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Explanations for primate brain expansion and the evolution of human cognition 28 

and culture remain contentious in spite of extensive research. Further, while 29 

multiple comparative analyses have investigated variation in brain size across 30 

primate species, very few have addressed why primates vary in how much they 31 

utilize social learning. Here, we evaluate the hypothesis that the enhanced 32 

reliance on socially transmitted behavior observed in some primates has co-33 

evolved with enlarged brains, complex sociality and extended lifespans. Using 34 

recently developed phylogenetic comparative methods, we show that across 35 

primate species, a measure of social learning proclivity increases with absolute 36 

and relative brain volume, longevity (specifically reproductive lifespan), and 37 

social group size, correcting for research effort. We also confirm relationships of 38 

absolute and relative brain volume with longevity (both juvenile period and 39 

reproductive lifespan) and social group size, though longevity is generally a 40 

stronger predictor. Relationships between social learning, brain volume and 41 

longevity remain when controlling for maternal investment, and are therefore 42 

not simply explained as a by-product of the generally slower life history expected 43 

for larger-brained species. Our findings suggest that both brain expansion and 44 

high reliance on culturally transmitted behavior co-evolved with sociality and 45 

extended lifespan in primates. This coevolution is consistent with the hypothesis 46 

that the evolution of large brains, sociality and long lifespans has promoted 47 

reliance on culture, with reliance on culture in turn driving further increases in 48 

brain volume, cognitive abilities and lifespans in some primate lineages.  49 

 50 

 51 

 52 



 4 

Significance statement 53 

Some primate species, particularly humans, have large brains, long lives, complex social 54 

relationships, and advanced cognitive and cultural capabilities, but how and why these 55 

evolved remains debated. Here we use up-to-date phylogenetic comparative statistical 56 

methods applied to a large primate dataset to examine whether the enhanced reliance 57 

on culturally transmitted behavior observed in some primates has co-evolved together 58 

with enlarged brains, sociality and extended lifespans. Our analyses confirm that these 59 

traits did indeed coevolve in primates, and point towards causal scenarios underlying 60 

their association. Our findings suggest that large brains, sociality and longer lifespans 61 

drove increases in cultural capacity, which in turn may have driven further increases in 62 

brain size, cognitive abilities and lifespan in some primate lineages.  63 

  64 
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\body 65 

Brain expansion is unquestionably a distinctive feature of primate, and especially 66 

human, evolution. This is the case whether the brain is measured in absolute terms, as 67 

relative to body size, or as size of the neocortex relative to the rest of the brain (1), and 68 

irrespective of whether it is better characterized by variation in a single size dimension 69 

(2) or mosaic evolution of component parts (3). The striking variation in brain size in 70 

non-human primates, across three orders of magnitude (4), has long demanded an 71 

evolutionary explanation (5). While the cognitive implications of cross-species variation 72 

in whole brain size remain contentious and require further investigation (5–7), 73 

evolutionary increases in overall brain size in primates reflect neuro-anatomical 74 

changes that are plausibly linked to increases in general cognitive abilities. For instance, 75 

larger primate brains have more neurons in absolute terms (8–11), with coordinated 76 

expansion particularly in the neocortex and cerebellum (12), potentially supporting a 77 

greater diversity of cognitive functions (7, 10). In support of this idea, overall brain size 78 

increases with broad measures of cognitive ability in primates, including performance 79 

in laboratory tests of learning and cognition across primate genera (13), and 80 

performance in experimental measures of behavioral inhibition across primate species 81 

(14).  82 

At ~1500g (15), human brains are at least three times heavier those of than any 83 

other primate species (1). However, humans are also extreme in their long lifespan, 84 

social complexity, cognition and cultural capabilities (16, 17), raising questions about 85 

whether large brains, long lives, complex cognition and advanced cultural capabilities 86 

evolved independently, or coevolved through directly reinforcing processes. Enlarged 87 

brains, enhanced cognition and highly developed social learning abilities co-occur not 88 

only in primate species but also in some cetaceans and birds (18–22), raising the 89 
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possibility of a key role for social learning and culture in brain evolution and 90 

intelligence in multiple, independent animal lineages (23–27).  91 

Across primates, support for multiple, non-exclusive hypotheses for enlarged 92 

brain (particularly neocortex) size has been identified in comparative studies, 93 

emphasizing the roles of social complexity (e.g. group size, (28, 29)), ecological 94 

intelligence (e.g. dietary complexity, (30, 31)), technical intelligence (e.g. tool use, 95 

technical innovation, (21, 25, 32)), and behavioral complexity (e.g. innovativeness, 96 

social learning, tactical deception, (21, 25, 33)). Further, several comparative studies 97 

have found that larger brained primates have slower life history strategies, including 98 

longer juvenile periods and overall lifespans (e.g.(29)). While mutually reinforcing 99 

evolutionary processes have been proposed to account for this association (16), recent 100 

comparative analyses suggest that lifespan increases with brain size in mammals rather 101 

