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ABSTRACT

With the publication of the famous Erdős-Ko-Rado Theorem in 1961, intersection problems became

a popular area of combinatorics. A family of combinatorial objects is t-intersecting if any two of

its elements mutually t-intersect, where the latter concept needs to be specified separately in each

instance. This thesis is split into two parts; the first is concerned with intersecting injections while

the second investigates intersecting posets.

We classify maximum 1-intersecting families of injections from {1, . . . , k} to {1, . . . , n}, a general-

isation of the corresponding result on permutations from the early 2000s. Moreover, we obtain

classifications in the general t > 1 case for different parameter limits: if n is large in terms of k and

t, then the so-called fix-families, consisting of all injections which map some fixed set of t points

to the same image points, are the only t-intersecting injection families of maximal size. By way of

contrast, fixing the differences k− t and n−k while increasing k leads to optimal families which are

equivalent to one of the so-called saturation families, consisting of all injections fixing at least r + t

of the first 2r + t points, where r = b(k− t)/2c. Furthermore we demonstrate that, among injection

families with t-intersecting and left-compressed fixed point sets, for some value of r the saturation

family has maximal size .

The concept that two posets intersect if they share a comparison is new. We begin by classifying

maximum intersecting families in several isomorphism classes of posets which are linear, or almost

linear. Then we study the union of the almost linear classes, and derive a bound for an intersecting

family by adapting Katona’s elegant cycle method to posets. The thesis ends with an investigation

of the intersection structure of poset classes whose elements are close to the antichain.

The overarching theme of this thesis is fixing versus saturation: we compare the sizes and structures

of intersecting families obtained from these two distinct principles in the context of various classes

of combinatorial objects.
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CHAPTER 1

INTERSECTING SET FAMILIES

1.1 Basic Concepts

Let A be a collection of subsets of {1, 2, . . . , n} such that any two elements of A have non-empty

intersection. How large can such a collection be? Since each set X is disjoint from its complement

X = {1, 2, . . . , n} \X = {x ∈ {1, 2, . . . , n} : x /∈ X } ,

we can have no more than 2n−1 sets in A.

Let us now suppose that members of A have size at most k and do not contain each other. To sim-

plify, we may study families whose members all have size k. The following definitions, notations

and conventions will be used throughout the thesis.

• The set of the first n natural numbers is denoted by [n]. Zero is not considered a natural

number.

• A set of size k is called a k-set.

• Two sets A,B are said to t-intersect if |A ∩B| ≥ t.

• A collection A of sets is an antichain if for all X, Y ∈ A, we have X ⊆ Y only if X = Y .

• The finite families, collections and classes in this thesis are just finite sets, so their members

are distinct.

The objects mentioned in the following definitions are not necessarily sets. We will discuss in

Chapter 2 what it means for other combinatorial objects to intersect.

3



4 CHAPTER 1. INTERSECTING SET FAMILIES

• A collection of objects is t-intersecting if its members mutually t-intersect.

• To intersect means to 1-intersect.

• A t-intersecting subset A of a class X is maximal if, for any X ∈ X \ A, the set A ∪ {X} is not

t-intersecting.

• A t-intersecting subset A of a class X is maximum if there exists no t-intersecting subset of X

which is larger than A.

For each class of objects, there is a natural maximal t-intersecting family, which many authors refer

to as the ‘trivial family’. In the context of k-subsets of [n], this is

F0 = {X ⊂ [n] : |X| = k, [t] ⊆ X }

with

|F0| =
(

n− t

k − t

)
.

Since F0 is obtained by fixing t points, we refer to F0 as the fix-family.

Paul Erdős, Chao Ko and Richard Rado published two theorems in their pioneering article [EKR61].

The first implies that the fix-family is a maximum intersecting family of k-subsets of [n] when

k ≤ n/2. Note that if k > n/2 then the collection of all k-subsets of [n] is intersecting by the

pigeonhole principle.

Theorem 1.1.1. (Erdős, Ko, Rado [EKR61]).

Let k ≤ n/2 and let F be an intersecting antichain of subsets of [n] which have size at most k. Then

|F| ≤
(
n−1
k−1

)
and equality implies that each member of F has size k.

The second result states that the fix-family is also maximum for t > 1, provided n is large.

Theorem 1.1.2. (Erdős, Ko, Rado [EKR61]).

Let t, k, n be natural numbers with n ≥ n0(k, t). If F is a t-intersecting antichain of subsets of [n] which

have size at most k then

|F| ≤
(

n− t

k − t

)
.

Erdős explained in [Erd87] that he had proved these now famous theorems with Ko & Rado by 1938,

but did not publish them until 1961 due to what they perceived as a lack of interest in combinatorics

at the time. It seems that they chose the right moment, because there continues to be an abundance

of interest in [EKR61]. This seminal paper ends with an extensive section of concluding remarks
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which has led to a branch in extremal set theory that could be called Erdős-Ko-Rado Theory. We will

discuss these questions and conjectures here, as well as presenting the progress which has been

made over the last half century. Whilst we try our best to give due credit to all authors involved,

we cannot guarantee, for any of the results discussed in this thesis, that a given list of sources is

exhaustive.

1.1.1 From Fixing to Saturation

Erdős, Ko & Rado remarked in [EKR61] that the n0 they give in Theorem 1.1.2 is not best possible.

Frankl [Fra78a] made considerable progress on this problem, and Wilson [Wil84] completed the

proof that

n0(k, t) = (k − t + 1)(t + 1) (1.1.3)

is the smallest n0(k, t) for which Theorem 1.1.2 holds. Moreover, Wilson proved that for n >

n0(k, t), no family other than the fix-family attains the bound given in Theorem 1.1.2.

To demonstrate that a different bound holds for small n, Erdős, Ko & Rado quoted in [EKR61] the

following example due to S. H. Min: let F be the set of 4-subsets of [8] which contain at least 3

elements of [4]. Then F is 2-intersecting of size 16, while in this case the fix-family

{X ⊂ [8] : 1, 2 ∈ X, |X| = 4 }

has size
(
8−2
4−2

)
= 15. The idea behind Min’s example is central to this thesis: we regard the concept

of fixing as a special case of a saturation process. To be more precise, for 0 ≤ r ≤ (n − t)/2, let

Fr(t, k, n) be the collection of all k-subsets of [n] which contain at least t + r elements of [t + 2r].

Then the pigeonhole principle implies that Fr(t, k, n) is t-intersecting. Note also that F0(t, k, n) is

the fix-family.

We will see throughout this thesis that either saturation, or the special case of fixing, usually yield

optimal t-intersecting families. However, these ideas were very new in 1961 and Erdős, Ko &

Rado simply conjectured that Fm−1(2, 2m, 4m) is maximum, which was often referred to as the

4m-Conjecture in survey papers such as [DF83, Ahl01]. Among the open problems from [EKR61],

we have presented this one first for convenience of notation. However, it remained the last open

problem from [EKR61], as Erdős pointed out in his article ‘Some of my favourite unsolved prob-

lems’ [Erd90], published 6 years before he died. Indeed, Erdős had offered $500 for the solution of

the 4m-Conjecture [Fra88b, Ahl01].
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1.2 Classifications

By Theorem 1.1.1, the fix-family is a maximum intersecting family of k-subsets of [n]. Are there

any other optimal families? From the discussion beginning this chapter, we see that when k = n/2,

A is a maximum intersecting family of k-subsets of [n] if, and only if, for each k-subset X of [n],

precisely one of X ∈ A or X ∈ A holds. But what about k < n/2? Let us establish some further

definitions which will be used throughout this thesis:

• A t-intersecting family is equivalent to the fix-family if it can be obtained from the fix-family

by a permutations of the labels. For example, the set

{X ⊂ [22] : |X| = k, {1, 2, 17} ⊆ X }

is equivalent to the fix-family F0(3, k, 22).

• We say that fixing is optimal if the fix-family is maximum. In this context, unique means unique

up to permutations of the labels: if every maximum family is equivalent to the fix-family, we

say that fixing is the unique optimal strategy. In the same way, we may talk about some other

family as being the (unique) optimal subset of some class of objects.

Erdős, Ko & Rado conjectured that every maximum intersecting family of k-subsets of [n] is equiva-

lent to the fix-family, and this was proved three years later by Katona [Kat64]. Since then, mentions

of ‘the Erdős-Ko-Rado Theorem’ are usually referring to the following result:

Theorem 1.2.1. (Erdős, Ko, Rado [EKR61]; Katona [Kat64]).

Let k ≤ n/2 and let F be an intersecting family of k-subsets of [n]. Then |F| ≤
(
n−1
k−1

)
and equality implies

that all members of F have a fixed element of [n] in common.

1.2.1 Unrestricted Size of Members

In fact, Katona proved another much more general result in [Kat64]: he obtained a bound for t-

intersecting subsets of the power set of [n]. Erdős, Ko & Rado had conjectured in [EKR61] that if

n + t is even then

K0(t, n) = {X ⊆ [n] : |X| ≥ (n + t)/2 }
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is maximum. Katona not only proved this conjecture, but also found an optimal family for the case

where n + t is odd: set

K1(t, n) = {X ⊆ [n] : |X| > (n + t)/2 }

∪ {X ⊆ [n− 1] : |X| = (n + t− 1)/2 } .

Two elements X, Y of the first set satisfy

|X ∩ Y | ≥ |X|+ |Y | − n > t

and, similarly, the second set is t-intersecting. If X and Y are elements of the first and second sets

above respectively, then there are at most (n− t− 1)/2 points in [n] which are not in X . Thus

|X ∩ Y | ≥ |Y | − |X| ≥ n + t− 1
2

− n− t− 1
2

= t,

so K1(t, n) is t-intersecting.

Indeed, by considering the case r = b(n − t)/2c of the saturation families Fr(t, k, n) from Section

1.1.1, we see that K0(t, n) and K1(t, n) are just saturation families interpreted in the context of

t-intersecting subsets of [n]:

Kp(t, n) =
⋃
k

F(n−t−p)/2(t, k, n).

Theorem 1.2.2. (Katona [Kat64]).

If F is a t-intersecting family of subsets of [n] then

|F| ≤ |Kp(t, n)|

where p = n + t mod2.

This settles the more general case of set families whose members have arbitrary size. Ahlswede

& Khachatrian published another four different proofs of Theorem 1.2.2 over the next few decades

[AK99, AK05]. Indeed, these two authors were instrumental in completely characterising t-intersecting

families of k-subsets of [n] as originally considered by Erdős, Ko, and Rado.

1.2.2 Fixed Size of Members

Seventeen years after the publication of [EKR61], Frankl generalised the 4m-Conjecture: he conjec-

tured in [Fra78a] that for all values of n ≥ k ≥ t, a maximum t-intersecting family of k-subsets of [n]

is equivalent to Fr(t, k, n) for some 0 ≤ r ≤ (n − t)/2. Thus Frankl was the first to realise that any
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optimal family of k-subsets of n can be expressed as a saturation family. After Erdős drew the at-

tention of the combinatorial community back to this problem in [Erd90], Frankl renewed his efforts

and proved, together with different coauthors [FF91, CF92], that his conjecture holds in various

special cases.

Ahlswede & Khachatrian finally published a general proof of Frankl’s conjecture one year after

Erdős’ death. It is proved in [AK97], for all parameter values which are not covered by Wil-

son’s generalisation of the Erdős-Ko-Rado result, that saturation, including the case of fixing, is

the unique optimal strategy.

Theorem 1.2.3. (Wilson [Wil84]).

Let F be a maximum t-intersecting family of k-subsets of [n] for n > (k−t+1)(t+1). Then F is equivalent

to F0(t, k, n).

Fixing is also optimal for n = (k− t+1)(t+1), but not uniquely so, as can be seen from the theorem

below in which Ahlswede & Khachatrian specify the optimal saturation constant r as a function of

n, k, t. The statement of their ‘Complete Intersection Theorem for Systems of Finite Sets’ uses the

convention (t− 1)/r = ∞ if r = 0.

Theorem 1.2.4. (Ahlswede, Khachatrian [AK97]).

Let F be a maximum t-intersecting family of k-subsets of [n] and set

f(r) = (k − t + 1)
(

2 +
t− 1
r + 1

)
.

• If f(r) < n < f(r − 1) for some non-negative integer r, then F is equivalent to Fr(t, k, n).

• If n = f(r) for some non-negative integer r, then F is equivalent to Fr(t, k, n) or Fr+1(t, k, n).

Thus the results of Wilson and Ahlswede & Khachatrian together amount to a complete classifica-

tion of maximum t-intersecting families of k-subsets of [n]. This classification has been applied in

many other areas of combinatorics, for example it has been used to develop better algorithms for

approximating minimum vertex covers in graphs, an NP-hard problem [DS05].

We now turn our attention to other questions from [EKR61]. For instance, now that we know the

optimal families for all parameter values, we might ask what the next best families are.
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1.2.3 Non-Fix Families

Erdős, Ko & Rado inspired an investigation of so-called nontrivial families. As usual, we consider

the case t = 1 first: if we are not allowed to fix a point, then what is the largest size of intersecting

family we can achieve? It was conjectured in [EKR61] that if F is an intersecting family of k-subsets

of [n] for some 3 ≤ k ≤ n/2, then
⋂

X∈F = ∅ implies

|F| ≤ 3
(

n− 3
k − 2

)
+
(

n− 3
k − 3

)
,

a bound which is attained by F1(t, k, n), as Erdős, Ko & Rado pointed out. However, this conjecture

was disproved by Hilton & Milner in [HM67] where they showed that the second best strategy is

still very close to fixing: G is the family consisting of [k] along with all k-subsets of [n] containing

k + 1 and intersecting [k].

Theorem 1.2.5. (Hilton, Milner [HM67]).

Let k ≤ n/2 and set

G = {[k]} ∪ {X ⊂ [n] : |X| = k, k + 1 ∈ X, X ∩ [k] 6= ∅ } .

If F is a maximal intersecting family of k-subsets of [n] which is not equivalent to the fix-family, then

|F| ≤ |G|.

Frankl & Füredi later presented a very short proof of the Hilton-Milner Theorem in [FF86].

Having settled the case t = 1, the next natural investigation focus are optimal non-fix families for

t > 1. Again, Frankl was the first to tackle the problem. In [Fra78c], he characterised the maximum

t-intersecting families F of k-subsets of [n] which satisfy the property that no element of [n] is

contained in more than c|F| members of F , for various fixed values of c, provided n exceeded

some function n1(k, t). The complementary result for small n was not established until 1996, when

Ahlswede & Khachatrian realised that their recent proof of the Complete Intersection Theorem 1.2.4

could be modified to yield a characterisation of maximum non-fix families. Their main contribution

to Theorem 1.2.6 was to determine that n1(k, t) = n0(k, t), see (1.1.3).

Frankl generalised Hilton & Milner’s optimal family G as follows: set

G(t, k, n) = A(t, k, n) ∪B(t, k, n)

where A(t, k, n) is the set of k-subsets of [n] which contain [t] and intersect {t + 1, . . . , k + 1}, and

B(t, k, n) = { [k + 1] \ {i} : 1 ≤ i ≤ t } .
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It is easily seen that both A(t, k, n) and B(t, k, n) are t-intersecting for t ≤ k − 1. To demonstrate

that G(t, k, n) is also t-intersecting, note that if X ∈ A(t, k, n) and Y ∈ B(t, k, n) then X contains at

least t + 1 elements of [k + 1], and hence at least t elements of Y .

Theorem 1.2.6. (Frankl; Ahlswede, Khachatrian [Fra78c, AK96]).

Let F be a maximum t-intersecting family of k-subsets of [n] with

∣∣∣∣∣ ⋂
X∈F

X

∣∣∣∣∣ < t.

• If 2k − t < n ≤ n0(k, t) then F is characterised by Theorem 1.2.4.

• If n > n0(k, t) and k ≤ 2t + 1 then F is equivalent to F1(t, k, n).

• If n > n0(k, t) and k > 2t + 1 then F is equivalent to either F1(t, k, n) or G(t, k, n).

Together with Theorem 1.2.4, this result constitutes a complete characterisation of maximum t-

intersecting families of k-subsets of [n] which are not equivalent to the fix-family.

Building on the approach of Frankl & Füredi in [FF86], Balogh & Mubayi recently demonstrated in

[BM08] that the original methods of Erdős, Ko & Rado in [EKR61] yield a simpler proof of Theorem

1.2.6, at least for the case k ≤ 2t + 1.

1.3 Further Generalisations

1.3.1 s-wise t-intersecting Families

The final concluding remark in [EKR61] presents a short proof of the following result, with Erdős,

Ko & Rado noting that various other authors had given alternative proofs. Let F be a family of

subsets of [n] such that

X ∩ Y ∩ Z 6= ∅

for all X, Y, Z ∈ F . Then |F| ≤ 2n−1, and equality implies that F is equivalent to the fix-family.

The following definition is a natural generalisation:

• A family F is s-wise t-intersecting if the intersection of any s members of F has size at least t.

With the classifications of the previous section in mind, the following examples seem natural. Let

Cr(s, t, n) be the collection of subsets of [n] which contain at least t + (s − 1)r elements of [t + sr],

and set

Dr(s, t, k, n) = {X ∈ Cr(s, t, n) : |X| = k } .
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It has long been conjectured that there are functions c, d of the parameters such that both Cc(s, t, n)

and Dd(s, t, k, n) are maximum families in their respective settings. There has been much research

in this area, with recent progress mainly due to Frankl and Tokushige [FT02, FT03, FT05, Tok05,

FT06, Tok06, Tok07b], though many authors have settled different specific cases since the publica-

tion of [HM67]. For a good survey of 35 important contributions to this area by various authors

over the last 41 years, see [Tok07a, Tok07c].

1.3.2 Other Directions

There are over 150 mathematical publications which reference [EKR61], a testimony to the fact that

there are many alternative angles on what it means to generalise the Erdős-Ko-Rado Theorems 1.1.1

and 1.1.2. We will simply mention some of these approaches here, to give a flavour of the variety

of combinatorial viewpoints.

• Hajnal & Rothschild characterised families of k-subsets of [n] satisfying the property that no

more than r of its members have pairwise fewer than s elements in common in [HR73].

• Various papers such as [Fra78b] have combined conditions on the intersection size with re-

strictions on the size of the unions of members of a set family.

• Together with Frankl & Deza, Erdős investigated in [DEF78] families F of k-subsets of [n]

such that the size of intersection of two members of F must be in a fixed set of admissible

values, rather than simply being larger than t.

• Generalising again from there, Chung, Graham, Frankl & Shearer obtained a bound on the

size of a family F of subsets of [n] such that the intersection of any two members of F contains

some member of a fixed family B. For instance, they show in [CGFS86] that if B is the family

of n k-subsets of [n] formed by choosing k cyclically consecutive elements of Zn then the fix-

family F0(t, k, n) is optimal. Interestingly, they also use these results to obtain bounds on the

size of families of graphs whose members intersect in triangles.

• Numerous papers have been written on cross t-intersecting set families, i.e. families where

|A ∩B| ≥ t for all A ∈ A, B ∈ B. The interested reader can find more details in [MT89].

• In [DR94] Duke & Rödl investigated some Ramsey type EKR questions, such as the following:

for |A| linear in n, how large does k need to be to guarantee that each familyA of k-subsets of

[n] contains a t-intersecting family of some guaranteed minimum size? They extended their

results to s-wise t-intersecting families together with Erdős in [DER03].
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• Intersecting families in direct products of sets can be found in [Fra96, AAK98].

• Bollobás & Leader showed in [BL97] that fixing is the unique optimal strategy for intersecting

families of signed r-sets on [n].

• Together with various co-authors, Talbot generalised the Erdős-Ko-Rado Theorem from a

graph-theoretic perspective in [Tal04, HST05].

There are also plenty of surveys discussing generalisations of the Erdős-Ko-Rado Theorem, see for

instance [DF83, Fra88a, Fra88b, BE00, Ahl01, BK08] or Chapter 5 in [And87].

So far we have described the origins of Erdős-Ko-Rado Theory in the study of set families. The

subject of this thesis, however, will be intersecting families of injections or posets. The next chapter

gives an overview of the extension of Erdős-Ko-Rado Theory to other combinatorial structures.



CHAPTER 2

EXTENDING ERDŐS-KO-RADO

THEORY

Ever since Erdős, Ko, Rado, Katona and others investigated t-intersecting families of subsets of a

set in the 1960s, classifying the largest t-intersecting subsets of some class of objects has been a

standard problem of extremal set theory. Building on the original question, one approach has been

to impose additional restrictions on the collection, as we have seen in the previous chapter. An

alternative approach is to vary the combinatorial objects which are the elements of the underlying

set. Structures which have been considered more recently in this context are graphs, (partial) per-

mutations, words and set partitions. Investigations in this field usually begin by finding the size of

the largest intersecting family in the set of all objects of a given type. Having found a bound, the

next natural aim is to classify all intersecting families attaining the bound — and then to extend the

results to t > 1.

This chapter gives an overview of results in this area which are relevant to this thesis, i.e. the study

of intersecting posets and intersecting injections. While the former concept seems to be new, our

study of t-intersecting injection families builds on previous research into intersecting permutation

sets and word families.

2.1 Words

Consider integer sequences a1a2 . . . ak with 1 ≤ ai ≤ n, and let [n]k be the set of these words of

length k over the alphabet [n].

13
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Definition 2.1.1. For two words a = a1a2 . . . ak, b = b1b2 . . . bk ∈ [n]k, set

int(a, b) = { i ∈ [k] : ai = bi } .

Then a and b t-intersect if | int(a, b)| ≥ t.

It follows from the definitions in Section 1.1 that a family F ⊆ [n]k is t-intersecting if every pair of

words in F is t-intersecting.

2.1.1 A Bound on Intersecting Word Families

Words were the first objects after sets to be considered in the context of intersecting families. In

[Kle66b] Kleitman proved a conjecture of Erdős that if the elements of F are sequences of length k

of zeros and ones which differ from one another in at most 2x positions then

|F| ≤
x∑

i=0

(
k

i

)
.

The earliest proof of the fact that an intersecting subset of [n]k has size at most nk−1 is generally

credited to [Ber74]. Livingston showed in [Liv79] that the only families attaining this bound are the

ones whose elements all have a fixed position in common.

In this section, we present our own proof of the classification of maximum intersecting word fami-

lies, though the idea of what we call orbits below is fairly standard, see [DF77, BK08]. The methods

introduced for this purpose will be used again in Section 3.1 to classify maximum intersecting in-

jection families.

Let π = (1 2 . . . n) denote the n-cycle in the symmetric group Sn of permutations on n points, and

let permutations act on words in [n]k by acting on each position separately:

(w1w2 . . . wk)π = (w1π)(w2π) . . . (wkπ).

Note that the image of an element of [n]k is again an element of [n]k.

Definition 2.1.2. For any w ∈ [n]k, the orbit of w in [n]k is the set {wπi : i ∈ N}, denoted by O(w).

For example, if n = 5 and k = 4, then

O(2551) = {2551, 3112, 4223, 5334, 1445}.

Theorem 2.1.3. If F ⊆ [n]k is intersecting then |F| ≤ nk−1.

Moreover, the set of orbits {O(w) : w ∈ [n]k} forms a partition of [n]k into disjoint sets of size n. If

|F| = nk−1 then |F ∩O(w)| = 1 for all w ∈ [n]k.
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Proof. Let w ∈ [n]k be arbitrary. We can deduce three statements from the fact that π is a permuta-

tion: firstly, |O(w)| is equal to the order of π, namely n. Secondly, if u, v are two distinct elements

of O(w) then u and v do not intersect. Thirdly, if v and w are two distinct elements of [n]k which

are not images of one another under π — that is v /∈ O(w) — then O(v) and O(w) are disjoint:

otherwise, we have vπi = wπj for some i, j ∈ N, giving v = wπj−i, contradicting our choice of v

and w. Hence the set of orbits partitions [n]k into disjoint sets of size n.

By the second observation, F contains at most one word from each orbit, so

|F| ≤ |{O(w) : w ∈ [n]k}|.

Our first observation was that all orbits have the same size, and so it follows from the third obser-

vation that

|{O(w) : w ∈ [n]k}| = |[n]k|
|O(w)|

=
nk

n
= nk−1

as required. If equality holds, then F must contain precisely one word from each orbit.

We will see in Chapter 3 that the above arguments apply to injections as well as words, see Theorem

3.1.1. The above result was recently presented in [BK08], where Brockman & Kay use orbits to

derive the bound in Theorem 2.1.3 from Theorem 3.1.1, after having obtained the latter in a different

way. In [BK08], they do not investigate the structure of maximum families; we will, however, do

precisely that in the following section.

2.1.2 Classification of Maximum Families

Having found a bound on the size of an intersecting subset, we would like to characterise the

families attaining it. We begin by explaining how the concepts of Section 1.2.1 transfer to the context

of words. The saturation family is defined as follows: for 0 ≤ r ≤ (k − t)/2, set

Hr(t, k, n) =
{

w ∈ [n]k : w has 1 in at least t + r of its first t + 2r positions
}

.

Note that for any i ∈ [n], j ∈ [k], the set

{w1w2 . . . wk ∈ [n]k : wj = i}

can be obtained from H0(1, k, n) simply by permuting letters and positions. Thus the two are

structurally equivalent and we refer to either of them as a fix-family. More generally, any word

family which can by obtained from Hr(t, k, n) by permutations of the letters and positions is said

to be equivalent to Hr(t, k, n). In this section, we show that for n ≥ 3, the fix-families are the only

intersecting subsets of size nk−1.
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IfA = {Ai : 1 ≤ i ≤ m } is a family of m sets, then a collection of m elements T = { ai : 1 ≤ i ≤ m }

is called a transversal of A if ai ∈ Ai for all 1 ≤ i ≤ m. Also, for a ∈ [n] and l ∈ N, al denotes the

word aa . . . a︸ ︷︷ ︸
l times

. For instance, a3b0c2 = aaacc.

Theorem 2.1.4. If n ≥ 3 and F is a maximum intersecting subset of [n]k, then F is equivalent to the

fix-family H0(1, k, n).

Proof. Recall that by Theorem 2.1.3, an intersecting subset of [n]k whose size attains the bound is

a transversal of the orbits, so there exists a unique z ∈ [n] satisfying F ∩ O(1k) = {zk}. We can

assume without loss of generality that z = 1, so 1k ∈ F .

Let L be the list of words in [n]k given by

111 . . . 1 = 1k

n11 . . . 1 = n1k−1

nn1 . . . 1 = n1k−2

...

nn . . . n11 = nk−212

nnn . . . n1 = nk−11

then F ∩L 6= ∅ since 1k ∈ F . So let nj−11k−j+1 be the last element of L belonging to F , in the sense

that l > j implies nl−11k−l+1 /∈ F , then 1 ≤ j ≤ k. (We do not necessarily have nl−11k−l+1 ∈ F for

all l < j.)

For arbitrary r ∈ {1, . . . , k − 1}, O(nr1k−r) contains precisely two words which intersect with 1k,

namely nr1k−r and 1r2k−r. Thus the choice of j implies

X = {1k, 1k−12, 1k−222, 1k−323, . . . , 1j2k−j , nj−11k−j+1} ⊆ F . (2.1.5)

Let a = a1 . . . ak ∈ [n]k such that a1, . . . , aj−1 ∈ {1, n}, aj+1, . . . , ak ∈ {1, 2} and aj = 1. We claim

that a ∈ F .

Note that if k = 1, the theorem is trivially true. If k = 2, then a is an element of X and hence

belongs to F , so suppose k ≥ 3. We will show that none of the elements of O(a) other than a itself

can belong to F .

Firstly, observe that aπ has its first j − 1 positions in {2, 1}, its jth position is 2 and its last k − j

positions are in {2, 3}. Since n ≥ 3, this means that aπ does not intersect nj−11k−j+1 which is in F

by (2.1.5).
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Next, let i ∈ {2, . . . , n− 1} and consider aπi. This element of O(a) does not have 1 in any of its first

j positions, and none of its last k − j positions are equal to 2. Hence aπi does not intersect 1j2k−j

which is in F by (2.1.5).

In conclusion, aπi /∈ F for 1 ≤ i ≤ n− 1, so we must have aπn = a ∈ F .

Now let w = w1w2 . . . wk ∈ [n]k with wj = 1 and consider an element v = v1v2 . . . vk of O(w)

which is distinct from w. Since vj 6= 1, there exists b = b1b2 . . . bk ∈ [n]k with b1, . . . , bj−1 ∈ {1, n},

bj+1, . . . , bk ∈ {1, 2} and bj = 1 such that b and v do not intersect. By the above arguments, b ∈ F ,

so v /∈ F . Since v was an arbitrary element of O(w) distinct from w, and F contains one word from

each orbit, this implies w ∈ F . Since w was an arbitrary element of [n]k with 1 in position j, this

yields

F = {w1w2 . . . wk ∈ [n]k : wj = 1}

as required.

Different Maximum Intersecting Subsets

We have shown that every maximum intersecting subset of [n]k is equivalent to the fix-family when

n ≥ 3. The case n < 2 is trivial. However, when n = 2, different maximum intersecting subsets

exist.

For instance, the family

F = {111, 112, 122, 212}

is an intersecting subset of {1, 2}3 of maximal size |F| = nk−1 = 22 = 4, but F is not equivalent

to the fix-family H0(1, 3, 2): suppose otherwise, then since 111 ∈ F the letter being fixed must be

1. In view of 122 ∈ F we thus conclude that elements of F have 1 in the first position, but this

contradicts 212 ∈ F .

Indeed, this example illustrates the more general result given in the following theorem, which is

that if n = 2, then any transversal of the orbits of [n]k is intersecting. This shows that the condition

n ≥ 3 in Theorem 2.1.4 is best possible.

Proposition 2.1.6. Let A = {1, 2} and k ∈ N. Then F ⊆ Ak is intersecting with |F| = 2k−1 if, and only

if, F is a transversal of the orbits O(w), w ∈ Ak.

Proof. The forward implication is given by Theorem 2.1.3, so let F be a transversal of the orbits.

Consider v, w ∈ F with v = v1v2 . . . vk, w = w1w2 . . . wk and suppose that v and w do not intersect.
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Then since |A| = 2, we have

vi = 1 ⇐⇒ wi = 2 and vi = 2 ⇐⇒ wi = 1, ∀i ∈ {1, . . . , k}.

But this means v = wπ, that is v ∈ O(w) and so F contains two words from O(w) which is a

contradiction. Thus F is intersecting. The maximality of F follows from the fact that F contains

one word from each orbit, since there are precisely 2k−1 orbits by Theorem 2.1.3.

There is a natural correspondence between words of length k over a two letter alphabet and subsets

of [k]. Formally, the bijection φ from {0, 1}k to the power set P([k]) is given by

x ∈ φ(w1 . . . wk) ⇐⇒ wx = 1

for 1 ≤ x ≤ k and w1 . . . wk ∈ {0, 1}k.

However, it is important to note that the intersection structures of {0, 1}k and P([k]) are quite dif-

ferent: two words in {0, 1}k intersect in a position where they both have 0, but two subsets of [k]

cannot intersect in a point which neither of them contain. To obtain a more appropriate correspon-

dence between a family of subsets of [k] and words under the Hamming distance, Ahlswede &

Katona endowed set families with the symmetric difference as a distance function in [AK77]: if A

and B are sets then their symmetric difference A∆B is the set of points contained in one but not

both of A and B:

A∆B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

We will consider symmetric differences again in Section 3.2.2. For now, having completed our

classification of intersecting word families, we will describe what is known about the case t > 1 in

the next section.

2.1.3 Increasing the Intersection Parameter

One year after Livingston’s classification of maximum 1-intersecting word families in [Liv79], Frankl

& Füredi proved in [FF80] that for t ≥ 15, the fix-family is optimal if and only if n ≥ t+1. Moreover,

[FF80] concludes with the general conjecture that if F is a t-intersecting subset of [n]k then

|F| ≤ max
0≤r≤(k−t)/2

|Hr(t, k, n)|.

In [Moo82], Moon used induction on cross-t-intersecting families to show that for n ≥ t + 2, all

maximum t-intersecting families in [n]k are equivalent to the fix-family. (Two families F ,F ′ are

cross-t-intersecting if every x ∈ F t-intersects every y ∈ F ′.)
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Following their complete classification of maximum t-intersecting set families in [AK97], Ahlswede

& Khachatrian proved Frankl & Füredi’s conjecture by showing that the principle of saturation also

applies to words. Once again, the statement of the theorem uses the convention that (t−1)/(n−2) =

∞ if n = 2.

Theorem 2.1.7. (Ahlswede, Khachatrian [AK98]).

For n ≥ 2 let F be a t-intersecting family in [n]k.

Set q := (t− 1)/(n− 2) and let r be the largest non-negative integer such that

t + 2r < min {k + 1, t + 2q} .

If t > 1, t + 2q ≤ k and q is integer valued, then F is equivalent to Hq(t, k, n) or Hq−1(t, k, n).

Otherwise, F is equivalent to Hr(t, k, n).

One year later, Frankl and Tokushige published an alternative proof of this result in [FT99]. In

Chapter 4, we adapt Ahlswede & Khachatrian’s proof from [AK98] to show that, provided injection

families can be standardised, one of the saturation families is optimal t-intersecting.

2.2 Mappings

Throughout this thesis, Sn denotes the symmetric group of permutations on n points, and Ik
n is the

set of injections from [k] to [n], so In
n = Sn. Note also that Ik

n may be viewed as a subset of [n]k, and

the definition of intersection is the same: two injections in Ik
n t-intersect if they agree on the image

of at least t domain points.

Assuming that t is clear from the context, we say that a family F in Ik
n is equivalent to the fix-family

if there exists a subset T of [k]× [n] of size |T | = t such that

F =
{

α ∈ Ik
n : α(x) = y for all (x, y) ∈ T

}
,

giving |F| = (n− t)!/(n− k)!.

2.2.1 Permutations

Studying the intersection structure of Ik
n began with research into intersecting permutation families

in the 1970s.
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Theorem 2.2.1. (Deza, Frankl [DF77].)

If F is an intersecting subset of Sn then |F| ≤ (n− 1)!.

Deza & Frankl also showed in [DF77] that the fix-family is optimal t-intersecting in Sn whenever

there exists a sharply t-transitive set of permutations in Sn, and give examples of such parameter

values. Moreover, [DF77] first applied the idea of saturation to permutation families: when k− t is

even, let

G(t, k, n) =
{

w ∈ Ik
n : w moves at most (k − t)/2 points

}
,

and if k − t is odd, set

G(t, k, n) =
{

w ∈ Ik
n : w moves at most (k − t− 1)/2 elements of [k − 1]

}
.

Then G(t, k, n) is t-intersecting by the pigeonhole principle.

Considering that an injection which moves at most (k − t)/2 points fixes at least

k − (k − t)/2 = (k + t)/2

points, we observe a distinct similarity between G(t, k, n) and the Katona family Kp(t, k) from Sec-

tion 1.2.1.

Theorem 2.2.2. (Deza, Frankl [DF77])

For each T ∈ N with T ≥ 3, there exists k0(T ) ∈ N such that for k ≥ k0(T ), the saturation family

G(k − T, k, k) is maximum (k − T )-intersecting in Sk.

The proof of Theorem 2.2.2 depends on the Erdős-Ko-Rado Theorem 1.1.1. Recall from Chapter 1

that Katona proved in [Kat64] that a family attaining the bound in Theorem 1.1.1 must be a fix-

family, see Theorem 1.2.1. Using this structural version of the Erdős-Ko-Rado Theorem in Deza &

Frankl’s proof of Theorem 2.2.2 demonstrates that for T and k as in Theorem 2.2.2, the saturation

family G(k−T, k, k) is in fact the unique maximum (k−T )-intersecting subset of Sk. This argument

will be presented in detail in the concluding paragraphs of the proof of Theorem 3.2.11 which

generalises Theorem 2.2.2 to injections.

After Deza & Frankl’s paper [DF77], intersecting permutation families were almost forgotten for a

quarter century until, in the early 2000s, Cameron & Ku as well as Larose & Malvenuto indepen-

dently obtained the classification of maximum intersecting permutation families.

Theorem 2.2.3. (Cameron, Ku [CK03]; Larose, Malvenuto [LM04].)

If n ≥ 2 and F is an intersecting subset of Sn with |F| = (n− 1)! then F is equivalent to the fix-family.
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This result inspired numerous investigations of intersecting permutation families. It has since been

shown that fixing is the unique optimal strategy for obtaining large intersecting subsets of the

following global sets:

• the set of k-partial permutations of [n] [KL06, LW07],

• the alternating group An ⊂ Sn [KW07],

• a direct product Sn1 × · · · × Snq of symmetric groups [KW07],

• Coxeter groups of types B and D [WZ08].

We point out that Ik
n is strictly contained in the set of k-partial permutations on n points studied

in [KL06, LW07], since the domain of a k-partial permutation is not fixed to be [k], but can be any

k-subset of [n]. Finally, consider a different definition of intersection: two elements of Sn t-cycle

intersect if, when written in disjoint cycle form, they share at least t cycles. Ku & Renshaw showed

in [KR08] that for sufficiently large n, all maximum t-cycle intersecting subsets of Sn are equivalent

to the family fixing t singleton cycles.

2.2.2 Injections

In this thesis we prove that, with the original definition of intersection for injections, every maxi-

mum intersecting subset of Ik
n is equivalent to the fix-family, a fact which was recently conjectured

in [Bor08], an article about labelled sets building on [BL97]. Moreover, we show in Chapter 3 that

• if n is large in terms of k and t, fixing is the unique optimal strategy;

• if k is large in terms of k− t and n− k, the saturation family G(t, k, n) is the unique maximum

t-intersecting subset of Ik
n.

In view of Ahlswede & Khachatrian’s results concerning the optimality of saturation families for

small parameter values in the context of sets and words, we are not surprised to find that com-

putational evidence suggests that the same is true for injections. Unfortunately, the well-known

proof methods cannot be applied to injection families as we will see in Section 5.2.2. In Chapter 4,

we prove that saturation, including fixing, is optimal among so-called exemplary injection families

for all parameter values except k = n. Whether there are any injection families which cannot be

standardised in this way remains an open question.
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2.3 Relational Structures

The following definitions will be used throughout the thesis. A (binary) relation R on [n] is a subset

of [n]× [n]. R is furthermore:

• reflexive if (x, x) ∈ R for all x ∈ [n];

• irreflexive if (x, x) /∈ R for all x ∈ [n];

• symmetric if for all distinct x, y ∈ [n], (x, y) ∈ R implies (y, x) ∈ R;

• antisymmetric if for all distinct x, y ∈ [n], (x, y) ∈ R implies (y, x) /∈ R;

• transitive if for all x, y, z ∈ [n], (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R.

A reflexive, symmetric and transitive relation E is called an equivalence relation. The set of its equiv-

alence classes

C(E) := { { y ∈ [n] : (x, y) ∈ E } : x ∈ [n] }

forms a partition of [n], which is a collection P = {X1, . . . , Xk} such that the classes Xi are disjoint,

non-empty and their union is [n].

An (undirected) graph is a symmetric relation G on [n]. In this context, the elements of [n] are called

vertices and the elements of G are referred to as edges. Unless otherwise stated, we consider graphs

to be simple, i.e. G is irreflexive. Regrettably, graphs only make sporadic appearances in this thesis.

The study of intersecting properties of graphs is an old and well-developed area of combinatorics

which we will not survey here; instead, we refer the interested reader to [Szw03].

An antisymmetric and transitive relation P on [n] which is either reflexive or irreflexive is called a

(partial) order. If all distinct elements of [n] are comparable under P , i.e. for all distinct x, y ∈ [n] we

have either (x, y) ∈ P or (y, x) ∈ P , then P is a linear order.

2.3.1 Partial Orders

Part III is concerned with intersecting orders. For the combinatorial structures considered so far in

this introduction, the generalisation from fixing to saturation does not become relevant before we

move from considering 1-intersecting sets to studying t-intersecting families for t > 1. We will see

in Chapter 7 that this is not necessarily the case for poset classes. Perhaps it is the fact that there are

several conceivable definitions of intersection for partial orders which sets the intersection structure

of posets apart from that of other structures. These issues are discussed in detail in Section 6.3.1, so
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rather than pre-empting our observations on partial orders at this point, we now turn our attention

to equivalence relations to see why the definition of intersection is not necessarily straightforward

in the context of relational structures.

2.3.2 Equivalence Relations

Since each equivalence relation on [n] leads to a partition of [n] and vice versa, we have at least

two alternative approaches in this context: if two partitions of [n] share t classes, it seems natural

to say that they t-intersect. On the other hand, we might say that two equivalence relations on [n]

intersect if there are two distinct elements of [n] which are equivalent under both relations. How

this second notion extends to the case t > 1 once again depends on whether one’s background is

primarily in relational structures, or whether one’s main motivations lie in Chapter 1.

These alternative intersection definitions may be summarised as follows: let E1 and E2 be equiva-

lence relations on [n] with associated partitions C(E1) and C(E2), then

1. E1 and E2 have property I1(t) if |C(E1) ∩ C(E2)| ≥ t,

2. E1 and E2 have property I2(t) if there exist C1 ∈ C(E1), C2 ∈ C(E2) such that |C1 ∩ C2| ≥ t,

3. E1 and E2 have property I3(t) if |E1 ∩E2| ≥ n + t. (Since equivalence relations are reflexive,

any two of them intersect in n pairs of the form (x, x).)

Further alternative definitions are discussed in [ES00]. As usual, a family of equivalence relations

has property Ij(t) if this is the case for any two of its elements.

To describe what is know about these properties in various contexts, let

Bn = {partitions of [n]},

Pn
k = {partitions of [n] with k classes},

Un
k = {partitions of [n] with k classes, each of size n/k}.

(In the definition of Un
k , k must be a divisor of n.)

Property I1(t)

Families with this property are almost entirely classified. Péter Erdős & Székely demonstrated in

[ES00] that the I1(t)-fix-family, which consists of all partitions in Pn
k containing t fixed singleton
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classes, is the largest subset of Pn
k with property I1(t). In [MM05], Meagher & Moura showed that,

for n sufficiently large, no other subset of Un
k with property I1(t) is as large as the I1(t)-fix-family,

and if t = 1 then this holds for all n. Ku & Renshaw proved the analogue of the Meagher-Moura

result for Bn in [KR08].

