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Distance sampling is a widely used method for estimating wildlife pop-
ulation abundance. The fact that conventional distance sampling methods are
partly design-based constrains the spatial resolution at which animal density
can be estimated using these methods. Estimates are usually obtained at sur-
vey stratum level. For an endangered species such as the blue whale, it is de-
sirable to estimate density and abundance at a finer spatial scale than stratum.
Temporal variation in the spatial structure is also important. We formulate the
process generating distance sampling data as a thinned spatial point process
and propose model-based inference using a spatial log-Gaussian Cox process.
The method adopts a flexible stochastic partial differential equation (SPDE)
approach to model spatial structure in density that is not accounted for by
explanatory variables, and integrated nested Laplace approximation (INLA)
for Bayesian inference. It allows simultaneous fitting of detection and den-
sity models and permits prediction of density at an arbitrarily fine scale. We
estimate blue whale density in the Eastern Tropical Pacific Ocean from thir-
teen shipboard surveys conducted over 22 years. We find that higher blue
whale density is associated with colder sea surface temperatures in space,
and although there is some positive association between density and mean an-
nual temperature, our estimates are consistent with no trend in density across
years. Our analysis also indicates that there is substantial spatially structured
variation in density that is not explained by available covariates.

1. Introduction. Distance sampling is a widely used set of survey meth-
ods for estimating animal density or abundance [Buckland et al. (2001, 2015)].
Conventional distance sampling methods (of which line transect and point tran-
sect methods are the most common) use a combination of model-based infer-
ence for estimating detection probability and design-based inference with Horvitz–
Thompson-like estimators [Borchers et al. (1998)] for estimating density and

Received September 2016; revised June 2017.
1Supported by the Engineering and Physical Sciences Research Council (EPSRC)—

EP/K041061/1 and EP/K041053/1.
Key words and phrases. Distance sampling, spatio-temporal modeling, stochastic partial differen-

tial equations, INLA, spatial point process.

2270

http://www.imstat.org/aoas/
https://doi.org/10.1214/17-AOAS1078
http://www.imstat.org


POINT PROCESS MODELS FOR DISTANCE SAMPLING DATA 2271

abundance conditional on the detection probability estimates. While the design-
based nature of the second stage in this two-stage estimation process [Buckland,
Oedekoven and Borchers (2016)] confers robustness on density and abundance es-
timates when suitable designs are used, it severely restricts the spatial resolution
at which such estimates can be obtained. This is because design-based inference
requires adequate sampling units (strips for line transect surveys and circular plots
for point transect surveys) in each area for which animal density or abundance
is to be estimated. The low spatial resolution of estimates from this two-stage ap-
proach limits the utility of estimates obtained from conventional distance sampling
methods as there is often interest in the distribution at high spatial resolution. As
a result, there has been increasing interest in distance sampling methods that gen-
erate continuous spatial density surface estimates, and hence allow inference at an
arbitrarily fine spatial scale.

In this paper, we consider a series of line transect surveys of blue whales (Bal-
aenoptera musculus) in the Eastern Tropical Pacific Ocean [ETP, Gerrodette and
Forcada (2005)], in which the focus of inference is on how density changes contin-
uously in space, with respect to available explanatory variables, and across years.
The surveys were designed for dolphins, not blue whales, so there are relatively
few blue whale sightings. A continuous spatial model has the potential to borrow
strength from data outside the lightly-sampled strata to improve overall inference.

One can obtain a continuous density model by using a spatial model of density
in the second stage, rather than basing inference on the design in this stage. This
is usually done by transforming the data to counts: discretizing the sampled strips
into smaller spatial units in the case of line transects and specifying a model for
the counts within each unit, using estimated detection probability as an offset to
correct the counts for detectability. Hedley, Buckland and Borchers (1993) and
Hedley and Buckland (2004) pioneered this approach and Niemi and Fernández
(2010) developed a similar approach (but ignoring detection uncertainty). The R-
package dsm [Miller et al. (2014)] implements the approach of Hedley, Buckland
and Borchers (1993) and Hedley and Buckland (2004) using generalized additive
models [Wood (2006)] to estimate a density surface from the count data. Either
frequentist or Bayesian approaches can be used for the second stage [Oedekoven,
Laake and Skaug (2015), Oedekoven et al. (2013)], and bootstrapping is often
used to propagate the uncertainty of detectability estimated from the first stage.
Williams et al. (2011) use a more direct approach to incorporate uncertainty of
detectability: a random effect term is added in the second stage to characterize the
uncertainty in the estimation of the detection function from the first stage.

One can also estimate the parameters of the detection function and the count
model simultaneously [Conn, Laake and Johnson (2012), Johnson, Laake and
Ver Hoef (2010), Moore and Barlow (2011), Oedekoven et al. (2014), Pardo et al.
(2015), Royle, Dawson and Bates (2004), Royle and Dorazio (2008), Schmidt et al.
(2012)]. This is known as a full-likelihood approach, as it involves specifying a
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likelihood that incorporates both a detection function model and a spatial density
model, allowing simultaneous estimation of both models.

Whether inference is in two stages or one, models that discretize searched strips
or lines involve an element of subjectivity in choosing the size of the discrete units
and a loss of spatial information because each discrete unit can have only one
value of any spatial covariate attached to it, even though it might span an area
incorporating a range of covariate values. In this paper, we develop a method that
does not suffer from these problems, using a point process model.

Point process theory provides a flexible modeling framework for incorporating
the underlying spatial or spatio-temporal stochastic processes and does not require
discretization of spatial sampling units. Point process models have been used with
ecological data to estimate smooth spatial density surfaces and are an obvious
choice for the spatial model component of a full likelihood line transect model,
although to date they have mainly been used in ecological applications with fully
mapped point patterns [Wiegand and Moloney (2014)]: Stoyan (1982) formulated
line transect data as observations of stationary point processes; Hedley, Buckland
and Borchers (1993) considered point process models for point transect surveys,
and Högmander (1991, 1995) constructed a marked point process model for line
transect data with detection probability of an animal treated as a mark, but they
used a detection model (in which each animal has a detection circle with variable
radius) that was shown by Hayes and Buckland (1983) to be unrealistic and often
resulting in biased inference.

