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Abstract 

Minke whales are difficult to study and little information exists regarding their responses to 

anthropogenic sound. This study pools data from behavioural response studies off California and 

Norway. Data are derived from four tagged animals, of which one from each location was 

exposed to naval sonar signals. Statistical analyses were conducted using Mahalanobis distance 

to compare overall changes in parameters summarising dive behaviour, avoidance behaviour, 

and potential energetic costs of disturbance. Our quantitative analysis showed that both animals 

initiated avoidance behaviour, but responses were not associated with unusual dive behaviour. In 

one exposed animal the avoidance of the sonar source included a 5-fold increase in horizontal 

speed away from the source, implying a significant increase in metabolic rate. Despite the 

different environmental settings and exposure contexts, clear changes in behavior were observed 

providing the first insights into the nature of responses to human noise for this wide-ranging 

species. 

 

Highlights 

 Data pooled across two projects to increase sample size.  

 Quantitative analysis shows that minke whales avoid naval sonar at low levels. 

 Minke whales are likely to be affected by sonar across relatively large distances. 

 Results are consistent with observations from a real world scenario.  

 First insight into the responses of this common species to anthropogenic sound.  
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Introduction 

Naval anti-submarine warfare sonars, typically operating in the 1–10 kHz frequency band, have 

been associated with atypical mass strandings of cetaceans (D’Amico et al. 2009). These events 

have mostly involved beaked whales (family Ziphiidae), but during the 2000 Bahamas stranding 

event, two minke whales (Balaenoptera acutorostrata) were also found stranded (Balcomb & 

Claridge 2001). In addition to their potential role in infrequent but lethal stranding events, sub-

lethal behavioural responses to anthropogenic sound that affect foraging or reproductive 

behaviours of a large number of whales may lead to longer-term cumulative effects on the vital 

rates of whale populations. Behavioural response studies (BRS) using controlled exposure 

experiments (CEE) initially tended to focus on beaked whales, given their disproportionate 

frequency in strandings. These and other studies on toothed whales (suborder Odontoceti), have 

shown that behavioural effects of sonar can range from subtle effects such as short term changes 

in vocal behaviour (Alves et al. 2014) and dive patterns (Sivle et al. 2012, Stimpert et al. 2014) 

to more severe responses such as habitat avoidance (Tyack et al. 2011, DeRuiter et al. 2013, 

Miller et al. 2015, Sivle et al. 2015) typically also associated with cessation of feeding (Tyack et 

al. 2011, Miller et al. 2012, DeRuiter et al. 2013, Sivle et al. 2015, Isojunno et al. 2016) and even 

separation from dependent offspring (Miller et al. 2012).  

 Similar to behavioral responses observed in odontocetes, CEEs with baleen whales 

(suborder Mysticeti), specifically humpback whales and blue whales (Balaenoptera musculus) 

have documented responses including changes in vocal behaviour (Miller et al. 2000, Fristrup et 

al. 2003), changes in dive pattern, avoidance, and cessation of feeding (Maybaum 1993, 

Goldbogen et al. 2013, Sivle et al 2015, Sivle et al. 2016, Friedlaender et al. 2016). Cetacean 

species have thus generally been shown to exhibit responses to naval sonar. However, inter- and 

intra-individual, species and population responses are highly variable, and it has been proposed 

that contextual factors such as prey availability (Friedlaender et al. 2016), behavioural and 
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motivational state of the animal, the nature and novelty of the sound, and the sound source 

spatial configuration relative to the receiving animal are important factors that explain some of 

this variation (Ellison et al. 2012, Southall et al. 2016).  

 Minke whales are among the most abundant and ubiquitous baleen whales worldwide. Given 

their size, speed, and agility, minke whales are known to be difficult to track visually and to 

approach closely to tag (Kvadsheim et al. 2015). Consequently, despite interest in their potential 

responsiveness to sonar and their likely common exposure to military sonar and other human 

sounds, little direct information exists on their sensitivity to sound. In a recent study, the number 

of acoustic detections of minke whales was found to drop significantly during naval sonar 

activity off Hawaii (Martin et al., 2015), suggesting a silencing response and/or behavioural 

avoidance of sonar. As in other baleen whales which are bulk filter-feeders with large body size 

that require high densities of patchily-distributed prey, minke whales have relatively high 

energetic demands that require very high feeding rates (Friedlaender et al. 2014). Within 

rorquals, body sizes range from minke whales at the smaller end to blue whales as the largest 

species, which strongly affects feeding frequencies and energetic demands (Goldbogen et al. 

