyanole  0.03 % (w/v) 

                              Orange G 0.03 % (w/v) 

                  Glycerol 30 %    (v/v) 
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2.5.4.3 DNA Purification from Agarose Gel and PCR Purification  

After electrophoresis DNA was visualized under UV light. Slices of agarose gel containing 

the DNA fragments of interest were excised with a sterile scalpel. For the gel extraction 

procedure the QIAquick Gel Extraction Kit was used. PCR products were purified using 

the QIAquick PCR Purification Kit 84. 

 

 

2.5.4.4 Polymerase Chain Reaction – PCR 

PCR has been used to amplify the pyrH gene from plasmid-DNA. The reaction was 

performed using the GeneAmp® PCR System 2400 thermal cycler (Applied Biosystem). 

A standard reaction contained the following reagents: 

 

Reagent 
Amount - 
Stock [C] 

Final [C]  PROGRAM 
 

dNTPs  1µl -10mM 0.2mM  98°C X 3�00��  

Oligos 

(forward and 

reverse) 

1µl - 100µM 0.5µM 

 

98°C X 45�� 

 

Polymerase 

buffer 
5µl - 10X 1X 

 
47°C X 45�� 

30 cycles 

 

Polymerase* 
1µl - 2U/µl 2U 

 
72°C X 2�10�� 

 

Template 

DNA 
1µl � 50ngr/µl 50ngr 

 
72°C X 10�00�� 

 

H20 Up to 50µl -    

 

 

 
OLIGOS: 

5�-pyrH-TEV-BamHI 
 
ATTCGTAGCGGATCCAGAAAACCTGTATTTTCAGGGCATGAT
CCGATCTGTGGTGATCGTGGGTGGTGGC 

3�-pyrH-TEV-HindIII 

pyrH amplification; red  BamHI 
site, blue HindIII site, yellow 
TEV recognition sequence, in 
bold ATG and STOP codons GTATGCTACCAAGCTTCTATCATTGGATGCTGGCGAGGTACT

CGTAG 
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Reagent concentrations and procedures were chosen as recommended by the 

manufacturers of Vent Polymerase (NEW ENGLANDS BIOLAB Cat. No.M0254L) chosen 

because of the high fidelity due to its 3�-5� exonuclease activity (Proof reading). 

 

2.5.4.5 DNA Sequencing 

The pCIB-HIS-TEV-pyrH plasmid DNA was sequenced at the University of Dundee 

Sequencing Service and analyzed with the Contig Express feature of The Vector 

sequence analysis software (InforMax). Plasmid DNA and DNA primers were sent to the 

Sequencing Service according to the Unit Standard Procedures. 

Name                    Description Sequence 

5�-pyrH-seq-Forward (1) TGGTCGACGACGTGCAGCAC 

3�-pyrH-seq-Reverse (1) 
pyrH sequencing; forward from 571 to 591bp from 2nd 
ATG, reverse from 872 to 852 from 2nd ATG TTGCCGTCGCGCTTGAACAG 

5�-pFastBac HT A-For TATTCCGGATTATTCATACC 

3�-pFastBac HT A-Rev 
Sequencing of DNA cloned into pFastBac HT A 
polylinker (For 3995-4015; Rev 4319-4301) GTTTCAGGTTCAGGGGGAG 

 

2.5.4.6 DNA Restriction / DNA Ligation 

Restriction endonucleases were purchased from NEW ENGLANDS BIOLAB. The 

digestion mix contained 1x restriction buffer (as recommended by the manufacturer)              

10-20 U/µg restriction enzyme(s) and the DNA to be digested. Plasmid DNA was 

incubated at 37 ûC for 1 hour, PCR products from 2 to 4 hours.  For double digestions the 

best buffer was chosen according to manufacturer�s catalog. DNA ligations were 

performed using T4 DNA ligase (ROCHE Cat. No. 0799009).  

 

2.5.4.7 Transformation of Pseudomonas by Conjugation  

pCIB-HIS-TEV-pyrH and pLAH31-pyrH plasmids were transformed into E. coli S17.1 

(Table 2.2 N#3). This strain has chromosomally integrated conjugal transfer functions 

(RP4 transfer functions) and is able to recognize the origin of transfer (oriT of RK2 

plasmid) contained in the pLAH31 and pCIB-HIS plasmids.  E. coli S17.1 was then used 

to transfer the plasmid DNA to Pseudomonas fluorescens BL915 strain ∆ORF1-4 (Table 

2.2 N# 4), (Conjugation). For conjugation 5-10ml of overnight liquid cultures of 

Pseudomonas and E. coli S17.1 carrying the appropriate plasmid were grown.                 
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The cultures were harvested at room temperature by centrifugation and the cell pellets 

washed twice with saline solution. Both pellets were resuspended in 50µl sterile HNB, the 

two solutions mixed, plated on a PMM-agar plate and incubated O/N at 30°C for mating. 

The next day all the cells were scraped from the plate with a sterile loop and resuspended 

in 500µl of saline solution. Serial dilutions of the suspension (1:10 to 1:10000) were 

spread on PMM-agar plates containing the required antibiotics for the Pseudomonas 

strain and the plasmid. The plates were incubated at 30°C 2 to 4 days before the 

exconjugant bacteria were visible (1mm diameter colonies). Single colonies were picked 

and spread onto HNB plates with the required antibiotics for the Pseudomonas strain and 

the plasmid of interest plus 100µg/ml of Ampicillin. The plates were incubated one night at 

30°C. Because Pseudomonas is resistant to Ampicillin; Ampicillin can be used to remove 

E. coli cells still present on the plates. This last step was repeated at least once to be sure 

to isolate only Pseudomonas bacteria. Pseudomonas exconjugant clones were screened 

by plasmid DNA extraction and restriction digestion.  

                  

2.5.5 Protein Biochemistry 
 

2.5.5.1 Recombinant Protein Expression in Pseudomonas 

Overnight cultures of P. fluorescens carrying the expression plasmids were diluted 1:20 in 

fresh medium containing the appropriate antibiotics. Cells were incubated for 2 days at 

30ûC on an orbital shaker at 30ûC/200rpm. After centrifugation at 13000xg (25min, 4 ûC; 

Beckman Coulter Avanti J-20 XP), the cell pellets were stored at �20 ûC until required. 

For large preparation a 10 liters fermentor was utilized using the same growth condition. 

2.5.5.2 Purification of His-Tagged Fusion Proteins from Pseudomonas Using Ni2+              

Chelating Matrix 

Bacterial cell pellets were completely resuspended in 2ml/g binding buffer containing 

Complete EDTA free Protease Inhibitor Cocktail Tablets (ROCHE Cat. No.1873580). After 

adding DNAse (final conc. 5µg/ml) and Lysozyme (final conc. 1mg/ml) the cell 

suspensions were incubated 20min at room temperature before being sonicated or 

passed twice through a Cell Distruptor, The Basic Z Constant System Ltd., to achieve 
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complete cell disruption. The lysate was centrifuged at 48000xg (40min, 4ûC; Beckman 

Coulter Avanti J-20 XP) to pellet insoluble fractions and debris. Before loading onto 

the Ni2+-column, the soluble fractions were syringe filtered (w/0.22µm). The column 

HisTrap HP 5ml (Amersham Biotech Pharmacia) connected to a P1 peristaltic pump 

(Amersham Biotech Pharmacia) was regenerated before use as follows: washed with 

20ml water, stripped with 20ml 50mM EDTA and after a further wash step with 20ml 

water, loaded with 10ml 400mM NiSO4 and washed again. After equilibration with 15ml of 

binding buffer, the protein solution was applied to the column and the flow through 

retained for analysis. The column was washed with washing buffer until all the unbound 

proteins were removed from the column. The protein content of the flow through was 

monitored with Bradford assay. Bound proteins were eluted applying the elution buffer 

containing 250mM imidazole. The protein content of eluted fractions, collected by a 

FRAC100 fraction collector (Amersham Biotech Pharmacia), was checked by Bradford 

assay and analyzed by SDS PAGE. The fractions, which contained the purified protein 

were concentrated (VIVASCIENCE VivaSpin Concentrators) by centrifugation (3000 rpm, 

4 ûC) and afterwards dialyzed against an appropriate buffer to remove imidazole. 

The buffers used are detailed in Table 2.4. 
 
Table 2.4 
Binding Buffer:                              Washing Buffer: Elution Buffer: 

KH2PO4 20mM pH7.4 KH2PO4 20mM pH7.4 KH2PO4 20mM pH7.4 
NaCl 0.1M                              NaCl 0.1M                              NaCl 0.1M                              
Imidazole 20mM                    Imidazole 35mM                             Imidazole 250mM 
 
 
 
 

2.5.5.3 Anion Exchange Chromatography (HiPrep 16/10 Q FF) 

BIOCAD 700E Perfusion Chromatography Workstation (Applied Biosystem) was used at 

room temperature connected to an Advantec SF 2120 (Advantec) automatic fraction 

collector. After loading the protein on a HiPrep 16/10 Q FF (Amersham Biotech 

Pharmacia) it was eluted against an increasing linear salt gradient. The protein 

concentration was monitored by measuring A280 and protein containing fractions were 

analyzed by SDS PAGE. 
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2.5.5.4 Gel Filtration Chromatography (HiLoad16/60 Superdex200, Superose 12 

HR10/30) 

BIOCAD 700E Perfusion Chromatography Workstation (Applied Biosystem) was utilized 

at room temperature connected to an Advantec SF 2120 (Advantec) automatic fraction 

collector. A HiLoad 16/60 Superdex 200 (Amersham Biotech Pharmacia) gel filtration 

column was used for preparative purpose while a Superose 12 HR 10/30 (Amersham 

Biotech Pharmacia) gel filtration column was used to determine the oligomeric state of the 

protein. The columns were equilibrated with approximately 2CV of buffer and then the 

protein solution was applied to the column. After 0,2CV 1ml fractions were collected for 

1CV. The protein conc. was monitored by measuring A280. Fractions corresponding to 

protein peak(s) were analyzed by SDS-PAGE, pooled and concentrated.  

  

 

2.5.5.5  Determination of Protein Concentration  

The protein concentration was calculated by the measurement of the A280 

(Spectrophotometer: Pharmacia Biotech Ultrospect 1000). Depending on the 

concentration of the protein solution a dilution was made, the A280 was measured three 

times and the average was used in the following calculation: 

 

[(FV/P) x A280] / EC = concentration in mg/ml 

[concentration in mg/ml] / MW = concentration in mM 

 
FV  = final volume in µl 

P    = volume of protein solution in µl 

EC = theoretical extinction coefficient of the protein [*]  

MW = molecular weight of the protein 

 
[*] obtained from http://us.expasy.org/cgi-bin/protparam by entering the amino acid sequence of the protein 
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Alternatively the Bradford method was used. This protein assay is based on complexing 

of proteins with Brilliant Blue G-250. The protein sample was mixed with the reagent and 

then read at 595nm after a short incubation at room temperature.  The protein 

concentration was calculated by determination of the A595 (Spectrophotometer: Pharmacia 

Biotech Ultrospect 1000). Depending on the concentration of the protein solution a dilution 

was made and the A595 was measured three times. The average result was used to 

extrapolate the protein concentration on a calibration curve obtained by measuring the 

A595 of different dilution of a BSA standard. 

Bradford Reagent (Cat. No. B6916),SIGMA 

 

2.5.5.6 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS PAGE) 

For separation of proteins under denaturating condition Sodium Dodecyl Sulphate-

PolyAcrylamide Gel Electrophoresis was used. Precast gels were obtained from 

INVITROGEN NuPage 4-12 % Bis-Tris Gels, 1mm x 10, 12 or 17 wells and run in 1x 

MES buffer Invitrogen NuPageTM MES SDS Running Buffer (20x) or NuPage 7 %                  

Tris-Acetate Gels 1mm x 10 and run in 1X TRIS-ACETATE  buffer Invitrogen NuPageTM     

TRIS-ACETATE  SDS Running Buffer (20x). The samples were mixed with sample buffer 

(Invitrogen NuPage LDS 4x sample buffer), denaturated for 5-10 min at 100ûC and then 

applied to the gel. Protein samples loaded onto MES gels were run at 200 V for 35 min, 

protein samples loaded onto TRIS-ACETATE gels were run at 150 V for 60 min 85.  

 

 

 

2.5.5.7 Coomassie Staining 

SDS-PAGE gels were stained ca. 10min in Coomassie blue staining solution with slight 

shaking. Following staining, the gels were incubated in destaining solution (See Table 

2.5).  After the background was destained the gels were washed in distilled water for 10 

min and dried with the DryEASE Kit (INVITROGEN). 
DryEASE Mini Gel Drying System (Version E), INVITROGEN 
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Table 2.5 

Coomassie blue staining solution: Destaining solution: 

50 % Methanol    (v/v)  45 % Methanol      (v/v) 

10 % Acetic Acid  (v/v)                    10 % Acetic Acid   (v/v)

0.5 % Brilliant Blue R (w/v)  

 

2.5.5.8 TEV purification and TEV protease digestion  

The recombinant histidine tagged 27Kda catalytic domain of the Nuclear Inclusion a (NIa) 

protein encoded by the tobacco etch virus (commonly called TEV protease) was purified 

from E. coli BL21 codon plus (STRATAGENE) cells containing plasmid pRK793-HIS-

TEV[S219V]Arg5 (David S. Waugh, Macromolecular Crystallography Laboratory NCI at 

Frederick). O/N E. coli culture in LB containing 100µg/ml Ampicillin and 30µg/ml 

Chloramphenicol were diluted 1 to 30 in fresh medium. Bacteria were grown till mid log 

phase (OD600nm ~ 0.7) at 37°C 200rpm on orbital shaker incubator. Protein expression 

was induced by adding IPTG to a final concentration of 1mM and the temperature was 

reduced to 30°C. After 4hrs of induction, cells were harvested by centrifugation. TEV was 

purified on Nickel chelating column as described in Paragraph 2.5.5.2. Immediately after 

the elution step all the protein fraction were diluted four times in 50mM NaHPO4, 150mM 

NaCl 1mM EDTA pH 8.0 buffer and kept on ice. Fractions containing TEV protease were 

pooled; protein was concentrated at 2mg/ml; 10% glycerol added to the buffer; protein 

was snap frozen in liquid N2 and stored at -80°C 

TEV protease digestion was carried out in 50mM NaH2PO4, 50mM Tris-HCl pH 7,5,        

400mM NaCl, 0,5mM EDTA with or without 1mM DTT.  Usually 1µg of TEV was used for 

every 1mg of protein to be digested.  
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2.5.5.9 PyrH assay 

The PyrH assay was performed as described by Zehner et al. 74; the reaction mix 

contained: 

 

Reagent Amount - Stock [C] Final [C] 

E.coli  Fre 0.84 UI/ml* 0.42mU 

PyrH 10µl - 175µM 1.75µM 

NADH (Sigma) 20mM - 125µl 2.5mM 

FAD (Sigma) 2mM - 5µl 10µM 

MgCl2 50µM � 250mM 12.5mM 

D/L-TRP 100µl � 6mM 0.6mM 

Buffer (20mM KH2PO4 pH 7.2) Up to 1ml  

 

The reaction was carried out at 30ûC. To stop the reaction samples were boiled (100°C) 

for 5min. Precipitated protein were separated by centrifugation (13000rpm RT) on a 

microcentrifuge. Soluble fraction samples (20µl) were analyzed by isocratic HPLC, 

Methanol:H2O 60:40, using a Varian OmniSpher C-18 250 * 4.6 mm column. Flow rate 

was 1ml/min run time 30min and detected by A220nm. The retention time of the product                  

5-Cl-TRP was comparable with previously described data by Zehner 74. E. coli Fre 

(ferredoxin reductase) was kindly provided by Khim Leang of our group. The column was 

calibrated using pure 5-DL-Cl-TRP (AT N# 32606C from Apin Chemicals Ltd., UK). 
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2.6 Results 

2.6.1 PyrH Expression Constructs 
Pseudomonas fluorescens BL915 strain ∆ORF1 20 carrying the pCIB-HIS-pyrH 74 plasmid 

was provided by our collaborator Professor K.H. van Peé from the Institut für Biochemie 

at the Technische Universität Dresden, Germany. This DNA codes for                  

N-terminal tagged PyrH protein (See Fig. 2.4). The protein tag consisted of a classical 

hexahistidine signature, to allow easy purification by Ni2+ chelating resin, followed by a 

linker region and a protease recognition site, Enterokinase (EK)  light chain recognition 

site that can be recognized by the commercially available antibody, Anti-Xpress Antibody, 

(Invitrogen), (See Fig. 2.4).   

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.4 
pCIB-HIS promoter and polylinker region. Underlined: in red the tac promoter sequence; in blue the two RBS present in the promoter 

region; light purple the hexahistidine sequence; in brown the anti X-press epitope; in green the EK recognition site and dark purple the 

EK cleavage site. 

 
Given preliminary unsuccessful crystal trial results with PyrH purified from this strain  

(See Paragraph 2.6.5) concerns about possible detrimental effects exerted by the 32aa 

long tag, and cleaving problems with the EK protease that prevent its use in an effective 

way (Naismith lab unpublished results) we decided to reclone the pyrH gene. Two 

different strategies were chosen: firstly recloning pyrH into pCIB-HIS with a TEV protease 

recognition site immediately before the first Met; secondly using a different plasmid with a 
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shorter N-terminal hexahistidine tag. To accomplish the first objective pyrH was re-

amplified by PCR from pCIB-HIS-pyrH plasmid using a set of primers that carry the TEV 

protease recognition site. The PCR product was then ligated into plasmid               

pFastBac-HT-A through BamHI and HindIII restriction site. E. coli TOP10, cloning strain, 

cells were transformed with 5µl of the reaction mix. Plasmid DNA was extracted from 

Ampicillin resistant clones. Once the TEV-pyrH gene was proven to be correct by 

sequencing the TEV-pyrH gene was cloned into pCIB-HIS vector for Pseudomonas 

overexpression. The second approach consisted in choosing a different expression vector 

with a shorter N-terminal hexahistidine tag. Iris Bertani and Vittorio Venturi from the 

ICGEB Bacteriology Group, Italy sent us their pLAH31 vector 79  (See Fig. 2.5).   