Property I2(t)

It seems that this case is much more complex: we have a couple of conjectures but are not aware

of any results. Czabarka conjectured in [Cza99] that when k ≥ (n + 1)/2, the I2(2)-fix-family,

consisting of all elements of Pn
k which have 1 in the same class as 2, is maximum among I2(2)-

families in Pn
k . Meagher & Moura conjectured in [MM05] that for t ≤ n/k, the I2(t)-fix-family

is the unique maximum I2(t)-family in Un
k up to permutations of [n]. We will refer to this as the

[MM05]-Conjecture.

Note that if two partitions P1, P2 ∈ Un
k contain classes C1 ∈ P1, C2 ∈ P2 with |C1 ∩ C2| ≥ n/k,

then we must have C1 = C2 since all classes of partitions in Un
k have size n/k. In other words,

if a subset F of Un
k has property I2(n/k), then F has property I1(1). Hence the case t = n/k of

the [MM05]-Conjecture is confirmed by Meagher & Moura’s result on subsets of Un
k with property

I1(1) described above.

However, the [MM05]-Conjecture is not true in general: consider once more the case t = 2, let n be

an even number greater than 4 and set k = 2. Then two arbitrary partitions P1, P2 ∈ Un
2 each have

two classes of size n/2, say

P1 = {C11, C12}, P2 = {C21, C22},

where Ci1 = Ci2. Therefore

|C11 ∩ C21| < 2 =⇒ |C11 ∩ C22| ≥ n/2− 1 > 1

since n > 4. In other words, we have either |C11 ∩ C21| ≥ 2 or |C11 ∩ C22| ≥ 2. This shows that

for n > 22, the whole of Un
2 has property I2(2) and so the I2(2)-fix-family, being strictly contained

in Un
2 , cannot be maximum. Similarly, for all n > 32 = 9 which are divisible by 3, the class Un

3 has

property I2(2) and is therefore a counterexample to the [MM05]-Conjecture .

Property I3(t)

We are not aware of any results or conjectures concerning property I3(t) and our own investigation

of the problem did not come to any substantial conclusions. However, we present a few preliminary
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observations here.

Note that property I2(2) coincides with property I3(1). Thus we deduce from the above coun-

terexamples to the [MM05]-Conjecture that fixing is not always optimal with respect to I3(t) in

Un
k . Let us consider how similar examples can be constructed in Bn.

For positive integers mi with m1 ≥ m2 ≥ · · · ≥ mk and
∑k

i=1 mi = n, denote by (m1, . . . ,mk)

the collection of partitions of [n] which have k classes of respective sizes mi. Conversely, if P is a

partition of [n] then mi(P ) denotes the size of its ith largest class, including multiplicities. For the

sake of simplicity, let us refer to subsets of Bn which have the I3(1)-property as intersecting families

for the moment. It is easy to see that the fix-family has size |Bn−1|, the (n− 1)st Bell number.

Thus we are interested in finding intersecting families in Bn which are larger than |Bn−1|. Finding

these by hand for small n is easy, but it is not clear how a maximal saturation family for larger n

would be defined. To see this, consider saturating over m1, the size of the largest class. If P , Q are

partitions of [n] with m1(P ),m1(Q) ≥ n/2 + 1 then P and Q have property I3(t); for if A ∈ P ,

B ∈ Q are classes of sizes m1(P ), m1(Q) respectively, then

|A ∩B| ≥ m1(P ) + m1(Q)− n ≥ 2(n/2 + 1)− n = 2

by the pigeonhole principle. To see that the bound n/2 + 1 is sharp, let n = 2x + 1 and consider the

following two elements of (x + 1, 1, 1, . . . , 1):

P = {{1, 2, . . . , x, n}, {x + 1}, {x + 2}, . . . , {n− 1}},

Q = {{1}, {2}, . . . , {x}, {x + 1, x + 2, . . . , n}}.

Then P , Q are partitions of [n] with m1(P ),m1(Q) = (n+1)/2 < n/2+1 which do not have property

I3(t).

Although the bound n/2 + 1 is sharp, the family

G(n) = {P ∈ Bn : m1(P ) ≥ n/2 + 1 }

is usually not maximal. For instance, when n = 7 the family

F = G(7) ∪ (4, 3) ∪ (4, 2, 1) ∪ (3, 3, 1) ∪ {P ∈ (4, 1, 1, 1) : {7} ∈ P }

is intersecting and strictly larger than G(7). We have |F| = 275 and |B6| = 203, but it is not clear

if the definition of F could be extended to yield saturation families which are larger than the fix-

family for general n.

Even considering a fixed choice of all mi, it is difficult to describe exactly when (m1, . . . ,mk) is inter-

secting. The condition m1 >
√

n is necessary (proof omitted) but insufficient, since e.g. (4, 3, 1, 1, 1)
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| | | | || || ||
Figure 2.3.1: it is possible to fit 4 blue, 3 red, 1 yellow, 1 green and 1 violet ball into five boxes of

respective sizes 4, 3, 1, 1, 1 in such a way that no box contains two balls of the same colour. This

distribution of balls into boxes corresponds to the example shown in (2.3.1), demonstrating that

(4, 3, 1, 1, 1) is not intersecting.

is not intersecting:

{{1, 2, 3, 4}, {5, 6, 7}, {8}, {9}, {10}},

{{1, 5, 8, 9}, {2, 6, 10}, {3}, {4}, {7}} (2.3.1)

are two elements of (4, 3, 1, 1, 1) which do not have property I3(t), c.f. Figure 2.3.1. On the other

hand, if m1 > k then (m1, . . . ,mk) is intersecting: if P,Q ∈ (m1, . . . ,mk) and A ∈ P with |A| =

m1 > k, then at least two elements of A must be in the same class of Q by the pigeonhole principle.

Thus the condition m1 > k is sufficient, but unnecessary since e.g. (5, 4, 1, 1, 1, 1) is intersecting (see

Figure 2.3.2), despite the fact that m1 = 5 < 6 = k.

Recall that if P is a partition of [n] then mi(P ) is the size of its ith largest class, and denote by li(P )

the number of classes in P which have size at least i. In Figures 2.3.1 and 2.3.2, we represent one

partition by coloured balls, the other by empty boxes, and two balls of the same colour in the same

| | | | | || |
|

Figure 2.3.2: it is impossible to fit 5 blue and 4 red balls into six boxes of respective sizes 5, 4, 1, 1,

1, 1 in such a way that no box contains two balls of the same colour. (This remains impossible if 4

balls of distinct colours are added to the scenario.) Hence (5, 4, 1, 1, 1, 1) is intersecting.
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box correspond to an intersection of the two partitions. Thinking about intersecting partitions in

this way a little longer leads us to the following observation: let P and Q be partitions of [n], not

necessarily distinct. If
j∑

i=1

mi(X) ≤
j∑

i=1

li(Y ) for all 1 ≤ j ≤ b1(Y ) (2.3.2)

holds for either (X, Y ) = (P,Q) or for (X, Y ) = (Q,P ) then P ∪Q is not intersecting. Conversely, if

(2.3.2) fails for both (X, Y ) = (P,Q) and for (X, Y ) = (Q,P ) then P ∪Q is intersecting, provided P

and Q are individually intersecting, of course. (Note P is intersecting if (2.3.2) fails for X = Y = P .)

Condition (2.3.2) formalises the observation illustrated in Figures 2.3.1 and 2.3.2 that if not all balls

of the same colour can be distributed into different boxes, or if this cannot be done simultane-

ously for all colours, then the two corresponding equivalence relations intersect. It presents some

progress, but it is unclear whether it can be used to find large intersecting families in Bn.

We conclude that there is more work to be done in this area and, recalling the purpose of this

excursion into the world of equivalence relations, that even the definition of intersection can be

ambiguous in the study of relational structures. Chapter 6 further explores this issue by considering

different definitions of intersection for partial orders.

2.4 Conclusion

This chapter has surveyed results on intersection properties of combinatorial structures which are

relevant to this thesis; therefore our overview is by no means exhaustive. For instance, [Hsi75,

FW86] present analogues of the Erdős-Ko-Rado Theorem for collections of intersecting subspaces of

a finite vector space; Stanton’s corresponding result in [Sta80] is concerned with Chevalley groups;

and Rands’ findings regarding designs in [Ran82] are analogous to the Erdős-Ko-Rado Theorem

1.1.2 for the t-intersecting case. However, it is now time to concern ourselves in detail with one of

the two main subjects of this thesis: intersecting injections.
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INJECTIONS





CHAPTER 3

BOUNDS AND STRUCTURE IN THE

LIMIT

Throughout Part II of this thesis, k and n will be positive integers with 1 ≤ k ≤ n. Also, Ik
n will

be the set of injections from [k] to [n] or, equivalently, the set of words of length k over [n] with no

repeated symbols. So

Ik
n = {a1a2 . . . ak | ai ∈ [n] and i 6= j =⇒ ai 6= aj}

with

|Ik
n| =

n−k+1∏
i=0

(n− i) =
n!

(n− k)!
.

The definition of intersection is the same for injections as it is for permutations in e.g. [DF77, CK03].

Definition 3.0.1. For a = a1a2 . . . ak, b = b1b2 . . . bk ∈ Ik
n, set

int(a, b) = { i ∈ [k] : ai = bi } .

A subset F of Ik
n is t-intersecting if, for all a, b ∈ F , we have | int(a, b)| ≥ t. When t = 1, we usually

say intersecting rather than 1-intersecting.

The aim of Part II is to determine the maximum t-intersecting families in Ik
n, so we need to develop

some concept of when two subsets of Ik
n are equivalent. To this end, we let permutations act on

injections as they acted on words in Chapter 2, namely by acting on each image point separately:

for w1w2 . . . wk ∈ Ik
n and σ ∈ Sn,

(w1w2 . . . wk)σ = (w1σ)(w2σ) . . . (wkσ).

31
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Then clearly {
wσ : w ∈ Ik

n, σ ∈ Sn

}
= Ik

n.

We may also permute the positions as follows: for w ∈ Ik
n and ρ ∈ Sk, define a new injection wρ by

wρ(x) = w(xρ), ∀x ∈ [k].

We consider two subsets of Ik
n to be equivalent if they may be obtained from each other by permut-

ing the positions and image points:

Definition 3.0.2. A subset X of Ik
n is equivalent to Y ⊆ Ik

n if there exist σ ∈ Sn and ρ ∈ Sk such that

{ (wσ)ρ : w ∈ X } = Y.

Let K0(t, k, n) be the t-intersecting subset of Ik
n obtained by including all injections which fix the

first t points:

K0(t, k, n) =
{

v ∈ Ik
n : v(i) = i, 1 ≤ i ≤ t

}
.

We will refer to this and any family equivalent to K0(t, k, n) as a fix-family.

To consider an example, the following subset of I4
5 is 2-intersecting but not 3-intersecting:

F = { 1234,

1245,

1435,

4235 }.

Note that F is not a fix-family since for each position i ∈ [4], there exist injections v, w ∈ F such

that v(i) 6= w(i). For these parameter values, the fix-family is given by

K0(2, 4, 5) = {1234, 1235, 1243, 1245, 1253, 1254}.

Investigating the intersecting structure of Ik
n requires that we alternate between viewing an element

a ∈ Ik
n as a word made up of k distinct letters ai, or as the permutation of im(a) = {a1, a2, . . . , ak}

which maps i 7→ ai = a(i) for 1 ≤ i ≤ k, written in image form.

We begin by studying 1-intersecting injection families: after giving a bound, we show that if F is

a maximum intersecting subset of Ik
n and k is small, then all words in F have a fixed position in

common. The complementary result for large domains will be proved at the end of Part II.

Next we move on to considering larger t in Section 3.2.1. There we adapt the Meagher-Moura

version of the kernel method as applied to equivalence relations in [MM05] to show that, for n large
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enough in terms of k and t, fixing is the unique optimal strategy for building large t-intersecting

families in Ik
n. In Section 3.2.2 we build on Theorem 2.2.2, a result of Deza & Frankl from [DF77]

concerning permutations, to classify the maximum t-intersecting injection families when k is large

in terms of k − t and n − t. Here the maximum families are equivalent to the saturation family G

from page 20, which is not equivalent to the fix-family.

3.1 Intersection Size 1

3.1.1 A Bound for Intersecting Injection Families

Replicating the approach of Section 2.1, for w ∈ Ik
n, let O(w) denote the orbit of w in Ik

n:

O(w) = {w(1 2 . . . n)i : i ∈ N}.

Note that Ik
n is closed under permutations, so O(w) ⊆ Ik

n.

Theorem 3.1.1. If F ⊆ Ik
n is intersecting then |F| ≤ (n−1)!

(n−k)! .

Moreover, the set of orbits {O(w) | w ∈ Ik
n} forms a partition of Ik

n into disjoint sets of size n and if

|F| = (n−1)!
(n−k)! then F is a transversal of the orbits.

Proof. This proof is very similar to the proof of Theorem 2.1.3. Let w ∈ Ik
n be arbitrary. If u, v are

two distinct elements of O(w) then u and v do not intersect. Thus F contains at most one word

from each orbit, which implies

|F| ≤ |{O(w) : w ∈ Ik
n}|.

Moreover, the orbits are disjoint: Let a and b be two distinct elements of Ik
n satisfying O(a) 6= O(b).

Then at least one of O(a), O(b) is not contained in the other, so we may assume, without loss of

generality, that for some i ∈ Z, we have aπi 6= bπl for any l ∈ Z. Now suppose O(a) ∩ O(b) 6= ∅.

Then there exist r, s ∈ Z with aπr = bπs. But then

aπi = aπrπi−r = bπsπi−r = bπs+i−r

which contradicts the fact that aπi 6= bπl for any l ∈ Z. Thus we conclude that two orbits are either

equal or disjoint.

Note |O(w)| is equal to the order of π which is n. Hence all orbits have the same size, and they are

pairwise disjoint, so

|{O(w) : w ∈ Ik
n}| =

|Ik
n|

|O(w)|
=
|Ik

n|
n

.
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Since |Ik
n| = n!

(n−k)! , combining the above equations and inequalities gives

|F| ≤ |{O(w) : w ∈ Ik
n}| =

|Ik
n|
n

=
(n− 1)!
(n− k)!

.

If equality holds, then F must contain precisely one word from each orbit.

Brockman & Kay also considered intersecting subsets of Ik
n recently in [BK08]. They use a Katona-

type argument involving cyclic permutations to prove the bound of Theorem 3.1.1, but make no

attempt at the structural result of this thesis: that up to permutations of [k] and [n], the fix-family is

the only maximum intersecting subset of Ik
n. We prove this for k ≤ (n + 1)/2 in Section 3.1.2 and

for k ≥ (n + 1)/2 in Chapter 5.

Note that if k = n then Ik
n = Sn and our structural result is equivalent to the main result of [CK03].

Thus we may assume k < n, giving n ≥ 2 and if n = 2 then k = 1. In the latter case, the bound of

Theorem 3.1.1 gives |F| ≤ 1 and the result is trivial. In summary, we assume 1 ≤ k < n and n ≥ 3

in all remaining proofs in this chapter.

3.1.2 Classification for Small Domains

By investigating some simple consequences of the orbit approach of Theorem 3.1.1, this section

proves that fixing is the only optimal intersection strategy in Ik
n for small k.

Definition 3.1.2. Two words a, b in Ik
n are said to strictly t-intersect if they t-intersect, but do not

(t + 1)-intersect.

Lemma 3.1.3. If F is a maximal intersecting subset of Ik
n for 1 ≤ k ≤ n, then there exist two words

a, b ∈ F which strictly 1-intersect.

Proof. By Theorem 3.1.1, F contains precisely one word from O(12 . . . k). Denote this word by c

and let c1 be the first letter in c. Instead of F , we will now investigate

F ′ = Fπn−c1+1

whose intersection with O(12 . . . k) is {12 . . . k}. Since πn−c1+1 is a permutation, F ′ is a maximal in-

tersecting subset of Ik
n. Moreover, suppose there are two words u, v ∈ F ′ which strictly 1-intersect.

Then uπc1−1, vπc1−1 are elements of F which strictly 1-intersect. In other words, it suffices to prove

the lemma about F ′.
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Using Theorem 3.1.1 again, we know that F ′ contains precisely one word from O(n(n− 1) . . . (n−

k + 1)). Denote this word by u and set v := 12 . . . k. There are only two fundamentally different

forms which u can take.

Suppose firstly that u is strictly decreasing, that is u = l(l − 1) . . . (l − k + 1) for some l ∈ [n]. Then

if u and v intersect in position p, we must have up = vp = p since vi = i for all i. In v, all entries in

positions left of p are strictly less than p. In u on the other hand, all entries in positions left of p are

strictly greater than p. Therefore, u and v cannot intersect in any position left of p. Similarly, u and

v cannot intersect anywhere to the right of position p, so u and v strictly 1-intersect.

If u is not strictly decreasing then uj = 1 for some j ∈ [k − 1] and

u = j(j − 1) . . . 1 n(n− 1) . . . (n− k + j + 1).

In this case, there is only one among the first j positions in which u and v can intersect: for p ∈ [j]

we have up = j − p + 1, so up = vp requires

j − p + 1 = p =⇒ p = (j + 1)/2

since vi = i for all i. For the remaining positions q with j < q ≤ k, we have uq = n− q + j + 1, so u

and v can intersect only in position q = (n + j + 1)/2.

Suppose u and v intersect in both positions p and q. Since n > k, the word w obtained from v by

replacing (j + 1)/2 by k + 1 is an element of Ik
n. The element of O(w) ∩ F ′ is unique by Theorem

3.1.1 and must intersect v. Thus either w ∈ F ′ or z ∈ F ′ where z is the unique element of O(w)

which has (j + 1)/2 in position (j + 1)/2, that is z = wπi where i = n− (k + 1) + (j + 1)/2.

Since u and v strictly 2-intersect and one of their intersecting positions is (j + 1)/2, u and w strictly

1-intersect. Also, v and w only differ in one position, so v and z = wπi strictly 1-intersect. Thus in

the case w ∈ F ′, the Lemma is satisfied with (a, b) = (u, w) and if z ∈ F ′, then the result holds with

(a, b) = (v, z).

Simply using the fact that these two strictly 1-intersecting words are in F , it can be deduced that F

contains a much larger set of mutually 1-intersecting elements:

Lemma 3.1.4. Any maximal intersecting subset F of Ik
n has a subset

X = {α} ∪ {(a1a2 . . . ap−1dap+1 . . . ak)πc−d : d ∈ [n] \ im(α)}

for some α = a1 . . . ap−1c ap+1 . . . ak ∈ F .

Moreover, |X| = n− k + 1, and any two elements of X strictly 1-intersect.
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Proof. By Lemma 3.1.3, there exist α, β ∈ F such that, for some p ∈ [k],

α = a1a2 . . . ap−1c ap+1 . . . ak, β = b1b2 . . . bp−1c bp+1 . . . bk

with ai 6= bi for all i. Let d ∈ [n] \ im(α) and set

δ = a1a2 . . . ap−1d ap+1 . . . ak,

then δ ∈ Ik
n. Since p is the only position in which α and δ differ, there are only two words in O(δ)

which intersect α ∈ F . These two words are δ and δπc−d which has c in position p. Since d 6= c

and ai 6= bi for all i, it is clear that δ does not intersect β ∈ F . Therefore δπc−d ∈ F which proves

X ⊆ F . We have |[n]\ im(α)| = n−k, so |X \{α}| = n−k. Moreover, α is distinct from all elements

of X \ {α}, so |X| = n− k + 1.

It remains to be shown that elements of X are mutually strictly 1-intersecting. Let us label the

elements of [n] \ im(α) as d1, d2, . . . , dn−k in such a way that this labelling corresponds to their

ordering as natural numbers, i.e. for i, j ∈ [n − k], we have di < dj whenever i < j. Using this

notation, X consists of the following words:

a1a2 . . . ap−1 c ap+1 . . . ak = α

(a1a2 . . . ap−1d1ap+1 . . . ak)πc−d1

(a1a2 . . . ap−1d2ap+1 . . . ak)πc−d2

...

(a1a2 . . . ap−1dn−kap+1 . . . ak)πc−dn−k

All of the above words have c in position p. Since di 6= c and the di are distinct for all i ∈ [n − k],

it is apparent from the above list that X is a set of n− k + 1 elements all of which mutually strictly

1-intersect.

We are now in a position to classify the maximum intersecting subsets of Ik
n for k ≤ (n + 1)/2.

Theorem 3.1.5. For 1 ≤ k ≤ (n + 1)/2, if F is a maximal intersecting subset of Ik
n then all words in F

have a fixed position in common.

Proof. Let

X = {α} ∪ {(a1a2 . . . ap−1dap+1 . . . ak)πc−d : d ∈ [n] \ im(α)}

be the subset of F given by Lemma 3.1.4 and suppose there exists w ∈ F such that w(p) 6= c. Since

two distinct elements of X do not intersect in any position other than p, w can intersect at most one
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element of X in position i, for any i ∈ [k]. Since w does not intersect any element of X in position

p, this implies that w intersects with at most k − 1 elements of X . Since k < (n + 2)/2, we have

k − 1 = (2k − 2)− k + 1 < n− k + 1 = |X|.

Thus w does not intersect all elements of X , contradicting the intersecting property of F . We

conclude that w(p) = c for all w ∈ F .

We will prove the complementary result on large domains much later in Theorem 5.3.9, after having

introduced the more complicated traditional machinery of Chapter 4. For now, let us turn our

attention to t-intersecting injection families.

3.2 Arbitrary Intersection Size: Classifications in the Limit

3.2.1 Injections with Large Images

In this section, we prove that for large n, fixing eventually becomes the unique optimal strategy

for t-intersecting subsets of Ik
n. We use a version of the so-called kernel method as presented in

the context of partition systems in [MM05], where Meagher & Moura attribute the origins of this

method to Hajnal & Rothschild [HR73].

Lemma 3.2.1. Let F be a t-intersecting subset of Ik
n. If there do not exist x ∈ [k], y ∈ [n] such that all

elements of F map x to y, then

|F| ≤ k!(n− t− 1)!
t!(k − t− 1)!(n− k)!

.

Proof. Let α ∈ F and 1 ≤ x ≤ k. By assumption, there exists β ∈ F such that α(x) 6= β(x). Setting

Fα(x) = { γ ∈ F : γ(x) = α(x) } ,

it is then clear that int(γ, β) ⊆ [k] \ {x} for all γ ∈ Fα(x). On the other hand, int(γ, β) has size at

least t and so

|Fα(x)| ≤
(

k − 1
t

)
(n− (t + 1))!

(n− k)!
.

By the intersecting property of F , we have F =
⋃k

x=1 Fα(x), giving

|F| ≤
k∑

x=1

|Fα(x)| = k · |Fα(x)| =
k!(n− t− 1)!

t!(k − t− 1)!(n− k)!

as required.
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Theorem 3.2.2. Let 1 ≤ t ≤ k ≤ n and suppose that

(k − c)! < (n− t)(t− c)!(k − t− 1)!

for all 0 ≤ c < t. Then any maximum t-intersecting subset of Ik
n is equivalent to the fix-family K0(t, k, n).

Proof. LetF be a t-intersecting subset of Ik
n which is not equivalent toK0(t, k, n). It suffices to show

that |F| < |K0(t, k, n)| = (n− t)!/(n− k)!.

Let C be the intersection of all elements of F , so

C = { (x, y) ∈ [k]× [n] : α(x) = y for all α ∈ F } ,

and set c = |C|, X = {x : (x, y) ∈ C } and Y = { y : (x, y) ∈ C }. Then 0 ≤ c < t since F is not a

fix-family.

Let F ′ be the family obtained from F by first deleting all elements of C from each element of F , and

then relabelling [k] \X and [n] \ Y to eliminate the resulting gaps. Then F ′ is a (t− c)-intersecting

subset of Ik−c
n−c with |F ′| = |F|. Thus we may employ Lemma 3.2.1 to obtain

|F| = |F ′| ≤ (k − c)!(n− t− 1)!
(t− c)!(k − t− 1)!(n− k)!

=
(k − c)!

(n− t)(t− c)!(k − t− 1)!
· (n− t)!
(n− k)!

as required.

Corollary 3.2.3. There exists a function n0(k, t) : N × N → N such that for all n > n0(k, t), every

maximum t-intersecting subset of Ik
n is equivalent to the fix-family K0(t, k, n).

Proof. Given 0 ≤ c < t ≤ k ≤ n, we have (k − c)! ≤ k! and (t− c)! ≥ 1, and these bounds cannot be

simultaneously achieved since c is fixed. Thus if

k! ≤ (n− t)(k − t− 1)! (3.2.4)

then

(k − c)! ≤ k! ≤ (n− t)(k − t− 1)! ≤ (n− t)(k − t− 1)!(t− c)!

and one of these inequalities is strict. By Theorem 3.2.2, inequality (3.2.4) therefore implies that no

t-intersecting subset of Ik
n is larger than K0(t, k, n). For fixed k and t, inequality (3.2.4) can clearly

be achieved by taking

n > n0(k, t) = t +
k!

(k − t− 1)!
,

which completes the proof.
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Thus t-intersecting injection families eventually behave like the t-intersecting set families studied

in the second half of the previous century in the sense that for large n, fixing is the unique optimal

strategy.

Note however, that Corollary 3.2.3 is a result strictly about injections, not including the case of

permutations, since n is required to be large in terms of t as well as k. Corollary 3.2.3 tells us what

happens to the intersection structure of Ik
n if we fix two parameter values and increase the third.

By way of contrast, Theorem 2.2.2 sets n = k, fixes the difference between k and t and increases

k: recall from Chapter 2 that in this case, the t-intersecting saturation family G is maximum in Sn,

see page 20. The remainder of this chapter is devoted to generalising Theorem 2.2.2 to injection

families: Theorem 3.2.11 classifies the optimal t-intersecting injection families for large k, given

that both k− t and n− k are fixed. For these parameter values, Theorem 3.2.11 shows that fixing is

not optimal, since G is not equivalent to K0.

3.2.2 Injections with Large Domains

Before we can prove Theorem 3.2.11, we need to establish a lower bound for the size of G(t, k, n) in

Lemma 3.2.8. For that we need to find the number of injections from [k] to [n] with no fixed points,

which we denote by d(k, n) throughout Part II. The function d(k, n) is given by the following

lemma, which requires the convention that there is one injection with no fixed points from the

empty set into any other set. Note that d(n, n) is the number of derangements of [n].

Lemma 3.2.5. The number d(k, n) of injections from [k] to [n] with no fixed points is given by

d(k, n) =
k∑

i=0

(−1)i

(
k

i

)
(n− i)!
(n− k)!

.

Proof. Denote the product of the first k factors of n! by (n)k. Then by the inclusion-exclusion prin-

ciple,

d(k, n) =
k∑

i=0

(−1)i

(
k

i

)
(n− i)k−i =

k∑
i=0

(−1)i

(
k

i

)
(n− i)!
(n− k)!

as required.

Before continuing our discussion, let us briefly establish the technical properties of d(k, n) required

throughout Part II.

Lemma 3.2.6. For 0 ≤ a ≤ b, let d(a, b) be the number of injections from [a] to [b] with no fixed points.

Then
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1. d(a, b + 1) = d(a, b) + ad(a− 1, b);

2. d(a, b) ≤ (b− a + 1)d(a− 1, b).

Proof. Let D(a, b) denote the set of all injections from [a] to [b] with no fixed points. If w is a word

of length k, we denote by wx the word obtained from w by adjoining the letter x to the end of w.

1. Partition D(a, b + 1) into

X0 = {w ∈ D(a, b + 1) : (b + 1) /∈ im(w) } ,

Xi = {w ∈ D(a, b + 1) : wi = b + 1 } , 1 ≤ i ≤ a.

Clearly, X0 = D(a, b). To determine |Xi| for 1 ≤ i ≤ a, note that any point in [a] may be mapped to

b + 1 > a, so there are d(a− 1, b) elements of D(a, b + 1) which map i to b + 1. Thus

|D(a, b + 1)| =
a∑

i=0

|Xi| = |D(a, b)|+
a∑

i=1

d(a− 1, b)

and the result follows.

2. Let E = {wx : w ∈ D(a− 1, b), x ∈ [b] \ im(w) }, then

|E| = (b− a + 1)d(a− 1, b).

It is clear that D(a, b) ⊆ E, which yields the required inequality.

Later we will use the fact that Lemma 3.2.6 (1) may be rewritten as

d(a + 1, b + 1) = (a + 1)d(a, b) + d(a + 1, b),

so

a ≥ 1 =⇒ d(a + 1, b + 1) > d(a, b) (3.2.7)

for 0 ≤ a ≤ b.

The moved point set of an injection w ∈ Ik
n is defined as

E(w) = {x ∈ [k] : w(x) 6= x } .

Throughout the thesis, if f is a function from A to B and X is a subset of A, we may use the notation

f(X) = { f(x) : x ∈ X } .

Thus if S is a subset of Ik
n then E(S) = {E(w) : w ∈ S} is a family of subsets of [k].

We are now ready to generalise Theorem 2.2.2.
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Lemma 3.2.8. For fixed natural numbers T , N and cN,T with T ≥ 2, there exists k0(T,N) ∈ N such that

|G(k − T, k, k + N)| > cN,T

bT/2c−1∑
j=0

(
k

j

)
for all k ≥ k0(T,N).

Proof. Setting t = k − T and n = k + N , we abbreviate G(t, k, n) by G. The bulk of this proof is

concerned with establishing expressions for |G|.

Case 1 T = 2h is even.

Setting A = {X ⊆ [k] : |X| ≤ h }, we have

G =
⋃

X∈A

{
w ∈ Ik

n : E(w) = X
}

and this union is disjoint, so

|G| =
∑
X∈A

|
{

w ∈ Ik
n : E(w) = X

}
|.

For given X ⊆ [k], an injection w in Ik
n with E(w) = X must fix all elements of [k] \X , so the image

points of X under w are all in [n] \ ([k] \X). Hence

|G| =
∑
X∈A

|
{

w ∈ Ik
n : E(w) = X

}
|

=
∑
X∈A

d(|X|, n− (k − |X|))

=
h∑

j=0

(
k

j

)
d(j, n− k + j)

=
T/2∑
j=0

(
k

j

)
d(j, N + j).

Since both d(j, N + j) and cN,T depend only on the fixed constants N and T , they are constants

themselves. Since T ≥ 2, we may thus choose k sufficiently large to ensure

|G| > cN,T

T/2−1∑
j=0

(
k

j

)
= cN,T

bT/2c−1∑
j=0

(
k

j

)
,

completing the proof for the case that T is even.

Case 2 T = 2h + 1 is odd.

Then

G =
{

w ∈ Ik
n : |E(w) ∩ [k − 1]| ≤ h

}
=

{
w ∈ Ik

n : |E(w)| ≤ h
}
∪
{

w ∈ Ik
n : |E(w)| = h + 1, k ∈ E(w)

}
, (3.2.9)
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so we set

B = {X ⊆ [k] : |X| ≤ h } ∪ {X ⊆ [k] : |X| = h + 1, k ∈ X } .

This gives

|G| =
∑
X∈B

|
{

w ∈ Ik
n : E(w) = X

}
| =

∑
X∈B

d(|X|, n− (k − |X|))

=
h∑

j=0

(
k

j

)
d(j, n− k + j) +

(
k − 1

h

)
d(h + 1, n− k + h + 1) (3.2.10)

=
(T−1)/2∑

j=0

(
k

j

)
d(j, N + j) +

(
k − 1

h

)
d(h + 1, N + h + 1)

>

(T−1)/2∑
j=0

(
k

j

)
d(j, N + j).

Since d(j, N + j) depends only on the constants N and T , we may again choose k sufficiently large

to ensure

|G| > cN,T

(T−1)/2−1∑
j=0

(
k

j

)
= cN,T

bT/2c−1∑
j=0

(
k

j

)
,

since T ≥ 2, and the proof is complete.

Note in the statement of Theorem 3.2.11 below that the case N = 0 and T ≥ 3 would be equivalent

to Theorem 2.2.2 about permutation families in [DF77], so there is no need for us to prove this fact

again: we concentrate on injections here. Moreover, it is easy to see that for T < 2, a maximum

(k − T )-intersecting family in Ik
n must be equivalent to the fix-family irrespective of k and n.

Recall that the symmetric difference A∆B of two sets A and B is the set of points contained in one

but not both of A and B:

A∆B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

Theorem 3.2.11. For fixed positive integers T and N with T ≥ 2, there exists k0(T,N) ∈ N such that for

k ≥ k0(T,N), every maximum (k − T )-intersecting subset of Ik
k+N is equivalent to the saturation family

G(k − T, k, k + N).

Proof. Set t = k − T , n = k + N , abbreviate G(t, k, n) by G as before and let F be a maximum

t-intersecting subset of Ik
n. Following the proof outline of Theorem 2.2.2 in [DF77], we begin by

establishing some useful technicalities (3.2.12 – 3.2.15) before picking a set W of 3T + 1 elements of

F . We then prove that in the case where T is even, all elements of W act in the same way on the set

of points moved by all of them, and applying the inverse of this action to the whole of F maps F
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into G. In the case where T is odd we proceed similarly, though mapping F into G in this situation

requires an application of the Erdős-Ko-Rado Theorem.

Note that two injections cannot intersect in a point which is moved by one and fixed by the other,

i.e. an element of the symmetric difference of their fixed point sets. Since elements of F t-intersect,

this means that the size of their symmetric difference can be at most k − t = T . In the case of

equality, the two injections not only intersect in each point they both fix, which is always the case,

but additionally they intersect in each point they both move. Generalising this argument, we see

that two elements of F whose symmetric difference has size T − j can disagree in at most j of the

positions they both move. We have proved that for all v, w ∈ F ,

|E(v)∆E(w)| ≤ T, (3.2.12)

|(E(v) ∩ E(w)) \ int(v, w)| ≤ T − |E(v)∆E(w)|. (3.2.13)

Both facts will be used frequently throughout this proof.

Without loss of generality, we may assume that the identity 12 . . . k is an element of F . Then each

w ∈ F must t-intersect the identity, so

|E(w)| ≤ k − t = T, ∀w ∈ F . (3.2.14)

Pick w0 ∈ F with |E(w0)| maximal. We wish to show that all remaining w ∈ F move at most

bT/2c of the points which are fixed by w0. So suppose the opposite holds for some w ∈ F , then the

maximality of |E(w0)| forces

|E(w0) \ E(w)| ≥ |E(w) \ E(w0)| >
⌊

T

2

⌋
.

But this implies that the symmetric difference of E(w) and E(w0) is larger than T , contradicting

(3.2.12). Thus we have shown that

|E(w) \ E(w0)| ≤
⌊

T

2

⌋
(3.2.15)

for all w ∈ F .

Picking the Elements of W

We wish to pick w1 ∈ F which achieves equality in (3.2.15), and subsequently continue to pick

wi+1 ∈ F such that wi+1 moves exactly bT/2c points which are not moved by any of the injections

w0, . . . , wi chosen so far: ∣∣∣∣∣∣E(wi+1) \
i⋃

j=0

E(wj)

∣∣∣∣∣∣ =
⌊

T

2

⌋
. (3.2.16)
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We will use the maximality of F as a t-intersecting subset of Ik
n to show, by contradiction, that we

can pick elements of F in this way. Suppose that for some

i < 3T, (3.2.17)

we cannot find such a wi+1 in F \ {w0, . . . , wi}. Then we must have∣∣∣∣∣∣E(w) \
i⋃

j=0

E(wj)

∣∣∣∣∣∣ 6=
⌊

T

2

⌋
for all w ∈ F \ {w0, . . . , wi}. Also,∣∣∣∣∣∣E(w) \

i⋃
j=0

E(wj)

∣∣∣∣∣∣ ≤ |E(w) \ E(w0)| ≤
⌊

T

2

⌋
by (3.2.15), and combining the previous two equations gives∣∣∣∣∣∣E(w) \

i⋃
j=0

E(wj)

∣∣∣∣∣∣ <
⌊

T

2

⌋
(3.2.18)

for all w ∈ F \ {w0, . . . , wi}.

Note that due to condition (3.2.16) according to which the elements w0, . . . , wi were picked, we

have ∣∣∣∣∣∣
i⋃

j=0

E(wj)

∣∣∣∣∣∣ = |E(w0)|+ i

⌊
T

2

⌋
< T + 3T

⌊
T

2

⌋
= T

(
1 + 3

⌊
T

2

⌋)
by (3.2.14, 3.2.17). Moreover, since T ≥ 2 we have

1 + 3
⌊

T

2

⌋
≤ 1 + 1.5T ≤ T − 1 + 1.5T = 2.5T − 1 < 3T,

and combining the previous two inequalities gives∣∣∣∣∣∣
i⋃

j=0

E(wj)

∣∣∣∣∣∣ < 3T 2. (3.2.19)

We use these arguments to establish an upper bound on the size of

E(F) = {E(w) : w ∈ F }

as follows: denote
⋃i

j=0 E(wj) by U . Then w0, . . . , wi move no points outside U . Moreover, (3.2.18)

tells us that whilst each element of F may move an arbitrary number of elements of U , it moves

less than bT/2c of the points which are not in U . Since U has less than 23T 2
subsets by (3.2.19), this

yields

|E(F)| < 23T 2
bT/2c−1∑

j=0

(
k

j

)
. (3.2.20)
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Clearly we have

F ⊆
⋃

X∈E(F)

{
w ∈ Ik

n : E(w) = X
}

and, since this union is disjoint,

|F| ≤
∑

X∈E(F)

|
{

w ∈ Ik
n : E(w) = X

}
|

≤
∑

X∈E(F)

d(|X|, n− k + |X|)

=
∑

X∈E(F)

d(|X|, N + |X|). (3.2.21)

Recall from (3.2.7) that |X| ≥ 1 implies d(|X|, N + |X|) < d(|X|+ 1, N + |X|+ 1) and since N ≥ 1

we also have

d(0, N) = 1 ≤ d(1, N + 1) = 1.

Therefore we may use (3.2.14) together with the above bound on |F| to conclude

|F| ≤
∑

X∈E(F)

d(T,N + T )

= d(T,N + T ) · |E(F)|

< d(T,N + T )23T 2
bT/2c−1∑

j=0

(
k

j

)

by (3.2.20). Since cN,T = d(T,N + T )23T 2
depends only on the fixed constants T and N , Lemma

3.2.8 now implies that |F| < |G|. This contradicts the fact that F is maximum (k − T )-intersecting

in Ik
N+k, so we conclude that we can indeed pick w0, . . . , w3T as described above.

Note that if |E(w0)| < bT/2c then the maximality of |E(w0)| would force all elements of E(F) to

have size less than bT/2c, making it impossible to pick the wi+1 according to (3.2.16). Since we have

just shown that we can pick such wi+1 for i < 3T , we conclude that

|E(w0)| ≥
⌊

T

2

⌋
(3.2.22)

and set

W = {w0, . . . , w3T }. (3.2.23)

It is clear from (3.2.16) that the wi are distinct, so |W| = 3T + 1. As in the proof of Lemma 3.2.8, we

need to consider the possible parities of T separately.
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Case 1 T = 2h is even

We will show that w0 t-intersects all other elements wi of W in the same t positions. In the process,

we establish the sizes of the moved point sets E(wi) as well as their respective intersections and

symmetric differences with E(w0).

The Intersection of w0 with Other Elements of W

By (3.2.22, 3.2.14) the number of points moved by w0 is between h and 2h. Thus setting

s = |E(w0)| − h,

we have 0 ≤ s ≤ h and the maximality of |E(w0)| implies |E(w)| ≤ h + s for all w ∈ F . Indeed, our

next claim is that all w ∈ W satisfy |E(w)| = h + s.

For wi ∈ W ⊆ F , it follows from the way the wi were picked (3.2.16) that

|E(wi) \ E(w0)| ≥

∣∣∣∣∣∣E(wi) \
i−1⋃
j=0

E(wj)

∣∣∣∣∣∣ = h.

Therefore setting |E(wi)| = h + s− j for some j ≥ 0, we have

|E(w0) \ E(wi)| = |E(w0)| − |E(w0) ∩ E(wi)|

= h + s− (|E(wi)| − |E(wi) \ E(w0)|)

= h + s− (h + s− j) + |E(wi) \ E(w0)|

≥ j + h.

Thus the size of the symmetric difference E(wi)∆E(w0) is given by

|E(wi) \ E(w0)|+ |E(w0) \ E(wi)| ≥ 2h + j = T + j.

Using (3.2.12, 3.2.13) this implies j = 0 and

int(wi, w0) = [k] \ (E(wi)∆E(w0)), (3.2.24)

i.e. w0 and wi intersect in all points which they both move. Observe that by proving j = 0 we have

shown

|E(wi)| = h + s, (3.2.25)

|E(w0)∆E(wi)| = T = 2h, (3.2.26)

|E(w0) \ E(wi)| = h
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for all wi ∈ W . Therefore

|E(wi) ∩ E(w0)| = |E(w0)| − |E(w0) \ E(wi)|

= h + s− h = s, ∀wi ∈ W. (3.2.27)

Together with the arguments preceding (3.2.12), (3.2.26) implies that w0 strictly t-intersects (i.e. does

not (t+1)-intersect) each element ofW\{w0}. It remains to be shown that all of these intersections

coincide.

A Common Intersection

We concluded in (3.2.24) that wi and w0 agree on each point in E(wi)∩E(w0). Indeed, suppose that

for some wi ∈ W , i ≥ 2, we had

E(wi) ∩ E(w0) 6= E(w1) ∩ E(w0).

Then since both intersections have the same size by (3.2.27), we must have

|(E(wi) ∩ E(w0)) \ (E(w1) ∩ E(w0))| = |(E(wi) ∩ E(w0)) \ E(w1)| > 0.

But then

|E(wi) ∩ E(w1)| = |E(wi)| − |E(wi) \ (E(w0) ∪ E(w1))| − |(E(wi) ∩ E(w0)) \ E(w1)|

< |E(wi)| − |E(wi) \ (E(w0) ∪ E(w1))|

≤ |E(wi)| −

∣∣∣∣∣∣E(wi) \
i−1⋃
j=0

E(wj)

∣∣∣∣∣∣
= h + s− h = s

by (3.2.25, 3.2.16). But both E(wi) and E(w1) are sets of size h + s by (3.2.25), so if their inter-

section has size less than s, then their symmetric difference must have size greater than 2h = T ,

contradicting (3.2.12).