2012). The evidence that behavioral responses of baleen whales to noise predominately relate to 

changes in foraging behavior, highlights the importance of analyzing the potential energetic 

consequences of responses across species of different body size and energetic demands. 

 Using a structured qualitative method of identifying and evaluating the severity of 

behavioural responses, Sivle et al. (2015) found that a minke whale tagged in the north Atlantic 

showed strong avoidance responses. The objective of this study is to combine datasets from two 

different BRS projects on minke whales using a quantitative analysis to assess whether, how, and 

at what levels minke whales may respond to sonar. 
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Methods 

Research animals and data collection 

The Southern California Behavioral Response Study (SOCAL-BRS) has been conducted in the 

central eastern Pacific Ocean off the coast of southern California (Southall et al. 2012), whereas 

the Sea Mammals and Sonar Safety (3S) research effort (Kvadsheim et al. 2015) has worked off 

the coast of northern Norway and Spitsbergen in the northeast Atlantic Ocean. Data were 

collected from four minke whales (Balaenoptera acutorostrata), two tagged off the coast of 

southern California by the SOCAL BRS project (ba13_265 and ba14_211) (Southall et al. 2012), 

and two tagged in Norwegian waters by the 3S BRS project (ba10_148 and ba11_180) 

(Kvadsheim et al. 2015) (Table S1, supplementary material). Two of the animals were subjects 

in Controlled Exposure Experiments (CEE) (ba11_180 (3S-CEE), ba14_211 (SOCAL-CEE), one 

from each location, and for two animals only baseline data were collected (ba10_148 (3S-

baseline), ba13_265 (SOCAL-baseline) (Table S1).  

 

Experimental procedures 

Details of the methodology are described in Southall et al. (2012) for the SOCAL dataset and in 

Kvadsheim et al. (2015) for the 3S dataset. Archival tags were attached to the animals by suction 

cups attached to the skin or (in the case of 3S-CEE) an invasive 50 mm barb penetrating into the 

blubber. Three different tags were used as indicated in Table S1: DTAGs (Johnson and Tyack 

2003) sampling 3D magnetic field, 3D acceleration, and pressure (depth) at 50 Hz, as well as 

stereo hydrophones sampling sound at 64 kHz; and MK9 tags (Wildlife Computers, Redmond, 

WA, USA) and time-depth recorder (TDR) tags (Star-Oddi, Gardabaer, Iceland) sampling only 

pressure (depth) at 1 Hz and 0.25 Hz, respectively. In addition, all tags had a VHF transmitter 

which allowed tracking of the focal whale at the surface, and recovery of the tag when it released 

from the whale after 3-19 h. Focal follows of the tagged whales were only done for 3S-baseline 
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and 3S-CEE. After 12 and 6 hrs of collection of data on baseline behaviour for 3S-CEE and 

SOCAL-CEE, respectively, the sonar exposures were conducted. The protocols used for the 

exposures differed somewhat between 3S-CEE and SOCAL-CEE, but the idea behind both was 

to escalate the dose of sound exposure on the tagged whale, to enable us to determine received 

level thresholds of response onset. During the exposure of 3S-CEE, the source ship started at a 

distance of 9 km from the animal, and approached the tagged whale at a speed of 8-9 knots (4.0-

