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The formation, evolution and co-existence of jets and vortices in turbulent planetary
atmospheres is examined using a two-layer quasi-geostrophic β-channel shallow water
model. The study in particular focuses on the vertical structure of jets. Following Panetta
& Held (1988), a vertical shear arising from latitudinal heating variations is imposed on
the flow and maintained by thermal damping. Idealised convection between the upper
and lower layers is implemented by adding cyclonic/anti-cyclonic pairs, called hetons, to
the flow, though the qualitative flow evolution is evidently not sensitive to this or other
small-scale stochastic forcing. A very wide range of simulations have been conducted.
A characteristic simulation which exhibits alternation between two different phases,
quiescent and turbulent, is examined in detail. We study the energy transfers between
different components and modes, and find the classical picture of barotropic/baroclinic
energy transfers to be too simplistic. We also discuss the dependence on thermal damping
and on the imposed vertical shear. Both have a strong influence on the flow evolution.
Thermal damping is a major factor affecting the stability of the flow while vertical
shear controls the number of jets in the domain, qualitatively through the Rhines scale
LRh =

√
U/β.
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1. Introduction
General features of planetary atmospheres such as alternating bands and currents,

exemplified by the jet streams on Earth and more prominently on Jupiter and the giant
gas planets, are known to be strongly affected by planetary rotation, specifically the
latitudinal variation in planetary potential vorticity (PV). Nowhere else is this better
seen than on Jupiter, a rapidly rotating planet with a particularly active atmosphere
(Rogers 1995). Observations of Jupiter in fact go back to ancient times. Babylonian
astronomers first recorded the appearance of the planet (Sachs 1974), and for them it
was a bright star in the celestial sky. In 1630 with the improvement of optics, Jupiter’s
bands were first captured by Niccolo Zucchi. Then, Hooke and Cassini in 1664 and 1665
detected spots, now known as vortices (Rogers 1995). Hence, the presence of bands and
vortices was already known at this time. Much more recently, spacecraft observations
have revealed complex turbulent dynamics occurring in Jupiter’s atmosphere, composed
of quasi-zonal jets and myriads of vortices like the Great Red Spot (see Dowling &
Ingersoll (1988) and Marcus (1993)).

The outer Jovian atmosphere is structured in zonal bands, called belts and zones.
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They are separated by jets which are strong currents flowing eastwards around the
planet. Contrary to Earth’s jets, Jovian jets are remarkably straight, with few large
scale meanders. Hubble offers us a visualisation of the Jovian atmosphere’s external layer
where jets and vortices are clearly present (see Simon et al. (2015) † and for previous
observations see Limaye (1986) and Porco et al. (2003)). Observations of Jupiter have in
turn inspired researchers to develop idealised models of the Jovian atmosphere (see e.g.
Dowling (1995) and Ingersoll et al. (2004)).

Such models generally differ as regards the vertical structure of the Jovian atmosphere.
Actual data are sparse: we have only a single vertical profile collected by the Galileo probe
(see Atkinson et al. (1998)), which cannot be argued to be representative. To gain at least
a qualitative understanding of the dynamics of Jupiter and of the gas giants generally,
two main modelling approaches have been taken: a shallow model and a deep model.
The shallow model (typically employing the rotating shallow water equations in a single
layer) suggests that jets emerge essentially through an upscale cascade of geostrophic
turbulence (Williams (1978), Cho & Polvani (1996), Kaspi & Flierl (2007), Showman
(2007),Scott (2007)). By contrast, the deep model suggests that the flow is organised
in deep concentric rotating cylinders, with jets their external representation, (see Busse
(1970), Busse (1976)). (Kaspi et al. 2009) studied a 3D non-hydrostatic general circulation
model, with a large density variation under the anelastic approximation. Unlike in models
employing the Boussinesq approximation valid for weak density variations, they observe
the development of baroclinic shear (a strong increase of horizontal wind speed with
height). Likewise, (Liu & Schneider 2009) and (Spiga et al. 2015) used general circulation
models to study the atmospheres of the gas giants. (Liu & Schneider 2009) were able
to reproduce main features of the large-scale circulation on both Jupiter and Saturn,
and found that zonal jets extend down to a depth where drag is assumed to become
important. (Spiga et al. 2015) focused on Saturn and included specifically the roles of
aerosol layers, ring shadowing and internal heat fluxes. They found that zonal jets develop
in the troposphere and equatorial oscillations occur in the stratosphere. In summary,
it has been argued that many models, having widely different formulations, capture
qualitative features of planetary circulations on the gas giants.

On Earth, both the atmosphere and the oceans exhibit similar dynamical structures.
The jets occurring in the oceans, however, are typically strongly meandering and unsteady
(see Maximenko et al. (2005), Kamenkovich et al. (2009) and Berloff et al. (2011)). The
most well-known oceanic jets are the strong oceanic currents like the Gulf Stream and
the Kuroshio. The jets occurring in the atmosphere also exhibit large-scale meanders but
are generally much more well-defined than their oceanic counterparts.

(Arbic & Flierl 2004) and (Thompson & Young 2007) studied the impact of bottom
friction on oceanic simulations. Arbic & Flierl (2004) examined the energetics behind
the formation of mid-ocean eddies, while Thompson & Young (2007) focused on the
role of the baroclinic (vertically varying) mode on the eddy heat flux. (Venaille et al.
2014), using a two-layer quasi-geostrophic model on the f -plane, found that for a small
bottom friction the flow forms approximately barotropic (height independent) large-scale
structures, which persist over a time-scale inversely proportional to the bottom friction
damping rate. However, for high bottom friction, the upper layer flow dominates at
leading order in the inverse damping rate. In this case, the upper flow behaves like a
single-layer shallow-water flow (a 1 1

2 -layer model) and exhibits coherent jets separating
regions of nearly homogeneous PV.

To develop a conceptual understanding of Jovian jets and vortices, Thomson & McIn-

† Movie available at http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=12021
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tyre (2015) recently proposed a 1 1
2 -layer quasi-geostrophic model based on the Dowling

and Ingersoll model (see Dowling & Ingersoll (1989)), with pre-defined jets (created by
an imposed lower boundary shape interface) and forced by the injection of cyclone/anti-
cyclone pairs. With this idealised Jovian weather-like model, they managed to reproduce
observed features such as nearly steady and straight (zonal) jets together with long-lived
vortices.

The goal of the present study is to better understand the vertical structure of jets and
vortices in a turbulent planetary atmosphere. A two-layer quasi-geostrophic shallow-water
β-channel model is used to examine the formation and evolution of jets and vortices, and
in particular their sensitivity to vertical shear, forcing and damping. Following Panetta &
Held (1988), a vertical shear is imposed by relaxing to a thermal equilibrium temperature
gradient — however we do not include Ekman damping or any bottom friction (see
(Venaille et al. 2014) for the impact of bottom friction on a two-layer quasi-geostrophic
model). Bottom friction is not relevant in shallow models of the gas giants (Thomson
& McIntyre 2015). The vertical shear induces baroclinic instability, whose nonlinear
equilibration attempts to reduce the shear. This competition between thermal forcing
and baroclinic instability gives rise to the formation of baroclinic jets and, in extreme
cases, to stepped PV profiles or ‘staircases’. Such staircase formation has already been
demonstrated in the single-layer barotropic context (see Dritschel & McIntyre (2008)
and Scott & Dritschel (2012)). Additionally, in the present model small-scale stochastic
forcing is imposed, crudely mimicking convective processes. This is done by adding hetons
or small cyclonic/anti-cyclonic pairs in the two layers. Unlike in the model of (Thomson
& McIntyre 2015), jets do not emerge from an imposed lower boundary shape but emerge
naturally from the competition between baroclinic instability and thermal damping.

Section §2 presents the model, the equations, and the boundary conditions. Section §3
presents the results, starting with an analysis of a characteristic simulation, followed by
a detailed examination of energy transfers in section §4. We then focus on a turbulent
event in §5 and discuss the wider parameter dependence in §6. Finally, section §7 presents
our conclusions and a few ideas for future research.

2. Model formulation
To study the formation and evolution of jets and vortices in turbulent planetary

atmospheres, we make use of a two-layer quasi-geostrophic (QG) β-channel model (see
Phillips (1951)), with a rigid bottom and a free upper surface (see figure 1). It is governed
by the set of equations:

Dq1
Dt

= F1 ;
Dq2
Dt

= F2 (2.1a)

q1 = βy +∇2ψ1 −
f0δ1
H1

; q2 = βy +∇2ψ2 −
f0(δ2 − δ1)

H2
(2.1b)

δ1 =
f0(ψ1 − αψ2)

g(1− α)
; δ2 =

f0ψ2

g
(2.1c)

where D/Dt = ∂/∂t+u·∇ is the material derivative, qi is the quasi-geostrophic potential
vorticity (QGPV) in layer i, Fi includes all forcing and damping on the QGPV in layer
i, β is the linear gradient of the Coriolis frequency f = f0 + βy, ψi is the streamfunction
in layer i, δi is the displacement of the upper interface of layer i, Hi is the mean depth
of layer i, ρi the uniform density in layer i, α = ρ2/ρ1 is the density ratio, and g is the
acceleration due to gravity. We eliminate all reference to f0, g and the total mean depth
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Figure 1: Vertical cross section of the model. Here, H1 and H2 are the mean layer
thicknesses, ρ1 and ρ2 the layer densities, and δ1 and δ2 the displacements of the middle
and upper interfaces.

