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Figure 1. (left) SWiM technique: Tap and tilt the device to trace the word. (right) SWiM prototype on a phone, smartwatch and tablet.

ABSTRACT
The popularity of mobile devices with large screens is making
single-handed interaction difficult. We propose and evaluate
a novel design point around a tilt-based text entry technique
which supports single handed usage. Our technique is based
on the gesture keyboard (shape writing). However, instead of
drawing gestures with a finger or stylus, users articulate a ges-
ture by tilting the device. This can be especially useful when
the user’s other hand is otherwise encumbered or unavailable.
We show that novice users achieve an entry rate of 15 words-
per-minute (wpm) after minimal practice. A pilot longitudinal
study reveals that a single participant achieved an entry rate of
32 wpm after approximate 90 minutes of practice. Our data
indicate that tilt-based gesture keyboard entry enables walk-up
use and provides a suitable text entry rate for occasional use
and can act as a promising alternative to single-handed typing
in certain situations.
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INTRODUCTION
Screen sizes on mobile devices have been increasing, as shown
by the recent popularity of phablets (e.g., 5.7" Galaxy Note
3 and 5.5" iPhone 6 Plus). However, it’s difficult to hold a
phablet firmly in one hand, let alone interact with it. This is
due, in part, to the limited functional area of the thumb [4]
which makes it difficult to reach all areas of the screen. In addi-
tion, unintended touches from the palm area may occur. These
problems will be exacerbated if the trend of larger mobile
phone screens continue. Yet, there are many occasions when
the user’s other hand is encumbered [22] or not available, such
as due to a disability or when holding a bag, a cup of coffee,
or an umbrella. Indeed such interaction is now commonplace,
as an informal observation of people in public places showed
49% of people hold the phone using only one hand [15].

Mobile devices are often used for text-based communication.
Analysts estimate the annual worldwide number of Short Mes-
sage Service (SMS) text messages sent to be 6.5 trillion and
the number of Over-the-top content (OTT) instant messages
sent over the Internet (e.g., using WhatsApp) to be 10.3 tril-
lion [27]. A study [1] showed that, even when walking or
commuting, 85-88% of users continued typing with one hand
while the other is not available. However, holding a phablet
and typing with one hand can be difficult, if not impossible.

Azenkot and Zhai [3] explored different hand postures for
typing on a phone and found that one-thumb typing can be
quite fast, achieving 33.78 wpm, assuming no errors occur.
They used a relatively small 4.3" phone screen, where there is
no thumb reachability problem. In contrast, typing one-handed
on a larger device requires changing or shuffling one’s grip
frequently, which is difficult and might result in accidentally
dropping the device. It could also cause unintended touches,



especially from the inner palm area of the hand near the thumb.
To address this issue, developers and vendors often shrink the
touchscreen keyboards to effectively extend the thumb’s reach.
This solution is far from perfect since shrinking the keyboard
to one side requires the user to touch with the side of the thumb
rather than the tip, hence, it can exacerbate occlusion and the
fat finger [13, 14, 29] problems.

In this paper, we introduce Shape Writing in Motion (SWiM),
a tilt-based gesture keyboard text entry technique that sup-
ports entering one word per gesture. As the name implies,
it is based on the shape writing technique [17, 19, 40], com-
monly referred to as a gesture keyboard [18, 41], which we
extend to support tilt. Instead of using a finger to draw over
the on-screen keyboard, we use wrist motion of the domi-
nant hand to perform shape writing. As previously noted, the
dominant hand typically exhibits finer temporal and spatial
resolutions [11]. Our tilt-based technique allows one-handed
text entry and also lends itself as a suitable text entry method
for remote controllers, wearable devices, and for virtual reality
text entry, where users cannot see the keyboard input device.

We make the following contributions: 1) We propose and
implement a technique (SWiM) for tilt-based single-handed
text entry that supports mobile devices of various form factors
including phone, tablet, and smartwatch. 2) We evaluate text
entry performance of our technique using both a transcription
and a composition task. The results show that SWiM is fast
and easy to learn compared to many existing single-handed
text entry techniques. In addition, we explore performance
improvement over time via a longitudinal pilot study.