4.5 m·s-1) towing a sonar source at a depth of 65 m on an estimated intercept course. Sonar 

transmissions were initiated using a 10 min ramp-up of the source level (ISO 2017) from 152 dB 

to a maximum level of 214 dB re 1µPa·m, and continuing for another 60 min at the maximum 

level. The transmitted signals consisted of 1.3-2.0 kHz hyperbolic frequency modulated up-

sweep signals (Ainslie 2010) with a duration of 1 s, transmitted every 20 s (5% duty cycle). Two 

hours before the sonar exposure subject 3S-CEE was first exposed to a 40 min no-sonar control 

experiment, where the animal was approached by the source ship as if it was a sonar exposure 

but no sonar signals were transmitted. After the exposures, post-exposure data were collected for 

another 5 h, before the tag released and was recovered. During the exposure of subject SOCAL-

CEE, the source ship was stationary in a starting position estimated to be 1-2 km from the 

animal. The source was lowered to a depth of 10 m and sonar transmissions were initiated by a 7 

min ramp-up of the source level from 160 dB to a maximum level of 210 dB re 1µPa·m, and 

continuing for another 23 min at the maximum level. However, the tag released from the whale 

21 min into the exposure, and the data record was thereby interrupted. The transmitted signals 

consisted of a 3.5-3.6 kHz linear frequency modulated (Ainslie 2010) up-sweep (0.5 s), then a 

3.75 kHz tone (0.5 s), a 0.1 s delay and then finally a 4.05 kHz tone (0.5 s) with a total duration 

of 1.6 s, transmitted every 25 s (6% duty cycle). These waveforms and duty cycles were 

designed to be similar to some of the signals used in operational naval sonar systems, although 
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the maximum transmitted source level was lower than most of these tactical systems in 

operation.    

 

Data analysis           

 CEE Received levels:  

For SOCAL-CEE the maximum sound pressure level (SPLmax abbreviated henceforth “SPL”) 

of each sonar ping was quantified as the maximum RMS sound pressure level received by the 

sensors in the tag in any 200 ms time window in the 1/3 octave band between 3.3 and 4.2 kHz 

(centred at 3.7 kHz) (Southall et al. 2012). The cumulative sound exposure level (SEL, ISO 

2017) of all pings thus far during the exposure was also computed, in the same frequency band. 

SEL is calculated by integrating over the duration of the pulses, including only periods where 

signal to noise ratio exceeded 6 dB. The tag on the 3S-CEE did not contain any acoustic sensors, 

and received levels therefore had to be estimated from propagation loss (ISO 2017) calculations 

using an incoherent ray trace model in two dimensions (horizontal distance and depth). Inputs to 

the model included the transmission characteristics of the source and sound speed profiles, which 

were measured immediately following exposure (Kvadsheim et al. 2015). Sound pressure levels 

received by 3S-CEE were then calculated as the source level minus the propagation loss for 

individual pings, and are based on RMS values between 1.3-2.0 kHz averaged across the entire 1 

s pulse. Received level estimates for 3S-CEE were validated against levels measured on a 

calibrated hydrophone towed by a small boat tracking within a few hundred meters of the whale 

(Kvadsheim et al. 2015). To make SPL numbers directly comparable between SOCAL-CEE and 

3S-CEE, we calculated the difference between SPL using 200 ms averaging time and 1 s 

averaging time for all pulses received on the array. The average difference of 2.1 dB was then 

added to the estimated received level of 3S-CEE to get a value comparable to the SPL value of 

SOCAL-CEE. The average difference between the SPL values measured on the hydrophone array 
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and the estimated SPL values on the array using modelling gives an indication of the accuracy of 

the modelling and was found to be 3 dB. SEL values for 3S-CEE were calculated by integrating 

across the entire 1 s pulse in the 1.3-2.0 kHz band. 

 Distance to the source: 

Distance to source is another relevant metric of exposure intensity. For 3S-CEE this was 

estimated from the GPS position of the source ship and the position of the whale at the time of 

each transmission based on the focal follow track, with linear interpolation between observed 

positions. For SOCAL-CEE there was no focal follow track, but a relative distance from the 

source to the animal was calculated based on time-of-flight analysis, where distance equals the 

time difference between transmission and arrival of the signal on the DTAG multiplied by the 

speed of sound through the water. The tag detached from the whale 9 min before the end of 

exposure, and was recovered 87 min later in a position that was 1.2 km from the position of the 

source. Based on this recovery position and the calculated relative distance, we estimate that 

SOCAL-CEE was approximately 1 km from the source at the start of the exposure with an 

estimated error of ±1 km due to drift of the tag at the surface between detachment from the 

whale and recovery.        