Here, we develop a full likelihood point process model for line transect data, in
which the detection process thins the underlying point process, and in which the
detection model and the point process model are estimated simultaneously. In the
context of the blue whale survey, an unknown point process governs the number
and locations of the whales in space, and points are thinned (whales missed) with a
probability that depends in an unknown way on distance from the known locations
of lines. Such an approach is not new for modeling distance sampling data. The
R-package DSpat [Johnson, Laake and Ver Hoef (2014, 2010)] uses a thinned
point process model for line transect survey data. However, their method assumes
the absence of residual spatial structure on the intensity level (whale density in our
case), which is usually not the case in practice, and may result in biased estimates.
We relax the independence assumption by using the stochastic partial differential
equation approach [SPDE, Lindgren, Rue and Lindström (2011)] to incorporate
a spatial or spatio-temporal random field for the underlying stochastic process of
autocorrelated spatial or spatio-temporal random effects. For point process data in
general, the SPDE approach avoids the need to aggregate observations [Simpson
et al. (2016)], and it provides a flexible modeling framework for spatio-temporal
random fields. We build our models in a Bayesian framework, which gives us a tool
for fitting complicated models, and the advantage of being able to use integrated
nested Laplace approximation [INLA, Rue, Martino and Chopin (2009)] for in-
ference. INLA is a computationally efficient method for Bayesian inference using
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numerical approximations instead of a sampling-based method such as Markov
chain Monte Carlo algorithms. In addition, our modeling framework accommo-
dates the models of the sort used by Johnson, Laake and Ver Hoef (2010) as a
special case, as well as the second stage of the two-stage approach of Miller et al.
(2013).

After describing the blue whale survey data in Section 2, we describe our model
and computational methods in Sections 3 and Section 4. We then analyze the sur-
vey data in Section 5, investigating the underlying spatial stochastic process of
blue whale density in this area, and how the blue whales respond to sea surface
temperature in space and time. Finally, in Section 6, we discuss the results of the
analysis, the utility of our modeling approach and extensions for more complicated
scenarios.

2. The blue whale survey data. Line-transect cetacean surveys were carried
out in the Eastern Tropical Pacific Ocean (ETP) between 1986 and 2007. Figure 1
shows the survey region and transect lines over this whole period, together with
blue whale sightings. The survey area is 21.353 million square kilometres and is
large enough that the curvature of the earth needs to be taken into account in the
analysis. A total of 182 blue whale groups were sighted over all years, with a mean
group size of 1.8 (standard deviation 2.1). In 1986–1990, 1998–2000, 2003 and
2006, the entire ETP area of was sampled. These complete surveys required two
oceanographic research vessels (3 in 1998) for 120 sea days each. Transect search
effort was stratified by area [Gerrodette and Forcada (2005)], and in 1992, 1993
and 2007, only part of the ETP area was sampled. These spatial differences in in-
tensity of sampling need to be accounted for in modelling (see Section 4.2 for more
detail). Data collection followed standardized line-transect protocols [Kinzey, Ol-
son and Gerrodette (2000)]. Briefly, in workable conditions, a visual search for

FIG. 1. Plot of the ETP data: the left panel shows the transect lines surveyed from 1986 to 2007,
and the right panel displays the sightings of blue whale groups (red dots) on top of the mesh used in
our analysis: the radius of each dot is proportional to the logarithm of the group size plus 1. The red
line is the ETP survey region boundary.
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cetaceans was conducted by a team of three observers on the flying bridge of each
vessel during all daylight hours as the ship moved along the transect at a speed of
10 knots. Pedestal-mounted 25x binoculars were fitted with azimuth rings and ret-
icles for angle and distance measurements. If a blue whale sighting was less than
10 km from the transect, the team went off-effort and directed the ship to leave the
transect to approach the sighted animal(s). The observers identified the sighting to
species or subspecies (if possible) and made group-size estimates.

The inference problem we address is how to model the density of blue whale
groups across this survey region in a way that takes account of (i) the variable
survey effort (transect lines) in space, (ii) the unknown probability of detecting a
group from a line, with detection probability decreasing with distance from line,
(iii) the dependence of density on explanatory variables (sea surface temperature in
particular), (iv) how density changes over years, and (v) spatial fluctuation in blue
whale density that cannot be explained by any available explanatory variables.

We describe the statistical models and tools that we use to address this inference
problem next, and then use these to address the blue whale inference problem.

3. The models. Spatial point processes model the locations of objects in
space [Stoyan and Grabarnik (1991), van Lieshout (2000), Diggle (2003), Møller
and Waagepetersen (2004), Illian et al. (2008)]. Before incorporating distance sam-
pling, we consider spatial point patterns formed by objects, represented as col-
lections of locations, Y ≡ {si , i = 1, . . . , n}. The point set Y is considered as a
realisation from a random point process on a bounded domain �, where usually
� ⊂ R

2. Since the ETP survey domain is large enough for the curvature of the
Earth to matter (see Figure 1), we treat � as a subdomain of a sphere, � ⊂ S

2.

3.1. Spatial hierarchical Poisson point process models. For any subset A ⊆
�, the number of objects in A is denoted NY (A). For an inhomogeneous point
process, we define an intensity function �(s) as

�(s) = lim
ε→0

E{NY [Bε(s, t)]}
|Bε(s, t)| , s ∈ �,

where Bε(s) is a ball of radius ε centered at s. For all nonoverlapping subsets
A1, . . . ,Am ⊂ �, an inhomogeneous Poisson point process has the following two
conditions:

NY (Ak) ∼ Po
[∫

Ak

�(s)ds

]
, k = 1, . . . ,m, and

NY (A1), . . . ,NY (Am) are mutually independent.

Finally, we let �(s) be a random process, and define the point pattern model condi-
tionally on �(s). The conditional likelihood for the entire point pattern Y , relative
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to a homogeneous Poisson process with intensity 1, is given by

π(Y | �) = exp
(
|�| −

∫
�

�(s)ds

)NY (�)∏
i=1

�(si ),(3.1)

where si is the location of the ith observation. If log�(s) is modelled by a latent
Gaussian linear model, the resulting hierarchical model is a doubly-stochastic log-
Gaussian Cox process [Møller and Waagepetersen (2004)].

3.2. Point process models in the context of distance sampling. For wildlife
surveys, only a proportion of the population in the domain of interest is observed,
due to partial sampling of the domain, and failure to detect all animals in the sam-
pled regions. Distance sampling provides a method to account for imperfect de-
tection. In line transect surveys, an observer traces a path through space, searching
a strip centered on the path. The probability of detecting an object typically de-
creases with distance from the observer. From a modelling perspective, this results
in a thinned spatial point process with the intensity function scaled by the detec-
tion probability [Dorazio (2012), Hefley and Hooten (2016), Johnson, Hooten and
Kuhn (2013)].

When deriving the appropriate likelihood model for an observed point pattern,
the problem-specific underlying generative structure influences the potential de-
pendence between point locations both over space and in time. It is therefore im-
portant to note that the thinning in transect surveys is neither a thinning of a fixed
spatial point pattern, nor a thinning of a regular spatio-temporal point process.
Instead, each object is characterised by a temporally evolving curve in space, de-
scribing its movement, and the observations are thinned snapshots of time-slices
of the resulting point process of curves. In addition, the intensity may vary over
time, and we write λ(s; t) for the spatial point intensity for the full time-slice point
pattern at time t , and �(s; t) for the intensity of the observationally thinned ver-
sion. The assumptions about the movements of the observer and the objects affect
what approximations are allowed in practical calculations.