due to developmental costs  - i.e. it requires a longer period of maternal investment to 102 

support offspring with greater natal and post-natal brain growth, requiring a slower life 103 

history strategy of which longer lifespan is a by-product (34). Primates, however, are 104 

potentially distinct from most mammalian taxa in their unusually large, neuron-dense 105 

brains (8–11) and in the extensive occurrence of socially transmitted behavior 106 

exhibited by some lineages (e.g.(35–37)). Whether the association between extended 107 

life history and enlarged brain size is best explained by a cognitive or developmental 108 

mechanism, in primates specifically, remains to be explored. Further, despite many 109 

previous comparative analyses of brain size and relevant predictors in primates, 110 

comparative analyses have not yet directly explored the evolutionary relationships 111 

between brain expansion, cultural complexity, sociality and longevity in analyses that 112 

include all of these variables, with control for relevant potential confounding variables.  113 
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 Here we conduct the first direct test of the widely held view that encephalization, 114 

sociality, longevity and reliance on culture have coevolved (16, 23–27, 32, 38), in a 115 

comparative analysis of primate species. We use a quantitative behavioral measure of 116 

reliance on culture, specifically, the number of unique reports of (i.e. richness) of social 117 

learning per species from a sample of relevant published literature (21, 39) (henceforth 118 

referred to simply as ‘social learning’, see Supplementary Information for further details 119 

on this measure). We use Bayesian phylogenetic mixed models to investigate a cluster 120 

of related hypotheses concerned with the evolutionary relationships between social 121 

learning, brain volume, group size and lifespan. Below, we specify and test four 122 

predictions, each of which are independent, yet if all supported would imply support for 123 

a cluster of related, and mutually consistent, ideas concerning the factors underlying the 124 

evolution of brain, cognition and culture. 125 

 126 

Prediction 1: social learning increases with absolute and relative brain volume  127 

This expectation follows from the hypotheses that (i) high levels of knowledge 128 

and skill are required for primates to exploit high-quality, difficult-to-access dietary 129 

resources, with these skills primarily acquired through social learning (16, 23–27, 32, 130 

38, 40), and (ii) the energy so acquired is critical to developing and running a large 131 

brain (16, 27). Previous comparative analyses have identified positive associations of 132 

social learning with the absolute and relative sizes of brain components, primarily the 133 

neocortex (21, 25). Here, we extend these analyses to overall brain size measured as 134 

endocranial volume (ECV), allowing for much larger (at least threefold) sample sizes, far 135 

more representative of the diversity in brain size across primate species (41). 136 

 137 

 138 
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Prediction 2: social learning increases with longevity 139 

This expectation follows from the hypotheses that (i) extended life history, 140 

particularly a longer lifespan and period of juvenile dependence, facilitates the 141 

acquisition, exploitation and social transmission of life skills (16, 23, 40), and (ii) 142 

cultural knowledge promotes survival and long lives (25–27) by acting as a ‘cognitive 143 

buffer’, enhancing survival in challenging environmental conditions through behavioral 144 

responses (42, 43). Complex skills frequently take time to learn, and hence longer 145 

lifespans potentially provide more time for relevant experience to accrue, more time for 146 

adults to benefit from knowledge acquired earlier in life, and more time for parents to 147 

pass on relevant skills to offspring (16, 23, 26, 27, 40). If an extended juvenile period in 148 

particular is critical for the acquisition of adaptive socially transmitted behavior (16), 149 

we expect that juvenile period has a strong association with social learning richness. 150 

However, costly investment in learning socially transmitted skills may only pay off in 151 

later life across a long reproductive lifespan (16), therefore, we may expect the 152 

association between social learning and longevity to be driven more strongly by 153 

increases in reproductive lifespan. If there is a specific relationship of social learning 154 

with longevity, not confounded by relationships of either with absolute or relative brain 155 

size, we should still find this association even when controlling for brain volume and 156 

body mass. Furthermore, if reliance on socially transmitted behavior is related to 157 

longevity via a ‘cognitive buffer’ mechanism rather than as a by-product of a 158 

relationship between social learning, brain volume and slower life history traits due to 159 

developmental constraints, this relationship should remain when controlling for the 160 

potentially confounding effect of maternal investment (measured as the sum of 161 

gestation and lactation periods) (34). 162 

 163 
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Prediction 3: social learning increases with group size 164 