 Dive parameters: 

For all depth records, a dive was defined as a vertical excursion to a depth greater than 3 m, and 

a number of dive parameters of interest were calculated for each dive: maximum depth (m), dive 

duration (min), descent rate (mean descent rate (m/s) from start of descent until 85% of the 

maximum dive depth for that dive), ascent rate (mean ascent rate from last time depth exceeded 

85% of the maximum for that dive to surfacing), bottom duration (time (min) from end of 

descent to start of ascent), surface interval (time (min) from surfacing until start of next dive), 

number of breaths (number of surfacings in the post dive surface interval). To account for 

possible effects of the tagging, the first dive after tagging was excluded. 
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 Time series parameters: 

For the two exposure experiments, the following time series data were extracted in addition to 

the dive data: 1) Animal speed (flow noise for SOCAL-CEE as a proxy for speed through the 

water (Miller et al. 2004), and horizontal speed for 3S-CEE based on the focal follow track). 2) 

Variability of heading (circular variance of heading based on the magnetic sensors on the DTAG 

computed in a one-minute sliding window for SOCAL-CEE; and radial distance between three 

surfacing positions (distance between first and last) divided by the cumulative distance between 

all three surfacing positions, based on the focal follow track, for 3S-CEE). 3) Respiration rate 

(number of surfacings per h based on the dive records, averaged over a 10 min sliding window). 

4) Variability of respiration rate (standard deviation of respiration rate, computed in a 10-minute 

sliding window). 5) Overall dynamic body acceleration (ODBA, as an indication of metabolic 

rate (Wilson et al. 2006), based on acceleration sensors on the DTAG and therefore only 

estimated for SOCAL-CEE). All data streams were sampled at 25 Hz for SOCAL-CEE, and at 

0.25 Hz for 3S-CEE.          

 

Statistical analysis    

Two types of analysis were conducted: a dive-by-dive analysis using the dive parameters 

specified above from all four data records, including the two baseline records, and a time series 

change-point analysis of the data from the two exposure experiments to identify the onset of 

behavioural responses to sonar. In both of these analyses we have used a metric based on 

Mahalanobis distance to summarize several parameters and quantify how much behaviour differs 

from a baseline period. This Mahalanobis distance can be considered to be a measure of response 

intensity (DeRuiter et al 2013), and the method has been used in several similar studies on other 

species (DeRuiter et al. 2013, Miller et al. 2014, Antunes et al. 2014, Miller et al. 2015).  
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 Dive-by-dive analysis: 

All dives were clustered into short-shallow, long-deep and intermediate dives by k-means 

clustering based on depth and duration. The number of clusters was selected using silhouette 

analysis (Rousseeuw, 1987). Using all the dive parameters above as input, we then calculated the 

Mahalanobis distance between each dive and the average value for baseline dives of the same 

cluster type. To analyse whether the sonar exposure might have led to changes in dive behaviour, 

we then fitted a model describing Mahalanobis distance as a function of received level, source-

to-whale range, and time since the last sonar exposure (DeRuiter et al. 2013) to the data from 

each sonar-exposed whale (because precise data on source-to-whale range were not available for 

SOCAL-CEE, the range covariate was excluded from the full model for that whale). We then 

compared the full models to models without received level, range, and time-decay covariates, 

using Akaike’s information criterion (AIC) to select the best model for each sonar-exposed 

whale.   

 Time series analysis: 

The 5 time-series parameters of the two data records of animals exposed to sonar were reduced 

to two using metrics based on Mahalanobis distance. One metric combined parameters related to 

the movement of the animal (animal speed and variability of heading), and was used to test the 

hypothesis that animals were avoiding the sonar, i.e. change in speed or heading to increase 

separation distance to the source. Previous studies have shown that speed and/or directedness of 

the animal typically change during avoidance responses (e.g. Miller et al. 2012, Sivle et al. 

