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Highlights

 The epidemiology between community-, healthcare- and livestock-associated 

MRSA is blurring.

 Genomic studies have helped understand the genetic changes associated 

with the evolving epidemiology.

 Genomics-based diagnostic tools such as whole-genome sequencing are 

useful in providing rapid information in relation to epidemiology and outbreaks.
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ABSTRACT

The evolution of meticillin-resistant Staphylococcus aureus (MRSA) from meticillin-

susceptible S. aureus has been a result of the accumulation of genetic elements 

under selection pressure from antibiotics. The traditional classification of MRSA into 

healthcare-associated MRSA (HA-MRSA) and community-associated MRSA (CA-

MRSA) is no longer relevant as there is significant overlap of identical clones 

between these groups, with an increasing recognition of human infection caused by 

livestock-associated MRSA (LA-MRSA). Genomic studies have enabled us to model 

the epidemiology of MRSA along these lines. In this review, we discuss the clinical 

relevance of genomic studies, particularly whole-genome sequencing, in the 

investigation of outbreaks. We also discuss the blurring of each of the three 

epidemiological groups (HA-MRSA, CA-MRSA and LA-MRSA), demonstrating the 

limited relevance of this classification.
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1. Introduction

Staphylococcus aureus is associated with a variety of diseases in humans, including 

superficial infections, deep-seated infections, acute sepsis, respiratory infection and 

toxin-mediated illnesses. The first clone of meticillin-resistant S. aureus (MRSA) was 

identified in 1961. Molecular epidemiological evidence suggests MRSA has evolved 

on multiple occasions from lineages of meticillin-susceptible S. aureus (MSSA) 

isolates. Although MRSA was initially a healthcare-associated pathogen dominated 

by distinct lineages and often associated with multidrug resistance, the emergence of 

genetically distinct community-associated MRSA (CA-MRSA) infections in the last 

two decades has led to a significant clinical impact outside the hospital setting. 

Moreover, CA-MRSA has also become established in healthcare settings and it has 

been suggested that these clones will replace the healthcare-associated MRSA (HA-

MRSA) clones over time. In addition, CA-MRSA is slowly acquiring resistance to 

other antibiotics and as a result phenotypic distinctions between HA-MRSA and CA-

MRSA are blurring [1]. Livestock-associated MRSA (LA-MRSA) is genetically distinct 

from CA-MRSA and HA-MRSA and has its main reservoir in farm animals [2]. 

Recent reports also suggest a blurring of this epidemiology and possible 

transmission of LA-MRSA between humans.

Genomic studies, particularly using whole-genome sequencing (WGS), enhance our 

understanding of the key features of each MRSA type and the genetic changes 

associated with changing epidemiology. They also allow us to map global, national 

and regional spread of variants and to investigate the selective pressures that shape 

the population. The introduction of WGS technology into routine diagnostics in 
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healthcare provides promise of rapid access to resistance, virulence, host adaptation 

and outbreak information, thus improving patient management, infection control and 

biosecurity.

This review is a summary of the discussions that took place at the 5th MRSA 

Working Group Consensus Meeting of the International Society of Chemotherapy in 

Verona, Italy, in May 2014.

2. The emergence of MRSA

MRSA emerged from MSSA lineages with acquisition of the staphylococcal cassette 

chromosome (SCC) element that carries either mecA or mecC (SCCmec). SCC 

elements are large segments of DNA that carry variable arrays of genes, which can 

include genes that encode resistance to antibiotics other than meticillin. Diverse 