This expectation follows from several theoretical and empirical analyses 165 

showing that large social groups support greater amounts of adaptive cultural 166 

knowledge (e.g. (44–47)), and broader hypotheses that stable social grouping supports 167 

the evolution of reliance on social learning (e.g.(20)). If the relationship of social 168 

learning to group size is not confounded by associations of either trait with absolute 169 

brain volume, relative brain volume or longevity, this prediction should hold when 170 

controlling for brain volume, body mass and longevity measures.  171 

 172 

Prediction 4: Absolute and relative brain volume increases with longevity 173 

Across mammals, a relationship between adult brain mass and longevity is not 174 

supported when controlling for maternal investment, suggesting that developmental 175 

constraints associated with investing in large-brained offspring underpin this 176 

association (34). However, if in primates, associations of longevity with absolute and 177 

relative brain volume remain when maternal investment is included in analyses, the 178 

relationship between brain volume and lifespan is not confounded with maternal 179 

investment and is thus potentially indicative of a cognitive, rather than solely 180 

developmental, mechanism whereby greater cognitive flexibility facilitates survival, in 181 

primates specifically even if not in mammals more generally. Additionally, if longevity is 182 

related to brain volume independently of any potentially confounding effect of social 183 

group size, these associations should remain intact when group size is included in 184 

statistical models. 185 

 186 

 187 

 188 



 10 

Results 189 

 190 

Prediction 1: Social learning and brain volume  191 

As predicted, social learning richness increases with both absolute (<1% β 192 

coefficients in the posterior distribution crossing zero, N=150, Supplementary Table 193 

S1(i)) and relative brain volume (3% β crossing zero, N=150, Supplementary Table 194 

S1(ii)).  195 

 196 

Prediction 2: Social learning and longevity 197 

As predicted, social learning richness increases with longevity (<1% β crossing 198 

zero, N=117, Supplementary Table S2A(i), Figure 1a). We find no evidence that social 199 

learning increases with juvenile period length, however (58% β crossing zero, N=101, 200 

Supplementary Table S2B(i)), rather, social learning increases with reproductive 201 

lifespan specifically (0% β crossing zero, N=92, Supplementary Table S2C(i), Figure 202 

1a).  Relationships between social learning and longevity, and between social learning 203 

and reproductive lifespan, remain intact when maternal investment (summed gestation 204 

and lactation time) is included as an additional predictor (2%, <1% β crossing zero, 205 

N=87, N=82, Supplementary Tables S2A (ii), S2C(ii) respectively), while maternal 206 

investment itself does not predict social learning in these models (≥35% β crossing 207 

zero, Supplementary Tables S2A(ii), S2C(ii)). Relationships between social learning and 208 

longevity or reproductive lifespan are also not confounded by those between social 209 

learning and absolute or relative brain volume, as they remain when either brain 210 

volume or both brain volume and body mass are included as additional predictors (<1% 211 

β crossing zero, N=111, N=89, Supplementary Tables S2A (iii, iv), S2C (iii, iv)).  212 

 213 
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Prediction 3: Social learning and group size 214 

As predicted, we find a positive association between group size and social 215 

learning (<1% β crossing zero, N=167, Supplementary Table S3(i), Figure 1a). This 216 

association is independent of the relationship between social learning and longevity or 217 

reproductive lifespan, as the association remains when either of these life history traits 218 

are included (4% β crossing zero, 5% β crossing zero, N=111, N=89, Supplementary 219 

Tables S3(ii.a, ii.b) respectively). The relationship between group size and social 220 

learning is also not confounded by the association of either trait with absolute or 221 

relative brain volume, as it remains when either brain volume or both brain volume and 222 

body mass are included as additional predictors (<4% β crossing zero, N=140, 223 

Supplementary Tables S3(iii, iv)). 224 

 225 

Prediction 4: Predictors of brain volume 226 

We confirm the expected positive association of absolute brain volume with 227 

social group size (3% β crossing zero, N=151, Supplementary Table S4(i), Figure 1b). 228 

Absolute brain volume also increases with longevity, juvenile period length and 229 

reproductive lifespan (<1 % β crossing zero, N=112, N=98, N=90, Supplementary Tables 230 

S4(ii.a, ii.b, ii.c), Figure 1b).  Relationships between absolute brain volume and 231 

longevity, juvenile period and reproductive lifespan remain intact when maternal 232 

investment is included in the model, which itself also increases with brain volume (all 233 

<1% β crossing zero, N=84, N=86, N=79, Supplementary Tables S4(iii.a, iii.b, iii.c)). 234 

Relationships between longevity, juvenile period and reproductive lifespan with 235 

absolute brain volume are independent of the association of brain volume and group 236 

size, remaining intact when group size is included as an additional predictor (all <1% β 237 

crossing zero, N=106, N=95, N=87, Supplementary Tables S4(iv.a, iv.b, iv.c), while group 238 
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size is a relatively weak predictor when included with longevity or reproductive 239 

lifespan (>6% β crossing zero, Supplementary Tables S4(iv.a, iv.c).  240 

 241 

Similarly, relative brain volume increases with social group size (4% β crossing 242 

zero, N=151, Supplementary Table S5(i), Figure 1c). Relative brain volume also 243 

increases with longevity, juvenile period and reproductive lifespan (<1 % β crossing 244 

zero, N=112, N=98, N=90, Supplementary Tables S5(ii.a, ii.b, ii.c), Figure 1c). Again, 245 

associations between relative brain volume and all three life history measures remain 246 

intact when controlling for maternal investment, which itself also increases with 247 

relative brain volume (all <1% β crossing zero, N=84, N=86, N=79, Supplementary 248 