 

 
Figure 2.5 
pLAH31 promoter and polylinker region. Underlined: in red the T5 promoter sequence; in blue the RBS; light purple the hexahistidine 

sequence. 

 

The pyrH gene was excised from pCIB-HIS-pyrH plasmid with a BamHI HindIII double 

digestion and reintroduced into the pLAH31 plasmid using the same restriction sites 

preserving the reading frame. E. coli TOP10 (cloning strain) cells were transformed with 

5µl of the ligation mix. Plasmid DNA was extracted from Tetracycline resistant clones. The 

insert presence was checked by restriction digestion and DNA gel electrophoresis before 

introducing the plasmid DNA into Pseudomonas by conjugative mating (Fig. 2.6 shows 

DNA gel examples). 
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Figure 2.6 
DNA gel examples.  A: M1, DNA ladder (1kbp DNA Ladder, Promega, Cat. No. G5711); 1, TEV-pyrH PCR amplified fragment; 2, pyrH 

extracted from pCIB-HIS-pyrH; 3, pLAH31 linearized BamHI HindIII; M2, DNA ladder 100bp DNA Ladder (Promega, Cat. No. G2101). 

B: M1, DNA ladder (1kbp DNA Ladder, Promega, Cat. No. G5711); 1,2,3,4,5,6,7,8,9,10, pLAH31-pyrH plasmid digested BamHI HindIII, 

M2, DNA ladder (100bp DNA Ladder, Promega, Cat. No. G2101). 

 
pCIB-HIS-TEV-pyrH and pLAH31-pyrH plasmids were transformed into E. coli S17.1 and 

then by conjugation to Pseudomonas fluorescens BL915 strain ∆ORF1-4.  

2.6.2 PyrH Expression and Purification 
PCIB-HIS-pyrH, pCIB-HIS-TEV-pyrH and pLAH31-pyrH plasmids contain constitutively 

active promoters and all gave over-expression of soluble HIS-tagged PyrH. The 

overexpressed proteins run on SDS PAGE between the 66.3KDa and the 55.4KDa 

markers consistent with the expected proteins Mw:  pLAH-31-PyrH 59852Da;                  

pCIB-HIS-PyrH: 62020Da; pCIB-HIS-TEV-PyrH: 62734Da.  Furthermore protein identity 

was confirmed with peptide fingerprinting by the St Andrews University BMS MASS 

SPECTROMETRY AND PROTEOMICS FACILITY PyrH was purified by a three step 

procedure from fresh or frozen bacteria cell pellet, consisting of a first Nickel chelating 

affinity chromatography followed by an anion exchange column and a gel filtration 

column. The last step was used to polish the protein preparation and exchange the 

protein buffer to Tris-HCl, PyrH is stable in 10mM Tris-HCl pH7.2 at concentration up to 

14mg/ml. Both pCIB-HIS and pLAH31 expressed soluble PyrH, but  the protein yield 

differed greatly, due possibly to different promoter strength (Ptac is described as a strong 

constitutive promoter in Pseudomonas by Kirner 21 citing unpublished studies). This is 
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clearly evident from the two SDS PAGE of Fig. 2.7. The gels show PyrH after the first step 

of purification by Ni2+ affinity chromatography.  

 
 

 
 
 
 
 
 
 
 
 
Figure 2.7 
NuPage 4-12% Bis-Tris gels showing the fractions eluted from the first Ni2+ chelating resin column (affinity chromatography) during the 

purification of PyrH from A: pLAH31 and B: pCIB-HIS. M: molecular weight marker (Mark 12, Invitrogen, Cat. No. LC5677)                

The yellow arrow indicates PyrH. 

 
The dramatic difference is clear. A more quantitative measurement is given in Table 2.6. 
 
TABLE 2.6 

Total protein amount at each purification step 

PyrH: pLAH31-pyrH pCIB-HIS-TEV-pyrH 

LYSATE ON Ni2+ COLUMN         900mg - 100%*          1200mg - 100%* 

OUTPUT ELUTED PYRH FRACTIONS FROM Ni2+ COLUMN           60mg -  6.6%*            195mg - 16.25%* 

AMOUNT COLLECTED AFTER GEL FILTRATION COLUMN             2mg -   0.2%*           82,5mg -    6.8%*   

* compared to the amount loaded on the first column 

 

I was not able to cleave the N-terminal from the overexpressed TEV-PyrH.                  

After incubation at room temperature with TEV protease for more than 2 days the                  

TEV-PyrH fractions from the first Ni2+ column were reloaded onto a Ni2+ column. This 

second Ni2+ column should remove not only the His tagged protease but also non specific 

binding proteins. In principle only cleaved PyrH protein would be expected to flow through 

while the contaminant proteins and the TEV protease would bind to resin. Only a small 
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fraction of PyrH was cleaved as shown in Fig. 2.8 while the majority of it bound again to 

the column by means of the uncleaved hexahistidine tag. 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.8 
NuPage 7% Tris-Acetate gel showing TEV-PyrH during the first (red) and after incubation with TEV protease second (yellow) Ni2+ 

chelating resin column. M: marker (Par 2.4.5.10,  A); L: total lysate loaded; FT: flow-through; W: wash; E: eluted TEV-PyrH. The yellow 

arrow indicated PyrH. 

   

2.6.3 PyrH Oligomeric State 
The PyrH oligomeric state was assessed by analytical gel filtration chromatography. PyrH 

behaviour was consistent with the behavior of a dimeric protein. PrnA, as well, has been 

already described as a dimeric protein 15. An example is shown in Fig. 2.9. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9 
Analytical gel filtration column Superose 12 HR10/30® was used together with protein weight marker from Sygma. In blue PyrH trace, 

in red BSA and in green alcohol dehydrogenase. PyrH retention time is between BSA and alcohol dehydrogenase ones consistently 

with a dimeric protein with a Mw of about 124KDa. (Y axes OD280nm; X axes time in minutes). 
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2.6.4 PyrH Enzymatic activity  
In order to maximize the possibility of obtaining, biochemically meaningful co-crystals we 

assayed the purified enzyme with D- and L-tryptophan isomers to be sure the enzyme 

was able to turn over both of the tryptophan enentiomers.  Fig. 2.10A shows a time 

course experiment using D-tryptophan as substrate. PyrH appears to be active on both of 

the tryptophan isomers. Despite the non quantitative nature of the assay it is evident from 

the chromatograms peaks intensity in Fig. 2.10B that the L-isomer is a better substrate 

than the D-one. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 2.10 
A: HPLC chromatograms of PyrH reactions built with D-tryptophan as substrate. The reaction was carried out as described in materials 

and methods. Samples were taken at t=0h, 2h, 6h. In red the chromatography trace of chemically synthesized 5-DL-Cl-tryptophan from 

Apin Chemicals Ltd, Abingdon, UK (Cat N# 32606c). The blue arrow indicates the 5-Cl-tryptophan peak. Small variation in the retention 

times are ascribed to the non optimal HPLC configuration. B: comparison of the intensity of the Cl-tryptophan peak at the 6h time point 

for 5-Cl-D-TRP 60mAU and 5-Cl-L-TRP 275mAU.  
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2.6.5 PyrH crystallization trials 
PyrH was concentrated at 10mg/ml (See Fig. 2.11A).  FAD (Sigma) was added to a final 

concentration of 1mM and crystal trial were set up on sitting drop plates (Hampton 

Research CrystalClear StripsTM 96 wells plates) using crystallization sparse matrix kits 

from a range of different providers (2µl protein solution plus 2µl of precipitant). PyrH from    

pCIB-HIS was crystallized using condition number 22 of the Hampton Crystal Screen 2 

(0.1 M MES pH6.5, 12%w/v PEG 20K). The crystals were hollow needle shaped and 

fragile (See Fig 2.11B).  Despite the crystal yellow color, indicating the presence of FAD, 

no reasonable protein diffraction pattern was obtained using our in house X-ray generator 

(Rigaku 007 rotating anode). 

 
 
 
 
 
 

 

 

 
Figure 2.11 
A: NuPage 4-12% Bis-Tris gels showing in lane 1 protein ladder; in lane 2 PyrH used for crystallization. B: PyrH crystals obtained with 

crystallization condition N#22 from Hampton Crystal Screen 2, Hampton Research. 
 
Crystal trials with PyrH from pLAH31 did not give us any lead to pursue. PyrH was 

recloned into the pCIB-HIS vector together with a TEV protease signature at the protein   

N-terminal. TEV-PyrH protein carrying a 40aa long tag resisted TEV protease cleavage. 

Crystal trials with the TEV-PyrH protein failed to reproduce the Hampton Crystal Screen 2 

number 22 condition rods. Three months after we set up a Hampton Natrix screen, we 

found bipyramidal crystals into the condition 11 drop (0.01M MgCl2, 0.05M Na Cacodylate 

pH 6.0, 1.0 M Li2SO4 * H2O) (See Fig 2.12A). We went back to the original plates 

containing PyrH with the shorter 32aa long N-terminal tag and in some of the Natrix 

number 11 drops we found crystals (See Fig 2.12B). Table 2.7 summarizes our findings. 
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Figure 2.12 
A: TEV-PyrH crystals obtained with crystallization condition N#11 from Natrix Screen, Hampton Research B: one of the few PyrH 

crystal found with crystallization condition N#11 from Natrix Screen. 
 
 
Table 2.7 

  Crystals 
Construct Protein feature N#22 C.Screen 2 N#11 Natrix 

pLAH31-pyrH 14aa N-tag none none 

pCIB-HIS-pyrH 32aa N-tag needles bypiramidal 

pCIB-HIS-TEV-pyrH 40AA N-tag         
TEV uncleavable none bypiramidal 

 
 

2.6.6 PyrH crystal optimization 
Given the starting crystallization conditions being 0.01M MgCl2, 0.05M Na-Cacodylate        

pH 6.0, 1.0 M Li2SO4 * H2O we expanded the pH and Li2SO4 concentration to optimize the 

crystallization conditions. 

  
Figure 2.13 
Optimization grid for crystallization condition N#11 from Natrix Screen, Hampton Research. [Li2SO4] was increased up to 2M and pH up 

to 7. Condition given better bigger crystals are highlighted in red. 

A B 
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Figure 2.13 shows the extended grid used to optimize TEV-PyrH crystallization 

conditions. Between pH 5,6 and pH 6,2 and with a Li2SO4 concentration between 1.2M 

and 1.6M we were able to grow crystal in less than 1 week (See Fig. 2.14)  

 

 

 

 

 

 

 

 
                         
Figure 2.14 
TEV-PyrH crystals obtained in 5 days optimizing crystallization condition N#11 from Natrix Screen 
 

We did not obtain any improvement in crystal diffraction increasing MgCl2 concentration 

and we were not able to obtain any crystal, after swapping Na-Cacodylate arsenic 

containing buffer with the less toxic buffer MES. Co-crystallization was attempted 

saturating the protein with substrate or the product analogue 5-DL-Br-TRP (Sigma). PyrH 

has been report to catalyze bromination of the tryptophan five position in presence of 

NaBr 74.           

 

2.6.7 PyrH data collection 
Our in house X-ray generator (Rigaku 007 rotating anode) was used to screen initial PyrH 

crystals to test their diffracting quality and determine cell dimensions and space group. A 

single PyrH crystal was cryoprotected with 20% glycerol added to the mother liquor and 

10 minutes exposure with 0.5° oscillation produced the diffraction image in Figure 2.15 

A1, with spots to 3.2 Å at the edge. A higher resolution data set was collected at The 

Daresbury Synchrotron Radiation Source on Station 10.1. The dataset was collected 

using a smaller oscillation 0.2° due to long cell dimension that gave rise at wider 

oscillation to too many overlaps Figure 2.15A2. A 2.4Å resolution dataset was obtained. 

600 images were indexed in MOSFLM 86, which identified the crystal as primitive 
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tetragonal. Data reduction suggested the crystal lattice belonged to the Laue group P422.  

Examination of systematic absences in SCALA87 indicated that the crystal belongs to 

space group P43212 or P41212. Data were index in P43212, the same space group of PrnA 

crystals), unit-cell parameters and statistics are shown in Table 2.8.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.15 
Differences in MOSFLM spot finding between images collected in house with 0.5°oscillation  (A1 image; A2 image processed with 

MOSFLM  with the superimposed yellow box indicating partial reflections, red overlapping ones)  and data collected at the synchrotron 

with 0.2° oscillation (B1 image; B2 image processed with MOSFLM  with the superimposed yellow box indicating partial reflections, red 

overlapping ones). 
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Table 2.8 

 

DATA COLLECTION 

 

PyrH 

 Overall OuterShell 
Low resolution limit (Å)                     50 2.53 

High resolution limit (Å)                              2.4 2.4 

Wavelength 0.980 Å 

Unit-Cell a=b=137.6 Å, c=307.9 Å, α=ß=γ=90.0 ° 

Space Group P43212, 

Total number unique  reflections               113154 15413 

Multiplicity  (%)  7.0 4.6 

Completeness (%) 97.6 92.4 

Rmerge 0.094 0.340 

I/σ   (Mean((I)/sd(I))                              16.9 3.7 

 

 

2.6.8 PyrH structure solution and refinement  
The PyrH structure was solved by molecular replacement with PHASER 88; 89 using a 

PrnA monomer (PDB accession code 2APG) as a search unit. A solution was found for 4 

monomers in the asymmetric unit cell, consistent with the Matthews coefficient calculation 

results 90 91  (See Table 2.9), and resolution range between 70 Å and 4.5 Å.  
 
Table 2.9 

SPACE GROUP CELL VOLUME Å 
Nmolecule / 

Asymmetric Unit 

Matthews 
Coefficient  

% SOLVENT P* 

P43212, 5822474 4 2.90 57.62 0.25 
(P*: probability across all resolution ranges) 
 
 

CHAINSAW (CCP4 package) was used to help to mutate residues that differ between 

PrnA and PyrH in the solution model. Refinement was carried out using cycles of manual 

refinement with WinCoot 51 and Refmac5 92; 93 (CCP4 package): final Rcryst was 0.217 and 
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final Rfree was 0.296.  The FAD electron density was present and clear in all the four 

monomers, an example is shown if Fig. 2.16. 
 
 
 
 
 
 
 
 
 
 
 
 

 
A 
 
 
 
 
 
 
 
 
 
 
 
 
 

B 
 

Figure 2.16 
PyrH 2FO-FC at 1σ in blue and FO-FC at 3σ in green electron density maps around the FAD cofactor:  A:  PyrH monomer B unbiased 

density;  B: PyrH monomer B with modelled FAD cofactor.   
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2.7 Discussion 

2.7.1 PyrH Expression and Purification 
A protocol for the purification on PyrH from three different constructs has been established.  

The differences in protein yields obtained using the two different promoters T5 and Ptac 

confirmed previous unpublished results claiming good constitutive activity of the latter one 
21 in Pseudomonas species. It has been proved that the enzyme is active on both D- and  

L-tryptophan expanding our chance of finding co-crystallization conditions.  Interestingly we 

were not able to cleave the histidine tag at the protein N-terminal. This problem could be 

related to the reported inactivity of histidine tagged HalB halogenase respect to the 

untagged version 94 

2.7.2 Overall Structure 
As expected from the high sequence homology between PrnA and PyrH the two proteins 

structure resulted to share the same overall fold. The PyrH asymmetric unit cell contains 

four monomers not related by crystallographic symmetry, see Fig. 2.17.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.17 
The four monomers of PyrH asymmetric unit. Monomer A: red carbon α trace yellow FAD. Monomer B: blue carbon α trace cyan FAD. 

Monomer C: purple carbon α trace gray FAD. Monomer D: gray carbon α trace blue FAD. 
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Monomer B is the one displaying the best electron density. No major differences are 

observed between the four subunits other than in small interconnecting loop regions. 

Structural superposition of monomer A, C and D to monomer B using the Protein structure 

comparison service SSM at European Bioinformatics Institute (http://www.ebi.ac.uk/msd-

srv/ssm) 50 resulted in a Z-score of 17.2 with a RMSD of 0.60Å, a Z-score of 19.4 with a 

RMSD of 0.62Å and a Z-score of 21.2 with a RMSD of 0.51Å.  Figure 2.18 shows the 

overlapped four monomer carbon α traces.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.18 
Ribbon representation of PyrH monomers superposed using the SSM algorithm of WinCOOT 51.  Monomer A: red carbon α trace yellow 

FAD. Monomer B: blue carbon α trace cyan FAD. Monomer C: purple carbon α trace gray FAD. Monomer D: gray carbon α trace blue 

FAD. 
 

Analysis of protein protein interfaces in the crystal using the web based PISA Server 95 

software (http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html) help to identify the two PyrH 

dimers that constitute the asymmetric unit cell consistently with gel filtration results shown 

in Paragraph 2.6.3 . The first PyrH dimer if formed by momers A and B the second by chain 

C and D. The PISA software calculated an interface area buried between the two 

monomers of 1700Å2 for the AB dimer and 1827Å2 for the CD dimer. Figure 2.19 shows 

the PyrH dimer AB. The interface between the two monomers is defined mainly by the 

substrate binding domain together with helix α12. As expected the PyrH dimer superpose 

with PrnA dimer with  in a Z-score of 20 and a RMSD of 1.66Å for 992 aligned residues 

(See Fig. 2.20). 
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Figure 2.19 
Cartoon representation of PyrH AB dimer. Monomer A: Flavin binding domain in blue, tryptophan binding domain in cyan.               