SCCmec types (SCCmec types I–XI) have been described [3]. Acquisition of other 

mobile genetic elements (MGEs) carrying virulence genes and other antibiotic 

resistance determinants may lead to further adaptation of MRSA lineages [4]. MGE-

encoded virulence factors such as enterotoxins, Panton–Valentine leukocidin (PVL), 

other bicomponent leukocidins, toxic shock syndrome toxin and staphylokinase are 

carried by bacteriophages or S. aureus pathogenicity islands (SaPI) [5]. A wide 

range of antimicrobial resistance genes can also be carried on plasmids and 

transposons [6]. These genes can confer resistance to penicillins, macrolides, 

aminoglycosides, tetracyclines, chloramphenicol, fusidic acid, mupirocin, linezolid 

and biocides.
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Molecular typing techniques such as multilocus sequence typing (MLST) have 

defined the S. aureus population structure [7]. MLST assigns isolates to a sequence 

type (ST) based on the allelic profile of the sequence within seven housekeeping 

loci. Isolates that share five of the seven alleles may be grouped together into clonal 

complexes (CCs) that describe lineages. MRSA commonly associated with human 

infections worldwide is due to a limited number of lineages including CC1, CC5, CC8 

(and related ST239), CC22, CC30, CC45, CC59 and CC80 [4]. Lineages are 

genetically very distinct from each other with substantial variation in genes encoding 

for surface proteins and regulators, although they originally shared a common 

ancestor prior to SCCmec acquisition [8].

The epidemiology of MRSA in the four decades following identification of the first 

MRSA was principally associated with spread in hospitals. A handful of dominant 

clones accounted for the majority of HA-MRSA worldwide, e.g. ST22 and ST36 in 

the UK, ST239 in Asia and Australia, and ST5 in North America, Japan and Korea. 

These clones were able to establish themselves by their competitive advantage in 

the presence of intensive antibiotic use, most notably but not restricted to -lactams. 

In the late 1980s, MRSA began to emerge in the community. CA-MRSA has evolved 

independently of the HA-MRSA clones. In the beginning this was mostly confined to 

closed communities, e.g. Australian aborigines, but around the late 1990s CA-MRSA 

emerged worldwide in the general population. CA-MRSA clones typically possess 

SCCmec type IV or V elements and are often positive for the PVL toxin. Like HA-

MRSA, the distribution of the predominant clones tends to be geographically distinct: 

ST80 in Europe and Northern Africa, ST59 in the Far East, ST93 and ST1 in 

Australia, and ST1 and ST8 in the USA. Since 2005, MRSA from animals (LA-
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MRSA) has increasingly been recognised as a cause of human infections. LA-MRSA 

is predominantly due to the ST398 clone in Europe, whereas ST9/t899 dominates in 

Asia. ST398 and ST9 are tetracycline-resistant and are strongly associated with pig 

farms, although they are also found in a range of other farm animals. Like HA-MRSA 

and CA-MRSA, evolution of meticillin resistance appears to have occurred 

independently; phylogenomic analysis of representatives of the LA-MRSA CC398 

population suggests that this lineage has descended from a human MSSA ST398 

clone, which after a host jump acquired tetracycline and meticillin resistance. In this 

process the LA-MRSA lineage lost the Sa3 phage carrying the human evasion 

genes sak, scn and chp [9]. LA-MRSA marks a paradigm shift in the epidemiology as 

humans hitherto have been the dominant reservoir. Tackling of LA-MRSA requires a 

One Health approach with collaboration of veterinarians, farmers, doctors and 

environmentalists.

The epidemiological definitions for CA-MRSA, HA-MRSA and LA-MRSA (Table 1) 

may not be fit for purpose in future. For example, Folden et al. reported the variation 

in estimating the proportion of CA-MRSA infections using epidemiological definitions: 

use of one set of definitions classified 5% of isolates as CA-MRSA, whilst using 

another set led to as many as 49% of infections to be classified as CA-MRSA [10]. In 

order to avoid such misclassification, the US Centers for Disease Control and 

Prevention (CDC) has provided a definition for CA-MRSA (Table 1) [11]. However, at 

the same time as CA-MRSA is becoming common in the community, changes in 

hospital practice such as reduced length of stay, day-only admissions, and hospital-

in-the-home or community hospitals make application of traditional definitions difficult 

as facilities traditionally available in hospitals are increasingly delivered in the 
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community in a more integrated manner. Miller et al. failed to label any MRSA 

bacteraemia (n = 57) presenting at the Oxford Radcliffe Hospital (Oxford, UK) 

between 2003 and 2006 as caused by CA-MRSA [12]. Problems are also 

encountered when using antibiotic susceptibility pattern or traditional genetic 

signatures as an indicator of epidemiological origin. In the UK, ciprofloxacin 

susceptibility is used widely in clinical laboratories as a marker for CA-MRSA, but the 

resistance pattern is variable in America where levels of ciprofloxacin resistance 

approach 80% in some high-risk groups [13]. Similarly, PVL detection should not be 

used as a sole marker for CA-MRSA [14]. Genetic definitions that use the SCCmec

type IV element as a marker for CA-MRSA are flawed as they potentially include the 