Tables S5(iii.a, iii.b, iii.c)). The relationship between relative brain volume and life 249 

history length is not confounded by social group size, as all three measures remain 250 

intact when group size is added to the model (<1% β crossing zero, N=106, N=95, N=87, 251 

Supplementary Table S5(iv.a, iv.b, iv.c)). When included with longevity or reproductive 252 

lifespan, however, group size is not strongly supported as a predictor of relative brain 253 

volume (>12 % β crossing zero, Supplementary Table S5 (iv.a, iv.c)). 254 

 255 

Parameters from all statistical models are reported in full in Supplementary 256 

Results Tables. All results reported in the main text refer to models including great apes, 257 

but none of our main results are qualitatively affected by removing these species (N=4) 258 

from analyses (Supplementary Results Tables). Variation in social learning, longevity, 259 

group size and brain volume data across primate genera is illustrated in Figure 2. 260 

 261 

 262 

 263 
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Discussion 264 

We investigated the widely held view that cultural intelligence, extended life 265 

history and brain size have coevolved in nonhuman primates (16, 23–27). Using 266 

Bayesian phylogenetic generalized linear mixed models, we found a positive 267 

relationship between reliance on culture (as measured by reported richness of social 268 

learning, corrected for research effort) and measures of both absolute and relative brain 269 

volume. Earlier studies had established positive relationships between primate social 270 

learning and both absolute and ratio measures of the size of the ‘executive brain’ 271 

(combined neocortex and striatum volume) (25), and that social learning, as a 272 

component of a composite measure of general cognitive ability, increases with absolute 273 

and ratio measures of neocortex size and with executive brain ratio (21). Here, we find 274 

that these associations generalize further to overall brain size measured as endocranial 275 

volume, across a substantially larger (>3x) sample of primate species. While its 276 

occurrence in insects demonstrates that large brains, in absolute terms, are not a pre-277 

requisite for social learning (48), enlarged brain size may support more efficient, high-278 

fidelity, or more diverse forms of social transmission (25), due to increases in, for 279 

instance, cross-modal integration of perceptual and motor information and the general 280 

computational power and flexibility required to implement sophisticated learning 281 

strategies (40, 49). Evolutionary expansion in the primate brain is also driven by visual 282 

specialization (5, 50, 51) and coordinated expansion of the neocortex and cerebellum 283 

with likely corresponding increases in fine visuo-motor control, which may underpin 284 

the ability to replicate complex behavioral sequences inherent to high-fidelity social 285 

learning (5, 12). In turn, more effective social learning potentially allows individuals to 286 

garner high-quality dietary resources that can be invested in brain growth (16). Hence, 287 

though the neural mechanisms underpinning social learning largely remain to be 288 
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established (6, 52) it remains highly plausible that evolutionary increases in overall 289 

brain size are causally associated with elevated social learning capabilities.  290 

 Our prediction of a positive relationship between social learning and longevity 291 

was also confirmed. There is good reason to expect such a relationship. Longer lifespans 292 

provide species reliant on culture more time to learn novel skills, more time to ‘cash in’ 293 

on those skills once learned, and more time to pass them on to their offspring (16, 23, 294 

40). Additionally, longer lifespans may confer greater opportunity for behavioral 295 

innovations, providing the raw material for social transmission, as longer lifespans are 296 

positively associated with greater propensity to innovate in birds (53) and in primates 297 

((32), albeit indirectly). Culturally acquired knowledge is typically adaptive and may 298 

often promote growth and survival, of both the learner and their dependent young, and 299 

thereby extend life spans (25–27) via a ‘cognitive buffer’ effect whereby social learning 300 

allows individuals to adapt behaviorally to challenging environments (42, 43). These 301 

benefits may be sufficient to compensate for negative fitness consequences associated 302 

with reliance on social learning, such as increased risk of social transmission of 303 

parasites (39). While hypotheses for the co-evolution of lifespan and culture propose 304 

that increases in both juvenile period and of overall lifespan are related to reliance on 305 

culturally-transmitted knowledge (e.g. (16)), here we find that the association between 306 

social learning and longevity is driven by an increased reproductive lifespan, rather 307 

than an extended period of juvenile dependence. Our findings, therefore, suggest that an 308 

extended reproductive lifespan, during which enhanced fitness benefits of earlier costly 309 

investment in learning skills for survival can be reaped, primarily drives the association 310 

between social learning and lifespan that we identify here. It remains possible that a 311 

link between extended juvenile periods and social learning capabilities will be identified 312 
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in future studies using novel social learning measures, such as those based on 313 

experimental tests. Nonetheless, the current result may point towards an evolutionary 314 

explanation. Transgenerational social learning requires not only time for acquisition of 315 

skills by juveniles but also time for performance of such behavior by adults, which likely 316 

trades off against parental investment. Therefore, extension of the reproductive lifespan 317 

may be critical to compensate for the costs of producing offspring highly dependent on 318 

social learning for survival. Our finding that the relationship between longevity and 319 

social learning remains when measures of maternal investment are included in analyses 320 

supports these functional arguments, and argues against an interpretation solely in 321 

terms of developmental constraints, in primates at least. Hence, in primates specifically, 322 

the combination of social learning with large brains may provide a “cognitive buffer” 323 

against environmental unpredictability, improving survival and permitting long lives 324 

