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Summary 14 

1. Reliable estimates of animal density and abundance are essential for effective wildlife 15 

conservation and management.  Camera trapping has proven efficient for sampling multiple 16 

species, but statistical estimators of density from camera trapping data for species that cannot be 17 

individually identified are still in development.   18 

2. We extend point-transect methods for estimating animal density to accommodate data from 19 

camera traps, allowing researchers to exploit existing distance sampling theory and software for 20 

designing studies and analyzing data.  We tested it by simulation, and used it to estimate 21 

densities of Maxwell’s duikers (Philantomba maxwellii) in Taï National Park, Côte d’Ivoire.   22 

3. Densities estimated from simulated data were unbiased when we assumed animals were not 23 

available for detection during long periods of rest.  Estimated duiker densities were higher than 24 

recent estimates from line transect surveys, which are believed to underestimate densities of 25 

forest ungulates.   26 

4. We expect these methods to provide an effective means to estimate animal density from 27 

camera trapping data and to be applicable in a variety of settings. 28 

 29 

Keywords: animal abundance, camera trapping, density, distance sampling, Maxwell’s duiker 30 

 31 

Introduction 32 

Remote motion-sensitive photography, or camera trapping, is increasingly used in 33 

wildlife research, and allows multiple research objectives to be addressed (Sollmann et al. 2013a, 34 

Burton et al. 2015, Rovero and Zimmermann 2016).  Estimation of population density (𝐷) is a 35 

key objective of many ecological studies and assessments of conservation status employing 36 
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camera traps (Burton et al. 2015, Rovero and Zimmermann 2016).  If individuals are 37 

recognizable, density can be estimated using spatially explicit capture–recapture (SECR) models 38 

(Efford et al. 2009), but methods for estimating D from camera trapping data in the absence of 39 

individual identification are still in development (Sollmann et al. 2013a, Burton et al. 2015, 40 

Dénes et al. 2015, Rovero and Zimmermann 2016).  Detection rates at camera traps have been 41 

used to index abundance, but indices can rarely be converted to estimates of absolute density, 42 

and spatiotemporal variation in detection rates does not provide reliable evidence of differences 43 

or trends in abundance (Sollmann et al. 2013b, Burton et al. 2015).  The random encounter 44 

model (REM) estimates absolute density as a function of the detection rate, the dimensions of a 45 

sector within which detection is certain, and the speed of animal movement; methods for 46 

quantifying the latter two parameters from camera trapping data have been described (Rowcliffe 47 

et al. 2008, 2011, 2016).  The REM has been recognized as a potentially useful model, but its 48 

accuracy and reliability remains to be demonstrated (Rovero and Marshal 2009, Sollmann et al. 49 

2013a, Zero et al. 2013, Cusack et al. 2015a, Balestrieri et al. 2016, Caravaggi et al. 2016).  50 

SECR estimators for unmarked populations estimate the number and location of animals’ activity 51 

centers from the spatial correlation of counts at different sampling locations; sampling must be 52 

sufficiently intensive to detect the same animals at multiple locations, and estimates lack 53 

precision (Chandler and Royle 2013). 54 

Here we describe how densities of unmarked animal populations can be estimated by 55 

distance sampling (DS) with camera traps, allowing researchers to take advantage of a well-56 

described theoretical framework complete with software and advice for designing studies and 57 

analyzing data (Buckland et al. 2001, 2004, 2015, Thomas et al. 2010, Miller 2015, 58 

distancesampling.org).  Below, we formulate a point transect distance sampling model specific to 59 
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camera traps and describe its assumptions and the estimation of variances.  We test for bias in 60 

estimated density (𝐷̂) and its variance by simulation, and apply the method to estimate the 61 

density of Maxwell’s duikers (Philantomba maxwellii) in Taï National Park, Côte d’Ivoire. 62 