Traditionally, the detection probability for an object located at a given perpen-
dicular distance z from the path of the observer is modelled by a detection function
g(z). Assuming that the observer is moving with constant speed v along a straight
line, standard Poisson process theory yields the probability of detecting an object
located at s0 as a function of the perpendicular distance z(s0),

P(object at s0 detected | s0 ∈ Y ) = 1 − exp
{−h

[
z(s0)

]
/v

} = g
(
z(s0), v

)
,

where h(·) is an aggregated detection hazard along the path, and g(·, ·) is the
aggregated detection function, with explicit dependence on v. The standard ap-
proach is to model either the aggregated detection probability g(z, v), or the ag-
gregated hazard h(z). Under simple assumptions about the observers, Hayes and
Buckland (1983) derived the commonly-used hazard-rate model, given by h(z) =
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−(z/σ )−b, b,σ > 0. The half-normal detection function g(z) = exp[−z2/(2σ 2)],
σ > 0 is another widely-used model. While the hazard-rate model is more flexible
than the half-normal detection model, only the latter results in a log-linear prob-
ability model. For this reason, the hazard-rate model does not fit directly into the
existing INLA estimation software [Rue, Martino and Chopin (2009)], and instead
we use a semiparametric detection model, which we introduce in Section 3.6, to
give us a more flexible model than the half-normal.

3.3. Line transect point process likelihood. For line transects, assuming that
environmental and other observational conditions that might affect detectability
remain constant along suitably short and straight transect segments, we can formu-
late a tractably simple version of the likelihood. The region of space swept by the
transect path is assumed to consist of a sequence of rectangular transect segment
strips {C1, . . . ,CK}, so that Ck(t) is the transect strip at time t . Writing λ(s; t) for the
intensity of potentially observable objects, and introducing transect-dependent de-
tection functions gk(t)(s), the intensity for the thinned observational point process
is �(s; t) = λ(s; t)gk(t)(s). Under some loose assumptions (see Supplement A.1
[Yuan et al. (2017)]), the joint conditional likelihood for the observed point pattern
is the product of the conditional likelihoods for each individual transect segment,

π(Y | �) = exp

(
K∑

k=1

|Ck| −
K∑

k=1

∫
Ck

�(s; tCk
) ds

)
NY∏
i=1

�(si; ti),(3.2)

where NY = ∑K
k=1 NY (Ck) is the total number of observed objects, located at

(si , ti), i = 1, . . . ,NY . We do not specifically address the issue of marks here
(features or quantities associated with detected groups or animals). Marks that
do not affect the detection probability can be modelled alongside the object in-
tensity λ(s; t), including possible common fixed effects and dependent random
effects [Illian, Sørbye and Rue (2012)]. However, marks that do affect the detec-
tion probability, such as the sizes of groups of animals, require a joint likelihood
expression for the extended dimension point process of object locations and their
marks, which is a topic for further development.

3.4. A Bayesian hierarchical spatio-temporal point process model. Following
the classical approach for log-Gaussian Cox processes, we let the logarithm of the
intensity λ(s; t) be a Gaussian process, with linear covariates x(s, t), and a zero
mean additive Gaussian spatial or spatio-temporal random field ξ(s, t) [Møller,
Syversveen and Waagepetersen (1998), Møller and Waagepetersen (2004, 2007)].
For computational efficiency, we use the INLA method for numerical Bayesian
inference with Gaussian Markov random fields [Rue, Martino and Chopin (2009),
Illian, Sørbye and Rue (2012), Simpson, Lindgren and Rue (2012)], but the general
methodology is not tied to a specific inferential framework.
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In the likelihood given by (3.2), the log of the thinned intensity is given by

(3.3)
log

[
�(s; t)] = log

[
λ(s; t)] + log

[
gk(t)(s)

]
= x(s, t)	β + ξ(s, t) + log

[
gk(t)(s)

]
,

where we assume Gaussian priors for β , and a Gaussian random field ξ . If the
logarithm of the detection probability model is linear in its parameters, this results
in a joint linear model with latent Gaussian components.

In general, any link function and spatially coherent linear predictor could be
used for �. The point process likelihood only requires � to be well-defined point-
wise, and integrable. In practice, the numerical integration schemes used for prac-
tical likelihood evaluation (see Section 4) require piecewise continuity and differ-
entiability. Covariates affecting λ(s; t) need to be available throughout the transect
region for parameter inference, and throughout the domain of interest for spatial
prediction. For practical implementation reasons, spatial covariates are projected
onto the same computational function space as the latent field ξ (see Section 4.1).
Covariates affecting gk(s) need to be available for each transect segment. Within-
segment variation in detectability would require a more expensive numerical in-
tegration scheme in Section 4.1, equivalent to splitting segments until they were
sufficiently short for our assumption of constant detectability within each segment
to be fulfilled. As noted at the end of Section 3.3, marks for individuals are cur-
rently only allowed if they do not affect the detection probability.

The full model is given by the following hierarchy:

π(Y , ξ,β,βg, θ) = π(Y | ξ,β,βg, θ)π(ξ | θ)π(β | θ)π(βg | θ)π(θ),

where βg are parameters controlling the detection model, θ are further model pa-
rameters, such as precision parameters for the latent Gaussian variables. Each of
the prior densities π(ξ | θ), π(β | θ), π(βg | θ), and π(θ) are controlled by hyper-
parameters. Note that in some software packages, including INLA, the parameters
θ themselves are referred to as hyperparameters.

For given prior distributions, the goal is to compute the posterior densities for
the latent variables, optionally with θ integrated out:

π(θ | Y ) ∝ π(Y , ξ,β,βg, θ)

π(ξ,β,βg | Y , θ)

∣∣∣∣
(ξ,β,βg)=(ξ∗,β∗,β∗

g)

,

π(ξ,β,βg | Y ) =
∫

π(ξ,β,βg | Y , θ)π(θ | Y )dθ ,

where (ξ∗,β∗,β∗
g) is an arbitrary latent variable state vector. In the INLA method

[Rue, Martino and Chopin (2009)], this is achieved approximately by replacing
π(ξ,β,βg | Y , θ) with various Gaussian or near-Gaussian approximations, and
integrating numerically over θ .
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3.5. Stochastic PDE models. The general model construction requires no par-
ticular assumptions on how the spatial or spatio-temporal random field ξ(s, t) is
modelled or treated computationally. The only requirement is that the model can be
written as a latent Gaussian random field in such a way that the model likelihood
can be evaluated numerically. In the context of INLA, that means that we need to
construct a Gaussian Markov random field representation of the continuous space
process. The traditional approach is to discretize space into a lattice and count
the number of sighted points in each lattice cell, but here we take an alternative
approach that allows us to use the true sighting locations, and to let λ(s; t) vary
continuously through space. The results from Lindgren, Rue and Lindström (2011)
show how to take advantage of the connection between Gaussian Markov random
fields of graphs and stochastic partial differential equations in continuous space.
Some details of such models are given in Supplement A.2 and the computational
implications are discussed in Section 4.1.