EMRSA-15 (ST22) and USA800 (ST5) clones, which are epidemiologically HA-

MRSA. As the distinction between HA-MRSA and CA-MRSA becomes increasingly 

blurred, a classification based solely on the SCCmec type IV element is no longer 

helpful. Identification of markers associated with different epidemiological niches 

becomes valuable when combined with stable genetic markers identifying the origin 

of a successful clone such as clonal complex and SCCmec type.

Each MRSA clone has emerged as a result of genetic variation such as acquisition 

of resistance, virulence and host adaptation genes, coupled with selective pressures 

such as antimicrobial usage that allow it to expand in healthcare, community and 

animal husbandry niches. As the number and quantity of antibiotics being used 

increases, so does the selective pressure exerted on the S. aureus population to 

develop and maintain resistance. Such conditions favour horizontal transfer of novel 

mobile resistance elements, and consequently have the potential to drive the 

emergence of a new ‘super bug’ with a fully multidrug resistance spectrum. For 
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example, gene transfer from vancomycin-resistant enterococci led to the emergence 

of vancomycin-resistant S. aureus (VRSA) [15]. Fortunately, the relative fitness of 

these isolates is thought to be compromised [16]. Also alarming is the emergence of 

linezolid-resistant S. aureus (LRSA) belonging to the USA300 clone possessing the 

cfr resistance gene. Three such isolates were identified as part of routine 

surveillance in the New York region of the USA [17]. An outbreak of LRSA has also 

been reported in Spain [18].

In the remainder of the paper, we will further discuss the three epidemiological types

of MRSA with particular reference to the contribution of genomic information to our 

understanding of their emergence, spread and global dissemination, virulence and 

antibiotic resistance.

3. Hospital-associated meticillin-resistant Staphylococcus aureus

(HA-MRSA)

One of the most globally prolific clones of HA-MRSA in recent years is the epidemic 

MRSA 15 (EMRSA-15) clone, which belongs to the ST22/CC22 lineage. EMRSA-15 

was first described in 1991 in England, from which point it spread rapidly all over the 

UK, such that 15 years later two-thirds of all MRSA bacteraemia episodes were 

caused by this clone. Phylogenomic studies have proposed that pandemic MRSA 

CC22 emerged in the mid 1980s in the UK Midlands and coincided with the 

introduction of fluoroquinolone antibiotics in the UK. The acquisition of 

fluoroquinolone resistance by the EMRSA-15 clone through mutation was a seminal 

event in its emergence. This resistance pre-dated the clinical licensing of 
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fluoroquinolones, but occurred at a time when fluoroquinolones were used in clinical 

studies in the UK. In support of the importance of fluoroquinolone resistance in 

selecting for HA-MRSA, a decline in prescribing of fluoroquinolones in the UK has 

been followed by the decline of MRSA in hospitals [19,20].

Fluoroquinolone resistance is almost universal in EMRSA-15 isolates [21]. However, 

this lineage is also capable of carrying a variety of different genes located on MGEs 

that confer resistance to aminoglycosides, macrolides, chloramphenicol, 

trimethoprim/sulfamethoxazole, fusidic acid, mupirocin, tetracycline and antiseptics, 

highlighting the selection pressure placed on EMRSA-15 [20]. Evidence of how 

regional prescribing regimens generate regional adaptation can be found in the 

genetic determinants associated with clindamycin resistance. Holden et al. examined 

EMRSA-15 from Germany, where clindamycin use is high, and found that the 

majority of isolates contained multiple independent mutations to the ermC leader 

peptide region rendering them resistant to clindamycin as well as erythromycin. In 

contrast, in the UK where the use of clindamycin is limited, all EMRSA-15 ermC

leader peptides were intact, therefore making these isolates susceptible to 

clindamycin [21]. The human EMRSA-15 epidemic has also spread into the 

companion animal population [22,23], with veterinary hospitals also being healthcare 

settings that may experience high levels of transmission [24].