RELATED WORK
Many existing single-handed text entry methods [7, 9, 16, 28,
35, 37], while promising, suffer from inefficiencies. They only
support entry of a single character for each defined action.
This can be slow and tedious, especially when writing long
messages. In contrast, SWiM produces a full word per gesture.

Tilt-based Mobile Interaction and Text Entry
Tilt has been frequently explored for mobile interaction. Reki-
moto [25] and Weberg et al. [36] explored using a tilt signal to
navigate menus and 2D maps. Several other studies [8, 12, 33]
also explored single-handed interaction on mobile devices by
combining motion and touch to 1) assist targeting and extend
thumb’s reach [8], 2) enhance navigation with quick command
gestures [33], and 3) enable new types of motion gestures,
such as tilt to zoom, pivot-to-lock, and shake to delete [12].
Although there have been many attempts to use tilt and tilt
gestures for text entry, we have applied tilt to shape writing to
address the single-handed text entry problem.

TiltType [23] was the first to explore text entry with a tilt tech-
nique. TiltType combines multiple buttons with the direction
and the angle of tilt to disambiguate the intended letter, but
no evaluation was performed. Later, TiltText [37] proposed a
technique that combines tilt with the standard 12-key phone
keypad to reduce the time required to disambiguate the letters
on a single key. TiltText reported a novice speed and a last
block speed of 7.42 wpm and 13.57 wpm, respectively. Ges-
Text [16] uses only the accelerometer found in a Wiimote and

converts the tilting action into a letter based on two proposed
layouts. It reported 5.3 wpm on the fourth day for the fastest
layout. Fitton et al. [9] used a tablet’s built-in accelerometer
to control a pointer over a virtual keyboard, with dwelling as
the delimiter to achieve 10 wpm entry rate.

In the Unigesture approach, Sazawal et al. [28] proposed using
a sequence of tilt gestures to infer a word. Input speed of
roughly 4 wpm was achieved. This demonstrates that word-
based input is not always faster than character-based input.
Williamson et al. [38] presented a gestural text entry tech-
nique via continuous movements but no formal evaluation
was conducted, except the author claimed that he was able to
achieve 10–12 wpm. Castellucci et al. [7] incorporated Huff-
man codes with gestures for text entry, and reported an entry
rate of 5.3 wpm. Rotext [35] proposed a one-dimensional
rotational text entry technique that supports sight-free use by
mapping the device orientation to an optimized layout. It
achieves 14.2 wpm on the first session (sighted) and 12.6 wpm
on the final session (sight-free). These techniques could, with
practice, be used eyes-free. This would benefit mobile users,
as their visual attention could return to navigating their envi-
ronment and avoiding obstacles. SWiM is not capable of such
input. However, in exchange for attending to the keyboard,
the SWiM users would be able to use any word correction or
completion features of the gesture keyboard.

Alternative Shape Writing Methods
Shape writing (gesture keyboard) [17, 19] enables fast text
entry by allowing users to draw the shape of a word instead of
typing each character. It gained popularity on touch screen de-
vices but not in other input modalities. Recently, Vulture [21]
explores shape writing in mid-air, and achieves 11.8 wpm
(first session) and 20.6 wpm (tenth session). However, it re-
quires a complex setup involving optical markers and is not
practical for mobile computing. Kristensson [17] also sug-
gested an alternative solution for shape writing that uses a
phantom keyboard to reduce the fat finger and occlusion prob-
lem. Reyal et al. [26] evaluated real-world use of shape writing
on touchscreen mobile phones. Users eventually reached an
entry rate of nearly 40 wpm when using shape writer daily on
their own phones. Gordon et al. [10] evaluated shape writing
for touch-based smartwatch text entry and reported an entry
rate of 24 wpm. Lastly, a similar technique to our approach is
the SwiftKey Tilt [30]. However, it was an April Fools’ joke
and the prototype does not trace the word using tilt.