 63 

Methods 64 

Formulation of the Model 65 

A camera trap (CT) is deployed at a point 𝑘 that is independent of animal density for a 66 

period of time 𝑇𝑘 and set to record images for as long as an animal is present to trigger it.  We 67 

predetermine a finite set of snapshot moments within Tk, t units of time apart, at which an image 68 

of an animal could be obtained.  Temporal effort at the point is then Tk / t.  When images of 69 

animals are obtained, we estimate the horizontal radial distance 𝑟𝑖 between the midpoint of each 70 

animal and the camera, at each snapshot moment, for as long as it remains in view.  If the camera 71 

covers an angle θ radians, then 
𝛳

2𝜋
 describes the fraction of a circle covered by the camera, so we 72 

define overall sampling effort at point 𝑘 as 
𝜃𝑇𝑘

2𝜋𝑡
.  We regard the data as a series of snapshots, and 73 

density estimation follows by standard point transect methods (Buckland et al. 2001).  We 74 

estimate 𝐷 as 75 

 𝐷̂ =
∑ 𝑛𝑘
𝐾
𝑘=1

𝜋𝑤2∑ 𝑒𝑘𝑃̂𝑘
𝐾
𝑘=1

         (1) 76 

where 𝑒𝑘 =
𝜃𝑇𝑘

2𝜋𝑡
 is the effort expended at point 𝑘, 𝐾 is the set of points, 𝜃 is the horizontal angle 77 

of view (AOV) of the camera, 𝑤 is the truncation distance beyond which any recorded distances 78 

are discarded, nk is the number of observations of animals in the population of interest at point k, 79 

and 𝑃̂𝑘 is the estimated probability of obtaining an image of an animal that is within θ and w in 80 

front of the camera at a snapshot moment. 81 
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.  Substituting 𝑒𝑘 in (1), we have  82 

 𝐷̂ =
2𝑡 ∑ 𝑛𝑘

𝐾
𝑘=1

𝜃𝑤2 ∑ 𝑇𝑘𝑃̂𝑘
𝐾
𝑘=1

         (2) 83 

We use the distances 𝑟𝑖 to model the detection function and hence to estimate 𝑃𝑘. 84 

 85 

Assumptions and Practical Considerations 86 

The usual DS assumptions apply (see Chapter 2 of Buckland et al. 2001).  We record 87 

distances at instantaneous snapshot moments to ensure that animal movement does not bias the 88 

distribution of detection distances.  Below, we describe an approach for accurately assigning 89 

animals to distance intervals; Rowcliffe et al. (2011) and Caravaggi et al. (2016) describe 90 

methods for measuring continuous distances between CTs and detected animals. 91 

Random designs or systematic designs with random origin are consistent with the 92 

assumption that points are placed independently of animal locations.  Selecting camera 93 

orientations as part of the design is also advisable.  Orientations could be selected randomly, or 94 

the same orientation could be used for all cameras.  Deviating slightly from the location and 95 

orientation selected by design (e.g., to attach the camera to a nearby tree or to avoid an obscured 96 

field of view) would not bias estimates provided field staff do not intentionally target habitat 97 

features known to be either preferred or avoided by the animals.   98 

Empirical, design-based estimators of the encounter rate variance are robust to violation 99 

of the assumption that detections are independent events (Fewster et al. 2009, Buckland et al. 100 

2015).  However, in CT surveys we expect violations to be severe because we include multiple 101 

detections of the same animal during a single pass through the detection zone.  We can avoid this 102 

assumption by estimating variances using a nonparametric bootstrap, resampling points with 103 

replacement (Buckland 1984, Buckland et al. 2001).  Another consequence of lack of 104 
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independence is that the usual goodness-of-fit tests and model selection criteria are invalid 105 

(Buckland et al. 2001).  Methods for selecting among DS models when observations are not 106 

independent are in development.   107 

The assumption that detection is certain at zero distance could be violated by (1) animals 108 

passing beneath the field of view (FOV) of the camera, (2) failure to identify the species because 109 

only part of the animal is visible, and possibly (3) the delay between the time the sensor is 110 

activated and the time the first image is recorded (the “trigger speed”), if animals directly in front 111 

of the camera at a snapshot moment do not yield images.  Such violations may be detectable 112 

during exploratory analysis in the form of fewer than expected detections near the point, and bias 113 

can be avoided via left-truncation (Buckland et al. 2001, Marques et al. 2007, e.g. Obbard et al. 114 