A noticeable feature of EMRSA-15 is its propensity to spread, expand and replace 

the dominant HA-MRSA. EMRSA-15 overtook the previously successful CC30 HA-

MRSA epidemic MRSA 16 (EMRSA-16; ST36-II) clone in the UK in the early 2000s. 

The replacement of resident HA-MRSA clones by EMRSA-15 has been well 
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documented in Portugal, Singapore and Australia [25–27]. One feature that may 

contribute to its success is the SCCmec IV element that this clone carries, which has 

a lower fitness cost than the larger SCCmec elements such as SCCmec types II and 

III that were prevalent in earlier HA-MRSA clones [28]. In addition, some variants of 

CC22 HA-MRSA have acquired the PVL-associated genes, causing outbreaks 

among neonates in Australia [29] and the UK [30].

Another interesting pandemic HA-MRSA clone is ST239-MRSA-III, widespread in 

Australian, Asian and South American hospitals. Epidemiological studies using WGS 

of global populations clearly showed that isolates were clustered into regional groups 

indicating localised evolution, but that transmission to other continents occurred 

sporadically [31]. There were clear associations between isolates from countries with 

close cultural links, such as Portugal and Brazil. There was also evidence of direct 

introduction of Asian isolates to Australia [32], the UK and Denmark. However, these 

MRSA failed to become established in hospitals in the UK and Denmark [20].

Other widespread HA-MRSA clones include CC5 [predominately ST5-MRSA-II (New 

York/Japan MRSA/USA100) and ST5-MRSA-VI (Paediatric clone)], CC8 [ST247-

MRSA-I (EMRSA-17/Iberian MRSA)], CC30 [ST36-MRSA-II (EMRSA-16/USA200)] 

and CC45 [ST45-MRSA-IV (Berlin MRSA/USA600)] [33]. The ST5 MRSA clone has 

been predominant in hospitals in America [34]. Data from the Active Bacterial Core 

Surveillance (ABCs) from the CDC indicate that USA100 (ST5) is the predominant 

strain type, although from 2004 onwards the more virulent type USA300 (ST8) 

isolates are increasingly recognised as a cause of hospital-associated bacteraemia 

[35–37]. Indeed, the USA300 epidemic peaked in 2004 leading to the mathematical 
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predictions that the USA300 CA-MRSA strains will eventually displace the HA-MRSA 

strains owing to the survival advantage of the former as a result of smaller and fewer 

genes leading to enhanced fitness [38]. Whilst USA300 continues to be a 

predominant clone, there are significant regional differences in the proportion of 

bloodstream infections caused by USA300 clone. Jenkins et al. found that the 

proportion of USA300 clone ranged from 19% to 62% of the bloodstream MRSA 

isolates even within Denver, CO [39]. The incidence of USA300 in invasive infections

has declined since the peak in 2004 [40]. Thus, whilst different countries and regions 

have different dominant clones, they also have different rates of MRSA infection, 

different prescribing practices and healthcare systems, each providing unique 

selective pressures that have a profound effect on strain dynamics.

4. Community-associated meticillin-resistant Staphylococcus 

aureus (CA-MRSA)

CA-MRSA has been circulating in Europe since the 1990s [41–43]. In the beginning, 

the CC80 lineage predominated the epidemiological group. The CC80 clones 

possess the PVL-associated genes that encode the PVL toxin. Phylogeographical 

analysis reveals that CC80 emerged in sub-Saharan Africa in the 1980s before 

rapidly disseminating into Europe, most likely via coastal areas of Guinea, as a result 

of human migration. This imported lineage then spread throughout Europe within 10 

years, followed by another secondary spread a few years later. At the time it was 

introduced into Europe the CC80 lineage contained the PVL-associated genes. 