3.6. Log-linear detection function models. As noted in Section 3.2, the
hazard-rate model is not a log-linear model, which means that estimating the
parameters does not directly fall under the latent Gaussian model framework of
the INLA estimation software [Rue, Martino and Chopin (2009)]. In contrast,
the half-normal detection model is gk(s) = exp[−zk(s)

2/(2σ 2
g,k)], where zk(s) is

the perpendicular distance from s to the kth transect line segment, and σg,k are
scale parameters. This can be written in log-linear form as log[gk(s)] = βg,kz

∗
k(s),

where z∗
k(s) = −zk(s)

2/2, and βg,k = 1/σ 2
g,k . To allow more flexibility within the

log-linear framework, we introduce a semiparametric piecewise quadratic model
for the logarithm of the detection function, based on a one-dimensional version of
the SPDE in the previous section.

For ease of presentation, first assume that the detection probability is the same
for all transects k, so that we can write G[z(s)] = − log[gk(s)]. The prior distribu-
tion for G(z) is then defined by the spline-like stochastic differential equation

γ
d2G(z)

dz2 = W(t), t ∈ [0, zmax] ⊂ R,(3.4)

G(0) = 0,
dG(z)

dz

∣∣∣∣
z=0

= 0,(3.5)

where zmax is the maximal detection distance, γ > 0 is a smoothness parameter,
and W(t) is a white noise process. The boundary constraints ensure that the detec-
tion probability at distance z = 0 is 1, and that the probability is flat near z = 0.

Let (0, z1, z2, . . . , zp) be breakpoints for piecewise quadratic B-spline basis
functions Bi(z) [Farin (2002)], such that zp = zmax, with the simplest choice of
breakpoints being zi = izmax/p, i = 0,1, . . . , p. The nonparametric model for
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FIG. 2. Illustration of the semiparametric detection function model: (a) B-spline basis func-
tions Bi(z), i = 1, . . . ,5, of order 2 that fulfill the boundary conditions (3.5), (b) the
weighted functions βiBi(z) (dashed), their sum G(z) (solid), and (c) the detection probability
g(z) = exp[−G(z)]. The breakpoints are (0, z1, . . . , z5) = (0,0.5,1,2,3,4) and the weights are
(β1, . . . , β5) = (0.05,0.3,3,5,6). Note that the detection function does not automatically have more
irregular behavior where the breakpoints are close together, and that this is probabilistically regu-
lated by the stochastic differential equation (3.4).

G(z) can then be used to construct a finite dimensional model

G(z) =
p∑

i=1

βiBi(z),(3.6)

where the p basis functions only include Bi(·) that fulfill the boundary condi-
tions (3.5), as shown in Figure 2. The joint multivariate Gaussian prior distribution
for (β1, . . . , βp) ∼ N(0,Q−1

β (γ )) is constructed with the same finite element tech-
nique that will be used for the spatial SPDE in Section 4.1. For uniform breakpoint
spacing, increasing p will make this discrete model converge to the continuous
domain model, but for finite p the model is effectively a piecewise quadratic semi-
parametric model.

Imposing a monotonicity constraint on g(z) is possible by replacing the basis
functions for G(z) with increasing basis functions, and mandating positivity of
the βi coefficients [Ramsay (1988)]. However, because the latter is currently only
implemented in INLA for independent βi , this is restricted to small p, such as 2 or
3, since an independence prior would result in a nonsmooth function for larger p.
An alternative that is feasible when sampling from the posterior distribution is to
simply reject all nonincreasing samples of G(z). If the data are informative, the
smoothing from the prior can in practice be enough to yield monotonic estimates
without including an explicit constraint.

Relaxing the assumption that the detection function is the same for all transects
is most easily done by adding further linear terms to loggk(s) based on observed
or constructed covariates that depend on k.

4. Computational methods. There are several practical considerations for
evaluating the likelihoods and representing the random fields in such a way that
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large dense matrices can be avoided. In Section 4.1, we give a brief overview of
the essentials for translating stochastic PDEs into manageable Gaussian Markov
random fields (GMRF), and Section 4.2 presents a numerical integration scheme
for the point process likelihood.

4.1. The stochastic partial differential equation approach. The SPDE/GMRF
approach works by replacing the continuous domain stochastic PDE model with
a finite dimensional Gaussian Markov random field for basis function weights de-
fined on a triangulation of the domain of interest, such that the sparse precision
matrix leads to a good approximation of the continuous space SPDE solutions.
Given a triangulation mesh (see the right panel of Figure 1 for the triangulation
used for the ETP survey area), Lindgren, Rue and Lindström (2011) define a finite
element representation [Brenner and Scott (2008)] of ξ from (A.1),

ξ(s) =
m∑

j=1

wjφj (s),(4.1)

where w1, . . . ,wm are stochastic weights, and φj , j = 1, . . . ,m, are determin-
istic piecewise linear basis functions defined for each node on the mesh: φj

equals 1 at mesh node j and 0 in all the other mesh nodes. The weight vector
w ≡ (w1, . . . ,wm)	 is a GMRF with its Markovian properties defined by the mesh
structure. It follows that w determines the stochastic properties of (4.1) and w is
chosen in a way that the distribution of (4.1) approximates the distribution of the
solution to the SPDE (A.1). As shown by Lindgren, Rue and Lindström (2011),
for the SPDE in (A.1), the resulting weight distribution is w ∼ N(0,Q(τ, κ)−1),
where the sparse precision matrix Q(τ, κ) is a polynomial in the parameters τ and
κ , and is obtained through finite element calculations.

The practical implication of this construction is that instead of directly using
the covariances from (A.2) in Supplement A, which results in dense covariance
matrices and high computational cost, O(m3), the SPDE/GMRF approach links
the continuous and discrete domains in such a way that the computational cost
is reduced to O(m1.5). The computational advantages of GMRFs [Rue and Held
(2005)] is strengthened by using INLA for Bayesian inference [Rue, Martino and
Chopin (2009)]. For the case of fully observed log-Gaussian Cox point processes,
the in-depth analysis by Simpson et al. (2016) of the combined approximation er-
rors induced by the basis function expansion in combination with the likelihood
approximation error shows that the resulting approximate posterior distribution is
close to the true posterior distribution. Since the integration scheme in the fol-
lowing section is constructed in the same way, we do not include a detailed ap-
proximation error analysis here, but note that the SPDE/GMRF approximation is
likely to be the largest source of approximation error. Point patterns are relatively
uninformative about the latent intensity, which has the practical effect that the re-
alizations of the fields in the posterior distribution are typically smoother than in
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directly observed process problems. Hence, the approximation error is very small
as long as the triangle mesh edges are short compared with the spatial scales of the
covariates and of the point pattern intensity variability.