2015).  To minimize violations and ensure that detection probability is certain or high at some 115 

distance near the point, cameras should be set at a height appropriate to the species of main 116 

interest (Rovero and Zimmermann 2016).  Lower heights would reduce the chance of small 117 

animals passing beneath the camera at short distances, but would also reduce the range of 118 

distances over which animals could be detected and therefore sample size and flexibility when 119 

modelling the detection function.  Pairs of CTs triggered by passive infrared (PIR) sensors and 120 

mounted at the same location, height, and orientation, or one PIR CT deployed in combination 121 

with other sampling devices (track plots, CTs triggered by pressure plates or active IR sensors) 122 

could facilitate field tests of whether or not detection probability is close to 1 at short distances in 123 

front of PIR CTs.  Paired cameras mounted some distance apart targeting the same location 124 

would not provide an effective test, but would provide the data needed to apply mark–recapture 125 

distance sampling methods, which avoid this assumption (Buckland et al. 2004, Laake et al. 126 

2011). 127 
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In traditional point transect surveys, human observers measure distances to each detected 128 

animal only once during each visit to a point, and effort at each point is the number of times it 129 

was visited.  CTs remain at the point, but the snapshot approach discretizes the number of times 130 

we could potentially detect each animal (as Tk / t as described above).  However, CTs detect only 131 

moving animals within the range of the sensor and the FOV of the camera, and can be 132 

programmed to record multiple still images, or video footage, each time the sensor is triggered 133 

(Rovero and Zimmermann 2016).  These characteristics of CTs as observers must be taken into 134 

consideration.  Observed distances upon first detection are expected to be positively biased 135 

because animals entering the detection zone through the arc of the sector would contribute a 136 

disproportionate number of observations at far distances.  Bias would be slight if the time 137 

between snapshot moments (t) was small enough to ensure that the animals did not move far 138 

relative to the range of the sensor between snapshots, as then the observations would be 139 

representative of animals’ continuous paths past the CTs.  However, we prefer to avoid the 140 

potential for bias by assuming that the snapshot moments are selected independently of animal 141 

locations, and predetermining them as specific times of day to ensure that the assumption is met.  142 

Practical considerations constrain t.  If t is large, animals that trigger the sensor might leave the 143 

detection zone before a snapshot moment arises, which would not cause bias but wastes data.  As 144 

t is reduced, there would be fewer missed detections and larger samples as we record distance to 145 

each animal multiple times during a single pass in front of the CT.  Eventually, improvements in 146 

the precision of 𝐷̂ with larger samples would become negligible because variation in the 147 

encounter rate among points would contribute most of the variation in estimated density.  148 

Reducing t further would then needlessly increase the time required to process and analyze the 149 

data.  We suggest that values from 0.25 to 3 seconds are likely to be useful, with values at the 150 
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lower end of the range being more appropriate for faster-moving or rarer animals, and CTs with 151 

faster trigger speeds.   152 

Programming cameras to record time-stamped video would make it straightforward to 153 

record distances at the predetermined snapshot moments.  If still images are preferred, cameras 154 

should be programmed to record an image at the next several snapshot moments when triggered, 155 

or, if this is not feasible, to record a rapid series or “burst” of still images to ensure that images 156 

are recorded at times that align with snapshot moments.  There should always be the potential for 157 

the camera to be triggered again immediately or after a minimal delay.  Note that depending how 158 

cameras are programmed, the sample of distances observed in CT data may or may not comprise 159 

a realization from the detection function described by the probability that an animal at distance r 160 

triggers the sensor.  If cameras record a single image at the subsequent snapshot moment, or a 161 

rapid series of images for < t seconds, when the sensor is triggered, then each detection of an 162 

animal that triggers the sensor several times during a pass in front of a CT is a function of the 163 

sensitivity of the sensor.  If cameras are set to record video, or a series of still images for > 2t 164 

seconds, then all but the first detection is certain for as long as the animal remains in the FOV 165 

and the camera continues to record images.  Furthermore, regardless of how the camera is 166 

programmed, any other animals in the FOV while the camera is recording images would 167 

contribute observations that do not depend on the sensitivity of the sensor.  These differences do 168 

not invalidate the method provided we define the detection function as representing the 169 

proportion of locations at different distances which are recorded, regardless of whether an animal 170 