Monomer B: Flavin binding domain in red, tryptophan binding domain in orange. FAD in yellow. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.20 
Ribbon representation of PyrH and PrnA dimers superposed using the SSM algorithm of WinCOOT 51.  PyrH: monomer A in orange; 

monomer B in red. PrnA: monomer A in cyan; monomer B in blue.  
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PyrH structure covers the entire Streptomyces rugosporus protein coding sequence from 

the first Methionine (aa 1) to the last residue Glutamine 511 which corresponds to the                 

TEV-PyrH construct residues from aa 41 to aa 551. Monomer A contains two gaps 

between aa 185 and 204 and between aa 356 and 360.  Monomer B contains a gap 

between aa 186 and 196. Monomer C contains a gap between aa 185 and 204. Monomer 

D contains a gap between aa 185 and 201. All the gaps are in interconnecting loop 

regions. The FAD density is clear for all the four monomers. The secondary structure was 

assigned, using STRIDE 96 web based software (http://webclu.bio.wzw.tum.de/cgi-

bin/stride/stridecgi.py) and confirmed by visual inspection of the model, (See Fig. 2.21 and 

2.22). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.21 
PyrH monomer B structure cartoon representation. Each of the identified secondary structure is labeled (α = helix, β = sheet). FAD group 

is in yellow. The N terminal is highlighted by a red sphere the C-terminal with a blue one. The two yellow spheres sign the boundary of 

the disordered loop between aa 186 and aa 196. 
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              .         .         .         .         .      
 41  MIRSVVIVGGGTAGWMTASYLKAAFDDRIDVTLVESGNVRRIGVGEATFS   90 
        EEEEE   HHHHHHHHHHHHHHGGG EEEEEETTTT                 
         β1(1)              α1a-b    β1(2)                                       
              .         .         .         .         .      
 91  TVRHFFDYLGLDEREWLPRCAGGYKLGIRFENWSEPGEYFYHPFERLRVV  140 
     HHHHHHHHH   HHHHHHHH  EEE EEEEETTTTTTTEEEEE     EE      

               α2           α3    β2(1)  β3(1)             β3(2)      β4(1) 
              .         .         .         .          .      
141  DGFNMAEWWLAVGDRRTSFSEACYLTHRLCEAKRAPRMLDGSLFAS-ALAE 199 
     TTEEHHHHHHHHHTTTT HHHHH HHHHHHHH      TTT      TTTT      
       β4(2)  α4          α5     α6                                                
              .         .         .         .         .      
200  QRAQFPYAYHFDADEVARYLSEYAIARGVRHVVDDVQHVGQDERGWISGV  249 
     HHHH   EEE  HHHHHHHHHHHHHH   EEEE  EEEEEETTTT EEEE      
      α7    β2(2)      α8          β1(3)   β5(1)       β5(2)                            
              .         .         .         .         .      
250  HTKQHGEISGDLFVDCTGFRGLLINQTLGGRFQSFSDVLPNNRAVALRVP  299 
     EETTTTEEE  EEEE TTTTTIIIIITTT   EETTTTTT  EEEEEEEE      

                  β5(3)  β1(4)       α9       β6(1)        β3(3)        
              .         .         .         .         .      
300  RENDEDMRPYTTATAMSAGWMWTIPLFKRDGNGYVYSDEFISPEEAEREL  349 
     TTTTTTT   EEEEEETTEEEEEEETTTEEEEEEEETTTTT HHHHHHHH      
                β3(4)    β3(5)       β3(6)          α10           
              .         .         .         .         .      
350  RSTVAPGRDDLEANHIQMRIGRNERTWINNCVAVGLSAAFVEPLESTGIF  399 
     HHHHHTTTTTTTEEE     EETTTTEETTEEETTTTTEE  TTTTHHHH      
                 β3(7)   β6(2)   β1(5) β1(6)   β6(3)                                   
              .         .         .         .         .      
400  FIQHAKEQLVKHFPGERWDPVLISAYNERMAHMVDGVKEFLVLHYKGAQR  449 
     HHHHHHHHHGGG  TTTT HHHHHHHHHHHHHHHHHHHHHHHHHHHH         
          α11a-b                  α12                                             
              .         .         .         .         .      
450  EDTPYWKAAKTRAMPDGLARKLELSASHLLDEQTIYPYYHGFETYSWITM  499 
        HHHHHHHH   TTTHHHHHHTTTTT  TTTTT        HHHHHHH      
           α13         α14                        α15                              
              .         .         .         .         .      
500  NLGLGIVPERPRPALLHMDPAPALAEFERLRREGDELIAALPSCYEYLAS  549 
     HHHH   TTTT GGGGG  HHHHHHTTHHHHHHTTTTTTTT  HHHHHHH      
                  α16    α17     α18              α19                              
                                                               
550  IQ                                                  551 

 
 
 
 
 

Figure 2.22 
PyrH, monomer B secondary structure assignment output file from the web based version of STRIDE 96 

(http://webclu.bio.wzw.tum.de/cgi-bin/stride/stridecgi.py).  Residues are numbered as in the refined structure. T = turns, H = α-helix,                  

G = 310-helix, I = Pi-helix, E = β-strand. Shaded in yellow is the gap containing the disordered region from aa 186 to aa 196 
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2.7.3 PyrH and PrnA comparison 
Structural superposition of PyrH monomer B on PrnA model using the Protein structure 

comparison service SSM at European Bioinformatics Institute (http://www.ebi.ac.uk/msd-

srv/ssm) 50 resulted in a Z-score of 16.7 with a RMSD of 1.35Å for 472 aligned residues. 

The structure based superposition is shown is Figure 2.23. Conserved important residues 

were identified by manual inspection of PyrH/PrnA superposed models in WinCOOT 51.        

In Figure 2.24 are presented both the ribbon and the cartoon models of the two 

superimposed structure. The overall protein fold is clearly conserved; major differences are 

present in the �pyramidal� substrate binding domain. The FAD cofactor is superposed in 

the two models.  

 

 
 
 
 
Figure 2.23 
Sequence alignment based on structural superposition of PyrH on PrnA using the Protein structure comparison service SSM at 

European Bioinformatics Institute (http://www.ebi.ac.uk/msd-srv/ssm) 50. In capital superposed residues; shaded in red identical residues, 

in blue similar ones. The black boxes indicate the GxGxxG and WxWxIP motifs involved in FAD binding and protection. Highlighted by a 

star are aa essential for PrnA reaction mechanism: in purple aa constituting the HOCl; channeling tunnel; in green E347 and K79; in 

black the tryptophan binding residues. Shaded in red identical residues, in blue similar ones. The yellow triangle indicates the position of 

the unique gap (disordered loop) present in PyrH protein model.  
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Figure 2.24 
Ribbon (A) and Cartoon (B, C) representation of PyrH (red , yellow FAD) superposition to PrnA (blue, cyan FAD), using the SSM 

algorithm of WinCOOT 51. In A entire protein, in B FAD binding domain, in C substrate binding domain. Despite small differences the 

overall protein fold is clearly conserved. Note the conserved position of the FAD prosthetic group. Major differences are observed in the 

less conserved substrate binding module. In panel C: the magenta arrows indicates the, shorter than PrnA, PyrH loop connecting helices 

α4 and α5. The green arrow indicates the PyrH region we were not able to locate in the electron density map: the gap between helices 

α6 and α7. Two yellow spheres define the gap boundaries. The yellow arrow indicates the loop between helices α14 and α15; this 

region is more extended in PrnA where it hosts an extra helix.   
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2.7.3.2 PyrH the active site 
The features forming the FADH binding site in PrnA structure are clearly conserved in the 

PyrH model, see Fig. 2.25. The two PyrH tryptophan, W319 and W321, which are thought 

to be essential, overlap to PrnA ones. The FAD isoalloxazine ring is also superposed in the 

two models. In PyrH structure next to the FAD we were able to locate a chlorine ion, 

magenta sphere in Fig. 2.25C, already identified in PrnA model, orange sphere. Most of the 

residues which define the putative HOCl tunnel from FAD to the tryptophan binding region 

are conserved, notably the important E346/K79 PrnA couple (E394/K115 in PyrH). At the 

far end of the tunnel I52 is replaced by F89 representing the only difference in the HOCl 

channeling region. This residue at the end of the tunnel could be responsible for the 

different orientation of the tryptophan substrate with respect to the incoming hypochlorous 

acid, thus leading to halogenation of the indole ring at position 5 instead of at 7 observed in 

PrnA. 
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Figure 2.25 
A: PyrH 2FO-FC at 1σ electron density map around the protein tunnel region in blue. In red the 2FO-FC at 4σ and in magenta the 2FO-FC at 

3σ around the Cl ion. B: the same as A with both FAD and the residues defining the tunnel region modelled into the electron density. The 

0FAD cofactor isoalloxazine ring is in yellow, PyrH clorine ion as a magenta sphere.  C: Superposition of PyrH and PrnA HOCl tunnel 

region. PyrH residues in green, PyrH FAD cofactor isoalloxazine ring in yellow, PyrH clorine ion magenta sphere. PrnA residues in blue, 

PrnA FAD cofactor in cyan, PrnA clorine ion orange sphere. PrnA  I52 is not conserved in PyrH structure, where is replaced by F89. This  

residues is already part of the substrate binding region. 
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2.7.3.3 PyrH the substrate binding region 
Analysis of the tryptophan binding site in the superposed structures reveals that two of the 

three aromatic residues involved in the stacking of the tryptophan indole ring in PrnA 

protein, H101, F103 are conserved in PyrH protein with H132, F134.                 

W455 in PrnA is replaced by F491 in PyrH. The presence in the substrate binding region of 

PyrH of F89 is thought to prevent L-tryptophan from binding in the same orientation 

observed in PrnA model, see Fig. 2.26. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.26 
Superposition of PyrH and PrnA tryptophan binding region. PyrH residues in green, PrnA residues in blue, L-tryptophan from PrnA 

substrate bounded structure in magenta. All the aromatic residues involved in L-tryptophan indole ring stacking in Prna model are 

conserved in PyrH with the only exception of W455 replaced by F491. In PyrH protein presence of F89 would prevent L-tryptophan 

binding in the way observed in PrnA structure. The phenylalanine ring would clash with the tryptophan main chain. 

 
None of the PrnA residues involved in hydrogen bond formation with the L-tryptophan 

carbon α nitrogen and carboxyl group is conserved in PyrH structure, see Fig 2.27.  

 

 

 

 

 

 

 
 
Figure 2.27 
Superposition of PyrH and PrnA tryptophan binding region. PyrH residues in green, PrnA residues in blue, L-tryptophan from PrnA 

substrate bounded structure in magenta. The L-tryptophan carbon α nitrogen interacts directly with E450 and Y443, while the carbon α 

carboxyl group interacts via water molecules (not shown) with other carboxyl group. The superposed PyrH structure is not conserved in 

this region suggesting a different tryptophan binding mode for the latter halogenase. 

E450 E450

Y443 Y443

E450 E450

Y443 Y443
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Attempts to co-crystallize PyrH with its substrate L and D tryptophan or its products                 

5-Cl-DL-tryptophan and 5-Br-DL-tryptophan were unsuccessful. Nevertheless we were able 

to model L-tryptophan into the PyrH substrate binding region using ArgusLab 4.0 software 
97 (http://www.planaria-software.com). The modelling software gave us a results consistent 

with the proposed enzyme reaction mechanism. Two of the best fitting results examples 

are shown in Fig. 2.28. In both results the indole ring fifth position results to be facing the 

FAD molecule at the end of the HOCl tunnel. Furthermore the essential residues K115 and 

E394 are pointing towards the indole ring. It is not possible to rule out conformational 

changes in the tryptophan binding site upon substrate binding, however such changes 

would probably be minimal and influence only the aminoacid side chains position rather 

than the α carbon main chain due to the rigidity observed in the empty, substrate bond or 

product bond PrnA structures 15.  

 

 
 
 
 
 
 
 
 
 
A 
 
 
 
 
 
 
 
 
 
B 
 
Figure 2.28 
A,B: Two results obtained docking of L-tryptophan (purple) into PyrH (residues green, FAD isoalloxazine ring yellow) proposed substrate 

binding site. For computer-assisted molecular modelling we employed  the ArgusLab software 97. 

 

We expect L-tryptophan to bind into PyrH active site with an intermediate position between 

the ones described in Fig. 2.28. This is evident observing in Fig. 2.29 the two modelled              
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L-tryptophan positions superposed to 7-Cl-tryptophan from PrnA product bond structure.  

Given the position of the clorine atom in 7-Cl-tryprophan and the C-5 position of the docked 

molecules we expect L-tryptophan to bind with the aromatic indole ring stacked between 

F134 and F491and its C-5 position closer two the important catalytic couple K115/E394. 

 

 

 

 

 

 

 

 
 
Figure 2.28 
 Superposition of 7-Cl-tryptophan (in cyan, clorine atom in orange) from PrnA product bond structure into PyrH active site with the two             

L-tryptophan molecules docked into PyrH active site (light and dark gray, C-5 position in magenta).   

 

To further validate the results we decide to repeat the simulation modifying the tryptophan 

binding site. As shown in Fig.  2.30, F89 side chain was rotated to allow the substrate to sit 

in the active site in the same way observed in PrnA. Again the results (See Fig. 2.30) show 

L-tryptophan facing with its carbon-5 position the end of the HOCl tunnel confirming the 

previous results.   

 

 

 

 

 
 
 
 
 
Figure 2.30 
Docking of L-tryptophan, light and darkg ray C-5 position highlighted in magenta, into PyrH substrate binding site, residues in green.            

F89 has been rotated respect to the experimental structure (See Fig. 2.26, 2.27, 2.28, 2.29) to allow L-tryptophan to sit in the same 

position as in PrnA. Despite the F89 has been moved, the two best resulted obtained show modelled L-tryptophan molecules facing  the 

end of the HOCl tunnel with their carbon-5 atom. For Computer-assisted molecular modelling we employed the ArgusLab software 97. 
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To test the reliability of the modelling software the program was used to fit L-tryptophan 

into PrnA active site. The result is shown in Fig. 2.30 and confirms the quality of the 

docking algorithm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.30 
Docking of L-tryptophan, yellow, into PrnA substrate binding site, residues in blue. The experimentally determinated L-tryptophan is in 

purple. For computer-assisted molecular modelling we employed the ArgusLab software 97. 
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2.8 Future Work 
The PyrH structure was confirmed, as expected, to belong to the same superfamily as 

PrnA. Success in the co-crystallization experiment with protein substrates and reagents 

would definitively establish the reaction mechanism of FAD dependent tryptophan 

halogenases. Surely, at this point, elucidation of the structure of FAD dependent 

halogenases with different substrate specificity is of primary interest. This structural 

information will enable us to extend the PrnA reaction mechanism to the entire halogenase 

family.  

Given tryptophan halogenases poor kinetic parameters in in vitro conditions further study 

will be necessary to identify better reaction conditions to exploit this class of enzyme as a 

biocatalyst. Identification of the physiological flavin reductase partner could be one of the 

strategies to pursue. Due to the high number of Pseudomonas genome sequencing 

projects recently completed, with respect to the Streptomyces genus, it should be easier to 

identify the partner reductase of Pseudomonas halogenases rather than the Streptomyces 

ones.  
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Chapter 3 
 
 

PrnB Cloning, Expression and Purification  
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3.1 Summary 
PrnB is a new unique completely uncharacterized enzyme. It catalyzes the second step of 

the pyrrolnitrin biosynthetic pathway in Pseudomonas and related species. In this chapter 

we describe PrnB cloning, over-expression and purification from two sources. The protein 

could not be expressed in soluble form using E. coli. Soluble protein was obtained using 

Pseudomonas itself as expression host. The pure protein was red colored and further 

analysis suggested it contains an heme group. Preliminary crystallization trials with 

overexpressed PrnB both from Pseudomonas and Myxococcus failed to produce any 

relevant hit. Analysis of gel filtration chromatograms and analytical gel filtration of both 

proteins revealed the presence of aggregation that could be eliminated with the use of 

reducing agents indicating presence of possible disulfide bonds. Failure to identify the 

putative cysteines involved in the oligomerization by labeling experiments and overall lower 

Myxococcus PrnB tendency to produce aggregates pointed towards the presence of 

aspecific disulfide bonds. Mutation of all Pseudomonas fluorescence PrnB Cysteines to 

Serines resulted in a monomeric enzyme that retains its activity and could be crystallized; 

the enzyme from P. fluorescens could be purified in mg quantities. In Chapter 4 we 

describe P. fluorescens PrnB crystallization and structure determination.  

 

3.2 PrnB sequence analysis 
Apart from genetic evidences showing prnB gene involvement into the second step of the 

pyrrolnitrin biosynthetic pathway 20; 21; 61, nothing is known about PrnB protein. The reaction 

catalyzed by this enzyme, the conversion of 7-chloro-L-tryptophan to 

monodechloroaminopyrrolnitrin coupling the rearrangement of the indole ring to a 

phenylpyrrole and a decarboxylation, has not been identified in any other metabolic 

pathways discovered so far. The enzyme has been reported to be active also on 

tryptophan 20; 21; 61 (See Fig. 3.1). 
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                                                                      Figure 3.1 
 

Analysis of prnB gene did not reveal any conserved domain or motif. BLAST searching did 

not produce relevant meaningful hit. The only interesting result was the                 

identification through the NCBI Conserved Domain Search tool 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) of a non statistically significant short 

sequence match with indoleamine-2,3-dioxygenase (IDO), a heme containing protein 

involved in tryptophan catabolism 98. The Secondary Structure prediction algorithm,                 

3D-pssm (http://www.sbg.bio.ic.ac.uk/~3dpssm/index2.html), predicts PrnB to be as IDO 

an all α-helical protein. 

 

3.3 Aim of our study 
With so little known or predictable about PrnB a structural study was planned. A structure 

of PrnB would be an excellent starting point to formulate testable hypotheses about its 

enzymatic mechanism. Information on PrnB mechanism and structure would be very useful 

in harnessing its unusual activity in biotranformation study. A necessary precondition of 

structural study is the production of mg quantities of highly pure homogenous protein.              
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3.4 Materials and Methods  
All the genetic techniques and biochemistry procedures have been already illustrated in 

Chapter 2 Materials and Methods section. Only relevant differences are reported in this 

section. 