Genes encoding PVL were subsequently acquired as it spread across continents. In 

terms of resistance to antibiotics, the African ancestor lineage was generally 
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susceptible except for tetracycline, whilst fusidic acid resistance was acquired 

following introduction into Europe where topical use of fusidic acid is widespread in 

some regions [44].

The American story of CA-MRSA is strikingly different. In the USA, CA-MRSA was 

first documented in children during the late 1990s. The isolates belonged to a single 

clone, designated USA400 (belonging to CC1), and caused sepsis with pneumonia 

associated with high lethality. The USA400 clone has subsequently been replaced 

by USA300, a member of CC8, which is now the most common CA-MRSA in 

America. Accompanying this shift in the MRSA population was a change in the 

epidemiology of CA-MRSA disease; CA-MRSA is typically associated with skin and 

soft-tissue infection. Amongst the MGEs that USA300 isolates carry is a type I 

arginine catabolic mobile element (ACME) containing the speG gene. The product of 

this gene, spermidine N-acetyl transferase, degrades host polyamines (e.g. 

spermidine) that are lytic to the bacteria, thus enhancing the fitness of the bacteria to 

survive within the host [45]. Within the CC8 lineage, nine clades have been 

identified, designated clades CC8-A to CC8-I [46]. This lineage has undergone a 

multiclonal expansion, in contrast to the European CA-MRSA CC80 that has given 

rise to a single successful clone with a clear geographical pattern of emergence and 

spread. Some clades within the CC8 (clades CC8-A, CC8-C, CC8-D and CC8-E) 

population appear to be geographically diverse, whereas others are geographically 

restricted to a single area (e.g. clade CC8-B in Europe). The multiclonal expansion is 

reflected in the diverse antibiotic resistance pattern of the CC8 lineage. Some clones 

are fully susceptible whilst others are multiresistant, particularly those belonging to 

CC8-E. Phylogenetic analysis reveals a stepwise incremental gain in antibiotic 
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resistance genes. The older representatives of CC8-E population harbour resistance 

to as many as nine antibiotics, whilst the newer clades such as clade CC8-A are 

pauci-resistant (resistance often limited to two antibiotics).

This appears to support the hypothesis that USA300 may be on the same trajectory 

as CC8-E was at one point in its evolutionary history and could in the future become 

multiresistant. Clade CC8-A also carries the PVL-associated genes and contains 

isolates that belong to the USA300 clone. In a study investigating the genomics of 

USA300, Uhlemann et al. found evidence for at least five different acquisitions of the 

lukSF-carrying prophage into the ST8 population, but only a single event into 

USA300 clone [47]. From their phylogenomic analysis, the authors concluded that 

acquisition of the lukSF-carrying prophage coincided with the acquisition of ACME 

and occurred between 1970 and 1993, resulting in the emergence of USA300. The 

USA300 clone has spread to other continents including Europe and South America 

[48]. The expansion of USA300 in Europe may have occurred as a single point 

introduction followed by spread, or by multiple introductions over a long period of 

time followed by limited spread on each occasion. WGS data on the French isolates 

reveal that following multiple introductions, the lineage has stabilised and may even 

decline [49].

Another clinically relevant gene associated with USA300 clone is the msrA gene 

encoding resistance to macrolides and streptogramins. This gene is carried on the 

rep16 plasmid, and at least eight rep family plasmids have been identified within the 

CC8 lineage. The rep16 plasmid was acquired more recently when it replaced the 

rep20 plasmid typical of the older isolates within clade A [46]. A feature of CA-MRSA 
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in the USA is high levels of genetic variation. Carpaij et al. found great diversity 

related to the acquisition of genes among 13 subtype USA300-0114 isolates isolated 

over a short period of 1 month from one single location, suggesting ongoing 

evolution of the clone [50].