H = H1 + H2 by specifying the mean baroclinic Rossby deformation wavenumber, k̄d,
defined through

k̄2d =
1

L2
d

=
f20H

g(1− α)H1H2
(2.2)

and making use of the fractional mean layer depths hi = Hi/H whose sum is unity
(h1 + h2 = 1). Then the only explicit parameters are h1, k̄d, α and β.

As explained e.g. in (Vallis 2006), the QGPV expressions in equations 2.1 derive from a
series expansion of the shallow-water Rossby-Ertel PV, qi = (ζi + f)/(hi(1 + h̃i)), where
ζi is the relative vorticity in layer i, and h̃i is the fractional layer depth perturbation
defined by h̃i = (δi − δi−1)/Hi, with δ0 = 0. The leading-order non-constant terms, for
ζi/f � 1 and h̃i � 1, define the QGPV:

qi = βy + ζi − f0h̃i. (2.3)

The interface displacements δi are related to the layer pressure perturbations pi through
hydrostatic balance (cf. Mohebalhojeh & Dritschel (2004)):

pi = g

n∑
j=i

(ρj − ρj+1)δj (2.4)

where here n = 2 and ρn+1 = 0. From geostrophic balance, we have

pi = ψif0ρi (2.5)

together with ui = −∂ψi/∂y and vi = ∂ψi/∂x. Using 2.4 and 2.5, we can re-express 2.3
for each layer as

q1 = βy +∇2ψ1 + h2k̄
2
d(αψ2 − ψ1) ; q2 = βy +∇2ψ2 + h1k̄

2
d(ψ1 − ψ2). (2.6)

These may be regarded as ‘inversion relations’ providing the flow field ui in each layer
(via ψi) from the instantaneous distribution of QGPV (q1 and q2).



Energetics of a two-layer baroclinic flow 5

2.1. Stratification
Atmospheric stratification is modelled by an exponential decrease of the density profile

ρ = ρ0e
−z/Hρ , where ρ0 is the density at the bottom of the domain and Hρ is the scale

height (such a profile corresponds to an isothermal basic state), see Vallis (2006), p.40.
The impact of strong variations in density stratification has previously been studied
by Fu & Flierl (1980) and Smith & Vallis (2002) in a two-layer quasi-geostrophic ocean
model. Such variations inhibit energy transfers to the barotropic mode, thereby favouring
a relatively strong upper layer flow. The same enhanced baroclinic response is found in
the present results below.

The scale height is defined through cρHρ = H1 +H2 = H, with cρ being the depth of
the model in scale heights. We take equal layer depths H1 = H2 = cρHρ/2, and define
ρi to be the mean density in each layer:

ρ1 = H−11

∫ H1

0

ρ dz = ρ0
Hρ

H1
(1− e−

H1
Hρ ) (2.7a)

ρ2 = H−12

∫ H

H1

ρ dz = ρ0
Hρ

H2
(e
−H1
Hρ − e−

H
Hρ ) (2.7b)

Then the density ratio α = ρ1/ρ2 is prescribed through α = e−cρ/2. The densities ρ1 and
ρ2 are not explicitly needed in the model, only their ratio α is.

2.2. Stochastic Forcing
Material changes of the QGPV in each layer occur through stochastic forcing and

thermal damping, represented by the terms F1 and F2 in (2.1). The stochastic forcing
models in a very simple way unresolved convective motions through the spatially-random
addition of ‘hetons’, which helps to destabilise the flow. A heton is a pair of opposite-
signed PV anomalies (cyclonic in the lower layer and anti-cyclonic in the upper layer,
resulting from convergence and divergence respectively) which carry heat (see (Carton
2001)). In order to avoid any net vorticity input in either layer, a compensating uniform
vorticity is added (mimicking subsidence). Each heton has a fixed radius R = 0.05 and
PV amplitude qheton on the highest baroclinic mode (there is no projection on the lowest
mode). The frequency at which hetons are added is controlled by a prescribed (potential)
enstrophy input rate η. The dependence of the flow evolution on η has been studied by
using values ranging from 0.01 to 100. The dependence on the heton’s radius R has also
been examined but is found to have a minor effect. Notably, simulations initialised with
small non-zonal perturbations and no heton forcing produce qualitatively similar results.

2.3. Thermal Damping and Vertical Shear
The thermal forcing of a planetary atmosphere generally varies from the equator to

the poles. Equatorial regions typically receive more solar radiation than the poles (at
lower levels). The resulting latitudinal temperature gradient implies a vertical gradient
of the horizontal velocity, by thermal wind balance under the QG approximation. As in
(Panetta & Held 1988), this vertical shear is represented in a 2-layer QG model as a
uniform westward flow in the lower layer and a uniform eastward flow in the upper layer,
as illustrated in figure 2. Indeed, a negative northward temperature gradient at lower
levels (in the northern hemisphere) implies a positive vertical gradient of velocity, here
westward in the lower layer and eastward in the upper layer. The mean zonal velocity
is kept fixed at its thermal equilibrium value at the y−boundaries. In the interior, the
mean zonal velocity may vary as a result of baroclinic and barotropic instability.
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Figure 2: Illustration of the initial undisturbed state of a two-layer quasi-geostrophic vertically-
sheared flow, with uniform westward flow in the lower layer and uniform eastward flow in the
upper layer.

From equation 2.6, the QGPV is linearly related to the streamfunction, which in turn
is linearly related to the velocity. Adding a uniform velocity to the flow corresponds to
adding a linear streamfunction profile ψ ∝ y and hence a linear PV profile in 2.6. Thus,
vertical shear corresponds to adding a linear profile to the pre-existing background PV,
βy, so that the total PV is, say, εiβy in each layer (i = 1, 2). Below, we take ε1 to
be a control parameter and deduce ε2 from the requirements that (i) the vertical shear
projects only on the vertical mode with the highest deformation wavenumber (hereafter,
the ‘baroclinic’ mode), and that (ii) it has zero mass average (ρ1h1ū1 +ρ2h2ū2 = 0). Full
details may be found in appendix §A.

To allow baroclinic instability, the potential vorticity gradients in the two layers must
have opposite signs, implying ε1ε2 < 0. Baroclinic instability however acts to reduce
the vertical shear, leading to a quasi-stable flow. To prevent this and to allow cycles
alternating between turbulent and quiescent states, thermal damping is imposed to help
maintain the large-scale vertical shear. The thermal damping here crudely corresponds
to radiative forcing by the sun or internally. It acts to restore the layer interfaces
δi to their initial thermal equilibrium profiles δeq,i at the rate r. This leads to non-
conservative changes in the QGPV through the relation between the QGPV and interface
displacement, namely (2.3) with h̃i = (δi − δi−1)/Hi and δ0 = 0. To eliminate reference
to f0, g etc., it is convenient to scale the interface displacements so they have units of
vorticity:

δ̃i ≡
f0δi
H

. (2.8)

Owing to the relations (2.1), together with the definition of k̄2d in (2.2), we can express
the scaled interface displacements as

δ̃1 = h1h2k̄
2
d(ψ1 − αψ2) ; δ̃2 = h1h2k̄

2
d(1− α)ψ2. (2.9)

Then, thermal damping contributes the following terms to F1 and F2 in (2.1):

F1 ← r
(
δ̃1 − δ̃eq1

)
/h1 ; F2 ← r

(
(δ̃2 − δ̃1)− (δ̃eq2 − δ̃eq1

)
/h2. (2.10)

2.4. Boundary Conditions
We employ a channel model, with periodic conditions in x (longitude) and free-slip rigid

boundaries in y (latitude). On the y-boundaries, the zonally-averaged zonal velocity is
held fixed to the value imposed by the vertical shear, as in (Panetta & Held 1988). The
model has a rigid bottom surface and a free top surface, as illustrated schematically in
figure 1.
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Parameter Symbol Value or range considered

Longitudinal domain length Lx 2π
Latitudinal domain length Ly π
Rossby deformation length Ld 0.05
1st deformation wavenumber kd1 8.87
2nd deformation wavenumber kd2 17.93

Upper to lower layer density ratio α 0.37 to 1
Depth in density scale heights cρ 0 to 2

Fractional layer depths h1, h2 0.5
Planetary vorticity gradient β 8π
Lower layer PV gradient /β ε1 −0.5 to −0.1
Upper layer PV gradient /β ε2 2.81 to 3.79

Thermal damping rate r 0 to 0.5
Enstrophy input rate η 0.01 to 100
Heton PV amplitude qheton 1.257 to 1508

Heton radius R 0.05

Table 1: Physical parameters used in the model simulations.