SYSTEM DESIGN
SWiM is a tilt-based text entry technique. Therefore our de-
sign is based on related tilt-based research on wrist and text
entry. SWiM leverages the presence of accelerometers and
gyroscopes in modern mobile devices. In addition to phones
and tablets, SWiM could be included in many other devices,
such as game controllers, TV remotes, head-mounted displays
(HMD), and wearable devices.

Designing SWiM Interaction
Traditional shape writing involves the following procedure for
the user to enter a word [19]: 1) Touch the key corresponding
to the first letter in the word; 2) Draw a line over all successive



letters, in order; and 3) Release the touch. SWiM has a similar
procedure but it is modified with tilt input: 1) Tilt the device so
that the pointer (i.e., ball) is on the first letter, and tap the “chat
head” (detailed below) to begin input; 2) Tilt the device so that
the ball traces a path over all successive letters, in order; and
3) Tap the chat head again to end input. The overall steps are
depicted in Figure 1 (left).

Leveraging the knowledge from previous tilt-based research,
we employ position-control for the pointer in SWiM, as it is
superior to velocity-control in many aspects [32]. Furthermore,
we use only the pitch and roll, as the dexterity of yaw using
one’s hand is very limited [24]. We limit the range of pitch and
roll motion to ±30 degrees from a rest position to i) improve
screen visibility and ii) because wrist motion is most sensitive
and precise within this range [24]. For example, when tilted
30 degrees left, the pointer will be on the left edge of the
screen. Any further tilt will not move the pointer outside the
screen. Finally, we use a linear mapping instead of a quadratic
mapping because Rotext [35] showed that linear mapping is
more accurate for text entry purposes, even though Rahman et
al. [24] suggest that a quadratic mapping is better for general
tilt-based selection and pointing.

Importantly, SWiM augments existing commercial touch-
screen gesture keyboards, such as ShapeWriter, Google’s ges-
ture keyboard, Swype [31], and SwiftKey-Flow [30]. SWiM
injects touch events based on the position of the pointer. The
system detects the start and end of a gesture when the user
taps the chat head (a floating touch region similar to Facebook
Messenger’s chat head or iPhone’s AssistiveTouch), as shown
as the blue floating bubble in Figure 1 (right). This touch
region can be easily relocated to a different location on the
screen using a long drag. Thus, it supports either handedness
and different hand grip postures. It can also be made semi-
transparent with a minimal outline so that it does not occlude
screen content.

An advantage of our tilt-based implementation is that it enables
simple swipe gestures (e.g., swipe left to delete) in addition
to the tilt-based shape writing. These simple swipe gestures
have been shown to be beneficial [2], but supporting them was
previously impossible, due to typical gesture keyboard would
interpret the swipe as word input.

IMPLEMENTATION
During text entry, we retrieve the orientation of the device
(pitch and roll) and map it to absolute tilt magnitude (degrees)
and screen coordinates (x, y) for controlling a pointer. We
then overlay the pointer (e.g., ball) and a touch region (chat
head) on top of any application. The position of the pointer is
smoothed using the one-Euro filter [5] to reduce jitter.

When a tap is detected on the chat head, we start injecting a
touch-down event and touch-move event at the current pointer
position. Therefore, a dragging action is seen when the device
is being tilted, as shown in Figure 1. We then inject a touch-
release event on the second tap. We intentionally did not
constrain the ball inside the keyboard area (bottom half of the
screen) because it would disable one of the useful features of
the gesture keyboard: dragging out from the keyboard as a

shortcut to capitalize the letter. By default, the ball position is
always initialized in the middle of the keyboard area when the
device is held with a typical hand posture, inclined about 45
degrees. This rest position is user-customizable via a slider.

The remainder of the text entry process is handled by the shape
writing keyboard itself. In general, the soft keyboard will use
the dragged path to produce the most appropriate word [19],
along with other highly probable words on the suggestion bar.
Users can continue input, which implicitly selects the first
suggested word and inserts a space. Alternatively, the user can
select a word from the suggestion bar by using the ball as a
pointer and performing a short click. If the desired word is not
in the suggestion bar, users can swipe left on the chat head to
delete the current word, and start over again. A swipe right
gesture on the chat head will simulate pressing the ENTER key.
While swipe up and swipe down are currently not assigned,
they could be used for toggling the SHIFT key. In addition,
the chat head can be easily extended to support more complex
gestures such as swipe left-down, circle, or pigtail gestures.