In keeping with their geographical isolation, the epidemiology of CA-MRSA in 

Australia and New Zealand is unique. One of the earliest reports of CA-MRSA from 

this region was when infections caused by ST8 MRSA clone were reported amongst 

indigenous communities in Western Australia [51]. Later, ST30 CA-MRSA infections 

were reported from New Zealand, and more recently non-pigmented CC75 from 

Northern Australia. CC75 is sufficiently different from the other S. aureus lineages to 

the extent that a new species name has been proposed: Staphylococcus argenteus 

[52,53]. The other CA-MRSA lineages identified in the Australian survey include 

ST93-MRSA-IV, ST30-MRSA-IV, ST1-MRSA-IV, ST45-MRSA-IV, ST78-MRSA-IV 

and ST5-MRSA-IV (denoted by sequence type followed by SCCmec carriage). The 

CA-MRSA type that now predominates in New Zealand is the fusidic acid-resistant 

ST5-MRSA-IV clone [54].

The full epidemiological picture in Asia and Africa is unclear as data are lacking from 

many regions and from prior to the turn of the century. The dominant Asian clones 

include ST59-MRSA-IV/V in China, Taiwan, Singapore and Hong Kong, ST72-

MRSA-IV in Korea, ST30-MRSA-IV in Japan and the Western Pacific, ST80-MRSA-

IV in the Middle East, and the PVL-positive Bengal Bay clone ST772-MRSA-V in 

India. The latter clone has since been reported from various countries in Europe, the 

Middle East and Australasia. Closely related to the CC1 lineage, the ST772 has 
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several distinguishing features such as resistance to multiple antibiotics, different 

accessory gene regulator (agr) group (group II), and capsule type 5 rather than 8 

[55]. The African origin of the European CA-MRSA clone has been well described, 

and CA-MRSA has been reported from Egypt, Mali, Algeria and Nigeria. Sampling of 

individuals from the remote Babongo tribes in Gabon found a high percentage (55%) 

of PVL-positive clones of MSSA, but MRSA was not detected in any of the samples. 

The MSSA clones found in this study include the common clonal lineages CC1, CC5, 

CC30 and CC80, despite the remote location of this tribal population [56].

5. Livestock-associated meticillin-resistant Staphylococcus aureus

(LA-MRSA)

Infections with LA-MRSA can occur in people who have direct contact with farm 

animals in factory farms (especially pig and poultry production systems). This affects, 

for example, farmers, veterinarians or slaughterhouse employees. MRSA was first 

described in animals in 1972 when it was found in a cow [57]. However, it was not 

until 2005 when CC398 MRSA was reported from pigs both in France and The 

Netherlands that livestock was shown to be an important zoonotic reservoir for 

MRSA. Pigs are the main reservoir for CC398, but this clone has also been found in 

veal calves (especially in The Netherlands and Belgium), poultry, horses and, to a 

lesser extent, dairy cows. In addition, CC398 has been found in pets such as dogs 

and cats as well as in rodents. There is a general consensus that the prevalence of 

CC398 is increasing rapidly worldwide. However, precise information on the true 

prevalence of CC398 in animals is difficult to obtain. In The Netherlands it is 

estimated that >80% of all farms are MRSA-positive. In Denmark, a recent 
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surveillance study showed that 60–70% of all pig herds are positive, whereas in 

Norway only a very few farms have been found to be positive. However, in most 

other countries no systematic surveillance on CC398 or other types of LA-MRSA is 

performed in animals (the same holds true for the surveillance of these strains in 

humans).

Whilst CC398 MRSA is the overwhelmingly dominant lineage in livestock in Europe, 

CC9 MRSA is the predominant type in Southeast Asia. In addition to these two 

clonal complexes, a number of other MRSA lineages including CC1, CC5, CC97, 

CC121, CC130 and ST425 have been reported from livestock [58]. MRSA belonging 

to CC130 and ST425 are meticillin-resistant due to the recently described mecC 

gene instead of the mecA gene. The mecC gene only has ca. 70% similarity to the 

mecA gene [59]. As a result, molecular diagnostic assays need to encompass 

primers for both types. CC97, a widely disseminated human CA-MRSA type, is also 

interesting as it descended from bovine MSSA and has acquired SCCmec after the 

bovine-to-human host adaptation. This is in contrast to the livestock clade of CC398 

that acquired SCCmec after jumping from humans to pigs [9,60].