In conclusion, there must exists a set X ⊆ [k] such that

E(wi) ∩ E(w0) = X, ∀i ∈ [3T ],

which has size s by (3.2.27). Clearly this implies

X ⊆ E(wi) ∩ E(wj), ∀i, j ∈ [3T ] ∪ {0}, i 6= j. (3.2.28)

Indeed, it does not require much further effort to show that we have equality there: we already

know this when i = 0, so suppose that for some 1 ≤ i < j ≤ 3T , the sets E(wi) and E(wj) intersect
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in some point outside X . Then combining this with (3.2.28), we see that at least |X| + 1 = s + 1 of

the points moved by wj are also moved by wi. But wj only moves h + s points in total by (3.2.25),

so wj moves at most

h + s− (s + 1) = h− 1

of the points which are not moved by wi, contradicting the way wj was picked (3.2.16) since i < j.

Hence

E(wi) ∩ E(wj) = X, ∀i < j ∈ [3T ] ∪ {0}. (3.2.29)

Moreover, combining this with (3.2.24) gives

X = E(wi) ∩ E(w0) ⊆ [k] \ (E(wi)∆E(w0)) = int(wi, w0),

telling us that all elements of W act on X in the same way as w0, i.e. X is invariant under W .

Mapping F into G

Let σ ∈ Sn be the permutation which coincides with the elements of W on X and with the identity

elsewhere:

σ(x) =

w0(x) x ∈ X

x x ∈ [n] \X

,

and let σ−1 be the inverse of σ in Sn. We let permutations act on injections as in Section 3.1, so a

permutation acts on each image point of an injection separately, and set

Fσ =
{

vσ−1 : v ∈ F
}

.

Since all elements wi of W as well as σ agree on X , the effect of postmultiplying wi by σ−1 is to fix

the elements of X :

|E(wiσ
−1)| = |E(wi)| − |X| = h + s− s = h, (3.2.30)

as each wi moves h+ s points by (3.2.25) and X has size s by (3.2.27). Applying the same argument

to (3.2.29) gives

E(wiσ
−1) ∩ E(wjσ

−1) = ∅, 0 ≤ i < j ≤ 3T. (3.2.31)

By definition σ, and therefore also σ−1, move |X| = s points and any v ∈ F moves at most T = 2h

points by (3.2.14). Moreover, vσ−1 certainly cannot move more points than the sum of those moved

by v and σ−1, i.e.

|E(vσ−1)| ≤ |E(v)|+ |E(σ−1)| ≤ 2h + s ≤ 3h, ∀v ∈ F . (3.2.32)
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It follows from the definition of G that |E(vσ−1)| ≤ h for all vσ−1 ∈ Fσ would imply Fσ ⊆ G.

Showing this is our final objective in Case 1, so suppose that |E(vσ−1)| > h for some vσ−1 ∈ Fσ . For

any wi ∈ W the symmetric difference of E(vσ−1) and E(wiσ
−1) has size at most 2h by (3.2.12). But

if two sets, one of size larger than h by assumption, the other of size h by (3.2.30), have symmetric

difference of size at most 2h, then their intersection must be non-empty. In other words, E(vσ−1)

intersects each of the 3T + 1 sets E(wiσ
−1), which are mutually disjoint by (3.2.31). This gives

|E(vσ−1)| ≥ 3T + 1 = 6h + 1,

clearly contradicting (3.2.32). We have completed Case 1.

Case 2 T = 2h + 1 is odd

By (3.2.22, 3.2.14) the number of points moved by w0 is between h and 2h + 1, so setting

s = |E(w0)| − h

as in Case 1, we have 0 ≤ s ≤ h + 1 here.

Once again, the maximality of |E(w0)| implies |E(w)| ≤ h + s for all w ∈ F . We wish to show that

the moved point set of each wi ∈ W has size either h + s or h + s − 1. So suppose that for some

1 ≤ i ≤ 3T , the injection wi ∈ W moves at least two points less than w0. Then

|E(w0) \ E(wi)| ≥ |E(wi) \ E(w0)|+ 2 ≥ h + 2

because Condition 3.2.16, according to which wi was picked, ensures that wi moves at least h of the

points not moved by w0. The symmetric difference of the two moved point sets then has size

|E(wi)∆E(w0)| = |E(w0) \ E(wi)|+ |E(wi) \ E(w0)|

≥ 2h + 2 > T,

contradicting (3.2.12). Thus we may partition W according to the cardinalities of the moved point

sets: setting

W0 = {wi ∈ W : |E(wi)| = h + s } ,

W1 = {wi ∈ W : |E(wi)| = h + s− 1 } ,

we have W = W0 ∪ W1. Now we reconsider the arguments employed in Case 1 with the new

scenario in mind.
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The Intersection of w0 with Elements of W0 and W1

It follows from the way the wi were picked (3.2.16) that any wi ∈ W moves at least h of the points

not moved by w0. We therefore obtain

|E(w0) \ E(wi)| = |E(w0)| − |E(wi)|+ |E(wi) \ E(w0)|

≥ h + s− |E(wi)|+ h

=

h wi ∈ W0

h + 1 wi ∈ W1

, (3.2.33)

implying

|E(wi)∆E(w0)| ≥

2h wi ∈ W0

2h + 1 wi ∈ W1

.

Recall that two elements of F cannot have symmetric difference larger than T = 2h + 1 by (3.2.12).

Thus we conclude as in Case 1 that for wi ∈ W1,

|E(w0) \ E(wi)| = h + 1, (3.2.34)

|E(wi) \ E(w0)| = h,

|E(wi) ∩ E(w0)| = s− 1. (3.2.35)

For elements of W0 the situation is slightly different. Reconsidering how we obtained (3.2.33), it

soon becomes clear that for wi ∈ W0,

|E(w0) \ E(wi)| = h + 1 ⇐⇒ |E(wi) \ E(w0)| = h + 1.

Hence

|E(wi)∆E(w0)| = |E(w0) \ E(wi)|+ |E(wi) \ E(w0)|

cannot be equal to 2h + 1, so we apply (3.2.12) to conclude that for all wi ∈ W0,

|E(wi)∆E(w0)| = 2h,

|E(w0) \ E(wi)| = |E(wi) \ E(w0)| = h, (3.2.36)

|E(w0) ∩ E(wi)| = s. (3.2.37)

Next we investigate to what extent the intersections of elements of E(W) overlap. The arguments

used to investigate W0 do not differ from those concerning W1 in the next section, so we investigate

the two sets simultaneously.
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A Common Intersection

Let p ∈ {0, 1} and let ap be the smallest positive integer such that wap ∈ Wp. Suppose there exists

wi ∈ Wp with

E(wi) ∩ E(w0) 6= E(wap
) ∩ E(w0).

Neither of these intersections can be contained in the other since they have the same size by (3.2.35,

3.2.37). Also, E(wi) has size h + s− p and so

|E(wi) ∩ E(wap)| = |E(wi)| − |E(wi) \ (E(w0) ∪ E(wap))| − |(E(wi) ∩ E(w0)) \ E(wap)|

≤ |E(wi)| − |E(wi) \ (E(w0) ∪ E(wap
))| − 1

≤ h + s− p−

∣∣∣∣∣E(wi) \
i−1⋃
λ=0

E(wλ)

∣∣∣∣∣− 1

= s− p− 1.

This yields

|E(wi)∆E(wap
)| = |E(wi)|+ |E(wap

)| − 2|E(wi) ∩ E(wap
)|

> 2(h + s− p)− 2(s− p− 1)

= 2h + 2 > T,

our familiar contradiction to (3.2.12). Hence we have

E(wi) ∩ E(w0) = E(wap) ∩ E(w0), ∀wi ∈ Wp,

implying that the intersection of any two elements of E(Wp) contains

Xp = E(wap
) ∩ E(w0).

If some wi, wj ∈ Wp with i < j both move a point outside Xp, then E(wi) ∩ E(wj) has size at least

|Xp|+ 1 = s− p + 1

by (3.2.35, 3.2.37). Therefore the maximum number of points moved by wj and not moved by wi is

|E(wj)| − (|Xp|+ 1) = (h + s− p)− (s− p + 1) = h− 1.

This contradicts the way wj was picked (3.2.16) and so we conclude that any two elements of

E(Wp) ∪ {E(w0)} have intersection precisely Xp.

This section may now be summarised as follows: let p ∈ {0, 1}. For distinct wi, wj ∈ Wp ∪ {w0},

(E(wi) ∩ E(wj)) = Xp ⊂ E(w0) (3.2.38)

where |Xp| = s− p.



52 CHAPTER 3. BOUNDS AND STRUCTURE IN THE LIMIT

Mapping F into G

We define σp ∈ Sn and Fp analogously to σ and Fσ in Case 1: let

σp(x) =

w0(x) x ∈ Xp

x x ∈ [n] \Xp

,

let σ−1
p be the inverse of σp in Sn and set

Fp =
{

vσ−1
p : v ∈ F

}
.

Let wi ∈ Wp with i > 0. Clearly wi intersects w0 in at most |Xp| = s − p elements of Xp, implying

that postmultiplying wi by σp
−1 can fix at most s− p of the points moved by wi. That is,

|E(wiσp
−1)| ≥ |E(wi)| − (s− p) = (h + s− p)− (s− p) = h, ∀wi ∈ Wp. (3.2.39)

Moreover, since elements of E(Wp) do not intersect in points outside Xp by (3.2.38), we have

E(wiσp
−1) ∩ E(wjσp

−1) = ∅, wi, wj ∈ Wp, i 6= j. (3.2.40)

And for v ∈ F we have

|E(vσp
−1)| ≤ |E(v)|+ |E(σp

−1)|

≤ h + s + |Xp| = h + 2s− p

≤ 3h + 2− p (3.2.41)

since |Xp| = s− p by the summary of the previous section and s ≤ h + 1 by definition.

Since T is odd, in order to prove Fp ⊆ G we must demonstrate that for some p ∈ {0, 1}, all v ∈ Fp

satisfy

|E(v) ∩ [k − 1]| ≤ h.

We begin by proving that for at least one value of p ∈ {0, 1}, all v ∈ Fp satisfy |E(v)| ≤ h + 1.

So suppose, for a contradiction, that for both p = 0 and p = 1 there exists vp ∈ Fp with |E(vp)| >

h + 1. By (3.2.12) we have

|E(vp)∆E(wiσp
−1)| ≤ T = 2h + 1, ∀wi ∈ Wp,

since the size of the symmetric difference is constant under the action of a permutation. Using

(3.2.39), all wi ∈ Wp therefore satisfy

|E(vp) ∩ E(wiσp
−1)| =

1
2
(
|E(vp)|+ |E(wiσp

−1)| − |E(vp)∆E(wiσp
−1)|

)
>

1
2

(h + 1 + h− (2h + 1)) = 0.
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Combining this with (3.2.40) we see that E(vp) intersects each of the mutually disjoint sets E(wiσp
−1)

for wi ∈ Wp, implying

|E(vp)| ≥ |Wp|. (3.2.42)

If |W1| > 3h + 1 then considering the case p = 1 in (3.2.42) gives

|E(v1)| > 3h + 1 = 3h + 2− p,

contradicting (3.2.41). Therefore we must have |W1| ≤ 3h + 1 which, together with (3.2.23, 3.2.42),

yields

|E(v0)| ≥ |W0| = |W| − |W1|

≥ 3T + 1− (3h + 1) = 3(2h + 1)− 3h

= 3h + 3 > 3h + 2,

this time contradicting (3.2.41) for p = 0. Hence we conclude that there exists p∗ ∈ {0, 1} such that

all v ∈ Fp∗ satisfy |E(v)| ≤ h + 1.

The family Fp∗ is t-intersecting, so if two elements u, v ∈ Fp∗ do not intersect in any points they

move, they must jointly fix at least t positions. Suppose, for a contradiction, that two elements

u, v ∈ Fp∗ have moved point sets of size h + 1 which do not intersect. Then the number of points

fixed by both u and v is

k − |E(u)| − |E(v)| = k − 2h− 2

= k − (k − t− 1)− 2 = t− 1,

a contradiction. We conclude that for u, v ∈ Fp∗ ,

|E(u)| = |E(v)| = h + 1 =⇒ E(u) ∩ E(v) 6= ∅,

so

A = {A ∈ E(Fp∗) : |A| = h + 1 }

is intersecting. Furthermore,

h + 1 =
k − t− 1

2
+ 1 ≤ k − 2

2
+ 1 =

k

2
,

so we may apply the Erdős-Ko-Rado Theorem 1.2.1 to deduce

|A| ≤
(

k − 1
h

)
. (3.2.43)
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If this inequality is strict, we combine (3.2.21) with the fact that all elements of E(Fp∗) have size at

most h + 1 to obtain

|Fp∗ | ≤
∑

X∈E(Fp∗ )

d(|X|, N + |X|)

<
h∑

j=0

(
k

j

)
d(j, N + j) +

(
k − 1

h

)
d(h + 1, N + h + 1) = |G|

by (3.2.10), contradicting the fact that F , and therefore also Fp∗ , is maximum. (Fp∗ has the same

size as F since σ is a permutation.)

Hence we must have equality in (3.2.43), so Theorem 1.2.1 implies that all elements of A have a

fixed point z in common: we have

E(Fp∗) ⊆ {A ⊆ [k] : |A| ≤ h } ∪ {A ⊆ [k] : |A| = h + 1, z ∈ A }

and comparing this with (3.2.9), we conclude that (z k)Fp∗ ⊆ G, where (z k) ∈ Sk is the transposi-

tion swapping z and k. We have demonstrated that F is equivalent to G. Finally, this completes the

proof of Theorem 3.2.11.

The main results of this chapter were Corollary 3.2.3 and Theorem 3.2.11, two limit results concern-

ing the t-intersection structure of Ik
n for large parameter values. The remainder of Part II investi-

gates the t-intersection structure of Ik
n for small parameter values. We begin the next chapter by

generalising the concept of saturation for injections.



CHAPTER 4

A COMPLETE BOUND ON EXEMPLARY

FAMILIES

4.1 Introduction

The previous chapter demonstrated that if n is large in terms of k and t, fixing is the unique optimal

strategy, whereas if k is large in terms of k − t and n− k, then the saturation family G is the unique

maximum t-intersecting subset of Ik
n. To complete the picture, we now investigate what happens

for small parameter values. This investigation could be regarded as analogous to Ahlswede &

Khachatrian’s study of set families following the work of Erdős, Ko, Rado, Katona and Wilson,

which we described in Chapter 1. This chapter establishes sufficient conditions for a bound on the

size of t-intersecting sets of injections with k < n. Unfortunately, we do not have an analogous

result for permutations.

4.1.1 Saturation for Injections

Recall the definitions of the fix-family K0 and the saturation family G in Ik
n from pages 32 and 20.

The smallest value of n for which fixing is not the unique optimal strategy for t-intersection in Ik
n

is n = 6. Here

K0(3, 6, 6) = {α ∈ S6 : α(i) = i, 1 ≤ i ≤ 3 } ,

G(3, 6, 6) = {α ∈ S6 : α moves at most one of the first five points } .

Both are 3-intersecting subsets of S6, and we clearly have |K0(3, 6, 6)| = 3!. To determine the size

of the saturation family, note that the identity permutation is the only element of S6 which moves

55
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none of the first five points. The remaining injections in G(3, 6, 6) move precisely one element of

[5]. There are five choices for this moved point, and once it has been picked, the permutation is

completely determined by the fact that the remaining elements of [5] are fixed. In other words, we

have

|G(3, 6, 6)| = 5 + 1 = |K0(3, 6, 6)|,

demonstrating that, while these two families may or may not be maximum, neither of them is

uniquely optimal.

We generalise the concept of saturation for injections as follows: setting

Kr(t, k, n) =
{

w ∈ Ik
n : w fixes at least t + r elements of [t + 2r]

}
is consistent with our notation K0 for the fix-family, and we generally abbreviate Kr(t, k, n) by Kr.

Recalling that d(k, n) denotes the number of injections from [k] to [n] with no fixed points, it is not

difficult to employ some of the arguments from the proof of Lemma 3.2.8 to find that

|Kr| =
(n− t− 2r)!

(n− k)!
·

r∑
j=0

(
t + 2r

t + r + j

)
· d(r − j, n− t− r − j).

Since we wish to discover the largest possible t-intersecting subsets of Ik
n, we restrict ourselves to

considering Kr for which [t + 2r] is a subset of [k], so

r ≤ k − t

2
. (4.1.1)

Indeed, it can easily be demonstrated that

G(t, k, n) = Kb(k−t)/2c(t, k, n)

and we saw in Theorem 3.2.11 that these are the unique maximum families if k is large in terms

of k − t and n − k. Indeed, we conjecture that one of the Kr is always maximum in Ik
n, but we

have not succeeded in proving this. However, there are many instances of the parameters where it

is easily demonstrated that Kr is larger than the fix-family K0 for some r > 0, see for instance the

proposition below.

Proposition 4.1.2. If n/2 ≤ t ≤ (2n− 4)/3 then |K1| > |K0| for all k.

Proof. We have |K0| = (n− t)!/(n− k)! and

|K1| =
(n− t− 2)!

(n− k)!
·
((

t + 2
t + 1

)
· d(1, n− t− 1) +

(
t + 2
t + 2

)
· d(0, n− t− 2)

)
=

(n− t− 2)!
(n− k)!

· ((t + 2)(n− t− 2) + 1) .
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Thus it suffices to show that

(t + 2)(n− t− 2) ≥ (n− t)(n− t− 1).

Now

(t + 2)(n− t− 2)− (n− t)(n− t− 1) = (n− t− 1)(2t− n + 2)− (t + 2)

and since t ≥ n/2, this cannot be less than

2(n− t− 1)− (t + 2) = 2n− 3t− 4,

which is non-negative since t ≤ (2n− 4)/3.

Proposition 4.1.2 gives us specific values of t, k, and n for which fixing is not optimal, and Theorem

3.2.11 guarantees the existence of many more such parameter values. However, neither of these

two results give us any indication which saturation parameter r yields the largest Kr in general.

Figure 4.1.1 compares the sizes of the families Kr for n = k = 30. In this case, Ik
n is the set of

permutations on 30 points and 1 ≤ t ≤ 30, giving [(k − t)/2] ⊂ [15] for all t. So let r∗ : [30] → [15]

such that for each t ∈ [30], we have

max { |Kr| : 0 ≤ r ≤ (k − t)/2 } = |Kr∗(t)|.

Then r∗(t) is given by the blue points in Figure 4.1.1. From our computational evidence, it seems

that the plot in Figure 4.1.1 is typical for small parameter values in the following sense: fixing is

optimal for t < n/2; then from t = dn/2e, the optimal r starts increasing quadratically, until it

hits the linear condition (4.1.1) which the remaining r∗ are determined by, as we would expect

from Theorem 3.2.11. (There seems to be only one exception to this: whenever n = k we have

r∗(k − 2) = 0 instead of 1. Again, we would expect this from Theorems 2.2.2 and 3.2.11 since the

former requires k − t ≥ 3, while the latter requires k − t ≥ 2.)

6

r∗(t) ≤ (k − t)/2

- t
5 10 15 20 25 30

5
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Figure 4.1.1: For fixed n = k = 30, the optimal r depends on t.

Figure 4.1.1 shows that the upper bound for t in Proposition 4.1.2 is not sharp. For a better bound,

see Conjecture 5.1.3.
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4.1.2 Exemplary Injection Families

In this chapter we prove that, under certain conditions, one of the Kr is optimal. To do this, we will

build on the extensive knowledge of t-intersecting set families presented in Chapter 1, similarly

to the way that Theorem 3.2.11 used the Erdős-Ko-Rado Theorem 1.2.1. Once again, we therefore

express injections in terms of sets: for an injection w ∈ Ik
n, its fixed point set is the set of points in [k]

which are fixed under w. That is,

Fix(w) = {x ∈ [k] : w(x) = x}

and if S is a subset of Ik
n then Fix(S) = {Fix(w) : w ∈ S}. Clearly Fix(w) = [k] \ E(w), so sets

have been used to represent injections or permutations in this way since [DF77].

With the following definition we will be able to describe the objective of this chapter in more detail.

The first part of the definition is well-known.

Definition 4.1.3. A family A of subsets of [k] is left-compressed if for each A ∈ A and all 1 ≤ i <

j ≤ k with i /∈ A, j ∈ A, the set obtained by removing j and adding i is a member of A, that is

((A \ {j}) ∪ {i}) ∈ A.

A t-intersecting family F ⊆ Ik
n is left-compressed if its fixed point set Fix(F) is left-compressed.

Left-compression maps have traditionally been popular as a method of deriving bounds for maxi-

mum t-intersecting families of combinatorial objects. Where the intersecting objects are themselves

maps, such as injections or permutations, a left-compression map L would be applied in conjunc-

tion with a map T ensuring that a t-intersecting family has an intersecting fixed point set. In short,

one would transform an arbitrary t-intersecting family into an exemplary one, and derive a bound

for the reduced case of exemplary families.

Definition 4.1.4. A t-intersecting subset F of Ik
n is exemplary if

1. F is maximal under set inclusion,

2. Fix(F) is t-intersecting and

3. Fix(F) is left-compressed.

Unfortunately, it is difficult to find such maps T or L for injections, given that they must preserve

both the cardinality and the intersecting property of a set in order to be useful. We discuss some of

these difficulties in Section 5.2.2. The main result of this chapter is Theorem 4.4.4 which states that,
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provided we are not considering the permutation case k = n, if F is an exemplary t-intersecting

subset of Ik
n, then it cannot be larger than all the Kr, which are themselves exemplary.

Before we prove this last claim, note that by (4.1.1), the restriction r 6= k− t−1 of Lemma 4.1.5 only

applies if

k − t− 1 ≤ (k − t)/2 ⇐⇒ k − t ≤ 2

and k = n, that is t ≥ n − 2. We already noted previously that in these marginal cases, it is easily

proved that all maximum t-intersecting subsets of Ik
n, not just the exemplary ones, are equivalent

to the fix-family.

Lemma 4.1.5. For 1 ≤ t ≤ k ≤ n ∈ N and 0 ≤ r ≤ (k − t)/2, the family Kr(t, k, n) is exemplary, unless

r = k − t− 1 and k = n.

Proof. SinceKr consists of injections which fix at least t+r of the first t+2r points, any two injections

in Kr share at least

2(t + r)− (t + 2r) = t

fixed points. Thus Fix(Kr) is t-intersecting, which also demonstrates that Kr is a t-intersecting

subset of Ik
n. We have

Fix(Kr) = {X ⊆ [k] : |X ∩ [t + 2r]| ≥ t + r } . (4.1.6)

For X ∈ Fix(Kr) and 1 ≤ i < j ≤ k with i /∈ X , j ∈ X , set

Y = (X \ {j}) ∪ {i}.

Then since i < j, Y contains at least as many elements of [t + 2r] as X does, so Y ∈ Fix(Kr) by

(4.1.6). Hence Fix(Kr) is left-compressed.

To demonstrate that Kr is maximal, we will show that for any α ∈ Ik
n \ Kr, there exists β ∈ Kr

which does not t-intersect α. So let

A = Fix(α) ∩ [t + 2r],

then |A| = t + r − x where 1 ≤ x ≤ t + r if α is not an element of Kr. Let B be any (t − x)-subset

of A and let β ∈ Ik
n be an injection which satisfies the following two properties: firstly, β fixes all

elements of

C := ([t + 2r] \A) ∪ B,

ensuring that β ∈ Kr since C is a subset of [t + 2r] of size

|C| = t + 2r − (t + r − x) + t− x = t + r.
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Secondly, β must not fix any elements of

[t + 2r] \ C = A \B,

and β must not intersect α in any positions beyond t + 2r either. Note that this second condition

may be summarised as int(α, β) = B and can therefore be satisfied unless the set [k] \ C has size 1

and k = n (in which case we have no choice where to map the single point). But

|[k] \ C| = k − t− r 6= 1

if k = n since r 6= k − t− 1 by assumption. We now have

| int(α, β)| = |B| < t,

so Kr is indeed maximal and the proof is complete.

4.1.3 Methodology

The approach of this chapter is based on the paper [AK98], where Ahlswede & Khachatrian charac-

terise maximum t-intersecting families of words. However, many of the arguments in [AK98] need

to be adapted to injections, and it turns out that their left-compression and fixing maps cannot be

used successfully in this context. In Sections 4.2 – 4.4 we present our proof of the main result in this

chapter, Theorem 4.4.4, which states that the saturation families Kr are maximum among exem-

plary t-intersecting injection families for k < n. Possible future directions from there are discussed

in Chapter 5.

Throughout much of this chapter, we represent an exemplary t-intersecting set F of injections by

Fix(F) and investigate M(F), the set of minimal elements of Fix(F) under set inclusion. The

lemmas in Section 4.2 clarify why M(F) can be considered to ‘generate’ F in some sense. Section

4.3 presents Proposition 4.3.2, the main structural result concerning M(F). In Section 4.4, we use

a method of [FF80] together with a result from [AK98] to express |Kr| in terms of a t-intersecting

family of sets, enabling us to use Proposition 4.3.2. Finally, we combine this expression of |Kr|with

some simple properties of d(k, n) to conclude that Theorem 4.4.4 holds.
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4.2 From Injections to Sets

4.2.1 An Antichain at the Heart of the Fixed Point Set

This section begins to shift the focus of this chapter from the injection family F to the set family

M(F). To pursue this approach successfully, we need maps going both ways. The notion of Fix(F)

provides a map from injections to sets. Conversely, we introduce a map V which can be regarded

as a map from sets back to injections. For a subset A of [k], we denote by V(A) the set of injections

in Ik
n which fix all elements of A:

V(A) =
{

w ∈ Ik
n : A ⊆ Fix(w)

}
.

Note that individual injections in V(A) may fix more points than just the elements of A. For a family

A of subsets of [k],

V(A) =
⋃

A∈A
V(A).

If F is a t-intersecting subset of Ik
n, we refer to the set of minimal elements of Fix(F) under set

inclusion by

M(F) = {X ∈ Fix(F) : no element of Fix(F) is strictly contained in X } .

The following lemma clarifies why we refer to M(F) as the basis of F .

Lemma 4.2.1. If F is a maximal t-intersecting subset of Ik
n such that Fix(F) is t-intersecting then F =

V(M(F)) and

|F| ≤
∑

X∈M(F)

(n− |X|)!
(n− k)!

.

Proof. The fixed point set of any element w of F contains some element X of M(F). Thus w ∈

V(X) ⊆ V(M(F)). For the reverse containment, let w ∈ V(M(F)) and X be an element of M(F)

such that w ∈ V(X). Since X is an element of the t-intersecting set Fix(F), we have |X ∩ Y | ≥ t for

all Y ∈ Fix(F), so w t-intersects all elements of F . Since F is maximal, this implies w ∈ F .

Hence F = V(M(F)), giving

|F| ≤
∑

X∈M(F)

|V(X)| =
∑

X∈M(F)

(n− |X|)!
(n− k)!

,

as required.
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4.2.2 Intersecting Families are Generated by their Bases

We use the following notation: the maximum element of a subset A of the natural numbers N is

denoted by max(A). More generally, if A is a collection of subsets of N, we denote the maximum

element of all the sets by max(A):

max(A) = max
A∈A

(max(A)) = max

( ⋃
A∈A

A

)
.

Also recall that [max(A)] = {1, 2, . . . ,max(A)}.

The definition of D(X) below is slightly counterintuitive at first, but the concept turns out to be

very useful in what follows, since the map D refines the map V : D(X) is the set of injections whose

fixed point sets, in the smallest initial segment of [k] containing X , agree precisely with X .

Lemma 4.2.2. An exemplary t-intersecting subset F of Ik
n is a disjoint union

F =
⋃̇

X∈M(F)

D(X)

where

D(X) =
{

w ∈ Ik
n : Fix(w) ∩ [max(X)] = X

}
.

Proof. We will use Lemma 4.2.1 to show that F ⊆
⋃

X∈M(F) D(X), so let w ∈ F and letA be the set

of elements of M(F) contained in Fix(w). Moreover, let A be the element of A with the smallest

maximum element, i.e. max(B) ≥ max(A), ∀B ∈ A. Note that since A ⊆ Fix(w),

Fix(w) ∩ [max(A)] ⊇ A.

Now suppose, for a contradiction, that there exists x ∈ Fix(w) ∩ [max(A)] with x /∈ A. Note

x < max(A).

Since F is exemplary, Fix(F) is left-compressed. So A ∈ Fix(F) together with x /∈ A, max(A) ∈ A

implies that

B = A \ {max(A)} ∪ {x} ∈ Fix(F).

Note B ⊆ Fix(w). Now B ∈ Fix(F) means there exists C ∈ M(F) with C ⊆ B, so C ∈ A. By

construction of B, we have max(B) < max(A) which implies max(C) < max(A). But C ∈ A with

max(C) < max(A) contradicts the definition of A, so we conclude

Fix(w) ∩ [max(A)] = A.
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This shows w ∈ D(A) and since A ∈M(F) this concludes the proof of

F ⊆
⋃

X∈M(F)

D(X).

Conversely, let w ∈
⋃

X∈M(F) D(X) and let X be an element of M(F) such that w ∈ D(X), that is

Fix(w) ∩ [max(X)] = X . Then Fix(w) ⊇ X which implies w ∈ F by Lemma 4.2.1. Thus

F =
⋃

X∈M(F)

D(X).

Finally, we show that this union is disjoint. Let w ∈ F and A,B ∈M(F) such that w ∈ D(A)∩D(B).

Then

Fix(w) ∩ [max(A)] = A and Fix(w) ∩ [max(B)] = B.

Without loss of generality, suppose max(A) ≤ max(B). Then

Fix(w) ∩ [max(A)] ⊆ Fix(w) ∩ [max(B)],

i.e. A ⊆ B. Since A and B are both minimal elements of Fix(F) under inclusion, we cannot have

A ⊂ B, therefore we conclude A = B.

The next lemma connects D(X) to the map V which was defined at the beginning of this section.

Lemma 4.2.3. Let F be an exemplary t-intersecting subset of Ik
n, let X ∈ M(F) be such that max(X) =

max(M(F)) and consider the set FX of elements of F which are generated by X only:

FX = V(X) \ V(M(F) \ {X}).

Then FX = D(X) (see Lemma 4.2.2) and

|FX | = d(max(X)− |X|, n− |X|) · (n−max(X))!
(n− k)!

where d is given in Lemma 3.2.5.

Proof. Showing that FX ⊆ D(X) is very similar to the proof of the previous lemma: let w ∈ FX ,

then Fix(w) ⊇ X and

there does not exist Y ∈M(F) with Y 6= X such that Fix(w) ⊇ Y . (4.2.4)

Since Fix(w) ⊇ X we have Fix(w) ∩ [max(X)] ⊇ X . Suppose there exists p ∈ Fix(w) ∩ [max(X)]

such that p /∈ X . Then since Fix(F) is left-compressed and X ∈ Fix(F),

Z = X \ {max(X)} ∪ {p} ∈ Fix(F).



64 CHAPTER 4. A COMPLETE BOUND ON EXEMPLARY FAMILIES

Note that by construction, Z ⊆ Fix(w). So if Y is an element of M(F) contained in Z then Y ⊆

Fix(w). By (4.2.4) this implies Y = X . But max(X) /∈ Z implies max(X) /∈ Y which means Y 6= X .

By this contradiction we must have no such Z and hence so such p. Therefore

Fix(w) ∩ [max(X)] = X

which means w ∈ D(X). Thus we have shown FX ⊆ D(X).

For the reverse containment, let w ∈ D(X), then

Fix(w) ∩ [max(X)] = X, (4.2.5)

so Fix(w) ⊇ X and w ∈ V(X). We need to show that w /∈ V(Y ) for any Y ∈ M(F), Y 6= X ,

so suppose w ∈ V(Y ) with Y ∈ M(F), then Fix(w) ⊇ Y . Now max(X) = max(M(F)) forces

max(X) ≥ max(Y ). Thus Fix(w) ⊇ Y together with (4.2.5) implies

Fix(w) ∩ [max(X)] ⊇ Y.

This gives X ⊇ Y which contradicts X, Y ∈M(F) unless X = Y .

Hence FX = D(X) and so

|FX | = |
{

w ∈ Ik
n : Fix(w) ∩ [max(X)] = X

}
|

= d(max(X)− |X|, n− |X|) · (n−max(X))!
(n− k)!

as asserted.

4.3 The Structure of the Basis

We begin this section by establishing a lemma which we use, in conjunction with the lemmas of the

previous section, to prove a key fact about the basis of an intersecting family F in Proposition 4.3.2.

Lemma 4.3.1. Let F be an exemplary t-intersecting subset of Ik
n, let A1, A2 ∈ Fix(F) have the property

that there exist i, j ∈ [k] with i < j, such that neither A1 nor A2 contain i, but both contain j. Then

|A1 ∩A2| ≥ t + 1.

Proof. Denoting (A1 \{j})∪{i} and (A2 \{j})∪{i} by A′
1, A

′
2 respectively, we have A′

1, A
′
2 ∈ Fix(F)

since Fix(F) is left-compressed. Moreover, Fix(F) is t-intersecting, and so

|A′
1 ∩A2| ≥ t.
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Since neither i nor j are elements of A′
1 ∩A2, but j ∈ A1 ∩A2, this gives

|A1 ∩A2| ≥ |A′
1 ∩A2|+ 1 ≥ t + 1

which completes the proof.

4.3.1 Basis Elements

We are now in a position to prove our main structural result concerning M(F). The following

proposition constitutes most of the proof of Theorem 4.4.4, the main result in this chapter.

Proposition 4.3.2. Let F be a maximum exemplary t-intersecting subset of Ik
n and denote max(M(F)) by

l. Then there exists r ∈ {0, 1, . . . , (k − t)/2} such that l = 2r + t and all elements of M(F) containing l

have size r + t.

Proof. The result will follow fairly easily from the fact that all elements of M(F) containing l have

size (l + t)/2, which we will prove here. Partition M(F) into

M(F) = M0 ∪M1

according to whether the elements of M(F) contain the maximum element l:

M0 = {A ∈M(F) : max(A) = l } ,

M1 = {A ∈M(F) : max(A) < l } .

Due to the choice of l, M0 is non-empty. Moreover, elements of M0 have the following property:

(P) If A1, A2 ∈M0 with |A1 ∩A2| = t then |A1|+ |A2| = l + t.

To see this, note that if |A1 ∩ A2| = t then by Lemma 4.3.1, there exist no i, j ∈ [k] with i < j such

that neither A1 nor A2 contain i, but both contain j. In other words, since both A1 and A2 contain

l, it is true for all i ∈ [k], i < l that i is contained in at least one of A1, A2. Since l is the maximum

element of both A1 and A2, this is simply saying

|A1|+ |A2| = l + |A1 ∩A2| = l + t.

Now we further partition M0 according to the cardinalities of its members:

M(i)
0 = {A ∈M0 : |A| = i } .
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Finally, consider the collection of sets obtained by removing the maximum element l from all mem-

bers of M(i)
0 :

M̂(i)
0 =

{
X ⊆ [l − 1] : X ∪ {l} ∈ M(i)

0

}
.

To prove that all elements of M(F) containing l have size (l + t)/2, we need to demonstrate that

M(i)
0 is empty unless i = (l + t)/2. So let i ∈ [k] with M(i)

0 6= ∅ and suppose i 6= (l + t)/2. We will

derive a contradiction by constructing two t-intersecting families larger than F .

Consider the set S1 which is obtained from M(F) by removing l from all members of size i, and

removing all members of size l + t− i completely if they contain l:

S1 = M(F) \
(
M(i)

0 ∪M(l+t−i)
0

)
∪ M̂(i)

0 . (4.3.3)

Similarly, S2 is obtained from M(F) by removing l from all sets in M(F) of size l + t − i, and

deleting all members of size i which contain l:

S2 = M(F) \
(
M(i)

0 ∪M(l+t−i)
0

)
∪ M̂(l+t−i)

0 . (4.3.4)

Each of S1, S2 is a t-intersecting set of sets; we will show this for S1. The only elements of S1 which

are not members of the t-intersecting set M(F) are the elements of M̂(i)
0 , so let E1 ∈ M̂(i)

0 and

E2 ∈ S1. We need to show |E1 ∩ E2| ≥ t, so recall E1 ∪ {l} ∈ M0.

• If E2 ∈ M1 then E2 does not contain l, so the fact that E1 ∪ {l} ∈ M(F) t-intersects E2 ∈

M(F) implies |E1 ∩ E2| ≥ t.

• If E2 ∈M0 and |(E1 ∪ {l}) ∩ E2| ≥ t + 1 then |E1 ∩ E2| ≥ t.

• If E2 ∈ M0 and |(E1 ∪ {l}) ∩ E2| = t then |E1 ∪ {l}| + |E2| = l + t by Property (P ), so

|E2| = l + t− i since E1 ∈ M̂(i)
0 . But E2 ∈M0 with |E2| = l + t− i contradicts E2 ∈ S1, since

all elements of size l + t− i containing l have been removed from S1.

• If E2 ∈ M̂(i)
0 and |(E1 ∪ {l}) ∩ (E2 ∪ {l})| ≥ t + 1 then |E1 ∩ E2| ≥ t.

• If E2 ∈ M̂(i)
0 and |(E1 ∪ {l}) ∩ (E2 ∪ {l})| = t then Property (P) implies

|E1 ∪ {l}|+ |E2 ∪ {l}| = l + t.

Since E1, E2 ∈ M̂(i)
0 they both have size i − 1, so the above equation reduces to 2i = l + t

which contradicts the assumption i 6= (l + t)/2.
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Hence S1 is t-intersecting, and it follows from similar arguments that S2 is also t-intersecting. This

implies that the sets

Fj = V(Sj), j = 1, 2

are also t-intersecting.

We now have three t-intersecting families: F , F1 andF2, with the latter two arising from (4.3.3) and

(4.3.4). It is intuitively clear from these two equations that neither F1 nor F2 differ greatly from F ;

however, none is contained in another. To make this more formal, we examine the set differences,

beginning with F \F1. It follows from (4.3.3) that the elements of F \F1 are those words which are

generated by the sets in M(l+t−i)
0 only:

F \ F1 = V(M(F)) \ V(S1) =
⋃

X∈M(l+t−i)
0

V(X) \ V(M(F) \X).

Since max(X) = max(M(F)) for all X ∈M(l+t−i)
0 , we may apply Lemma 4.2.3 to obtain

F \ F1 =
⋃

X∈M(l+t−i)
0

D(X) (4.3.5)

where

D(X) =
{

w ∈ Ik
n : Fix(w) ∩ [max(X)] = X

}
=

{
w ∈ Ik

n : Fix(w) ∩ [l] = X
}

,

implying that (4.3.5) is a disjoint union. By Lemma 4.2.3 this gives

|F \ F1| =
∑

X∈M(l+t−i)
0

d(max(X)− |X|, n− |X|) · (n−max(X))!
(n− k)!

=
∑

X∈M(l+t−i)
0

d(l − (l + t− i), n− (l + t− i)) · (n− l)!
(n− k)!

=
∣∣∣M(l+t−i)

0

∣∣∣ · d(i− t, n− l − t + i) · (n− l)!
(n− k)!

. (4.3.6)

Similarly,

|F \ F2| =
∑

X∈M(i)
0

d(max(X)− |X|, n− |X|) · (n−max(X))!
(n− k)!

=
∣∣∣M(i)

0

∣∣∣ · d(l − i, n− i) · (n− l)!
(n− k)!

. (4.3.7)

Next we establish |F1 \ F|. By the construction of S1 in (4.3.3), the elements of F1 \ F are those

which are generated by the sets in M̂(i)
0 only, i.e. injections whose fixed point set contains some
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element of M̂(i)
0 but which do not fix l. So let Y ∈ M̂(i)

0 ; such a Y exists since M(i)
0 6= ∅ implies

M̂(i)
0 6= ∅, though Y may be empty. Defining

D′(Y ) =
{

w ∈ Ik
n : Fix(w) ∩ [l] = Y

}
,

we have

D′(Y ) ⊆ F1 \ F .

Now |Y | = i− 1 so

|D′(Y )| = d(l − i + 1, n− i + 1) · (n− l)!
(n− k)!

.

For distinct Y,Z ∈ M̂(i)
0 we have D′(Y ) ∩D′(Z) = ∅ and so we conclude

|F1 \ F| ≥
∑

Y ∈M̂(i)
0

|D′(Y )|

=
∣∣∣M(i)

0

∣∣∣ · d(l − i + 1, n− i + 1) · (n− l)!
(n− k)!

(4.3.8)

since
∣∣∣∣M̂(i)

0

∣∣∣∣ = ∣∣∣M(i)
0

∣∣∣.
Analogously,

|F2 \ F| ≥
∣∣∣M(l+t−i)

0

∣∣∣ · d(l − (l + t− i− 1), n− (l + t− i− 1)) · (n− l)!
(n− k)!

=
∣∣∣M(l+t−i)

0

∣∣∣ · d(i− t + 1, n− l − t + i + 1) · (n− l)!
(n− k)!

. (4.3.9)

Since F1,F2 and F are t-intersecting subsets of Ik
n and F has largest possible size, we must have

|Fi \ F| ≤ |F \ Fi| for i = 1, 2. Thus equations (4.3.6) - (4.3.9) yield∣∣∣M(i)
0

∣∣∣ · d(l − i + 1, n− i + 1) ≤
∣∣∣M(l+t−i)

0

∣∣∣ · d(i− t, n− l − t + i) (4.3.10)

and ∣∣∣M(l+t−i)
0

∣∣∣ · d(i− t + 1, n− l − t + i + 1) ≤
∣∣∣M(i)

0

∣∣∣ · d(l − i, n− i). (4.3.11)

Recall that i was chosen to ensure that M(F) contains a set X of size i. Since M(F) ⊆ Fix(F) is

t-intersecting, this gives i ≥ t. If i = t, then in order to t-intersect X , all elements of Fix(F) must

contain X , giving M(F) = {X}, so l = max(X). Since Fix(F) is left-compressed, the fact that X

is the only minimal element of Fix(F) means that it cannot have ‘gaps’, i.e. X = [max(X)] = [l],

giving l = |X| = i. But now we have i = l = t, contradicting i 6= (l + t)/2.