2.5. Non-dimensionalisation
We choose to employ dimensionless quantities only. To this end, we take the width

of the domain to be Lx = 2π and its breadth to be Ly = π, and, most importantly,
ensure that these dimensions are much larger than the characteristic Rossby deformation
length Ld = 1/k̄d = 0.05.† The total height of the model H is taken to be cρ = 2 density
scale heights Hρ, corresponding to a density ratio of ρ2/ρ1 = α = e−cρ/2 ' 0.37, though
cρ = 0.2 and 0 have also been studied (see below). For cρ = 2 and k̄d = 20, and for
equal layer depths h1 = h2 = 0.5, the deformation wavenumbers of each vertical mode
are kd1 ' 8.87 and kd2 ' 17.93 (see appendix §A for details).

2.6. Parameter choices
We set the planetary vorticity gradient β to be 8π, corresponding to a Rossby wave

period of unity for a barotropic disturbance with a wavenumber of 4. Recall that the
initial PV gradients in each layer are εiβ, and the choice of ε1 controls the strength
of the vertical shear. Here, we consider two main values of ε1, namely −0.1 and −0.5,
corresponding to ε2 ' 2.81 and 3.79 respectively. For ε1 = −0.5, the initial mean velocities
in the two layers are ū1 ' −0.094 and ū2 ' 0.256 (see appendix §A for details). The
enstrophy input rate η controlling the injection of hetons ranges between 0.01 and 100.
We consider values of the heton PV qheton ranging from 1×β/k̄d to 1200×β/k̄d, whereas
we fix the heton radius R at 0.05 unless otherwise stated. We vary the thermal damping
rate r between 0 and 0.5. Section §6 examines the effect of variations in the parameters.
A full list of the dimensionless physical parameters and the values used are provided in
Table 1.

Over 100 simulations have been run using a variety of grid dimensions Nx × Ny, for
Nx = {128, 256, 512} and Ny = Nx/2 + 1, over 104 units of time (and up to 105 units
for very small r). Note: an extra grid point is needed in the y direction to include the
boundaries and ensure each grid box is square.

† A more representative measure of Ld is 2π/k̄d = π/10, yet this is still much smaller than
Ly.
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2.7. Numerical Model
All simulations have been carried out using the ‘Combined Lagrangian Advection

Method’ (CLAM) developed by Dritschel & Fontane (2010). This numerical method,
using a pseudo-spectral method at large scales, and Lagrangian contour advection at
small scales, is both highly accurate and efficient (see Dritschel & Tobias (2012) for
a recent demanding comparison). All numerical parameters follow the recommended
choices outlined in Fontane & Dritschel (2009) except that twice as many PV contour
levels (here 80) are used to represent the initial PV variation in each layer. The PV
contour interval remains fixed in time.

3. Results
We begin by presenting in detail a characteristic flow simulation. The flow illustrated

alternates, irregularly, between a more disturbed ‘turbulent’ phase and a more zonal
‘quiescent’ phase. The initial baroclinically-unstable zonal state rapidly breaks down and
never fully recovers. The instability equilibrates into a structured flow, a quiescent phase,
where regions of nearly homogeneous PV are separated by eastward jets in the upper
layer and westward jets in the lower layer. Next, and as a result of the accumulative effect
of thermal damping, this structured state destabilises and breaks down, again through
baroclinic instability but on a much different basic state than was present initially. The
flow becomes more turbulent and much less organised. It then recovers to a structured
quiescent phase only to break down again into a turbulent phase, and so on. We pay
particular attention to the flow behaviour around these turbulent phases, and we study
the changes in energy (kinetic/potential, zonal/eddy, barotropic/baroclinic) and zonal-
flow stability which occur.

3.1. A characteristic simulation
The chosen simulation has been run on a 512× 256 ‘inversion’ grid (the effective grid

resolution is 16 times finer in each direction), with a thermal damping rate r = 0.01, a
stratification parameter cρ = 2, a lower-layer fractional PV gradient ε1 = −0.5, a heton
PV qheton = 1× β/kd, and an enstrophy input rate η = 0.1.

At the initial time, the flow exhibits a linear slope in PV, opposite in each layer. This
flow is baroclinically unstable (as explicitly shown in appendix §A), and within a few
units of time leads to a strongly non-zonal, eddying, turbulent flow. This subsequently
collapses and organises into bands of nearly uniform PV separated by jets. This quiescent
phase, illustrated in figure 3 at t = 3000 typically lasts hundreds of time units, or several
damping time scales r−1.

The central panels in figures 3a and 3b show the PV field at this time in the upper
and the lower layers, respectively. In the upper layer, four distinct bands of nearly
homogeneous PV are present, separated by three jets flowing eastward. In the lower layer,
by contrast, there are three bands of nearly homogeneous PV separated by two westward
jets. As discussed in Dritschel & McIntyre (2008) and Scott & Dritschel (2012) in the
context of a single-layer model, the ‘equivalent latitude’ PV profile ye(q) is particularly
useful for identifying jets, here seen by the nearly flat portions of the curves shown in
the right panels of these figures. The formation of a staircase profile in ye(q) indicates
the presence of homogeneous regions (dye/dq →∞) and jets (dye/dq → 0). The function
ye(q) is obtained by re-arranging the PV monotonically in each layer. In the upper
layer, ye(q) = ymin + A2(q)/Lx where A2(q) is the area occupied by PV values having



Energetics of a two-layer baroclinic flow 9

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4
π/2

0

−π/2
0 π 2π

133

0

−130 0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(a) Upper layer

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4
π/2

0

−π/2
0 π 2π

19

0

−18 0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) Lower layer

Figure 3: The top figures show the upper layer flow, and the bottom figures show the
lower layer flow, all at t = 3000. Left: normalised latitude 2y/π vs zonally-averaged zonal
velocity ūi(y, t). Centre: PV field qi(x, y, t) over the entire domain. Right: equivalent
latitude ye(q̃, t) vs normalised PV q̃ = (q − qmin)/(qmax − qmin).

q > qmin. In the lower layer, where the mean PV gradient is generally reversed, instead
ye(q) = ymin +A1(q)/Lx where A1(q) is the area occupied by PV values having q < qmax.

The right panels in figures 3a and 3b show ye(q̃) versus normalised PV, defined by
q̃ ≡ (q − qmin)/(qmax − qmin), for each layer. Both layers exhibit a near staircase profile,
but it is most distinct in the upper layer. The three main small gradient portions of the
curve seen here correspond to the strong eastward jets seen in the zonally-averaged zonal
velocity ū2 (upper left figure), while the four high gradient portions correspond to the
nearly homogeneous PV regions. The zonal flow in these regions is weakly westwards. In
the lower layer, the two (central) small gradient regions in ye(q̃) correspond to westward
jets (see lower left panel). Between the westward jets in this layer one also sees eastward
jets of comparable magnitude. These are induced by the strong PV gradients in the upper
layer. PV inversion couples the layers together so that the flow in either layer depends
on the PV in both layers. Here however the lower layer PV is relatively weak, so it has
much less impact on the upper layer flow than has the upper layer PV on the lower layer
flow.

Overall, the observed jets are not vertically coherent, implying that the baroclinicity
of the flow is important. The two layers have different numbers of jets. Jets flow eastward
in the upper layer and predominantly westward in the lower layer. Moreover, the upper
layer jets are much faster than the lower layer jets. Additionally, signatures of the jets in
one layer are visible in the PV field of the other layer. In the upper layer (central panel),
the transitions between the two sky/pale blue bands, and between the pink-reddish bands
(the two middle bands) coincide with the locations of the lower layer westward jets. These
signatures appear in the equivalent latitude ye(q̃) (upper right panel) as small swerves
in the middle of the two high gradient portions. In the lower layer, the signatures of the
upper layer jets are less obvious, but are visible in the zonally averaged flow, an effect of
PV inversion mentioned above. Jet signatures in PV are less evident in the lower layer
in part because the flow is more disturbed at small scales there.

