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Abstract-Opportunistic networking - forwarding messages 
in a disconnected mobile ad hoc network via any encountered 
nodes - otters a new mechanism for exploiting the 
mobile devices that many users already carry. Forwarding 
messages in such a network often involves the use of 
social network routing- sending messages via nodes in the 
sender or recipient's social network. Simple social network 
routing, however, may broadcast these social networks, which 
introduces privacy concerns. 

This paper introduces two methods for enhancing privacy 
in social network routing by obfuscating the social network 
graphs used to inform routing decisions. We evaluate these 
methods using two real-world datasets, and find that it is 
possible to obfuscate the social network information without 
leading to a significant decrease in routing performance. 

I. INTRODUCTION 

Mobile devices, such as mobile phones, are commonly 

carried by people. While most current communication 

using such devices takes place through in frastructure 

such as licensed GSM or UMTS networks, it may be 

possible to exploit these devices in an ad hoc manner. 

By directly exchanging messages between devices when in 

physical proximity, an opportunistic network may thus be 

formed; messages are sent via intermediary devices, in a 

disconnected store-and-forward architecture. 

One main challenge in opportunistic networks is routing: 

given episodic connectivity based on people's real-world 

movements, how can we send messages from source to 

destination? One approach is epidemic routing - flooding 

the network with messages, by sending messages during 

each and every encounter [ 14]. This approach ensures that, 

if a path exists between source and destination, the message 

will be delivered along this path as quickly as possible. But 

sending large numbers of redundant messages is wasteful, 

and will rapidly drain the mobile devices' batteries. 

To reduce message delivery cost, messages should be 

selectively forwarded during encounters between members 

of the opportunistic network. What is a good method of 

determining whether a message should be forwarded? 

One approach is social network routing. Based on the 

assumption that encounters between mobile devices are more 

likely to occur between people in the same social network 

- i.e., between people who are connected to each other, 
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perhaps through friendship or co-location, than between 

random strangers - messages may be forwarded selectively 

only within the sender's social network. 

But one problem with social network routing is 

that of privacy. In social network routing schemes, 

intermediate nodes forward messages based on whether 

the encountered node is in the original sender's social 

network. Social network routing may involve broadcasting 

social network information in the clear (not encrypted end­

to-end because the information is used by intermediate 

nodes for routing), creating potential privacy concerns. For 

example, opportunistic network users might wish to hide 

an embarrassing friend. Or a user may accept the use of 

social network information for routing, but not the whole 

network being world-viewable; it is one thing for a curious 

person to be able to infer some of the social network 

based on forwarded messages, but another to broadcast the 

potentially-sensitive information. 

Our goal is to mitigate privacy concerns while retaining 

the advantages of social network routing. In this paper, we: 

• Analyse the potential privacy threats implicit in social 

network routing, to present an attack tree. 

• Investigate the effect on routing performance of 

obfuscating social network graphs. 

• Investigate hiding social network information using 

one-way hashing, via the Bloom filter data structure. 

Our contributions are to provide what is, to our 

knowledge, the first analysis of threats in social network 

routing, and the first schemes to attempt to enhance privacy 

in social network routing without key management. 

We discuss related work in the next section, and present 

a threat analysis in Section I I I. We discuss our two social 

network routing schemes in Section IV. Section V evaluates 

these schemes using two real-world traces, and finally in 

Section V I  we conclude and discuss ongoing work. 

I I. RELATED WORK 

Opportunistic networks [ 1 1] have become increasingly 

popular and relevant as more people carry mobile devices. 

Essentially, an opportunistic network is a disconnected 

MANET (mobile ad hoc network), where mobile nodes 

can send messages in the absence of any knowledge about 



network topology. Nodes opportunistically make use of any 

other nodes that they encounter, as long as these encountered 

nodes are likely to help the message reach its destination. 

The performance of an opportunistic network depends 

on accurately determining which encountered nodes will 

be useful in forwarding. Many forwarding schemes have 

been proposed that leverage the structure of nodes' social 

networks to do so [ 5], [ 9]; if we know that a node is in 

the same social network as a message's destination, then 

it may make sense to use that node for forwarding. In 

this paper, we refer to this class of opportunistic network 

forwarding protocols as social network routing, and the class 

of protocols which broadcast social network information in 

the clear as simple social network routing. 