(see below). Primates may contrast with most mammalian lineages in this regard due to 325 

the unusually extensive reliance on culturally transmitted behavior seen in certain 326 

lineages (e.g. (35–37)), perhaps necessary for social learning to sufficiently buffer 327 

individuals against environmental risks.  328 

 We also predicted a positive relationship between social learning and group size, 329 

on the expectation that large, stable social groups support greater amounts of adaptive 330 

cultural knowledge and facilitate a greater reliance on social learning (20, 44, 45). 331 

Whilst this hypothesis is well-established in theoretical models (e.g. (44, 45)) and has 332 

found recent empirical support in human historical (46) and experimental (47) studies, 333 

previous comparative phylogenetic analyses have failed to find this relationship across 334 

primate species (21, 25). The fact that we find a positive association here most likely 335 

reflects the greater power of our analyses compared to earlier studies, due to the 336 
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availability of a larger group size database (54) and phylogenetic comparative methods 337 

that adjust phylogenetic signal according to the traits included in the model, contrasting 338 

with the older independent contrasts method which effectively assumes a maximum 339 

level of phylogenetic signal and can therefore be overly conservative (55). The 340 

relationship between social learning and group size remains when longevity, brain 341 

volume and body mass are included, and hence appears not to be simply a by-product of 342 

the relationship between group size and absolute or relative brain volume, or 343 

confounded by life history traits.   344 

Both large social groups and extended longevity (including increases in juvenile 345 

period, reproductive and total lifespan), are associated with enlarged brain volume, 346 

whether measured in absolute terms or relative to body mass. Group size has proven a 347 

robust predictor of measures of brain size, particularly relative neocortex size (29, 56, 348 

57), and it remains an important predictor of both absolute and relative whole brain 349 

volume, as well as social learning, in our analyses. Thus, our findings support previous 350 

studies claiming an important role for social intelligence in primate brain evolution (e.g. 351 

(29, 56–58)). However, when included together with longevity, longevity is 352 

independently related to brain volume, while group size becomes a fairly weak 353 

predictor. This result may be significant, as the association of brain volume and 354 

longevity is usually not regarded as directly causally relevant in brain evolution (e.g. 355 

(29)). Further, a recently published comparative analysis suggests that dietary factors, 356 

rather than sociality, are the primary drivers of increased relative brain size in primates 357 

(31). It remains to be seen whether these findings generalize to measures of neocortex 358 

volume, arguably more relevant to social intelligence (29, 56–58). Nonetheless, 359 

together, these results reinforce an emerging consensus that sociality is not the sole 360 

driver of primate brain evolution, but rather is embedded in a nexus of evolutionary 361 



 17 

conditions that favor brain expansion including dietary, ecological, life history and 362 

behavioral factors (12, 16, 21, 25, 29, 32). 363 

Across mammals more broadly, the relationship between adult brain mass and 364 

longevity is accounted for by patterns of maternal investment, and is generally 365 

interpreted as a manifestation of developmental costs of producing larger-brained 366 

offspring, rather than necessarily due to any cognitive or behavioral mechanism (34). 367 

Here, however, we find that the associations of longevity with absolute and relative 368 

brain volume remain when controlling for maternal investment. Hence, in primates, 369 

compared to mammals in general (34), variation in adult brain size across species 370 

cannot be fully accounted for by patterns of maternal investment, and the relationship 371 

between brain size and lifespan is potentially indicative of a cognitive buffering (42, 43), 372 

rather than solely developmental, mechanism through which cultural intelligence 373 

facilitates survival. This contrast can perhaps be explained by divergent scaling 374 

relationships between brain volume and neuron number (presumably a more relevant 375 

correlate of cognitive capacity (7, 10, 12)) in primates compared with other mammalian 376 

lineages. Unlike non-primate mammalian lineages such as rodents, in which neuron size 377 

increases and neuron density decreases with increased brain volume, in primates the 378 

number of neurons increases approximately isometrically with brain volume (8–11). 379 

Therefore, in primates, larger brains may confer stronger benefits in terms of increased 380 

cognitive function and behavioral flexibility compared with other mammalian lineages. 381 

Overall, together with the strong relationship between social learning and longevity, 382 

these findings are consistent with the hypotheses that cultural knowledge facilitates 383 

survival, and that extended longevity facilitates the acquisition, exploitation and social 384 

transmission of life skills (16, 23, 25–27, 40). 385 

Our finding that longevity is a strong, and potentially causally significant, 386 