Figures 4a and 4b illustrate the same flow at a later time t = 4000, during a turbulent
phase. The flow is substantially less zonal, with large-amplitude excursions exhibited in
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Figure 4: The top figures show the upper layer flow, and the bottom figures show the lower
layer flow, all at t = 4000. Left: normalised latitude vs zonally-averaged zonal velocity (Note
that plot scale for u are the same as in figure 3). Centre: PV field over the entire domain. Right:
equivalent latitude ye(q̃, t) vs normalised PV.
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Figure 5: The top figures show the upper layer flow, and the bottom figures show the lower
layer flow, all at t = 9400. Left: normalised latitude vs zonally-averaged zonal velocity (Note
that plot scale for u are the same as in figure 3). Centre: PV field over the entire domain. Right:
equivalent latitude ye(q̃, t) vs normalised PV.

the PV field in both layers. Remarkably, nearly homogeneous regions persist in the upper
layer though they are much more disturbed than in the quiescent phase. Moreover, the
jets are considerably weaker and virtually absent from the lower layer flow. The ‘jets’
seen in the upper layer are not steady and show no obvious relation to the equivalent-
latitude PV profile ye(q̃, t). A series of short-lived vortices can be seen, especially in the
central regions of the flow. These formed from the buckling and breaking of the jets at
earlier times and re-merge with the jets subsequently. Two movies of the PV evolution
are available in the online supplementary material.

Various statistics summarising the time evolution of the flow are provided in figure 7.
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Figure 6: Upper layer (left figure) and lower layer (right figure) zonally-averaged zonal velocity
ūi(y, t) at two different times t = 3000 blue and t = 9400 orange.

From top to bottom we show the equivalent PV qe(y) (the inverse of the function ye(q))
in the upper and lower layers as Hövmoller diagrams, the zonal and eddy kinetic energy in
the first ‘barotropic’ and second ‘baroclinic’ vertical modes, the zonal and eddy potential
energies, the maximum growth rate of the instantaneously zonally-averaged flow versus
zonal wavenumber, and the meridionally-integrated spectrum of the available potential
energy (APE) versus zonal wavenumber. In each plot, time is in the abscissa.

The equivalent PV Hövmoller diagrams allow one to identify major changes in the
flow structure, such as a latitudinal shift of the jets and homogeneous regions. We can
see here the entire evolution of the flow, starting with the first rapid re-organisation of
the flow from its unstable initial state, to the alternation between quiescent phases and
(relatively short) turbulent phases.

The initial linear PV variations εiβy are short lived after the flow destabilises and evolve
into nearly homogeneous regions separated by jets, or staircase profiles, by t = 500. This
is the beginning of the first quiescent phase. Four nearly homogeneous regions are clearly
identifiable in the upper layer and between them three jets are present. The lower layer
at this stage has three nearly homogeneous regions with two westward jets separating
them. Over the next 1600 units of time, the innermost homogeneous regions narrow
slowly but progressively, due to the accumulative effects of thermal damping (this does
not occur in the absence of damping). Near t = 2100, the quasi-zonal flow is disrupted
and a short turbulent phase occurs, lasting no more than approximately 100 days, which
is the thermal damping time-scale, r−1. The flow then recovers, this time significantly
more rapidly than it did following the initial instability, and enters a second quiescent
phase, illustrated in figure 3 at t = 3000.

Over the next 1900 units of time, the same progressive thinning of the innermost
homogeneous regions occurs, disrupted by a turbulent phase around t = 4000, illustrated
in figure 4. This sequence of long quiescent and short turbulent phases continues with
irregular frequency almost to the end of the simulation. At around t = 9000, the flow
passes through a turbulent event and organises into an anomalous quiescent phase, similar
to that seen after the initial instability near t = 0, see figure 5. Instead of having a
symmetric flow with a centered jet, the flow exhibits a shift of the jets and homogeneous
regions as shown in figure 6.

This anomalous quiescent phase is significantly more active and non-zonal than pre-
vious such phases. It is also found in other simulations and is discussed further in §??
below.

The energy diagnostics closely correlate with the variations seen in the equivalent PV
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Figure 7: (a,b) Hövmoller diagrams of the equivalent PV qe(t, y), with latitude in the
ordinate. (c,d,e) Energy components (with the eddy part in blue, the zonal part in black
and the red line the time averaged APE). (f) log10 of the maximum growth rate of
the zonally-averaged flow versus zonal wavenumber kx. (g) log10 of the meridionally-
integrated spectrum of available potential energy versus zonal wavenumber kx. The
coloured contours correspond to specific values of the spectrum as indicated on the
colourbar. In all of these plots time is in the abscissa.

Hövmoller diagrams. Each turbulent phase is characterised by a strong peak in the non-
zonal, eddy component of the energy and a dip in the zonal component. For the barotropic
(mode 1) kinetic energy, the eddy energy (EKE1) is always comparable or greater than
the zonal part (ZKE1). The baroclinic (mode 2) kinetic energy is smaller, with the eddy
part (EKE2) surpassing the zonal part (ZKE2) only during turbulent phases. On the
other hand, the potential energy is much larger: even the eddy potential energy (EPE)
is greater than any component of the kinetic energy. The zonal potential energy (ZPE)
is more than 10 times any component of kinetic energy. This dominance of ZPE is seen
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in all simulations conducted. Note: here we mean the ‘available’ potential energy (APE)
relative to a resting basic state (APE measures the mean-square displacement of the
layer interfaces).

The maximum growth rate of the instantaneous zonally-averaged flow (second panel
from the bottom in figure 7) shows that the turbulent phases coincide with periods of
relatively strong baroclinic instability, involving zonal wavenumbers kx mainly between
5 and 20. Note that the instability is not in fact purely baroclinic, except in the initial
stages when the mean flow is a simple baroclinic shear. In general, there is a projection
on the barotropic mode as well when the zonal mean flow is more complex (see e.g.
(James 1987), who examined the influence of barotropic shear on baroclinic instability).
It appears that the instability precedes the growth in the eddy energy components, but
in fact it occurs after these components have already grown significantly (this is shown
below in detail). Hence, it is too simplistic to think that the thermal damping has led
to an unstable zonal flow state, which then becomes turbulent. The non-zonal flow must
also play a role, but this cannot be assessed simply through a linear stability analysis.

Finally, in the bottom panel in figure 7 we show the meridionally-integrated APE
spectrum as a function of zonal wavenumber kx (between 1 and 25) and time. At the very
earliest stages, t 6 10, baroclinic instability excites wavenumbers centred on kx = 11 (as
found in the linear stability analysis). Very soon after, a broad spectrum of disturbances
emerges, with dominant power residing at much lower wavenumbers, around kx = 4 and
to a lesser extent kx = 6. This is typical of quiescent phases, and indicates a significant
and persistent amount of eddy activity even during these phases. The turbulent phases
on the other hand are characterised by the excitation of a broad range of wavenumbers,
both lower and higher. This spreading is characteristic of turbulent flow evolution. Each
turbulent phase appears to first spread APE to higher wavenumbers then build up energy
at low wavenumbers, predominantly kx = 2 and 3. This is short-lived however as the flow
returns to a quiescent phase.

4. Energy Transfers
We next look more closely at the energy transfers taking place between different en-

ergy components (kinetic/potential, barotropic/baroclinic, zonal/eddy) to gain a better
understanding of the flow changes occurring when entering and leaving turbulent phases.
To be more quantitative, we define a turbulent phase as a period when the ZPE is
smaller than the mean ZPE. Other definitions have been tried, but this simple definition
adequately identifies turbulent phases, as seen in figure 7.

To study energy transfers, we examine two different kinds of instantaneous correlations
between the six energy components ZKE1, ZKE2, ZPE, EKE1, EKE2 and EPE. Note
that it is not possible to express the rate of change of any one component solely in terms
of the other components, so one must seek other means to examine the energy transfers
taking place. We have chosen correlations, separated into turbulent and quiescent phases,
together with directions of energy change, as explained below.

The first correlation is the standard one, defined for two time series {x1, x2, ..., xn}
and {y1, y2, ..., yn} by

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2

(4.1)
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(a) ZPE vs ZKE2 (b) EPE vs ZPE

(c) EPE vs EKE2 (d) Correlation matrix
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Figure 8: (a, b, c) Scatterplots of different energy components in the characteristic simulation,
for (a) ZPE vs ZKE2, (b) EPE vs ZPE, and (c) EPE vs EKE2. Note: the mean values are
subtracted and the scales are adjusted to the range of energy values observed. The arrows
represent a third of the distance between adjacent points. Black arrows: initial phase. Cyan
arrows: quiescent phases. Red arrows: turbulent phases. The lines show the best fit of the data
(cyan for quiescent phases, red for turbulent phases, and blue overall), after optimal rotation
of the data and a least-squares fit. The lengths of the lines are proportional to the spread in
the data. (d) The standard correlation matrix is shown, computed using (4.1) for the different
energy components.

where x̄ = n−1
∑n
i=1 xi and ȳ = n−1

∑n
i=1 yi. The second one, which we call the ‘global

correlation’, is defined by the numerator of (4.1) only. This gives a better measure of
the energy magnitudes involved and, in particular, helps to identify the key components
involved in the energy transfers taking place. In the results presented, data have been
sampled every 5 units of time, providing energy time series of n = 2001 values.