The risk factors for transmission between herds are not fully elucidated. Trade of 

MRSA-positive pigs is the most important risk factor. However, several herds have 

been found positive without acquisition of new animals for many years prior to the 

detection of MRSA CC398. In these cases, introduction from MRSA-positive humans 

(such as veterinarians or new employees) or from rodents are possible transmission 

routes. Within herds, use of antimicrobials, particularly -lactams and tetracyclines, 

and trace metals including zinc are important selective pressures [61]. The latter is 
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substantiated in the dominant SCCmec V (5C2&5) cassette, which includes the czrC 

gene [62].

By far the most important risk factor for LA-MRSA in humans is repeated direct 

occupational contact with animals positive for MRSA. The extent of the risk is 

dependent both on contact time and contact intensity. In Denmark, 70% of all new 

cases found in 2013 reported direct contact with pigs and an additional 17% were 

household members of persons with close contact with live pigs. Of the remaining 

13% with no pig contact, the majority of cases lived in rural areas with high pig 

density, whereas few occurred in urban areas. This indicates that transmission 

occurs via local spillover from persons working at livestock farms or through contact 

with the farm environment itself rather than through a generalised spread in the 

community [63]. The relative contribution of transmission via the environment or via 

humans in contact with pigs is unknown. However, based on knowledge of 

transmission of S. aureus in other settings, transmission through human-to-human 

contact is likely to predominate [64].

As MRSA has been found on meat in 10–20% of samples tested on many 

occasions, there have been reports in the lay press on the risk of acquisition of 

MRSA via the food chain. The epidemiology on LA-MRSA, however, clearly shows 

that meat is not an important route of transmission. If it were the case, one would 

see a very different geospatial distribution among cases not associated with pig 

contact [63]. Further evidence against this route of transmission is provided by the 

low incidence of LA-MRSA found in slaughterhouse workers. There may be some 

risk of acquisition of MRSA as a result of handling of meat, rather than ingestion, but 
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this risk is not significant and clearly has not been associated with widespread 

transmission. Washing hands immediately after handling food is a very effective way 

to block transmission.

The increasing reservoir of LA- MRSA in pigs as well as in humans in direct contact 

with pigs results in an increasing number of cases in the general community, 

particularly in immunocompromised individuals. Therefore, unless this epidemic is 

contained, it is likely that we will see increasing numbers of severe infections due to 

LA-MRSA. Köck et al. reported that 16 (8%) of 194 MRSA bacteraemia episodes in 

Germany diagnosed during the years 2008–2012 were due to MRSA CC398 [65]. 

Furthermore, the greater the human carriage of LA-MRSA clones, the greater the 

risk that these clones will undergo adaptation enhancing human-to-human 

transmissibility.

Measures to counteract the expanding reservoir in pigs are thus urgently needed, as 

are measures to lower the bacterial burden in the farm environment.

6. Application of genomics in epidemiological settings and 

outbreak investigations

Modern genetic tools have greatly expanded our knowledge of the epidemiology of 

MRSA infection and allowed a closer examination of outbreaks in the hospital and 

the community. Classical typing methods or antibiogram may not have sufficient 

resolution power to link MRSA clones during an outbreak investigation. For example, 

WGS has been used retrospectively in an outbreak in a Special Care Baby Unit in a 
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UK hospital in Cambridge [66]. Of the 17 cases in the unit over a 6-month period, 12 

appeared to be linked based on identical or near-identical antibiotic susceptibility 

patterns. However, WGS data revealed that 14 of the 17 isolates belonged to a new 

type, ST2371 (a single-locus variant of ST22 that possesses the PVL-associated 

genes). Thus, only three of the five isolates excluded as a result of antibiogram 

mismatch were correctly excluded: the remaining two were in fact associated with 

the outbreak. Also, the sequencing data identified additional cases, both 

retrospectively and prospectively, linked to the outbreak but beyond the parameters 