4.2. Numerical point process likelihood evaluation. Combining the general
distance sampling point pattern likelihood (3.2) with the log-linear model structure
for �(s; t) from (3.3) results in a log-likelihood for the observed point pattern,

(4.2)

logπ(Y | λ,g)

=
NY∑
i=1

{
x(si , ti)

	β + ξ(si , ti) − log
[
gk(ti )(si )

]}

−
K∑

k=1

∫
Ck

exp
{
x(u, tk)

	β + ξ(u, tk) − log
[
gk(u)

]}
du +

K∑
k=1

|Ck|,

where the first term evaluates the log-intensity at the observed locations, and the
second term integrates the intensity over the sampled transect segments. The log-
likelihood (4.2) is in general analytically intractable as it requires integrals of the
exponential of a random field. Therefore, we use numerical integration to eval-
uate (4.2), and the remainder of this section describes an integration scheme to
approximate the integrals efficiently. As noted in Section 3.4, we assume that the
covariates x(s, t) are expressed using the same piecewise linear basis functions
as ξ . For cases where a covariate has a much finer resolution than the one needed
for ξ , the efficient integration scheme developed here is not appropriate, and fur-
ther research is needed to develop an integration method that can deal with that
without incurring a high computational cost.

For distance sampling surveys, transect areas describe subsets of the earth’s sur-
face. The most natural representation of transect areas would therefore be subsets
Ck ⊆ S

2 of the sphere, leading to surface integration in the Poisson process like-
lihood. However, the small scale at which earthbound observers are capable of
probing their environment lends itself to easily justifiable simplifications of the
numerical integration. Apart from environmental conditions such as the weather,
the curvature of the earth puts an upper bound on the distance at which an observer
with a given elevation can actually detect an animal. We therefore approximate the
surface integrals over Ck ⊂ S

2 by integrals over C̃k ⊂R
2,

ICk
=

∫
Ck

λ(u; tk)gk(u)dCk(u)

=
∫
C̃k

λ
(
uk(l, z); tk)gk

(
uk(l, z)

)∥∥∥∥∂uk

∂l
× ∂uk

∂z

∥∥∥∥ dl dz

≈
∫
C̃k

λ
(
uk(l, z); tk)gk

(
uk(l, z)

)
dl dz,
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FIG. 3. Integration scheme for transect lines. Panel (a) shows three triangles of a mesh, and three
transects. When the width of the transects is small compared to the size of the triangles, and thus
the slope of the intensity has small variability perpendicular to each segment, the areal integration
can be reduced to an integration along the observer’s trajectory weighted by the width of the tran-
sect. Trajectories that reside in multiple triangles can be split at the triangle edges such that their
midpoints serve as integration points, assuming linear intensity within the triangles (b). Under the
same assumption, integration points from each triangle are accumulated into re-weighted points at
the mesh vertices (c). The areas of the filled circles are proportional to the integration weights.

where we use a transect-specific parameterization uk at coordinate l along and
distance z to the transect line, respectively. If R is the radius of the earth, then
the Jacobian is cos(z/R), which gives an approximation error of a factor less than
5 · 10−6 even in the extreme and unrealistic case of an observer at 31 metres above
a calm sea looking at the horizon 20 kilometres away.

Another fact that we can utilize is that the detection function g does not de-
pend on the position of the observer along the line but only on the distance of
an observation from the line. Similarly, if the transect line is narrow compared to
the spatial rate of change in the intensity function, we can substitute the evalua-
tion of λ by an evaluation at the center of the transect line, ẑ = 0 (see Figure 3).
That is,

ICk
≈

∫
C̃k

λ
(
uk(l, ẑ); tk)gk

(
uk(̂l, z)

)
dl dz,

together with an arbitrary coordinate l̂ along the transect line.

REMARK. In a stand-alone implementation, the integral could be written as
a product of two one-dimensional integrals, and even evaluated exactly due to
the log-linearity of the model. Unfortunately, the resulting structure cannot be ex-
pressed using only evaluations of products of λ and g, which is a requirement
imposed by the internal structure of the INLA implementation, so we do not use
that approach here.

We can also make use of the fact that λ lives on a mesh. If the mesh triangles
are small enough, the log-linear function λ(·) is approximately linear within each
triangle. By splitting a transect line Ck into segments Ck,j , j ∈ 1, . . . , J , each of
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which resides in a single triangle (see Figure 3), we obtain a Gaussian quadrature
method of order one,

ICk
≈

J∑
j=1

∫
C̃k,j

λ
(
ukj (l, ẑ); tk)gk

(
ukj (̂l, z)

)
dl dz

≈
J∑

j=1

wk,j

∫
z
λ
(
ukj (lk,j , ẑ); tk)gk

(
ukj (̂l, z)

)
dz.

Here, lk,j is half of segment j ’s length wk,j . The integration over the distance pa-
rameter can now be approximated by a quadrature rule with an equidistant scheme,
so that

ICk
≈

J∑
j=1

R∑
r=1

w̃k,jλ
(
ukj (lk,j , ẑ); tk)gk

(
ukj (̂l, zr)

)
,

where w̃k,j = 2zmax
R

wk,j with maximal detection distance zmax, and we substitute
l̂ = lk,j . We can then write

ICk
≈

J∑
j=1

R∑
r=1

w̃k,jλ(ũk,j,r; tk)gk(uk,j,r ),

where uk,j,r are points on the perpendicular line through the midpoint of transect
k’s segment j , and ũk,j,r is the midpoint of each subsegment line.

As a last step, we can again make use of the assumption that the function
we are integrating over is approximately linear within a given triangle. It is
straightforward to show (see Supplement A.3) that this means that each inte-
gration point can be expressed by an evaluation of the function at the triangle
vertices weighted by the within-triangle Barycentric coordinates of the original
point [Farin (2002)]. We can therefore summarize integration points that reside in
the same triangle and share a common time coordinate tk to such evaluations at
the mesh vertices, illustrated in Figure 3. This can, depending on the problem
structure, lead to a significant reduction in the respective computational work-
load.

The approximation error from treating the log-linear function within each tri-
angle as linear can be reduced by subdividing each triangle into four. However,
evaluating the function at the mid-points of the original triangle edges as well as
the original vertices leads to an increase in the computational cost of at least a fac-
tor of four, since the number of edges is approximately three times the number of
vertices in the mesh.
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5. Estimating blue whale density from the Eastern Tropical Pacific surveys.

5.1. The ETP surveys. We use the above methods to predict the blue whale
group density over the ETP survey area for the each of the survey years, and to
study the effect of sea surface temperature (SST) on the blue whale group density.
The function of interest for density estimation is the intensity of the point process
before thinning, denoted λ(s, t) in (3.3), which we refer to as the group density.

These data have been analyzed before: Forney et al. (2012) used GAMs to
estimate encounter rate, with a two-stage estimation approach and gridded data
(counts of detections within small segments of transects). Pardo et al. (2015) also
used gridded data, modelling log density in each grid cell as a polynomial function
of the absolute dynamic topography, a spatially referenced variable that indicates
vertical transport of nutrients, and thus productivity. While they included a random
component in their density model, it had no spatial structure, assuming indepen-
dent residuals among grid cells. They estimated all model parameters simultane-
ously in a hierarchical Bayesian framework. Two key differences between their and
our model structures are that we use the ungridded data (i.e., the point locations
of each detection rather than counts in user-defined grid cells) in our analysis, and
we use a spatially structured Gaussian random field to capture spatial variation in
density that is not explained by the observed explanatory variable.