Figure 8 shows three scatterplots of different energy components and the standard
correlation matrix. First, the correlation matrix exhibits three distinct areas. The two
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red areas show that zonal energies are positively correlated with each other, and that
eddy energies are also positively correlated with each other. The blue area shows that
zonal energies are negatively correlated with eddy energies. This finding agrees with that
found in figure 7 for the evolution of the energy components, namely that when there is a
decrease of any zonal energy the other zonal energies also decrease and the eddy energies
increase, and vice versa.

In the scatterplots, further information can be obtained. First of all, we see the strong,
tight correlation between ZKE2 and ZPE (top left figure), consistent with the value
of 0.94 seen in the correlation matrix. Moreover, the eddy energies are all tightly and
positively correlated (only EKE2 vs EPE is presented here in the bottom left figure).
The scatterplots exhibit a racquet shape, very narrow at the base, corresponding to the
quiescent phases, and more spread at the top, corresponding to the turbulent phases.
Moreover, there is a definite pattern of evolution: the flow leaves a quiescent phase with
relatively low EPE, gains EPE during the peak of the turbulent phase, then returns to
the quiescent phase with relatively high EPE.

Similar looping patterns are present in the zonal versus eddy and in the ZKE1 versus
zonal scatterplots. These patterns are more widely spread than seen between the eddy
energies themselves. If we look at ZPE versus EPE (top right figure), we see that ZPE
diminishes as EPE grows when leaving a quiescent phase, following nearly a straight line.
It then returns along a curved line to recover from a turbulent phase. During this recovery,
EPE falls relatively quickly while ZPE does not show much growth until near the end of
the turbulent phase. This slow recovery of ZPE is likely due to the weak thermal damping.
The nearly straight lines, leaving quiescent phases and entering turbulent phases, are all
closely parallel. The more eccentric one, with black arrows, corresponds to the initial
stages where baroclinic instability acts on an idealised basic state. All the other straight
lines are parallel to this one because the same phenomenon happens: ZPE is converted
into EPE due to baroclinic instability. However the zonal energy at the beginning of
subsequent turbulent phases is lower than it was in the initial phase, explaining the gap
between the different lines.

A difficulty in the interpretation of these results arises because the scatterplots are two-
dimensional projections of a six-dimensional phase space. The loop patterns seen imply
that other components not shown in a given 2D cross section are involved in the energy
transfers taking place, and moreover that the transfers are not occurring simultaneously
(this is highlighted in §5). An alternative interpretation, discussed next, focuses on the
energy components exhibiting the greatest variations.

The standard correlation scatterplots in figure 8 show the correlation between different
energy components, but not the energy transfer. To see the energy transfer, it is necessary
to use the same plot limits in all scatterplots and to correlate the energy components
using only the numerator of (4.1). These global correlations are exhibited in figure 9 in
the same format as figure 8 for comparison. The main energy transfers involve just a few
components, ZPE, EPE and to a weaker extent EKE1 and ZKE1. The other components
have essentially no impact on the global energy transfer. In particular, some components
which show a strong standard correlation instead show a very weak global correlation,
such as ZKE2 versus ZPE. This means that ZKE2 and ZPE evolve similarly but there is
scarcely any energy transfer between them.

The dominant energy transfer occurs between ZPE and EPE and is strongly anti-
correlated, as expected. ZPE is also anti-correlated with EKE1, implying that both
EPE and EKE1 are the dominant components uptaking any change in ZPE. This
is consistent also with the positive correlation between EPE and EKE1. Finally, and
perhaps surprisingly, only one correlation between zonal energies, ZPE versus ZKE1, is
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Figure 9: (a, b, c) Scatterplots of different energy components, (a) for ZPE vs ZKE2, (b) for
EPE vs ZPE, (c) for EPE vs EKE2, in the characteristic simulation as in Table 1 but using
fixed, identical scales in each plot to emphasise which energy components exhibit the greatest
variations. (d) The global correlation matrix is shown, computed using only the numerator of
(4.1) for the different energy components.

notable. For a relatively large gain in ZPE, there is a modest increase in ZKE1. Evidently,
the thermal restoration of the sloping layer interfaces favours an increase in barotropic
energy. Restoration of a linear slope would not have this effect, as a linear slope only
generates a baroclinic flow, by construction. Instead, it must be that the eddying motions
present even during quiescent phases continue to provide inhomogeneous PV mixing,
maintaining sharp jets (Dritschel & McIntyre 2008; Scott & Dritschel 2012). These jets
project on both barotropic and baroclinic modes, unlike the initial vertical shear flow.
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Figure 10: (a,b,c) Rescaled energy components (with mode 1 kinetic energy in black,
mode 2 kinetic energy in blue and available potential energy in red) versus time for
1800 6 t 6 2800. In (a) only zonal components are shown, in (b) only eddy components
are shown, while in (c) all components are shown with the zonal ones inverted for
comparison. (d) log10 of the maximum growth rate of the zonally-averaged flow versus
zonal wavenumber kx. (e) log10 of the meridionally-integrated spectrum of the available
potential energy versus kx. The coloured countours correspond to specific values of the
spectrum as indicated on the colourbar. In each panel, time is in the abscissa.

5. Focus on a turbulent phase
The detailed behaviour of the flow around a turbulent phase is examined in this section.

The panels in figure 10 show the time evolution of various diagnostics over 1800 6 t 6
2800. The first three panels show energy components linearly rescaled to lie between
0 and 1 over the entire simulation duration (0 6 t 6 10000). In the third panel, the
complement of the rescaled zonal energies is shown so that they can be better compared
with the rescaled eddy energies (this panel combines the first two). The fourth panel
shows the maximum growth rate for each zonal wavenumber kx (in the abscissa), and
the bottom panel shows the meridionally-integrated APE spectrum, also versus kx.

In the top panel, the rescaled zonal energies ZKE2 and ZPE follow the same trend,
especially on the approach to the turbulent phase. This is why the standard correlation
between ZKE2 and ZPE is very high. However, ZKE1 decreases before the two other
energies and recovers sooner. Similarly, in the second panel for the rescaled eddy energies,
there is a small offset between the different components. EKE1 and EKE2 grow first
(with EKE2 slightly ahead) and next EPE follows, with almost the same trend. This
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offset between the different energy components explains the looping or racquet patterns
observed in the standard correlation scatterplots in Table 1.

The third panel compares the rescaled zonal and eddy energies. This highlights the
differences in evolution of the various components. The eddy energies are seen to rise and
fall rapidly, over a timescale comparable but shorter than the damping period r−1 = 100.
The mode 1 zonal kinetic energy ZKE1 appears to lead all components into the turbulent
phase, but due to the re-scaling, the energy changes involved are actually smaller than
those taking place in ZPE and EPE (cf. figure 7). The onset of the turbulent phase is best
associated with the steep rise in all the curves just before t = 2100, with the dominant
energy transfer between ZPE and EPE. Other rising events happen later, e.g. between
t = 2300 and 2400, without leading to any major disruption of the flow.

It therefore appears that the disturbance must reach a threshold amplitude before
triggering a turbulent phase (this has been confirmed by examining many such events).
In the PV field (not shown, but see the movie available to the online supplementary
material), wave amplitudes along the jets are seen to slowly grow, eventually (sometimes
after several false starts) leading to wave breaking and vortex formation. This strongly
disturbed state lasts only a relatively short time before the vortices are either torn apart
by the jet shear or recaptured by the jets, and the wave amplitudes gradually subside.
The slow return to a quiescent state is most apparent in the behaviour of ZPE and
ZKE2: the thermal damping slowly acts to rebuild the sloping layer interfaces, at the
same time enhancing the baroclinic shear (in ZKE2). In this return to a quiescent phase,
the principal energy changes (i.e. in ZPE) are mainly brought about by thermal damping.
However, the rapid decay in all eddy energies, occurring over a period of just 20 to 30
units of time, cannot be explained simply by thermal damping. Instead, part of this decay
must be due to inhomogeneous turbulent mixing, constrained by the mean PV gradient in
each layer. The mixing acts to homogenise PV and sharpen jets, processes which are only
enhanced by non-zonal variations (Dritschel & McIntyre 2008; Scott & Dritschel 2012).
The mixing continues until most of the eddy energy (principally at higher wavenumbers
where thermal damping is weak) is exhausted and converted into jets (qualitatively this
is the argument behind the Rhines scale LRh =

√
U/β, where U characterises the eddy

velocities and β is the background PV gradient, see Rhines (1975)). The low wavenumber
part of the eddy energy gives rise to meanders, which unlike the high wavenumber part are
affected by the thermal damping. Subsequently, thermal damping weakens the meanders
and establishes quasi-zonal jets around t = 2200. Thereafter, thermal damping gradually
modifies them, slowly bringing them closer together at the centre of the channel, as seen
in the top two panels of figure 7. Eventually, this sets up the conditions for a further
turbulent phase.