of the outbreak as defined in the traditional infection control investigations. Following 

a new case more than 2 months after the outbreak was thought to have ceased, 

screening of staff identified a single MRSA carrier. WGS of colonies of S. aureus

from this individual identified genetic overlap in the colonising population of the staff 

member and the outbreak population. The application of WGS for the near real-time 

analysis of outbreaks has great utility. Moreover, the technique encompasses the 

information provided by the more traditional genotyping tools such as sequence 

typing coupled with the detection of specific genes such as those encoding PVL toxin 

and other virulence determinants. The rapid detection of genes associated with 

pathogenicity, transmission and resistance may help in limiting spread within 

hospitals by timely adherence to strict infection control protocols, and may also help 

in characterising atypical clones that pose a threat. These clones may be 

misreported in routine clinical laboratories. Recent sequencing work on four clones 

from Scotland identified several single nucleotide substitutions in the transpeptidase 

domains of penicillin-binding proteins (PBPs) 1, 2 and 3 that can explain resistance 

to -lactamase-stable penicillins [67]. Transmission of MRSA in the setting of 
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deceased donor liver transplant was confirmed using WGS in a recent report [68]. 

The diagnostic value of WGS cannot be overemphasised.

WGS has also been used for understanding the epidemiology and transmission 

dynamics of MRSA by creating a sequencing database. Based on the numbers of 

single nucleotide polymorphisms (SNPs) and their dispersion within the genome, it is 

possible to discriminate between the timing of acquisition and the relationship 

between isolates. Bartels et al. found 59 SNP differences between two isolates 

belonging to the ST80 clone from the same household, which indicates long-term 

carriage based on the fact that SNPs are acquired at a predictable rate [69]. 

Application of WGS in human infections with MRSA carrying the mecC gene 

identified two distinct clusters with transmission confined between individuals and 

their livestock, with only small differences in SNPs between the animal and the 

human isolates, supporting zoonotic transmission. MLST, pulsed-field gel 

electrophoresis (PFGE) and multilocus variable-number tandem repeat analysis 

(MLVA) were unable to distinguish between the two clusters [70].

7. Conclusion

The story of MRSA is one of dramatic recent success driven by the widespread use 

of antibiotics. Staphylococcus aureus clones have co-evolved with humans, and 

MRSA have emerged from the population on multiple occasions. The rapid spread of 

MRSA has been aided by human migration, which itself has reached a level never 

seen before in the history of mankind. MRSA has adapted to the environments and 

conditions that humans have created and where they have thrived. Clones have 
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jumped from one host species to another, have amplified in the niche areas, and 

then gone back to colonise the population where it emerged while still retaining a 

strong foothold in specialised environments. There is significant overlap between 

clones across the traditional groups (HA-MRSA and CA-MRSA) as well as some 

blurring of the groups themselves as healthcare is increasingly delivered in the 

community. Newer technologies such as WGS will lead to a better epidemiological 

understanding of MRSA. Use of antibiotics in humans and livestock has given this 

highly adaptive species a survival advantage, as it is easily able to acquire 

resistance. Staphylococcus aureus has not lost its virulence either, as it continues to 

be a primary human pathogen with significant mortality associated with invasive 

disease.
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Table 1

Definitions of community-associated (CA), hospital-associated (HA) and livestock-

associated (LA) meticillin-resistant Staphylococcus aureus (MRSA)

MRSA Definition and/or salient features

HA-

MRS

A

Identified >48 h after admission to a healthcare facility, or MRSA identified 

in an individual with history of MRSA infection or colonisation, admission 

to a healthcare facility, dialysis, surgery or insertion of indwelling devices 

in the past year

CA-

MRS

A

Identified in the outpatient setting or within 48 h following hospital 

admission in an individual with no medical history of MRSA infection or 

colonisation, admission to a healthcare facility, dialysis, surgery or 

insertion of indwelling devices in the past year

LA-

MRS

A

No formal definition. Usually belong to CC398 lineage in Europe but often 

CC9 in Asia. Acquired via occupational contact with livestock

CC, clonal complex.