Because the blue whale group size is small (mean of 1.8 and standard deviation
2.1) and the size is easily established, it is realistic to treat the group size of blue
whales as known without error [Gerrodette, Perryman and Barlow (2002)]. We
assume that the group size does not affect the detection probability. The detection
of cetaceans on ship surveys also depends on wind conditions, but this is less
important for blue whales because of their large body size and conspicuous blows.
Therefore, we assume the detection probability depends only on the perpendicular
distance for the blue whales in the ETP survey. In our analysis, we truncate the data
at perpendicular distance w = 6 km. We also assume that distances were observed
without error for each detected animal group and we fit a semiparametric model
given by (3.6) to estimate the detection function.

To build a spatio-temporal model using the SPDE approach described in Sec-
tion 4.1, we start by constructing a mesh for the ETP survey as shown in Figure 1.
The ETP survey is bounded partially by the coastline and partially by the red line
of Figure 1. We use a simplified representation of the actual coastline as the mesh
boundary to incorporate the boundary effect because a physical boundary such as
the coastline has a strong effect—in this case, there will be no blue whales on land.
We use a simplified representation of the coastline, because the actual coastline is
too ‘angular’, and hence problematic for the SPDE approach [Lindgren and Rue
(2015)]. Meanwhile, we extend the boundary further in the northwest and south
directions in the Eastern Tropical Pacific, to exclude the boundary effect for the
part of the survey area that is bounded by the red line in Figure 1. Given the low
sighting rate of the blue whales, there is little information contained in the data
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to fit a complicated spatio-temporal stochastic process for the random field, such
as the AR(1) temporal process used by Cameletti et al. (2013); even the simpler
version of the spatio-temporal process with replicated spatial field over time is not
feasible.

We consider three models, all with Gaussian random fields in space alone.
Model 0 has latitude and longitude fixed effects but ignores SST. Model 1 has
a temporal SST fixed effect together with spatial residual SST fixed effects for
each year. Model 2 has a temporal SST fixed effect and a spatial SST fixed effect
together with spatio-temporal residual SST fixed effects.

5.2. Incorporating a spatio-temporal environmental covariate: Sea surface
temperature (SST). Based on the Simple Ocean Data Assimilation (SODA)
model (http://apdrc.soest.hawaii.edu/datadoc/soda_2.2.4.php), the SST data are
available on a fine grid over the ETP survey area on a monthly scale between
1986 and 2007. First, within each year, SST is averaged over the months July to
December, during which the survey was conducted. Second, these temporally av-
eraged SST values are spatially smooth, and can be projected onto the mesh of the
survey area with only minor loss of fine-scale information. Piecewise linear inter-
polation is used to calculate the SST for any given location and year, denoted by
sst(s, t).

Figure 4 shows the centered SST averaged over time and the centered SST aver-
aged over space. There is both spatial and inter-year variation in SST, and we use
hierarchical centering to separate the annual and spatial effects of SST.

Hierarchical centering is a commonly used technique in multilevel modelling
[Kreft, de Leeuw and Aiken (1995)], and we consider two different centering
schemes for SST here. Model 0 does not incorporate SST, Model 1 incorporates

FIG. 4. Sea surface temperature. The centered time-average temperature sstc(s) is shown in the
left panel, while the centered space-averaged temperature sstc(t) is shown in the right panel. Solid
circles represent survey years and the empty circles represent nonsurvey years. The SST in 1997 is
extreme relative to all survey years.

http://apdrc.soest.hawaii.edu/datadoc/soda_2.2.4.php
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SST using within-year centering, and Model 2 uses space–time centering. They all
have the same SPDE specification of the latent spatial Gaussian random field:

1. Model 1: within-year centering. This model has two SST components, the
spatially averaged SST for each year, and the spatial SST patterns centered within
each year. Let � denote the bounded ETP survey area in Figure 1. We use sstc(t)
to denote the SST averaged over the ETP survey area for year t after centering,

sstc(t) = 1

|�|
∫
�

sst(s, t)ds − sst,(5.1)

where sst denotes the overall average of SST, sst = ∫
�×T

sst(s, t)ds dt/(|�|×|T|),
with T denoting the set of survey years. Then the SST centered within year t for
location s, sstcwy(s, t), is defined as

sstcwy(s, t) = sst(s, t) − sstc(t) − sst.(5.2)

2. Model 2: space–time centering. This model separates the spatial and tem-
poral patters from a spatio-temporal interaction and has three SST components.
These are the sstc(t) given by (5.1), the SST averaged over years for each location,
sstc(s) given by (5.3), and the SST residuals, sstres(s, t) given by (5.4),

sstc(s) = 1

|T|
∫
T

sst(s, t)dt − sst,(5.3)

sstres(s, t) = sst(s, t) − sstc(t) − sstc(s) − sst.(5.4)

sstc(t) indicates whether a year is relatively warm or cold after averaging over the
survey area, and similarly, sstc(s) indicates whether a location is relatively warm or
cold after averaging over the survey years. The SST residual, sstres(s, t), contains
information about the interaction between temporal pattern and the spatial average
of SST.

Plots of raw and centered SST used in the analysis are given in Supplement B.1.
La Niña conditions are characterized by a band of cooler waters in 1988, 1999,

and 2007, and El Niño conditions by a much wider band of warm ocean water in
1997 [1987 is a moderately strong El Niño year according to the scale by Wolter
and Timlin (2011)]. Centering SST strongly captures the El Niño/La Niña oscilla-
tions that occur at irregular intervals in the ETP survey area (see Supplement B.1
for more detail). The temporal effect of SST after centering using (5.1) (see Fig-
ure 4) correctly reflects the La Niña conditions in 1988 and 2007, and strongly
highlights the El Niño year 1997 as an outlier. Unfortunately, no survey was con-
ducted in 1997. Given the time series of sstc(t) for the survey years and nonsurvey
years in the right panel of Figure 4, it is obviously problematic to predict for 1997
using a model fitted on the data from the survey years, which are represented by
the filled circles in Figure 4. Therefore, we make predictions for all years except
1997.
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TABLE 1
The posterior estimates for the fixed-effects coefficients for each model

Quantile

Model Parameter Mean Std.dev. 2.5% 50% 97.5%

Model 0 β0 −12.29 2.29 −18.04 −11.99 −8.56
βlon 0.10 0.07 −0.05 0.10 0.26
βlat 0.01 0.09 −0.22 0.02 0.16

Model 1 β0 −4.58 3.04 −11.00 −4.44 1.06
βsstc(t) 0.79 0.21 0.38 0.78 1.20
βsstcwy −0.28 0.10 −0.48 −0.28 −0.07

Model 2 β0 −11.85 2.24 −17.34 −11.60 −7.85
βsstc(t) 0.73 0.21 0.32 0.73 1.16
βsstc(s) −0.60 0.14 −0.88 −0.60 −0.34
βsstres 0.22 0.17 −0.10 0.22 0.55

5.3. Results. Table 1 summarizes the posterior density of the regression coef-
ficients for each model.

5.3.1. The effects of longitude and latitude. Model 0 contains only longitude
and latitude as covariates. The 95% posterior credible intervals for the regression
coefficients from this model both include zero with medians very close to zero.
This suggests that there is no large-scale log-linear spatial effect that can be ex-
plained by longitude and latitude. This interpretation is supported by the results
from models that include SST. Specifically, when we add longitude and latitude
to Models 1 and 2, the 95% posterior credible intervals of the longitude and lati-
tude regression parameters still include zero. We therefore exclude longitude and
latitude, and henceforth consider only Models 1 and 2.