The maximum growth rate of the flow (shown in the fourth panel of 10) increases
in the expected range of baroclinic instability wavenumbers, i.e. wavenumbers around
kx = 11, at the onset of the turbulent phase. Thereafter, at the peak of the turbulent
phase around t = 2150, a wide range of wavenumbers are excited. Notably, just before
this peak there is a decrease in the growth rate for high wavenumbers (18 to 20), that
will only recover during the next quiescent phase. While it is not very clear in this figure,
this feature is common to all the turbulent phases.

The APE spectrum (bottom panel) before the turbulent phase shows significant and
persistent excitation of wavenumbers 4 to 6. During the first part of the turbulent phase,
there is an increase in power for small wavenumbers, from 2 to 4, and more generally for
all wavenumbers. This is the effect of wave breaking, vortex generation and subsequent
turbulent mixing. The increased excitation of all wavenumbers is matched by the growth
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of EPE shown in the second panel. Likewise, as the excitation subsides, so does the EPE,
reaching a minimum around the end of the turbulent phase at t = 2350.

From this analysis, we can better understand the energy variations occurring during
the onset and decay of a turbulent phase. The loop patterns exhibited in the correlation
scatterplots (cf. Table 1) are associated with the asynchronous growth and decay of the
various energy components. What we find generically, across many events and simulations
examined, is that at the onset of a turbulent phase ZKE1 decreases marginally sooner
than both ZKE2 and ZPE, which remain highly correlated until near the end of the
turbulent phase. ZKE1 recovers much sooner than either ZKE2 or ZPE, and this appears
to be an eddy effect. Looking back at figure 7, we can see that the dips in ZKE1 occurring
during a turbulent phase only last while there is significant eddy energy. By contrast,
ZKE2 and ZPE take longer to recover, well after the eddy energies have all but dissipated.
Another generic feature worth noting is that, at the onset of a turbulent phase, EKE2
appears to increase slightly before EKE1, which is then followed by EPE. The recovery
is also in the same order, with EPE recovering last. The recovery is also rapid, mainly a
nonlinear effect of inhomogeneous mixing. Thermal damping acts most strongly at largest
scales, and gradually weakens the low-wavenumber meanders on the jets. This helps to
re-establish strong quasi-zonal jets, which then slowly shift due to thermal damping until
conditions are established for the next turbulent phase.

6. Dependence on parameters
6.1. Parameter Sweep

To study the dependence of the flow evolution on the different parameters involved,
a wide range of simulations have been conducted. The main parameters consist of
the thermal damping coefficient r, the lower layer fractional PV gradient ε1 (directly
controlling the vertical shear), the stratification coefficient cρ, the enstrophy input rate
η, and the heton PV qheton. Other parameters have been varied, like the heton radius
R and topographic forcing, but these have been found to have only a minor influence.
Table 2 lists the parameters used for the main simulations conducted in this study. In
the following subsections, we focus on the parameters having the greatest influence: the
thermal damping r and the vertical shear parameter ε1. We then briefly summarise the
influence of the remaining parameters.

6.2. Thermal damping
An important parameter controlling the flow evolution is thermal damping. A wide

range of thermal damping rates r = {0, 0.0001, 0.001, 0.01, 0.1, 0.5} have been examined,
mainly for different values of stratification coefficient cρ and vertical shear parameter
ε1. Thermal damping acts to restore the initial vertical shear. Simultaneously, baroclinic
instability, induced by excessive vertical shear, leads to turbulent mixing which tends
to reduce the vertical shear. There is thus a competition between thermal damping
and baroclinic instability which nearly always results in the formation of jets through
inhomogeneous PV mixing.

Thermal damping is found to have a major impact on the evolution of the flow. This is
exhibited in figure 11 comparing the evolution of zonal potential energy (ZPE) for r = 0,
0.001, 0.01 and 0.1, keeping all other parameters at their default values. The green curve
corresponds to the characteristic simulation examined already. At high damping rates,
r > 0.1, the flow appears to be very stable: the initial ZPE is reduced by only 12% for r =
0.1 and fluctuates close to a constant value thereafter. In fact, small-scale disturbances
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Nx cρ ε1 η q1 × kd/β r other

512 2 −0.5 0.1 1 0, 10−4, 10−3

10−2, 0.1, 0.5
512 2 −0.1 0.1 1 0, 10−3, 10−2

0.1, 0.5
512 0.2 −0.1 0.1 1 0, 10−3, 10−2

0.1, 0.5
512 0.2 −0.1 0.01, 1 1 0.01
512 2 −0.1 0.01, 1 1 0.01
256 0, 2 −0.5 10, 100 10, 30, 100, 300 0.01
256 2 −0.1 100 100, 300, 1200 Heton radius
256 2 −0.1 100 300 0.001 R = 0.025 rather
256 0 −0.1 100 100 0.01 than 0.05
256 0 −0.5 100 100 0.01 h1 = 0.9
256 0 −0.5 100 100 0.01 h1 = 0.95
256 5 −0.5 100 100 0.01
256 2 2.0 1 1 0.001 opposite
256 0 1.5 1 1 0.001 vertical shear
256 2 −0.5,−0.4,−0.3 0.1 1 0.01

−0.2,−0.1
128, 512 2 −0.5 0.1 1 0.01

256 0 1 100 100 0.01 with and without
topography

Table 2: Numerical and physical parameters for the set of experiments conducted in this
study.
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Figure 11: The evolution of zonal (upper plots) and eddy (lower plots) potential energy (ZPE
and EPE) for different thermal damping rates r: no damping, black; 0.001, blue; 0.01 (reference),
red; and 0.1, green.

are ever present due to the perpetual creation of baroclinic instability, but no large-scale
disruption like that seen in figure 4 for the characteristic simulation ever occurs. At
high damping, the flow exhibits many weak jets whose number remains constant from
the earliest times. By contrast, with no damping (r = 0), the imposed vertical shear
is rapidly cancelled, suppressing any further baroclinic instability. The flow in this case
is mainly dominated by large-scale oscillations with a few weak jets, see figure 12. For
small but non-zero damping (r = 0.001 and 0.01), there is a competition between the
damping trying to restore the vertical shear and baroclinic instability trying to break
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Figure 12: The left figure shows the time-averaged between t = 6500 and t = 7300 (quiescent
phase) zonally-averaged zonal velocity ūi(y, t), for different thermal damping rates r: no
damping, black; 0.001, blue; 0.01 (reference), red; and 0.1, green.
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Figure 13: Zonal potential available energy’s evolution for five different vertical shears ε1: −0.1
brown; −0.2 purple; −0.3 red; −0.4 green; and −0.5 orange and blue.

it down, leading to strong, widely-spaced jets. The damping has a direct impact on the
intensity of the jets (their zonal velocity) and jet spacing, as seen in figure 12. As in the
characteristic case presented in §3.1, the flow is more unstable and variable, and exhibits
large-scale fluctuations. The damping rate strongly affects the recovery time from each
turbulent phase, leading to a wider spacing of turbulent events.

6.3. Vertical shear
The initial vertical shear is directly controlled by the lower layer relative PV gradient,

ε1 (see appendix §A). When ε1 < 0, PV gradients are reversed in the two layers, and the
vertical shear is sufficient to induce baroclinic instability. The more negative ε1 is, the
greater is the vertical shear and thus the potential for instability.

Vertical shear has a direct influence on the number of homogeneous regions and jets
that develop, see figure 13. Increased vertical shear implies stronger baroclinic instability
and thus higher eddy velocities, u′rms. This on its own would imply an increased jet
spacing, qualitatively, through the Rhines scale LRh =

√
u′rms/ |q̄y|, except that the mean

PV gradient |q̄y| also increases. Nevertheless, we find that higher vertical shear leads to
both a wider jet spacing and more intense jets, see figure 14. Regarding the oscillations
between quiescent and turbulent phases, higher vertical shear decreases their frequency.
When the vertical shear is too weak to permit baroclinic instability (ε1 > 0), the flow
evolution is radically different than what we have seen so far. Jets, if at all present, are
very weak and erratic.

6.4. Other parameters
Many other simulations have been conducted, looking at the effect of stratification,

the PV of the injected hetons, the enstrophy input rate, etc. Regarding stratification,
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Figure 14: Upper layer (left figure) and lower layer (right figure) zonally-averaged zonal velocity
ūi(y, t) averaged between t = 3800 and t = 4500 (quiescent phase), for different vertical shears
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the simulations presented in this paper are relevant to an atmospheric-like situation.
We have also run simulations for oceanic-like cases (cρ → 0). The main difference is a
greater propensity for meandering at small scales, such as seen in oceanic currents like
the Kuroshio or the Gulf Stream. Large scale structures are still present, though they
are weaker and significantly disturbed by small scale perturbations. Jets are also less
prominent. As in the oceans, the flow is less structured into zonal bands but contains
many more coherent vortices. These findings are broadly consistent with those found by
Maximenko et al. (2005); Kamenkovich et al. (2009); Berloff et al. (2011) who examined
a forced idealised two-layer ocean with Ekman damping.