 
 
 

3.4.1 Strains used in this study 
 
Table 3.1   
N# Strain Relevant genotype Organism / Use       Supplier / 

     References 
 

1 
 

BL915 

 

PRN+   

Pseudomonas fluorescens / genomic 

DNA extraction  

 
70 

2 Mx f147 PRN+   
Myxococcus fulvus / genomic DNA 

extraction 
 

67 

4 TOP10 

F- mcrA D(mrr-hsdRMS-mcrBC) 

f80lacZDM15 DlacX74 deoR recA1 

araD139 D(ara-leu)7697 galU galK 

rpsL (StrR) endA1 nupG 

Escherichia coli / Cloning  Invitrogen 

5 S17.1 
TpR SmR recA, thi, pro, hsdR-M+RP4: 

2-Tc:Mu: Km Tn7 λ pir 
Escherichia coli / Conjugation Biomedal 

6 BL915 ∆ORF1-4 
PRN-  (∆prnA, ∆prnB, ∆prnC, ∆prnD)  

kmR 
Pseudomonas fluorescens / Expression 20; 70 

7 KT2440  Pseudomonas putida / Expression 99; 100 

8 
 

DB3.1TM 

F- gyrA462 endA1 (sr1-recA) mcrB 

mrr hsdS20(rB-, mB-) supE44 ara-14 

galK2 lacY1 proA2 rpsL20(SmR) xyl-

5 - leu mtl1 

Escherichia coli / Cloning, manteining of 

Gateway ccdB containing plasmids 
Invitrogen 

9 
 

BL21 

 

E. coli B F� ompT hsdS (rB� mB�) 

dcm+ Tetr gal (DE3) endA Hte 

Escherichia coli / Expression Strain  Novagen 

10 
 

Rosetta 

 

E. coli B F- ompT hsdSB    (rb- mB-) 

gal dcm lacY1 (DE3) pRARE6 

(CmR) 

Escherichia coli / Expression Strain Novagen 
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3.4.2 Plasmids 
 
Table 3.2 

N# Plasmid Antibiotic Resistance /  
         Host  

Type of Vector / 
Characteristic 

    Supplier /    
  References 

1 
pCIB-HIS 

(~21Kbp) 

Tetracycline / 

 E.coli; Pseudomonas sp.  

HIS tag expression, Ptac promoter 

Broad host range gram -/+  vector 

(~21Kbp) 

20; 21; 74; 77; 78 

2 pFastBac HT A 
 

Ampicillin, / E.coli 

cloning for Bacmid generation;  

high copy number ideal for subcloning 

(4856bp) 
Invitrogen 

3 pCR2.1-TOPO Ampicillin, Kanamycin / E.coli 
Cloning 

(3900bp) 

Invitrogen 

4 pZERO-Blunt Kanamycin / E.coli 
Cloning 

(3300bp) 

Invitrogen 

5 pDONR221 Kanamycin ccdb+ / E.coli 
GATEWAY cloning 

(4762bp) 

Invitrogen 

6 pDEST17 Ampicillin, / E.coli 
GATEWAY HIS tag expression  

(6354bp) 

Invitrogen 

7 pEXP3-DEST Ampicillin, / E.coli 
GATEWAY HIS-Lumio  tag expression  

(4607bp) 

Invitrogen 

8 pIVEX-MBP-DEST Ampicillin, / E.coli 
GATEWAY HIS-MBP-tag expression  

(6403bp) 

Naismith Lab 

9 pETG-41A Ampicillin, / E.coli 
GATEWAY HIS-MBP-tag expression  

(8219bp) 

EMBL 

 

3.4.3  Bacterial Growth and Treatments 

3.4.3.1  Media 

 
MD1 medium forMyxococcus: 
 
PMM-Agar:        3,0 g/l Peptone from casein 
                          2,0 g/l Mg SO4  X 7H2O 
                          0,5 g/l CaCl2 X 2H2O 
 
dissolve in H2O, pH 7,2;  autoclaved. 
 
                          
Myxococcus cells liquid cultures were incubated on an orbital shaker at approximately 180 

to 210rpm at 30ûC for 6 days before genomic DNA extraction. 
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3.4.3.2 Antibiotics 

The following antibiotics were used when appropriate: 
          Antibiotic        Stock at   Used at 
         Ampicillin Sodium   50 mg/ml in H2O at -20°C 100 µg/ml 

         Kanamycin Sodium sulphate   25 mg/ml in H2O at -20°C   50 mg/ml 

         Spectinomycin   50 mg/ml in H2O at -20°C 100 µg/ml 

         Streptomycin   50 mg/ml in H2O at -20°C   30 µg/ml 

         Chloramphenicol   34 mg/ml in EtOH at -20°C   34µg/ml 

         Tetracycline    5 mg/ml in EtOH at -20°C   15µ g/ml E. coli 

  30 µg/ml Pseudomonas sp. 

3.4.4 Genetic Techniques 
GatewayTM BP and LR clonase reaction, were performed by standard procedures or as 

recommended by the suppliers of the reagents used 101; 102 

3.4.4.1 Isolation of Genomic DNA from Pseudomonas and Myxococcus 

Genomic DNA was extracted from Pseudomonas using the QIAGEN Blood & Cell Culture 

DNA Kit by using the Bacteria method. 10ml of an O/N culture were processed on a 

genomic DNA purification column. Genomic DNA quality was assessed running                 

DNA gels 103.  

3.4.4.2 Polymerase Chain Reaction – PCR 

PCR has been used to amplify the prnB gene from genomic and plasmid DNA. The 

reaction was performed using the GeneAmp® PCR System 2400 thermal cycler (Applied 

Biosystem).  A standard reaction contained the following reagents: 

 

Reagent 
Amount - 
Stock [C] 

Final [C]  PROGRAM 
 

dNTPs  1µl -10mM 0.2mM  98°C X 3�00��  

Oligos 

(forward and 

reverse) 

1µl - 100µM 0.5µM 

 

98°C X 45�� 

 

Polymerase 

buffer 
5µl - 10X 1X 

 
45°C X 45�� 

30 cycles 

 

Polymerase* 
1µl - 2U/µl 2U 

 
72°C X 1.30�� 

 

Template 

DNA 
1µl � 50ngr/µl 50ngr 

 
72°C X 10�00�� 

 

H20 Up to 50µl -    
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Table 3.3 OLIGOS: 

N# Name Description Sequence 

5�-prnB GTGGAACGCACCTTGGACCGGGTAGGCGTATTC 
1 3�-prnB 

Amplification of prnB from P.fluorescens 

BL915 genomic DNA  TCAGGATTCGTCGAGCGCGGCGCGGAC 

5� prnB-TEV 
GAAAACCTGTATTTTCAGGGCATGGAACGCACCTT

GGACCGGGTAGGCGTATTC 
2 

3� prnB-GAT 

P.fluorescens prnB amplification:  5� 

contains TEV protease sequence in and 5� 

of prnB; 3� contains attB2 site and 3� of 

prnB; in bold ATG and STOP codons  

GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAGG

ATTCGTCGAGCGCGGCGCGGAC 

5� GAT-TEV 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCGAAA

ACCTGTATTTTCAGGGC 
3 
 3� prnB-GAT 

P.fluorescens prnB amplification:   

5� contains attB1 site in blue TEV protease 

sequence in yellow; 3� contains attB2  site 

in  blue and 3� of prnB 

in bold ATG and STOP codons 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAGG

ATTCGTCGAGCGCGGCGCGGAC 

5�-prnB-B 
ATTCGTAGCGGATCCAGTGGAACGCACCTTGGACC

GGGTAGGCGTATTC 
4 

3�-prnB-H 

Amplification of prnB of P.fluorescens 

BL915  5� contains flanking BamHI site   

3� contains flanking HindI in bold GTG and 

STOP codons site   

GTATGCTACCAAGCTTCTATCAGGATTCGTCGAGC

GCGGCGCGGAC 

 

5�-prnB-B-TEV 

ATTCGTAGCGGATCCAGAAAACCTGTATTTTCAGG
GCATGGAACGCACCTTGGACCGGGTAGGCGTATTC 

5  

3�-prnB-H-TEV 

Amplification of prnB of P.fluorescens 

BL915  5� contains flanking BamHI site 

and TEV , in yellow,  sequence   

3� contains flanking HindIII site in bold 

ATG and STOP codons 

GTATGCTACCAAGCTTCTATCAGGATTCGTCGAGC

GCGGCGCGGAC 

5�-prnB-Myxo-Short ATGAATCCGGGGCAGAACTTTTCATC 
6 3�-prnB-Myxo-Short 

Amplification of prnB from genomic DNA 

of M. fulvus Mx f147 CCGCGCGGTGTGCTTCAAGGCCGGCTC 

5�-prnB-Mx-External CAAGGGGCTCGGTGGCGCTTTCACGAG 
7 3�-prnB-Mxt-External 

Amplification of  prnB containing fragment  

from genomic DNA of  M. fulvus Mx f147 GAATGAAGGGTGTCAACGGTGGGCTC 

5� prnB-B-Mx 
ATTCGTAGCGGATCCAATGAATCCGGGGCAGAACT

TTTCATC 
8 

3� prnB-H-Mx 

Amplification of prnB of M. fulvus Mx f147   

5� contains flanking BamHI site 3� contains 

flanking HindIII site in bold ATG and 

STOP codons 

GTATGCTACCAAGCTTCTATCACCGCGCGGTGTGC

TTCAAGGCCGGCTC 

5�-prnB-B-TEV-Mx 
ATTCGTAGCGGATCCAGAAAACCTGTATTTTCAGGG

CATGAATCCGGGGCAGAACTTTTCATC 
9 

3�-prnB-H-TEV-Mx 

Amplification of M. fulvus Mx f147 prnB   

5� contains flanking BamHI site and TEV  

sequence in yellow  3� contains flanking 

HindIII site  

GTATGCTACCAAGCTTCTATCACCGCGCGGTGTGC

TTCAAGGCCGGCTC 

 

 

Reagent concentrations and procedure were chosen as recommended by the 

manufacturers of BIO-X-ACT (BIOLINE Cat. No. BIO-21065); Thermalace (INVITROGEN Cat. No. 

E0200); Vent Polymerase (NEW ENGLANDS BIOLAB Cat. No.M0254L); Pfu Polymerase 

(PROMEGA Cat. No.M774B); Taq Polymerase (ROCHE Cat. No.1-146-173).  
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3.4.4.3 Site Directed Mutagenesis 

M. fulvus PrnB mutant was created using the QuickChange II XL Site-Directed 

Mutagenesis Kit (Strategene Cat. N# 200521). Three round of mutagenesis on plasmid 

pFastBac-HT-A carrying the M. fulvus TEV-prnB cloned into BamHI HindIII site were 

necessary to mutate the Cysteine triplet C129, C130 and C171 using primer couples 1,2 

and 3 shown in Table 3.4. After every cycle of mutagenesis, the plasmid DNA was 

sequenced to verify the introduced mutation. After the last mutation the TEV-prnB BamHi 

HimdIII insert was cloned into plasmid pCIB-HIS using the same resctriction sites. The 

expression construct was transferred to E.coli S17.1 and then by conjugation to 

Pseudomonas fluorescens BL915 ∆ORF1-4.  

The P. fluorescens PrnB mutant was created using the QuickChange Multi Site Site-

Directed Mutagenesis Kit (Strategene Cat. N# 200514). Only one round of mutagenesis on 

plasmid pFastBac-HT-A carrying the P. fluorescens TEV-prnB cloned into BamHI HindIII 

site was necessary to mutate the cysteine triplet C21, C160 and C176. As suggested by 

the kit instruction we attempted to mutate all the three cysteines using both forward and 

reverse primers, number 5 and 6 in Table 3.4. We obtained satisfactory results only with 

the reverse primer series. After confirming the mutations introduction by sequencing 

mutation the TEV-prnB BamHi HimdIII insert was cloned into plasmid pCIB-HIS using the 

same resctriction sites. The expression construct was transferred to E.coli S17.1 and then 

by conjugation to Pseudomonas fluorescens BL915 ∆ORF1-4.  

 

 
       Table. 3.4 

  N#     Name                           Sequence 
5�-C129S-Myxo  CTGGAGCGCCGGTACACCTCCTGCCGCGACGAG 1 3�-C129S-Myxo  GAACCTCGTCGCGGCAGGAGGTGTACCGGCGCTC 
5�-C130S-Myxo  GAGCGCCGGTACACCTGCTCCCGCGACGAGGTTC 2 3�-C130S-Myxo  GGTGAACCTCGTCGCGGGAGCAGGTGTACCGGCG 
5�-C171S-Myxo  CTCGTTCGCGCCAATGTCCGACGAAATCACAAGC 3 3�-C171S-Myxo  GGTGGCTTGTGATTTCGTCGGACATTGGCGCGAAC 
5�-C129S-MyxoC130S  GAGCGCCGGTACACCTCCTCCCGCGACGAGGTTC 4 3�-C129S-MyxoC130S  CCTCGTCGCGGGAGGAGGTGTACCGGCGCTC 
5�-C21S-fluorescens  ACGCTGCCGTGGCGGCCTCCGATCCGCTGCAGGC 
5�-C60S-fluorescens  GCGCGGCCTGCCCTCCGGCTGGGGTTTCGTCGAAGC 5 
5�-C175S-fluorescens  CGAGTTCGCGCAAAGGTCCGACGAGCTGGAAGCC 
3�-C21S-fluo  CGCGCCTGCAGCGGATCGGAGGCCGCCACGGCAGC 
3�-C60S-fluo  GACGAAACCCCAGCCGGAGGGCAGGCCGCGCACCGG 6 
3�-C175S-fluo  CTTCCAGCTCGTCGGACCTTTGCGCGAACTCGG 
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  QuickChange II XL PROGRAM (prnB Myxococcus)  QuickChange Multi Site PROGRAM (prnB P.fluorescens) 
95°C X 1�00��   95°C X 1�00��  

95°C X 50��   95°C X 1�00��  

52°C X 50�� 18 cycles  50°C X 1�00�� 30 cycles 

68°C X 12�00��   65°C X 12�00��  

68°C X 10�00��   65°C X 5�00��  

 

3.4.4.4 DNA Sequencing 

prnB containing plasmid DNA was sequenced at the University of Dundee Sequencing 

Service and analyzed with the Contig Express feature of The Vector sequence analysis 

software (InforMax). Plasmid DNA and DNA primers were sent to the Sequencing Service 

according to the Unit Standard Procedures. 

N# Name                        Description           Sequence 

1 M13F Sequencing primers for pCR2.1 TOPO, forward GTAAAACGACGGCCAGTG 

2 M13R Sequencing primers for pCR2.1 TOPO, reverse GGAAACAGCTATGACCATG 

3 M13F-GAT Sequencing primers for pDONR221, forward GTAAAACGACGGCCAG 

4 M13R-GAT Sequencing primers for pDONR221, reverse CAGGAAACAGCTATGAC 

5 prnB-SEQ 
Sequencing primers for P.fluorescens prnB inside the 

gene (from 530bp to 550bp from the 1st GTG) 

AGCTGGAAGCCTATCTGCAG 

6 prnB-SEQREV 
Sequencing primers for P.fluorescens  prnB inside the 

gene (from 1086bp to 1060bp from the 1st GTG) 

TCAGGATTCGTCGAGCGCGGCGCGG

AC 

7 5�-pFastBac HT A-For Sequencing of DNA cloned into pFastBac HT A 
polylinker (from  3995-4015bp) TATTCCGGATTATTCATACC 

8 3�-pFastBac HT A-Rev Sequencing of DNA cloned into pFastBac HT A 
polylinker (from 4319-4301bp) 

GTTTCAGGTTCAGGGGGAG 

 

3.4.5 Protein Biochemistry 
 

3.4.5.1 Recombinant Protein Expression in E.coli 

For the production of recombinant proteins, E. coli expression strains (BL21, Rosetta) 

carrying the appropriate expression plasmids were grown to an A600 between 0.6 and 0.9 

(Spectrophotometer: Pharmacia Biotech Ultrospect 1000). The protein expression was 

induced by adding 0.1 to 1mM Isopropyl β-D-thio-galactopyranoside (IPTG). Alternatively 

cells were incubated for 10 to 20min at 0ûC or 42ûC (cold heat and heat shock) before 

induction with IPTG to promote protein expression. After the induction cells were incubated 

on a shaker from 2 hours to O/N at temperature ranging from 18 to 37ûC. Bacteria were 
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pelleted by centrifugation 13000xg (25min, 4 ûC; Beckman Coulter Avanti J-20 XP). 

The cell pellets were stored at �20ûC until required 104; 105. 
 

3.4.5.2  Purification of His-Tagged Fusion Proteins from E.coli Using Ni 2+ Chelating Matrix 

Bacterial cell pellets were completely resuspended in 2ml/g binding buffer containing 

Complete EDTA free Protease Inhibitor Cocktail Tablets (ROCHE Cat. No.1873580). After 

adding DNAse (final conc. 5µg/ml) and Lysozyme (final conc. 1mg/ml) the cell suspensions 

were incubated 20min at room temperature before being sonicated or passed twice 

through a Cell Distruptor, The Basic Z Constant System Ltd., to achieve complete cell 

disruption. The lysate was centrifuged at 48000xg (40min, 4ûC; Beckman Coulter 

Avanti J-20 XP) to pellet insoluble fractions and debris. Insoluble fractions were 

resuspended in 8M urea for SDS analysis. Before loading onto the Ni2+-column, the soluble 

fractions were syringe filtered (w/0.22µm). The column HisTrap HP 5ml (Amersham 

Biotech Pharmacia) connected to a P1 peristaltic pump (Amersham Biotech Pharmacia) 

was regenerated before use as follows: washed with 20ml water, stripped with 20ml 50mM 

EDTA and after a further wash step with 20ml water, loaded with 10ml 400mM NiSO4 and 

washed again. After equilibration with 15ml of binding buffer, the protein solution was 

applied to the column and the flow through retained for analysis. The column was washed 

with washing buffer until all the unbound proteins were removed from the column. The 

protein content of the flow through was monitored with Bradford assay. Bound proteins 

were eluted applying the elution buffer containing 250mM imidazole. The protein content of 

eluted fractions, collected by a FRAC100 fraction collector (Amersham Biotech 

Pharmacia), was checked by Bradford assay and analyzed by SDS PAGE. The fractions, 

which contained the purified protein were concentrated (VIVASCIENCE VivaSpin 

Concentrators) by centrifugation (3000 rpm, 4 ûC) and afterwards dialyzed against an 

appropriate buffer to remove imidazole. Buffer compositions are listed in Table 3.5. 
Table 3.5 

Binding Buffer:                              Washing Buffer: Elution Buffer: 

KH2PO4 20mM pH7.4 KH2PO4 20mM pH7.4 KH2PO4 20mM pH7.4 
NaCl 0.1M                              NaCl 0.1M                              NaCl 0.1M                              
Imidazole 20mM                    Imidazole 35mM                              Imidazole 250mM 
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3.4.5.3 PrnB Enzymatic Activity Assay  

PrnB enzymatic activity in Pseudomonas crude extract were assayed in van Peé�s Lab as 

previously described 20; 21. To asses PrnB activity in vivo whole cell assay/feeding 

experiments 40; 106 were carried out. Over-night Pseudomonas culture in HNB medium 

containing the appropriate antibiotic were diluted 1 to 20 in fresh medium. Cells were 

grown for 24 hrs at 30°C and 200rpm on orbital shaker incubators. Sterile filtered 7-DL-

Chloro-Tryprophan was added to a final concentration of 1mM. Cells were grown for 

additional 2 days. Medium alone or sonicated medium plus bacteria was extracted twice 

with one volume of Ethyl Acetate. The extracted mixture was dried under vacuum and 

resuspended in Methanol:H2O 65:35. The extract were analysed by isocratic HPLC, 

Methanol:H2O 65:35, using a Varian OmniSpher C-18 250 * 4.6 mm column. Flow rate was 

1ml/min and detection at 220nm. The retention time of PrnB product MDA was comparable 

with previously described data by van Peé et al. 40; 106. Mass spectrometry analysis of the 

putative MDA peak by St-Andrews University Mass Spec Services confirmed the presence 

of a chlorinated compound of the right size (192Da), with the characteristic 3:1 ratio pattern 

of 35Cl:37Cl, see Fig. 3.2. 