EVALUATION
Our objective was to study the immediate usability of SWiM
with minimal training, and how it compares to one-thumb
typing and one-thumb shape writing on a large mobile device
(e.g., a phablet). We conducted one study with a traditional
transcription task and one study with a composition task [34],
specifically the reply task. One participant from the first study
also volunteered for a longitudinal study which consisted of
five more sessions of the same transcription task.

Apparatus and Participants
The primary study was conducted on a 5.7" Samsung Galaxy
Note 3 Android phone, as the device area represents a com-
mon phablet size in the market. For one-thumb typing and
one-thumb shape writing, the keyboard was reduced in size
and aligned right/left to ease the thumb’s reach, to simulate
more realistic real world usage, and to reduce bias towards our
technique. We used the Swype [31] keyboard throughout our
study for consistency across all techniques. The keyboard di-
mensions were 7×4.2 cm (default) and 5.8×4.2 cm (reduced).
We used Text Entry Metrics on Android (TEMA) [6] to present
the phrases and log the transcribed text, along with measuring
text entry metrics.

For the transcription task, we recruited 12 participants (3 fe-
males and one left-handed) from our university campus. Their
ages ranged from 19 to 30 years (mean = 23.7, sd = 4). Two
participants had experience with shape writing but none had
used tilt for text entry before. Five of the participants are na-
tive English speakers and the rest can communicate in English
fluently. Their self-rated English skills were between 4 and 7
(mean = 5.96, sd = 1.03) on a seven-point scale, where “1 - No
English skills” to “7 - Native”.

For the composition task, we recruited 6 participants (all male,
all right-handed) from our university campus. Ages ranged
from 18 to 37 years (mean = 25.0, sd = 6.84). Three partic-
ipants had experience with shape writing but none had used
tilt for text entry before. Two of the participants are native
English speakers and the rest can communicate in English



Figure 2. Transcription task: (left) Mean entry rate in wpm of 3 blocks
in the first session. Errors bars equal ± 1 sd. (right) Mean entry rate in
wpm of each of the three blocks in the first session.

fluently. Their self-rated English skills were between 6 and 7
(mean = 6.33, sd = 0.51) on the same scale as above.

Procedure
Before the experiment, we explained the tasks and demon-
strated the three techniques: one-thumb typing, one-thumb
shape writing, and SWiM. Participants were allowed 10 prac-
tice trials for each technique before proceeding with the exper-
iment. Technique order was counter-balanced.

For the transcription task, participants were instructed to type
the provided phrases as quickly and as accurately as possible.
This is similar to previous text entry studies [39]. For the com-
position task, we used the recommended instruction in [34],
which for completeness is quoted in full below: “Imagine
you are using a mobile device and need to write a message.
We want you to invent and type in a fictitious (but plausible)
message. Use your imagination. If you are struggling for
ideas, think about things you often write about using your own
mobile device.” [34]

On average, the study took 60 minutes. Users were seated
throughout the test and held the device with their dominant
hand. A NASA-TLX questionnaire was administered to each
user at the end of the study. For both studies, participants were
compensated with a £10 Amazon voucher.

Design
For both studies, we used a within-subjects design with one
independent variable, technique, with three levels: one-thumb
typing, one-thumb shape writing and SWiM. Participants com-
pleted one session, consisting of the 3 techniques. For each
technique, participants completed 3 blocks of 10 phrases. For
the transcription task, participants entered 10 phrases, sampled
randomly from the MacKenzie and Soukoreff phrase set [20].
This resulted in a total of 12 participants × 3 techniques ×

Figure 3. Entry rate of each technique in wpm for each of the twelve
participants over three blocks of ten phrases in the first session.