Regarding the heton PV and the enstrophy input rate, we have examined the effect
of adding a few high intensity hetons versus adding numerous low intensity hetons.
We thought that adding high intensity hetons would favour the formation of long-lived
vortices, but this is not true. Inevitably any intense vortices which do form drift north
or south and get torn apart by or incorporated into the intense jets. Overall, these
parameters have only a small impact on the flow evolution. Simulations with different
parameters exhibit the same number of homogeneous regions and jets, with comparable
jet velocities and spacing.

7. Conclusions
We have investigated the emergence, nonlinear dynamics and energetics of jets and

vortices in a two-layer β-plane quasi-geostrophic channel model. An extensive range of
numerical simulations have been carried out using the Combined Lagrangian Advection
Model (Dritschel & Fontane 2010), at unprecedented resolution and for very long times
(104 to 105 model days). We have primarily focused on the atmospheric case where
there is a strong density difference between the two layers and where thermal damping
acts to maintain vertical shear against baroclinic instability. As found in the original
study of this type by Panetta & Held (1988), the competition between damping and
baroclinic instability results in quasi-zonal jets. In the present study, additionally, we
have included the effect of stochastic forcing, specifically adding small-scale baroclinic
vortices called ‘hetons’ randomly at a prescribed enstrophy input rate. These hetons are
meant to crudely model the effects of convection thought to occur in the atmospheres
of the gas giant planets (see Thomson & McIntyre (2015) and references therein). The
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details of the stochastic forcing however do not seem to matter: qualitatively similar
evolution is observed without such forcing when the initial flow is weakly perturbed.

The combination of thermal damping, heton forcing and atmospheric stratification
leads to a ‘baroclinic life cycle’ (see (Feldstein & Held 1989; Thorncroft et al. 1993; Esler
2008)), in which jets emerge through baroclinic instability of the vertically-sheared flow
and subsequently break down and reform, often in an irregular manner. The jets form
through inhomogeneous potential vorticity mixing (Dritschel & McIntyre 2008; Scott &
Dritschel 2012), in which potential vorticity is nearly homogenised in bands, but between
which the potential vorticity abruptly jumps, forming a ‘staircase’ profile. Each jump is
associated with a jet, eastward in the upper layer and westward in the lower layer, a
direct effect of potential vorticity inversion (Dritschel & McIntyre 2008).

Both thermal damping and heton forcing continuously modify the jets that form
through baroclinic instability. Thermal damping works to increase the vertical shear
(favouring baroclinic instability), while heton forcing creates disturbances which eventu-
ally trigger the breakdown of the jets. In most cases, this breakdown is characterised by
wave amplification and breaking on the quasi-zonal jets, leading to vortex detachment
and turbulence. In this ‘turbulent phase’, the upper layer jets often persist but become
strongly non-zonal and time dependent, while the lower layer jets are nearly obliterated
before they reform. The turbulent phase lasts typically one thermal damping period,
approximately, but only part of the recovery is due to thermal damping. From a detailed
analysis of the energetics, it is found that the eddies (or non-zonal disturbances) created
at the onset of a turbulent phase convert their energy into jets, arguably by inhomoge-
neous potential vorticity mixing (an inviscid mechanism). Thermal damping, by contrast,
acts mainly at large scales to dampen long-wave disturbances and straighten the jets.
Thereafter, thermal damping slowly shifts the jets and builds the mean vertical shear,
setting up the conditions for subsequent instability and breakdown.

Each turbulent phase is followed by a ‘quiescent’ phase characterised by nearly zonal
jets with weak small-scale disturbances. These quiescent phases often exhibit a gradual
latitudinal migration of the jets. In one particular example studied in detail, two distinct
quiescent phases were observed, one of which was significantly more robust (long lived)
than the other (further analysis may be found in appendix B.) The quasi-zonal jets
occurring during the quiescent phases are typically highly baroclinic. There are different
numbers of jets in each layer located at different mean latitudes. Moreover, the upper layer
jets are predominantly eastward, while the lower layer jets are predominantly westward,
or a mix between the two due to the strong influence of the upper layer potential vorticity
on both layers.

The wider dependence of the flow evolution on thermal damping, vertical shear,
stratification, heton intensity and enstrophy input rate has also been studied. Increasing
thermal damping weakens the turbulence created during baroclinic instability, leading
to less temporal variation especially of the zonal energy components. While baroclinic
instability still occurs (for sufficient vertical shear), it only manages to create weak jets
for strong thermal damping (i.e. for a 10 day or shorter damping period). On the other
hand, no damping results in the destruction of the initial vertical shear and no further
chance for baroclinic instability. Weaker damping leads to baroclinic life cycles, here
oscillations between turbulent and quiescent phases. Both phases extend in proportion
to the damping period, though the recovery of the zonal part is significantly slower than
the recovery of the eddy part.

Increasing vertical shear makes the flow more unstable, generally creating fewer, more
intense jets. Changing the stratification to a form more appropriate to the oceans, we find
that the jets exhibit significant meandering and are less well defined. Moreover, many



24 T. Jougla, D. G. Dritschel

more vortices are present which last for much longer times than found for atmospheric
stratification. These results are consistent with the two-layer ocean study of Maximenko
et al. (2005); Kamenkovich et al. (2009); Berloff et al. (2011). The remaining model
parameters (heton intensity, enstrophy input rate) have been found to have only a weak
impact on the flow evolution.

A conspicuous feature of the atmospheric-like simulations we have conducted is the
absence of long-lived vortices, despite an extensive exploration of parameter space.
Vortices do form but they inevitably collide with a jet and are either incorporated or
destroyed. A major question then is: is there a parameter regime within this two-layer
quasi-geostrophic model favouring long-lived vortices? Or, is it necessary to go beyond
the quasi-geostrophic model and consider ageostrophic effects (e.g. as in a shallow-water
context)? Or again, is spherical geometry fundamental? Does the Great Red Spot, for
instance, depend on its proximity to the equatorial region, whose dynamics can be starkly
different from quasi-geostrophic? Are two-layers sufficient? We are presently working to
answer some of these questions by building and applying a highly-accurate multi-layer
shallow water numerical model.
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Appendix A. Layer model decomposition and related analyses
A.1. Vertical modes

The inversion of (2.6) for the layer streamfunctions ψ1 and ψ2 is accomplished through
a projection onto vertical modes, i.e.

ψ̂1 = c11ψ1 + c12ψ2

ψ̂2 = c21ψ1 + c22ψ2

(A 1)

where a hat indicates a vertical mode, and the cij are the projection coefficients,
determined as follows. Using the same projection for the PV anomaly q′i − βy in (2.6),
we obtain

q̂′j = ∇2ψ̂j + cj1h2k̄
2
d(αψ2 − ψ1) + cj2h1k̄

2
d(ψ1 − ψ2) (A 2)

for each vertical mode (j = 1 or 2). The objective is to make the terms involving cj1 and
cj2 equal to −γj k̄2dψ̂j for each j, since then we have simple Helmholtz-type equations to
invert for ψ̂j , namely

q̂′j = ∇2ψ̂j − k2djψ̂j (A 3)

where k2dj ≡ γj k̄2d is the squared deformation wavenumber for mode j. Equating then the
terms above with −γj k̄2dψ̂j and re-arranging, we obtain

[(γj − h2)cj1 + h1cj2]ψ1 + [(γj − h1)cj2 + αh2cj1]ψ2 = 0. (A 4)
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As this must be true for all ψ1(x, y, t) and ψ2(x, y, t), the constant coefficients must
vanish:

(γj − h2)cj1 + h1cj2 = 0 (A 5)
(γj − h1)cj2 + αh2cj1 = 0. (A 6)

(A 7)

The only nontrivial solution results by taking the determinant of this linear system to
be zero, leading to

γ2j − γj + (1− α)h1h2 = 0 (A 8)

which gives the prefactor γj in k2dj ≡ γj k̄2d:

γ1,2 =
1

2
∓
√

1

4
− (1− α)h1h2. (A 9)

We have taken the minus sign in front of the square root for the lower mode, since it is
purely ‘barotropic’ with γ1 = 0 in the Boussinesq limit α→ 1. The other mode is called
‘baroclinic’ and always has the higher deformation wavenumber. Note: γ1 + γ2 = 1.