 18 

predictor of both brain volume and social learning richness is evocative of the argument 387 

that intelligence and life-history length have co-evolved in humans because our 388 

intellectual abilities allowed us to exploit high-quality, but difficult-to-access, food 389 

resources, with the nutrients gleaned 'paying' for brain growth, and with increased 390 

longevity favored because it allowed more time to cash in on complex, and difficult to 391 

master, foraging skills, with fitness benefits that pay off later in life (16). High levels of 392 

knowledge, skill, coordination and strength are required to exploit the high-quality 393 

dietary resources consumed by humans and other apes. Consistently with this idea, the 394 

most common use of social learning in primates appears to be in acquiring foraging 395 

skills, as ~50% of reports of social learning in a prior compilation occurred within the 396 

context of foraging (25, 59). Complex tool use and extractive foraging abilities require 397 

time to acquire, but in larger-brained animals, an extended learning phase, during 398 

which productivity is low, can be compensated for by higher productivity during the 399 

adult period, provided there is an intergenerational flow of both food and knowledge 400 

from old to young (60). Our results are therefore broadly consistent with a cultural 401 

intelligence explanation (23–27) manifested in particular primate lineages showing 402 

high reliance on social learning, in which selection for efficient social learning has 403 

allowed energy gains in diet, which in turn fueled brain growth, and generated selection 404 

for extended longevity. Previous comparative phylogenetic analyses have found social 405 

learning to co-vary positively with rates of behavioral innovation and tool use in 406 

primates (21, 25). Additionally, the best-supported graphs in exploratory phylogenetic 407 

path analyses link technical innovation directly to brain size and social learning, and 408 

non-technical innovation indirectly to brain volume via diet and life-history measures 409 

(32). Together with the current study, this body of findings is consistent with the 410 

hypothesis that cultural intelligence, as manifested by a cluster of behavioral traits, 411 
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including social learning, innovation and tool use, may have been a significant driver of 412 

primate brain evolution. However, we highlight two notes of caution in particular. First, 413 

the majority of primates exhibit comparatively little social learning (Figure 2) (at least, 414 

as reflected in our database), which implies that any selection for cultural intelligence 415 

has operated primarily in a small number of large-brained primate lineages. Second, our 416 

social learning measure is largely based on observational reports, not controlled 417 

experimental tests, while social learning is challenging to identify from observation 418 

alone (21, 25). However, this approach provides a more naturalistic comparative 419 

measure of social learning in comparison to those based on experimental tests, 420 

representing a far broader range of primate behavioral diversity necessary for large-421 

scale comparative investigations (21, 25, 32, 39, 61). Further, results based on patterns 422 

of observational accounts of social learning across species should be valuable in 423 

informing and directing future, larger scale comparative experimental investigations of 424 

variation in social learning abilities across species (21, 39, 62).  425 

 One comprehensive way to interpret these findings is to recognize multiple 426 

waves of selection for enlarged brains and enhanced cognition in primates. In addition 427 

to selection for the cognitive skills required for complex social lives (29) and dietary 428 

niches (31) characteristic of some primate taxa, our results imply a likely later bout of 429 

selection for cultural intelligence amongst a restricted number of large-brained primate 430 

lineages. The latter notably includes the great apes, but also other independent lineages 431 

such as capuchins and baboons (Figure 2), as our results are not contingent on the 432 

inclusion of great apes (Supplementary Results Tables). Plausibly, complex sociality and 433 

foraging may have led to the evolution of large-brained primate lineages, some of which 434 

passed a critical threshold in reliance on socially learned behaviors, leading to mutually 435 

reinforcing selection for increased brain size, cognitive abilities and reliance on social 436 
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learning and innovation, mediated by conferred increases in longevity and diet quality. 437 

The twin challenges of complex socio-ecological niches and reliance on culture may 438 

therefore best account for the evolution of large brains, advanced cognition and 439 

extended lifespans in primates. However, our analyses do not allow the direction of 440 

causality to be inferred, and other interpretations, for instance, in which large brains 441 

evolved for other reasons, subsequently allowing for gains in social and cultural 442 

complexity, are equally supported by the findings presented here. 443 

 Our results do, however, strongly suggest a strong co-evolutionary relationship 444 

between cultural intelligence, brain size, sociality, and life-history length in primates. 445 

While we have focused here on nonhuman primates, broader comparative data support 446 

the idea that enlarged brain size, general cognitive abilities and reliance on culture may 447 

have co-evolved in other long-lived, highly social taxa, including some birds (e.g. 448 

corvids, parrots) and cetaceans (e.g. toothed whales) (18–20, 22). These associations 449 

may be mutually reinforcing (24), with positive feedback loops reaching their zenith in 450 

humans, who are extreme in their encephalization, intelligence, culture and lifespan (23, 451 

63). 452 

 453 

Methods 454 

 455 

Data compilation:  456 

All data used in analyses were obtained from existing published datasets, 457 

referenced in full below, with additional details in Supplementary Methods.   458 