Figure 4. Composition task: (left) Mean entry rate in wpm of 3 blocks
in the first session. Errors bars equal ± 1 sd. (right) Mean entry rate in
wpm of each of the three blocks in the first session.

3 blocks × 10 phrases = 1080 transcribed phrases. For the
composition task, participants entered 10 replies to messages
from the Vertanen and Kristensson [34] corpus. This totaled
6 participants × 3 techniques × 3 blocks × 10 phrases = 540
transcribed phrases. For the longitudinal study, one volunteer
continued with the transcription task for five more sessions. In
total, this participant entered 180 phrases for each technique.

The dependent variables were entry rate and error rate. We
measured entry rate in words per minute (wpm), where a word
is defined as five consecutive characters including space. We
measured error rate as the character error rate (CER), which is
calculated as the minimum edit distance between the presented
phrase and the transcribed text, divided by the number of
characters in the presented phrase, and reported as a percent.

Auto correction was partially enabled for the typing technique.
The keyboard would not automatically replace a wrong word
with a corrected one after the space key is hit. However, the
auto-corrected word will appear as the first word in the sugges-
tion bar and participants were encouraged to use that to select
the correct word. Nonetheless, users were also encouraged
to type as quickly and as accurately as possible, rather than
being careless and only relying on auto-correction.

Quantitative Results
Transcription Task
In the transcription task, participants achieved mean entry
rates of 25.22 wpm (sd = 4.01), 29.03 wpm (sd = 6.34), and
15.48 wpm (sd = 2.46) in the typing, shape writing, and SWiM
conditions, respectively. These results are summarized in Fig-
ure 2 (overall) and Figure 3 (per-user). Conducting a repeated-
measures analysis of variance revealed that the effect of input
technique on entry speed was significant (F2,12 = 39.38,
p < 0.0001), with an observed power of 1.0. Tukey, Scheffé,
LSD, and Bonferroni post-hoc tests all indicated significance
only between the tilt technique and the other two techniques.
Further our counterbalancing was effective as the order of
input techniques was not significant (F5,6 = 0.51, p > 0.05).

Participants entered text accurately with all three techniques.
The mean character error rates (CER) in the typing, shape
writing, and SWiM conditions was 0.42% (sd = 0.40%), 0.67%
(sd = 0.39%), and 0.88% (sd = 0.82%), respectively. Unlike
entry rate, input technique did not have a significant effect on
CER (F2,12 = 2.88, p > 0.05). Though, counterbalancing was
again effective (F5,6 = 0.51, p > 0.05).



Figure 5. Pilot longitudinal study shows learning effect of P3 for extra
five sessions, visualized over 18 blocks where each block has 10 phrases.

Composition Task (Reply)
In the composition task, participants achieved mean entry
rates of 30.83 wpm (sd = 7.45), 43.59 wpm (sd = 12.54),
and 16.28 wpm (sd = 2.93) in the typing, shape writing, and
SWiM conditions, respectively. These results are summarized
in Figure 4. Input technique again had a significant effect
on entry rate (F2,6 = 41.85, p < 0.0001). Post-hoc analysis
revealed significance between shape writing and SWiM. An
LSD test did show significance between all three conditions,
but LSD is a less powerful test. As with the previous study,
counterbalancing was effective (F2,3 = 0.39, p > 0.05).

We analyzed the error rate in the composition task manually
following the protocol introduced by Vertanen and Kristens-
son [34]. Mean CER in the typing, shape writing, and SWiM
conditions was 0.78% (sd = 0.71%), 0.92% (sd = 0.76%),
and 1.4% (sd = 0.66%), respectively. Input technique did
not have a significant effect on CER (F2,6 = 0.700, p > 0.05).
As with the previous study, counterbalancing was effective
(F2,3 = 0.39, p > 0.05). Participants generally entered short
replies with an average character count of 23.47 (Typing),
22.81 (Shape Writing), and 20.58 (SWiM).