Thus i > t, so we may use (3.2.7) to obtain

d(i− t, n− l − t + i) ≤ d(i− t + 1, n− l − t + i + 1).
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We then deduce from (4.3.10) and (4.3.11) that∣∣∣M(i)
0

∣∣∣ · d(l − i + 1, n− i + 1) ≤
∣∣∣M(i)

0

∣∣∣ · d(l − i, n− i).

Since
∣∣∣M(i)

0

∣∣∣ 6= 0 this gives

d(l − i + 1, n− i + 1) ≤ d(l − i, n− i),

implying l = i by (3.2.7). But then M(F) contains an element X of size l = max(M(F)) which,

since all elements of M(F) must be subsets of [l], is only possible if X = [l]. Since M(F) is an

antichain this forces M(F) = {[l]}. Once again, since Fix(F) is left-compressed this forces l = t,

contradicting i 6= (l + t)/2.

We have shown that all elements of M(F) containing l have size (l + t)/2. Since M(F) must have

an element containing max(M(F)) = l, this implies that l + t as well as

l − t = l + t− 2t

are divisible by 2. Moreover, M(F) is t-intersecting, giving l ≥ t. Hence there exists r ∈ N ∪ {0}

such that

l = 2r + t.

Note also that l ∈ Fix(w) for some w ∈ F which implies l ≤ k and therefore

r ∈ {0, 1, . . . , (k − t)/2}

which completes the proof.

4.4 From Sets back to Injections

To make the link back from sets to injections, the following proposition expresses the maximal size

of a t-intersecting subset of Ik
n in terms of t-intersecting sets of subsets of [k]. This method was

inspired by [FF80] which contains a similar proposition linking t-intersecting subsets of words in

[n]k to t-intersecting elements of the power set of [n].

If G is a collection of sets, let

G(i) = {X ∈ G : |X| = i } .

Recall that d(k, n) denotes the number of injections from [k] to [n] with no fixed points.
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Proposition 4.4.1. Let G(k, t) be the set of all t-intersecting families of subsets of [k]. IfF ⊆ Ik
n is exemplary

and t-intersecting then

|F| ≤ max
G∈G(t+2r,t)

(n− t− 2r)!
(n− k)!

·
t+2r∑
i=t

∣∣∣G(i)
∣∣∣ · d(t + 2r − i, n− i)

where r ∈ {0, 1, . . . , (k − t)/2}.

Proof. Let F be a maximum exemplary t-intersecting subset of Ik
n. For each w ∈ F , Fix(w) contains

some element Y of M(F), and Y ⊆ [t + 2r] for some r ∈ {0, 1, . . . , (k − t)/2} by Proposition 4.3.2.

Thus setting

Fix(w) ∩ [t + 2r] = X (4.4.2)

we have X ⊆ [t + 2r] and X ⊇ Y for some Y ∈M(F). Hence upon defining

H(F) = {X ⊆ [t + 2r] : X ⊇ Y, Y ∈M(F) } ,

it follows that

F ⊆
⋃

X∈H(F)

{
w ∈ Ik

n : Fix(w) ∩ [t + 2r] = X
}

.

In fact, we have equality here: if w ∈ Ik
n satisfies (4.4.2) for some X ∈ H(F), then its fixed point set

Fix(w) contains some Y ∈ M(F). This implies that w t-intersects all elements of F , and therefore

w ∈ F since F is maximal. We conclude that

F =
⋃

X∈H(F)

{
w ∈ Ik

n : Fix(w) ∩ [t + 2r] = X
}

and note that this union is disjoint.

For elements X of H(F), we have∣∣{w ∈ Ik
n : Fix(w) ∩ [t + 2r] = X

}∣∣ = d(t + 2r − |X|, n− |X|) · (n− t− 2r)!
(n− k)!

.

Moreover, H(F) is t-intersecting, so elements of H(F) have size t ≤ |X| ≤ t + 2r, giving

|F| = (n− t− 2r)!
(n− k)!

·
t+2r∑
i=t

∣∣∣H(F)(i)
∣∣∣ · d(t + 2r − i, n− i)

Since each element of H(F) contains an element of the t-intersecting set family M(F), the max-

imum value of this sum over all possible sets of t-intersecting subsets of [t + 2r] is an upper

bound.

Let

G∗ = {X ⊆ [t + 2r] : |X| ≥ t + r } .
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We would like to show that the expression in Proposition 4.4.1 is maximised by the saturation

family G∗. For this we need the following proposition, a consequence of results proved in [AK98].

Proposition 4.4.3. (Ahlswede, Khachatrian [AK98]).

Let γt, γt+1, . . . , γt+2r ∈ R+ be such that

γi

γi+1
≤ n− 1 for i = t, . . . , t + 2r − 1.

Then

max
G∈G(t+2r,t)

t+2r∑
i=t

∣∣∣G(i)
∣∣∣ · γi

is attained at G = G∗.

Proof. This follows from Lemma 7 on page 443 and the corollary on page 446 together with the

concluding work on pages 447-8 of [AK98].

4.4.1 The Bound on Exemplary Families

At last, we are now in a position to prove the main result of this chapter.

Theorem 4.4.4. If F is an exemplary t-intersecting subset of Ik
n with 1 ≤ k < n then

|F| ≤ max
0≤r≤(k−t)/2

|Kr| .

Proof. Recall that Kr consists of the injections in Ik
n which fix at least t + r of the first t + 2r points.

So Kr is t-intersecting with

M(Kr) = {X ⊆ [t + 2r] : |X| = t + r } .

Then, using the language and arguments of the proof of Proposition 4.4.1, we have H(Kr) = G∗

and

Kr ⊆
⋃

X∈G∗

{
w ∈ Ik

n : Fix(w) ∩ [t + 2r] = X
}
⊆ Kr,

giving

|Kr| =
(n− t− 2r)!

(n− k)!
·

t+2r∑
i=t

∣∣∣G∗(i)
∣∣∣ · d(t + 2r − i, n− i).

Thus by Propositions 4.4.1 and 4.4.3, to prove Theorem 4.4.4 all that remains to be shown is

d(t + 2r − i, n− i)
d(t + 2r − i− 1, n− i− 1)

≤ n− 1 for i = t, . . . , t + 2r − 1. (4.4.5)
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Recall that d(a, b) is the number of injections from [a] to [b] with no fixed points. Therefore the

denominator in (4.4.5) is non-zero if, and only if, not both of its arguments are equal to 1. When

t + 2r − i− 1 = 1 we have i = t + 2r − 2, and substituting this value of i into n− i− 1 = 1 gives

n = t + 2r ≤ t + (k − t) = k.

Since k < n we conclude that d(t + 2r − i− 1, n− i− 1) 6= 0 for i = t, . . . , t + 2r − 1.

Using Lemma 3.2.6(1), the left hand side of (4.4.5) becomes

d(t + 2r − i, n− i− 1) + (t + 2r − i)d(t + 2r − i− 1, n− i− 1)
d(t + 2r − i− 1, n− i− 1)

=
d(t + 2r − i, n− i− 1)

d(t + 2r − i− 1, n− i− 1)
+ (t + 2r − i)

≤ (n− t− 2r)d(t + 2r − i− 1, n− i− 1)
d(t + 2r − i− 1, n− i− 1)

+ (t + 2r − i)

= n− i

by Lemma 3.2.6(2). Hence

d(t + 2r − i, n− i)
d(t + 2r − i− 1, n− i− 1)

≤ n− i ≤ n− t ≤ n− 1

as required.

4.4.2 The Saturation Constant

In view of Theorem 4.4.4 we would like to find a function which, given t, k and n, returns the

value of r which yields the largest saturation family Kr. The following result makes considerable

progress in this direction: our computational evidence confirms that for 1 ≤ t ≤ k ≤ 30, the optimal

r is given by the largest r ∈ {0, 1, . . . , (k − t)/2} satisfying (4.4.7).

Proposition 4.4.6. If F is a maximum exemplary t-intersecting subset of Ik
n then max(M(F)) = 2r + t

where r ∈ {0, 1, . . . , (k − t)/2} satisfies

(2r + t− 1) ·
r∑

i=0

(−1)i

(
r

i

)
(n− r − t− i)! ≥

r ·
r∑

i=0

(−1)i

(
r

i

)
(n− r − t + 1− i)!. (4.4.7)

Proof. By Proposition 4.3.2 it suffices to show that r satisfies (4.4.7). Proceeding similarly to the

proof of Proposition 4.3.2, we will therefore construct another t-intersecting subset of Ik
n from F ,

and Inequality 4.4.7 will follow from the fact that this new family cannot be larger than F . So
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let max(M(F)) = l as before and recall the definitions of M0, M1, M(i)
0 and M̂(i)

0 from page 65.

Proposition 4.3.2 implies that M0 = M(t+l)/2
0 , or

M(F) = M(t+l)/2
0 ∪M1.

All elements X of M̂(t+l)/2
0 are subsets of [l − 1] of size |X| = t+l

2 − 1. Thus using the pigeonhole

principle, there exists p ∈ [l − 1] which is contained in at most∣∣∣∣M̂(t+l)/2
0

∣∣∣∣ · |X|
l − 1

members of M̂(t+l)/2
0 . Fix such a p and letQ be the set of elements of M̂(t+l)/2

0 which do not contain

p. Then

|Q| ≥
∣∣∣∣M̂(t+l)/2

0

∣∣∣∣−
∣∣∣∣M̂(t+l)/2

0

∣∣∣∣ · |X|
l − 1

=
∣∣∣∣M̂(t+l)/2

0

∣∣∣∣ · (1− 1
l − 1

·
(

t + l

2
− 1
))

=
∣∣∣∣M̂(t+l)/2

0

∣∣∣∣ · 2(l − 1)− t− l + 2
2(l − 1)

=
∣∣∣∣M̂(t+l)/2

0

∣∣∣∣ · l − t

2(l − 1)
.

In order to show that Q is t-intersecting, let X1, X2 ∈ Q and consider the sets X∗
1 = X1 ∪ {l} and

X∗
2 = X2 ∪ {l} which are elements of M0. Now p < l and neither X∗

1 nor X∗
2 contain p, but both

contain l, so by Lemma 4.3.1,

|X∗
1 ∩X∗

2 | ≥ t + 1.

It follows that |X1 ∩ X2| ≥ t and so Q is t-intersecting. Note also that M(F) is t-intersecting and

elements of M1 do not contain l. Hence

N = M1 ∪Q

is t-intersecting which implies that V(N ) ⊆ Ik
n is t-intersecting.

By Lemma 4.2.1, we have F = V(M(F)), so

F = G1 ∪G2

where G2 consists of the injections generated by nothing other than M(t+l)/2
0 and G1 contains the

words generated by the rest of M(F):

G1 = V(M1) = V
(
M(F) \M(t+l)/2

0

)
,

G2 =
⋃

X∈M(t+l)/2
0

(V(X) \ V (M(F) \X)) .
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Similarly,

V(N ) = G1 ∪G3

where

G3 = V(Q) \ V(M1).

Clearly G2 is a disjoint union. Therefore

|G2| =
∑

X∈M(t+l)/2
0

|V(X) \ V (M(F) \X) |

=
∑

X∈M(t+l)/2
0

d(max(X)− |X|, n− |X|) · (n−max(X))!
(n− k)!

by Lemma 4.2.3 since max(X) = max(M(F)) for all X ∈M(t+l)/2
0 . That is,

|G2| =
∑

X∈M(t+l)/2
0

d

(
l − t + l

2
, n− t + l

2

)
· (n− l)!
(n− k)!

=
∣∣∣M(t+l)/2

0

∣∣∣ · d( l − t

2
, n− t + l

2

)
· (n− l)!
(n− k)!

.

We establish a lower bound on |G3| by examining a collection of its subsets. For X ∈ Q, let

C(X) =
{

w ∈ Ik
n : Fix(w) ∩ [l − 1] = X

}
.

Two facts follow immediately from this definition:

|C(X)| = d(l − 1− |X|, n− |X|) · (n− l + 1)!
(n− k)!

= d

(
l − t

2
, n− t + l

2
+ 1
)
· (n− l + 1)!

(n− k)!
(4.4.8)

and

X1 6= X2 ⇒ C(X1) ∩ C(X2) = ∅. (4.4.9)

To show that C(X) ⊆ G3 for all X ∈ Q, let w ∈ C(X). Certainly w ∈ V(Q), so we need to show

that w /∈ V(M1). Suppose then, for a contradiction, that there exists Y ∈M1 such that Fix(w) ⊇ Y .

Since Y ∈M1, Y is a subset of [l−1]. But Fix(w)∩ [l−1] = X which forces Y ⊆ X . This contradicts

the fact that X ∪ {l} is a minimal element of Fix(F) and so we conclude C(X) ⊆ G3.

Combining this with (4.4.8) and (4.4.9) gives

|G3| ≥
∑
X∈Q

|E(X)| = |Q| · d
(

l − t

2
, n− t + l

2
+ 1
)
· (n− l + 1)!

(n− k)!
.
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Since F is maximum we have |F| ≥ |V(N )|. This requires |G2| ≥ |G3|, giving∣∣∣M(t+l)/2
0

∣∣∣ · d( l − t

2
, n− t + l

2

)
· (n− l)!
(n− k)!

≥

|Q| · d
(

l − t

2
, n− t + l

2
+ 1
)
· (n− l + 1)!

(n− k)!
≥∣∣∣∣M̂(t+l)/2

0

∣∣∣∣ · l − t

2(l − 1)
· d
(

l − t

2
, n− t + l

2
+ 1
)
· (n− l + 1)!

(n− k)!
.

Since
∣∣∣M(t+l)/2

0

∣∣∣ = ∣∣∣∣M̂(t+l)/2
0

∣∣∣∣ 6= 0 this simplifies to

d

(
l − t

2
, n− t + l

2

)
≥ l − t

2(l − 1)
· d
(

l − t

2
, n− t + l

2
+ 1
)
· (n− l + 1).

Writing this in terms of r we obtain

d(r, n− r − t) ≥ r

2r + t− 1
· d(r, n− r − t + 1) · (n− 2r − t + 1).

By Lemma 3.2.5 this is equivalent to

(2r + t− 1) ·
r∑

i=0

(−1)i

(
r

i

)
(n− r − t− i)!
(n− 2r − t)!

≥

r ·
r∑

i=0

(−1)i

(
r

i

)
(n− r − t + 1− i)!
(n− 2r − t + 1)!

· (n− 2r − t + 1)

= r ·
r∑

i=0

(−1)i

(
r

i

)
(n− r − t + 1− i)!

(n− 2r − t)!

and the result follows.

In this chapter, we have shown that for k < n, Kr has largest possible size among the exemplary

t-intersecting subsets of Ik
n, where r satisfies (4.1.1) and (4.4.7). To determine the optimal r com-

pletely, we would need to demonstrate that it is given by the largest non-negative integer satisfying

these two inequalities. We begin the following chapter by summarising our conjectures.





CHAPTER 5

TOWARDS A COMPLETE

CLASSIFICATION

5.1 Structural Conjectures

In the previous chapter it was proven that the size of an exemplary t-intersecting set of injections

from [k] to [n] is bounded above by

max
0≤r≤(k−t)/2

|Kr|,

where k < n and r satisfies (4.4.7). In fact, we conjecture that Kr is the only maximum exemplary

t-intersecting subset of Ik
n, up to permutations of the saturation set and its image points, and that

this holds for k = n also:

Conjecture 5.1.1. Let t ≤ k ≤ n be natural numbers with n ≥ 8.

If F is a maximum exemplary t-intersecting subset of Ik
n then F is equivalent to Kr where r is the largest

integer in {0, 1, . . . , (k − t)/2} satisfying (4.4.7).

We require n ≥ 8 since for n ∈ {6, 7}, some exceptions occur: when n = 6, k ∈ {5, 6} and t = 3,

both K0 and K1 are optimal, see page 55.

For n = k = 7 and t = 3, the largest t-intersecting subset of Ik
n is K0. Here r = 0 is the largest

element of {0, 1, 2 = (k − t)/2} satisfying strict inequality in (4.4.7). Now r = 2 gives equality

in (4.4.7) but |K2| < |K0| and so this case does not fit the conjecture, since we need (4.4.7) to be

non-strict otherwise.

77
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5.1.1 Sufficient Conditions

Chapter 4 made considerable progress towards Conjecture 5.1.1. By Propositions 4.3.2 and 4.4.6,

the optimal r is an element of {0, 1, . . . , (k − t)/2} satisfying (4.4.7), though we have not proved

that the largest r satisfying these restrictions is the optimal one. Moreover, Proposition 4.3.2 makes

further progress towards Conjecture 5.1.1 by showing that all elements of

M0 = {X ∈M(F) : t + 2r ∈ X }

have size t + r and are subsets of [2r + t]. This means that all elements of F which are generated by

elements of M0 fix at least t + r of the first t + 2r positions and are thus elements of Kr. Extending

the result of Proposition 4.3.2 about the size of elements of M0 to hold for all elements of M(F)

would thus prove Conjecture 5.1.1.

In other words, it would suffice to show that M(F) is the set of minimal elements of the Katona

family from Theorem 1.2.2 to prove the conjecture: since l + t is even, it follows from [Kat64] that

the set {
X ⊆ [l] : |X| ≥ l + t

2

}
is a maximum t-intersecting family of subsets of [l].

5.1.2 Conjectures on the Optimality of Fixing

At the end of [CK03], Cameron & Ku asked the following question:

Given t ≥ 1, is there a number n0(t) such that, if n > n0(t), then a t-intersecting subset

of Sn has cardinality at most (n − t)!, and that a set meeting the bound is a coset of the

stabiliser of t points?

This is a long-standing conjecture of Deza & Frankl from [DF77]. Since Corollary 3.2.3 does not

apply to the case k = n, we have not answered this question. However, we make the following

conjecture. It is based on computational comparisons of |Kr| in [GAP07] for

0 ≤ r ≤ k − t

2
, 1 ≤ t ≤ k ≤ n ≤ 120.

Conjecture 5.1.2. For integers t, n with 1 ≤ t ≤ n and n > 6, the following are equivalent:

• A t-intersecting subset of Sn has cardinality at most (n− t)!, and a set meeting the bound is a coset of

the stabiliser of t points.
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• t does not lie in the interval [n/2, n− 3].

Our corresponding conjecture for injections is very similar:

Conjecture 5.1.3. For integers t, k, n with 1 ≤ t ≤ k < n and n > 6, the following are equivalent:

• A t-intersecting subset of Ik
n has cardinality at most (n− t)!/(n− k)!, and a set meeting the bound is

equivalent to

K0 = {injections from [k] to [n] which fix all elements of [t]}.

• t does not lie in the interval [n/2, k − 2].

As was noted in our discussion of Figure 4.1.1, the difference between Conjectures 5.1.2 and 5.1.3

corresponds to the difference between Theorems 2.2.2 and 3.2.11.

5.2 Removing the Exemplary Restriction

Chapter 4 focussed on exemplary families, but we expect Conjecture 5.1.1 to hold for arbitrary

families: we should be able to transform any maximum t-intersecting injection family into an ex-

emplary one, without changing the size of the original family. Indeed, this assumption lies behind

Conjectures 5.1.2 and 5.1.3.

5.2.1 Standardising Injection Families

Recall that a t-intersecting subset F of Ik
n is exemplary if it is maximal under set inclusion and

Fix(F) is t-intersecting and left-compressed. Thus we would like to standardise an arbitrary maxi-

mal t-intersecting subsetF of Ik
n as follows: first, we require a map T to transformF into the family

T (F) whose elements fix ‘as many points in [k] as possible’, to ensure that Fix(F) is t-intersecting.

We would then apply a left-compression map L to T (F) to ensure that in the resulting subset of

Ik
n, the positions relevant to the t-intersection property occur at the beginning of each word. That

is, elements of L(T (F)) should t-intersect not just anywhere, but in their first l positions, where l

is specified in Proposition 4.3.2. Transformations similar to T or L have been applied to various

combinatorial structures by Kleitman [Kle66b], Frankl & Füredi [FF80], Ahlswede & Khachatrian

[AK98], Cameron & Ku [CK03] and many others since the 1960s. For a survey of ‘The shifting

technique in extremal set theory’ see [Fra87].
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A Fixing Operation

To remove the restriction of Theorem 4.4.4 to exemplary families, let us concentrate first on finding

a map T which turns an arbitrary t-intersecting family into one with t-intersecting fixed point set.

In other words, to ensure that we can use a set of sets to accurately represent a set of injections,

we need to permute the image point labels of the injections in such a way as to ensure that the

injections fix ‘as many points as possible’. For this purpose, we introduce a fixing operation, based

on traditional shifting maps, which is formally specified in Definition 5.2.1. Intuitively, for x ∈ [n]

and w ∈ Ik
n, we obtain the injection f(w, x) from w as follows: no changes are made if x is already

fixed under w, or cannot be fixed because it is not an element of the domain. If no point maps to

x under w, then we may fix x without having to make any further changes. Finally, if some point

y ∈ [k], distinct from x, maps to x, then we swap the images of y and x.

To formalise this fixing operation, we use the image notation for injections: in (5.2.2) and (5.2.3),

the image point is given underneath the corresponding domain point.

Definition 5.2.1. Let x ∈ [n] and w ∈ Ik
n.

• If either x ≤ k and w(x) = x, or if x > k, then f(w, x) = w.

• If x ≤ k and x /∈ im(w), then

f(w, x) =

 x λ

x w(λ)

 , λ ∈ [k] \ {x}. (5.2.2)

• If x ≤ k and w(y) = x for some y ∈ [k] with y 6= x, then

f(w, x) =

 x y λ

x w(x) w(λ)

 , λ ∈ [k] \ {x, y}. (5.2.3)

It is fairly easy to see that f(w, x) is an injection in Ik
n which fixes x.

The powerful technique of fixing operations was introduced by Kleitman in [Kle66a] to prove that

the size of the union of m intersecting families of subsets of [n] is at most 2n− 2n−m. Our map f on

injections combines previous fixing maps for words and permutations: the naive ‘insertion’ of the

second case is based on fixing maps for words in e.g. [Kle66b, AK98], while the swapping map for

the permutation case is taken straight from Cameron & Ku’s paper [CK03].

We may apply a sequence of fixing operations by using the inductive definition

f(w;x1, . . . , xq) = f(f(w;x1, . . . , xq−1), xq).
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If S is a subset of Ik
n such that f(w, x) ∈ S for all x ∈ [n] and w ∈ S, then we say that S is closed

under the fixing operation.

The following result is standard in the study of t-intersecting families of combinatorial structures

other than sets, see for instance [FF80, AK98, CK03]. It shows how fixed point sets together with

the fixing operation may enable us to build on the theory of t-intersecting set families.

Theorem 5.2.4. If F is a t-intersecting subset of Ik
n which is closed under the fixing operation then Fix(F)

is t-intersecting.

Proof. Suppose Fix(F) is not t-intersecting. Then there exist v, w ∈ F with |Fix(v) ∩ Fix(w)| < t.

Note that

int(v, w) = {x1, x2, . . . , xs}

has size t > 0 and that u = f(v;x1, . . . , xs) ∈ F since F is closed under the fixing operation. We

will show that u cannot t-intersect w.

First we consider positions y ∈ [k] \ int(v, w). It follows from Definition 5.2.1 that for an injection

a ∈ Ik
n and points x, z ∈ [k], if the images of z under a and f(a;x) are different, then we must have

either z = x or a(z) = x. Thus unless v maps y to one of the points xi which we are trying to fix,

the image of y remains unchanged: if v(y) /∈ int(v, w) then

u(y) = v(y) 6= w(y)

since y /∈ int(v, w), as claimed.

If on the other hand v(y) ∈ int(v, w), say v(y) = xl, then

f(v;x1, . . . , xl−1)(y) = v(y) = xl,

f(v;x1, . . . , xl)(y) = f(v;x1, . . . , xl−1)(xl).

Now whether or not the image of y is changed again under the fixing operation depends on

whether or not f(v;x1, . . . , xl)(y) is one of the elements of int(v, w) which have not yet been fixed.

In any case, we end up with u(y) = v(z) for some z ∈ int(v, w). Therefore

u(y) = v(z) for some z ∈ int(v, w)

= w(z) by definition of int(v, w)

6= w(y)

since y /∈ int(v, w) implies y 6= z. We have shown that u and w do not intersect in positions

y ∈ [k] \ int(v, w).
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Finally, suppose u(xi) = w(xi) for some i ∈ [s]. Then since u fixes all elements of int(v, w), we have

xi = u(xi) = w(xi) = v(xi)

because xi ∈ int(v, w). Since |Fix(v) ∩ Fix(w)| < t, this can occur for at most t− 1 values of i.

Hence u and w do not t-intersect, so the result follows from this contradiction to the t-intersection

property of F .

A Left-Compression Map

Similarly to our work in the previous section, one can define left-compression maps li,j on elements

of F which enable us to prove a result analogous to Theorem 5.2.4: namely that t-intersecting

injection families which are closed under these left-compression maps have left-compressed fixed

point sets.

Intuitively, for w ∈ Ik
n and i, j ∈ [k] with i < j, the injection li,j(w) is obtained from w as follows:

if w either fixes i or does not fix j, then we simply set li,j(w) = w. On the other hand, if j is fixed

under w and i is not, then the left compression of w differs from w as follows: li,j(w) fixes i and

maps j to the image of i under w. The fixing of i under li,j(w) is achieved in the same way as the

fixing of x under f(w, x): if no domain point maps to i then we can simply insert it; if some p ∈ [k]

maps to i under w, then li,j(w) maps p to j instead. This last situation can be illustrated in image

notation as follows:

li,j :

 p i j λ

i w(i) j w(λ)

 7→

 p i j λ

j i w(i) w(λ)

 , λ ∈ [k] \ {p, i, j}.

Unfortunately, this traditional approach leads to considerable difficulties later in the process, as we

will see in the next section.

5.2.2 Traditional Shifting Maps in the Injection Setting

Many of the results on injections in this thesis, such as Theorems 4.4.4 and 5.3.9, are obtained by

examining the basis M(F) associated with an exemplary injection family F . Thus we would like

to use Theorem 5.2.4 to show that any t-intersecting injection family F has a t-intersecting fixed

point set, and proceed similarly with regards to left-compression. However, it is very difficult

to show that any t-intersecting injection family can be sensibly mapped into one which is closed

under either the fixing or the left-compression maps. In this section, we illustrate these challenges

by discussing potential fixing maps.
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Potential Fixing Maps

We would like to define a map T on t-intersecting injection familiesF such that T (F) is t-intersecting,

closed under the fixing operation, and has size |F|. Considering previous work in the area, such a

map T is likely to be the result of sequential applications of maps Ti focussed on specific positions

in [k]. As a first attempt to define the Ti, it seems most natural to stay as close as possible to the

shifting maps which work for set families: for w ∈ F , define

Ti(w) =

f(w, i) f(w, i) /∈ F

w otherwise

and set Ti(F) = {Ti(w) : w ∈ F } .

It is not difficult to show that if F is t-intersecting, then Ti(F) is t-intersecting also. However, Ti

does not preserve the cardinality of F in general since we may have f(v, i) = f(w, i) /∈ F for

distinct elements v, w of F . For example,

F0 = {213, 214, 243, 413}

is a maximal 1-intersecting subset of I3
4 with

T1(F0) = {123, 124, 143}

since f(243, 1) = 143 = f(413, 1). Thus T1 does not preserve the size of F0.

In an attempt to fix this problem, we define a map which sequentially replaces elements w of F by

f(w, i) unless doing so would reduce the size of F : for w ∈ F let

seqFTi(w) =

f(w, i) f(w, i) /∈ F

w otherwise
.

Recall that elements of Ik
n can be regarded as words of length k over [n] with no repeats. Thus we

may label the elements of F in lexicographic order by v1, . . . , v|F| and set

F1 = F \ {v1} ∪ {seqFTi(v1)}, Fj+1 = Fj \ {vj+1} ∪ {seqFj
Ti(vj+1)}

for j = 0, . . . , |F| − 1. Finally, define seqTi(F) = F|F|.

Clearly, seqTi preserves the cardinality of F . However, it does not necessarily preserve the t-

intersecting structure of a family of injections: considering F0 once more, observe that

seqT1(F0) = {123, 124, 143, 413}

but 413 does not intersect 124.
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Permutations

We have seen two maps which shift F into an injection family closed under the fixing operation.

The first, more traditional map shifts one t-intersecting family into another, but fails to preserve the

size of F . The second map preserves the cardinality, but not the t-intersecting property of F . Note

that this problem cannot easily be fixed by restricting our attention to permutations, i.e. to the case

n = k, as the following example shows. The set

E = {24135, 41235, 42135, 43125, 45132}

is a maximal 2-intersecting subset of S5 = I5
5 . But T1(E) has size |E|−1 since f(24135, 1) = 14235 =

f(41235, 1) /∈ E. Similarly, seqT1(E) is 1-intersecting but not 2-intersecting, since

seqT1(E) = {14235, 41235, 12435, 13425, 15432}

and | int(41235, 15432)| = 1. (Note that although the proof of our bound on exemplary families in

Theorem 4.4.4 requires k < n, the remaining results in Chapter 4 apply to permutations as well as

more general injections.)

Learning from Maps on Sets

So why do these maps work for sets? LetA be a t-intersecting set of subsets of [n]. SinceA is already

a set family, we do not need a fixing operation, but combinatorialists have used the following left-

compression map to study intersecting set families since the publication of the Erdős-Ko-Rado

paper [EKR61].

Let 1 ≤ i < j ≤ n. To obtain Hij(A) from A:

• for each X ∈ A containing j but not i,

• replace it by Xij = X \ {j} ∪ {i},

• unless Xij ∈ A.

Then Hij(A) is t-intersecting. Furthermore, if X, Y ∈ A are both replaced by Xij = Yij , then we

must have X = Y . Thus Hij(A) has size |A|.

So perhaps we need to consider more positions at once? Let g ∈ F with g(j) = i. Define a permu-

tation hij(g) by swapping the images of i and j in g, then hij(g) fixes i. To obtain Hij(F) from F ,

replace g by hij(g) unless hij(g) ∈ F ; then Hij(F) has size |F|. However, Hij(F) is not necessarily
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t-intersecting: if a family F1 contains 2134 and 2413 then F1 does not contain h12(2134) = 1234

since this permutation does not intersect 2413. However, 2413 is fixed under h12 and so H12(F1) is

not intersecting.

Conclusions

There are many other variations of these maps, but we were unable to find one with the desired

properties. We conclude that standardising injection or permutation families remains a challenging

problem. However, all is not lost: in [CK03], Cameron & Ku present a way of overcoming these

challenges in the case t = 1 for permutations by using Latin Squares and graph theory. Their

methods transfer to injections with large domains, enabling us to complete the classification of

maximum 1-intersecting injection families from Chapter 3.

5.3 Classification of Maximum 1-Intersecting Families for Large

Domains

Recall from Section 3.1.2 that if F is a maximal intersecting subset of Ik
n with k ≤ (n+1)/2, then all

words in F have a fixed position, or image point, in common. In order to establish the same result

for arbitrary k, this section employs the approach of Cameron & Ku in [CK03], where it is proved

that all elements of a maximum intersecting set of permutations from Sn have a fixed image point

in common.

5.3.1 Cliques, Cocliques and Latin Squares

As this section shows, the arguments in [CK03] only require slight modifications to apply to in-

jections with large domain sizes. We will examine the intersection structure of Ik
n from a graph

theoretic point of view: an intersection of two injections will correspond to an edge in a graph with

vertex set Ik
n. We start with the relevant definitions:

• A graph automorphism is a bijection, between the vertex sets of two graphs, which preserves

edges and non-edges. That is, two vertices are adjacent in the domain if, and only if, they are

adjacent in the image.

• A graph is called vertex-transitive if any vertex can be mapped into any other by some graph

automorphism.
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• A clique in a graph is a set of vertices all of which are mutually adjacent.

• Dually, a coclique is a set of vertices in a graph none of which are mutually adjacent.

The idea of a clique-coclique bound is not new — for instance, it is the first lemma in [DF77]. Here

we use the version of Proposition 5.3.1 stated and proved in [CK03].

Proposition 5.3.1. (Deza, Frankl [DF77]; Cameron, Ku [CK03])

Let C be a clique and A a coclique in a vertex-transitive graph on m vertices. Then |C|·|A| ≤ m and equality

implies that |C ∩A| = 1.

We now set out to find the sets C and A appropriate to our context.

Definition 5.3.2. A Latin Square of order n is an n × n array in which each row and each column

contain each symbol 1, 2, . . . , n precisely once.

Let r1, r2, . . . , rn be the rows of some Latin Square L of order n. The ith k-row of L is the word of

length k obtained by taking the first k symbols of ri.

Theorem 5.3.3. If F is a maximum intersecting subset of Ik
n then F contains exactly one k-row of each

Latin Square of order n.

Proof. Form a graph Γ with vertex set Ik
n where vertices v and w are joined by an edge if, and only

if, the words v and w intersect. Let permutations act on words in Ik
n by permuting the letters, as

before. Then any permutation in the symmetric group Sn is a graph automorphism of Γ. Since Sn

acts transitively on itself, it clearly acts transitively on Ik
n, and so Γ is vertex-transitive.

Let Rk be the set of k-rows of some Latin Square of order n. Then Rk is a coclique of size n. On the

other hand, F is a clique in Γ, and |F| = (n−1)!
(n−k)! by Theorem 3.1.1 since F is maximum. Thus

|Rk| · |F| = n · (n− 1)!
(n− k)!

=
n!

(n− k)!
= |Ik

n|,

and we apply Proposition 5.3.1 to conclude |Rk ∩ F| = 1.

We need another two results before we can prove closure under the fixing operation (Theorem

5.3.7), and we simply quote these here.

For any word w ∈ Ik
n, denote by N(w) the set of all words in Ik

n which do not intersect with w.

Proposition 5.3.4. (Cameron, Ku [CK03])

Let s be an integer satisfying 2s ≤ n. Then for g1, g2, . . . , gs ∈ Sn, we have N(g1)∩N(g2)∩· · ·∩N(gs) 6= ∅.
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Theorem 5.3.5. (Hall 1945) Every k × n Latin rectangle can be extended to an n× n Latin square.

We need to formalise the correspondence between Ik
n and Sn more precisely, so let us introduce

some notation. Recall that a word w ∈ Ik
n may be viewed as a bijection

w : [k] → {w(1), w(2), . . . , w(k)}.

It is then clear that w can be extended to a permutation in Sn.

Definition 5.3.6. For w ∈ Ik
n, a permutation σ ∈ Sn is called an extension of w in Sn if σ(i) = w(i)

for all i ∈ [k]. Conversely, we may refer to w as the restriction of σ to Ik
n.

5.3.2 Closure under the Fixing Operation

Note that applying permutations of Sn to a subset of Ik
n does not alter the cardinality or intersect-

ing structure of that subset. Thus when considering an intersecting subset of Ik
n, we can assume

without loss of generality that it contains the identity 12 . . . k.

Theorem 5.3.7. If n ≥ 6 and F is a maximum intersecting subset of Ik
n containing 12 . . . k then F is closed

under the fixing operation.

Proof. Suppose F is not closed under the fixing operation. Then there exist x ∈ [n] and w ∈ F such

that f(w, x) /∈ F , requiring f(w, x) 6= w. Thus x ≤ k and w(x) 6= x.

Let g = w1 . . . wx . . . wy . . . wn be an extension of w in Sn with wy = x. (Note we are assuming x < y

without loss of generality, for simplicity of notation.) Then

f(g, x) = w1 . . . wx−1wywx+1 . . . wy−1wxwy+1 . . . wn

is an extension of f(w, x) in Sn.

Following the proof of Theorem 8 in [CK03], we consider two cases in turn. Note that if φ is a map

from a set X to a set Y , we denote the restriction of φ to a subset X ′ ⊂ X by φ|X′ .

Case 1 wx = y.

Set M = [n] \ {x, y}, īd = 12 . . . n|M and ḡ = g|M = f(g, x)|M . Then īd and ḡ are elements of the

symmetric group on M , Sym(M) ∼= Sn−2. By Proposition 5.3.4, since 2 · 2 ≤ n − 2, there exists
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h̄ ∈ N(īd) ∩N(ḡ). Consider the permutation h ∈ Sn given by

h(i) =


h̄(i) i ∈ M

y i = x

x i = y

.

Note f(g, x) and h form a 2 × n Latin rectangle which, by Theorem 5.3.5, can be extended to some

n× n Latin Square L. We will show that F cannot contain any k-row of L.

Recall that f(g, x)|[k] = f(w, x) /∈ F by assumption. Moreover, h does not intersect 12 . . . n by

construction, so h|[k] does not intersect 12 . . . k, which we assumed is in F , giving h|[k] /∈ F . Finally,

for any row r of L other than f(g, x) or h, we have r ∈ N(f(g, x)) ∩N(h) which implies r ∈ N(g).

Thus r|[k] ∈ N(w), giving r|[k] /∈ F since w ∈ F . Hence F does not contain any k-row of the Latin

Square L of order n, which contradicts Theorem 5.3.3.

Case 2 wx = z 6= y.

We present an abbreviated version of the arguments on p. 884 of [CK03], giving details where we

make the transfer from permutations to general injections.

Let M = [n] \ {x, z} and let īd = 12 . . . n|M denote the identity of Sym(M). Define another permu-

tation ḡ on M by

ḡ(i) =

g(i) i 6= y

g(z) i = y

.

Again, |M | = n− 2 ≥ 4, so by Proposition 5.3.4, there exists a permutation h̄ ∈ Sym(M) satisfying

h̄ ∈ N(īd) ∩N(ḡ). From h̄, we construct the permutation h∗ on [n] as

h∗(i) =


h̄(i) i ∈ M

z i = x

x i = z

,

and from h∗ ∈ Sn we construct the permutation h ∈ Sn given by

h(i) =


h∗(i) i /∈ {y, z}

h∗(z) = x i = y

h∗(y) = h̄(y) i = z

.

By [CK03], f(g, x) and h form a 2×n Latin rectangle, so by Theorem 5.3.5 there exists a Latin Square
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L of order n containing f(g, x) and h. Again, we wish to show that no k-row of L can be contained

in F .

Let r be any row in L other than f(g, x) and h and recall that w is the restriction of g to [k]. Since

int(g, h) = {x, y} and those are precisely the positions where g differs from f(g, x), the fact that r

intersects neither f(g, x) nor h implies that r cannot intersect g. Thus r|[k] does not intersect w and

so w ∈ F implies r|[k] /∈ F .

Moreover f(g, x)|[k] = f(w, x) is not an element of F by assumption. Finally, h does not intersect

12 . . . n: this is true for positions in M since h̄ ∈ N(īd). Also h(x) = z 6= x and h(z) = h∗(y) which

is not equal to z since h∗(x) = z and x 6= y. Thus h|[k] does not intersect 12 . . . k ∈ F , implying that

h|[k] is not in F . This constitutes the required contradiction to Theorem 5.3.3.

We expect Theorem 5.3.7 to hold for n < 6 as well, but this is not required for the proof of our

classification: small cases are checked separately in Section 5.3.4.

5.3.3 Injections with Large Images

The following lemma follows from the so-called LYM inequality; see [CK03] for details.

Lemma 5.3.8. (Cameron, Ku [CK03])

If Z is an antichain of subsets of a k-set such that |A| ≥ j for all A ∈ Z then

∑
A∈Z

(k − |A|)! ≤ k!/j!.

We are now in a position to classify the maximum intersecting subsets of Ik
n for k > n/2.

Theorem 5.3.9. For n/2 < k ≤ n, let F be a maximum intersecting subset of Ik
n. Then all words in F

have a fixed position in common.

Proof. We noted previously that we may assume 12 . . . k ∈ F without loss of generality. Moreover,

if k = n then Theorem 5.3.9 is equivalent to the main result of [CK03], so we assume k < n. Lastly,

small values of k and n can be checked by an elementary case analysis (see Section 5.3.4), so we will

assume within the proof that n ≥ 6 and k ≥ 4.

By Theorems 5.3.7 and 5.2.4, Fix(F) is intersecting. Moreover, 12 . . . k ∈ F and so M(F) is a non-

empty, intersecting antichain of subsets of [k]. We will establish bounds on the size of the elements

of M(F). Since Fix(F) is intersecting, ∅ /∈ Fix(F). Moreover, if Fix(F) contains an element of size
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1, then Theorem 5.3.9 follows by the intersection property of Fix(F). Thus we may assume that all

elements of M(F) have size at least 2.

Pursuing a similar argument, if Y =
⋂

X∈M(F) X is non-empty, then all elements of F fix all el-

ements of Y , and Theorem 5.3.9 is immediate. We therefore assume
⋂

X∈M(F) X = ∅, implying

|M(F)| ≥ 2. Since M(F) is an antichain of subsets of [k], this gives [k] /∈ M(F), and we have

shown that all X ∈M(F) satisfy 2 ≤ |X| ≤ k − 1.

For the remainder of this proof, the aim is to derive a contradiction to the assumption that F attains

the bound given in Theorem 3.1.1, but there exists no i ∈ [k] such that w(i) = i for all w ∈ F . As in

[CK03], we consider two cases.

Case 1 M(F) contains no element of size 2.

By Lemma 4.2.1 we have

|F| · (n− k)! ≤
∑

X∈M(F)

(n− |X|)!

=
∑

X∈M(F)
3≤|X|≤bk/2c

(n− |X|)! +
∑

X∈M(F)
|X|>bk/2c

(n− |X|)!

≤
bk/2c∑
i=3

|M(i)(F)|(n− i)! +
n!

(bk/2c+ 1)!

where |M(i)(F)| is the number of elements in M(F) of size i. The inequality follows from Lemma

5.3.8 upon noting that X ⊆ [k] ⊂ [n] for all X ∈ M(F). Using the Erdős-Ko-Rado Theorem 1.1.1,

this inequality becomes

|F| · (n− k)! ≤
bk/2c∑
i=3

(
k − 1
i− 1

)
(n− i)! +

n!
(bk/2c+ 1)!