5.3.2. The effects of SST. From (5.2), (5.3), and (5.4), we have sstcwy(s, t) =
sstc(s) + sstres(s, t), so that βsstcwy in Model 1 amounts to combining βsstc(s) and
βsstres in a single parameter. The negative posterior median and 95% credible in-
terval (2.5% to 97.5% quantiles) of βsstc(s) and of βsstcwy indicate that locations
that are colder on average over the years are expected to have more blue whale
groups than locations that are warmer on average, while the opposite sign of the
spatio-temporal interaction βsstres indicates that this effect is weaker at locations
with higher temperature in a given year than the across-year average temperature
at the location.

The posterior median estimates of βsstc(t) are similar for Models 1 and 2, indi-
cating that the effect of warmer average temperature in a year, conditional on the
spatial effect and random field, is to increase density. The ETP survey design is
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FIG. 5. The predicted number of blue whale groups per unit area (D̂) from Model 2, together with
95% credible intervals against centered mean annual temperature sstc(t). Numbers indicate the year
in question.

not balanced in that it does not have survey effort in every year along each transect
that was surveyed in any year and as a result we need to be a bit cautious about
interpreting parameters. To investigate the effect of annual mean temperature, we
therefore also considered the posterior distribution of the predicted number of blue
whale groups per unit area. This is shown in Figure 5. While this plot is consistent
with the estimates of βsstc(t) from Models 1 and 2, it is also consistent with an hy-
pothesis of no change in average density across the years, as a horizontal line falls
well within the 95% credible intervals of all estimates. The other notable feature
of the plot is the unusually high estimated density for the second- warmest year,
2006. The reasons for this are unclear.

5.3.3. Posterior median density and its relative uncertainty. The posterior me-
dian of blue whale density, λ(s; t), for year 1986 is shown in the top panel of Fig-
ure 6 for Models 0, 1, and 2, respectively. The top three plots of Figure 6 are very
similar, with areas of higher blue whale group density in the north off the coast of
Baja California, in the area of the Costa Rica Dome off the coast of Central Amer-
ica, and in the south-east in the vicinity of the Galapagos Islands. This pattern of
the blue whale group density is consistent across all the models implemented, and
reflects what we observe in the sightings data in the right panel of Figure 1. This
observed spatial pattern is also in general agreement with previous analysis of blue
whale sighting data in the ETP [Forney et al. (2012), Pardo et al. (2015)]. Similar
plots for 1986–2007 (omitting the very strong El Niño year 1997), are given in
Supplement B.2.

We use the relative width of the 95% posterior credible interval (RWPCI) as a
measure of the relative uncertainty for the predicted λ(s; t) of the ETP survey area.
We define the RWPCI as the inter-quartile range divided by the median,

RWPCI = (Q3 − Q1)/Q2.(5.5)

When the posterior distribution is approximately Gaussian, the RWPCI is about
1.35 times the ratio of the posterior standard deviation to the posterior median. The
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FIG. 6. The posterior median (top) and RWPCI from (5.5) (bottom) of the ETP blue whale groups
density in 1986 using Models 0, 1, and 2 in Table 1. The RWPCI colour palette is cut off at 100 to
exclude the extreme values at the western corner of the ETP survey area.

bottom panel of Figure 6 shows the spatial structure of the RWPCI in 1986 for each
of the three models, and this pattern persists across years (see Supplement B.2).
The far west of the survey region has very high relative uncertainty because it is
close to the edge of the mesh boundary shown in Figure 1 and there are no sightings
in that area. The spatial random field has high uncertainty in this area: regions of
low λ(s; t) tend to have higher uncertainty associated with the latent field. The
slowly varying standard deviation of the latent field in Figure 7 is likely due to a

FIG. 7. The posterior median and standard deviation of the latent field (4.1) for Models 0, 1 and 2.
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FIG. 8. The posterior densities of the SPDE parameters using Models 0, 1, and 2. The left panel
is for the range parameter ρ (see Section 3.5 for its definition), and the right panel for the marginal
standard deviation σξ in (A.1).

combination of large spatial range (see Figure B.8 of Supplement B) and the fact
that the observed point pattern is not very informative about the latent field.

5.3.4. SPDE parameters and detection function. Prior sensitivity tests of the
SPDE parameters showed the posterior median of λ(s; t) to be less sensitive to
prior specification than is its variance. Details of the SPDE prior specification are
given in Supplement B.3. Figure 8 displays the posterior densities of the SPDE
parameters for Models 0, 1, and 2 using the same prior.

The large range of the Matérn covariance function is consistent with the latent
Gaussian random field [ξ of (3.3)] shown in Figure 7. There is little difference
among the models for either the posterior detection function or the 95% credible
band (see Figure B.9 of Supplement B).

5.4. Exploratory model checking. Let η(s, t) denote the log-intensity defined
by the fixed effects and random field components of (3.3),

η(s, t) = log
[
λ(s; t)] = x(s, t)	β + ξ(s, t).

To investigate the role of the components and the possibility of confounding, we
consider the variability around the posterior mean of the overall averages of η(s, t);

Mη = 1

|�| × |T|
∫
s∈�

∫
t∈T

E
[
η(s, t) | Y ]

dt ds,

and similarly for the components, so that Mη = Mβ + Mξ . The posterior expected
squared deviation of η(s, t) from Mη can be split into contributions from the fixed
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TABLE 2
The posterior space–time averages Vη(�,T), Vβ(�,T), Vξ (�,T), covariance Cβ,ξ (�,T) and

correlation ρβ,ξ (�,T) for Models 0, 1, and 2

Vη(�,T) Vβ(�,T) Vξ (�,T) Cβ,ξ (�,T) ρβ,ξ (�,T)

Model 0 7.32 10.05 9.86 −6.29 −0.63
Model 1 5.04 3.19 5.97 −2.06 −0.47
Model 2 6.82 7.51 9.40 −5.05 −0.60

effects x(s, t)	β and the random field ξ(s, t);

Vη(s, t) = E
{[

η(s, t) − Mη

]2 | Y }
= E

{[
x(s, t)	β − Mβ

]2 | Y } + E
{[

ξ(s, t) − Mξ

]2 | Y }
+ 2E

{[
x(s, t)	β − Mβ

][
ξ(s, t) − Mξ

] | Y }
= Vβ(s, t) + Vξ (s, t) + 2Cβ,ξ (s, t).