triggered the sensor at that distance.   171 

 Obviously, we can only estimate the density of populations that are available for 172 

detection by CTs.  Similarly, because the sampling duration at each location (𝑇𝑘) is part of the 173 
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model definition, we expect densities of animals that spend part of their time outside the vertical 174 

range of camera traps to be underestimated, and for the bias to be proportional to time animals 175 

are not available for detection.  For example, with 𝑇𝑘 set to the study duration, we expect 𝐷̂ of a 176 

species that spends all its time in the canopy to be zero, and of a species that spends half its time 177 

underground and the rest at ground level to be half of the true density.  Negative bias would also 178 

result if animals went undetected only because movement was insufficient to trigger the sensor.  179 

To avoid this bias, either 𝑇𝑘 should be defined as the amount of time that the entire population 180 

was available for detection while cameras were operating, or, equivalently, the proportion of 181 

time when animals were available for detection should be included as a parameter in the model.  182 

Animals are unavailable for detection when outside the vertical range of CTs, and may not be 183 

available when within this range depending on their level of activity.  We explore this issue 184 

further in subsequent sections.  185 

 186 

Simulations 187 

We tested the method using simulations employing simple and complex models of animal 188 

movement and different sampling scenarios (see supplemental material).  With the simple model, 189 

animals moved continuously at a constant speed and tended to maintain their heading.  The 190 

complex model included variable speeds and tortuosities, and all animals rested for the same 12 191 

hours of each day.  We recorded the distance between cameras and animals within detection 192 

zones every two seconds, 24 hours per day.  Where the complex model was used, we also 193 

collected data only when animals were moving, and reduced Tk by half accordingly when 194 

estimating density. 195 

 196 
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Example: Maxwell’s duikers in Taï National Park 197 

We used point transect DS methods to estimate the density of Maxwell’s duikers within 198 

the territory of the “east group” habituated chimpanzee community in Taï National Park, Côte 199 

d’Ivoire (Després-Einspenner et al. accepted; Fig 1a).  Maxwell’s duikers were sampled from 28-200 

June through 21-Sept, 2014 at 23 camera traps (Bushnell Trophy CamTM; Model 119576C) 201 

mounted at a height of 0.7 – 1.0 m and set to high sensitivity.  Cameras were deployed with a 202 

fixed orientation of 0˚ at the intersections of a grid with 1 km spacing and a random origin 203 

superimposed over the study area (Fig. 1b).  Realized sampling locations and orientations 204 

deviated from the design by as much as 30 m, and 40˚, respectively, in order to mount cameras 205 

on trees and to ensure there was some chance of detecting animals.  During installation of each 206 

camera, we measured horizontal radial distances from the camera, and recorded videos of 207 

researchers holding distance markers, at 1 m intervals out to 15 m, in the center and along both 208 

sides of the FOV.  We estimated distances to filmed duikers by comparing their locations to 209 

those of researchers in the reference videos.  We set t = 2 seconds, and recorded the distance 210 

interval within which the midpoint of each animal fell at 0, 2, 4, … , 58 seconds after the minute.  211 

Larger distances were more difficult to measure precisely, so we assigned animals to 1-m 212 

intervals out to 8 m, but binned observations between 8 and 10 m, 10 and 12 m, 12 and 15 m, 213 

and beyond 15 m.  214 

We excluded data from one camera because the FOV was largely obscured by vegetation, 215 

and another which was placed on a slope and failed to detect any animals, but we included data 216 

from a third camera that functioned normally but did not detect any duikers.  Maxwell’s duikers 217 

sleep or rest for most of each night and for shorter periods during the day (Newing 1994, 2001).  218 

We assumed they would not be available for detection overnight and excluded the hours of 219 
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darkness (19:00 – 6:00) from Tk a-priori.  We accounted for limited availability during the 220 

daytime three different ways.  First we naively assumed that all duikers were active by 6:30:00 221 

and remained so through 17:59:59, included distances observed during this interval in a 222 

“daytime” data set, and defined temporal effort at each location (Tk / t) as the number of 2-223 

second time steps during that time interval (20699), multiplied by the number of sampling days.  224 

Second, we assumed that all animals were available only during apparent times of peak activity 225 