Longitudinal Pilot
One participant (P3) from the transcription task volunteered
to perform a 5-session longitudinal pilot study (Figure 5). In
the first session, this participant achieved an entry rate of
27.79 wpm (typing), 35.89 wpm (shape writing) and 15.60
wpm (SWiM). By the sixth session, the same participant
achieved 34.13 wpm (typing), 46.47 wpm (shape writing),
and 32.18 wpm (SWiM). This is an improvement of 22.8%,
29.5%, and 106.3% for typing, shape writing and SWiM, re-
spectively. We estimated approximately 90 minutes of usage
for each technique. The first session took roughly 60 minutes
for 3 techniques including briefing and resting time, while the
following sessions were much faster.

Qualitative Results
Transcription Task
The NASA-TLX scores for all three conditions are shown in
Figure 6 (lower scores are better). As expected, participants
rated the novel technique as having a higher workload than
the more familiar text entry methods. In the effort subscale,

Figure 6. (Top) Transcription task: Average NASA-TLX scores from 12
participants. (Bottom) Composition task: Average NASA-TLX scores
from 6 participants. Lower is better.

SWiM scored 4.3, shape writing scored 2.7, and typing scored
2.8. Interestingly, the scores for performance were similar.
Shape writing scored best (2.5), followed by SWiM (3.2), and
typing (3.3). It is very encouraging to have novice users rate
SWiM as having similar self-rated performance as established
techniques.

Due to the non-parametric nature of the scores, Friedman’s
test was used to compare ratings of the three within-subjects
conditions. The test corrects for ties, of which there were
many. Subsequent post-hoc comparisons using the Conover’s
test were conducted, when we found statistical significance.

The statistical analysis revealed significant differences
amongst the techniques with respect to effort (χ2 = 9.897,
p < 0.01, d f = 2), mental (χ2 = 10.844, p < 0.005, d f = 2),
and physical (χ2 = 6.0, p < 0.05, d f = 2). For both effort and
mental subscales, the difference was between SWiM and the
other two conditions. For the physical subscale, there was only
a significant difference between SWiM and shape writing.

Composition Task
For the composition study, the NASA-TLX score is shown
in Figure 6. As with the transcription task, the scores for
SWiM were worse than the other two techniques. With the
composition task though, the disparity in scores was larger.
This is especially so for effort, where SWiM scored 5.5, versus
3.2 for shape writing, and 2.5 for typing. There were signifi-
cant differences amongst the techniques with respect to effort
(χ2 = 9.364, p < 0.01, d f = 2), mental (χ2 = 9.10, p < 0.05,
d f = 2), performance (χ2 = 6.952, p < 0.05, d f = 2), and
physical (χ2 = 7.60, p < 0.05, d f = 2) subscales. For
both effort, mental, and physical subscales, the difference
was between SWiM and the other two conditions. For the
performance subscale, there was only a significant difference
between SWiM and shape writing.

DISCUSSION
In the transcription task, participants’ SWiM entry rates were
about half of those for one-thumb typing and shape writing.
The mean CER remained low (below 0.9%) for all techniques.



This suggests that they are all suitable for text entry tasks,
ranging from casual messaging to more formal communication.
Since all of our users have little to no experience with the tilt
technique, we expected a steep learning curve. Indeed the
NASA-TLX scores indicate SWiM is the most demanding of
the three techniques. Yet, our results show that users were able
to enter text using SWiM relatively well after minimal training.
Figure 2 (transcription) and Figure 4 (composition) both show
that SWiM’s performance steadily grows over time, even with
only 3 blocks of trials. SWiM’s increasing entry rate is more
obvious in the longitudinal pilot study results (Figure 5). In
the composition task, entry rates for all techniques were higher
than the transcription task.

It is not possible to directly compare performance figures
across different studies as many variables change (participants,
apparatus, task, etc.). However, as an indication of SWiM’s
relative performance compared to previous tit-based text en-
try methods, we note that SWiM’s mean entry rates surpass
those obtainable from previously published tilt-based text en-
try methods. We believe that expert performance of SWiM
can increase further, since SWiM is built on the principles of
the gesture keyboard [19], which gradually transitions peo-
ple from slow visually-guided closed-loop interaction to fast
open-loop direct recall from motor memory. From our pilot
longitudinal study, we can see that SWiM has a much higher
improvement rate (106.3%) over the other two techniques
(22.8% and 29.5%), which indicates that the other techniques’
performance potential saturates faster.