 

 

 

 
 
 

 
 
 
 
Figure 3.2 
Mass spectrometry analysis of the MDA peak. A: C-18 elution chromatogram of a broth extract containing MDA, highlighted by a red 

arrow, the peak run at 8.95min. At 9.42min is present a contaminant peak. B: Mass spectrometry analysis of the 8.95min peak, negative 

ionization. C: Mass spectrometry analysis of the 9.42min peak, negative ionization. The MDA peak shows the presence of a compound 

of 191Da with a typical 3:1 ration pattern of chlorine containing compound compatible with the MDA mass of 192Da. The 192Da mass at 

8.95min results from contamination by the compound of 192Da present in the 9.42min peak. 
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3.5 Results 

 

3.5.1 Cloning of P. fluorescens BL915 prnB gene 
Genomic DNA was extracted from P. fluorescens BL915. PrnB gene was amplified from 

genomic DNA using primers 5�-prnB/3�-prnB. Different polymerases were tested. The best 

results were obtained with the BIO-X-ACT polymerase. BIO-X-ACT polymerase has a non-

template dependent terminal transferase activity that adds a single deoxyadenosine to the 

3� ends of PCR products. We clone the gene into the pCR2.1 TOPO vector using the 

TOPO TA CLONING KIT. E. coli TOP10 cells were transformed with 5µl of the reaction 

mix. Plasmid DNA was extracted from Ampicillin resistant clones. Plasmids containing DNA 

fragment of the right size were sequenced (pCR2.1TOPOprnB with primers M13R/M13R). 

Clones containing the right DNA fragments were isolated.  

 
 

3.5.2 prnB expression in E.coli 
After we obtained the right prnB gene we decided to take advantage of the GATEWAY 

SYSTEM and subcloned it into a GATEWAY DONOR vector inserting a TEV protease 

cleavage site immediately upstream of the first  protein aa. Two sets of PCR amplification 

were carried out, by using Vent Polymerase, with two different series of primers to avoid 

the use of extremely long oligonucleotides following the scheme in Fig. 3.3 After the 

second PCR the four genes were cloned into pDONR221 by using the GATEWAY BP 

clonase.  

 
 
 
 
 
 
 

 
Figure 3.3 
Amplification strategy for prnB gene into the GATEWAY donor vector pDONR221. Two round of amplification were carried out to avoid 

the use of long oligonucleotides. 
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E. coli TOP10 cells were transformed with 5µl of the reaction mix. Plasmid DNA was 

extracted from Kanamycin resistant clones. Plasmids containing DNA fragments of the 

right size were sequenced (pDONR221prnB with primers M13F-GAT/M13R-GAT). Clones 

containing the right DNA fragments were isolated.  

 
 

3.5.3 Expression of PrnB in E. coli 
By using GATEWAY LR clonase mix prnB was transferred into plasmids pDEST17, 

pEXP3-DEST, pIVEX-MBP-DEST and pETG-41A, which was provided by the EMBL 

Protein Expression and Purification Core Facility, Heidelberg. E. coli TOP10 cells were 

transformed with 5µl of the reaction mix. Plasmid DNA was extracted from Kanamycin 

resistant clones. Plasmids containing DNA fragment of the right size were transformed in 

E.coli BL21 and Rosetta strains. Protein expression trials were set up for each strain. 

Results are summarized in the table below (Table 3.2). Two examples are shown in the 

next picture (See Fig.3.4). 

 

 
TABLE 3.6 
 

 

 
 

 

 
 
 
 
 
 
 

 
 
 
 
 

     Plasmid 
 

Strain        Result  
pDEST17-prnB 
 

BL21 Insoluble protein 

 Rosetta 
 

Insoluble protein 
 

pEXP3-prnB 
 

BL21 Insoluble protein 

 Rosetta 
 

Insoluble protein 

pIVEX-MBP-prnB BL21 Insoluble PrnB protein without MBP tag 
 

 Rosetta Plasmid instable 
 

pETG-41A-prnB BL21 
 

Soluble MBP-PrnB 
 

 Rosetta Soluble MBP-PrnB 
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Figure 3.4 
a: SDS PAGE of protein crude extracts from BL21 pDEST17prnB cells. Cells were grown until A600=0.8, incubated at 42°C (red)  or 0°C 

(blue) for 15min. After IPTG in 0.1mM final concentration was added cells were shifted at 18°C and grown for further 16hours.  M: 

Markers/ladder Mark12; PRE: soluble fraction prior IPTG addition; SOL: soluble fraction; INSOL: insoluble fraction. b: SDS PAGE of 

protein crude extracts from Rosetta pETG-41A-prnB cells. Cells were grown until A600=0.8, incubated at 42°C (red)  or 0°C (blue) for 

15min. After IPTG 0.5mM final concentration was added cells were shifted at 30°C and grown for further 4hours.  M: Markers/ladder 

Mark12; PRE: soluble fraction prior IPTG addition; SOL: soluble fraction; INSOL: insoluble fraction. 

 

MBP-PrnB was purified on a HisTrap HP 5ml (Amersham Biotech Pharmacia) Ni2+ 

chelating column and digested by using TEV protease. Unfortunately, as soon as the PrnB 

protein was digested and separated from the MBP tag it became unstable causing 

precipitation of the digestion solution (See Fig 3.5).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5 
NuPage 4-12% Bis-Tris gel showing MBP-PrnB after the first (red) and after incubation with TEV protease second (yellow) Ni2+ chelating 

resin column. M: marker (Par 2.4.5.10). E: eluted MBP-PrnB C: cleave FT: flow-through; W: wash; E: elution. The purple arrow indicate 

MBP-PrnB; the blue one the MBP tag; the black one PrnB. Note that despite concentrating the second Ni2+ column FT to an increase in 

the amount of the contaminant running just below MBP-PrnB there is no clear PrnB band. The PrnB fragment is lost between the 

cleavage and the 2nd elution step due to precipitation. 
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3.5.4 Cloning of prnB in pCIB-HIS and Expression in Pseudomonas 
The failure to express soluble PrnB in E.coli led us to investigate its expression in 

Pseudomonas. PrnA was successfully expressed in Pseudomonas despite being 

completely insoluble in E.coli, like PrnB. The prnB ORF was cloned into a pCIB-HIS   

(Table 3.7) vector for Pseudomonas overexpression. The gene was amplified by PCR 

using Vent Polymerase and primers containing suitable restriction sites. PCR fragments 

were cloned into the BamHI HindIII sites of plasmid pFastBac-HT-A. The obtained clones 

were verified by sequencing. BamHI HindIII fragments of clones containing the correct 

DNA sequence, were inserted using the same restriction sites to plasmid pCIBHIS as 

summarized in the following table: 
 
Table 3.7 
 

     Gene        Primers and Restriction Site        Plasmids 
     prnB P.fuorescens  5�-prnB-B; BamHI / 3�-prnB-H; HindIII pCIBHIS-prnB 

                   ‘’  5�-prnB-B-TEV; BamHI / 3�-prnB-H-TEV; HindIII pCIBHIS-TEV-prnB 

 

E. coli TOP10 cells were transformed with 5µl of the reaction mix. Plasmid DNA was 

extracted from tetracycline resistant clones. Plasmids containing DNA fragments of the 

right size were transformed in E.coli S17.1 strain.  Plasmid DNA was transferred by 

conjugation from E.coli S17.1 to P. fluorescens BL915 ∆ORF1-4. Plasmid DNA was 

extracted from tetracycline resistant clones. Clones carrying the correct plasmids were 

chosen for protein expression.  

 

 

3.5.5 Activity of prnB  in Pseudomonas Cells Extracts   
Once obtained expression of HIS-PrnB from Pseudomonas in PRN-, prnABCD-                 

P. fuorescens BL915 ∆ORF1-4 strain, van Peé�s lab was able to show activity of the 

overexpressed enzyme in crude cell extracts as shown in Fig. 3.6. This result shows that 

the overexpressed protein was properly translated and folded because the retention of its 

enzymatic activity. 
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Figure 3.6 
Pseudomonas raw cell extracts were feeded with 7-chloro-TRP, the culture extracted with an equal volume of ethyl acetate, the organic 

phase dried under vacuum and the residue dissolved in methanol. Thin layer chromatography was performed on silica coated plates with 

toluene/dioxan (9:1) as the mobile phase pyrrolnitrin (PRN), monodechloroaminopyrrolnitrin (MDA), aminopyrrolnitrin (APRN) and 

aminophenylpyrrole (APP) were visualized with Erlich�s reagent. Increasing amounts of prnB extract was incubated with 7-chloro-TRP. 

Marker: MDA and APRN. MDA production was evident. The lower lighter band is thought to be APP.  

 

3.5.5 PrnB activity in feeding experiment 
In order to asses all the constructs activity we used the feeding experiment assay 

developed by van Peé  40; 106. All the constructs resulted active. Fig 3.7 shows one 

example. 

 

 
 

 
 
 
 
 
 
 
 
 
 
Figure 3.7 
Ethyl acetate extract HPLC chromatograms from Pseudomonas broth culture carrying empty pCIB-HIS or pCIB-HIS-PrnB from 

Pseudomonas in the presence (red) or absence (black) of 7-DL-Cl-Tryptophan. The blue arrow indicates the 

monodechloroaminopyrrolnitrin (MDA) peak. 

 
 

3.5.6 PrnB purification protocol  
PCIB-HIS-prnB and pCIB-HIS-TEV-prnB from Pseudomonas gave over-expression of 

soluble HIS-tagged PrnB. The overexpressed protein run on SDS PAGE between the 
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55.4KDa and the 36.5KDa markers compatibly with the expected proteins Mw: HIS-PrnB 

Pseudomonas 43628Da; HIS-TEV-PrnB Pseudomonas 44512Da; Furthermore protein 

identity was confirmed with peptide fingerprinting by the St Andrews University BMS MASS 

SPECTROMETRY AND PROTEOMICS FACILITY. Tagged PrnB was purified by a three 

step procedure from fresh or frozen bacteria cell pellet, consisting of a first Nickel chelating 

affinity chromatography (See Fig. 3.8A) followed by an anion exchange column and a gel 

filtration column. The last step was used to polish the protein preparation and exchange the 

protein buffer to Tris-HCl, PrnB is stable in 10mM Tris-HCl pH7.2 at concentration up to 

16mg/ml. 

 

 

 

 

 

   
 
 
 
Figure 3.8 
SDS PAGE showing recombinant hexahistidine tagged PrnB fractions collected after the first affinity column purification.                        

A): P.fluorescens PrnB, the protein is highlighted by a red arrow.  B):  PrnB shows a red color typical of heme containing proteins. 

 

 

 

Presence of the TEV cleavage site did not influence the yield or the purification procedure. 

PrnB resulted to be a heme containing protein (See Fig 3.8B). To characterize PrnB heme 

cofactor the iron porphyrin was solvent extracted from protein lyophilized by freeze-driyng. 

Mass Spec analysis of the extracted phase identified a molecule of 615Da compatible with 

the Mw of heme b (protoporphyrin IX) (See Fig 3.9). 
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Figure 3.9 
Mass spectrometry analysis of acetone extracted lyophilized PrnB identified a compound of 615Da, compatible with the presence of 

heme b as the iron porphyrin cofactor. 

 

Although TEV protease was able to cleave TEV-PrnBs tag, DTT appears to bind tightly to 

the protein. DTT is an essential component of the TEV protease cleavage buffer, without it 

the cleavage times become longer. The protein had to be incubated a RT for over a week 

changing the TEV protease once a day. The resulting PrnB untagged protein failed to give 

crystals possibly due to aspecific degradation occurred during the long cleavage treatment 

(See Fig. 3.10) and routine cleavage was abandoned. 

 

 

 

 

 
 
 
 
 
Figure 3.10 
NuPage 4-12% Bis-Tris gel showing P.fluorescens PrnB after the first (black) and after incubation with TEV protease second (red) Ni2+ 

chelating resin column. M: marker (Par 4.4.5.13). U: eluted uncleaved TEV-PrnB; T6,5: after 6.5h of incubation with TEV-protease; T72: 

after 72h more of incubation with TEV-protease cleave; FT: flow-through after the second Ni2+ chelating resin column; ELU: elution after 

the second Ni2+ chelating resin column. The yellow arrow indicate uncleaved TEV-PrnB; the red cleaved TEV-PrnB. 
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Once Pseudomonas over-expression of P. fluorescens PrnB revealed the presence of 

heme as cofactor a second problem emerged. Gel filtration chromatograms of                

P. fluorescens PrnB (See Fig. 3.11) showed us presence of a heterogeneous protein 

population. Addition of reducing agents, as DTT to the purification buffers prevented 

protein aggreagation, with an unfortunately heme poisoning side effect. The protein 

aggregation tendency is better shown by non reducing SDS PAGE gels, where PrnB runs 

with a ladder effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.11 
Gel filtration chromatogram of PrnB from P. fluorescens  (A1) together with the SDS PAGE of the separated fractions (A2). 

Chromatograms show the detection at 408nm PrnB Soret peak and 280nm, protein. Red arrows indicated protein identified as 

P.fluorescens PrnB by Mass Spect ID.   

 

3.5.7 Cloning and Expression of M. fulvus Mx147 prnB gene 
In order to overcome this problem and try to obtain an homogeneus protein preparation 

more suitable to crystallization we decide to clone and express the least conserved of the 

known PrnB genes: the Myxococcus fulvus one. Genomic DNA was extracted from                 

M. fulvus Mx f147. PrnB gene was amplified from genomic DNA using primers                

5�-prnB-Myxo-Short and 3�-prnB-Myxo-Short. Different polymerases were tested. Due to 

the poor quality of the results obtained we decided to amplify a bigger DNA fragment 

containing prnB, using primers 5�-prnB-Myxo-External and 3�-prnB-Myxo-External, see                
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Fig. 3.12. The reaction product was used to amplify the prnB gene with using primers                

5�-prnB-Myxo-Short and 3�-prnB-Myxo-Short.  The best results were obtained with the Vent 

polymerase.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.12 
DNA gels showing Myxococcus fulvus Mx f147 prnB gene amplification from genomic DNA.  A: red arrow shows the amplification 

product obtained using primer extern to prnB note the high amount of background due to aspecific product. B:  red arrow shows 

differences obtained using different polymerases for PrnB amplification: M1 DNA ladder (1kbp DNA Ladder, Promega, Cat. No. G5711); 

1,2: Vent polymerase; 3,4: Thermalace polymerase; 5,6: Taq  polymerase; 7,8: Pfu polymerase. 
 

The prnB ORF was cloned into a pCIB-HIS  vector for Pseudomonas overexpression. The 

gene was amplified by PCR using Vent Polymerase and primers containing suitable 

restriction sites. PCR fragments were cloned into the BamHI HindIII sites of plasmid 

pFastBac-HT-A. The obtained clones were verified by sequencing. BamHI HindIII 

fragments of clones containing the correct DNA sequence, were inserted using the same 

restriction sites to plasmid pCIBHIS as summarized in the following table: 

 
Table 3.9 
 

        Gene  Primers and Restriction Site          Plasmids 
          prnB M.fulvus  5� prnB-B-Mx; BamHI / 3�-prnB-H-Mx; HindIII     pCIBHIS-prnB-Myxo 

                     ‘’  5�-prnB-B-TEV-Mx; BamHI / 3�-prnB-H-TEV-Mx; HindIII     pCIBHIS-TEV-prnB-Myxo 

 
PCIB-HIS-prnB and pCIB-HIS-TEV-prnB from Myxococcus gave over-expression of 

soluble HIS-tagged PrnB. The overexpressed protein run on SDS PAGE between the 
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55.4KDa and the 36.5KDa markers compatibly with the expected proteins Mw: HIS-PrnB 

Myxococcus 45275Da; HIS-TEV-PrnB Myxococcus 46127Da. Furthermore proteins identity 

was confirmed with peptide fingerprinting by the St Andrews University BMS MASS 

SPECTROMETRY AND PROTEOMICS FACILITY. Tagged M. fulvus PrnB was purified 

with the same procedure adopted for P. fluorescens PrnB. Fig. 3.13 shows a comparison 

between P. fluorescens and M. fulvus PrnB after the first purification step.  

 

 

 

 

   
 
 
 

 
 
Figure 3.13 
SDS PAGE showing recombinant hexahistidine tagged PrnB fractions collected after the first affinity column purification.                        

A): P.fluorescens PrnB, the protein is highlighted by a red arrow.  B):  Myxococcus fulvus PrnB, the protein is highlighted by a yellow 

arrow. The difference in xepression is evident if the amount of PrnB is compared with the amount of contaminant protein binding the 

resin.  

 

Despite differences in protein yield between the Pseudomonas and Myxococcus gene    

(See Table 3.10), the amount of recombinant protein obtained after the purification was 

enough to set up reasonable amount of crystallization trial.  
 