If nodes are to trust their data with any other nodes that 

they encounter, privacy is paramount. Existing proposals for 

addressing privacy in opportunistic networks, e.g., [4], [ 13], 

use key management to divide network users into groups and 

restrict access accordingly. Key distribution and management 

in such schemes is very difficult in an ad hoc environment, 

however, and may impede the very feature which makes 

opportunistic networking so appealing - the fact that nodes 

may forward to any node that they encounter. Moreover, 

even within these systems, group members can observe the 

routing tables of all other members, so many of the attacks 

that we describe in this paper are still possible. 

Aad et al. [ 1] present methods to improve anonymity 

within an ad hoc network. These include using Bloom filters 

to compress and obscure a packet's routing list, and a 

technique for combining multicast and onion routing. They, 

however, assume global routing information is available for 

the network, which we do not; and they do not evaluate 

performance using simulations, as we do here. 

I I I. T HRE AT ANALYSIS 

Before we can enhance privacy in social network routing, 

we need to understand the threats against privacy that may 

occur when using such routing schemes. We choose to 

employ attack trees, as introduced by Schneier [ 12]. 

An attack tree is a type of and-or tree, used to enumerate 

attacks against a system. The root node of the tree is the 

overall attack goal, while nodes within the tree are subgoals. 

The children of a particular node are the steps required to 

achieve that node's subgoal. By constructing such a tree from 

the root node (overall goal) downwards, we may enumerate 

a structured threat analysis for attacks against a system. 

Following is a preliminary attack tree for privacy threats 

against users of opportunistic networks employing social 

network routing. Our attack tree may not be complete; future 

work is to further increase the rigour of our threat analysis. 

A. Goal: Discover structural information about the social 

network graph. 

1) Learn whether a friendship link exists (or does not 

exist) between two users. OR 
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a) Discover communication (or lack of) between the 

users. OR 

i) Eavesdrop a message as  i t  i s  forwarded user­

to-user, from source to final destination (or 

any intermediary). OR 

A) In  simple social network routing, a 

message traced along such a path reveals 

social network links (or lack of) -because 

messages are forwarded if and only 

friendship links exist. Friendship links are 

the path traversed by the message. 

ii) Extract source/destination from an 

intercepted message to an intermediary. 

b) Extract friendship links from an intercepted 

message to an intermediary. 

2) Learn how many friendship links a particular user has. 

a) Extract friendship links from an intercepted 

message to an intermediary. 

B. Goal: Discover whether two individuals have been in 

proximity within a certain timeframe. 

1) Follow one or both individuals for the time in question. 

OR 

2) Infer proximity by  sending a specially crafted 

message, and making inferences based on where the 

message is observed within the network. OR 

a) Example: has Alice from New York recently 

met Bob from Los Angeles? To find out, an 

attacker Mallory in New York can inject a 

message addressed for colluding attacker Trudy 

in Los Angeles into the system, with Alice and 

Bob only as requested intermediaries. If Trudy 

receives Mallory's message, Mallory and Trudy 

have learned that Alice and Bob have met within 

the lifetime of this malicious message. 

3) Infer proximity by noting that messages are not 

forwarded twice. OR 

a) Example: i f  a message is  not forwarded to  a 

node known to be a requested intermediary, 

the message must already have been forwarded 

earlier. An attacker can infer that the nodes were 

in proximity before this time. This is a passive 

version of 2. 

4) Wait in a common place and listen for message traffic. 

Message exchange, or message headers, may reveal 

the colocation of individuals to an attacker. 

C. Goal: De-anonymise a social network to discover the 

presence of individuals within the network. 

1) Follow individuals, and tie their network identifiers to 

their actual identities. OR 

2) Infer identities from known portions of the social 

network. 



a) Example: if five people are known to be mutual 

friends, and four are deanonymised with a fifth 

mysterious node, an attacker can infer that this 

unknown node is the last member of the clique. 

I V. PRIVACY-ENHANCED SOCIAL NETWORK ROUTING 

In simple social network routing schemes, the sender's 

social network is transmitted in the clear along with each 

message. Intermediate forwarding nodes are able to read the 

sender's full social network in plaintext, facilitating most of 

the threats outlined in Section ITI. 

Encrypting the social network information end-to-end can 

ensure privacy, but we would then lose the advantages 

of social network routing: intermediate forwarding nodes 

would no longer be able to exploit the sender's social 

network information to inform their routing decisions. 

Inspired by [2], we attempt to target the social network 

routing privacy threats by obfuscating a sender's social 

network. We now introduce two schemes for doing so. 