.

We are assuming that |F| = (n− 1)!/(n− k)!, so this gives

(n− 1)! ≤
bk/2c∑
i=3

(k − 1)!(n− i)!
(i− 1)!(k − i)!

+
n!

(bk/2c+ 1)!
. (5.3.10)

Let us denote the right hand side of (5.3.10) by f(n, k).

To provide the required contradiction to (5.3.10), straightforward numerical calculation demon-

strates that f(n, k) < (n− 1)! for n < 16, unless

(n, k) ∈ {(6, 4), (6, 5), (7, 4), (7, 5), (8, 5), (9, 5)}.
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These special cases have been checked by a more involved recursive algorithm using a computer

package [GAP07], see Section 5.3.4. For the remainder of Case 1, we therefore assume n ≥ 16.

Since k < n, we have

f(n, k) =
bk/2c∑
i=3

(k − 1)(k − 2) . . . (k − i + 1)(n− i)!
(i− 1)!

+
n!

(bk/2c+ 1)!

<

bk/2c∑
i=3

(n− 1)(n− 2) . . . (n− i + 1)(n− i)!
(i− 1)!

+
n!

(bk/2c+ 1)!

= (n− 1)!
bk/2c∑
i=3

1
(i− 1)!

+
n!

(bk/2c+ 1)!

≤ (n− 1)!
bn/2c∑
i=3

1
(i− 1)!

+
n!

(bk/2c+ 1)!
.

Now if e is the natural exponent then

e =
∞∑

i=0

1
i!

= 2 +
∞∑

i=3

1
(i− 1)!

and so
bn/2c∑
i=3

1
(i− 1)!

< e− 2 <
4
5
.

Since k > n/2, this gives

f(n, k) < (n− 1)! · 4
5

+
n!

(bk/2c+ 1)!

< (n− 1)! · 4
5

+
n!

(bn/4c+ 1)!
= (n− 1)!

(
4
5

+
n

(bn/4c+ 1)!

)
.

It is easily verified that
n

(bn/4c+ 1)!
<

1
5

for n ≥ 16, and so f(n, k) < (n− 1)!, giving the required contradiction to (5.3.10).

Case 2 R2 = {X ∈M(F) : |X| = 2} is non-empty.

If
⋂

X∈R2
X = ∅ then, by the intersection property of M(F), there exist distinct a, b, c ∈ [k] such

that

{{a, b}, {a, c}, {b, c}} ⊆ R2.

Suppose there exists X ∈ M(F) \ {{a, b}, {a, c}, {b, c}}. Since X ∩ {b, c} 6= ∅, we have either b ∈ X

or c ∈ X . This implies a /∈ X because otherwise either {a, b} ⊆ X or {a, c} ⊆ X which would

contradict the fact that M(F) is an antichain. However, we must also have X ∩ {a, b} 6= ∅ and
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X ∩ {a, c} 6= ∅, so a /∈ X implies {b, c} ⊆ X which again contradicts the antichain property of

M(F). We conclude

M(F) = R2 = {{a, b}, {a, c}, {b, c}}

and applying Lemma 4.2.1 gives

|F| ≤
∑

X∈M(F)

(n− |X|)!
(n− k)!

= 3
(n− 2)!
(n− k)!

<
(n− 1)!
(n− k)!

for n ≥ 5, giving the contradiction |F| < |F|.

Hence we must have
⋂

X∈R2
X 6= ∅, so we may assume without loss of generality that

R2 = {{1, i} : 2 ≤ i ≤ c}

for some c ∈ {2, 3, . . . , k}. Set

Y = {X ∈M(F) \ R2 : 1 ∈ X}, N = {X ∈M(F) \ R2 : 1 /∈ X}.

Then it follows from the definition of Y ⊂ M(F) that each Y ∈ Y satisfies {1, x, y} ⊆ Y for some

distinct x, y ∈ [k] \ [c] since M(F) is an antichain. If w ∈ Ik
n is a word whose fixed point set Fix(w)

contains Y , then w ∈ V({1, x, y}).

By the intersection property of M(F) ⊇ R2, we have {2, 3, . . . , c} ⊆ N for all N ∈ N . Thus if

w ∈ Ik
n is a word whose fixed point set Fix(w) contains N ∈ N , then w ∈ V({2, 3, . . . , c}). By an

argument analogous to the proof of Lemma 4.2.1, we therefore have

|F| ≤
∑

X∈R2

(n− |X|)!
(n− k)!

+
∑
x6=y

x,y∈{c+1,...,k}

|V({1, x, y})| + |V({2, 3, . . . , c})|

= (c− 1)
(n− 2)!
(n− k)!

+
(

k − c

2

)
(n− 3)!
(n− k)!

+
(n− c + 1)!

(n− k)!
.

Since |F| = (n−1)!
(n−k)! , this may be simplified to

(n− 1)! ≤ (c− 1)(n− 2)! +
(

k − c

2

)
(n− 3)! + (n− c + 1)!. (5.3.11)

We will now investigate the range of values which c can take. Firstly, suppose 3 ≤ c ≤ k − 2. Then

(n− c + 1)! ≤ (n− 2)! and so

(n− 1)! ≤ c(n− 2)! +
(

k − c

2

)
(n− 3)! := f(c),

i.e. denote the right hand side of this inequality by f(c). Now c > 2 implies

n− c

2
<

n− 2
2

< n− 2,
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giving
(n− c)(n− c− 1)

2
< (n− 2)(n− c− 1)

since n− c− 1 > 0. Using k < n, this gives(
k − c

2

)
(n− 3)! <

(
n− c

2

)
(n− 3)! < (n− 2)!(n− c− 1)

which yields f(c) < (n − 1)!. We now have the contradiction (n − 1)! ≤ f(c) < (n − 1)!, so we

conclude that we cannot have 3 ≤ c ≤ k − 2.

Next suppose c ≥ k−1. Recall that each Y ∈ Y satisfies {1, x, y} ⊆ Y for some distinct x, y ∈ [k]\[c].

Thus c ≥ k − 1 implies Y = ∅ and M(F) = R2 ∪N . If c = k − 1 then

|F| ≤
∑

X∈R2

(n− |X|)!
(n− k)!

+ |V({2, 3, . . . , k − 1})|

= (k − 2)
(n− 2)!
(n− k)!

+ (n− k + 2)(n− k + 1)

and multiplying through by (n− k)! gives

(n− 1)! ≤ (k − 2)(n− 2)! + (n− k + 2)!

< (n− 2)(n− 2)! + (n− 2)! = (n− 1)!

since 4 ≤ k < n. Similarly, if c = k then

|F| ≤ |R2| ·
(n− 2)!
(n− k)!

+ |V({2, 3, . . . , k})|

= (k − 1)
(n− 2)!
(n− k)!

+ (n− k + 1),

so

(n− 1)! ≤ (k − 1)(n− 2)! + (n− k + 1)!

< (k − 1)(n− 2)! + (n− k)(n− 2)! = (n− 1)!.

It follows from these contradictions that c = 2.

Hence we have R2 = {{1, 2}} which implies M(F) = R2 ∪ B1 ∪ B2 where

B1 = {X ∈M(F) \ R2 : 1 ∈ X}, B2 = {X ∈M(F) \ R2 : 2 ∈ X}.

SinceM(F) is an antichain, B1∩B2 = ∅. Moreover, for i ∈ {1, 2}, each X ∈ Bi satisfies {i, a, b} ⊆ X

for some a, b ∈ [k] \ {1, 2}. Therefore we deduce

|F| ≤
∑

X∈R2

(n− |X|)!
(n− k)!

+
∑
a6=b

a,b∈[k]\{1,2}

|V({1, a, b})|+
∑
a6=b

a,b∈[k]\{1,2}

|V({2, a, b})|

=
(n− 2)!
(n− k)!

+ 2
(

k − 2
2

)
(n− 3)!
(n− k)!

,
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and simplifying yields the usual contradiction:

(n− 1)! ≤ (n− 2)! + 2
(

k − 2
2

)
(n− 3)!

< (n− 2)! + 2
(

n− 2
2

)
(n− 3)!

= (n− 2)! +
(n− 2)!
(n− 4)!

(n− 3)!

= (n− 2)(n− 2)! < (n− 1)!.

We started the proof by assuming that not all elements of F have a fixed position in common. We

have shown that this assumption leads to a contradiction in all possible cases, so the result now

follows.

5.3.4 Injections with Small Images

Within the proof of Theorem 5.3.9, we noted that the cases n ≤ 5, k ≤ 3 and

(n, k) ∈ {(6, 4), (6, 5), (7, 4), (7, 5), (8, 5), (9, 5)}

can be proved by hand or using a computer package. For the sake of completeness, we will do

this here. Using [CK03] as before, we may assume k < n throughout, so n/2 < k < n. Moreover,

12 . . . k ∈ F without loss of generality.

Short Words

We need to prove the result for k ≤ 3 and arbitrary n. When k = 1, Theorem 5.3.9 is immediate, so

consider the case k = 2.

Since k < n, we have n ≥ 3. If n = 3 then

|F| = (n− 1)!
(n− k)!

=
2!
1!

= 2

so Theorem 5.3.9 is again trivial. If n ≥ 4 then by Theorem 3.1.1, each maximal intersecting subset

of Ik
n must be a transversal of the orbits. Now 12 ∈ F , andF must also contain an element of O(13).

This word, call it v, intersects 12, so we have v ∈ {13, n2}.

Suppose firstly that v = 13, so F ⊇ {12, 13}. Then in order to intersect both 12 and 13, any other

element of F must have its first position equal to 1. When v = n2 the same argument holds: Any

other element of F must intersect both 12 and n2, so it must have 2 in the second position since

n 6= 1. Thus Theorem 5.3.9 holds for k = 2 and n arbitrary.
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Next we consider the domain size k = 3. We add the case n = 4 to the list of (n, k)-combinations to

be checked with a computer package and assume n ≥ 5. From Theorem 3.1.1 we know that v ∈ F

for some v ∈ O(124), and 123 ∈ F implies v ∈ {124, n13}. Now simply by using the two facts that

F is a transversal of the orbits and any two elements of F intersect, we will see that Theorem 5.3.9

must hold for k = 3 and n ≥ 5.

Case 1 v = n13

Suppose there exists abc ∈ F with c 6= 3. Then 123 ∈ F implies either a = 1 or b = 2. If a = 1

then the fact that abc = 1bc intersects n13 ∈ F implies b = 1, contradicting the fact that abc is an

injection. Thus b = 2 and abc = a2c must intersect n13 ∈ F , which implies a = n. In summary, any

element of F whose last position is not 3 must be of the form n2c for some c ∈ [n] \ {n, 2, 3}.

Now F must contain an element of O(125), call it w, since n ≥ 5. Now 123 ∈ F implies w ∈

{125, (n − 1)n3} and since w intersects n13 also, we must have w = (n − 1)n3 ∈ F . But (n − 1)n3

does not intersect n2c for c 6= 3, so F contains no word whose last position is different from 3.

Case 2 v = 124

Let u be the unique word in the intersection of F with O(134), then since 124 ∈ F , we have u ∈

{134, n23}.

Case 2.a u = 134

Then 123, 124, 134 ∈ F . Suppose there is a word abc ∈ F with a 6= 1. Then 123 ∈ F implies b = 2

or c = 3. If c = 3 then abc = ab3 cannot intersects 134, so b = 2. Since abc = a2c intersects 134 ∈ F ,

we must have c = 4. Hence if F contains a word whose first position is not 1, then it must be of the

form a24.

Denote the element of F ∩ O(534) by w. Since 134 ∈ F we have w ∈ {534, 1(n − 1)n}. Now 123

does not intersect 534 and so w = 1(n− 1)n ∈ F . But n ≥ 5, so n− 1 6= 2 and n 6= 4, which means

that 1(n− 1)n does not intersect a24 for a 6= 1. Hence F cannot contain a word whose first position

is not equal to 1.

Case 2.b u = n23

Then 123, 124, n23 ∈ F . Suppose there exists abc ∈ F with b 6= 2, then a = 1 or c = 3 since abc

must intersect 123 ∈ F . Now abc must also intersect n23 ∈ F , so if a = 1 we must have c = 3.

Conversely, if c = 3, then 124 ∈ F forces a = 1. Thus any element of F whose second position is

not 2 must be of the form 1b3.

Now F must contain an element w of O(154), and 124 ∈ F implies w ∈ {154, (n− 2)21}. Since 154
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does not intersect n23, it follows that w = (n − 2)21. Clearly (n − 2)21 does not intersect 1b3 for

b 6= 2 and so F cannot contain any injection which does not fix 2. This concludes the case k = 3.

An Algorithm for the Remaining Cases

We have proved Theorem 5.3.9 for k ≤ 3 apart from the single case k = 3, n = 4. This settles all

cases of n ≤ 4 since k < n, and when n = 5, we have 2.5 < k < 5. In summary, the remaining cases

are

(n, k) ∈ {(4, 3), (5, 4), (6, 4), (6, 5), (7, 4), (7, 5), (8, 5), (9, 5)} (5.3.12)

and these have been checked using GAP [GAP07]: for given k and n, the set Ink corresponds to Ik
n

and the function intersect returns the number of positions in which its two arguments intersect.

inc:=[1..k];

Sn:=SymmetricGroup(n);

Ink:=[];

for s in Sn do

Add(Ink,OnTuples(inc,s));

od;

Ink:=Set(Ink);;

intersect := function(a,b)

return Number([1..Length(a)],i->a[i]=b[i]);

end;

Given an intersecting subset of Ink, we need a test function which returns 1 if its argument is

a fix-family, and 0 otherwise. This was implemented in GAP [GAP07] using the function isfix

below.

isfix := function(path)

local k, j, ch, res;

k := Length(path[1]);

j := 1;

while j <= k do

ch := Collected(List(path,x->x[j]));

if Length(ch) = 1 then break; fi;

j := j+1;
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od;

if j > k then

res := 0;

else

res := 1;

fi;

return res;

end;

By Theorem 3.1.1, each maximal intersecting subset F of Ik
n must be a transversal of the orbits.

p := [2..n]; Add(p,1); p := PermList(p);

G:=Group(p);

o := Orbits(G,Ink,OnTuples);;

We need to show that all words inF have a fixed position in common. The function checkallfams

implements a backtrack search to find all transversals of the orbits which are intersecting. Using

isfix, the function then checks whether each of these maximum intersecting subsets is a fix-

family.

checkallfams := function(depth,path)

local i,j,nr,x;

if depth = Length(o) then

if isfix(path)=1 then

return;

else

Error("MAYDAY, MAYDAY, Counterexample!\n");

fi;

fi;

for i in [1..Length(o[depth+1])] do

x := o[depth+1][i];

j := 1;

while j <= depth do

nr := intersect(x,path[j]);

if nr = 0 then break; fi;

j := j + 1;
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od;

if j > depth then

path[depth+1] := o[depth+1][i];

checkallfams(depth+1,path);

Unbind(path[depth+1]);

fi;

od;

return;

end;

Running checkallfams in GAP [GAP07] confirms that for the remaining values of n and k given

in (5.3.12), each maximum intersecting subset of Ik
n is indeed a fix-family.

The author would like to express her sincere gratitude to Dr Max Neunhöffer for his significant

help in writing checkallfams.

5.3.5 Conclusion

The previous two sections have completed the proof of the following result:

Theorem 5.3.9. For n/2 < k ≤ n, let F be a maximum intersecting subset of Ik
n. Then

all words in F have a fixed position in common.

Recall also our complementary result from Chapter 3:

Theorem 3.1.5. For 1 ≤ k ≤ (n + 1)/2, if F is a maximal intersecting subset of Ik
n then

all words in F have a fixed position in common.

This completes the classification of maximum intersecting injection families:

Corollary 5.3.13. If F is a maximum intersecting subset of Ik
n then all words in F have a fixed position in

common.

5.4 Increasing the Intersection Parameter

In Section 5.2.2 we concluded that standardising t-intersecting injection families is generally diffi-

cult. Thus we would like to generalise the Cameron-Ku approach to larger intersection parameters
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t > 1. This section presents ideas due to Prof. Peter Cameron. We use properties of mutually

orthogonal Latin Squares to prove that as n increases, fixing eventually becomes optimal when

t = 2 and k is fixed. Even though we have already proved a more general result in Section 3.2.1,

the generalisation of the Cameron-Ku method from Latin Squares and permutations to mutually

orthogonal Latin Squares (MOLS) and injections in this section is interesting as a technique in its

own right. We begin with some definitions.

Definition 5.4.1. Denote the (i, j) entry of a Latin Square L by (L)ij . Two Latin Squares L1, L2 are

mutually orthogonal if the set

{ ((L1)ij , (L2)ij) : 1 ≤ i, j ≤ n }

contains each pair in [n]× [n] precisely once.

We will use the following beautiful result from the 1960s.

Theorem 5.4.2. (Bose, Shrikhande, Parker [BSP60]).

For every k ∈ N there exists n0(k) ∈ N such that for all n ≥ n0(k), there exist k mutually orthogonal Latin

Squares of order n, all with diagonal 1, 2, . . . , n.

To illustrate how Theorem 5.4.2 may be used to construct injections, we construct words of length 4

from the two mutually orthogonal Latin Squares L1 and L2 in Figure 5.4.1 as follows: the respective

(1, 2) entries of L1 and L2 are 3 and 4, so we read 1234. Similarly, the last two cells in the first row

lead to the words 1342 and 1423. Since both L1 and L2 are Latin Squares with diagonal 1, 2, 3,

4, the words resulting from this process will be injections if we do not use diagonal cells for our

construction. Thus the second row gives 2143, 2314 and 2431, and rows 3 and 4 can be used to

construct injections in the same way. The following proposition generalises this construction and

establishes a special property of the resulting injections.

Proposition 5.4.3. For n ≥ n0(k− 2) there exists a subset A of Ik
n with |A| = n(n− 1) such that any two

elements v, w ∈ A satisfy | int(v, w)| ≤ 1.

1, 1 3, 4 4, 2 2, 3

4, 3 2, 2 1, 4 3, 1

2, 4 4, 1 3, 3 1, 2

3, 2 1, 3 2, 1 4, 4

Figure 5.4.1: L1 and L2 are two mutually orthogonal Latin Squares of order 4 with diagonal 1, 2, 3,

4.
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Proof. By Theorem 5.4.2 there exist k−2 mutually orthogonal Latin Squares L1, . . . , Lk−2 all having

diagonal 1, 2, . . . , n. Define

A = { i j (L1)ij . . . (Lk−2)ij : i 6= j, 1 ≤ i, j ≤ n } ,

then |A| = n(n− 1).

Since L1, . . . , Lk−2 all have 1, 2, . . . , n on the diagonal, for i 6= j none of these Latin Squares have

their (i, j) entry equal to i or j. Moreover, L1, . . . , Lk−2 are mutually orthogonal, and so for distinct

l,m, the fact that (Ll)ii = (Lm)ii for all i ∈ [n] means that this can occur in no other position. In

other words, (Ll)ij = (Lm)ij implies i = j. Thus for i 6= j, 1 ≤ i, j ≤ n, the elements

i, j, (L1)ij , . . . , (Lk−2)ij

of n are all distinct and we conclude A ⊆ Ik
n.

It remains to be shown that no two elements of A 2-intersect, so let v, w be distinct elements of A.

Suppose v and w intersect in position 1. Then

v = i j (L1)ij . . . (Lk−2)ij ,

w = i l (L1)il . . . (Lk−2)il

cannot intersect in any other position since row i of each Latin Square contains each symbol 1, 2, . . . , n

precisely once, and j 6= l since v 6= w.

Similarly, if 2 ∈ int(v, w), then v and w cannot intersect in any other position since any column of a

Latin Square contains each symbol precisely once.

So let i 6= l, j 6= m and suppose

v = i j (L1)ij . . . (Lk−2)ij ,

w = l m (L1)lm . . . (Lk−2)lm

intersect in some position a where 3 ≤ a ≤ k. Then (La′)ij = (La′)lm where a′ = a−2, so we cannot

have (Lb)ij = (Lb)lm for any b 6= a′, 1 ≤ b ≤ k − 2 since La′ and Lb are mutually orthogonal.

We are now in a position to derive a bound on 2-intersecting families in Ik
n for large n, using

Proposition 5.4.3 together with Proposition 5.3.1 from [CK03].

Theorem 5.4.4. Let n ≥ n0(k − 2) and let G ⊂ Ik
n be 2-intersecting. Then

|G| ≤ (n− 2)!
(n− k)!

.
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Proof. Let Γ be a graph on the vertex set Ik
n in which two vertices are joined by an edge if, and only

if, the corresponding injections 2-intersect. Then Γ is vertex-transitive for reasons we have already

discussed when we formed a graph on 1-intersecting injections in the proof of Theorem 5.3.3: for

two injections v, w ∈ Ik
n, there exists a permutation σ in the symmetric group Sn such that vσ = w.

Moreover,

Ik
nσ =

{
vσ : v ∈ Ik

n

}
= Ik

n

and two elements v, w of Ik
n 2-intersect if, and only if, vσ 2-intersects wσ. Hence each permutation

in Sn is a graph automorphism of Γ and Sn acts transitively on Ik
n.

By Proposition 5.4.3, there exists a subset A of Ik
n with |A| = n(n− 1) such that no two elements of

A mutually 2-intersect; therefore A is a coclique in Γ. Note also that G is a clique in Γ, and so we

may use Proposition 5.3.1 to obtain

|G| ≤ |Ik
n|
|A|

=
n!

(n− k)!
· 1
n(n− 1)

=
(n− 2)!
(n− k)!

as required.

Since the size of K0 is equal to the bound of Theorem 5.4.4, this bound is sharp and we have the

following corollary:

Corollary 5.4.5. For every k ∈ N there exists n1(k) = n0(k − 2) ∈ N such that the fix-family K0 is a

maximum 2-intersecting subset of Ik
n for all n ≥ n1(k).

Unfortunately, the above theorem and corollary do not apply to permutations, since they require

that n is large in terms of k, just like the more general result of Corollary 3.2.3.

In this section, we have shown how to generalise the Cameron-Ku approach of [CK03] to derive

a bound for the case t = 2. It is unclear whether further investigations in this direction could

yield structural results, or whether the approach could be extended to larger t. In [DF77] Deza &

Frankl used the clique-coclique bound of Proposition 5.3.1 to show that if there exists a sharply

t-transitive set of permutations, then no t-intersecting set of permutations is larger than the fix-

family. However, as Cameron & Ku point out at the end of [CK03], their method is unsuitable

for classification results. Thus the problem of obtaining a complete classification of maximum t-

intersecting injection families, or even permutation families, is still open.
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PARTIAL ORDERS





CHAPTER 6

INTERSECTING FAMILIES OF ORDERS

6.1 Definitions

This chapter investigates the intersecting structure of various classes of orders. Before we start, let

us recall some definitions from Section 2.3, and agree on some conventions.

A (partial) order R on [n] is a set of ordered pairs, R ⊆ [n] × [n], which is irreflexive, antisymmetric

and transitive: for all x, y, z ∈ [n] we have (y, x) /∈ R whenever (x, y) ∈ R, and also (x, y), (y, z) ∈ R

implies (x, z) ∈ R. A partially ordered set, or poset for short, is a pair p = ([n], R) where R is a partial

order on [n]. Since the ground set [n] is usually clear from the context, however, we simply refer to

R as a poset for brevity. If (x, y) is an element of the poset p, this is interpreted as x < y under p, so

we often write x <p y instead of (x, y) ∈ p.

Two elements x, y of [n] are comparable under the poset p if either x <p y or y <p x. If x ≮p y and

y ≮p x then we say that x and y are incomparable under p and denote this by x ||p y. We call x < y a

comparison, and x || y a non-comparison. If all pairs of elements of [n] are comparable under p, we say

that p is a linear order. For some labelling {x1, x2, . . . , xn} = [n] we may use the notation x1x2 . . . xn

for the linear order under which x1 < x2 < · · · < xn. A chain in P is a subset C of [n] such that P

restricted to C is linear. Dually, a subset of [n] whose elements are mutually incomparable under P

is called an antichain. The set of all linear orders on [n] is denoted by Ln, while the set of all partial

orders on [n] is denoted by Pn, so Ln ⊂ Pn. Considering our notation x1x2 . . . xn for linear orders,

it is hardly surprising that |Ln| = n!. On the other hand, Pn is difficult to enumerate and its size is

only known for fairly small values of n.

105
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6.2 Intersecting Families of Linear Orders

We say that two linear orders intersect if they share a comparison. The following definition will

play an important role in our study of the intersecting structure of order classes.

Definition 6.2.1. For p ∈ Pn define the reverse of p to be

rev(p) = { (x, y) ∈ [n]× [n] : (y, x) ∈ p } .

Note that rev(p) is irreflexive, antisymmetric and transitive because p has these properties, and so

rev(p) ∈ Pn.

Given Definition 6.2.1, the classification of maximum intersecting subsets of Ln is straightforward:

Theorem 6.2.2. If F ⊆ Ln is intersecting then |F| ≤ n!/2. In particular, F has maximal size if and only

if F is a transversal of

{ {σ, rev(σ)} : σ ∈ Ln } .

Proof. It is not hard to see that two linear orders do not intersect if, and only if, one is the reverse of

the other. The result follows.

Clearly the fix-family {σ ∈ Ln : x <σ y } has maximal size n!/2. So to obtain a maximal intersecting

subset of Ln, we can fix a comparison — but we do not have to.

Example 6.2.3. Consider the following subset of L4:

F = {1234, 3421, 4231, 1342, 1423, 2341, 4312, 2143, 3124, 2413, 3214, 4132}.

It is easily checked that F is a transversal of { {σ, rev(σ)} : σ ∈ L4 }, so this is a maximum intersect-

ing subset of L4.

What makes F interesting is that for all distinct x, y ∈ {1, 2, 3, 4}, precisely |F|/2 elements of F

satisfy x < y, and the other |F|/2 elements of F satisfy y < x. Thus maximum intersecting families

in Ln do not necessarily have ‘dominant’ comparisons (comparisons which occur more often than

others) as fixing and saturation families do.

Example 6.2.3 will be of interest again when we investigate partial orders. For now, we conclude

that many different intersecting families are optimal in Ln.
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6.3 Intersecting Families of Partial Orders

6.3.1 Different Definitions of Intersection

Péter Erdős with various co-authors as well as Czabarka consider in [EFK92, ESS94, Cza99, ESS00]

families of k-chains in a fixed labelled poset P ∈ Pn which they call t-intersecting if any two of the

k-chains share at least t elements of [n]. Our approach is different: we are interested in the scenario

where two distinct labelled posets t-intersect each other. Nevertheless, two alternative definitions

of intersection are conceivable in Pn:

1. We could say that two partial orders on [n] intersect if they share a comparison.

2. Alternatively, one might say that two partial orders on [n] intersect if they share either a

comparison or a non-comparison. That is, a, b ∈ Pn intersect if there exist x, y ∈ [n] such that

• either x <a y and x <b y

• or x ||a y and x ||b y.

As one would expect, these two definitions yield different bounds for intersecting subsets: using

Definition 1, the largest intersecting subset of P3 is

F1,2(P3) = {π ∈ P3 : 1 <π 2 }

with |F1,2(P3)| = 6. Using Definition 2, on the other hand, the maximal size of an intersecting

subset of P3 is 7 > 6. It can be attained either by fixing a non-comparison

N1,2 = {π ∈ P3 : 1 ||π 2 } ,

or by saturation:

G = {π ∈ P3 : π contains at least 2 distinct non-comparisons }

= {π ∈ P3 : π contains at most 1 comparison } .

Note that Definition 1 is equivalent to the following:

Definition 6.3.1. Two partial orders p, q ∈ Pn intersect if there exist x, y ∈ [n] such that (x, y) ∈ p∩q.

According to this definition, two posets intersect if, and only if, they intersect as sets. To develop

a theory of intersecting posets which is compatible with its motivations and origins, most notably

the Erdős-Ko-Rado Theorem, we therefore choose Definition 1. As the reader would expect, a set

of partial orders F ⊆ Pn is intersecting if every pair of elements of F is intersecting.
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6.3.2 Fixing vs. Saturation: Preliminary Observations

Having determined our definition of intersection for posets, the first natural investigation is to

compare fixing with saturation in Pn. So let a, b be fixed elements of [n] and define the fix-family

by

Fa,b(Pn) = { p ∈ Pn : a <p b } .

In Lemma 6.3.12 we use linear extensions to show that Fa,b(Pn) is maximal as an intersecting subset

of Pn.

On the other hand, the definition of a generic saturation family G is not immediately clear: G(S, n)

contains all posets in Pn which contain at least r +1 of the comparisons in some set S of size 2r +1.

Due to transitivity, however, the choice of the saturation base S is not arbitrary for posets as it is

for some other combinatorial structures such as sets or permutations. Indeed, different saturation

bases of the same size may lead to families of different sizes: if

p = {(1, 2), (1, 3), (1, 4)}, q = {(1, 2), (1, 3), (2, 3)}

then both G(p, 4) and G(q, 4) are saturation families over posets of size 3, but it is easily computed

that |G(p, 4)| = 58 > |G(q, 4)| = 54.

Thus as n gets large, it is unclear whether we obtain larger families by saturating over a set of

independent comparisons such as

{(1, 2), (3, 4), . . . , (a, b)},

which impose no transitive restrictions on the posets which the resulting family may contain; or

whether we should strive to restrict as few of the labels as possible by choosing a saturation set

such as

{(1, 2), (1, 3), . . . , (1, c)}.

Alternatively, we could saturate over linear orders, as in the example G(q, n) above, or indeed over

sets of comparisons which are not partial orders. Additional difficulties arise from the fact that

saturation families in Pn are not necessarily maximal.

For small values of n, the largest saturation families are attained by taking the first few comparisons

in the sequence natn as the saturation base.

Definition 6.3.2. Given a linear order σ = x1x2 . . . xn ∈ Ln, let α(σ, xj) be the sequence of com-

parisons listing all points which are less than xj under σ, in the order in which they appear in

σ:

α(σ, xj) = x1 < xj , x2 < xj , . . . , xj−1 < xj .
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Note α(σ, x1) is the empty sequence. Set ιn = 12 . . . n, the natural order on the first n integers, and

natn = α(ιn, 1), α(ιn, 2), . . . , α(ιn, n)

= 1 < 2, 1 < 3, 2 < 3, 1 < 4, . . . , n− 1 < n.

Finally, if

Kr(Pn) = { p ∈ Pn : |p ∩ S| ≥ r + 1 }

where S is the set of the first 2r + 1 comparisons of natn, then Kr(Pn) is intersecting, though we

will see below that Kr(Pn) is not necessarily maximal.

It is easily shown that K1(Pn) is strictly contained in F1,3(Pn). On the other hand, one can show

with a little more effort that

K2(Pn) = { p ∈ Pn : p satisfies at least three of 1 < 2, 3, 4; 2 < 3, 4 }

is not contained in Fa,b(Pn) for any a, b, n. However, K2(Pn) is not maximal. For instance, one of

the maximal closures of K2(P4) in P4 is the set obtained by adding the following four posets to

K2(P4):
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For 3 ≤ n ≤ 5, the largest saturation families in Pn are maximal closures of some Kr(Pn). However,

the respective fix-families are larger in each of these three cases, and so we devote the next section

to a search for an injection from an arbitrary intersecting subset of Pn into the fix-family, despite

the fact that we have not yet found the optimal interpretation of saturation in Pn. Recall also that

the most successful method of Part II was to represent injections by sets, and study the resulting

set families instead. It may be that the same is true for posets, and we simply have not yet thought

of a suitable map from posets to sets. After all, an injection is technically set (namely a subset of

[k]× [n]), yet the successful approach in Part II was to represent injections by their fixed point sets,

as opposed to considering them as sets themselves.

6.3.3 In Search of an Injection into the Fix-Family

We will soon need to start considering different types of posets separately, so let us partition Pn

into isomorphism classes.
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Definition 6.3.3. Two labelled posets p, q ∈ Pn are isomorphic if one can be obtained from the other

by a permutation of the labels. Formally, we have p ∼= q if there exists π ∈ Sn such that p = πq.

Informally, p and q are isomorphic if they have the same unlabelled Hasse diagram; see Figure

6.3.1.
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Figure 6.3.1: p1 and p2 are isomorphic but p3 is not isomorphic to either of them.

Now we begin our search for a way of mapping any intersecting family into the fix-family. Propo-

sition 6.3.4 specifies the map we are looking for.

For a subset X ⊆ Pn and a comparison or non-comparison r, define the restriction of X to r by

Xr = { p ∈ X : r ∈ p } .

Proposition 6.3.4. Let G ⊆ Pn be intersecting. If, for some a, b ∈ [n], there exists an injection f : Ga||b →

Fa,b(Pn) such that

f(Ga||b) ∩Ga<b = ∅ and f(Ga||b) ∩ rev(Gb<a) = ∅ (6.3.5)

then |G| ≤ |Fa,b(Pn)|.

Proof. Define a map φ on elements p of G as follows:

φ(p) =


p a <p b

rev(p) b <p a

f(p) a ||p b

We wish to show that φ is an injection from G to Fa,b(Pn). Partition G according to the different

cases of φ:

G = Ga<b ∪Gb<a ∪Ga||b.

For p ∈ G, we clearly have φ(p) ∈ Fa,b(Pn), thus we need to show that φ is an injection. So let

p, q ∈ G and suppose φ(p) = φ(q).

• If p, q ∈ Ga<b then φ(p) = φ(q) implies p = q.



6.3. INTERSECTING FAMILIES OF PARTIAL ORDERS 111

• If p ∈ Ga<b, q ∈ Gb<a, then φ(p) = φ(q) gives p = rev(q). But q does not intersect rev(q) = p

which contradicts the fact that G is intersecting.

• If p ∈ Ga<b, q ∈ Ga||b then φ(p) = φ(q) gives p = f(q) which contradicts f(Ga||b) ∩Ga<b = ∅.

• If p, q ∈ Gb<a then φ(p) = φ(q) becomes rev(p) = rev(q) which implies p = q.

• If p ∈ Gb<a, q ∈ Ga||b, then φ(p) = φ(q) gives rev(p) = f(q) which contradicts f(Ga||b) ∩

rev(Gb<a) = ∅.

• If p, q ∈ Ga||b then φ(p) = φ(q) implies p = q since f is injective.

This completes the case analysis and the result follows.

Note that if there exist a, b ∈ [n] such that all elements of G compare a to b, then Ga||b = ∅, so f

exists vacuously. In this case, simply reversing all (b < a)-posets of G is an injection from G to the

fix-family Fa,b. Thus we need to concentrate our efforts on maximal intersecting families G which,

for any two points a, b ∈ [n], contain a poset under which a||b. If fixing is optimal in Pn then we

may be able to resolve these cases using the injection f from Proposition 6.3.4.

Finding such an f is easily done by inspection for small n, but difficult in general: in order to keep

the map as simple as possible, we would ideally like f(p) ∼= p. If that is impossible, the unlabelled

Hasse diagrams of f(p) and p should look very similar at least. Now the condition f(Ga||b) ∩Ga<b

forbids f to map into G, so for any particular p ∈ Ga||b, f needs to destroy a sufficient number of

‘intersections’ (comparisons of p which ensure p intersects all other elements of G) to exclude f(p)

from G. Since we do not know in general how many non-comparisons other than a||b we have

available in the Hasse diagram of p, the easiest way of destroying such ‘intersections’ is to reverse

existing comparisons. But this approach runs the risk of causing rev(f(p)) ∈ G, which is exactly

what the second condition f(Ga||b) ∩ rev(Gb<a) forbids.

Linear Extensions

We conclude that we need to know more about an intersecting family G before we can hope to

map it into Fa,b. One approach is to deduce properties of the partial orders from properties of their

linear extensions.

Definition 6.3.6. For a poset p ∈ Pn we denote by Ln(p) the set of its linear extensions:

Ln(p) = {σ ∈ Ln : p ⊆ σ } .
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It is fairly clear that each partial order has a linear extension, but we would like to keep control of

the comparisons in such a linear extension. Corollary 6.3.11 summarises that this is indeed possible,

but we begin by proving the slightly more general result given in Lemma 6.3.9. To do so, we require

the concept of height, which will make an appearance at several points over the coming chapters.

Definition 6.3.7. For p ∈ Pn and x ∈ [n] the height of x under p, denoted by hp(x), is defined to be

one less than the greatest number of elements in a chain whose largest member is x.

Lemma 6.3.8. Elements of equal height are incomparable.

Proof. Let p ∈ Pn, x, y ∈ [n] with h(x) = h(y) and suppose x <p y. By the definition of h(x), there

exists a chain

z1 <p z2 <p · · · <p zh(x) <p x

all of whose elements satisfy zi <p x <p y by transitivity. But then y would have height at least

h(x) + 1 = h(y) + 1, a contradiction.

We are now ready to prove the lemma which underpins the way we think about building linear

extensions.

Lemma 6.3.9. Let p ∈ Pn and a, b ∈ [n] with a||pb.

Then there exists a partition of [n] into k parts, some of which may be empty, such that

1. a and b are in the same part;

2. each part is an antichain;

3. there exists a linear order ≺ on the parts of the partition such that if X, Y are parts with X ≺ Y then

for all x ∈ X and all y ∈ Y we have either x <p y or x||py.

Proof. Let <N denote the natural order on N. Suppose, without loss of generality, that h(a) ≤N h(b),

and let

m = max
x∈[n]

h(x)

be the maximal height in p.

For all i ∈ {0, 1, . . . , h(a)− 1} ∪ {h(b) + 1, h(b) + 2, . . . ,m}, set

Li = {x ∈ [n] : h(x) = i } .
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If h(a) = h(b), set Lh(a) = {x ∈ [n] : h(x) = h(a) }. Otherwise, set

Lh(a) = {x ∈ [n] : h(x) = h(a) } \ {a},

Lh(b),1 = {x ∈ [n] : h(x) = h(b) and x 6>p a } ∪ {a},

Lh(b),2 = {x ∈ [n] : h(x) = h(b) and x >p a } ,

and for j ∈ {h(a) + 1, h(a) + 2, . . . , h(b)− 1}, set

Lj,1 = {x ∈ [n] : h(x) = j and x 6>p a } ,

Lj,2 = {x ∈ [n] : h(x) = j and x >p a } .

Although some of the sets Lj,1, Lj,2 may be empty, clearly

Λ = {Li, Lj,1, Lj,2 : i = 0, 1, . . . , h(a), h(b) + 1, . . . ,m, j = h(a) + 1, . . . , h(b) }

is a partition of [n] with a and b in the same part, or ‘level’.

To show that each element of Λ is an antichain, note that if two points are in the same level then

they must have equal height in p, unless one of the points is equal to a, and we are done by Lemma

6.3.8.

It remains to be shown that all w ∈ Lh(b),1 satisfy w||pa. We have w 6>p a by the definition of Lh(b),1,

so suppose w <p a. Then any chain in p with maximal element w can be extended to a chain with

maximal element a, so h(w) = h(b) <N h(a) which contradicts h(a) ≤N h(b).

Thus, with the convention that the empty set is an antichain, we conclude that all of the levels

Li, Lj,1, Lj,2 are antichains.

To prove part 3 of the lemma, define a total order ≺ on elements of Λ as follows: for z ∈ {1, 2},

i, i′ ∈ {0, 1, . . . , h(a)} ∪ {h(b) + 1, . . . ,m} and j ∈ {h(a) + 1, . . . , h(b)}, we have

Li ≺ Li′ ⇐⇒ i <N i′,

Li ≺ Lj,z ⇐⇒ i <N j,

Lj,1 ≺ Lj′,2, ∀j, j′,

Lj,z ≺ Lj′,z ⇐⇒ j <N j′.

Note that for c ∈ [n] \ {a}, z ∈ {1, 2}, we have

c ∈ Li =⇒ h(c) = i and c ∈ Lj,z =⇒ h(c) = j. (6.3.10)
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We need to show that for X, Y ∈ Λ with X ≺ Y , we have x 6>p y for all x ∈ X, y ∈ Y . So suppose

firstly that a /∈ {x, y} and x >p y. Then by the argument used in part two, h(x) >N h(y) which,

together with (6.3.10) and X ≺ Y , implies X = Lh(x),1 and Y = Lh(y),2. Thus, by definition of the

Lj,z , we have x 6>p a and y >p a. But x >p y >p a gives x >p a, which is impossible.

It remains to be shown that part 3 of the lemma holds for a. So let X ∈ Λ with X ≺ Lh(b),1. Then

we must have one of the following two cases:

• X = Li with i <N h(b). Since i ∈ {0, 1, . . . , h(a)} ∪ {h(b) + 1, . . . ,m}, this implies i ≤N h(a).

All elements x of X = Li have height i ≤N h(a) and so x 6>p a as required.

• X = Lj,1 for some j. Then we are done since elements x of Lj,1 satisfy x 6>p a by definition of

Lj,1.

Finally, let Y ∈ Λ with Lh(b),1 ≺ Y . Since for all Lj,z ∈ Λ, we have j ≤N h(b), one of the following

must hold:

• Y = Lj,2 for some j. Then by definition of Lj,2, we have a <p y for all y ∈ Lj,2.

• Y = Li with i >N h(b). Then all y ∈ Y have h(y) >N h(b) ≥N h(a) and so y 6<p a as required.

This completes the proof.

Lemma 6.3.9 enables us to build linear extensions of partial orders as follows:

Corollary 6.3.11. Let p ∈ Pn and a, b ∈ [n] with a||pb. Then p has a linear extension σ with a <σ b.

Proof. We adjoin comparisons to p until we obtain σ. Let A be the partition of [n] given by Lemma

6.3.9. First, we ensure that points of different levels are comparable under σ in the way which agrees

with the linear order ≺ on the parts of A. We may then specify a <σ b since the part containing a

and b is an antichain, and this was not affected by the comparisons between elements of different

parts which we already added. The resulting relation has a transitive closure, and σ is any linear

extension of that order.