Table 3.10 

* compared to the amount loaded on the first column 

Total protein amount at each purification step 

PrnB: P. fluorescens M. fulvus 

LYSATE ON Ni2+ COLUMN 650mg - 100%* 1800mg - 100%* 

OUTPUT ELUTED PRNB FRACTIONS FROM Ni2+ COLUMN 39mg -    6%* 58mg -  3%* 

AMOUNT COLLECTED AFTER GEL FILTRATION COLUMN 5mg -    2%* 5mg -  0.27%* 
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Gel filtration chromatograms showed an overall lower tendency for M. fulvus PrnB to 

produce aggregates, but even in this case the final protein preparation was not 

homogeneous, see Fig. 3.14.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.14 
Gel filtration chromatogram of PrnB from P. fluorescens  (A1) and M. fulvus (B1) together with the SDS PAGE of the separated fractions 

(A2, B2). Chromatograms show the detection at 408nm PrnB Soret peak and 280nm, protein. Red arrows indicated protein identified as 

P. fluorescens PrnB by Mass Spect ID.  Yellow arrows indicated protein identified as M. fulvus PrnB by Mass Spect ID.  Note how the 

laddering effect is more pronounced in P. fluorescens PrnB, but the oligomerization is present in M. fulvus too as indicated by gel 

filtration chromatogram. 

 

Reducing agents were able to reduce the aggregations problem but poisoned the heme. 

This result suggested the formation of aspecific disulfide bonds as already observed in                

P. fluorescens PrnB. Analysis of all the known PrnB homologues sequences showed us 

differences in the number and pattern of cysteines present across the homologues; with 

the only conserved cysteine being P.fluorescens BL915 Cys175 (See Fig. 3.15). 

Myxococcus fulvus PrnB cysteine distribution, with two of the three cysteines next to each 

other, can explain its lower tendency to aspecific aggregation. 
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B.cepacia         MERALGRARAFAATHAAVAACDPLRARALVLQLPALNRKDDVPGIVGLLREFLPTRGVPS 60 
B.cepacia 383     MERALGRVGACAATHAAVAACDPLQARALVLQLPGLNRKKDVPGIVGLLRDFLPAHGVPS 60 
B.pyrrocinia      MERTLDRVCAFEATHAAVAACDPLRARALVLQLPGLNRNKDVPGIVGLLREFLPARGVPS 60 
P.fluo. BL915     MERTLDRVGVFAATHAAVAACDPLQARALVLQLPGLNRNKDVPGIVGLLREFLPVRGLPC 60 
P.fluo. Pf-5      MERTLNRVSAFAATHAAVAACDPLQARALVLQLPALNRDKDVPGIVGLLRDFLPVSGVPS 60 
B.ambifaria       VERTLDRVGAFAATHAAVAACDPLHARALVLQLPGLNRKKDVPGIVGLLREFLPTRGVPA 60 
M.fulvus          ----MNPGQNFSSTHEVIATLDPLDALATMRRLPELNQRSDVRGVLELLQGILPRLEIVE 56 
                      :.      :** .:*: *** * * : :** **: .** *:: **: :**   :   
 
B.cepacia         GWGFVEAAAAMRDIGFFLGSLKRHGHEPVDAVPGLEPVLLDLARVTDLPPRETLLHVTVW 120 
B.cepacia 383     GWGFVEAAAAMRDIGFFLGSLKRHGHEPVDVVPGLEPVLLDLARVTDLPPRETLLHVTVW 120 
B.pyrrocinia      GWGFVEAAAAMRDIGFFLGSLKRHGHEPVDVVPGLEPVLLDLARTTDLPPRETLLHVTVW 120 
P.fluo. BL915     GWGFVEAAAAMRDIGFFLGSLKRHGHEPAEVVPGLEPVLLDLARATNLPPRETLLHVTVW 120 
P.fluo. Pf-5      SWGFVEAAAAMRDIGFFLGSLKRHGHEPVDLVPGLERVLLDLARVTDLPPRETLLHVTVW 120 
B.ambifaria       GWGFVEAAAAMRDIGFFLGSLKRHGHEPADAVPGLEPVLLDLARATDLPPRETLLHVTVW 120 
M.fulvus          RWDFPVAAAAMRDIGFFLGSLKRHGHEPVEVVPGLEPILLALARATQLPPRETLLHVTVW 116 
                   *.*  **********************.: ***** :** ***.*:************* 
 
B.cepacia         NPATADAQRSYTGLGDEAHLLESVRISMASLEAAIALTVELYDVPLRSPAFEEGCVELAA 180 
B.cepacia 383     NPAAADAQRSYSGLSDEAHLLESVRISMASLEAAIALTVELSDVPLRSPAFEEGCVELAV 180 
B.pyrrocinia      NPAAADAQRSYTGLRDEAHLLESVRISMAALEAAIAVTVELSDVPLRSPAFAQGCDELAA 180 
P.fluo. BL915     NPTAADAQRSYTGLPDEAHLLESVRISMAALEAAIALTVELFDVSLRSPEFAQRCDELEA 180 
P.fluo. Pf-5      NPAAADAQRSYTGLPDEAHLLESVRISMAALEAAIALTVELSDVSLRSPAFAQGCDELEA 180 
B.ambifaria       NPAAADAQRSYTGLPDEAHLLESVRISMAALEAAIAVTVELSDVSLRSPAFAQGCDELAA 180 
M.fulvus          NPAADELERRYTCCRDEVHLLESVRLSMAALESALHLTVELYDVPLDSASFAPMCDEITS 176 
                  **:: : :* *:   **.*******:***:**:*: :**** **.* *. *   * *:   
 
B.cepacia         HLQKMVESIVYAYRFISPQVFYDELRPFYEPIRVGGRSYLGPGAVEMPLFVLEHVLWGSQ 240 
B.cepacia 383     YLQKMVDSIVYAYRFISPQVFYDELRPFYEPIRVGGQSYLGPGAVEMPLFVLEHVLWGSQ 240 
B.pyrrocinia      YLQKMVESVVYAYRFISLQVFYNELRPFYEPIRVGGQSYLGPGAVEMPLFVLEHVLWGSQ 240 
P.fluo. BL915     YLQKMVESIVYAYRFISPQVFYDELRPFYEPIRVGGQSYLGPGAVEMPLFVLEHVLWGSQ 240 
P.fluo. Pf-5      YLQKMVESIVYAYRFISPQVFYDELRPFYEPIRVGGQSYLGPGAVEMPLFVLEHVLWGSQ 240 
B.ambifaria       YLQKMVESIVYAYRFISLQVFYDELRPYYEPIRIGGQSYLGPGAVEMPLFVLEHVLWGSQ 240 
M.fulvus          HLKKMVDSIVYAYRNISPRTFMQELRPYYEPIRVGGQSYLGPGAVEMPLFVLEHVLWGSR 236 
                  :*:***:*:***** ** :.* :****:*****:**:**********************: 
 
B.cepacia         SDHPAYLEFKETYLPYVLPAFRAIYARFAGRQALVDRVLGEAQAARERGEPVGAGLAALE 300 
B.cepacia 383     SDHPAYLEFKETYLPYVLPAFRAVYARFAGRPALVDRVLAEAQAARVRGEPVGAGLAALE 300 
B.pyrrocinia      SDHPAYREFKETYLPYVLPAYRAVYARFAGEPALVDRVLDEVQAAGARGEPVGAGLAALD 300 
P.fluo. BL915     SDDQTYREFKETYLPYVLPAYRAVYARFSGEPALIDRALDEARAVGTRDEHVRAGLTALE 300 
P.fluo. Pf-5      SDDPAYREFKETYLPYVLPAYRAVYARFATKPALIDRALDEARAVGTQGEHVRAGLTALE 300 
B.ambifaria       SDHQAYREFKETYLPYVLPAFRAVYARFAGEPALLDRALGEAHAIGTRSEPVRAGLAALD 300 
M.fulvus          VEHPGYKDFKETYVPYVLPRFRAVYHQFSDQPSVLDRVLEGAGGPESQTEHHRLGLKALD 296 
                   :.  * :*****:***** :**:* :*: . :::**.*  . .   : *    ** **: 
 
B.cepacia         RIFEILLHFRAPHLKLAERTYAAGQTGPTIGSGGYAPSMLGDLLTLTRDARSRLHAVLAE 360 
B.cepacia 383     LVLEILLHFRAPHLKLAERTYEAGQSGPAIGSGGYAPSMLGDLLTLTRAVRARLHAALDE 360 
B.pyrrocinia      PVFEVLLRFRAPHLKLAERAYEAGQSGPAIGSGGYAPSALVDLLALTRAARFRLRAALDE 360 
P.fluo. BL915     RVFKVLLRFRAPHLKLAERAYEVGQSGPEIGSGGYAPSMLGELLTLTYAARSRVRAALDE 360 
P.fluo. Pf-5      RVFKVLLRFRAPHLKLAERAYEAGRSGPTTGSGGYAPSMLGDLLTLTCAARSRIRAALDE 360 
B.ambifaria       RVFEVLLRFRAPHVKLAERAYEVGRSGPSIGSGGYAPSMLGDLLTLTRAARSRIRAALDA 360 
M.fulvus          KVFDVLLRFRAPHVKLAEQAYLSQQENHSVGSGGYAPGMLEELLALTREARLRLTLASRA 356 
                   ::.:**:*****:****::*   : .   *******. * :**:**  .* *:  .    
 
B.cepacia         T------------- 361 
B.cepacia 383     R------------- 361 
B.pyrrocinia      P------------- 361 
P.fluo. BL915     S------------- 361 
P.fluo. Pf-5      S------------- 361 
B.ambifaria       S------------- 361 
M.fulvus          PSASGEPALKHTAR 370 

                                 
 

Figure 3.15 
Clustal alignment of PrnB protein homologues. In yellow non conserved cysteine residues. In red the conserved P. fluorescens BL915 

C175 residue.  * identifiy 100% conserved residue. 
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3.5.8 PrnB Site Directed Mutagenesis 
Although Myxococcus PrnB showed less protein aggregation it gave again a 

heterogeneous protein population, difficult to separate for crystal trial experiments.                 

For crystallization we wish to prevent disulphide bond formation. A literature search 

showed that aggregation by disulphide bond formation has already been encountered 

during the crystal structure solution of the heme containing neuroglobin protein class 107; 

108. We had to test if the presence of disulfide bonds was a physiological protein feature or 

resulted because of the overexpression/purification procedure. Furthermore we had to 

check if the conserved cysteine residue is essential for enzymatic activity.                 

Both M. fulvus C129S C130S C171S PrnB and P. fluorescens C21S C60S C175S PrnB 

proteins were successful generated and purified (See Fig. 3.16). 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.16 
SDS PAGE showing recombinant hexahistidine tagged triple cysteine mutants PrnB fractions collected after the first affinity column 

purification. A): P.fluorescens  C21S C60S C175S PrnB, the protein is highlighted by a red arrow.  B):  Myxococcus fulvus C129S C130S 

C171S PrnB, the protein is highlighted by a red arrow. The difference in expression is evident if the amount of PrnB is compared with the 

amount of contaminant protein binding the resin.  

 

The Myxococcus fulvus protein was expressed with a much lower yield compared to the 

wild type protein. No major differences were detected between P.fluorescens triple mutants 

PrnB and the wild type protein. Table 3.11 show a more detailed protein yield comparison 

between the wild type and mutant PrnBs. 
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Table 3.11 

* compared to the amount loaded on the first column 

 

The Myxococcus fulvus PrnB produced was not enough for other experiment than its 

molecular weight assessment on analytical gel filtration. P.fluorescens PrnB was used for 

crystallization trial (See Chapter 4). PrnB oligomeric state was assessed by analytical gel 

filtration as expected both PrnB mutants run were consistent with the behaviour of a 

monomeric protein. An example is shown in Fig 3.17. Most importantly the protein 

preparations appear to be homogeneous, see Fig. 3.18.  

 
Figure 3.17 
Analytical gel filtration column Superose 12 HR10/30® was used together with protein weight marker from Amersham Bioscience.  Panel 

A shows differences between wild type M. fulvus PrnB (red trace) and the triple cysteine mutant (green trace). Panel B shows both of 

them together with Aldolase 158KDa marker and BSA 67KDa marker.  

Total protein amount at each purification step 

 P.  fluorescens M. fulvus 

PrnB: WT Cys ► Ser WT Cys ► Ser 

LYSATE ON Ni2+ COLUMN 650mg - 100%* 1700mg - 100%* 1800mg - 100%* 1560mg - 100%* 

OUTPUT Ni2+ COLUMN  39mg -   6%* 270mg -  16%* 58mg -    3%* 35mg -  2.2%* 

OUTPUT GEL FILTRATION  
COLUMN 

 5mg -   2%* 100mg -    5%*  5mg -  0.27%* 0.250mg - 0.01%* 
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Figure 3.18 
Preparative preparations gel filtration chromatogram of PrnB from P. fluorescens wild type (A1) and triple mutant (B1) together with the 

SDS PAGE of the separated fractions (A2, B2). Chromatograms show the detection at 408nm PrnB Soret peak and 280nm, protein. Red 

arrows indicated protein identified as P. fluorescens PrnB by Mass Spect ID.    

 

In order to role out involvement of any of the mutated cysteines in the enzymatic activity of 

PrnB mutants we tested them using the feeding experiment assay developed by van Peé 
40; 106. All the constructs resulted active as shown in Fig 3.19. These results exclude any 

physiological role of the oligomeric protein aggregates and any involvement of the 

conserved P. fluorescens Cys175 into the enzyme catalytic cycle. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.19 
Ethyl acetate extract HPLC chromatograms from Pseudomonas broth culture carrying wild type pCIB-HIS-PrnB (black trace) or triple 

cysteine mutant pCIB-HIS-PrnB (red trace) from Pseudomonas and Myxococcus in the presence of 7-DL-Cl-TRP. The blue arrow 

indicates the characteristic monodechloroaminopyrrolnitrin MDA peak produced by both the wild type and the mutated enzyme. 
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To confirm PrnB as the unique enzyme responsible for 7-Cl-tryptophan biotransformation 

to monodechloroaminopyrrolnitrin pCIB-HIS-PrnB triple mutant was transferred by 

conjugation into Pseudomonas putida KT2440 99; 100, a Pseudomonas species unrelated to 

P.  fluorescens. This strain resulted to express soluble PrnB, see Fig. 3.20. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.20 
SDS PAGE showing recombinant hexahistidine tagged triple cysteine mutants PrnB from P.putida KT2440 carrying the pCIB-HIS-prnB 

plasmid . A) fractions collected after the first affinity column purification. B) final ourified protein ready for crystallization trials. The red 

arrow indicates PrnB. 

 

Feeding experiment with 7-Cl-tryptophan demonstrated the activity of PrnB in this 

Pseudomonas species too, see Fig. 3.21. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.21 
Ethyl acetate extract HPLC chromatograms from Pseudomonas putida KT2240 wyld type broth culture or carrying pCIB-HIS-PrnB triple 

cysteine mutant alone (black trace) or in the presence of 7-DL-Cl-TRP (red trace). The blue arrow indicates the characteristic 

monodechloroaminopyrrolnitrin MDA peak produced by active PrnB enzyme. 
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3.6 Discussion 
PrnB was successfully over-expressed and purified from Pseudomonas culture. The 

protein resulted to contain a heme cofactor. Given the nature of the heme cofactor and the 

homology between IDO and PrnB substrates, we went back and reconsider possible 

similarity between the reactions performed by the two enzymes. IDO is involved in the 

initial and rate-limiting step of L-TRP catabolism in the kynurenine pathway 109 and given 

the difference between IDO and PrnB reaction products (See Fig. 3.21) only the 

comparison of the two crystal structures could give us better clue about a possible partially 

conserved reaction mechanism.  
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Figure 3.21 
PrnB and IDO catalyzed reactions. 

 

Over-expression of PrnB into its natural host produce a heme loaded protein while E.coli 

over-expression failed to provide the enzyme with its cofactor resulting in aggregation and 

precipitation of the unfolded polypeptide. This result underlines once again the limits of 

E.coli as universal tool for protein over-expression even in the prokaryote kingdom.  
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Chapter 4 
 
 

PrnB Structure Determination and Analysis 
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4.1 Summary 
In this chapter I describe the crystallization of purified PrnB from P. fluorescens triple 

cysteine mutant in presence of both D and L tryptophan. The crystals diffract up to 1.7Å 

with a cell dimension of: a=68.6Å b= 79.5Å c= 92.7Å α=γ= 90.0° ß= 103.8°, and a C2 

space group. The structure of PrnB in complex with L-tryptophan has been determined by 

multiwavelength experiment at the iron edge. The structure of L-tryptophan complex was 

used to phase the D-tryptophan complex and an additional native dataset. In both 

structures, tryptophan is bound close to the heme site, but the enantiomers are oriented in 

two different ways. The structure confirms PrnB is closely relaed to IDO despite only 10% 

amino acidic sequence similarity. The tryptophan complexes although locating the enzyme 

active site are probably not relevant to catalysis. Molecular modeling has been used derive 

a model of enzyme substrate complex. An enzyme mechanism related to that of IDO is 

proposed. 

 

4.2 Introduction  
Once PrnB protein suitable for crystallization was obtained we started to set up 

crystallization trials. Given the fact that enantiomeric pure L or D 7-Cl-tryptophan is not 

commercially available (even the racemic mixture is not commercialized) we decide to set 

up co-crystallization experiment with enzyme preincubated with D and L tryptophan.                

Van Peé et al.  reported PrnB to be active on tryptophan too 21.  It has to be noted that 

PrnB substrate stereoselectivity have not been clarified so far and that PrnA, that catalyzes 

the first step of pyrrolnitrin biosynthesis, is active both on D and L tryptophan enantiomers. 

Furthermore feeding experiment with Pseusodomonas culture have demonstrated that both 

the enantiomer are pyrrolnitrin precursors 61. Interestingly D-tryptophan has the ability to 

enhance the antibiotic production. Without a robust in vitro assay the involvement of 

aminoacid racemase in the interconversion of the tryptophan isomers can not be excluded. 