A. Statisticulated Social Network Routing 

Named for a portmanteau of statistical manipulation 1 , 
our first scheme is Statisticulated Social Network Routing 

(SSNR). For each message transmitted, the sender makes 

changes to the message's copy of their social network -

adding or removing nodes. While the social network sent 

along with the message will be based to some extent on the 

sender's true social network, and so still useful for social 

network routing, the social network has been modified by 

the addition or removal of nodes. Any node seeing the social 

network sent along with the message now cannot say with 

certainty whether a particular node is truly part of, or absent 

from, the sender's social network. 

In practice, the sender may choose the level of social 

network manipulation on a per-message basis. In our 

evaluation, however, we examine routing performance for 

a particular choice of modification degree of the sender's 

social network. For instance, a + 50% modification of the 

social network would meant that the sender adds 50% more 

nodes to their social network before message transmission. 

We thus determine average performance for a particular 

degree of social network modification. For simplicity, we 

do not evaluate routing performance while simultaneously 

adding and removing nodes. 

It would still be possible for a malicious person to average 

over the social network information included with many 

messages of one particular sender. But we have created 

much more work for this malicious person: many generated 

messages must be intercepted, rather than just one single 

message to reveal all. Since the nodes in the opportunistic 

network are mobile, and messages are only transmitted when 

1 Huff coins the tenn statisticulation in [8]: "Misinfonning people by the 
use of statistical material might be called statistical manipulation; in a word 
(though not a very good one), statisticulation." 
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nodes encounter one another, a malicious person would 

likely have to physically follow a node for some length of 

time before being able to intercept multiple messages from 

the same source; a task considerably more challenging than 

eavesdropping a single message. 

B. Obfuscated Social Network Routing 

Our second scheme, Obfuscated Social Network Routing 

(OSNR), embeds the social network information within a 

Bloom filter. A Bloom filter [3] is a data structure allowing 

probabilistic querying for set membership. False negatives 

are not possible, but false positives are - with increasing 

probability as the Bloom filter becomes more full. After 

inserting each node in the sender's social network into a 

Bloom filter, we may regard the Bloom filter as a non­

trivially-reversible hash of this social network information. 

To make a rainbow table attack2 impractical, we create 

a per-message random salt, which is sent along with the 

message in the clear. The elements inserted into the Bloom 

filter are a concatenation of this random salt with a unique 

node identifier (any unique identifier would suffice, such as 

MAC address, IMEI, or even some higher-level identifier 

tied to the user rather than the device). 

Given the Bloom filter, the random salt and an 

encountered node's identifier, it is easy to make a routing 

decision: query for set membership of the random salt 

concatenated with the node identifier. A positive result -

guaranteed if the node is inside the sender's social network, 

but possible with low probability if not - means to forward 

the message, since the node is most likely in the sender's 

social network. A negative result means that the node is not 

in the sender's social network, and so not to forward. 

Since we do not employ encryption (given the lack of a 

PKI), it is still perhaps possible for an attacker to reverse 

engineer the Bloom filter by brute force - the attacker can 

iterate through all the node identifiers, concatenating each 

with the plaintext salt and testing for a Bloom filter match. 

This is orders of magnitude more work than a rainbow table 

lookup, however, and must be repeated for every message. 

The Bloom filter (with salt) does not provide perfect security, 

but does make the attacker's job much harder. 

It is possible to combine OSNR and SSNR: the social 

network may be modified as in SSNR prior to hashing in 

a Bloom filter as in OSNR. We refer to this as SSNR-OSNR. 

We note that Bloom filters are fixed-width - a convenient 

property for scalability. In pure SSNR, packet headers may 

grow arbitrarily large as the sender's social network grows; 

this is potentially a problem for sender with very large social 

networks (and compounded if these networks grow further 

using SSNR). OSNR, and SSNR-OSNR, have no such scaling 

problem due to the fixed size of the Bloom filter. 

2 A rainbow table is a precomputed lookup table of hash value to input. 



V. EVALUATION AND RESULTS 

We now evaluate our two schemes to detennine their 

impact on opportunistic network performance. We use trace­

driven simulation with two real-world datasets. 

A. Datasets 

We collected the first dataset - which we call the SASSY 

dataset - in a previous experiment. 2 5  participants were 

equipped with 802. 1 5.4 Tmote Invent sensor motes and 

encounters were tracked for a period of 7 9  days, from which 

we selected a 30-day section for our simulations. 