2015). The other metric combined parameters related to the energetics of the animals (animal 

speed and respiration rate (Blix and Folkow 1999), variability of respiration rate (Roos et al. 

2016) and ODBA (Wilson et al. 2006)), and was used to test the hypothesis that there was an 

energetic cost of responding. For each of these two metrics we calculated the Mahalanobis 

distance between the average data values for the baseline period and the average data values 
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within a 5-minute comparison window. This comparison window slid forward over the dataset 

with 4.5 minutes of overlap, providing an output distance every 30 s. Distance values were 

reported at the centre time of each window. We used a simple resampling method to look for a 

change-point in the resulting Mahalanobis distance time-series. We sampled (with replacement) 

100,000 random contiguous blocks of data from within the control period. These random blocks 

were of the same duration as the sonar exposure period. The time-order of the data in the random 

block was not altered or randomised, in order to preserve the autocorrelation structure of the 

data. We used the set of maximum values from the random blocks (one from each of the 100,000 

randomisations) to estimate an empirical distribution function for the expected maximum 

distance during a baseline period of the same duration as the exposure. We set a threshold for 

change-point detection (change from normal or baseline behaviour) at the 95th percentile of the 

expected distances from the randomisations.          

 

  



Minke Whales Avoid Naval Sonar 

12 

Results 

More than 30 hours of data were recorded from four different animals in the two different 

locations (Table S1). During sonar exposure, the 3S-CEE whale was exposed to SPLs ranging 

from 85-160 dB re 1µPa, SEL from 83-177 dB re µPa2·s and source to whale range from 3-9 km, 

whereas SOCAL-CEE whale was exposed to SPLs ranging from 97-146 dB re 1µPa, SEL from 

89-151 dB re µPa2·s and source to whale range from about 1-3 km.  

 Dive-by-dive analysis: 

The 4 baseline records show that minke whales rarely dive deeper than 120 m (Figure 1). Dives 

were clustered into long-deep dives, intermediate dives and short-shallow dives (Figure 1), with 

12%, 26% and 61% of all dives in each of these clusters, respectively. In the baseline period the 

distribution of dives was 14% long-deep dives, 29% intermediate dives and 57% short shallow 

dives, whereas during the sonar exposure the distribution of dives was 12% long-deep dives, 

23% intermediate dives and 65% short-shallow dives. The dive-by-dive Mahalanobis distance 

metric combines all dive parameters into one metric of dive behaviour and compares each dive to 

the average value of the baseline dives within the same cluster (Figure S1). For the models 

describing dive-by-dive Mahalanobis distance as a function of received level and source-to-

whale range, the model with intercept only (no effect of range to source or received level, and no 

time-decay) was the best model for both the exposed animals according to AIC, with AIC at least 

2 units below the next competing model. Thus, the dive behaviour during sonar exposure seems 

to have been within the normal behavioural repertoire of the two exposed animals.  

 Time series analysis: 

Visual inspection of the time series of behavioural parameters of the two exposed animals 

(Figure 2), show that 3S-CEE increased horizontal speed from around 1 ms-1 at the start of the 

sonar exposure to a maximum speed of 5 ms-1 during the exposure. This is by far the highest 

speed within the 19 h record. At the same time as the speed increased, the animal’s movement 
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also became very directional, and respiration rate increased, but not beyond levels seen during 

the baseline period. Near the end of the 70 min exposure, the speed and respiration rates levelled 

off at high levels, but the time between respirations became almost constant (very low standard 

deviation of respiration rate). Speed, respiration rate and variability of respiration timing seemed 

to return to pre-exposure levels within 30 min after the exposure.  

 For SOCAL-CEE the most striking change in the behavioural parameters during the 

exposure was that the animal, which had been doing regular deep dives (>80 m) and moving in 

an erratic pattern for hours before the exposure, became very directional in its movement pattern 

during the sonar exposure, but maintaining a diving pattern and swim speed similar to that before 

the exposure (Figure 2).  