Indeed, it is not hard to see from the proof of Corollary 6.3.11 that if points x, y ∈ [n] are incompa-

rable under p ∈ Pn, then p has linear extensions σ and σ′ which disagree only on the ordering of x

and y. Such observations lie at the heart of many simple arguments, e.g. the following:

Lemma 6.3.12. Fa,b(Pn) is maximal in Pn.
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Proof. Let F be a maximal closure of Fa,b(Pn) in Pn and let p ∈ Pn. If a <p b then p is an element

of Fa,b(Pn). If b <p a then rev(p), which does not intersect p, is an element of Fa,b(Pn), so p /∈ F . If

a||pb then there exists a linear extension σ of p with b <σ a by Corollary 6.3.11. Since p ⊂ σ, we then

have

(p ∩ rev(σ)) ⊆ (σ ∩ rev(σ)) = ∅,

so p /∈ F since rev(σ) is an element of Fa,b(Pn). We conclude that F = Fa,b(Pn) as required.

Having gained an insight into linear extensions, we would like to use them in our investigation of

the intersection structure of Pn. It is clear from Definition 6.3.6 that if two partial orders intersect,

then any of their linear extensions intersect. Thus if F is a maximal intersecting family in Pn, it

must contain L(F). But we can say more than that.

Proposition 6.3.13. Let X be a subclass of Pn closed under taking reverses, and let F be a maximal inter-

secting subset of X . Then F contains a transversal of

{ {π, rev(π)} : π ∈ Ln ∩ X } .

Proof. Since X is closed under taking reverses, we have rev(σ) ∈ X for all σ ∈ X . So suppose there

exists σ ∈ Ln ∩X with neither σ nor rev(σ) in F . Then the maximality of F implies that there exist

p, q ∈ F such that p does not intersect σ and q does not intersect rev(σ). This means that for all

x, y ∈ [n], whenever x <p y we must have x 6<σ y, implying y <σ x since σ is linear. In other words,

for all x, y ∈ [n], x <p y implies x <rev(σ) y, that is, rev(σ) is a linear extension of p. Similarly,

rev(rev(σ)) = σ is a linear extension of q.

Since F is intersecting, p and q must intersect, which implies that their linear extensions intersect.

But that contradicts the fact that two linear orders intersect if, and only if, one is not the reverse of

the other.

Taking X = Pn in particular, Proposition 6.3.13 says that any maximal intersecting subset of Pn

contains a maximum intersecting family of linear orders. Moreover, these linear orders lie at the

core of F , in the sense that knowledge about the linear family gives us much information about F

itself, as we will see in the following proposition. Set Fa,b(Ln) = {σ ∈ Ln : (a, b) ∈ σ }.

Proposition 6.3.14. LetF be a maximal intersecting subset of Pn. IfF∩Ln = Fa,b(Ln) for some a, b ∈ [n]

then F = Fa,b(Pn).

Proof. Recall that L(F) ⊆ F by the maximality of F , so L(F) must be contained in F ∩ Ln =

{σ ∈ Ln : a <σ b }. That is, every linear extension of every element of F has a < b. Clearly this
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means that there cannot exist p ∈ F with b <p a. Moreover, any partial order p with a||pb has a

linear extension σ with b <σ a by Corollary 6.3.11, so F cannot contain posets under which a||b

either. The result then follows from the fact that F is maximal.

The previous two propositions suggest that in order to work towards a classification of maximum

intersecting subsets F of Pn, it may be a good idea to investigate the structure of the linear families

F∩Ln contained within them. Since we tend to describe poset families in terms of the comparisons

occurring most frequently within its members, this raises the following question:

Given a maximum intersecting subset F ′ of Ln, how can the comparisons occurring

most frequently in F ′ be identified?

Such a procedure would also help to define more efficient saturation families in Pn. Unfortunately,

we already know that that this is not possible in general: see Example 6.2.3.

6.3.4 Restriction to Poset Classes

Having seen that classifying the optimal families inPn in general seems rather difficult, we proceed

to consider subclasses. Our successful observations on linear orders point in two possible directions

here. One viewpoint is that what we did in Section 6.2 was to fix an unlabelled poset, in this case

a chain of length n, and consider the class of all permutations of the labels. To further pursue this

approach, we will consider the intersection structures of various isomorphism classes of posets in

the following chapters.

An alternative direction to pursue is to attempt to classify poset classes whose intersection structure

we can determine by applying the proof method of Theorem 6.2.2, or some generalisation thereof.

It is hardly surprising that these two approaches overlap sometimes, but this is not always the

case. Our work in Section 7.1 is an example where the two approaches coincide: our method of

classifying the maximum intersecting subsets of the fixed isomorphism classes considered there is

based on the idea of reverse pairings.



CHAPTER 7

POSETS WHICH ARE ALMOST LINEAR

By making the simple observation that a linear order intersects any other except its reverse, we

succeeded in classifying all maximum intersecting subsets of Ln. The main purpose of this chapter

is to investigate what happens if we remove just one of the comparisons in a linear order. In Section

7.1 we fix such a poset and take our class to be all permutations of the labels. We partition this class

according to whether the individual posets intersect. By describing the blocks of this partition, we

obtain a complete classification of maximum intersecting families in this class. To get an idea of

where these intersecting families lie on the fixing – saturating spectrum, we show that fixing is not

optimal in this class whereas, in all but a few marginal cases, a saturation family does attain the

bound.

In Section 7.2 we no longer fix the poset, but consider the union of the classes in the previous

section. Here we use the classical method of cyclic orderings to obtain a bound on intersecting

subsets of this class. The comparisons on [n] are arranged on a circle, and it is shown that posets in

the class are equivalent to intervals on the cyclic orderings. Finally, we show that both fixing and

saturating give optimal intersecting families in this class.

The chapter concludes with Section 7.3, where we investigate which poset classes the reverse pair-

ings method of Section 7.1 could be extended to.

117
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Figure 7.1.1: Hasse diagrams of elements of Yk,n, 1 ≤ k ≤ n− 1, n ≥ 3.

7.1 Fixing the Isomorphism Class

Consider those isomorphism classes in Pn whose elements are chains with one point replaced by

an antichain of size 2: for a linear order σ = x1x2 . . . xn ∈ Ln, n ≥ 3, and 1 ≤ k ≤ n− 1, define

yk(σ) = σ \ {(xk, xk+1)}

and set Yk,n = { yk(σ) : σ ∈ Ln }.

7.1.1 Partitioning the Class

To characterise the intersecting subsets of Yk,n, we wish to partition the class in such a way that

for any p ∈ Yk,n, the elements of the class which p does not intersect are in the same block as p.

Therefore we begin by considering the set

N(p) = { q ∈ Yk,n : p ∩ q = ∅ } ,

which is the subject of the lemma below.

Lemma 7.1.1. If p ∈ Yk,n then N(p) = { yk(rev(σ)) : σ ∈ Ln(p) }.

Proof. Let p, q ∈ Yk,n be such that p and q do not intersect. Then there exist linear extensions p̂ of p

and q̂ of q such that p̂ and q̂ do not intersect. But two linear orders do not intersect if, and only if,

one is the reverse of the other. Thus q̂ = rev(p̂), which gives q = yk(rev(p̂)). In other words,

N(p) ⊆ { yk(rev(σ)) : σ ∈ Ln(p) } .

Conversely, for p ∈ Yk,n and σ ∈ Ln(p), we have p ⊂ σ and yk(rev(σ)) ⊂ rev(σ) by definition.

Therefore p ∩ yk(rev(σ)) = ∅ since σ ∩ rev(σ) = ∅.
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To obtain the blocks of the desired partition of Yk,n, we keep adding all such posets to N(p) which

do not intersect with some poset that is already in N(p): for a set of posets X ⊆ Yk,n, define

N(X) = { q ∈ Yk,n : p ∩ q = ∅ for some p ∈ X }

and set

B(p) =
⋃
i∈N

N i(p).

Intuitively, B(p) is obtained from linear extensions of p by successively applying the following

operations: taking the reverse, de-coupling at the kth level, and swapping at the (n− k)th level. In

fact, it is not difficult to convince oneself that when these two levels do not overlap, B(p) contains
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Figure 7.1.2: elements of B(p) where p = yk(x1 . . . xn) and k < h := (n − 1)/2 on the left, or

k > h + 1 on the right. Posets which do not intersect are joined by a line. On either side, the

elements of b1(B(p)) and b2(B(p)) are shown at the top and bottom respectively.
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k

xn

xn x1

1x

xk+1 xk+1xk

k = n/2

x

Figure 7.1.3: elements of B(p) when k = n/2 and p = yk(x1 . . . xn). Posets which do not intersect

are joined by a line. The set b1(B(p)) merely contains the poset on the left. Similarly, b2(B(p))

consists of the poset on the right.

the posets in Figure 7.1.2. If k = n − k then B(p) has only one element other than p, which is

obtained by turning p upside down: see Figure 7.1.3. A slightly more complicated situation occurs

when the kth and (n− k)th level overlap but do not coincide; see Figure 7.1.4.

To summarise, we have

|B(p)| =


4 k /∈ {n

2 , n±1
2 }

2 k = n
2

6 k = n±1
2

and the precise elements of B(p) are given by Lemma 7.1.3, which is the main auxiliary result

enabling us to obtain a bound on the size of intersecting subsets of Yk,n.

Before stating the lemma, note that we already have the de-coupling operator yk. To introduce a

swapping operator, we simply let transpositions (i j) ∈ Sn act on orders by permuting the labels:

for p ∈ Pn,

(i j)p = { (i j)(x, y) : (x, y) ∈ p } .

This action commutes with the operators rev and yk: the following lemma is easily proved.

Lemma 7.1.2. Let σ ∈ Ln and i, j ∈ [n]. Then rev((i j)σ) = (i j) rev(σ) and yk((i j)σ) = (i j)yk(σ).

Proof. It is clear that

rev((i j)σ) = rev({ (i j)(x, y) : (x, y) ∈ σ })

= { (i j)(y, x) : (x, y) ∈ σ } = (i j) rev(σ).
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The second fact is equally simple if k /∈ {i, j}. Moreover, for σ = x1 . . . xn, Figure 7.1.5 shows that

yi((i j)σ) = (i j)yi(σ). The case k = j is very similar.

The following lemma formalises the partition.

Lemma 7.1.3. For positive integers k and n with 1 ≤ k ≤ n − 1, set h = n−1
2 . Let p ∈ Yk,n and

σ = x1 . . . xn ∈ Ln such that p = yk(σ).

1. If k /∈ {h, h + 1} then

B(p) = {yk(σ), yk(rev(σ)), (xn−k xn−k+1)yk(σ), (xk xk+1)yk(rev(σ))}.

2. If k ∈ {h, h + 1} then B(p) = { yk(ω), yk(rev(ω)) : ω ∈ Ωσ }, where

Ωσ = {x1 . . . xh−1u v w xh+3 . . . xn : {u, v, w} = {xh, xh+1, xh+2} } .
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xh+3
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xh

xn

x1 x1

xn xn

xh+3 xh+3

xh−1 xh−1
xh+2

xh+2x 1h+

x 1h+xh xh

b1 b1

b2

x 1h+

x 1h+xh xh+2x 1h+

x1

xh−1

xn

xh+3

x 1h+

xh+2 xh

b2x1

xn

xh+3

xh−1
x 1h+

xh

xh+2

k = (n−1)/2 = h

xh

x1

x 1h+

xh+2
xh+3

xn xn xn

x1 x1

xh+3 xh+3
x 1h+

xh+2 xh+2
xh xh

xn

x1

xh+2

xh+3
x 1h+

xn

x1

xh+3
xh+2

xn

x1

xh+3
xh+2

x 1h+xh

x

k = (n+1)/2 = h+1

Figure 7.1.4: elements of B(p) where p = yk(x1 . . . xn) and k = h or k = h + 1. Posets which do not

intersect are joined by a line. On either side, the elements of b1(B(p)) and b2(B(p)) are shown at

the top and bottom respectively.
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Note that the case k = n/2 is subsumed in (1) in the statement of Lemma 7.1.3. In this case, the

swapping operator (xn−k xn−k+1) = (xk xk+1) swaps the two incomparable points in elements of

Yk,n and hence does not change the poset: we have B(p) = {yk(σ), yk(rev(σ))} when k = n/2.

A formal proof of Lemma 7.1.3 is included here for completeness, though referring to Figures 7.1.2

- 7.1.4 may in fact be more enlightening for the reader.

Proof. We will use Lemma 7.1.2 frequently throughout this proof, without necessarily making this

explicit. Let p = yk(σ) ∈ Yk,n with σ = x1 . . . xn. Then Ln(p) = {σ, (xk xk+1)σ}, so it follows from

Lemma 7.1.1 that

N(p) = {yk(rev(σ)), yk(rev((xk xk+1)σ))}. (7.1.4)

i

iyi

xi+1
xi!1

xi+2

x1

xj+1

xj!1

xn

xj!1

xj+1

xn

x1

xi!1

xi+1

xj!1

xj+1

xn

x1

xi+1
xi!1

xi+2

x1

xj+1

xj!1

xn

xi!1

xi+1

(i  j)

(i  j)

xi

xj

xj

xi

xj

xixj

x

y

Figure 7.1.5: the proof of Lemma 7.1.2 uses the fact that this diagram commutes.
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To determine B(p), we need to investigate

N(N(p)) = N(q1) ∪N(q2)

where q1 = yk(rev(σ)) and q2 = yk(rev((xk xk+1)σ)). Since the kth and (k + 1)st smallest points in

rev(σ) = xn . . . x1 are xn−k+1 and xn−k respectively, we have

Ln(q1) = {rev(σ), (xn−k+1 xn−k) rev(σ)}, (7.1.5)

so we use Lemmas 7.1.1 and 7.1.2 to obtain

N(q1) = {yk(rev(rev(σ))), yk(rev((xn−k+1 xn−k) rev(σ)))}

= {yk(σ), (xn−k+1 xn−k)yk(σ)}

= {p, (xn−k+1 xn−k)p}. (7.1.6)

Case 1: k = n
2 .

Then for all π ∈ Ln,

(xk xk+1)yk(π) = yk(π) = (xn−k xn−k+1)yk(π), (7.1.7)

so we need to show

B(p) =
{
yn

2
(σ), yn

2
(rev(σ))

}
= {p, yk(rev(σ))}.

Applying (7.1.7) to (7.1.4) and (7.1.6), we see that N(p) = {yk(rev(σ))}, so q1 = q2 and

N(N(p)) = N(q1) = {yk(σ)} = {p}.

Thus for natural numbers i,

N i(p) =

{p} i even

N(p) i odd
,

which implies B(p) = {p} ∪N(p) = {p} ∪ {yk(rev(σ))} as required.

Case 2: k /∈
{

n−1
2 , n

2 , n+1
2

}
.

Recall that we need to investigate N(q1) ∪N(q2), and N(q2) depends on Ln(q2) where

q2 = yk((xk xk+1) rev(σ)).

Reconsidering the arguments preceding (7.1.5), what are the kth and (k + 1)st smallest points in

(xk xk+1) rev(σ) = (xk xk+1)xn . . . x1?
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By the definition of case 2, either k < n−1
2 , in which case n − k > k + 1, or k > n+1

2 which implies

n−k+1 < k. Therefore in case 2 overall, the elements xk, xk+1, xn−k, xn−k+1 of [n] must be distinct.

Thus just as in rev(σ), the kth and (k + 1)st smallest points in (xk xk+1) rev(σ) are xn−k+1 and xn−k

respectively, and so

Ln(q2) = {(xk xk+1) rev(σ), (xn−k+1 xn−k)(xk xk+1) rev(σ)}.

We use this together with Lemmas 7.1.1 and 7.1.2 to obtain

N(q2) = {yk((xk xk+1)σ), yk((xn−k+1 xn−k)(xk xk+1)σ)}

= {yk(σ), yk((xn−k+1 xn−k)σ)}

= {p, (xn−k+1 xn−k)p} = N(q1).

Hence

N2(p) = N(q1) ∪N(q2) = {p, (xn−k+1 xn−k)p}

and N3(p) = N(p) ∪N((xn−k+1 xn−k)p).

Again using the fact that {xk, xk+1} and {xn−k, xn−k+1} are disjoint, we see that

Ln((xn−k+1 xn−k)p) = Ln(yk((xn−k+1 xn−k)σ))

= {(xn−k+1 xn−k)σ, (xk xk+1)(xn−k+1 xn−k)σ}

and so N((xn−k+1 xn−k)p) must be equal to

{yk(rev((xn−k+1 xn−k)σ)), yk(rev((xk xk+1)(xn−k+1 xn−k)σ))}

= {(xn−k+1 xn−k)yk(rev(σ)), (xn−k+1 xn−k)yk((xk xk+1) rev(σ))}.

But recall that in both posets rev(σ) and (xk xk+1) rev(σ), the kth and (k + 1)st smallest points are

xn−k+1 and xn−k respectively, so

(xn−k+1 xn−k)yk(rev(σ)) = yk(rev(σ)) = q1,

(xn−k+1 xn−k)yk((xk xk+1) rev(σ)) = yk((xk xk+1) rev(σ)) = q2.

Thus

N3(p) = N(p) ∪N((xn−k+1 xn−k)p) = N(p) ∪ {q1, q2} = N(p),

in other words, we do not get any new elements in N i(p) when i ≥ 3. Hence

B(p) = N(p) ∪N2(p) (7.1.8)

= {yk(rev(σ)), yk((xk xk+1) rev(σ))} ∪ {p, (xn−k+1 xn−k)p}
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as required.

The remaining two cases, when k = n±1
2 , are more complicated because the kth and (k + 1)st

smallest points in (xk xk+1) rev(σ) are not the same as those in rev(σ).

For the remainder of this proof, let

ω123 = σ , ω132 =
(
xn+1

2
xn+3

2

)
σ,

ω213 =
(
xn−1

2
xn+1

2

)
σ , ω231 =

(
xn−1

2
xn+1

2
xn+3

2

)
σ,

ω312 =
(
xn−1

2
xn+3

2
xn+1

2

)
σ , ω321 =

(
xn−1

2
xn+3

2

)
σ.

Then Ωσ = {ωabc : {a, b, c} = {1, 2, 3} } and q1 = yk(rev(ω123)). Set

B′ = { yk(ω), yk(rev(ω)) : ω ∈ Ωσ } .

We need to demonstrate that B(p) = B′.

Case 3: k = n−1
2 .

Then q2 = yk((xk xk+1) rev(σ)) = yk(rev(ω213)), so

N(p) = {q1, q2} = {yk(rev(ω123)), yk(rev(ω213))}.

In particular,

q2 = yn−1
2

(
xn . . . xn+3

2
xn−1

2
xn+1

2
xn−3

2
. . . x1

)
= xn . . . xn+3

2
xn−1

2
xn+1

2
xn−3

2
. . . x1 \

{(
xn+3

2
, xn−1

2

)}
.

Therefore Ln(q2) = {rev(ω213), rev(ω231)} which, by Lemma 7.1.1, implies

N(q2) = {yk(ω213), yk(ω231)}.

Simply substituting k = n−1
2 into (7.1.6) gives

N(q1) = {yk(ω123), yk(ω132)}.

So far, we have

B(p) ⊇ N(p) ∪N2(p)

= N(p) ∪ (N(q1) ∪N(q2))

= {yk(rev(ω123)), yk(rev(ω213)),

yk(ω123), yk(ω132), yk(ω213), yk(ω231)}. (7.1.9)
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Note that k = n−1
2 implies

yk(ωabc) = yk(ωbac), (7.1.10)

yk(rev(ωabc)) = yk(rev(ωacb)) (7.1.11)

for all {a, b, c} = {1, 2, 3}. Thus (7.1.9) becomes

B(p) ⊇ {yk(ω), yk(rev(ω1b1c1)), yk(rev(ω2b2c2))} (7.1.12)

where ω ∈ Ωσ and {b1, c1} = {2, 3}, {b2, c2} = {1, 3}.

From (7.1.12) we see that yk(ω321) ∈ B(p). Clearly, ω321 ∩ rev(ω321) = ∅, and so yk(ω321) and

yk(rev(ω321)) do not intersect either. Hence yk(ω321) ∈ B(p) implies

yk(rev(ω321)) = yk(rev(ω312)) ∈ B(p),

which completes (7.1.12) to

B(p) ⊇ { yk(ω), yk(rev(ω)) : ω ∈ Ωσ } = B′.

To prove B(p) ⊆ B′, it suffices to show that B′ is closed under N , i.e. that N(q) ⊆ B′ for any q ∈ B′.

Now for any

q ∈ B′ =
{

yn−1
2

(ω), yn−1
2

(rev(ω)) : ω ∈ Ωσ

}
,

if a, b ∈ [n] are incomparable under q then a, b ∈
{

xn−1
2

, xn+1
2

, xn+3
2

}
. Thus

Ln(q) ⊆ {ω, rev(ω) : ω ∈ Ωσ }

which, together with Lemma 7.1.1, gives

N(q) = { yk(rev(π)) : π ∈ Ln(q) } ⊆ { yk(rev(ω)), yk(ω)) : ω ∈ Ωσ } = B′

as required.

Case 4: k = n+1
2 .

This is very similar to case 3 and therefore omitted.

Observe from Figures 7.1.2 - 7.1.4 that B is generated by any of its elements: for any q ∈ B(p), we

have B(q) = B(p) and so

Bk,n = {B(p) : p ∈ Yk,n }

is a partition of Yk,n.
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7.1.2 A Bound and a Maximum Family

To characterise the maximum intersecting subsets of Yk,n, we partition each B(p) in two halves,

such that for every q ∈ B(p), the posets which do not intersect with q are not in the same half as q:

see Figures 7.1.2 - 7.1.4. More formally, for p ∈ Yk,n with p = yk(σ), σ = x1 . . . xn, let τn−k be the

transposition swapping xn−k with xn−k+1 and set

b1(B(p)) =

{yk(σ), yk(τn−kσ)} k 6= n±1
2

{ yk(ω) : ω ∈ Ωσ } k = n±1
2

,

b2(B(p)) =

{yk(rev(σ)), yk(τn−k rev(σ))} k 6= n±1
2

{ yk(rev(ω)) : ω ∈ Ωσ } k = n±1
2

,

where Ωσ is given in Lemma 7.1.3. Note that the partition {b1(B), b2(B)} of B = B(p) does not

depend on the choice of p.

Theorem 7.1.13. Let k, n be natural numbers with 1 ≤ k < n and n ≥ 4.

Then F is a maximum intersecting subset of Yk,n if, and only if, F is the union of a transversal of

{ {b1(B), b2(B)} : B ∈ Bk,n } .

Proof. Let B ∈ Bk,n. It is clear from the definitions of N and B that for any q ∈ B, all posets

in Yk,n which do not intersect with q are also in B. Thus if {F ′(B) : B ∈ Bk,n }, is a collection

of intersecting families with F ′(B) ⊆ B, then their union is also intersecting. Conversely, any

intersecting subset of Yk,n can be decomposed in this way.

Indeed, let F ⊆ Yk,n be maximum intersecting. Then we must have

F =
⋃

B∈Bk,n

F ′(B)

where for each B ∈ Bk,n, the set F ′(B) = F ∩B is a maximum intersecting subset of B. So to prove

the proposition, we need to demonstrate that for B ∈ Bk,n, if F ′ is a maximum intersecting subset

of B, then either F ′ = b1(B) or F ′ = b2(B).

We begin by showing that b1(B) and b2(B) are intersecting and maximal in terms of set inclusion.

Let p ∈ Yk,n, B = B(p) and σ = x1 . . . xn ∈ Ln such that p = yk(σ). We begin by considering the

case k 6= (n ± 1)/2 and let π ∈ {σ, rev(σ)}. The transposition τi := (xi xi+1) only replaces a single

comparison in π by its reverse, so provided |yk(π)| ≥ 2, yk(π) must intersect yk(τi(π)). Similarly, the
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operator yk only removes a single comparison from π, so |yk(π)| ≥ 2 is satisfied whenever |π| ≥ 3.

Since π ∈ Ln, we have |π| ≥ 3 for all n ≥ 3. We have shown

n ≥ 3, k 6= n± 1
2

, q ∈ bi(B) =⇒ N(q) ⊆ bj(B), {i, j} = {1, 2}, (7.1.14)

in other words, b1(B) and b2(B) are intersecting.

Now suppose k = (n± 1)/2. This clearly requires n to be odd, so we have n ≥ 5, which guarantees

(x1, xn) ∈
⋂

ω∈Ωσ

yk(ω), (xn, x1) ∈
⋂

ω∈Ωσ

yk(rev(ω)).

Thus again, b1(B) and b2(B) are intersecting for all B ∈ Bk,n.

Recall that posets are only added to B if they do not intersect with some element of B. Indeed, it is

clear from Figures 7.1.2 - 7.1.4 that

q ∈ bi(B) =⇒ ∃q′ ∈ bj(B) such that q ∩ q′ = ∅, {i, j} = {1, 2}.

Therefore both b1(B) and b2(B) are maximal under set inclusion as intersecting subsets of B.

It remains to be shown that b1(B) and b2(B) are maximum among intersecting subsets of B. If

k = n/2 then this follows immediately from Figure 7.1.3. If k /∈
{

n−1
2 , n

2 , n+1
2

}
then it follows from

Figure 7.1.2 that (7.1.14) becomes

q ∈ bi(B) =⇒ bj(B) = N(q), {i, j} = {1, 2}.

Thus any intersecting subsets of B must be contained in either b1(B) or b2(B), as required.

Finally, let k = n±1
2 and let F ′ be an intersecting subset of B of size |F ′| ≥ |bi(B)| = 3. By the

pigeonhole principle, |F ′ ∩ bi(B)| = 2 for some i ∈ {1, 2} = {i, j}; say F ′ ∩ bi(B) = {q1, q2}. But

then it is clear from Figure 7.1.4 that any element of bj(B) does not intersect with at least one of

q1, q2. Thus F ′ ∩ bj(B) = ∅, which contradicts |F ′| ≥ |bi(B)| = 3.

Corollary 7.1.15. Let F be an intersecting subset of Yk,n. Then

|F| ≤ |Yk,n|
2

=
n!
4

.

Proof. Any maximum intersecting F ⊆ Yk,n must be the union of a transversal of

{ {b1(B), b2(B)} : B ∈ Bk,n }
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by Theorem 7.1.13. Let γ : Bk,n → {1, 2} be the function assigning the appropriate sub-blocks bi(B)

to F , that is

F =
⋃

B∈Bk,n

bγ(B)(B).

We noted before that any block B ∈ Bk,n is generated by any of its elements and it is clear from

Figures 7.1.2 - 7.1.4 that for fixed k, all B ∈ Bk,n have the same size. Thus Bk,n is a partition of Yk,n

into parts of equal size. Moreover, for any B ∈ Bk,n, both b1(B) and b2(B) have half the size of B.

In conclusion,

|F| =
∑

B∈Bk,n

|bγ(B)(B)| =
∑

B∈Bk,n

|B|
2

=
|Yk,n|

2
=

n!
4

as required.

As we have seen in previous chapters, fixing and saturating are two common forms in which so-

lutions to extremal problems occur. For the classes Yk,n, we will prove that saturation is optimal

unless k is around n/2, but fixing is never optimal.

Remark 7.1.16. The fix-family

Fi,j(Yk,n) = { p ∈ Yk,n : (i, j) ∈ p }

is not optimal in Yk,n for any i, j ∈ [n]: by Theorem 7.1.13, to show that Fi,j does not attain the

bound of Corollary 7.1.15, it suffices to find B ∈ Bk,n such that neither b1(B) nor b2(B) are entirely

contained in Fi,j .

Let p ∈ Yk,n such that i||pj. By the definition of Yk,n, such a p exists for any k ∈ [n − 1]. Then p

cannot be an element of Fi,j , so b1(B(p)) 6⊂ Fi,j since p ∈ b1(B(p)). Set h = n−1
2 as before.

• If h ≤ k ≤ h + 1 then it is easily seen from Figures 7.1.3 and 7.1.4 that b2(B(p)) must contain

an element q with i||qj, which implies q /∈ Fi,j by the definition of Fi,j .

• Otherwise, it follows from Figure 7.1.2 that there exists q ∈ b2(B(p)) with i >q j so again,

q /∈ Fi,j .

Hence fix-families are not optimal in Yk,n. On the other hand, Propositions 7.1.17 - 7.1.18 show

that, provided the kth and (n− k)th level do not interact, we can find saturation families which are

optimal.

Proposition 7.1.17. For positive integers k, n with k < n and n even, let vn ∈ Pn be the poset

vn = { (i, n) : 1 ≤ i ≤ n− 1 } and define

G(Yk,n) = { p ∈ Yk,n : |p ∩ vn| ≥ n/2 } .
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Then G(Yk,n) is an intersecting subset of Yk,n of size

|G(Yk,n)| =

(n− 2) · (n− 1)!/4 if k = n/2

n!/4 otherwise
.

Proof. Firstly, observe that G(Yk,n) is intersecting: any two elements of G(Yk,n) contain at least n/2

elements of the (n−1)-element set vn, so they must have at least one in common by the pigeonhole

principle.

Now let p ∈ G(Yk,n) and let σ = x1 . . . xn ∈ Ln be such that p = yk(σ). Then |p∩ vn| ≥ n/2, in other

words, p must contain at least n/2 distinct comparisons (a, n) for some a ∈ [n− 1].

If k 6= n/2 then clearly |p ∩ vn| ≥ n/2 if, and only if, n ∈ {xn/2+1, . . . , xn}. Precisely half of the

elements of Yk,n have n in the top half, and so

|G(Yk,n)| = |Yk,n|
2

=
n!
4

, k 6= n/2.

If k = n/2 and n ∈ {xk, xk+1}, then there are only n/2− 1 elements below n with respect to p, and

so p /∈ G(Yk,n). Thus we must have n ∈ {xn/2+2, . . . , xn}, giving

|G(Yk,n)| = (n/2− 1) · (n− 1)!
2

=
(n− 2) · (n− 1)!

4
, k = n/2,

as required.

Proposition 7.1.18. For positive integers k, h, n with k < n = 2h + 1, let vn ∈ Pn be the poset

vn = { (i, n) : 1 ≤ i ≤ n− 1 } and define

G(Yk,n) = { p ∈ Yk,n : either |p ∩ vn| ≥ h + 1 or |p ∩ vn| = h, 1 <p n } .

Then G(Yk,n) is an intersecting subset of Yk,n of size

|G(Yk,n)| =

(n− 1) · (n− 1)!/4 k ∈ {h, h + 1}

n!/4 otherwise
.

Proof. Firstly, we show that G(Yk,n) is intersecting: set

Ak,n = { p ∈ Yk,n : |p ∩ vn| ≥ h + 1 } ,

Bk,n = { p ∈ Yk,n : 1 <p n, |p ∩ vn| = h } ,

so G(Yk,n) = Ak,n ∪ Bk,n, and let p, q ∈ G(Yk,n). If p, q ∈ Ak,n then they both contain at least h + 1

elements of the 2h-element set vn, which guarantees |p ∩ q| ≥ 2. If p, q ∈ Bk,n then (1, n) ∈ p ∩ q. If,
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without loss of generality, p ∈ Ak,n and q ∈ Bk,n then

|p ∩ vn|+ |q ∩ vn| ≥ (h + 1) + h = n > |vn| = n− 1.

Thus, again by the pigeonhole principle, p, q and vn must share at least one comparison. In conclu-

sion, G(Yk,n) is intersecting.

Now let p ∈ Ak,n and let σ = x1 . . . xn ∈ Ln such that p = yk(σ). Then p must contain at least h + 1

distinct comparisons (a, n) for some a ∈ [n − 1]. If k 6= h + 1 then clearly |p ∩ vn| ≥ h + 1 if, and

only if, n ∈ {xh+2, . . . , xn}. Thus

|Ak,n| = (n− (h + 1)) · (n− 1)!/2 = (n− 1) · (n− 1)!/4, k 6= h + 1.

If k = h + 1 and n ∈ {xh+1, xh+2}, then there are only h elements below n with respect to p, so

p /∈ Ak,n. Thus we must have n ∈ {xh+3, . . . , xn}, giving

|Ak,n| = (n− (h + 2)) · (n− 1)!/2 = (n− 3) · (n− 1)!/4, k = h + 1.

Now let p ∈ Bk,n and σ = x1 . . . xn ∈ Ln such that p = yk(σ). Then p contains precisely h compar-

isons of the form (a, n) for some a ∈ [n − 1]. If k = h then such a p does not exist. For k 6= h we

have |p ∩ vn| = h if, and only if, xh+1 = n. The other condition for p ∈ Bk,n is 1 <p n which is now

clearly equivalent to 1 ∈ {x1, . . . , xh}.

If k = h + 1, then Yk,n has (n − 1)! elements p with xh+1 = n and precisely half of them have

1 ∈ {x1, . . . , xh}. If k /∈ {h, h + 1}, then Yk,n has (n− 1)!/2 elements p with xh+1 = n, and precisely

half of these have 1 ∈ {x1, . . . , xh}.

In summary, we have

|Bk,n| =


(n− 1)!/2 k = h + 1

0 k = h

(n− 1)!/4 otherwise

and, since Ak,n and Bk,n are disjoint,

|G(Yk,n)| = |Ak,n|+ |Bk,n| =

(n− 1) · (n− 1)!/4 k ∈ {h, h + 1}

n!/4 otherwise

as required.
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Summary

In this section, we obtained a complete classification of maximum intersecting subsets of Yk,n in

Theorem 7.1.13. Moreover, we saw that

• if h ≤ k ≤ h + 1, where h = (n− 1)/2, then neither the fix-family Fi,j(Yk,n) nor the saturation

family G(Yk,n) are optimal in Yk,n.

• For the remaining values of k, G(Yk,n) is optimal but Fi,j(Yk,n) is not.

We now turn our attention to a larger class of posets. So far, our approach was to fix the poset and

take our class to be all permutations of the labels. The following section investigates what happens

if we consider the posets in all classes Yk,n together.

7.2 The Union of the Almost Linear Posets

We now wish to study maximum intersecting subsets of the class Mn of posets which are one

comparison away from being linear. It is easy to see that a linear order on n points contains rn =

n(n− 1)/2 comparisons, so we define Mn as

Mn = { p ∈ Pn : |p| = rn − 1 } .

Our first lemma relates Mn to the classes Yk,n from the previous section.

Lemma 7.2.1. Mn =
⋃n−1

i=1 Yi,n.

Proof. Clearly, each p ∈ Yk,n contains precisely rn − 1 comparisons. Conversely, any element p of

Mn can be obtained from some linear order σ by removing one comparison, say (a, b). Suppose

there exists c ∈ [n] with a <σ c <σ b. Since p contains all comparisons of σ other than (a, b), we

have a <p c and c <p b which implies a <p b, a contradiction. Thus such a c cannot exist, which

implies p ∈ Yk,n for some k ∈ [n− 1].

7.2.1 Cyclic Arrangements

In extremal combinatorics, one standard method of obtaining bounds for the size of 1-intersecting

sets of certain combinatorial structures is to arrange elements of the ground set on a circle. As

is often the case in mathematics, this method was refined into its present simple state by various
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contributions over the years. It was introduced in [Kat72] where Katona built on a method of Lubell

from [Lub66] by arranging the elements of [n] on a circle to give a simple proof of the bound in the

Erdős-Ko-Rado Theorem 1.1.1. Subsequent applications of the method improved its presentation,

most recently in [KL06, LW07, BK08]. Our proof of Theorem 7.2.15 is modelled on the presentation

in [FG89].

The method of cyclic arrangements relies on the fact that two arbitrary cyclic arrangements have

a t-interval in common. Thus it works only for t = 1, although some attempts have been made to

extend this proof method to higher values of t, see e.g. [HKS01]. Katona himself surveyed the use

of his cycle method in [Kat00]. Despite its limitations however, it is a very elegant method well

worth of exposition here.

In our context, we wish to arrange the comparisons (a, b) for distinct a, b ∈ [n] on a circle, so let

Compn = { (a, b) : a 6= b, a, b ∈ [n] } .

Definition 7.2.2. Recall the sequence of comparisons α(σ, xj) from Definition 6.3.2 and denote by

c(σ) the cyclic arrangement of the comparisons on [n] obtained as follows: on one half of the circle,

we have

α(σ, x2), α(σ, x3), . . . , α(σ, xn)

clockwise in that order, and for all comparisons x < y ∈ Compn, we have y < x directly opposite

x < y on c(σ).

1<2
1<3

2<3

1<4

2<4

3<4
2<1

3<1

3<2

4<1

4<2

4<3

c(1234) 4<3
4<2

3<2

4<1

3<1

2<1
3<4

2<4

1<4

1<3

1<2

2<3

c(4321)

Figure 7.2.1: c(1234) and c(rev(1234)).



134 CHAPTER 7. POSETS WHICH ARE ALMOST LINEAR

s
s

s
s

@
@

@3

4

2

1

p
s
s

s
s

@
@

@�
�

�

3

4

2

1

q

Figure 7.2.2: posets p and q are respectively defined by the 3-interval and 4-interval starting clock-

wise at 2 < 4 in c(1234).

We collect these cyclic arrangements or circles together in

Cn := { c(σ) : σ ∈ Ln }

and make some further, intuitive definitions.

• An interval A on a cyclic arrangement c ∈ Cn is a sequence of elements of Compn which are

consecutive on c. Sometimes A will refer to the set containing the elements of the sequence;

it will be clear from the context whether we consider A as a set or as a sequence.

We say that A has length |A| and an l-interval is simply an interval of length l. Finally, we

make the convention that all intervals are read clockwise.

• Note that for σ ∈ Ln and n ≥ 4, the circle c(rev(σ)) cannot be obtained from c(σ) by combi-

nations of rotations and reflections. For instance, note from Figure 7.2.1 that [(1, 4), (2, 4)] is

an interval in c(1234), whereas any interval in c(rev(1234)) containing (1, 4) and (2, 4) must

contain at least one other comparison.

• Given a set of comparisons X ⊆ Compn and a partial order p ∈ Pn, we say that X defines p if

p is the transitive closure of X .

Observe that there are |Compn | = n(n − 1) = 2rn points on each circle c ∈ Cn. No interval on c

longer than rn can define an order, since it contains both (a, b) and (b, a) for some a, b ∈ [n].

Example 7.2.3. Consider the 3-interval starting clockwise at 2 < 4 in c(1234) (see Figure 7.2.1):

A = [2 < 4, 3 < 4, 2 < 1]. As a set, A is the poset p whose Hasse diagram is shown in Figure 7.2.2.

Now consider the 4-interval starting clockwise at 2 < 4 in c(1234). We have p together with the

comparison 3 < 1, which gives the poset q in Figure 7.2.2.

Note that neither of these posets contains any comparisons other than the ones from the interval

which originally defined them. The following proposition shows that this is true in general: any

interval of length up to rn not only defines an order, but coincides precisely with some order p.
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Proposition 7.2.4. Let A be an interval of some c = c(σ) ∈ Cn of length at most rn = n(n − 1)/2. Then

A defines an order p ∈ Pn such that as sets, A = p.

Proof. Let S be the semicircle of c = c(σ) defining σ and let R be the semicircle complementing

S. We need to show that A is closed under transitivity, so suppose (x, y), (y, z) ∈ A for some

x, y, z ∈ [n].

Case 1: x <σ y, y <σ z.

Since σ is transitive, we have x <σ z. Now y <σ z implies that reading clockwise, (x, y) comes

before both of (y, z) and (x, z) in S. Similarly, since x <σ y we must have (x, z) before (y, z) in S by

the definition of α(σ, z). In other words, S contains the subinterval

(x, y), . . . , (x, z), . . . , (y, z). (7.2.5)

Since A is an interval and (x, y), (y, z) ∈ A, it follows that A must contain either the interval (7.2.5)

or the interval

(y, z), . . . , (x, y). (7.2.6)

Now (7.2.5) is contained in S, and so can have length at most |S| = rn. Since |c| = 2rn, this means

that (7.2.6) is strictly longer than rn and thus cannot be contained in A. Hence A contains (7.2.5)

and so (x, z) ∈ A.

Case 2: x 6<σ y, y 6<σ z.

Then z <σ y and y <σ x since σ is linear. By relabelling x ↔ z in the arguments of Case 1, we see

that S must contain the subinterval

(z, y), . . . , (z, x), . . . , (y, x).

Thus R contains the subinterval (y, z), . . . , (x, z), . . . , (x, y). This subinterval must then be contained

in A, since (x, y), (y, z) ∈ A and |A| ≤ rn = |R|.

Case 3: x <σ y, y 6<σ z.

Since σ is linear, we must have z <σ y. We do not know how x and z compare under σ, but since

both x and z are less than y under σ, the comparison relating x and z must come before both of
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(x, y), (z, y) in S: one of the intervals

(x, z), . . . , (x, y), . . . , (z, y), (7.2.7)

(z, x), . . . , (z, y), . . . , (x, y) (7.2.8)

must be contained in S.

Suppose x <σ z and consider the semicircles on c clockwise ending at (x, y) and (y, x) respectively,

call them D1 and D2. Since (7.2.7) is a subinterval of the rn-interval S, we have (x, z) ∈ D1 and

(z, y) ∈ D2. Since (y, z) occurs directly opposite (z, y) on c, (z, y) ∈ D2 implies (y, z) ∈ D1. Thus

the rn-interval D1 contains the subinterval (y, z), . . . , (x, z), . . . , (x, y), which implies (x, z) ∈ A as

required. This situation is illustrated in Figure 7.2.3 (Case 3.a).

D1

D2

x<y

x<z

z<y

R
R

S S

z<x

y<x

y<z

... ...

...

......

...

z<x

z<y

x<y

x<z

y<z

y<x

... ...

...

......

...

Case 3.a. Case 3.b.

Figure 7.2.3: possibilities for c(σ) in Case 3. Elements of A are underlined.

Case 3.b, when z <σ x, is very similar to Case 3.a: here (7.2.8) is a subinterval of S. Thus if we draw

a line on c connecting (y, z) and (z, y), we must have (x, y) and (x, z) on the same semicircle with

respect to that line, because reverse comparisons are opposite each other on c. Since A cannot cover

more than half of c, this implies (x, z) ∈ A.

Case 4: x 6<σ y, y <σ z

Since both x and z are greater than y under σ, the comparison comparing x and z must come after

both (y, x) and (y, z) in S. The two sub-cases of Case 4 are very similar to the two sub-cases of Case

3.