The original dataset was very sparse due to hardware 

limitations which meant that many encounters were lost. 

Inspired by [7], we augment our traces using a working-day 

and augmented random-waypoint model. Nodes randomly 

select a waypoint from a set of points of interest and 

walk according to predetennined paths (such as roads) to 

reach these points. Nodes moved at 0. 5-1. 5ms-1• At each 

waypoint the nodes could stop for 0-120s. Each node was 

additionally randomly assigned a home location, and the 

nodes would travel to this location to "sleep" for 8 hours 

in every 24. Each node had an additional 10% chance of 

either choosing to go to the Computer Science departmental 

buildings (since our participants were mainly Computer 

Science students) or their "home" at any waypoint selection. 

The social network information for the SASSY dataset 

was self-reported by the 2 5  participants at the start of 

the experiment: their Facebook " friends". Many participants 

knew each other - the mean number of other participants 

in each p articipant's social network (i.e., Facebook friends) 

was 9.8, with a standard deviation of 5.0. 

The second dataset used was the well-known Reality 

Mining (RM) dataset collected at MIT [6]. This dataset 

comprises Bluetooth encounter traces from � 100 mobile 

phone users over the course of an academic year. To obtain 

social network information for this dataset, we use the 

participants' address book information - if a pair of nodes 

encounter one another, and at least one has the other in their 

address book, then each node is said to have the other in its 

social network. Unlike the SASSY dataset, few participants 

knew each other: 52 participants had at least two participants 

in their social network (and were thus candidate nodes for 

our simulations). Of these 52 participants, the mean size of 

the social network was 3.7, with a standard deviation of 2.0. 

As participants left the experiment throughout the year 

(and new participants joined), we could not treat the dataset 

as one contiguous trace. We thus select out 30-day segments. 

B. Simulation parameters 

We performed trace-driven simulations using these two 

datasets with the following parameters: simulation length of 

30 days; 30 messages generated per day; message TTL of 
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one day; at least 10 runs for each set of parameters; SSNR 

obfuscation from -80% to +200% at 20% intervals.3 

For the SASSY dataset, which contains location 

information, we used a customised version of the ONE 

simulator [ 10], which included our augmented random 

waypoint model, to generate ns-2 traces. For speed, we 

used ns-2 rather than ONE for all of the simulations. The 

RM dataset has no location information so we could not 

use ns-2; we instead parsed the Bluetooth encounters and 

simulated message-passing with a Python program. 

C. Performance metrics 

We evaluate our simulations using three metrics [ 9]: 

• Delivery ratio: proportion of delivered messages, out 

of the total number of unique messages created. 

• Delivery cost: total number of messages (including 

duplicates) transmitted, normalised by the total number 

of unique messages created. 

• Delivery delay: time taken for a message to reach its 

destination. 

D. OSNR implementation 

Our OSNR implementation used a 128-bit Bloom filter. To 

insert each element (node ID  concatenated with a random 

salt, as described in IV-B) into the filter, the element's 128-

bit M D 5  hash4 was divided into four 32-bit integers. Taking 

each integer mod 128 (the filter length) resulted in four 

values in range 0- 127, and the four corresponding bits in 

the Bloom filter were, if not already 1, set to 1. 

E. Results 

Figures 1-6 show our trace-driven simulation results for 

our routing schemes with the SASSY and RM datasets. For 

every set of parameters for our three metrics, applying 

OSNR did not significantly impact routing performance -

the error bars overlap for each datapoint. Any impact from 

Bloom filter false positives is so slight as to be insignificant. 

Figure 1 shows that for the SASSY dataset, delivery 

ratios are high for all tested social network size target 

modifications. It is possible to remove 60% of the sender's 

social network's nodes while still retaining a delivery ratio 

of over 90% of the ratio with an unmodified social network. 

Although much noisier, and with lower delivery ratios, 

Figure 5 shows a similar result for the RM dataset. Large 

modifications to the size of the sender's social network can 

be made without significantly affecting the delivery ratio. 

3If we reach the upper bound of all nodes added, or the lower bound of 
only one node remaining in the sender's social network, we stop adding or 
removing nodes for this message. 