Endocranial volume (ECV, in cubic centimeters) and body mass (in grams) data 459 

were obtained from (4). Since ECV reflects the interior volume of the cranial cavity, 460 
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including not only the volume of the brain, but also the volume of protective structures 461 

of the brain, such as the meninges (4), and does not allow for separate estimates of the 462 

volumes of individual brain components, it is a relatively crude brain measure (6).  463 

Nonetheless, ECV is strongly and near-isometrically related to brain mass in primates 464 

(4), which is itself related approximately isometrically to neuron number (8–11). 465 

Moreover, brain volume estimates from ECV (hereafter ‘brain volume’) are available for 466 

around three times more primate species (N=184 species, see Supplementary Methods) 467 

than for volumes of individual brain structures (neocortex, cerebellum etc; typically 468 

~60 species (e.g.(64)), allowing for analyses far more representative of the range of 469 

interspecific variation in primate brain size (4).  Further, because size estimates from 470 

brain tissue can be influenced by variation in environmental effects such as the age and 471 

life experience of the individual, along with variation in preservation techniques (6), 472 

ECV may be a more consistent measure of species-typical brain size than those derived 473 

from direct measurements of volume or mass (4).  474 

Data on social learning richness and a measure of research effort were obtained 475 

from (21) via the DataDryad digital repository (65) (see Supplementary Methods for full 476 

details on the social learning measure, illustrative examples and discussion of its 477 

reliability). Briefly, social learning richness is the number of reports of unique social 478 

learning behaviors per primate species, primarily from a literature sample of >4000 479 

articles from primate behavior journals (from 1925-2000) (21). Instances of social 480 

learning were identified using keywords (e.g. ‘social learning’, ‘cultural transmission’, 481 

‘traditional’) to minimize subjectivity in the collation of reports from the literature (21, 482 

25). While identifying social learning from literature reports of non-human primate 483 

behavior is inherently challenging, this approach allows for a quantitative behavioral 484 
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measure of social learning across a large sample of diverse primate species, supporting 485 

far larger scale comparative analyses than would be possible using data from controlled 486 

experiments alone (21, 25, 32, 39, 61). Experimental approaches to measuring social 487 

learning across species are associated with their own particular challenges, especially in 488 

comparability and ecological validity of behavioral tests, and limited statistical power 489 

due to smaller sample sizes (21, 25, 62). We account for broad-scale species-differences 490 

in research effort, here estimated using the number of papers published in the 491 

Zoological Record (between 1993-2001, total 7288 articles) (21) (see Supplementary 492 

Methods for further information).  493 

Data on social group size and life history traits (gestation length, weaning age, 494 

age of sexual maturity and maximum longevity) were obtained from the PanTheria 495 

dataset (54). As a measure of maternal investment, we summed gestation length and 496 

weaning age (following (34)). Reproductive lifespan was calculated as age of sexual 497 

maturity subtracted from maximum longevity. Comparative datasets were matched to a 498 

dated consensus phylogeny for 301 primate species (10kTrees version 3, using 499 

GenBank taxonomy, (66)). Taxonomic mis-matches were resolved using the 10kTrees 500 

Translation table and the IUCN Red List website (67). 501 

 502 

Statistical analyses:  503 

 504 

To test predictions, we ran a series of statistical models in which the outcome 505 

variables were always either brain volume or social learning, fitting independent 506 

variables that correspond to specific predicted associations, along with appropriate 507 

potentially confounding variables. Accounting for the effects of multiple variables is 508 
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essential in comparative studies of brain evolution, due to a large number of potential 509 

correlates (6).  We analyzed brain volume both in absolute terms, and relative to body 510 

mass, by variably including body mass as an additional predictor variable. Where social 511 

learning was the outcome variable, research effort was always included as a predictor 512 

to account for its effect on the number of records of social learning in the primate 513 

behavioral literature (21, 25). We also controlled for body mass in models in which life 514 

history traits predicted social learning as the outcome variable, due to the well-515 

established association of larger adult body size with slower life histories (e.g. (68)). For 516 

models including longevity, we re-ran analyses including maternal investment as an 517 

additional predictor to account for its potentially confounding effect on brain volume 518 

and longevity (34). Namely, if associations of brain volume and/or social learning with 519 

longevity are confounded with maternal investment, we expect to find that when 520 

included together with longevity, only maternal investment is a strong predictor of 521 

brain volume and/or social learning (as in (34)). Models including longevity as a 522 

predictor were also re-run using either juvenile period length (age of sexual maturity) 523 

or reproductive lifespan (longevity minus juvenile period), to investigate whether any 524 

identified relationships with longevity were driven by increases in juvenile period 525 

length, reproductive lifespan or both. To investigate whether group size and longevity 526 

predicted brain volume and social learning independently of each other, we ran 527 

additional models in which both group size and longevity were included as predictors. 528 