If x <σ z then the interval (y, x), . . . , (y, z), . . . , (x, z) occurs in S, see Case 4.a in Figure 7.2.4.
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x<y

x<z

z<y

S

R R

S

z<x

y<x

y<z

... ...

...

......

...

z<x

z<y

x<y

x<z

y<z

y<x

... ...

...

......

...

Case 4.a. Case 4.b.

Figure 7.2.4: possibilities for c(σ) in Case 4. Elements of A are underlined.

Reflecting (y, x) over the half circles with respect to the (y, z) - (z, y) axis shows that (x, z) and

(x, y) are on the same semicircle, which forces (x, z) ∈ A since (x, y), (y, z) ∈ A.

Finally, in Case 4.b, the interval (y, z), . . . , (y, x), . . . , (z, x) occurs in S. Considering the two half

circles with respect to (x, y) and (y, x), we see that (y, z) is less than rn away from (x, y), and (x, z)

lies between them. So again, |A| ≤ rn implies (x, z) ∈ A.

We have shown that A is closed under transitivity. Moreover, |A| ≤ rn means that A cannot cover

both of two opposite points on the circle c(σ). In other words, (x, y) ∈ A =⇒ (y, x) /∈ A for all

x, y ∈ [n], so there exists p ∈ Pn with A = p.

Definition 7.2.9. We say that p ∈ Pn and c ∈ Cn are compatible, denoted p ≺ c, if the set of compar-

isons of p can be found as an interval on c.

For any c ∈ Cn, a, b ∈ [n] and 1 ≤ l ≤ rn, denote by [(a, b)]lc the interval of length l starting clockwise

at (a, b) in c.

To obtain a bound on intersecting subsets of Mn, we need to investigate the posets arising from

elements of Cn in some more detail.

Definition 7.2.10. For σ = x1x2 . . . xn ∈ Ln and 1 ≤ i < j ≤ n, define a set of comparisons λ(σ, i, j)

as follows:

(a) the chain xj+1 < xj+2 < · · · < xn−1 < xn is preserved from σ;

(b) the chain on x1, x2, . . . , xj−1 is reversed: in λ(σ, i, j) we have xj−1 < xj−2 < · · · < x2 < x1;
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(c) all elements of (b) are less than all elements of (a); and

(d) xi < xj < xi−1 when i > 1, and x1 < xj < xj+1 if i = 1.

It is not difficult to see that this description defines the linear order depicted in Figure 7.2.5.

Proposition 7.2.11. Let σ = x1x2 . . . xn ∈ Ln and let 1 ≤ i < j ≤ n. Then

[(xi, xj)]rn

c(σ) = λ(σ, i, j); and

[(xj , xi)]rn

c(σ) = rev(λ(σ, i, j)).

Proof. Let r = rn and c = c(σ). By Proposition 7.2.4, any r-interval on a cyclic ordering is equivalent

to some linear order on [n]. The second claim, namely [(xj , xi)]rc = rev(λ(σ, i, j)), will follow from

the first, since for a, b ∈ [n] it is clear that

(a, b) ∈ [(xj , xi)]rc ⇐⇒ (b, a) ∈ [(xi, xj)]rc .

So to prove the proposition, it suffices to show that [(xi, xj)]rc = λ(σ, i, j).

Now it follows from the definition of the cyclic ordering c(σ) that [(xi, xj)]rc consists of the following

comparisons:

(i) the intervals α(σ, xj+1), . . . , α(σ, xn),

(ii) the reverse of each comparison in the intervals α(σ, x1), . . . , α(σ, xj−1),

(iii) the comparisons (xi, xj), (xi+1, xj), . . . , (xj−1, xj),

(iv) and the comparisons (xj , xi−1), . . . , (xj , x2), (xj , x1).

Note that (i) implies (a) and (c) in Definition 7.2.10, and (ii) implies (b). We have (xi, xj) by (iii)

and (xj , xi−1) by (iv) for i > 1. Finally, xj < xj+1 follows from (i), so we conclude that (i) − (iv)

also imply (d) in Definition 7.2.10. Thus [(xi, xj)]rc contains λ(σ, i, j), which means they must be

equal since both are linear orders on [n].

In the next proposition we will show how elements of Yk,n, and hence elements of Mn, arise as

intervals of cyclic arrangements. For σ = x1 . . . xn ∈ Ln and 1 ≤ i < j ≤ n, define posets µ(σ, i, j) ∈

Pn by their Hasse diagrams in Figure 7.2.5.

Remark 7.2.12. Observe that for any σ ∈ Ln, we have

µ(σ, 1, 2) ∈ Yn−1,n,

µ(σ, 1, j) ∈ Y1,n, 3 ≤ j ≤ n,

µ(σ, i, j) ∈ Yj−i+1,n, 1 < i < j ≤ n.
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xj!1

xi
xi+1

xj!2

xi!1
xi!2
xi!3

x2
x1

x2
x1

xj!1 xj!2

xj!3

xn!1

xn

xj+1
xj

x1

x2

xn!2

xn!1xn

x2
x1

xj!1
xj!2

xi!1

xi
xi+1

xj+1
xj+2

xn!1
xn

xj xj

xj+1
xj+2

xn!1
xn

Figure 7.2.5: for σ = x1 . . . xn ∈ Ln we have, from left to right, Hasse diagrams of posets λ(σ, i, j),

µ(σ, 1, 2), µ(σ, 1, j) for j ≥ 3, and µ(σ, i, j) for 1 < i < j ≤ n.

Note also that the statement of Proposition 7.2.13 is only concerned with intervals of c(σ) starting

at elements of σ. The remaining ones can be determined by recalling that as a poset, the l-interval

starting at (xj , xi) is isomorphic to the reverse of the l-interval starting at (xi, xj).

Proposition 7.2.13. Let σ = x1x2 . . . xn ∈ Ln and 1 ≤ i < j ≤ n. Then

[(xi, xj)]rn−1
c(σ) = µ(σ, i, j).

Proof. Set r = rn, c = c(σ), and let p be the poset equivalent to [(xi, xj)]r−1
c .

Suppose firstly that i > 1 and recall that there are precisely 2r points on c. Since (xi−1, xj) is the

comparison clockwise preceding (xi, xj) on c, the last point in [(xi, xj)]rc is (xj , xi−1). Considering

intervals as sets, we therefore have

p = [(xi, xj)]r−1
c = [(xi, xj)]rc \ {(xj , xi−1)}.

But [(xi, xj)]rc = λ(σ, i, j) by Proposition 7.2.11, and so

p = λ(σ, i, j) \ {(xj , xi−1)}.

Considering Figure 7.2.5, the previous equation implies p = µ(σ, i, j).
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The case i = 1 is very similar; we need to show that p = µ(σ, 1, j). When j = 2, clearly [(x1, xj)]r−1
c

contains all elements of σ except (xn−1, xn), so p = µ(σ, 1, 2).

When j > 2, the comparison preceding (x1, xj) in c is (xj−2, xj−1) and so

p = [(x1, xj)]rc \ {(xj−1, xj−2)} = λ(σ, 1, j) \ {(xj−1, xj−2)}

by Proposition 7.2.11. Reconsidering Figure 7.2.5, we see that removing the comparison (xj−1, xj−2)

from λ(σ, 1, j) gives µ(σ, 1, j).

Finally, we are now ready to prove the regularity result which enables us to use the method of

cyclic orderings for the class Mn.

Proposition 7.2.14. Let c ∈ Cn and 1 ≤ k ≤ n− 1. Then c is compatible with n elements of Yk,n.

Proof. Let σ = x1x2 . . . xn ∈ Ln be such that c = c(σ). By Proposition 7.2.13, we obtain elements

of Yk,n from c simply by picking appropriate starting points of (rn − 1)-intervals. Denote by p(a, b)

the poset equivalent to the (rn − 1)-interval on c starting at (a, b).

Case 1 < k < n− 1.

We begin by considering intervals starting at elements of σ. By Proposition 7.2.13 and Remark

7.2.12, we have p(xi, xj) ∈ Yk,n if, and only if, k = j − i + 1 for some 1 < i < j ≤ n. For

given i, we therefore have j = k + i − 1 ≤ n, which implies i ≤ n − k + 1. Thus there are

|{2, 3, . . . , n − k + 1}| = n − k values of i that determine intervals of c which start at elements of σ

and are equivalent to elements of Yk,n.

Since Yk,n
∼= rev(Yn−k,n), it follows by symmetry that there are n−(n−k) = k such intervals whose

starting points are not in σ. Thus c is compatible with a total of n− k + k = n elements of Yk,n.

Case k = 1 or k = n− 1.

Consider the case k = 1. Since the isomorphism classes Yk,n are only defined for n ≥ 3, Remark

7.2.12 and Proposition 7.2.13 tell us that for i < j, we have p(xi, xj) ∈ Y1,n if, and only if, i = 1 and

3 ≤ j ≤ n. Hence there are n − 2 intervals of c starting at elements of σ which are equivalent to

elements of Y1,n.

The remaining ones are precisely those intervals opposite the (rn − 1)-intervals on c starting at

elements of σ and equivalent to elements of Yn−1,n. Using Remark 7.2.12 and Proposition 7.2.13

again, we have p(xi, xj) ∈ Yn−1,n for i < j if, and only if, either i = 1 and j = 2 or j − i + 1 = n− 1
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for some 1 < i < j ≤ n. In the second situation, we have j = n + i − 2 ≤ n which implies i ≤ 2,

forcing i = 2 and j = n + i − 2 = n. We have shown that there are two (rn − 1)-intervals on c

starting at elements of σ and equivalent to elements of Yn−1,n. Reversing these gives elements of

Y1,n. In summary, then, c is compatible with a total of n− 2 + 2 = n elements of Y1,n.

The case k = n− 1 follows by symmetry.

7.2.2 A Bound and Some Maximum Families

Recall that we are investigating the class Mn = { p ∈ Pn : |p| = rn − 1 } where

rn − 1 =
n(n− 1)

2
− 1 =

(n− 2)(n + 1)
2

.

Theorem 7.2.15. If F ⊆Mn is intersecting then

|F| ≤ (n− 2)(n + 1)(n− 1)!
4

.

Proof. Let F ⊆Mn be intersecting. We count pairs consisting of a poset in F and a cyclic ordering

in Cn which are compatible with one another:

| { (p, c) : p ∈ F , c ∈ Cn, p ≺ c } |.

Elements of Cn are obtained from each other by relabellings of [n], and the same is true for elements

of Yk,n for fixed k. Thus by Proposition 7.2.14, each poset in Yk,n is compatible with n · |Cn|/|Yk,n|

elements of Cn. Since |Yk,n| = |Ln|/2 = n!/2 for all k ∈ [n − 1], each poset in Yk,n is therefore

compatible with
n · |Cn|
n!/2

=
2|Cn|

(n− 1)!
(7.2.16)

elements of Cn. Since F ⊆Mn =
⋃n−1

k=1 Yk,n by Lemma 7.2.1, and since (7.2.16) is independent of k,

we conclude that each element of F is compatible with 2|Cn|/(n− 1)! elements of Cn. Thus

| { (p, c) : p ∈ F , c ∈ Cn, p ≺ c } | = |F| · 2|Cn|
(n− 1)!

. (7.2.17)

Conversely, fix c ∈ Cn and set F ′(c) = { p ∈ F : p ≺ c }. Let v ∈ F ′(c) and let A = [a1, . . . , arn−1] be

the interval of c equivalent to v, so each ai is an element of Compn. Since all other posets in F ′(c)

intersect v, they must either start or end in A. Each point in A can be the starting point of at most

one element of F ′(c) and the end point of at most one element of F ′(c). So to ensure that these
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posets are distinct from v, we require that they do not start at the starting point of v or end at the

end point of v. We obtain

|F ′(c) \ {v}| ≤ 2|A| − 2 = 2(rn − 2).

Now for each i ∈ [rn− 1], we pair up the (rn− 1)-interval ending at ai with the one starting at ai+1.

These paired intervals do not intersect since they cannot cover all points on c:

2(rn − 1) < 2rn = |c|.

Hence |F ′(c)| ≤ rn − 1, implying

| { (p, c) : p ∈ F , c ∈ Cn, p ≺ c } | ≤ |Cn| · (rn − 1),

and combining this with (7.2.17) yields the result.

Next we show that one way of obtaining a maximum intersecting family is by fixing a comparison:

consistently with previous notation, set

Fi,j(Mn) = { p ∈Mn : (i, j) ∈ p }

for some fixed i, j ∈ [n].

Proposition 7.2.18. The fix-family Fi,j(Mn) is maximum intersecting in Mn.

Proof. It suffices to show that Fi,j(Mn) attains the bound in Theorem 7.2.15. For fixed k, Yk,n

contains (n − 2)! posets with i||j, and exactly half of the remaining elements of Yk,n have i < j.

Thus

| { p ∈ Yk,n : i <p j } | = |Yk,n| − (n− 2)!
2

=
(n− 2)! · (n− 2)(n + 1)

4

since |Yk,n| = n!/2. Combining this with Lemma 7.2.1 gives

|Fi,j(Mn)| =
n−1∑
i=1

| { p ∈ Yk,n : i <p j } | = (n− 1)! · (n− 2)(n + 1)
4

,

as required.

The next proposition shows that Mn also contains optimal saturation families.

Proposition 7.2.19. Let vn ∈ Pn be the poset vn = { (i, n) : 1 ≤ i ≤ n− 1 }.

• If n is even, set G(Mn) = { p ∈Mn : |p ∩ vn| ≥ n/2 }.

• If n = 2h + 1, set G(Mn) = { p ∈Mn : either |p ∩ vn| ≥ h + 1 or |p ∩ vn| = h, 1 <p n }.
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Then G(Mn) is maximum intersecting in Mn.

Proof. Since Mn =
⋃n−1

k=1 Yk,n, it follows that G(Mn) =
⋃n−1

k=1 G(Yk,n) where G(Yk,n) is defined in

Propositions 7.1.17 and 7.1.18. Moreover, this union is disjoint since Yi,n ∩Yj,n = ∅ for i 6= j, and so

|G(Mn)| =
n−1∑
k=1

|G(Yk,n)|

=
n−1∑
k=1


(n− 2) · (n− 1)!/4 n even, k = n/2

(n− 1) · (n− 1)!/4 n = 2h + 1, k ∈ {h, h + 1}

n!/4 otherwise

by Propositions 7.1.17 and 7.1.18. When n is even, this gives

|G(Mn)| = (n− 2) · n!
4

+
(n− 2) · (n− 1)!

4
=

(n− 2)(n + 1)(n− 1)!
4

,

and when n is odd,

|G(Mn)| = (n− 3) · n!
4

+ 2 · (n− 1) · (n− 1)!
4

=
(n− 2)(n + 1)(n− 1)!

4
.

Hence |G(Mn)| attains the bound in Theorem 7.2.15.

Finally, the definitions of G(Yk,n) for n even and odd do not depend on k, and so the arguments

used in Propositions 7.1.17 and 7.1.18 to show that G(Yk,n) is intersecting also imply that G(Mn) is

intersecting.

7.2.3 Conclusion

Since the method of cyclic orderings is aesthetically appealing, it would be nice to extend it to other

poset classes. However, the reason why the bound in Theorem 7.2.15 is sharp is that the set of the

rn − 1 posets arising as (rn − 1)-intervals around one certain comparison on a cycle is indeed a

subset of the class Mn. This is clearly not the case for a general isomorphism class — for example,

it is not the case for any of the classes Yk,n. Or, to consider a more straightforward example, let

I3(4) be the subclass of P4 with elements defined by Figure 7.2.6.

Since the comparisons in an element of I3(4) actually form a linear order on three points, it is easy

to see that any cyclic ordering c(x1x2x3x4) ∈ C4 contains precisely two elements of I3(4), namely

the 3-intervals starting at x1 < x2 and x2 < x1 respectively. So the size of an element of I3(4) is

three, but given a fixed comparison on c(x1x2x3x4), at most one of the three 3-intervals containing

it defines an element of I3(4).
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sss s
Figure 7.2.6: Hasse diagram of elements of I3(4).

Thus if the bound on an intersecting subset of a class X of posets given by our method of cyclic

orderings is to be sharp, we need to ensure that X includes all posets of a certain size s (i.e. with s

comparisons), because an intersecting subset of X can then include the set of all s-intervals around

a certain comparison on a cyclic ordering. But then we can no longer assume that each poset in X

is contained in the same number of cyclic orderings. Indeed, it seems that the only value of s for

which a regularity result such as Proposition 7.2.14 holds, without introducing a weight function,

is in fact s = rn−1. A weight function could control the probability of certain intervals on the cycle

being picked over others, but we do not pursue this approach here.

To summarise, the method of cyclic orderings presented in this chapter will not deliver sharp

bounds for poset classes other thanMn. Whether it has applications in the investigation of slightly

different combinatorial structures, such as pre-orders for example, is a separate question.

On the other hand, whilst perhaps lacking the inherently satisfying element of sophistication dis-

played by the cyclic arrangements, the method from Section 7.1 of partitioning a class X of posets

into blocks appears a lot more promising in terms of applicability. We will extend its use from

single isomorphism classes to a larger class in the following section.

7.3 The Split Ends Class

Gradually increasing the number of antichains in poset classes we consider, let Υn be the ’split ends’

subclass of Pn, containing linear orders and partial orders obtained from linear ones by replacing

the two highest and/or the two lowest points in their Hasse diagrams by an antichain of length

two. So

Υn = Ln ∪ Y1,n ∪ Yn−1,n ∪ Zn

where the elements of Zn are chains with an antichain of size two at the top and bottom. It is easy

to see from Figure 7.3.1 that the class Zn exists for n ≥ 5, so we consider Υn for n ≥ 5.

Recall that two linear orders σ, ρ ∈ Ln do not intersect if, and only if, σ = rev(ρ). We obtain the



7.3. THE SPLIT ENDS CLASS 145

ss
...

sss

Ln

s
s
s...s s

s

�@

Y1,n

ss
...

s s ss@�

Yn−1,n

s

s ss...s s

ss
�@

@�

Zn

Figure 7.3.1: Hasse diagrams of elements of Υn = Ln ∪ Y1,n ∪ Yn−1,n ∪ Zn.

following analogous condition for partial orders from Lemma 6.3.9.

Lemma 7.3.1. Two partial orders p and q in Pn do not intersect if, and only if, there exist linear extensions

ρ ∈ L(p) and σ ∈ L(q) with σ = rev(ρ).

Proof. (⇐) We have (p ∩ q) ⊆ (ρ ∩ σ) = (ρ ∩ rev(ρ)) = ∅.

(⇒) Suppose there do not exist ρ ∈ L(p) and σ ∈ L(q) such that σ = rev(ρ); then L(p) ∪ L(q) is

intersecting. Choose ρ ∈ L(p), σ ∈ L(q) with minimal intersection size and let (a, b) ∈ σ ∩ ρ, then

neither of p, q have b < a.

Suppose, for a contradiction, that a||pb. Then it follows from Lemma 6.3.9 that p has a linear exten-

sion ρ′ which is identical to ρ apart from the comparison b <ρ′ a. But this implies

|ρ′ ∩ σ| = |ρ ∩ σ| − 1

which contradicts our choice of ρ and σ.

Thus a <p b, and it follows by the same arguments that a <q b, which shows that p and q intersect.

7.3.1 Partitioning the Class

We partition Υn into blocks indexed by elements of Zn: for p ∈ Zn, Bp contains all elements of Υn

containing it, i.e.

Bp = { q ∈ Υn : p ⊆ q } .

Note that Bp consists of L(p) along with any element of Υn with a linear extension in L(p).

Lemma 7.3.2. For n ≥ 5, {Bp : p ∈ Zn } is a partition of Υn. Moreover, if two posets q1, q2 ∈ Υn do not

intersect, then q1 ∈ Bp, q2 ∈ Brev(p) for some p ∈ Zn.
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Proof. It is easy to see from Figure 7.3.1 that every q ∈ Υn is contained in some block Bp, and also

that two distinct p1, p2 ∈ Zn cannot be contained in the same q ∈ Υn. Hence every q ∈ Υn is

contained in precisely one Bp, proving the first sentence of the lemma.

Now let q1, q2 be non-intersecting elements of Υn with qi ∈ Bpi
for i = 1, 2. By Lemma 7.3.1, there

exist σ1 ∈ L(q1) and σ2 ∈ L(q2) such that σ1 = rev(σ2). It is clear from the definition that each Bp is

closed under taking linear extensions, so σi ∈ Bpi
. Moreover, σi must be a linear extension of pi by

transitivity. Thus if σ1 = x1 . . . xn then σ2 = rev(σ1) gives

p1 = σ1 \ {(x1, x2), (xn−1, xn)} = rev(σ2 \ {(x2, x1), (xn, xn−1)}) = rev(p2)

as required.

The isomorphism class Zn is closed under taking reverses. It therefore follows from Lemma 7.3.2

that

B(n) =
{

Bp ∪Brev(p) : p ∈ Zn

}
is a partition of Υn.

7.3.2 A Bound and a Maximum Family

Before we state the next result, recall that we are not interested in the class Υn for n < 5. Also note

that every block Bp is intersecting, since each of its elements contains p.

Theorem 7.3.3. For n ≥ 5, F is a maximum intersecting subset of Υn if, and only if, F is the union of a

transversal of {
{Bp, Brev(p)} : p ∈ Zn

}
.

Proof. It follows from Lemma 7.3.2 that F is the disjoint union of |Zn|/2 families F ′(p), p ∈ Zn,

with each F ′(p) a maximum intersecting subset of Bp ∪ Brev(p), and F ′(p) = F ′(q) if, and only

if, q = rev(p). To prove the theorem, we therefore need to show that Bp and Brev(p) are the only

maximum intersecting families of Bp ∪Brev(p) for all p ∈ Zn.

Let a, b, c, d be the four distinct points in [n] with a||pb and c||pd. For any assignment

{xi : 1 ≤ i ≤ 4 } = {a, b, c, d},

denote by l(x1x2x3x4) the linear extension of p with x1 < x2 < x3 < x4. Recall that Bp consists of
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L(p) along with any element of Υn with a linear extension in L(p), so

Bp = {p, l(abcd), l(bacd), l(abdc), l(badc),

y1(l(abcd)), y1(l(abdc)), yn−1(l(abcd)), yn−1(l(bacd))}.

Obtaining Brev(p) in a similar way, we note that Brev(p) = rev(Bp). Thus Bp∪Brev(p) is a subset ofPn

closed under taking reverses and we can apply Proposition 6.3.13 to conclude that F ′(p) contains a

transversal of

{
{σ, rev(σ)} : σ ∈ Ln ∩ (Bp ∪Brev(p))

}
= { {σ, rev(σ)} : σ ∈ Ln ∩ (Bp ∪ rev(Bp)) }

= { {σ, rev(σ)} : σ ∈ Ln ∩Bp }

= { {σ, rev(σ)} : σ ∈ L(p) } . (7.3.4)

Consider the case l(abcd) ∈ F ′(p). Then we can exclude the elements of rev(Bp) which l(abcd) does

not intersect: we have

rev(l(abcd)), y1(rev(l(abcd))), yn−1(rev(l(abcd))), rev(p) /∈ F ′(p).

Suppose, for a contradiction, that rev(l(badc)) ∈ F ′(p), then

l(badc), y1(l(badc)), yn−1(l(badc)), p /∈ F ′(p).

There are now 10 elements of Bp ∪Brev(p) we have not yet chosen or excluded; among them

l(bacd), rev(l(bacd)), l(abdc), rev(l(abdc)).

Since a linear order does not intersect its own reverse this implies |F ′(p)| ≤ 2+10−2 = 8 < 9 = |Bp|.

We conclude that rev(l(badc)) /∈ F ′(p).

SinceF ′(p) contains a transversal of (7.3.4), we must therefore have l(badc) ∈ F ′(p), which excludes

y1(rev(l(badc))) and yn−1(rev(l(badc))) from F ′(p). We have now narrowed F ′(p) down to

F ′(p) ⊆ Bp ∪ {rev(l(bacd)), rev(l(abdc))}.

Again sinceF ′(p) contains a transversal of (7.3.4),F ′(p) contains precisely one of l(bacd), rev(l(bacd))

and l(abdc), rev(l(abdc)) respectively. Including either of rev(l(bacd)), rev(l(abdc)) would exclude

at least two elements of Bp and thus force |F ′(p)| < |Bp|; hence we conclude F ′(p) = Bp.

We have shown that l(abcd) ∈ F ′(p) implies F ′(p) = Bp. It follows by symmetry that rev(l(abcd)) ∈

F ′(p) implies F ′(p) = rev(Bp).
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Corollary 7.3.5. If F ⊆ Υn is intersecting then

|F| ≤ |Υn|
2

=
9n!
8

.

Proof. Recall from the proof of Theorem 7.3.3 that |Bp| = 9 for all p ∈ Zn. It thus follows from

Theorem 7.3.3 that |F| ≤ |Υn|/2. Since the Bp partition Υn by Lemma 7.3.2,

|Υn| =
∑

p∈Zn

|Bp| = |Zn| · 9.

Each p ∈ Zn has four linear extensions, so

|Υn| =
9 · |Ln|

4
=

9 · n!
4

and the result follows.

It seems that Υn does indeed share various properties with the isomorphism classes Yk,n considered

in Section 7.1: not only did we apply a very similar proof method to obtain the maximal size of an

intersecting subset, but we will now show that, mirroring the situation in Yk,n, saturation is optimal

in Υn while fixing is not. As before, vn ∈ Pn is the poset vn = { (i, n) : 1 ≤ i ≤ n− 1 } and

G(Υn) = { p ∈ Υn : |p ∩ vn| ≥ n/2 }

is intersecting by the pigeonhole principle.

Proposition 7.3.6. G(Υn) is a maximum intersecting in Υn.

Proof. It suffices to show that G(Υn) is the union of a transversal of{
{Bp, Brev(p)} : p ∈ Zn

}
by Theorem 7.3.3. For p ∈ Zn we have |p ∩ vn| ≥ n/2 if, and only if, at least n/2 points are less than

n under p, i.e. fewer than n/2 points are larger than n under p which is equivalent to the statement

that fewer than n/2 points are smaller than n under rev(p). We have shown that

|p ∩ vn| ≥ n/2 ⇐⇒ | rev(p) ∩ vn| < n/2, (7.3.7)

i.e. p is in G(Υn) if and only if rev(p) is not in G(Υn).

Since p is contained in every element q of Bp, |p ∩ vn| ≥ n/2 implies |q ∩ vn| ≥ n/2. Conversely,

suppose for a contradiction that p /∈ G(Υn) but some distinct q ∈ Bp is in G(Υn). Then any linear

extension σ = x1 . . . xn of q is also in G(Υn), and σ is a linear extension of p by transitivity. In

particular,

p = σ \ {(x1, x2), (xn−1, xn)}
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Figure 7.3.2: Let Ψn be the union of Υn with the isomorphism classes represented by the above

Hasse diagrams. Mimicking the partition of Υn, blocks in Ψn would be indexed by labelled ver-

sions of the far right poset above, since these have smallest size among elements of Ψn.

and since σ shares n/2 points with vn but p does not, this forces n ∈ {x2, xn}.

Now xn = n would imply

|p ∩ vn| = n− 2 ≥ n/2

since n ≥ 5, contradicting p /∈ G(Υn). On the other hand, x2 = n would imply

|σ ∩ vn| = 1 < n/2

for n ≥ 5, contradicting σ ∈ G(Υn). We conclude that each Bp is either contained in or disjoint

from G(Υn). Combining this with (7.3.7) completes the proof.

Remark 7.3.8. Observe that for a, b ∈ [n], the fix family

Fa,b(Υn) = { p ∈ Υn : (a, b) ∈ p }

does not have maximal size. To demonstrate this, it suffices to show that Fa,b is not the union of a

transversal of {
{Bp, Brev(p)} : p ∈ Zn

}
by Theorem 7.3.3. Clearly Zn contains an element p with a||pb. Now a 6<p b and a 6<rev(p) b, so Fa,b

does not entirely contain either Bp or Brev(p), as required.

Considering Remarks 7.3.8 and 7.1.16, we do not expect fixing to be optimal in any classes where

the maximum size of an intersecting family can be determined by a partition into blocks which are
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closed under the map N from Section 7.1. It seems likely that the arguments in this section would

extend to classes larger than Υn, for instance, the union of Υn with the labelled versions of the

posets in Figure 7.3.2.

However, we do not classify these ‘reverse pairing’ classes here. Instead, we now turn our attention

to the opposite end of Pn: in this chapter, we studied posets with lots of comparisons, i.e. posets

which are almost linear. The next chapter is concerned with posets with very few comparisons

instead, i.e. posets which are close to the antichain.



CHAPTER 8

POSETS CLOSE TO THE ANTICHAIN

Having investigated maximum intersecting families of posets which are almost linear in Chapter

7, we turn our attention to the other end of the spectrum now by studying posets which are close

to the antichain. Recall from Chapter 6 that the height hp(x) of a point x under the poset p is one

less than the greatest number of elements in a chain whose largest member is x.

Definition 8.0.1. The height of a poset p ∈ Pn is the maximum height of any of its points, that is,

h(p) = max
x∈[n]

hp(x).

We say that a point x ∈ [n] is maximal in p if hp(x) = h(p), and minimal if hp(x) = 0.

8.1 Posets of Height 1

The antichain is the only poset on n points with height 0. In order for two posets to intersect, each

of them has to have height at least 1, so we begin by investigating these. In Section 8.1.1 we fix a

poset in which points of different heights are comparable and consider the class arising from all

permutations of the labels. Then we consider the union of all such posets in Section 8.1.2. We will

see that the classifications of maximum intersecting families in the height 1 classes we consider are

consequences of known results. In Section 8.2 we investigate the corresponding posets of height 2.

8.1.1 Fixing a Complete Poset of Height 1

Definition 8.1.1. We define level i of p as

Li(p) = {x ∈ [n] : hp(x) = i } .

151
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If p ∈ Pn has height 1, we may refer to L0(p) and L1(p) as the lower and upper level of p, respectively.

In a graph-theoretic analogy, we call a poset p ∈ Pn complete if for all x, y ∈ [n], hp(x) < hp(y)

implies x <p y. If X, Y are subsets of [n], we use the notation X <p Y to indicate that for all x ∈ X ,

y ∈ Y , we have x <p y.

For 1 ≤ k ≤ n − 1, let Ck,n−k be the set of all complete height 1 posets on [n] with lower levels of

size k:

Ck,n−k = { p ∈ Pn | h(p) = 1, |L0(p)| = k, L0(p) <p L1(p)} .

This subsection investigates maximum intersecting subsets of Ck,n−k. Clearly, if p ∈ Pn has height

1 then L0(p)∪̇L1(p) = [n], where the symbol ∪̇ denotes the disjoint union of two sets. Moreover, for

p ∈ Ck,n−k, all points in L0(p) are less than all points in L1(p) under p, so any element of Ck,n−k is

determined by either of its levels. This means that

|Ck,n−k| =
(

n

k

)
=
(

n

n− k

)
.

Furthermore, the intersecting structure of Ck,n−k is determined by the levels of its elements, as

described in the following lemma.

Lemma 8.1.2. Two posets p, q ∈ Ck,n−k intersect if, and only if, Li(p) and Li(q) intersect, where i = 0 if

k ≤ n/2 and i = 1 if k > n/2.

Proof. Clearly two elements p, q ∈ Ck,n−k intersect if, and only if, their upper levels intersect and

their lower levels intersect.

If k < n/2 then L1(p) and L1(q) both have size n − k > n/2, so they have non-empty intersection

by the pigeonhole principle. This proves the lemma for k < n/2, and for k > n/2 by symmetry.

Now two (n/2)-subsets of [n] intersect if, and only if, one is not the complement of the other. Thus

if L0(p) and L0(q) intersect, then L0(p) 6= L0(q), implying

L1(q) = L0(q) 6= L0(p) = L1(p).

In other words, if the lower levels of p and q intersect, then their upper levels must also intersect.

It is not difficult to see from Lemma 8.1.2 that for all but one value of k, the characterisation of in-

tersecting subsets of Ck,n−k is simply a corollary to the Erdős-Ko-Rado Theorem. However, we will

see in this chapter that in the context of posets close to the antichain, the Erdős-Ko-Rado Theorem
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is usually applied to deduce the optimality of a saturation family such as

G0(Ck,n−k) = { p ∈ Ck,n−k : 1 ∈ L0(p) } ,

G1(Ck,n−k) = { p ∈ Ck,n−k : n ∈ L1(p) } ,

as opposed to a fix-family such as

F1,n(Ck,n−k) = { p ∈ Ck,n−k : (1, n) ∈ p } .

We refer to G1(Ck,n−k) as a saturation family because it is obtained by saturating over the poset

vn = { (i, n) : 1 ≤ i ≤ n− 1 } from Chapter 7. Clearly G0(Ck,n−k) is based on the same idea as

G1(Ck,n−k).

Proposition 8.1.3. Let k and n be natural numbers with 1 ≤ k ≤ n−1 and k 6= n/2. IfF is an intersecting

subset of Ck,n−k then

|F| ≤
(

n− 1
k − 1

)
.

Moreover, equality holds if, and only if, there exists a ∈ [n] such that

F = { (a b)p : p ∈ Gi(Ck,n−k) }

where (a b)p is obtained from p by swapping the labels a and b; k < n/2 implies i = 0, b = 1;

and if k > n/2 then i = 1, b = n.

Proof. Suppose k < n/2, then L0(F) = {L0(p) : p ∈ F } is intersecting by Lemma 8.1.2. Moreover,

elements of L0(F) are k-subsets of [n]. Therefore, by Theorem 1.2.1,

|L0(F)| ≤
(

n− 1
k − 1

)
and equality implies that there exists a ∈ [n] such that for all p ∈ F , we have a ∈ L0(p). Since

elements of Ck,n−k are determined by their lower levels, the result follows. The case k > n/2

follows by symmetry.

To complete the classification of maximum intersecting subsets of Ck,n−k for all k, it remains to

consider the case k = n/2.

Proposition 8.1.4. Let k be a natural number. If F is an intersecting subset of Ck,k then

|F| ≤ |Ck,k|
2

=
1
2

(
2k

k

)
.

Moreover, equality holds if, and only if, F is a transversal of

{ {p, rev(p)} : p ∈ Ck,k } .
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Proof. Let p, q ∈ Ck,k with L0(p) ∩ L0(q) = ∅. Since upper and lower levels of elements of Ck,k all

have size k, this means L0(q) = L1(p) and L1(q) = L0(p) which is equivalent to q = rev(p). Thus,

by Lemma 8.1.2, we have

p ∩ q = ∅ ⇐⇒ q = rev(p)

for any p, q ∈ Ck,k. The rev operator is clearly well-defined and bijective, so the result follows.

8.1.2 The Union of all Complete Posets of Height 1

We now consider the union of the classes studied in the previous section: let

H(1)
n = { p ∈ Pn | h(p) = 1, L0(p) <p L1(p)} =

n−1⋃
k=1

Ck,n−k.

Any complete poset of height 1 is determined by either of its levels, and neither level may be empty,

otherwise the poset would have height 0. Thus H(1)
n has two elements less than the power set of

[n], i.e.

|H(1)
n | = 2n − 2.

The bound on the size of intersecting subsets of this class arises from the following theorem.

Theorem 8.1.5. (Marica, Schönheim [MS69]).

If A is a finite collection of sets, then | {X \ Y : X, Y ∈ A} | ≥ |A|.

In [DL76], Daykin and Lovász use Theorem 8.1.5 to establish a result on set families equivalent to

the bound for intersecting subsets ofH(1)
n . The following proposition and its proof are a replication

of their argument in the language of height 1 posets.

Theorem 8.1.6. (Daykin, Lovász [DL76]).

If F is an intersecting subset of H(1)
n then

|F| ≤ 2n−2.

Proof. [DL76]

Let L = {L0(p) : p ∈ F } , then L is an intersecting family of subsets of [n] of size |L| = |F|. Setting

D = {X \ Y : X, Y ∈ L } ,

we have |D| ≥ |L| by Theorem 8.1.5, so

|D| ≥ |F|.
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If D and L have non-empty intersection, then there exist X1, X2, X3 ∈ L with X1 = X2 \ X3. But

this implies X1 ∩X3 = ∅, contradicting the fact that L is intersecting. Thus D ∩ L = ∅, giving

|D ∪ L| = |D|+ |L| ≥ 2|F|. (8.1.7)

Let L′ = {L1(p) : p ∈ F }, then L′ is intersecting. So let p1, p2 ∈ F and x ∈ L1(p1) ∩ L1(p2). Since

both posets have height 1, we have L0(p) = [n] \ L1(p) for p = p1, p2, and so x /∈ L0(p1) ∪ L0(p2).

We have shown that no two elements of L can have union [n]; therefore no elements of D ∪ L can

have union [n]. In other words, no subset Y of [n] and its complement Y = [n]\Y are both in D∪L,

giving

|D ∪ L| ≤ 2n/2 = 2n−1.

Combining this with (8.1.7) yields the result.

The class H(1)
n has the nice property that each of the traditional saturation families, including the

fix-family, is maximum: for 0 ≤ r ≤ (n− 2)/2, define the poset v(r) by

v(r) = { (i, n) : 1 ≤ i ≤ 2r + 1 }

and set

Gr(H(1)
n ) =

{
p ∈ H(1)

n : |p ∩ v(r)| ≥ r + 1
}

.

As usual, we abbreviate Gr(H(1)
n ) by Gr in the context of H(1)

n . Note that Gr is intersecting by the

pigeonhole principle. In particular, G0 is the fix-family in H(1)
n :

G0(H(1)
n ) =

{
p ∈ H(1)

n : (1, n) ∈ p
}

= F1,n(H(1)
n ).

Proposition 8.1.8. Each of the n/2 intersecting families Gr is maximum in H(1)
n .

Proof. We need to show that Gr attains the bound of Theorem 8.1.6. Since posets of height 1 are

determined by either of their levels, we have

Gr = {p ∈ H(1)
n : n ∈ L1(p), at least r + 1 elements of [2r + 1] are in L0(p)}

= {p ∈ H(1)
n : n ∈ L1(p), at most r elements of [2r + 1] are in L1(p)}

and so

|Gr| = 2n−(2r+2) ·
r∑

i=0

(
2r + 1

i

)
.

A basic property of binomial coefficients is
(
n
k

)
=
(

n
n−k

)
and so

2 ·
r∑

i=0

(
2r + 1

i

)
=

2r+1∑
i=0

(
2r + 1

i

)
= 22r+1,
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since the middle sum is clearly the size of the power set of [2r + 1]. Together, the previous two

equations give

|Gr| = 2n−(2r+2) · 1
2
· 22r+1 = 2n−2

as required.

A Classification due to Frankl

Let F be an intersecting family of subsets of [n] such that the family of complements

F =
{

X ⊆ [n] : X ∈ F
}

is also intersecting. Clearly these set families F are equivalent to intersecting subsets of H(1)
n . They

have been studied, for instance, in [DL76, Fra88a]. Indeed, Frankl claims in [Fra88a] that the largest

such F can be classified as follows: let {A,B} be a partition of [n] into two parts, so

[n] = A ∪̇ B.

Let A be an intersecting family of subsets of A, of maximal size |A| = 2|A|−1, and let B be a family

of subsets of B, of size |B| = 2|B|−1, such that no two elements of B have union B. Frankl defines a

family F ′(A,B) as follows:

F ′(A,B) = {X ∪ Y : X ∈ A, Y ∈ B } .

The intersection property of A implies that F ′(A,B) is intersecting, and it follows from the special

property of B that F ′(A,B) is also intersecting. Finally,

|F ′(A,B)| = 2|A|−1 · 2|B|−1 = 2|A|+|B|−2 = 2n−2,

so F ′(A,B) is maximum by Theorem 8.1.6. Moreover, Frankl tells us:

“One can show that all extremal families can be obtained in this way.” [Fra88a]

For a specific family, it is usually clear how the corresponding ‘Frankl classification sets’ A, B, A

and B are obtained, but it is not obvious how this generalises. To illustrate this in the language of

posets, we will consider the familiar examples of the fix-family F1,n(H(1)
n ) and the saturation family

Gr(H(1)
n ).

Note that both the upper and lower levels of the fix-family in H(1)
n are fix-families of sets:

F1,n =
{

p ∈ H(1)
n : (1, n) ∈ p

}
=

{
p ∈ H(1)

n : 1 ∈ L0(p), n ∈ L1(p)
}

.
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So setting A0 = [n− 1], B0 = {n} and

A0 = {X ⊆ A0 : 1 ∈ X } ,

B0 = {∅},

it is easily confirmed that the set of lower levels L0(F1,n) of the poset family is equal to F ′(A0,B0).

Recalling that the lower level of an element of H(1)
n determines the poset, we see that L0(F1,n)

determines F1,n. Moreover, the sets A0, B0, A0 and B0 satisfy the properties described in Frankl’s

classification: [n] is the disjoint union of A0 and B0; A0 is an intersecting family of subsets of A0 of

size 2|A0|−1, and B0 is a family of subsets of B, of size |B| = 1 = 2|B0|−1, with

X ∪ Y 6= B0, ∀X, Y ∈ B0.

As a second example, let us consider

G1(H(1)
6 ) =

{
p ∈ H(1)

6 : |p ∩ {(1, 6), (2, 6), (3, 6)}| ≥ 2
}

=
{

p ∈ H(1)
6 : |L0(p) ∩ {1, 2, 3}| ≥ 2, 6 ∈ L1(p)

}
.

Note that one level of G1(H(1)
6 ) is obtained by fixing and the other by saturation, and using the same

approaches in the associated set families will lead to the desired outcome: set A1 = [5], B1 = {6}

and B1 = {∅} as before, with

A1 = {X ⊆ A1 : |X ∩ {1, 2, 3}| ≥ 2 } .

Then L0(G1(H(1)
6 )) = F ′(A1,B1) and all sets involved satisfy Frankl’s requirements from [Fra88a].