(6:30:00 – 8:59:59 and 16:00:00 – 17:59:59) and recalculated temporal effort and censored 226 

distance observations accordingly (Tk / t per day = 8098).  Third, we defined Tk and included 227 

observations as above for the daytime data set, and included an independent estimate of the 228 

proportion of time captive Maxwell’s duikers were active during the same time interval (0.64; 229 

Newing et al. 2001) in the denominator of Eq. 2.  We included only data from complete days 230 

when cameras were operating and not visited by researchers. 231 

We fit point transect models in program Distance (version 7.0; Thomas et al. 2010), 232 

defining survey effort at each location as  
𝜃𝑇𝑘

2𝜋𝑡
.  The cameras had an AOV of 42˚, and a wider 233 

effective angle of the sensor (Trailcampro.com 2015), so we set θ = 42˚ or 0.733 radians.  We 234 

considered models of the detection function with the half-normal key function with 0, 1 or 2 235 

Hermite polynomial adjustment terms, the hazard rate key function with 0, 1, or 2 cosine 236 

adjustments , and the uniform key function with 1 or 2 cosine adjustments.  Adjustment terms 237 

were constrained, where necessary, to ensure the detection function was monotonically 238 

decreasing.  We selected among candidate models of the detection function by comparing AIC 239 

values, acknowledging the potential for overfitting because many observations were not 240 

independent. We present measures of uncertainty derived from design-based variances (“P2” of 241 



12 
 

Fewster et al. 2009, Web Appendix B), and from 999 bootstrap resamples, with replacement, 242 

across camera locations. 243 

 244 

Results 245 

Simulations 246 

Where we used the simple model of animal movement, and where we used the complex 247 

model of animal movement and collected data only when animals were active, D̂  was unbiased 248 

(Table S1).  Results were biased and erratic when we recorded distances to resting animals (see 249 

supplemental material for details).  Design-based variances were smaller than the sampling 250 

variance of 𝐷̂ across iterations, and associated confidence interval coverage was <90% (Table 251 

S1).  Where we estimated variance by bootstrapping, the coefficient of variation was 0.119, 252 

similar to the sampling variance of 𝐷̂, and CI coverage was 93.6% across 1000 iterations.  253 

Doubling spatial sampling effort improved precision, slightly more so where we doubled the 254 

number of locations as opposed to 𝜃 (Table S1).    255 

 256 

Example: Maxwell’s duikers in Taï National Park 257 

We obtained 11324 observations of the distance between Maxwell’s duikers and cameras 258 

in 806 different videos.  Duikers were rarely filmed during hours of darkness.  The frequency of 259 

detection increased steadily after 6:00 to a maximum between 6:30 and 7:00 and remained 260 

relatively high until 9:30, after which it decreased slightly and remained relatively low until 261 

16:30, then increased again and remained high until 18:00, then declined gradually until 19:00 262 

(Fig. 2).  Duikers were always active when detected; CTs did not record any duikers that were 263 
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asleep or stationary for an entire minute.  We recorded 11180 distances from 6:30:00 through 264 

17:59:59, and 6274 during times of peak activity.  265 

Exploratory analyses revealed no evidence of data collection errors, and a paucity of 266 

observations between 1 and 2 m but not between 2 and 3 m, so we left-truncated at 2 m.  Fitted 267 

detection functions and probability density functions were heavy-tailed when distances > 15 m 268 

were included, so we right-truncated at 15 m.  Truncating removed 8% of observations from the 269 

daytime data set, leaving n = 10284, and 6.5% of observations from the peak activity data set, 270 

leaving n = 5865.  Mean encounter rates (mean numbers of duikers observed per 2-second time 271 

interval) across all points were 3.27 × 10-4 during the daytime and 4.76 × 10-4 during times of 272 

peak activity.  Encounter rates were highly variable among locations but did not exhibit an 273 

obvious spatial pattern across the study area, and there was no evidence of spatial autocorrelation 274 

(Moran’s I P = 0.47; Fig. 3). 275 

When we fit the hazard rate model with two adjustment terms to the daytime data set, the 276 

detection function was not monotonically decreasing, so this model was not considered for 277 

estimation.  All models were fitted successfully to the peak activity data set.  The hazard rate 278 

model with no adjustments minimized AIC and was used to estimate density in both cases.  279 