We re-ran all analyses without great apes, a potentially influential group due to their 529 

high social learning richness and large brains (Figure 2), and due to potential 530 

researcher biases in towards identifying social learning in apes compared with 531 

monkeys (see Supplementary Methods).  We found that none of our key findings are 532 
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affected, demonstrating that our results are robust to removal of potential outliers and 533 

to possible biases associated with this group (Supplementary Results Tables).  534 

 535 

We used Bayesian phylogenetic generalized linear mixed models to analyze data, 536 

which allow for control for phylogenetic non-independence and for modelling non-537 

Gaussian response variables, using the R package MCMCglmm (69). Where brain 538 

volume was the response variable, Gaussian models were used with all variables log-10 539 

transformed, diffuse normal priors for the fixed effects with a mean of 0 and a large 540 

variance (1010), and inverse-Wishart priors for the phylogenetic and residual variance 541 

(with V=1, ν=0.002). Where social learning was the response variable, Gaussian models 542 

were not appropriate due to the highly skewed distribution of this variable, and we 543 

therefore used Poisson models, with all predictor variables log-10 transformed and 544 

non-transformed response variables. Poisson models used the same priors for the fixed 545 

effects and residual variance as for the Gaussian models, with a parameter-expanded 546 

prior (V = 1, ν = 1, αμ = 0, and αV = 252) for the phylogenetic random effect (69, 70). 547 

Though a large proportion of the species included in analyses had zero records of social 548 

learning, these species are still informative due to the inclusion of research effort in all 549 

models (see Supplementary Methods).  Further, preliminary analyses established that 550 

non-zero inflated Poisson models were appropriate for our data (see Supplementary 551 

Methods). 552 

 553 

MCMC analyses were run with a sufficient number of iterations and thinning to 554 

return effective sample sizes of >1000 for all parameters (see Supplementary Methods). 555 

Chain convergence and adequate performance were confirmed by visual inspection of 556 

trace plots and checking effective sample sizes. From each model, we report the mean h2 557 
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(a measure of phylogenetic signal equivalent to Pagel’s λ (71)), and mean β coefficient 558 

estimate from posterior distributions. To assess the strength of evidence for fixed 559 

effects, we use the % of posterior β coefficient estimates crossing zero in the direction 560 

opposite to predictions (as in (39, 72, 73), for example). Posterior distributions shifted 561 

substantially away from zero in a positive or negative direction indicate support for 562 

positive or negative associations, respectively, between fixed effects and outcome 563 

variables. Conversely, posterior distributions centered on zero or overlapping 564 

substantially with zero indicate a lack of evidence for any relationship between the 565 

fixed effects and outcome variables. Here, all associations are predicted to be positive in 566 

direction. As a measure of model fit, we use a pseudo-R2, estimated as the squared 567 

Pearson’s correlation between fitted values and observed data (74). No analysis 568 

reported a variance inflation factor (VIF) above 5, demonstrating that multi-collinearity 569 

was not a concern in our analyses (see Supplementary Methods). 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 
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FIGURE LEGENDS 786 

 787 

Figure 1: Posterior distributions of  coefficients for the effects of longevity, juvenile 788 

period and group size on a) social learning richness, b) absolute brain volume and c) 789 

relative brain volume (i.e. brain volume accounting for body mass).  Here, we present 790 

effects from the simplest models including only either longevity, juvenile period or group 791 

size as independent variables, together with research effort and body mass for the social 792 

learning model, and body mass for the relative brain model. However, these results are not 793 

affected by the inclusion of additional potential confounding variables (see Methods, 794 

Results and Supplementary Information). Percentages indicate the percentage of posterior 795 

estimates that cross zero in the opposite of the predicted direction for each effect.  796 

Distributions shifted substantially away from zero indicate evidence for effects of predictor 797 

variables in the corresponding direction, while those centered close to zero indicate little 798 

or no evidence for effects of predictor variables.  799 

 800 

Figure 2: Summary of raw data on social learning, absolute brain volume, group size and 801 

longevity for 52 primate genera, using the phylogeny from 10ktrees (66). For illustration 802 

purposes only, all data are summarized as genus-level means, standardized with minimum 803 

0 and maximum 1. Again for illustration purposes only, social learning is displayed as a 804 

proportion of research effort, while in statistical analyses, social learning is controlled for 805 

research effort by including research effort as an independent variable. Images show a) 806 

bearded capuchin (Cebus libidinosus), b) chimpanzees (Pan troglodytes) and c) guinea 807 

baboons (Papio papio), illustrating lineages that represent convergent co-evolution of 808 

high social learning abilities, large brain volumes, complex social relationships and 809 

extended lifespans. Image attributions are as follows: a) Bart van Dorp, CC BY 2.0, 810 
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https://commons.wikimedia.org/w/index.php?curid=27338626, b) USAID Africa Bureau, 811 

Public Domain, https://commons.wikimedia.org/w/index.php?curid=21460178 c) William 812 

Warby, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=41396463  813 
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