For all models, ξ(s, t) is constant over time, and we define the averages across
time, Vη(s,T), Vβ(s,T), and Vξ (s,T), shown in Figure 9 for Model 1 and in
Supplement B.5 for all models. It is clear that the random field component ξ(s)
captures information not available in the SST components.

The full space–time averages Vη(�,T), Vβ(�,T), and Vξ (�,T) are the vari-
ances when probing the posterior distributions at a uniformly chosen random lo-
cations on � × T. The remainder term Cβ,ξ (�,T) is the posterior covariance be-
tween the fixed effect and random field contributions to the variability. We also de-
fine the correlation ρβ,ξ (�,T) = Cβ,ξ (�,T)/

√
Vβ(�,T)Vξ (�,T). A large nega-

tive value for the covariance or correlation indicates confounding. Table 2 shows
the space–time averages, covariance, and correlation for the three models. The cor-
relations are not very small, suggesting that there is some confounding, although it
is not severe. While these diagnostics do not give direct guidance for model selec-
tion, they highlight the clear contribution of the random field component of each
model.

6. Discussion. Unlike previous methods used to analyse these and similar sur-
vey data, our spatio-temporal point process model preserves the sighting locations,
models the effect of explanatory variables continuously in space, and models spa-
tial correlation that cannot be explained by such variables. It generalizes the ap-
proach of Johnson, Laake and Ver Hoef (2010), which models density as a nonho-
mogeneous Poisson process, using actual sighting locations, but neglecting resid-
ual spatial correlation. Unlike Johnson, Laake and Ver Hoef (2010), we model
residual spatial intensity. It also generalises the approach of Pardo et al. (2015),
who included a model for residual spatial intensity in their analysis of ETP blue



2292 Y. YUAN ET AL.

FIG. 9. Variability measures Vη , Vβ , and Vξ for Model 1.

whale data, but with no spatial structure on their residual model. We found sub-
stantial evidence for residual spatial structure in our analysis

It is rarely the case that spatial data are independent, and assuming indepen-
dence when data are dependent can lead to biased variance estimation, spurious
significance of covariates, and overfitting [Cressie (1993), Hanks et al. (2015)].
Use of a GMRF allows us to model spatially autocorrelated random effects, and
model patterns in residuals that cannot be explained by available covariates. As
shown in Section 5.3, the spatial pattern captured by the GMRF in Figure 7 plays
an important role in estimating the spatial distribution of ETP blue whale groups,
shown in Figure 6. Because the underlying mechanisms that dictate the distribution
of blue whales in space and time are probably quite complex, it is unlikely that SST
alone could adequately explain the distribution, so that drawing inferences about
the effect of SST based on a model without modelling spatial correlation may re-
sult in misleading biological interpretations.

The analysis of Pardo et al. (2015) modelled blue whale density spatially as a
function of absolute dynamic topography (ADT), which, like SST, predicted fewer
blue whales in warmer regions. Because the model did not separate the tempo-
ral and spatial effects of ADT, large changes in ETP blue whale abundance were
predicted from year to year, with few whales in warm (El Niño) years and many
whales in cool (La Niña) years. Because blue whales have long life spans and
reproduce slowly, and because tagging has shown that blue whales migrate to
tropical waters every year, regardless of El Niño variations [see tracks in Bailey
et al. (2009), for example], high interannual variation in true abundance seems
unlikely. The hierarchical centering scheme in Section 5.2 separates the temporal
and spatial effects of SST and accommodates situations in which whales make
choices about habitat use relative to the other choices available to them, and this
leads to what is arguably a more biologically plausible model with less interan-
nual variation. While our estimates are consistent with true blue whale group den-
sity being unchanged over the surveys, point estimates of this density do tend to
be higher in warmer years. This is unexpected and warrants further investigation.
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Pardo et al. (2015) argue that ADT is a better predictor of blue whale density than
SST because ADT contains information about subsurface as well as surface con-
ditions. Notwithstanding this, our model is able to pick up structure in the data
beyond that which can be attributed to SST. For example, Pardo et al. (2015) pre-
dict high densities on the Costa Rica Dome (approximately 10◦N, 90◦E) on the
basis of ADT; we do the same by means of the GMRF (see Figure 7) even though
SST does not suggest high densities here. By also modelling spatial autocorrela-
tion, our model does not run the risk of drawing biased inference about the effects
of explanatory variables (SST here) due to unmodelled correlation. We found that
the estimated Gaussian random field is somewhat correlated with the fixed effects
associated with SST. As a result, the interpretation of the fixed effects is not as clear
cut as it would be were the Gaussian random field and fixed effects independent.

Considering our models in the more general context of point process modelling,
the data structure we consider here differs from the point patterns typically ana-
lyzed in the point process literature [but see Waagepetersen and Schweder (2006)].
These usually comprise a point pattern that has been observed completely in a fi-
nite observation window that is a subset of R2, say. Unless finite point processes
are explicitly considered, the standard assumption is that the point process con-
tinues in the same way outside the observation window. For interpretation, this
implies that the analysis is only informative if the processes of interest are operat-
ing at a spatial scale that is captured within the (frequently single) subsample that
is available. Further, there is an additional assumption that every point in the obser-
vation window has been observed, so that the detection probability is one within
the observation window and zero elsewhere.

Our method extends such methods to deal with situations in which the processes
of interest reflected in a spatial pattern, such as habitat preference, operates at a
larger spatial scale than the sampled regions, when it may be impossible to fully
sample an area that captures that scale. It also accommodates situations in which
detection probability is unknown and not one, even within the sampled region. In
wildlife sampling literature, this has often been dealt with in two stages, first es-
timating detection probability and then estimating spatial distribution conditional
on the estimated detection probability. Our approach integrates the two, estimating
detection probability simultaneously with the point process parameters.

We expect to see advances in spatio-temporal inference when there are covari-
ates that affect both the thinning process and the density surface [Dorazio (2012)].
We also expect further development of methods to assess goodness of fit, as such
methods are somewhat lacking for spatial and spatio-temporal inference.

The point process model in Section 3 can also be extended to a marked point
process model to incorporate group size in the model and allow detection probabil-
ity to depend on group size. We also anticipate that our approach will be extended
to deal with more complex observation processes and for other survey types—for
spatial capture-recapture sampling [Borchers and Efford (2008), Royle and Young
(2008)], for example, for situations in which detection probabilities change over
time, or when there is unknown spatially varying sampling effort.
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SUPPLEMENTARY MATERIAL
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plement A gives theory for Sections 3.3 and 4.2. Supplement B gives details for
the analysis in Section 5.
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