Regarding the projection coefficients cj1 and cj2, by convention we take c11 + c12 = 1
for the ‘barotropic’ mode j = 1. This, along with (A 5) gives

c11 =
h1

1− γ1
=
h1
γ2

; c12 = 1− h1
γ2
. (A 10)

For the ‘baroclinic’ mode j = 2, we take c22 = 1. Again using (A 5), we find

c21 =
h1

h2 − γ2
; c22 = 1. (A 11)

The inverse of these coefficients are needed to express modes in terms of layers, i.e. as

ψ1 = c̃11ψ̂1 + c̃12ψ̂2

ψ2 = c̃21ψ̂1 + c̃22ψ̂2.
(A 12)

Simple algebra leads to

c̃11 =
c22
∆

; c̃12 = −c12
∆

; c̃21 = −c21
∆

; c̃22 =
c22
∆

(A 13)

where ∆ = c11c22 − c12c21.

A.2. Vertical shear
A vertical shear (a uniform flow ūi in each layer i) is imposed by taking the lower layer

mean PV to be q̄1 = −ε1βy, specifying ε1, and requiring the mass-integrated momentum
to be zero, or h1ū1+αh2ū2 = 0. The latter requirement determines the constant ε2 in the
associated upper layer PV q̄1 = ε2βy, as well as the mean flows ū1 and ū2, as explained
next.

We start with (2.6) for the mean flow, for which ψ̄i = −ūi(y − yc), where yc is the
centreline of the channel. For this flow, the relative vorticity∇2ψ̄i is zero. After cancelling
the common y factor and some re-arrangement, (2.6) implies

(1− ε1)β = h2k̄
2
d(αū2 − ū1)

(1− ε2)β = h1k̄
2
d(ū1 − ū2).

(A 14)

We can solve these for the mean flows ū1 and ū2 in terms of ε1 and ε2, but we also want
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to obtain ε2 from the condition of zero momentum, h1ū1 + αh2ū2 = 0. Omitting the
details, this gives ε2 = 1 + (1− ε1)G1/G2 where Gj = c1jγ2 + µc2jγ1 with

µ =
h1c̃12 + αh2c̃22
h1c̃11 + αh2c̃21

. (A 15)

The mean velocities ˆ̄uj associated with each mode j are

ˆ̄u1 =
(1− ε1)β∆

k̄2dG2
; ˆ̄u2 = −µˆ̄u1, (A 16)

from which we obtain the mean layer velocities by projection:

ūi = c̃i1 ˆ̄u1 + c̃i2 ˆ̄u2 i = 1, 2. (A 17)

A.3. Thermal equilibrium Interface slopes

Initially, the flow is in thermal equilibrium, with uniform velocity ūi in each layer i.
Associated with this flow, by thermal wind balance, the layer interfaces adopt a linear
profile δeq,i ∝ y − yc. In terms of the scaled displacements δ̃eq,i = f0δeq,i/H, upon using
their definitions in terms of streamfunctions (2.10), we find

δ̃eq,1 = −h1h2k̄2d(ū1 − αū2)(y − yc) ; δ̃eq,1 = −h1h2k̄2d(1− α)ū2(y − yc). (A 18)

These are the profiles to which the interfaces are relaxed to subsequently, at a specified
rate r.

A.4. Linear stability

We next provide brief details of the linear stability analysis used in the main body of the
paper to calculate the maximum growth rate. We start with the instantaneous zonally-
averaged PV q̄i and zonal velocity ūi in each layer i = 1, 2. In this subsection, these
profiles are general functions of y for each sampled time t. In the numerical code, they are
provided at each y grid point (typically 129 or 257 grid points, including the edges). The
PV gradient dq̄i/dy, needed in the analysis below, is computed using centred differences in
y. Notably, only the interior grid point values are needed, since the perturbation satisfies
homogeneous boundary conditions (required to ensure zero meridional velocity at each
boundary).

In the linear stability analysis, the base flow is considered to be both x and t-
independent. Hence, we can consider infinitesimal perturbations of the form

q′i(x, y, t) = <{Qi(y)ei(kxx−σt)}
ψ′i(x, y, t) = <{Ψi(y)ei(kxx−σt)}

(A 19)

where kx is a prescribed zonal wavenumber (necessarily integer for a domain of length
Lx = 2π), σ is the frequency (the imaginary part of which, if non-zero, is the growth rate),
while Q(y) and Ψ(y) are the perturbation amplitudes (eigenfunctions) to be determined
along with σ (the eigenvalue).

Plugging the above forms into the conservative form of the governing equations (2.1)
— with Fi = 0 — and in the PV inversion relations (2.6), then linearising, and finally
cancelling the common ei(kxx−σt)} factor, we obtain the following eigen-system for the
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perturbation amplitudes Q(y) and Ψ(y) together with the phase speed c = σ/kx:

(ūi − c)Qi +
dq̄i
dy
Ψi = 0, i = 1, 2 (A 20)

d2Ψ̂j
dy2

−K2
j Ψ̂j = Q̂j , j = 1, 2 (A 21)

(A 22)

where i refers to layers, j and the hats refer to vertical modes, and K2
j ≡ k2x + k̄2dj . To

combine these, we eliminate Qi in the first set of equations using Q̂j in the second set
projected onto layers:

Qi = c̃i1Q̂1 + c̃i2Q̂2

=
d2Ψi
dy2

− c̃i1K2
1 Ψ̂1 − c̃i2K2

2 Ψ̂2.
(A 23)

Next, we eliminate Ψ̂1 and Ψ̂2 by projecting them onto modes:

Ψ̂j = cj1Ψ1 + cj2Ψ2. (A 24)

Using this in the expression for Qi above, we obtain

Qi =
d2Ψi
dy2

−Bi1Ψ1 −Bi2Ψ2 (A 25)

where Bij ≡ c̃i1K2
1c1j+c̃i2K

2
2c2j . Finally, inserting this into (A 20) to eliminate Qi results

in two coupled, second-order equations for the layer streamfunction amplitudes:

ū1
d2Ψ1

dy2
+

(
dq̄1
dy
− ū1B11

)
Ψ1 − ū1B12Ψ2 = c

(
d2Ψ1

dy2
−B11Ψ1 −B12Ψ2

)
ū2
d2Ψ2

dy2
+

(
dq̄2
dy
− ū2B21

)
Ψ1 − ū2B22Ψ2 = c

(
d2Ψ2

dy2
−B21Ψ1 −B22Ψ2

)
.

(A 26)

This is an eigenvalue problem for the phase speed c. It is solved numerically by discretis-
ing the second derivative terms by centred finite differences, and using the boundary
conditions Ψi = 0 on both channel walls. This results in a block-tridiagonal generalised
eigenvalue problem, which we have solved using the LAPACK routine DGGEV,

The results of the analysis above have been verified by matching them with the exact
results obtained for the initially uniform PV gradients dq̄i/dy = εiβ and uniform layer
velocities ūi, i = 1, 2. In this special case, we can seek solutions for Ψi ∝ sin(ky(y−ymin))
where ky is the meridional wavenumber (an integer for Ly = π). This reduces (A 26) to
a simple algebraic system, from which c is determined from a quadratic equation. It is
straightforward to show that (baroclinic) instability always occurs when the PV gradients
have opposite signs in the two layers, ε1ε2 < 0 (details omitted).

Figure 15 shows the growth rates as a function of kx and ky, obtained using the
parameters of the characteristic simulation. The most unstable disturbances have small
meridional wavenumbers ky, and zonal wavenumbers kx between 11 and 13. For a given
kx, the maximum growth rate is positive until kx > 13. Hence, there are always distur-
bances with low kx which are unstable (note: kx = 0 is excluded). These disturbances
simply have higher meridional wavenumbers ky. Baroclinic instability occurs in a band
of total wavenumbers K =

√
k2x + k2y between approximately 11 and 13 here.
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Figure 15: Growth rate as a function of x and y wavenumbers, respectively kx and ky,
for the initial flow state used for the characteristic simulation.

Appendix B. Evolution variations
To illustrate the variability occurring between different simulations of the same flow,

two other nearly identical simulations have been conducted. All parameters were kept
the same as in the characteristic simulation previously illustrated, only the inversion grid
resolution was halved to 256 × 129. Additionally, a different random number seed was
used in each simulation.

The two simulations exhibit striking differences. In the first case, see figure 16, we see
oscillations between turbulent and quiescent phases, sometimes with a shift of the jets and
homogeneous regions, while retaining the jet spacing. The flow alternates between the
two different quiescent phases encountered in the characteristic simulation. The ‘centred’
state exhibits jets slowly coming together toward the center of the domain. By contrast,
the ‘shifted’ state does not exhibit any evident jet drift and moreover appears to be much
shorter lived. Arguably, the jet configuration of this state is less robust than that in the
centred state, though both the stability analysis of the zonal flow and the APE spectrum
show no major differences between the states.

In the second simulation, see figure 17, the shifted quiescent state develops after the
initial baroclinic instability and dominates the first third of the simulation. Turbulent
events throughout this period collapse back to this state except for the last one. This
prominent turbulent event instead collapses to a new configuration resembling the centred
state seen over much of the characteristic simulation. This state then dominates the
remainder of the evolution.
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