Probability density functions of observed distances and relationships between detection 280 

probability and distance were similar (Fig. 4).  Detection probability was ~1.0 within 5 m and 281 

0.05 at 15 m; effective detection radii were 9.1 and 9.4 m from the daytime and peak activity 282 

data sets, respectively. 283 

We expected to underestimate density where we assumed duikers were active all day; 𝐷̂ 284 

was 37% higher when we included only data from times of peak activity (Table 1).  Including an 285 

independent estimate of the proportion of time active during the daytime as a parameter in the 286 
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model fit to the daytime data set yielded a still higher estimate (“Active daytime” in Table 1).  287 

Measures of uncertainty in the proportion of time active were not available (Newing et al. 2001) 288 

so did not contribute to the variance of 𝐷̂.  Bootstrap variances were larger than design-based 289 

analytic variances (Table 1).  The vast majority (99.8%) of the design-based variance of 𝐷̂ was 290 

attributable to the variation in encounter rate between locations, and only 0.2% to detection 291 

probability. 292 

 293 

Discussion 294 

Simulations demonstrated the potential for the method to yield unbiased density 295 

estimates, but also that animals’ activity patterns must be accounted for.  Where simulated 296 

animals rested for half of each day and we set Tk equal to the survey duration, the most common 297 

scenario was that animals did not rest in front of CTs and negative bias in 𝐷̂ was proportional to 298 

the time spent resting.  When we recorded distance at each snapshot moment while animals 299 

rested in front of CTs, the encounter rate and therefore 𝐷̂ was higher on average, but the shape of 300 

the detection function was strongly affected, leading to erratic estimates and cases where models 301 

could not be fitted to the data.  In practice, it is unlikely that we would detect animals while they 302 

sleep or rest because movement will be insufficient to trigger the sensor.  Therefore, estimates of 303 

the proportion of time animals are active within the vertical range of CTs will be required to 304 

avoid negatively biased 𝐷̂.  Ideally, this proportion would be estimated from data collected 305 

concurrently with the distance data to ensure it is representative.  Fortunately, the temporal 306 

distribution of camera trap detections is informative regarding animal activity patterns (Lynam et 307 

al. 2013, Cruz et al. 2014, Rowcliffe et al. 2014).  If it is reasonable to assume that the entire 308 

population is available for detection for any part of each day, additional data would not be 309 
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required to estimate 𝐷̂ accurately, because we could either (1) analyze only the data collected at 310 

that time, censoring effort and distance data from other times, or (2) estimate the overall 311 

proportion of time active directly from the CT data (e.g. Rowcliffe et al. 2014).  Newing’s (1994) 312 

data from Taï indicated that there was no time at which all wild duikers could be assumed to be 313 

active.  If this was true during our survey, we may have underestimated density where we did not 314 

correct for limited availability within the time included in Tk, because even at times of peak 315 

activity some animals may have been resting and unavailable for detection.  Activity data from 316 

wild duikers were presented only as figures and could not be converted into estimates of the 317 

overall proportion of time active (Newing 1994).  We therefore relied on the assumption that 318 

activity data from captive duikers (Newing 1994, Newing et al. 2001) were representative of 319 

activity patterns during our survey.  If this assumption held, then the density estimate calculated 320 

using their estimate of the proportion of time active during the day should not be biased as a 321 

result of limited availability.  We suggest that the need to account for availability should not pose 322 

a serious obstacle to reliable estimation of the density of many species, but for others, notably 323 

ectotherms, and semi-arboreal and fossorial species, it will require careful consideration, and 324 

possibly additional data.  We further suggest that combining Rowcliffe et al.’s (2014) or similar 325 

methods for estimating the proportion of time active from detection times at CTs with the point 326 

transect method described here could yield accurate density estimates for many species from CT 327 

data alone. 328 

Avoidance of, or attraction to, CTs would bias encounter rates and therefore density 329 

estimates.  Some species exhibit complex responses to CTs or are particularly wary of humans 330 