Our observed one-thumb typing speed is slightly slower than
the one reported by Azenkot et al. [3], probably since they
assumed error-free input. We also again note that it is not
possible to directly compare raw performance data points
across different studies. For instance, our study used a larger
phone, which means typing is impaired as a result of the thumb
reach problem. Our entry rates for touch-based shape writing
align well with Reyal et al.’s empirical study of shape writing
“in the wild” [26].

We observed that participants tended to use a combination of
ulnar/radial deviation and flexion/extension of the wrist when
tilting the mobile device upwards or downwards. This caused
the pointer to deviate in a diagonal direction. We could solve
this problem by using a different mapping function.

We also observed that none of the users were able to grasp
the phone firmly when typing with one-thumb, except when
using SWiM. While there was no occurrence of the device
dropping in our experiment, we can easily imagine it happen-
ing during actual use. Thus, SWiM has a clear advantage in
terms of device grip robustness. During the one-thumb typing
and shape writing study, there were a few accidental touches
from participants’ inner palms that triggered the BACK or the
ENTER keys, skipping that trial. These erroneous data points
were later removed before the statistical analyses.

Interestingly, P5’s one thumb typing speed decreased from
block 1 to block 3 (Figure 3) in the transcription task. As P5’s
palm size was very small, P5 struggled to reach for the keys
on the other edge, and this might have lead to palm fatigue.

Another explanation is that typing was the last condition for P5.
P5 said that she previously owned a large phone, but switched
back to a smaller 5-inch iPhone because of this thumb’s reach
problem. Most participants mentioned that they primarily
type with two hands, because one-handed typing on a large
phone is difficult. These comments validate our motivation
for this work. Also, several participants mentioned that they
did not buy, and do not plan to buy, a phone larger than five
inches because of this single-handed problem. After trying
our new technique, they expressed an interest in using SWiM
on their own phones, once an official version is available. This
reinforces our view that SWiM opens up a new design point
in the mobile text entry design space.

Finally, our tilt-based keyboard only requires a small area
for touch detection. Since the pointer movement is directly
proportional to the tilt magnitude, we can reduce the keyboard
size so that active applications can use more screen space.
This also means that SWiM is likely to be a suitable mobile
text entry method for some wearable designs, such as digital
pendants coupled with an optical see-through head-mounted
display (HMD). Alternatively, we could make the keyboard
semi-transparent. In addition, we believe our technique to be
well suited for input in virtual reality (VR) applications. When
wearing a VR headset, the user often cannot see the keyboard.
Thus, a simple controller that supports tilt (e.g., Google VR
controller, Oculus Touch) can use SWiM for text input.

Although not tested with users, one of the authors confirmed
that SWiM works well on larger tablets (Nexus 7 and Nexus
10) and on a smartwatch (LG Urbane), as shown in the video
figure accompanying this paper. One limitation is that the
current version injects touch events into the keyboard, which
requires root privileges. The advantage is that any existing
commercial gesture keyboard can be used as a recognizer. The
disadvantage is that existing commercial gesture keyboards
are not optimized to handle a tilt signal.

CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a tilt-based text entry method
that is easy to use with only one hand, and is usable even on
large mobile devices. Our studies show that the technique
has high immediate efficacy and is reasonably fast. As we
emphasized, SWiM is not meant to replace single-handed or
two-handed typing in all situations, but rather to facilitate text
entry when only one hand is available and when using a large
device (e.g., phablet) or small devices (e.g., smartwatch).

In the future, we plan to integrate our technique with a gesture
keyboard and release it as an installable touchscreen keyboard
application. We will continue to investigate which factors
affect tilt-based shape writing and hope to improve SWiM over
time. Lastly, we aim to use this technique on other devices,
such as smartwatches, digital pendants, and head-mounted
displays (HMD), which already have built-in tilt sensors.
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