 For both animals, the Mahalanobis distance analysis to test the avoidance hypothesis 

detected breakpoints in the data during the exposures at 12:35:34 h:min:s into the data record or 

19:34 min:s into the exposure for 3S-CEE, and at 06:07:00 h:min:s into the data record or 08:10 

min:sec into the exposure for SOCAL-CEE (Figure 3). The detected avoidance responses 

happened at a received SPL=156 dB re 1µPa (maximum received level prior to response), 

SEL=166 dB re µPa2·s and estimated range to the source of 6.0 km for 3S-CEE, and SPL=146 

dB re 1µPa, SEL=149 dB re µPa2·s and estimated range to the source of 1-2 km for SOCAL-CEE 

(Figure 4). The Mahalanobis distance analysis to test the energetic cost hypothesis detected a 

breakpoint for 3S-CEE at 12:48:34 h:min:s into the record or 32:34 min:s into the exposure, but 

no change-point was detected for SOCAL-CEE (Figure 3). The energetic response in 3S-CEE 

happened at SPL=158 dB re 1µPa, SEL=170 dB re µPa2·s and estimated range to the source of 

4.6 km (Figure 4). A change-point for avoidance parameters but not for energetic parameters was 

also detected during the no-sonar control exposure in 3S-CEE (Figure 3). The response intensity 

was much lower than during the sonar exposure, but this still indicates some avoidance of the 

approaching ship also when it was not transmitting sonar signals.   
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Discussion 

Data were successfully collected from four minke whales, two from the eastern North Pacific 

and two from the eastern North Atlantic oceans (Table S1). Two of these animals, one from each 

location, were exposed to naval sonar signals during CEEs (Southall et al. 2012, Kvadsheim et 

al. 2015). However, there were some differences in tag types, experimental sound sources, and 

data sampling procedures, and therefore the datasets have somewhat different qualities. These 

differences, as well as differences in the movement of the sources and other aspects of sonar 

exposure, complicate pooling of data. However, given the elusive behaviour of minke whales, 

approaching them close enough for tagging is challenging (Kvadsheim et al. 2015), thus 

sampling a large number of animals is difficult. Despite significant effort to increase the sample 

size, we did not manage to tag more than 2 in either site. Pooling data from different studies 

using consistent analytical approaches on this important and interesting species, is therefore 

particularly rewarding. We have used quantitative analyses to investigate how and at what levels 

minke whales respond to 1-4 kHz naval sonar. Our results show that both a minke whale in the 

central eastern Pacific and a minke whale in the northeast Atlantic responded by avoiding the 

sonar source (Figure 3), and in the Atlantic whale there was also an apparent energetic cost of 

responding. However, the outcome of the dive-by-dive analysis implies that dive behaviour 

during exposure was within the normal range observed for these animals.  

The exposed individual SOCAL-CEE responded at lower levels (SPL=146 dB) than the 

individual exposed in 3S (3S-CEE, SPL=156 dB) (Figure 4), but the magnitude of the response 

of 3S-CEE was clearly higher than in SOCAL-CEE. Contextual variables, including exposure 

variables such as relative movement of the source, and many individual parameters that are not 

known for these subjects (e.g. exposure history), are likely to affect responsiveness (e.g. Ellison 

et al. 2012). Recent studies suggest that in beaked whales, the probability of response to sonar 

may be influenced by the distance from the source to the whale (DeRuiter et al. 2013, Moretti et 
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al. 2014). In the exposure of SOCAL-CEE, the animal was on the order of 1-2 km from the 

source at the start of the exposure, compared to 9 km range at the start of the exposure in 3S-

CEE. The proximity of the source could explain why the exposure level at which an avoidance 

response was observed to occur for SOCAL-CEE was somewhat lower than in 3S-CEE. On the 

other hand, in 3S-CEE the source ship approached the animal quickly, whereas in SOCAL-CEE 

the source ship was stationary during transmissions. SOCAL-CEE could thereby easily escape by 

directional movements away from the source, without increasing swim speed, wheras in 3S-CEE 

the directional movement away from the source was accompanied by a significant increase in 

swim speed from 1 m·s-1 to 5 m·s-1 (Figure 2). The increase in swim speed implies that there was 

at least a threefold increase in metabolic rate associated with the avoidance (Blix & Folkow 

1995). 3S-CEE swam at a speed that exceeded the estimated optimal swim speed of 3.25 m·s-1 

for minke whales (Blix and Folkow 1995), which may indicate a strong motivation to escape. 