The PrnB crystal structure could help us to propose a catalytic mechanism for the enzyme 

and at the same time provide information to set up successful enzyme in vitro assays. 
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4.3 Materials and Method/Results 
 

4.3.1 prnB crystallization trials 
PrnB resulted stable at concentration ranging from 8mg/ml to 16mg/ml. For co-

crystallization experiment concentrated protein was incubated with L-tryptophan, D-

tryptophan and pure 7-L-Cl-tryptophan at room temperature with gentle agitation for 30min 

before the excess of TRP was separated by centrifugation. Crystal trials were set up at the 

Scottish Structural Proteomic Facility with a nanodrop crystallization robot (Cartesian 

HoneyBee) on sitting drop plate (Hampton Research CrystalQuick� 96 wells, 4 µl square 

drop well, 3 drop well) using crystallization sparse matrix kits from a range of different 

providers (200nl protein solution plus 200nl of precipitant).  In Fig. 4.1 a SDS PAGE of 

PrnB used for crystallization trial is shown. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 
NuPage 4-12% Bis-Tris gels showing in lane 1 protein ladder; in lane 2 P. fluorescens BL915 Triple cysteine mutant PrnB used for 

crystallization.                         

 

Plates were imaged as a part of the Hamilton-Thermo Rhombix System of the the Scottish 

Structural Proteomic Facility.  See Fig. 4.2. 
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Figure 4.2 
Images of the condition number 80 from crystal screen THE PEGs (NEXTAL) containing 0.2 M Magnesium sulfate heptahydrate, 20% 

w/v PEG 3350. Triple cysteine mutated uncleaved TEV-PrnB protein is at 8mg/ml and saturated with L-tryptophan. Crystals appeared 

three days after the plate was set up. Drop size is 200nl. 

 

Protein crystals were obtained with condition number 80 (0.22 M Magnesium sulfate 

heptahydrate, 16% w/v PEG 3350) of The PEGs crystal screen (NEXTAL) with PrnB at            

8mg/ml and 16mg/ml using both a 1:1 or a 2:1 protein to precipitant ratio in presence of 

saturating amount of L-TRP.  No crystals were obtained incubating the protein with pure           

7-L-Cl-TRP, provided by Professor Robert S. Phillips from The University of Georgia, or 

without tryptophan.   
 

4.3.2 PrnB crystal optimization 
Crystallization conditions had to be translated and optimized from nanodrop to a bigger 

drop size. Hanging drop crystal plate produced too many crystals per drop. The best 

results were obtained using sitting drop plates (Hampton Research CrystalClear StripsTM 

96 wells plates) with 1.5µl protein solution plus 1.5µl of precipitant. Expansion of the PEG 

3350 and MgSO4 concentration did not change the form of the crystal that tended to grow 

as cluster of plates/rod as shown in Fig 4.3. 
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Figure 4.3 
Images of the condition number 80 from crystal screen THE PEGs (NEXTAL) containing 0.2 M Magnesium sulfate heptahydrate, 20% 

w/v PEG 3350. Triple cysteine mutated uncleaved TEV-PrnB protein is at 8mg/ml and saturated with L-tryptophan.   Crystals appeared 

one week after the plate was set up. Drop size is 3µl. 

 

Green crystals of the same shape were obtained from PrnB incubated with D-Tryptophan 

prior to crystallization. 
 

 
 

4.3.3 PrnB data collection 
Given the small size of PrnB crystals and their tendency to grow in clusters we were not 

able to collect any data in house. The first data were collected at The Daresbury 

Synchrotron Radiation Source on Station 9.6. Plates were detached from plate clusters 

obtained from protein incubated with L-tryptophan and cryoprotected with 20%                

(2R,3R)-(−)-2,3-butanediol (Cat. N# 237639), Sigma.  Two datasets were collected from 

different crystals. The first dataset with a resolution of 2.4Å consisted of 360 images at 0.5° 

oscillation. The second dataset with a resolution of 1.75Å consisted of 240 images at 0.5° 

oscillation. Images were indexed in MOSFLM 86, which identified the higher resolution 

dataset as C2221 space group and the lower resolution one as C2. Reflection were sorted 

and merged with SCALA 87 In table 4.2  statistics are reported for the C2221 dataset 

identified as �native�. PrnB crystallizes in two different space groups in our crystallization 

condition. In order to solve PrnB structure MAD datasets were collected subsequently at 

the European Synchrotron Radiation Facility on ID29. A three wavelength MAD dataset 

was collected on a plate from a crystal grown in presence of  L-tryptophan                 
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(Inflection 180 images 1° degree oscillation, Edge 360 images 0.5° oscillation, Remote 180 

images 1° oscillation). A further dataset was collected from a plate grown in presence of  

D-tryptophan (360° images 0.5° oscillation). Both crystals were again cryoprotected with 

20% (2R,3R)-(−)-2,3-Butanediol. Images were index in MOSFLM 86, data were sorted and 

merged with SCALA 87. Crystals resulted to belong to space group C2; statistics are 

reported in table 4.2. Analysis of the Matthews coefficients 91 90 for both the crystal space 

groups identified one monomer in the asymmetric unit, see table 4.1. Fig. 4.4 shows the 

mounted crystal during the MAD experiment and one of the collected images. 
 
Table 4.1 

Matthews Coefficient Calculation 

SPACE GROUP CELL VOLUME Å 
Nmolecule / 

Asymmetric Unit 

Matthews 
Coefficient  

% SOLVENT P* 

C2 492928.594 1 2.87 57.11 0.99 

C2221 703515.875 1 2.05 14.22 0.01 
(P*: probability across all resolution ranges) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4 
A: a picture of L-tryptophan PrnB crystal used for the MAD experiment. B: one of the collected images. 
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Table 4.2 

 PrnB plus L-TRP plus-D-TRP native 

DATA 
COLLECTION 

Inflection Edge Remote 
  

 
Overall  

(OuterShell) 
Overall  

(OuterShell) 
Overall  

(OuterShell) 
Overall 

(OuterShell) 
Overall  

(OuterShell) 

Resolution limit (Å)    51.10 � 2.00 51.10 � 2.00 51.10 � 2.00 50.97 � 1.79 38.26 � 1.75  

Highest Shell (Å)        2.11- 2.00 2.11- 2.00 2.11- 2.00 1.79 � 1.70 1.84 � 1.75 

Wavelength 1.74070 1.73890 1.722 0.97620 1.4880 

Unit-Cell 

 

a=68.6  Å 

b= 79.5 Å 

c= 92.7  Å 

α=γ= 90.0° 

ß= 103.8° 

 

a=68.2  Å 

b= 79.5 Å 

c= 92.3  Å 

α=γ= 90.0° 

ß=  103.4° 

a=67.69  Å 

b= 80.12 Å 

c= 129.51 Å 

α=ß= γ=90.0° 

 

Space Group C2 C2221 

Unique  reflections     31741 (4521) 31860 (30) 31836 (4538) 51494 (7379) 35216 (4879) 

Multiplicity  (%)  3.6 (3.7) 7.1 (7.3) 3.6 (3.7) 3.7 (3.8) 4.4 (4.0) 

Completeness (%) 97.0 (94.7) 97.1 (94.8) 97.1 (94.8) 97.5 (96.3) 98.1 (95.3) 

Rmerge 0.059 (0.250) 0.066 (0.298) 0.060 (0.324) 0.076 (0.886) 0.082 (0.193) 

I/σ   (Mean((I)/sd(I))   16.5 (4.9) 21.5 (6.3) 15.4 (3.8) 12.0 (1.5) 16.0 (4.2) 

Anomalous       

Completeness 
75.1 (66.4) 97.0 (94.8) 75.8 (67.1) 

  

f�/f�� -21 / 13 -26 / 7 -17 / 5   

∆ano/σ∆ano 1.05 1.26 1.1   
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4.3.4 PrnB structure solution and refinement  
The three-wavelength, pre�merged MAD data, cut to 2.8Å, were used to determine the 

position of the anomalous scatter Fe atom in SOLVE 110. The program refined anomalous 

scattering factors and searched for one single Fe atom, corresponding to one 

heme/monomer. The SOLVE phases calculated in C2 were used as input to RESOLVE for 

solvent flattening of the resulting electron density and automatic model building 111; 112. The 

phases from RESOLVE was input into ARP/wARP 113 together with PrnB sequence and 

the intensities from the Edge dataset. ARP/wARP was able to build amino acids 45 to 397 

in a single chain with a gap between residues 364 to 378 with a connectivity index of 0.98. 

ARP/wARP model was refined using cycles of manual  refinement with WinCoot 51 and 

Refmac5 92; 93 (CCP4 package) against both the Edge dataset and the D-tryptophan 

containing dataset, See table 4.3 for the details of refinement. The refined D-tryptophan 

containing model was used to solve the C2221 dataset by molecular replacement with 

PHASER 88; 89 using PrnB as the search model. A solution was found with 1 monomer per 

asymmetric unit cell, the model was refined using cycles of manual  refinement with 

WinCoot 51 and Refmac5 92; 93 (CCP4 package), See table 4.3 for the details of refinement.  
 
Table 4.3 
 

PrnB: plus L-TRP plus-D-TRP native 

Rcryst 0.169 0.194 0.183 

Rfree 0.216 0.214 0.231 

 

The heme b electron density was clear for all the three models. The green crystal grown 

with protein incubated with D-tryptophan showed FO-FC electron density at the sixth 

position of the heme b iron. This density was modeled as D-tryptophan.  Crystal grown in 

the presence of L-tryptophan and belonging to the C2 space group also showed FO-FC 

electron density at the sixth position of the heme b iron. This density was modeled as L-

tryptophan. For the C2221 crystal, despite being grown in presence of L-tryptophan, no 

tryptophan molecules were located next to the heme b in the resulting model. See Fig. 4.5. 

 
 



 122

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: native C2221 crystals 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B: C2 D-tryptophan containing crystal 
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C: C2 L- tryptophan containing crystal 

 
 
 
Figure 4.5 
Unbiased PrnB 2FO-FC at 1σ in blue and FO-FC at 3σ in green electron density maps around the heme and tryptophan positions:                          

A:  C2221 native crystal; B: C2 D-tryptophan containing crystal; C: C2 L- tryptophan containing crystal. See Fig. 4.11, 4.12 and 4.13 for 

the stick representation of the modeled heme cofactor and ligands.  
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4.4 Discussion 

4.4.1 Overall Structure 
As predicted PrnB structure consists only of helices. The final refined structure covers the 

TEV-PrnB construct from residue 45 to 400 that correspond to residues 5 to 360 of the 

Pseudomonas coding sequence. Residues 364-374 in the native model, 366-374 in the              

D-tryptophan complex and 365-375 in the L-tryptophan complex are disordered. Secondary 

structure assignment was carried out using STRIDE 96 web base software 

(http://webclu.bio.wzw.tum.de/cgi-bin/stride/stridecgi.py) and was confirmed by visual 

inspection of the model, see Fig. 4.6 and 4.7.                                  
              .         .         .         .         . 
45   LDRVGVFAATHAAVAASDPLQARALVLQLPGLNRNKDVPGIVGLLREFLP   94 
       HHHHHHHHHHHHHH TTTTHHHHHHHHHHHHHH  HHHHHHHHHH  T  
           α1                  α2          α3 
              .         .         .         .         . 
95   VRGLPSGWGFVEAAAAMRDIGFFLGSLKRHGHEPAEVVPGLEPVLLDLAR  144 

TTT TTTT HHHHHHHHHHHHHHHHHHHHH   GGG TTTHHHHHHHHHH                           
                α4                α5       α6 

              .         .         .         .         . 
145  ATNLPPRETLLHVTVWNPTAADAQRSYTGLPDEAHLLESVRISMAALEAA  194 
     HH       HHHHHTTT  TTTTT TTTT HHHHHHHHHHHHHHHHHHHH 
                α7                       α8 
              .         .         .         .         . 
197  IALTVELFDVSLRSPEFAQRSDELEAYLQKMVESIVYAYRFISPQVFYDE  244 
     HHHHHHHH  TTTTHHHHHHHHHHHHHHHHHHHHHHHHHHH  HHHHHHH 
                           α9                     α10a        
              .         .         .         .         . 
245  LRPFYEPIRVGGQSYLGPGAVEMPLFVLEHVLWGSQSDDQTYREFKETYL  294 
     HGGG   BBBTTBBB    GGG  HHHHHHHHHHTTT  HHHHHHHHHHG 
     α10b    β1   β1    α11    α12               α13a-b   
              .         .         .         .         . 
295  PYVLPAYRAVYARFSGEPALIDRALDEARAVGTRDEHVRAGLTALERVFK  344 
     GG  HHHHHHHHHHTTT  HHHHHHHHHHHHTTTTHHHHHHHHHHHHHHH 
             α14             α15               α16 
              .         .        .          .          
345  VLLRFRAPHLKLAERAYEVG------PSMLGELLTLTYAARSRVRAALDE  400 
     HHHHHHHHHHHHHHHHHH        HHHHHHHHHHHHHHHHHHHHH 
                                        α17 

 

Figure 4.6 
PrnB secondary structure assignment output file from the web based version of STRIDE 96 (http://webclu.bio.wzw.tum.de/cgi-

bin/stride/stridecgi.py).  Residues are numbered as in the refined structure. T = turns, H = α-helix, G = 310-helix, B = β-strand. Shaded in 

yellow is the gap containing the disordered region from aa 365 to aa 376, in purple the three Cysteine residues mutated to Serine for 

crystallization purpose. 
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Analysis of protein protein interfaces in the entire crystal using the web based                

PISA Server 95 software (http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html) failed to identify 

any possible relevant protein protein interaction, confirming the PrnB monomeric character 

assessed by gel filtration. Seventeen helices can be identified in PrnB model. The heme 

binding helices are at the protein C-terminal, with the heme proximal ligand histidine on 

helix α16. A loop between helices α10 and α11 is situated on top of the heme prosthetic 

group. The sixth coordination position of the heme b is occupied by the tryptophan ligand in 

the two tryptophan containing models and by a water molecule in the native model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7 
Cartoon representation of PrnB structure. Each of the 17 identified helices is labeled (α = helix, β = sheet). Heme group is in white. The 

N terminal is at α1the C-terminal at α17. 
 

Residues 364-376 connecting helix α16 to helix α17 are likely to be part of a flexible loop 

region outside the heme pocket.  The three cysteine residues that were mutated are far 

from the protein active site. C61 is located in the connecting loop between helices α1 and 

α2; C100 is located in the connecting loop between helices α3 and α4 and C215 is at the 

N-terminal of helix α9. C61 and C100 are the two best candidates for aspecific bonding in 

PrnB concentrated protein solution because of their localization on solvent exposed flexible 

loops, see Fig. 4.8. Mutation of solvent exposed cysteine in heme containing protein to 

obtain material suitable for crystallization has precedent in the murine neuroglobin structure 
108 (PDB code  1W92) and human neuroglobin structure  107  (PDB code 1OJ6).  No major 
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rearrangements were observed between the two ligand bonded models or between them 

and the native structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8 
Three cystein residues had to be mutated to serin residues in order to obtain protein material suitable for PrnB crystallization. In this 

picture showing a cartoon model (in gray) of PrnB the three mutated serin residues are highlighted in red. Heme b is colored in yellow 

 

The protein electrostatic potential calculated using the APBS (Adaptive Poisson-Boltzmann 

Solver) Pymol plugin 114 revealed PrnB protein surface as mainly negative with a positive 

charge patch underneath the heme cavity, see Fig. 4.9. Furthermore Fig. 4.9 helps to 

identify the substrate entrance toward the big heme distal cavity site. 

 



 127

 

 

 

 

 

 

 

 

 
 
A                                                    B                                                           C 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
D                                                                 E                                                        F 
 
 
 
 
 
 
Figure 4.9 
Electrostatic potential of native PrnB model calculated with the APBS Pymol plugin 114; 115. A: PrnB cartoon representation, heme in 

green. B: electrostatic potential on PrnB solvent accessible surface, note the access to the heme cavity, PrnB in the same orientation of 

A. C: the same as B, but showing the electrostatic potential calculated on the solvent accessible surface projected on PrnB molecular 

surface. D: as C but showing PrnB backview. E: again same as C, but showing PrnB top view. F: as C but showing PrnB bottom view. 

Blue and red colors represent positive and negative electrostatic potential, respectively. Hue intensity depicts strength of the potential (in 

kT/e units) as shown on the scale bar at the bottom of the page.  
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4.4.2 Heme binding  
The heme binding pocket is constituted by the α8, σ9, σ15 and σ16 helices bundle together 

with the perpendicular to the bundle σ10 and σ13 helices and the loop between helices 

σ10 and σ12. H353 on helix α16 acts as the proximal heme ligand. See Fig. 4.10. 

 

 

 

 

 

 

 

 

 
 
Figure 4.10 
A close look at the heme binding helices. Histidine 350 the proximal heme ligand is shown as stick in yellow color. Heme in white.  
 

Visual inspection of the model with WinCoot 51 and heme-protein interaction analysis with 

Ligplot 116 helped to identify residue involved in heme binding. Fig. 4.11 shows the electron 

density for the heme binding region in the native structure together with residues 

interacting with it.  

 

 

 

 

 
 
 
 
 
 
 
 
Figure 4.11 
Electron density and model of the heme region. Density is countered at 1σ. Heme in green, protein residues in yellow, Fe atom in orange 

waters molecules in blue.   
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In Fig. 4.12 interaction between the same residues heme prosthetic group and the protein 

are highlighted by dotted black lines. H353 is the heme fifth ligand.               

 

 

 

 

 

 

 

 

 
 
Figure 4.12 
Stick representation of the heme binding region from the native model. Heme cofactor in green, protein residues in yellow. Water 

molecules as blue spheres and Iron as a orange sphere. Only for residues V65 and A264 the main protein backbone is shown. In black 

dotted line interactions between residues waters and the heme. 
 

The sixth position is occupied by a water (or hydroxyl) in the native structure. On the heme 

proximal side H353 interacts through two waters with the heme 6-propionate.                 

The 6-propionate is hydrogen bounded to R350 (α16) that interacts tightly with E273 (α12) 

forming a salt bridge.  On the heme proximal side 3 methyl is close S183. The                 

7-propionate interacts through water with Y293 (α13). As already mentioned the iron sixth 

ligand is a water molecule that through a second water interacts with the peptide bond 

nitrogens of A264 and V265.                   