4MD5 is not collision-resistant, but we use the uniformity and one­
way properties, not collision-resistance property, of MD5. A maliciously­
generated collision does not affect the security of our system, since senders 
generate Bloom filters on a per-message basis and the ability to generate 
a collision would merely mean another false positive in routing - which 
already may occur, and which can much more easily be produced by the 
malicious sender setting more Bloom filter bits to 1. 
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Figure 1. SASSY dataset. Delivery ratio vs target percentage modification of 
each message sender's social network. Error bars indicate 95% confidence 
intervals. It is possible to remove over half of the social network links while 
still retaining high message delivery ratios. 98% of messages arrive with 
simple social network routing. 91 % of messages arrive even after removing 
60% of the source node's social network links. 
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Figure 2. SASSY dataset. Message delivery cost vs target percentage 
modification of the number of friends of each message's original sender. 
As we obfuscate the sender's social network by adding links, the delivery 
cost increases. 
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Figure 3. SASSY dataset. Message delivery delay vs target percentage 
modification of each message sender's social network. As we remove from 
the sender's social network, delivery delay increases - but only from about 
6 to 8 hours for simple social network routing compared to SSNR with 
-60% sender social network size target change. 
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Figure 4. RM dataset. Delivery ratio vs target percentage modification of 
each message sender's social network. It is possible to modify the sender's 
target social network size greatly (-80%, +200%) without significantly 
affecting delivery ratio. 
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Figure 5. RM dataset. Message delivery cost vs target percentage 
modification of each message sender's social network. As we obfuscate 
the sender's social network by adding links, the delivery cost increases. 
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Figure 6. RM dataset. Message delivery delay vs target percentage 
modification of each message sender's social network. The impact on 
delivery delay when modifying the sender's target social network size is 
insignificant. 



Figure 2 shows delivery cost for the SASSY dataset 

is significantly affected by modifying the sender's social 

network size: the smaller the social network, the lower 

the cost of sending a message. Compared to simple social 

network routing, with 50 data messages per unique message, 

a -60% change in sender social network results in only 

10 data messages: five times fewer. SSNR has improved 

delivery cost, yet simultaneously retained a good delivery 

ratio (Figure 1) and increased the sender's privacy by not 

revealing some of their true friends. 

Figure 5 shows that delivery cost for the RM dataset 

appears to show a similar trend as for the SASSY dataset, but 

again with more noise. The corresponding absolute figures 

for delivery cost, however, are lower than SASSY- perhaps 

because RM encounters are much sparser. 

Figure 3 shows that delivery delay for the SASSY dataset 

increases when removing nodes from the sender's social 

network. This increase is from �6 to �8 hours from simple 

social network routing to SSNR with removing 60% of the 

sender's social network. If delivery delay is a concern, we 

may indeed reduce the delay by adding nodes with SSNR. 

Figure 6, however, shows little correlation between 

delivery delay and the modification of the size of the sender's 

social network for the RM dataset: any difference that may 

exist seems to be lost in the noise from this dataset. 

Finally, we see that for both datasets we can significantly 

modify the sender's social network size (e.g., by -60%), 

thus increasing the privacy of the sender, and yet retain good 

routing performance. Removing nodes may significantly 

reduce delivery cost - a beneficial side effect - while 

enhancing privacy. Conversely, if delivery delay or ratio 

is paramount, SSNR allows adding nodes to improve 

performance by these metrics, again while enhancing 

privacy, though at the expense of increased delivery cost. 

V I. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented two schemes for 

enhancing privacy in social network routing in opportunistic 

networks. We find that it is possible to obfuscate a sender's 

social network by removing up to 60% of the nodes from 

the social network, while still maintaining a delivery ratio of 

90% of unaltered social network routing. We demonstrated 

that, by using Bloom filters, we can prevent eavesdropping 

of social network information with only a minimal effect 

on network performance. We evaluated these two schemes 

using two real-world datasets. Although the datasets vary 

widely (including in scale, location and connectivity), our 

findings appear to hold for both. 

We have presented only an initial evaluation of our routing 

schemes; our work is ongoing. We need to formally analyse 

whether the SSNR and OSNR schemes provide consistent 

deniability. We are exploring refined versions of these 

schemes, e.g., selecting popular or well-connected nodes to 

remove or add to a node's social network, although these 
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may introduce additional attacks. We are also exploring more 

of the attacks described in our threat analysis, and testing 

against our schemes in simulation. 

We note that the two datasets used to evaluate our routing 

schemes may not be representative of general opportunistic 

network usage. Both involve participants who opted in to 

small-scale experiments; their social networks and mobility 

patterns may differ from a universal deployment. We are 

searching for new datasets to use to evaluate our schemes. 
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