Consistent with these observations, our time series analysis identified a significant energetic cost 

of responding in 3S-CEE.   

Naval sonar has been shown to interrupt feeding in blue whales (Goldbogen et al. 2013) and 

humpback whales (Sivle et al. 2016). Lost feeding opportunities may have a bigger impact on 

energy balance than increased expenditure of energy due to locomotion (Goldbogen et al. 2013, 

Isojunno et al. 2016). In SOCAL-CEE there was no indication of lunge feeding prior to 

exposure, and for 3S-CEE we do not know if the animal stopped feeding, because analysis of 

lunging would have required an acoustic sensor on the tag. Thus, these initial results do not 

allow us to fully evaluate the energetic consequences of responses in minke whales. 

Another factor which might have influenced differences in responses is differences in the 

frequency bands of the sonar signals used in the two exposure experiments (1.3-2.0 kHz for 3S-

CEE, and 3.5-4.05 kHz for SOCAL-CEE). However, minke whales are expected to have 

sensitive hearing across these frequency bands (Tubelli et al. 2012), and studies on other species 
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have found that response thresholds do not vary with sonar frequency within the 1-8 kHz band 

tested (Miller et al 2014, Antunes et al. 2014), even where hearing sensitivity varies considerably 

across this range. Natural variation in sensitivity between individuals or a systematic difference 

in sensitivity between two populations are also possible, but based on this very limited dataset, 

we cannot conclude that there are any population differences. However, if such differences exist 

it might be explained by the fact that minke whales are still harvested in the Northeast Atlantic 

whereas that is not the case in the Northeastern Pacific. The context of on-going whaling nearby 

might explain the avoidance of the approaching ship in 3S-CEE (Figure 3), and might also 

contribute to the much stronger response to sonar seen in 3S-CEE compared to SOCAL-CEE.   

The key response parameters driving the Mahalanobis distance change-points during sonar 

exposure appear to be the directed movement away from the source in SOCAL-CEE (Figure 2), 

and the combination of directedness and increase in swim speed in 3S-CEE. In the latter case 

there was also an increase in respiration rate associated with the increase in swim speed, but 

despite the fact that swim speed during the avoidance was much higher than anything seen 

during the baseline period, respiration rate never increased beyond the normal range. However, a 

recent study showed that during high-speed swimming, killer whales optimize respiration 

intervals to maximize oxygen uptake per respiration and minimize surface drag (Roos et al. 

2016). This means that the relationship between respiration rate and metabolic rate is complex 

(Roos et al. 2016). In 3S-CEE, the time between breaths becomes almost constant (variability of 

respiration rate dropped) during the high-speed escape (Figure 2), which suggests that minke 

whales might have a similar mechanism as killer whales to optimize swimming and maximize 

oxygen uptake.  

Both animals responded to naval sonar exposure by leaving the area. Since the experimental 

exposures were short, this displacement is not expected to have a significant impact on the 

experimental subjects. 3S-CEE even returned to the pre-exposure area shortly after end of 



Minke Whales Avoid Naval Sonar 

17 

exposure. However, real naval operations could last for days, and this could potentially lead to 

more serious exclusion from important habitats. Our observations of avoidance responses at 

relatively low levels during experimental sonar exposure of minke whales are actually consistent 

with the significant reductions in minke whales vocalizing observed over a 3800 km2 area during 

an actual naval sonar operation off Hawaii during the breeding period (Martin et al. 2015). 