(Séquin et al. 2003).  If behavioural responses are expected or apparent in images of detected 331 

animals, CTs could be deployed prior to the start of the actual survey to allow animals to become 332 
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accustomed to them and for signs of human presence to dissipate.  Similarly, effort and distance 333 

data from times when animals may have been displaced from the trap sites by humans visiting 334 

them to download data, replace batteries, etc., should be censored.   335 

The probability of detection at PIR CTs is lower at greater angles from the center of the 336 

FOV, due to a combination of the trigger speed, the effective horizontal angle of the sensor 337 

relative to the AOV of the camera (which varies among CT models) and possibly reduced 338 

sensitivity of the sensor at the periphery of its horizontal range (Rowcliffe et al. 2011, Rovero et 339 

al. 2013, Rovero and Zimmermann 2016).  This introduces heterogeneity in the detection 340 

function.  Fortunately, provided that detection is certain at zero distance, the pooling robustness 341 

property ensures that estimation is unbiased in the presence of heterogeneity in detectability 342 

among individuals (Buckland et al. 2004), and this also applies to heterogeneity caused by 343 

differences in angle at different snapshot moments.  However, if detection probability at high 𝜃 344 

is much lower than in the centre, fitted models of the detection function might show a rapid drop 345 

in detection probability near the point, whereas detection functions with a gradual decrease near 346 

the point are preferred for stable density estimation (Buckland et al. 2001).  The expected 347 

distribution of angles within a sector within which the sensor is fully effective is uniform.  We 348 

recommend that researchers measure angles as well as distances to detected animals (e.g. 349 

Carravaggi et al. 2016), and test for departures from the uniformity assumption  at increasing 350 

angles as part of their exploratory analysis.  If departures are apparent, the data could be 351 

truncated to exclude observations beyond an angle within which the distribution is approximately 352 

uniform, in which case 𝜃 should be set to two times the truncation angle rather than the AOV of 353 

the camera in the definition of effort.  An alternative approach that would allow us to retain all of 354 

the data would be to develop a two dimensional detection function where detection probability 355 
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depends on both radial distance and angle from center, using methods similar to those developed 356 

by Marques et al. (2010).  We expect heterogeneity with angle to be more severe with CT 357 

models with narrow horizontal ranges of the sensor relative to the AOV of the camera, or slow 358 

trigger speeds, and where faster-moving animals are sampled.  CTs with fast trigger speeds, short 359 

recovery times, and curved array Fresnel lenses (which provide a wide effective angle of 360 

detection such that the camera begins recording images as or even before the animal enters the 361 

FOV; Rovero and Zimmermann 2016) could reduce or eliminate differences in detection 362 

probability at different angles in future studies. 363 

The encounter rate variance accounted for the vast majority of the design-based variance 364 

in duiker density, and variances around 𝐷̂ were larger than for simulated data despite similar 365 

sample sizes.  Real populations exhibit clumped or patchy distributions and non-random 366 

movement, leading to variable encounter rates among sampling locations and hence greater 367 

uncertainty in 𝐷̂ (Buckland et al 2001, Fewster et al. 2009); the small area sampled at each 368 

location exacerbates this problem.  Increasing the area sampled will therefore enhance precision, 369 

more so than would increasing temporal effort at a point.  Theory predicts that increasing the 370 

number of points will yield the largest improvements to precision (Buckland 1984, Fewster et al. 371 

2009).  That the improvement in precision in simulations was only slightly greater where we 372 

doubled the number of sampling locations than where we doubled 𝜃 is not representative of real 373 

studies because the expected spatial distribution of animal locations was uniform, and movement 374 

was random.  Coefficients of variation around 𝐷̂ for duikers were >35% despite large samples of 375 

distance observations, so we recommend that future studies employ more points to improve 376 

precision. 377 
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The density of Maxwell’s duikers at Taï was recently estimated as 1.6 / km2 from line 378 

transect DS surveys (N’Goran 2006).  However, line transect sampling by human observers is 379 

believed to severely underestimate densities of forest-dwelling animals in general, and forest 380 

antelopes in particular, due to effects of evasive movement and behaviour in response to 381 

observers on both the encounter rate and the distribution of observed distances (Koster and Hart 382 

1988, Jathanna et al. 2003, Rovero and Marshall 2004, 2009, N’Goran 2006, Marshall et al. 383 