Upon tryptophan binding the sixth proximal water is replaced by the aminoacid                 

amino group, See Fig. 4.13. In the D-tryptophan complex (Fig. 4.13 A) the tryptophan 

carboxyl group interacts with V265 and A264 amino nitrogens, while the indole nitrogen 

interacts with the protein backbone carboxyl of P262 part of the loop directly above the 

heme distal site. Y293 interacts trough one water to the heme 7-propionate, while Y361 is 

connected by two water molecules to the tryptophan carboxyl group and by two waters to 

the 7-propionate carboxyl group by one water molecule. Given the different orientation of              

L and D-tryptophan respect to the heme (see Fig. 4.13 C)  in  the    L-tryptophan complex   
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Figure 4.13 
Stick representation of the heme binding region from the D-tryptophan (A) and L-tryptophan (B) bounded models. Heme cofactor in 

green, protein residues in yellow. Water molecules as blue spheres and Iron as a orange sphere. . Only for residues V65 and A264 the 

main protein backbone is shown. In black dotted line interactions between residues waters and the heme. Tryptophan ligands are in 

purple. In C superposition of the heme and tryptophan ligand for the two complexes (L-tryptophan in purple, D-tryptophan in cyan) 
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 (Fig. 4.13 B) the tryptophan carboxyl group is still interacting with V265 an A264, while the 

indole nitrogen results to be more than 3.5Å from the P262 backbone carboxyl. Y293 is 

connected to the 7-propionate by two waters. A new interaction arises between the                 

7-propionate and the tryptophan carboxyl group through one water molecule.  

Interestingly L and D-tryptophan phenyl rings overlap each other in the superposed 

structure (see Fig 4.13C) suggesting the presence of a hydrophobic pocket positioning the 

aromatic ring above the heme.   

 

4.4.3 PrnB the heme distal pocket 
A closer look at the residues defining the heme distal pocket, see Fig. 4.14, reveals 

hydrophobic aminoacids as the major contributors to the heme cavity.  

 

 

 

 
 
 
 
 
 
 
 
Figure 4.14 
PrnB heme distal pocket. The side chains of residues defining the heme distal cavity are represented as sticks. Atoms colors:                   

carbon yellow, oxygen red and nitrogen blue. Heme carbons are in green, iron orange.  

 
 
Apart from the serine residues S183, S187 S228 at the heme plane level and the two  

tyrosine Y293 and Y361, aromatic residues, that close the substrate access site to the 

heme distal region most of the remaining side chains have hydrophobic character. R246 

beside the substrate entrance is facing away from the heme as well as E250 and E266.  

M167, is perfectly opposed to heme 7-propionate. Right at the top of the cavity a further 

tyrosine, Y249, which could participate in hydrogen bonding to the substrate is facing away 

from the heme. The visual inspection results are confirmed by using the CASTp web based 
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analysis software (http://sts.bioengr.uic.edu/castp/index.php) 117; 118 to calculate the cavity 

dimensions. The program identified the 21 reidues that together with the heme cofactor 

that define a cavity with a 420Å2 surface and a volume of 520Å3, see Fig. 4.15. 
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45   LDRVGVFAATHAAVAASDPLQARALVLQLPGLNRNKDVPGIVGLLREFLP   94 
 
              .         .         .         .         . 
95   VRGLPSGWGFVEAAAAMRDIGFFLGSLKRHGHEPAEVVPGLEPVLLDLAR  144 
 
              .         .         .         .         . 
145  ATNLPPRETLLHVTVWNPTAADAQRSYTGLPDEAHLLESVRISMAALEAA  194 
 
              .         .         .         .         . 
197  IALTVELFDVSLRSPEFAQRSDELEAYLQKMVESIVYAYRFISPQVFYDE  244 
 
              .         .         .         .         . 
245  LRPFYEPIRVGGQSYLGPGAVEMPLFVLEHVLWGSQSDDQTYREFKETYL  294 
 
              .         .         .         .         . 
295  PYVLPAYRAVYARFSGEPALIDRALDEARAVGTRDEHVRAGLTALERVFK  344 
 
              .         .        .          . 
345  VLLRFRAPHLKLAERAYEVG------PSMLGELLTLTYAARSRVRAALDE  400 
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Figure 4.15 
A: CASTp (http://sts.bioengr.uic.edu/castp/index.php) 117; 118 output generated using a 1,4Å probe. PrnB as cartoon in gray; heme in red 

stick and as green spheres the cavity identified by the program. B: Residues defining the cavity highlighted in green in PrnB structure 

sequence. C: Stick representation of PrnB residues defining the CASTp calculated heme cavity, heme in green, residues side chains in 

yellow.  
 
 
In Fig. 4.16 the sphere representation of the amino acids described in Fig. 4.15 helps to 

identify the hydrophobic pocket that hold in place the tryptophan aromatic ring.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.16 
Sphere representation of the PrnB hydrophobic pocket (carbon in yellow, oxygen in red nitrogen in blue) holding in place L and                       

D-tryptophan ligands (in magenta), the heme 7-propionate is visible (in green). 
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4.4.4 PrnB homologues 
Fig. 4.17 shows the sequence alignment of the initial four homologues identified by 

Hammer et al. 71 and four homologues from the DOE Joint Genome Institute Integrated 

Microbial Genomes webpages together with PrnB main secondary structure elements. 

Because of the very high sequence homology we can assume that the structure of PrnB 

would be conserved for all the homologues. Myxococcus fulvus sequence with a sequence 

identity of 59% and sequence similarity of 69% respect to P. fluorescens BL915 PrnB 

sequence is the least conserved of the eight homologues. The higher variation is observed 

at the protein N and C terminii. All the major residues involved in the heme cofactor binding 

are conserved as well as the one defining the heme distal cavity. Interestingly the loop, 

between helix 10 and helix 11, that covers the heme distal site is highly conserved too. 
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Figure 4.17 
PrnB homologues multiple alignment (Clustal W). First row P.fluorescens BL915, second  row P.fluorescens Pf-5, third row Burkholdeia 

pyrrocinia, fourth row Burkholderia cepacia, fifth row Burkholderia cepacia 383, sixth row Burkholderia pseudomallei, seventh row 

Burkholderia ambifaria, eight row Myxococcus fulvus. The yellow box highlights the gap present in PrnB structure. The green box 

highloghts the residues belonging to the loop above the heme cavity. Green star highlights main residues involved in heme cofactor 

binding. Black stars highlights residues defining the heme distal pocket shown in Fig. 4.14, while orange ones the one identified by using 

CASTp Fig. 4.15. Shaded in red identical residues in blue similar ones (threshold 85%). PrnB secondary structures elements in black.  
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5.4.5 PrnB and IDO comparison 
Despite a protein sequence identity lower than 10% PrnB structure shows striking similarity 

with the recently solved indoleamine 2,3-dioxygenase (IDO) structure (PDB accession 

code 2D0T) 98.  Interestingly the IDO structure was solved from P212121 crystals containing 

two monomers into the asymmetric unit. The two monomers are bonded together through a 

disulfide bond involving cysteine 308. Native human IDO has been reported to be a 

monomeric protein 119, but oligomerization studies have not been reported for the 

recombinant product. The presence of the disulfide linkage is not discussed in IDO 

structure paper  98. By analogy with the Indolemine-2,3-dioxygenase structure, the PrnB 

model can be divided into two major domains, see Fig. 4.18. The large domain, in green is 

formed by the heme binding helices. It is separated by the small domain, in blue by the two 

helices perpendicular to the bundle, in cyan and the loop closing the heme proximal site, in 

red.  From this graphical representation the two proteins structural homology and overall 

conserved topology appears obvious. PrnB consists of 12 major α-helices one more than 

IDO. The extra PrnB α-helix is at the protein N-terminal. The presence of this ordered α1 

helix could be explained by the presence in PrnB crystal of the 41aa long pCIB-HIS-TEV 

tag that could help stabilizing the first secondary structure. In IDO crystal there are only 3 

extra aa before the first methionine (during the purification the N-terminal hexahistidine tag 

is cleaved by thrombin) and the first 21 aa in the structure form a flexible loop. 
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Figure 4.18 
Cartoon representation of (A) Indoleamine 2,3-dioxygenase (IDO, PDB accession code 2D0T) and (B) PrnB. The proteins are composed 

of two major domains in accordance with IDO description by Sugimoto et al. 98. The small domain is colored in magenta for IDO and in 

blue for PrnB, the large domain in orange for IDO and in green for PrnB. In violet for IDO and in cyan for PrnB are the connection helices 

between the two domain and in yellow for IDO and in red for PrnB the loop that mask the heme distal site. 
 

Structural superposition of PrnB on IDO model using the Protein structure comparison 

service SSM at European Bioinformatics Institute (http://www.ebi.ac.uk/msd-srv/ssm) 50 

resulted in a Z-score of 5.2 with a RMSD of 2.4Å for 273 aligned residues. In Fig. 4.19 is 

depicted the ribbon model of the two superimposed structure. Despite small differences in 

the position and length of the two protein helices the heme cofactor results to be perfectly 

superimposed in the two models. In Fig. 4.20 is shown the structure based alignment 

between PrnB and IDO. 
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Figure 4.19 
Ribbon representation of PrnB (red , yellow heme) superposition to IDO (blue, cyan heme), using the SSM algorithm of WinCOOT 51. 

Despite differences in helices length and numbers, Fig. 4.20, the overall protein topology is clearly conserved. Note the conserved 

position of the heme prosthetic group position inside the main four helix bundle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.20 
Sequence alignment based on structural superposition of PrnB on IDO using the Protein structure comparison service SSM at European 

Bioinformatics Institute (http://www.ebi.ac.uk/msd-srv/ssm) 50. In capital superposed residues; shaded in red identical residues, in blue 

similar ones. The yellow boxes indicate the RxxH motif involved in heme proximal binding toghether with the arginine interacting 

E273/D274. Secondary structure elements, calculated with STRIDE 96 (http://webclu.bio.wzw.tum.de/cgi-bin/stride/stridecgi.py) and 

visually inspected,  are numbered from the N-terminal onward (α = helix, β = sheet). The two triangles indicated the position of the 

unique gap (disordered loop) present in both the protein models. Circled in purple the three Cysteine residues mutated to Serine for 

crystallization purpose. 
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A close examination of IDO heme binding site compared with PrnB shows other conserved 

features between the two proteins, see Fig. 4.21. The E273, R350, H353 triad in the PrnB 

heme distal site is equivalent to the D274, R343, H346 triad of IDO.                 

D274 has been reported to be essential for proper heme loading on recombinant human 

IDO probably for its ability to stabilize the proximal histidine 120.  In PrnB S183 is close to 

the heme 3 methyl group suggesting a heme stabilizing interaction between the two 

groups. S183 is conserved in IDO where we found S167 in the same position. Y293 and 

Y361 which interacts through waters with the heme 7-propionate in the D-tryptophan 

bonded PrnB model are replaced by M295 (Y293) and I354 (Y361) in IDO structure. While 

PrnB amino group of V265 and A264 interacts with D and L tryptophan, S293 in IDO 

structure is directly involved in hydrogen bonding the heme 7-propionate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.21 
Comparison of IDO (in cyan) and PrnB (in yellow) heme binding site. The E273, R350, H353 triad on the PrnB heme distal site results to 

be equivalent to the D274, R343, H346 triad of IDO. S183 is replaced by S167 in IDO. While the 7-propionate interacts in with Y293 in 

PrnB through a water molecule, in IDO structure it interacts directly with S293. The S293 analog V265 in PrnB structure interacts with the 

tryptophan ligand carboxyl group or in the native structure with the Fe atom through two water molecules. 
 
Other major differences between IDO and PrnB structure arise from differences in the 

length of various helix connecting loops. The more evident are from the structure sequence 

based alignment in Fig. 4.20 are highlighted in Fig. 4.22. The first one connects α5 to α7 

and contains the three residues long α6. The second one is the loop involved in covering 

the heme distal side, it extends from α8 to α10 and contains the three residue long α9. In 
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PrnB this second loop connects α10 to α11 and contains the small antiparallel beta-sheet 

β1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.22 
Major loops differences between IDO (light gray, yellow loops) and PrnB (dark gray, red loop). IDO: the loop connecting α5 to α7 on the 

back of the protein heme binding region and the one connecting α8 to α10 on top of the heme cofactor.  In PrnB (B) this second loop 

result 15 aminoacids shorter. 
 

The bigger extension of this second loop in IDO produces a larger heme distal cavity. 

CASTp calculation on PrnB (See 5.4.3) gives a 520Å3 pocket dimension compared to IDO 

1831Å3. Fig. 4.23 shows a superposition of the the cavity forming residues in the two 

proteins.  
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Figure 4.23 
Superposition of IDO (in cyan) and PrnB (in yellow) heme distal cavity residues as calculated by CASTp. For clarity only PrnB residues 

are labeled.  
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4.4.6 PrnB Structure and Enzymatic Mechanism 
PrnB structure elucidation confirmed heme b as the protein cofactor and resulted to display 

the same overall fold of Indoleamine 2,3-dioxygenase. The enzyme active site has been 

located on the distal side of the heme cofactor from co-crystallization experiment with                

D and L tryptophan reported to be enzyme substrates. In our structures tryptophan is 

bonded to the ferric iron through its α nitrogen. However PrnB needs probably to be 

reduced to its ferrous form to catalyze the tryptophan → aminophenylpyrrole reaction. So 

we expect tryptophan or 7-Cl-tryptophan to sit on the cavity above the reduced heme 

cofactor.  

Solution of IDO structure and comparison of wild type and mutants activity lead Sugimoto 

et al. 98 to propose a mechanism in which the tryptophan indole decyclization is driven by 

iron-bound dioxygen. See Fig. 4.24. 
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Figure 4.24 
Indoleamine 2,3-dioxygenase proposed mechanism 98. IDO catalyzes the cleavage of the bond between carbon 2 and carbon 3 of the 

tryptophan indole ring. The trigger of the reaction is abstraction of a proton from nitrogen 1. Binding of oxygen and tryptophan enables 

the interaction between the heme bonded dioxygen and the NH group of indole. Dioxygen then abstracts the proton. Subsequent 

rearrangement of the indole ring electronic structure leads to formation of a bond between the proximal dioxygen oxygen and indole 

carbon 3. Cleavage of the Fe-O bond results in the formation of intermediate 1 (3-hydroperoxyindolenine). Intermediate 1 rearranges into 

2 (dioxyetane) that decomposes into N-formylkynuirenine.  

 
This mechanism has been proposed due to the absence of relevant polar/charged residues 

protein side chain that could act as catalytic bases in IDO active pocket. 
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Computer assisted modeling of PrnB substrate in the enzyme active site , using ArgusLab 

4.0 software 97 (http://www.planaria-software.com),  predicted 7-Cl-L-tryptophan to bind 

with its 7 position facing the heme cavity ceiling. Thus presenting its carbon 2-3 double 

bond to the heme iron in the opposite way respect to IDO, see Fig. 4. 25. 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.24 
One representative result obtained modeling 7-Cl-L-tryptophan into PrnB heme cavity using the ArgusLab software 97. 7-Cl-tryptophan in 

purple, chlorine atom green. Heme in yellow. PrnB cartoon color as in Fig. 4.17. Green large domain, blue small domain, cyan 

interconnecting helices and in red the above heme cavity loop. All the simulation resulted in the chlorine pointing at the cavity ceiling. 

The carbon 2-3 double bond is facing the heme in the opposite way compared to proposed tryptophan binding to IDO.   

 

By analogy with the IDO mechanism and taking into account the modelling results we can 

propose more than one way in which PrnB catalyzes a reaction using heme bound 

dioxygen as the protein catalysts, see examples in Fig. 4.26. These are of course only 

speculative models and rely on the different way the substrate should bind into the enzyme 

active pocket. Central to the understanding of the PrnB reaction mechanism is the solution 

of the crystal structure of the reduced protein together with is physiological substrate 7-Cl-

tryptophan. A difficult technical task made more difficult by the difficulty to obtain 

enantiomeric pure D and L chloro-tryptophan.    
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Figure 4.26 
Proposed reaction mechanism for PrnB. Oxidation of the 2-3 carbon double bond, by iron bonded dioxygen, activates the indole ring for 

nucleophilic attack. The reaction could then proceed either via peroxide (2a) mediated ring rearrangement or through an oxyrane 

intermediate (2b) and ring rearrangement. The ring rearrangement and the formation of a three ring intermediated is mediated by the                         

α nitrogen nucleophilic attack on carbon 2. The three ring compound could then degrade in two ways by peroxide elimination (3a) or via 

two water elimination (3b) driven in both cases by the decarboxylation occurring at the carbon α. 

 



 145

A second possibility is that 7-Cl-tryptophan will bind to the enzyme in the same way as              

D- and L-tryptophan and that the true active form will be the PrnB oxidized one. Given 

these assumptions we could expect a different enzymatic mechanism which would work in 

the same way with both L-tryptophan and 7-Cl-tryptophan. In this case too a speculative 

reaction mechanism can be depicted, see Fig. 4.27. 
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Figure 4.27 
Proposed reaction mechanism for PrnB. (i): from the crystallographyc data of the D- and L-tryptophan bond PrnB the ferric iron may 

oxidize the α-amino nitrogen providing the driving force for the decarboxylation of the carboxylate group and subsequent formation of an 

imine. Tautomerization of the imine to an electrophilic amine group, in bracket, will provide the driving force for the indole ring 

rearrangment and formation of the phenylpyrrole ring of aminopyrrolnitrin (iii).   
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4.5 Future work 
Apart from trying to obtain a crystal structure of reduced PrnB in the presence of one of its 

substrates (both tryptophan and chloro tryptophan), we have now a working hypothesis 

regarding the enzyme reaction mechanism. A priority for a better understanding of this 

unique enzyme is to eastablish a reproducible robust enzymatic assay. A starting point 

could be using IDO assay conditions.  Moreover availability of a robust PrnB expression 

system with protein yields of about 10mg/liter represent an ideal system to generate site 

directed mutants to further investigate the function of conserved residues among PrnB 

homologues or residues that will be identified next to the tryptophan in the reduced form 

protein structure. 
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