Depending on source level used and propoagation condition, the avoidance response threshold 

observed in our study (146-156 dB SPL re 1µPa) predicts avoidance over this big an area. If we 

compare the avoidance response threshold for minke whales as determined in this study to other 

species, minke whales seem to have a sensitivity to sonar which is similar to killer whales 

(Miller et al. 2014) and blue whales (Goldbogen et al. 2013), they are more sensitive than pilot 

whales (Antunes et al. 2014) and humpback whales (Sivle et al. 2015), but less sensitive than 

beaked whales (Tyack et al. 2011, DeRuiter et al. 2013, Miller et al. 2015).  
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Conclusion 

We have shown in two separate studies that minke whales show avoidance to naval sonar. Our 

sample size is low (only two exposed whales), but the consistency of the results from our 

controlled exposure experiments with observations from a real world scenario imply that minke 

whales are likely to be affected by naval sonar activity across relatively large distances. Despite 

the different environmental settings and exposure contexts for our subjects, clear changes in 

behaviour were observed, providing the first insights into the nature of responses to human noise 

for this wide-ranging species. 
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Figure Legends 

 
Figure 1: Dive profiles (top panels) and dive parameters (lower panels) by dive type (long-deep 

dives (left), intermediate dives (middle) and short-shallow dives (right)) for all four animals. 

Note the different X- and Y-axis scales on the upper panels. In the top panels, dives without 

exposure are plotted in grey, dives during controlled exposures to sonar in red, and post-

exposure dives by the exposed whale in blue. Lower panels contain box-plots of dive parameters. 

Here control observations include dives by unexposed animals, as well as pre-exposure dives by 

the exposed whales. To facilitate showing many variables on a single plot, all values were scaled 

before plotting by dividing by the maximum of the absolute value of all control observations. 

Black boxes span 25th-75th percentiles, black horizontal lines mark medians, error bars extend 

1.5 interquartile ranges beyond the boxes, and + symbols indicate more extreme values. Dive 

parameters from exposed dives and the post-exposure dives are plotted individually. Symbol and 

color-coding matches the top panels. 

 

Figure 2. Time-series data plots for the two animals exposed to sonar, 3S-CEE (left) and SOCAL-

CEE (right). From the top, plots show dive depth, speed/flow-noise, directedness/heading-

variability, respiration rate, variability of respiration rate and ODBA (only measured in SOCAL-

CEE). See text for details of parameters. The no-sonar-control exposure period is indicated in 

green and the sonar exposure periods in red.  

 

Figure 3: Time series Mahalanobis distance for avoidance parameters (top panels) and energetic 

parameters (lower panels) for the two animals exposed to sonar, 3S-CEE (left) and SOCAL-CEE 

(right). The no-sonar-control exposure period is indicated in green and the sonar exposure period 

in red. The dashed horizontal lines indicate the response threshold.  
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Figure 4. Transmitted source level in dB re 1µPa·m (), measured or modelled received RMS 

sound pressure level in dB re 1µPa (o), accumulated sound exposure level in dB re 1µPa2·s (__) 

and range from source to animal in m (--) as a function of time in minutes during sonar exposure 

experiment 3S-CEE (top panel) and SOCAL-CEE (lower panel). The vertical lines indicate times 

of response onset based on Mahalanobis distance analysis, with light grey lines for avoidance 

and a dark line for energetics. In the top panel range is given as absolute range based on tracks of 

the source ship and the focal animal, whereas in the lower panel range is given relative to the 

range at the start of the exposure based on time of flight analysis (range at time 0 (first ping) is 

defined to be 0). Note that in experiment 3S-CEE the source was approaching the whale at 8-9 

knots speed, while in SOCAL-CEE the source was stationary.  
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Supplementary material 

 

Table S1. Combined minke whale dataset collected by the 3S-project in Norwegian waters in the 

northeast Atlantic and by the SOCAL project off California in the central eastern Pacific. 

Tag ID Tag type Duration  

(h) 

Description of data 

ba10_148 Wildlife Comp MK9 3 3S-baseline 

 

ba11_180 Star-Oddi TDR 19  3S-CEE (1.3-2.0 kHz) 

 

ba13_265 DTAG 3  SOCAL-baseline 

 

ba14_211 DTAG 6.5 SOCAL-CEE (3.5-4.05 kHz)  
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Figure S1: Dive-by-dive Mahalanobis distances as a function of time for the animals exposed to sonar, 3S-CEE (left) and SOCAL-CEE 

(right). Dives during no-sonar control are indicated in green and during sonar exposure in red.  

 