2008, Marini et al. 2009).  Estimates of sign density from line transect surveys are frequently 384 

converted to estimates of animal density, but this is expected to yield biased estimates in the 385 

absence of local and concurrent estimates of sign production and decay rates, which are time-386 

consuming to estimate (Plumptre 2000, Kuehl et al. 2007, Todd et al. 2008).  Dung surveys may 387 

further require genetic analysis to identify the species (Bowkett et al. 2009).  Distance sampling 388 

with CTs apparently avoided the underestimation characteristic of line transect surveys of live 389 

animals, in less time than would be required to obtain reliable estimates from sign surveys. 390 

 The recent proliferation of CT studies is providing new information about wildlife in 391 

diverse habitats (Burton et al. 2015, Rovero and Zimmermann 2016).  Where estimating the 392 

density of a rare but individually identifiable species is the primary research objective, it may be 393 

preferable to deploy CTs non-randomly in order to obtain sufficient detections of individuals to 394 

estimate density by SECR (Wearn et al. 2013, Cusack et al. 2015b, Després-Einspenner et al. 395 

accepted).  However, multiple research objectives can be addressed, and useful data for multiple 396 

species obtained, if CTs are deployed according to a randomized design (MacKenzie and Royle 397 

2005, Wearn et al. 2013, Burton et al. 2015, Dénes et al. 2015).  The size of unmarked 398 

populations can then be estimated from CT data using Poisson and negative binomial GLMs or 399 

hierarchical N-mixture models (Dénes et al. 2015), but population density is of greater interest 400 
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because it is more biologically relevant and comparable across studies.  Densities of unmarked 401 

animal populations can only be estimated from CT data using SECR models for unmarked 402 

populations, the REM, or DS methods; the latter two require randomized designs (Rowcliffe et 403 

al. 2008, Buckland et al. 2001).  SECR methods for unmarked populations require intensive 404 

designs, and even then estimates will often be too imprecise to be useful unless a subset of the 405 

population can be reliably identified (Chandler and Royle 2013, Saout et al. 2014).  The REM 406 

requires an estimate of the average speed of animal movement, assumes that detection is certain 407 

within an estimable area in front of the camera, and makes use of only one observation from each 408 

detected animal (Rowcliffe et al. 2008).  Our point transect approach requires an estimate of the 409 

proportion of time animals are available for detection, assumes that detection is certain only at 410 

zero distance, and multiple observations from each detected animal inform detection probability 411 

estimates.  We expect the extension of point transect DS methods to provide an effective and 412 

efficient tool for estimating animal density and to enhance the information derived from CT 413 

surveys. 414 
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Table 1. Densities of Maxwell’s duikers in Taï National Park, 2014, estimated using different 593 

methods to account for limited availability for detection.  Bootstrap confidence intervals were 594 

calculated using the percentile method. 595 

  Design-based  Bootstrap  

Availability D̂  CV 95% CI CV 95% CI 

Daytime 10.6 0.27 6.1–18.3 0.40 5.0–21.8 

Peak activity 14.5 0.30 7.8–26.9 0.36 6.1–26.9 

Active daytime 16.5 0.27 9.5–28.6 0.40 7.7–34.1 

 596 

  597 
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 598 

 599 

Figure 1. Location of the study area (grey polygon) in Taï National Park (TNP), Côte d’Ivoire, 600 

2014 (a), and (b) locations of 23 camera traps deployed in a grid with 1 km spacing within the 601 

study area. 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 
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 610 

Figure 2. Histogram of start times of videos of Maxwell’s duikers in Taï National Park, Côte 611 

d’Ivoire, 2014. 612 

  613 
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 614 

 615 

Figure 3.  Variation in encounter rates of Maxwell’s duikers among 21 camera trap locations in 616 

Taï National Park, Côte d’Ivoire, 2014 (range 0.00 – 1.45 × 10-3).  The areas of the grey circles 617 

are proportional to the encounter rates. 618 

  619 
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 620 

Figure 4. Probability density functions of observed distances (top) and detection probability as a 621 

function of distance (bottom) from hazard-rate point transect models fit to data from Maxwell’s 622 

duikers in Taï National Park, 2014, collected during the daytime (left) and during times of peak 623 

activity (right). 624 