This example could easily be generalised to describe saturation families Gr(H(1)
n ) in terms of Frankl’s

classification for arbitrary r and n, or more general saturation families where both the upper and

lower levels are obtained by saturation: for instance, if

F =
{

p ∈ H(1)
8 : |L0(p) ∩ [5]| ≥ 3, |L1(p) ∩ {6, 7, 8}| ≥ 2

}
,

we simply set A2 = [5], B2 = {6, 7, 8},

A2 = {X ⊆ A2 : |X ∩ [5]| ≥ 3 } ,

B2 = {X ⊆ B2 : |X ∩ {6, 7, 8}| ≥ 2 }

to obtain the desired classification. Indeed, given a maximum intersecting subset F of H(1)
n , it is

clear that L0(F) is intersecting and, since L1(F) is also intersecting, we have

X ∪ Y 6= [n], ∀X, Y ∈ L1(F),
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suggesting that A and B should generally be obtained from L0(F) and L1(F) respectively. How-

ever, whilst this may seem intuitively plausible, it is not clear how the existence of a partition of

[n] into disjoint sets A and B could be guaranteed in general, in such a way that elements of L0(F)

intersect not simply anywhere, but in elements of A, while elements of L1(F) intersect in elements

of B.

Thus it seems that we have said as much as we can about the intersection structure of H(1)
n and

its subsets Ck,n−k. There are two natural directions for further inquiry now: either we consider

more general height 1 posets, i.e. posets which are not necessarily complete, or else we attempt to

generalise our results in Section 8.1 to posets of height 2. We choose the latter avenue at this stage,

as it seems slightly more accessible to begin with.

8.2 Posets of Height 2

Let us turn our attention to posets of height 2. Using the notation from the previous section, set

H(2)
n = { p ∈ Pn | h(p) = 2, L0(p) <p L1(p) <p L2(p)} .

Let a, b, c be positive natural numbers which sum to n. We define the set of all complete height 2

posets with lower, middle and upper levels having sizes a, b and c, respectively, as follows:

Ca,b,c =
{

p ∈ H(2)
n | |L0(p)| = a, |L1(p)| = b, |L2(p)| = c

}
.

Similarly to our initial investigation of height 1 posets, we fix a poset of height 2 and consider

maximum intersecting subsets of the class arising from permutations of the labels. Section 8.2.1

begins by specifying for which values of a, b, c the classification of maximum intersecting subsets

of Ca,b,c is easily obtained. Towards the end of the section we will see that some of the remaining

classes are quite complicated; indeed, we do not have results on intersecting subsets of H(2)
n as a

whole.

8.2.1 Fixing a Complete Poset of Height 2

Posets with Large Upper or Lower Levels

We begin by classifying maximum intersecting subsets of isomorphism classes of H(2)
n with large

upper or lower levels, because their intersection structure is fairly simple, as we will see in the
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next lemma. In order to generalise the reasoning from Section 8.1.1 to height 2 posets, we need the

following definition.

Definition 8.2.1. Let a, b, c be natural numbers with a + b + c = n and either a ≥ n/2 or c ≥ n/2.

For a poset p ∈ Ca,b,c, let U(p) be the union of its two smaller levels:

U(p) = L1(p) ∪ Lj(p), j =

2 if a ≥ n/2

0 if c ≥ n/2
.

For a set X ⊆ Ca,b,c, we set U(X) = {U(p) : p ∈ X }.

Lemma 8.2.2. Let a, b, c be natural numbers with a + b + c = n and either a ≥ n/2 or c ≥ n/2. Then

p, q ∈ Ca,b,c intersect if, and only if, U(p) and U(q) intersect.

Proof. Suppose a ≥ n/2. If U(p) ∩ U(q) = ∅, then U(p) ⊆ L0(q) and so p and q cannot intersect.

Conversely, it suffices to show that if U(p) and U(q) intersect, then L0(p) and L0(q) must also

intersect. If a = n/2, this follows from the fact that two (n/2)-subsets of [n] intersect if, and only

if, they are not each other’s complements; and L0(p) is the complement of U(p). If a > n/2, then

L0(p) intersects L0(q) for any p, q ∈ Ca,b,c by the pigeonhole principle.

The case c ≥ n/2 follows by symmetry.

We use the standard notation (
[n]
k

)
= {A ⊆ [n] : |A| = k } .

The following proposition specifies how we can use known results about intersecting families of

sets to deduce results about intersecting families in isomorphism classes of H(2)
n .

Proposition 8.2.3. Let a, b, c, m, n be natural numbers with n = a + b + c and m = max(a, c) ≥ n/2.

If Z is a maximum intersecting family of
(

[n]
n−m

)
, then for an intersecting family F ⊆ Ca,b,c we have

|F| ≤ |Z| ·
(

n−m

b

)
,

and equality holds if, and only if,

F = { p ∈ Ca,b,c : U(p) ∈ Z0 }

for some maximum intersecting family Z0 of
(

[n]
n−m

)
.

Proof. Suppose, without loss of generality, that m = a, so U(p) = L1(p)∪L2(p) for p ∈ Ca,b,c. Clearly

any intersecting family F satisfies

F ⊆ { p ∈ Ca,b,c : U(p) ∈ U(F) } (8.2.4)
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and any element of H(2)
n is determined by any two of its levels. Thus given L1(p) ∪ L2(p), there are(

b + c

b

)
ways of choosing L1(p), and this determines p. Conversely, two distinct (b + c)-subsets of

[n] clearly cannot give rise to the same poset in this way, and so

|F| ≤ | { p ∈ Ca,b,c : U(p) ∈ U(F) } | = |U(F)| ·
(

b + c

b

)
.

By Lemma 8.2.2, U(F) is an intersecting subset of
(

[n]
b + c

)
, so

|U(F)| ≤ |Z|, (8.2.5)

giving

|F| ≤ |Z| ·
(

b + c

b

)
= |Z| ·

(
n−m

b

)
.

Equality in this bound requires equality in both (8.2.4) and (8.2.5), implying that U(F) is a maxi-

mum intersecting subset of
(

[n]
n−m

)
, and the result follows.

To interpret this proposition in the context of Ca,b,c, we will apply the Erdős-Ko-Rado Theorem.

Therefore the case m < n/2 differs from the case m = n/2, and we have two separate corollaries.

Corollary 8.2.6. Let a, b, c, m, n be natural numbers with n = a + b + c and m = max(a, c) > n/2.

If F is an intersecting subset of Ca,b,c then

|F| ≤
(

n− 1
n−m− 1

)
·
(

n−m

b

)
.

Moreover, equality holds if, and only if, there exists x ∈ [n] such that

F = { p ∈ Ca,b,c : x /∈ Li(p) }

where i = 0 if a > n/2 and i = 2 if c > n/2.

Proof. Since n−m < n/2, this result follows from the Erdős-Ko-Rado Theorem 1.2.1 together with

Proposition 8.2.3.

The bound is clear. In the case of equality, let (i, j) = (0, 2) if m = a and (i, j) = (2, 0) if m = c, then

F = { p ∈ Ca,b,c : L1(p) ∪ Lj(p) ∈ Z }

where

Z =
{

A ∈
(

[n]
n−m

)
: x ∈ A

}
for some fixed x ∈ [n]. This gives

F = { p ∈ Ca,b,c : x ∈ L1(p) ∪ Lj(p) }

and the result follows.
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Corollary 8.2.7. Let a, b, c, k be natural numbers with 2k = a + b + c and max(a, c) = k.

If F is an intersecting subset of Ca,b,c then

|F| ≤ 1
2

(
2k

k

)
·
(

k

b

)
,

and equality holds if, and only if, F = { p ∈ Ca,b,c : U(p) ∈ Z } where Z is some transversal of

A =
{
{A,A} : A ∈

(
[2k]
k

)}
.

Proof. As previously noted, two elements A,B of
(

[2k]
k

)
intersect if, and only if, B 6= A. Thus

the maximum intersecting subsets of
(

[2k]
k

)
are unions of transversals of A, and clearly such a

transversal has size
1
2

(
2k

k

)
. Hence the result follows from Proposition 8.2.3.

Symmetrical Posets

There is one more set of isomorphism classes in H(2)
n whose maximum intersecting subsets are

easily described. These are the classes whose elements satisfy p ∼= rev(p), i.e. the classes Ca,b,a.

Note that these do not overlap with the classes Ca,b,c considered in Corollaries 8.2.6 and 8.2.7: since

b 6= 0, either of a ≥ n/2 or c ≥ n/2 implies a 6= c.

Proposition 8.2.8. If F is an intersecting subset of Ca,b,a then

|F| ≤ |Ca,b,a|
2

=
(2a + b)!

2 · (a!)2 · b!
.

Moreover, equality holds if, and only if, F is a transversal of

{ {p, rev(p)} : p ∈ Ca,b,a } .

Proof. It suffices to show that two posets p, q ∈ Ca,b,a intersect if, and only if, one is not the reverse of

the other. It follows from Definition 6.2.1 that p and rev(p) do not intersect, so suppose q 6= rev(p).

Clearly L0(p) = L2(q) together with L2(p) = L0(q) would imply p = rev(q), so we may assume that

at least one of L0(p) \ L2(q) and L2(p) \ L0(q) is non-empty.

If there exists x ∈ L0(p) \L2(q), then L2(q) cannot be contained in L0(p) since L0(p) and L2(q) have

equal size. So there exists y ∈ L2(q) \ L0(p), and y ∈ L1(p) ∪ L2(p) since y /∈ L0(p). Similarly,

x ∈ L0(q) ∪ L1(q), and so the intersection of p and q contains (x, y).

The case L2(p) \ L0(q) 6= ∅ follows by symmetry.
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Some Observations on the Remaining Cases

So far we have classified the maximum intersecting subsets of height 2 isomorphism classes with

large upper or lower levels, or equal size upper and lower levels. In this subsection, we illustrate

the fact that some of the remaining classes are quite complicated.

Consider a general isomorphism class of height 2 posets whose maximum intersecting subsets

are not determined by results in the previous sections, noting that results on Cc,b,a will follow by

symmetry from results concerning Ca,b,c. That is, let Ca,b,c ⊆ H(2)
n with a < c < n/2.

We would like to find the maximum intersecting subsets of Ca,b,c. One obvious candidate is the

traditional fix-family: setting

F1,n(Ca,b,c) = { p ∈ Ca,b,c : (1, n) ∈ p } ,

it is clear that F1,n(Ca,b,c) is intersecting.

However, the use of the Erdős-Ko-Rado Theorem in Corollary 8.2.6 suggests that there is an alter-

native concept of fixing for height 2 posets: in view of Corollary 8.2.6, we define a family of posets

by taking all elements of Ca,b,c in which some fixed point has large enough height to guarantee the

intersection of all posets in the family: let

G(Ca,b,c) = { p ∈ Ca,b,c : n ∈ L2(p) } .

To check that n does indeed have sufficiently large height in p, q ∈ G(Ca,b,c) to guarantee their

intersection, note that c < n/2 implies a + b > n/2, so there exists

x ∈ (L0(p) ∪ L1(p)) ∩ (L0(q) ∪ L1(q))

by the pigeonhole principle. This guarantees (x, n) ∈ (p ∩ q), so G(Ca,b,c) is indeed intersecting.

Note that G(Ca,b,c) can be obtained by saturating over

vn = { (i, n) : 1 ≤ i ≤ n− 1 }

from Chapter 7, a poset which is equal to v((n− 2)/2) from Section 8.1.2. Thus G(Ca,b,c) should be

regarded as yet another instance of the saturation families which we have encountered throughout

Part III.

We might expect that either the fix-family F1,n(Ca,b,c) or the saturation family G(Ca,b,c) are max-

imum. However, computational investigations of the intersection structure of Ca,b,c soon point

towards a different family, which in some sense generalises the idea behind G(Ca,b,c): the family

R(Ca,b,c) contains posets in which 1 is minimal, posets in which i is minimal and no element of [i−1]
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is maximal for 2 ≤ i ≤ b, and finally the posets which have middle level [b]: using the convention

[0] = ∅, set

R(Ca,b,c) = { p ∈ Ca,b,c : ∃i ∈ [b] such that i ∈ L0(p) and [i− 1] ⊆ L0(p) ∪ L1(p) }

∪ { p ∈ Ca,b,c : L1(p) = [b] } .

It is easy to verify computationally that R(Ca,b,c) is intersecting for 5 ≤ n ≤ 7, but we do not claim

here that R(Ca,b,c) is intersecting for any a, b, c with a < c < n/2. Our justification for drawing

the reader’s attention to the family R(Ca,b,c) is Table 8.2.1, which demonstrates that for 5 ≤ n ≤ 7,

R(Ca,b,c) is at least as large as the fix-family F1,n(Ca,b,c) and the saturation family G(Ca,b,c) in all

classes which are not covered by Corollaries 8.2.6 and 8.2.7 or Proposition 8.2.8, except C1,3,3.

The Class Dn

As Table 8.2.1 suggests, we have not completed the classification of intersecting families in Ca,b,c.

The remainder of this chapter aims to illustrate the difficulties we encountered in trying to do so,

by concentrating on one specific case.

Up to permutations of the labels, the families listed in Table 8.2.1 were the only large ones found in

the classes listed there during various computational searches, so we hazard the guess that R(Ca,b,c)

is maximum in C1,n−3,2. (Though we remark that even if this is the case, R(Ca,b,c) is not the only

maximum family since when n ∈ {6, 7}, these classes contain another intersecting family of size

|R(C1,n−3,2)|which is half way between F and R, in the sense that it has many elements in common

with both of these families. We will not further specify these families here.)

For n ≥ 4, set

Dn = C1,n−3,2

Table 8.2.1: Sizes of some intersecting families in height 2 isomorphism classes not covered by

previous results for 5 ≤ n ≤ 7.

Ca,b,c C1,2,2 C1,3,2 C1,4,2 C1,3,3 C2,2,3

|Ca,b,c| 30 60 105 140 210

|F1,n(Ca,b,c)| 12 22 35 50 80 (max. to 90)a

|G(Ca,b,c)| 12 20 30 60 90

|R(Ca,b,c)| 12 22 37 38 (max. to 50)b 90

aF1,n(C2,2,3) has size 80 but F1,n(C2,2,3) ∪ { p ∈ C2,2,3 : L0(p) = {1, 7} } is an intersecting subset of C2,2,3 of size 90.
b|R(C1,3,3)| = 38 but there is an intersecting family of size 50 in C1,3,3 which contains R(C1,3,3).
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Figure 8.2.1: Hasse diagrams of saturation bases for R(5) and R(6).

and denote by ♦y,z
x the element of Dn which has L0(p) = {x}, L2(p) = {y, z} and L1(p) = [n] \

{x, y, z}. We introduce some further notation for the components of R(C1,n−3,2) and, since the

remainder of this chapter is concerned with Dn only, we abbreviate R(C1,n−3,2) itself by R(n): for

1 ≤ i ≤ n− 3, set

Ri(n) = { p ∈ Dn : L0(p) = {i}, [i− 1] ⊆ L1(p) } ,

Rn−2(n) =
{

♦n−1,n
n−2

}
, Rn−1(n) =

{
♦n−2,n

n−1

}
, Rn(n) =

{
♦n−2,n−1

n

}
.

Then R(n) =
⋃n

i=1 Ri(n).

Lemma 8.2.9. The family R(n) ⊆ Dn is intersecting for n ≥ 4.

Proof. If p, q ∈ Ri(n) then (i, j) ∈ p ∩ q for all j 6= i, j ∈ [n]. It is also easy to see that for any two

elements of

Rn−2(n) ∪Rn−1(n) ∪Rn(n) =
{

♦n−1,n
n−2 , ♦n−2,n

n−1 , ♦n−2,n−1
n

}
,

there exists a point which is maximal in both posets, and the two middle levels have n − 3 ≥ 1

points in common. So let p ∈ Ri(n) and q = ♦x,y
j ∈ Rj(n) for some i < j ≤ n with i < n− 2. Then

i ∈ L0(p) ∩ L1(q), so (i, x) ∈ p ∩ q.

It is easily shown that R(n) is not a fix-family: since

R1(n) = { p ∈ Dn : L0(p) = {1} } ⊆ R(n),

a fixed comparison contained in all elements of R(n) would need to be of the form (1, x) for some

x ∈ [n]. However, for any such x there exists

p ∈

(
n⋃

i=n−2

Ri(n)

)
⊆ R(n)

with (1, x) /∈ p. So is R a saturation family? It can be shown that

R(5) = { p ∈ D5 : |p ∩ r5| ≥ 2 } , R(6) = { p ∈ D6 : |p ∩ r6| ≥ 4 } ,
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where r5 and r6 are defined by their Hasse diagrams in Figure 8.2.1. However, it is not entirely clear

how these saturation bases would generalise for n > 6. Note in particular that neither of the posets

r5 or r6 are elements of Dn, or even of H(2)
n or H(1)

n , since they are not complete. The alternative

saturation bases for R(5) and R(6) look very similar to r5 and r6. Thus R(n) is not a fix-family, and

does not arise naturally as a saturation family either.

Recall that we are trying to determine the intersecting structure of Dn, which the following lemma

considers in some more detail.

Lemma 8.2.10. Let p = ♦t1,t2
b ∈ Dn. The elements of Dn which do not intersect p are given by

N(p) =
{

♦b,x
ti
∈ Dn : x ∈ [n] \ {b, t1, t2}, i = 1, 2

}
.

Proof. Let q ∈ Dn such that p∩ q = ∅. Then b must be maximal in q. Moreover, the only label which

may be less than t1 under q is t2, and vice versa, so we have one of t1, t2 in L0(q) and the other in

L1(q).

Our aim is to map an arbitrary intersecting subset of Dn injectively into R(n), but investigating the

situation for small values of n suggests that no such general injection exists. In view of Lemma

8.2.10, we therefore define a map Φ which assigns to each element p of Dn a set of posets in R(n) as

follows: for p = ♦t1,t2
b ∈ Dn with t1 < t2, we set

Φ(p) =

{p} if p ∈ R(n){
♦b,x

t1 ∈ Dn : x ∈ [n] \ {b, t1, t2}, x > t1

}
if p /∈ R(n)

and for a set X ⊆ Dn, set Φ(X) =
⋃

p∈X Φ(p). The following lemma proves our claim that Φ maps

into R(n).

Lemma 8.2.11. For X ⊆ Dn we have Φ(X) ⊆ R(n).

Proof. For p = ♦t1,t2
b ∈ X with t1 < t2, we need to show that Φ(p) ⊆ R(n). If p ∈ R(n), this holds

trivially. On the other hand, p /∈ R(n) implies that either b ∈ [n− 3] and

{t1, t2} ∩ [b− 1] 6= ∅, (8.2.12)

or else b ∈ {n− 2, n− 1, n} and

{t1, t2} ∩ [n− 3] 6= ∅. (8.2.13)

Let q = ♦b,x
t1 ∈ Φ(p). Using either (8.2.12) or (8.2.13) together with t1 < t2 implies t1 < b. Moreover,

by the definition of Φ, we have t1 < x. Thus both b and x are elements of {t1 + 1, . . . , n}, giving

q ∈ Rt1(n) ⊆ R(n).
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To indicate why Φ might be a sensible way of mapping an arbitrary intersecting subset F of Dn

into R(n), note that Φ at least maps F closer to R(n), rather than giving us elements of R(n) which

we already had in F : for p = ♦t1,t2
b ∈ F \ R(n), the set Φ(p) is a subset of N(p) in Lemma 8.2.10,

which implies

Φ(F \R(n)) ∩ F = ∅, (8.2.14)

since F is intersecting.

Moreover, investigating examples of various maximal intersecting families F of Dn for small n

suggests that, denoting the element ♦n−2,n−1
n of Rn(n) by pn, the following facts hold:

• if pn ∈ F then |Φ(F)| ≥ |F|, and

• if pn /∈ F then |Φ(F)| ≥ |F| − 1 and pn /∈ Φ(F).

In view of Lemma 8.2.11, it is clear that establishing the validity of these two claims in general

would suffice to prove that R(n) is maximum in Dn, and a proof of these facts when n = 5 is

included in the appendix. Unfortunately however, the proof of Proposition A.1.1 amounts to little

more than a detailed case analysis, i.e. it gives hardly any further insight into the intersection

structure of D5 and therefore does not inspire ideas for a proof for general n.

Conclusion

This section has discussed the intersection structure of some of the isomorphism classes Ca,b,c which

make up H(2)
n , the set of complete posets of height 2. If the top and bottom levels of posets in the

class either have the same size, or one of them contains at least half of the points, then the inter-

section structure of Ca,b,c is very straightforward: see Lemma 8.2.2 and Proposition 8.2.8. In these

cases, the classifications of intersecting families in Ca,b,c follow from the corresponding classifica-

tions in Chapter 1, as we saw in Corollaries 8.2.6 and 8.2.7 as well as Proposition 8.2.8. However,

some of the remaining cases are much more complicated, as the present subsection has demon-

strated: considering the class Dn = C1,n−3,2 for instance, the best analogue of Lemma 8.2.2 we can

achieve is Lemma 8.2.10, revealing a much more complex intersection structure. Moreover, numer-

ous computational investigations found no intersecting family which is maximum in all remaining

classes simultaneously when 5 ≤ n ≤ 7. We conclude that the intersection structure of poset classes

of small height can be much more complicated than one might expect.
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CONCLUSION

This thesis began with a brief account of what we call Erdős-Ko-Rado Theory in Part I.

Following this introduction, Part II classified the maximum 1-intersecting injection families: all op-

timal intersecting families of injections from [k] to [n] are equivalent to the fix-family. Concerning

t-intersecting subsets of Ik
n, we proved two limit results in Chapter 3: for fixed k and t, increasing n

will ensure that fixing is eventually the unique optimal strategy. On the other hand, if we fix the dif-

ferences k− t and n− k as we increase k, then one particular saturation family becomes the unique

maximum t-intersecting subset of Ik
n, so the fix-family is not maximum in this scenario. Finally we

showed that, among so-called exemplary injection families with k < n, one of the saturation fami-

liesKr is always optimal. Whether there are any injection families which cannot be standardised in

this way remains an open question. We have also made considerable progress towards a function

determining which of the saturation families Kr is the optimal one.

One of the main objectives of this thesis was to obtain results on t-intersecting injection families, and

many have been achieved. Note, however, that our results are not concerned with permutations:

our classification of 1-intersecting injection families takes Cameron & Ku’s corresponding result

on permutations from [CK03] as given, and our bound on exemplary families requires k < n.

Our limit result regarding the case where k is large in terms of its differences with t and n was a

generalisation of Frankl & Deza’s earlier result on permutations in [DF77], while the result which

guarantees that fixing is eventually optimal requires n to be large in terms of k, and therefore does

not apply to permutations. Indeed, the main open problem in this area, first conjectured in [DF77],

is still open: does there exist a function n0(t) such that for n > n0(t), every maximum t-intersecting

subset of Sn is equivalent to the fix-family? The answer to this question is widely believed to be

yes, but noone has yet been able to demonstrate this.

The theme of fixing versus saturation was continued in Part III, where we introduced the concept

of intersecting posets. However, our results on the intersection structure of partial orders are —

well, partial. The lack of previous literature to put this work into context adds to the difficulty in

giving a meaningful overview of what has been achieved. Given the current state of knowledge, it
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seems that a complete classification of maximum intersecting families of partial orders is out of the

question at present. Even the study of subclasses of partial orders requires a variety of methods, as

a comparison of Chapter 7 with Chapter 8 will illustrate. Therefore we present a factual summary of

our results here, without endeavouring to assess their significance within Erdős-Ko-Rado Theory.

In Chapter 6 we started our investigation of the intersection structure ofPn, the set of partial orders,

by classifying the maximum intersecting families of linear orders. After defining poset intersection

in a way that is compatible with the view of posets as sets with additional properties, our initial

observations concluded that the fix-family has a good chance of being maximum in Pn. Indeed, we

showed that the fix-family is maximal in terms of set inclusion, and established sufficient conditions

for the optimality of the fix-family in Pn. We proved that any maximal intersecting family of partial

orders contains a maximum family of linear orders, and if the latter is a fix-family, then the former

must be a fix-family also. However, our investigation of the relationship between partial orders and

their linear extensions did not yield the desired classification of maximum intersecting families, so

we turned our attention to subclasses of Pn as a more feasible object of study in the subsequent

chapters.

Chapter 7 classified the maximum intersecting subsets of two poset classes whose elements are

almost linear, and obtained a bound for intersecting families in a third such class: elements of

Yk,n are constructed from linear orders by removing the comparison between the kth and k + 1st

smallest points. Obtained as the union of the classes Yk,n, the class Mn consists of all orders on

[n] which are one comparison away from being linear. Finally, Υn contains linear orders as well

as partial orders obtained from linear ones by replacing the two highest and/or the two lowest

points in their Hasse diagrams by an antichain of length two. Our classification results on Yk,n and

Υn rely on the approach of reverse pairings which we first used to classify intersecting families of

linear orders at the beginning of Chapter 6. To obtain our bound on intersecting subsets ofMn, we

adapted the popular method of cyclic arrangements to the poset scenario.

Chapter 8 investigated so-called complete posets of small height; those are posets where points of

different height are necessarily comparable in the poset. We classified the intersecting subsets of

individual isomorphism classes of complete height 1 posets, as well as presenting a bound on the

size of intersecting families in their union, i.e. the set of all complete height 1 posets. Concerning

complete height 2 posets, we obtained classifications for some isomorphism classes, but illustrated

that the problem is difficult in general by concentrating on one specific height 2 class towards the

end of the chapter, as well as in the appendix.

The author of this thesis hopes that the initial insights of Part III will provide some first steps
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towards a unified Erdős-Ko-Rado Theory of combinatorial structures, which honours its origins

in extremal set theory as well as being intuitively compatible with our perception of relational

structures.





APPENDIX A

ONE PARTICULAR CLASS OF

COMPLETE HEIGHT 2 POSETS

A.1 Maximum Intersecting Subsets of D5

It was conjectured in Chapter 8 that the family R(n) is maximum intersecting in the poset class Dn

(see page 164 for definitions). The following proposition establishes this for the case n = 5.

Proposition A.1.1. If F ⊆ D5 is intersecting then |F| ≤ |R(5)|.

Proof. Let F be a maximum intersecting subset of D5, then |F| ≥ |R(5)| = 12. Let 1 be the label

occurring most frequently at the bottom of elements of F and set

F1 = { p ∈ F : L0(p) = {1} } ,

then |F1| ≥ 3 by the pigeonhole principle. Let α = ♦a1,a2
1 , β = ♦b1,b2

1 , γ = ♦c1,c2
1 be distinct elements

of F1, then

{a1, a2, b1, b2, c1, c2} ⊆ {2, 3, 4, 5}, a1 6= a2, b1 6= b2, c1 6= c2. (A.1.2)

To fit the six element set on the LHS into the four element set on the RHS, we must have at least

two equalities among elements of the LHS.

If there exists a label occurring in the top levels of all three of α, β, γ, then the other three labels in

the top levels must all be different to guarantee that the three posets are distinct. This gives

α = ♦a1,a2
1 , β = ♦a1,b2

1 , γ = ♦a1,c2
1 , |{a2, b2, c2}| = 3.
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Otherwise, we have a1 = b1 without loss of generality, and a1 = b1 cannot be equal to any of the

other top level labels. Thus (A.1.2) reduces to

{a2, b2, c1, c2} ⊆ ({2, 3, 4, 5} \ {a1}), a2 6= b2, c1 6= c2.

Since nothing in our discussion so far distinguishes a2 from b2, or indeed c1 from c2, we may take

a2 = c1 without loss of generality. This leaves us with

α = ♦a1,a2
1 , β = ♦a1,b

1 , γ = ♦a2,c
1 . (A.1.3)

Suppose firstly that b = c. Recall that in the case under consideration, there does not exist a label

which occurs in the top levels of three elements of F1, so F1 cannot contain any other posets in

which a1, a2 or b = c are maximal in addition to the three listed in (A.1.3), since n = 5. This forces

F1 = {α, β, γ}.

Now consider the case b 6= c. Since again, no label occurs in the top levels of three elements of F1,

we see from (A.1.3) that F1 cannot contain any posets in which a1 or a2 are maximal, other than

those in (A.1.3). This gives

F1 ⊆
{

♦a1,a2
1 ,♦a1,b

1 ,♦a2,c
1 ,♦b,c

1

}
.

Note we may use the labels 2, 3, 4, 5 instead without loss of generality. Thus, in summary, we must

have one of the following three cases:{
♦2,3

1 ,♦2,4
1 ,♦2,5

1

}
⊆ F1 (A.1.4){

♦2,3
1 ,♦2,4

1 ,♦3,4
1

}
= F1 (A.1.5){

♦2,3
1 ,♦2,4

1 ,♦3,5
1

}
⊆ F1 ⊆

{
♦2,3

1 ,♦2,4
1 ,♦3,5

1 ,♦4,5
1

}
. (A.1.6)

Mirroring the definition of F1, we set

Fi = { p ∈ F : L0(p) = {i} }

for 2 ≤ i ≤ n also. Denoting R(5) and Ri(5) simply by R and Ri respectively, we have

R1 =
{

♦2,3
1 , ♦2,4

1 , ♦2,5
1 , ♦3,4

1 , ♦3,5
1 , ♦4,5

1

}
,

R2 =
{

♦3,4
2 , ♦3,5

2 , ♦4,5
2

}
,

R3 =
{

♦4,5
3

}
, R4 =

{
♦3,5

4

}
, R5 =

{
♦3,4

5

}
.

To prove the proposition, we need to show that |R \ F| ≥ |F \R| or, equivalently,
5∑

i=1

|Ri \ Fi| ≥
5∑

i=1

|Fi \Ri|. (A.1.7)
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Since the subset R1 of R consists of all posets in D5 with 1 at the bottom, we have F1 \R1 = ∅.

For p ∈ F2 \ R2 we have L0(p) = {2} and 1 ∈ L2(p) since p /∈ R2. Because p = ♦1,x
2 intersects

♦2,3
1 ∈ F , we must have x = 3. But then p does not intersect ♦2,4

1 ∈ F which contradicts the

intersecting property of F . Thus F2 \R2 = ∅, and we have reduced (A.1.7) to

5∑
i=1

|Ri \ Fi| ≥
5∑

i=3

|Fi \Ri|. (A.1.8)

Since any element p of Fi \ Ri for 3 ≤ i ≤ 5 is not in R, at least one of the labels 1, 2 must occur

in L2(p). Moreover, p must intersect all elements of F1. Going through cases (A.1.4)-(A.1.6), it is

therefore easily verified that

(A.1.4) =⇒ Fi \Ri ⊆ X
(A.1.4)
i :=

{
♦2,x

i : x ∈ [5] \ {2, i}
}

, 3 ≤ i ≤ 5;

(j) =⇒ F3 \R3 ⊆ X
(j)
3 :=

{
♦2,4

3 ,♦2,5
3

}
, A.1.5 ≤ j ≤ A.1.6;

(A.1.5) =⇒ F4 \R4 ⊆ X
(A.1.5)
4 :=

{
♦2,3

4 ,♦2,5
4

}
,

F5 \R5 ⊆ X
(A.1.5)
5 := {♦x,y

5 : {x, y} 6= {4, 5} } ;

(A.1.6) =⇒ F4 \R4 ⊆ X
(A.1.6)
4 :=

{
♦2,1

4 ,♦2,3
4 ,♦2,5

4

}
,

F5 \R5 ⊆ X
(A.1.6)
5 :=

{
♦1,3

5 ,♦2,3
5 ,♦2,4

5

}
.

The remainder of the proof will be split into four cases: since |R2| = 3, we clearly have |R2 ∩ F| ∈

{0, 1, 2, 3}. Note that all X
(j)
5 are contained in X

(A.1.5)
5 . Similarly, for i = 3, 4, we have X

(j)
i ⊆

X
(A.1.4)
i . Thus, in the context of considering implications of R2 ∩ F on F \R and hence (A.1.8), we

are simply considering different sub-graphs of Figures A.1.1 and A.1.2, according to which of cases

(A.1.4)-(A.1.6) we are in.

Case |R2 ∩ F| = 3

Every element p ∈ X
(A.1.4)
i , i = 3, 4, 5, is incident to at least one red edge in Figures A.1.1 and A.1.2,

meaning that there exists q ∈ R2 which does not intersect p. Thus if R2 ⊂ F in Case (A.1.4) then

Fi \Ri = ∅ for i = 3, 4, 5, so
∑5

i=3 |Fi \Ri| = 0 and (A.1.8) holds.

In Cases (A.1.5) and (A.1.6) we have |F1| ≤ 4, giving
∑5

i=1 |Ri \ Fi| ≥ |R1 \ F1| ≥ 2, so it suffices to

show that
∑5

i=3 |Fi \ Ri| ≤ 2. This is indeed the case, since the only black posets in Figures A.1.1

and A.1.2 which are not incident to a red edge are ♦1,3
5 and ♦1,4

5 .

Case |R2 ∩ F| = 2
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2

54

1 2

53

1 2

4

Figure A.1.1: Intersection graph of R2 with X
(A.1.4)
3 and X

(A.1.4)
4 .

From left to right, columns show elements of X
(A.1.4)
3 , R2 and X

(A.1.4)
4 respectively.

Posets are joined by a green edge if they intersect, and a red edge if they do not.

Then |R2 \ F2| = 1, so (A.1.5) implies
∑5

i=1 |Ri \ Fi| ≥ 4 and (A.1.6) implies
∑5

i=1 |Ri \ Fi| ≥ 3.

Examining Figures A.1.1 and A.1.2, it is easily checked that

(A.1.5) =⇒
5∑

i=3

|Fi \Ri| ≤


0 + 1 + 3 if R2 ∩ F =

{
♦3,4

2 , ♦3,5
2

}
1 + 0 + 3 if R2 ∩ F =

{
♦3,4

2 , ♦4,5
2

}
1 + 1 + 2 if R2 ∩ F =

{
♦3,5

2 , ♦4,5
2

} ,

(A.1.6) =⇒
5∑

i=3

|Fi \Ri| ≤


0 + 1 + 2 if R2 ∩ F =

{
♦3,4

2 , ♦3,5
2

}
1 + 0 + 2 if R2 ∩ F =

{
♦3,4

2 , ♦4,5
2

}
1 + 1 + 1 if R2 ∩ F =

{
♦3,5

2 , ♦4,5
2

} ,

so (A.1.8) holds.

Table A.1.1: Case (A.1.4) with |R2 ∩ F| = 2.

i 1 2 s t u

|Fi \Ri| 0 0 0 ≤ 1 ≤ 1

|Ri \ Fi| 1
≥ 1 if |Fi \Ri| = 1

for i = t or i = u
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Now consider Case (A.1.4). For some assignment {s, t, u} = {3, 4, 5}, we then have ♦s,t
2 ,♦s,u

2 ∈ F

and ♦t,u
2 /∈ F , giving |R2 \ F2| = 1 in Table A.1.1. Note from Figures A.1.1 and A.1.2 that this

implies Fs \ Rs = ∅, and for both z = t and z = u, we have Fz \ Rz ⊆
{
♦2,s

z

}
. This completes the

|Fi \Ri| line of Table A.1.1.

Moreover, if one of ♦2,s
t ,♦2,s

u is actually in F , then the element ♦t,u
s of R cannot be in F , since it does

not intersect either of them. Now we do not need to fill in the rest of Table A.1.1, since the existing

entries clearly ensure that (A.1.8) holds.

Case |R2 ∩ F| = 1

This case is very tedious. Although the conclusion is always the same, the minor details of sub-

cases (A.1.4)-(A.1.6) differ sufficiently to force us to deal with them separately if we wish to avoid

an explosion of notation. For this reason, however, this case does at least serve the purpose of

5

41

2 3

5

31

2 4

5

43

1 2

5

51

3 4

2

14

3 5

2

31

4 5

2

23

1 4

5

42

1 3

Figure A.1.2: Intersection graph of R2 (blue) with X
(A.1.5)
5 (black).
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demonstrating why the author believes that a proof of Proposition A.1.1 for general n would be

difficult.

Case |R2 ∩ F| = 1 with (A.1.4)

Here we have ♦s,t
2 ∈ F and ♦t,u

2 ,♦s,u
2 /∈ F for some {s, t, u} = {3, 4, 5}, so |R2 \ F2| = 2 in Table

A.1.2. Figures A.1.1 and A.1.2 then imply that Fs \Rs ⊆
{
♦2,t

s

}
and Ft \Rt ⊆

{
♦2,s

t

}
, whereas ♦s,t

2

does not exclude any of X
(I)
u from F . This completes the |Fi \Ri| line of Table A.1.2.

Table A.1.2: Case (A.1.4) with |R2 ∩ F| = 1.

i 1 2 s t u

|Fi \Ri| 0 0 ≤ 1 ≤ 1
∣∣∣X(I)

u ∩ F
∣∣∣

|Ri \ Fi|
≥ 2

if ♦2,1
u ∈ F

2
≥ 1

if ♦2,s
u ∈ F

≥ 1

if ♦2,t
u ∈ F

Note that |Fs\Rs|+|Ft\Rt| cancels with |R2\F2|, so consider the elements of X
(I)
u =

{
♦2,1

u ,♦2,s
u ,♦2,t

u

}
.

Each of them does not intersect at least one of

Y =
{
♦t,u

s ,♦s,u
t ,♦u,s

1 ,♦u,t
1

}
⊂ (R1 ∪Rs ∪Rt),

and each element of X
(I)
u excludes a different element of Y from F . Thus (A.1.8) holds.

Case |R2 ∩ F| = 1 with (A.1.5)

If R2 ∩F =
{

♦3,4
2

}
, then it follows from Figure A.1.1 that F3 \R3 ⊆

{
♦2,4

3

}
and F4 \R4 ⊆

{
♦2,3

4

}
.

Now ♦2,4
3 does not intersect ♦3,5

4 ∈ R4 and, similarly, ♦2,3
4 ∈ F increases |R3 \ F| by 1. This

information is summarised in Table A.1.3, showing that A.1.8 holds.

Table A.1.3: Case (A.1.5) with R2 ∩ F =
{

♦3,4
2

}
.

i 1 2 3 4 5

|Fi \Ri| 0 0
∣∣∣{♦2,4

3

}
∩ F

∣∣∣ ∣∣∣{♦2,3
4

}
∩ F

∣∣∣ ≤ 5

|Ri \ Fi| 3 2
∣∣∣{♦2,3

4

}
∩ F

∣∣∣ ∣∣∣{♦2,4
3

}
∩ F

∣∣∣
If R2 ∩ F =

{
♦s,5

2

}
for {s, t} = {3, 4}, then neither ♦1,2

5 nor ♦2,t
5 can be elements of F , giving

|F5 \R5| ≤ 3. Also, ♦s,5
2 does not intersect ♦2,t

s ∈ Xs, giving Fs \Rs =
{
♦2,5

s

}
∩ F . Since that poset
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does not intersect ♦s,t
5 ∈ R5, this completes Table A.1.4.

Table A.1.4: Case (A.1.5) with R2 ∩ F =
{

♦s,5
2

}
.

i 1 2 s t 5

|Fi \Ri| 0 0
∣∣{♦2,5

s

}
∩ F

∣∣ ≤ 2 ≤ 3

|Ri \ Fi| 3 2
∣∣{♦2,5

s

}
∩ F

∣∣

Case |R2 ∩ F| = 1 with (A.1.6)

We have |R2 \ F2| = 2, so
5∑

i=1

|Ri \ Fi| = |R1 \ F1|+ 2 +
5∑

i=3

|Ri \ Fi|

=

4 +
∑5

i=3 |Ri \ Fi| if ♦4,5
1 ∈ F

5 +
∑5

i=3 |Ri \ Fi| if ♦4,5
1 /∈ F

. (A.1.9)

Now it is easily seen from Figures A.1.1 and A.1.2 that if R2 ∩ F =
{

♦3,4
2

}
, then

F3 \R3 ⊆
{

♦2,4
3

}
, F4 \R4 ⊆

{
♦2,3

4

}
, F5 \R5 ⊆

{
♦1,3

5 ,♦2,3
5 ,♦2,4

5

}
,

and similarly, if R2 ∩ F =
{

♦4,5
2

}
, then

F3 \R3 ⊆
{

♦2,4
3 ,♦2,5

3

}
, F4 \R4 ⊆

{
♦2,5

4

}
, F5 \R5 ⊆

{
♦1,3

5 ,♦2,4
5

}
.

Note that in either case, ♦1,3
5 ∈ F5 \R5, and this poset does not intersect ♦4,5

1 . Thus

5∑
i=3

|Fi \Ri| ≤

4 if ♦4,5
1 ∈ F

5 if ♦4,5
1 /∈ F

and so (A.1.8) holds by (A.1.9).

We are therefore left with the case R2 ∩ F =
{

♦3,5
2

}
where

F3 \R3 ⊆
{

♦2,5
3

}
, F4 \R4 ⊆

{
♦1,2

4 ,♦2,3
4 ,♦2,5

4

}
, F5 \R5 ⊆

{
♦1,3

5 ,♦2,3
5

}
. (A.1.10)

Since neither ♦1,2
4 nor ♦1,3

5 intersect ♦4,5
1 , we have

∑5
i=3 |Fi \ Ri| ≤ 4 if ♦4,5

1 ∈ F , so (A.1.8) holds

again by (A.1.9).

If ♦4,5
1 /∈ F , then

∑5
i=3 |Fi \Ri| ≤ 6. Clearly, if this bound of 6 is not attained then (A.1.8) holds by

(A.1.9). If
∑5

i=3 |Fi \Ri| = 6 then R\F ⊃
{

♦4,5
3 ,♦3,5

4 ,♦3,4
5

}
since these three posets do not intersect

the posets in (A.1.10) in general. Thus
∑5

i=1 |Ri \ Fi| = 5 + 3 = 8 > 6, and (A.1.8) holds as usual.
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Case |R2 ∩ F| = 0

Recall that F2 \R2 = ∅, so we have F2 = ∅ in this case. To prove the proposition, we wish to show

that |F| ≤ 12 so assume, for a contradiction, that |F| > 12. Showing that (A.1.8) holds will suffice,

since this implies |F| ≤ |R| = 12.

Recall that 1 is the label occurring most frequently at the bottom of elements of F and F2 = ∅, so

we must have |F1| ≥ 4 to guarantee |F| > 12. Note that in case (A.1.4), nothing in our previous

discussion distinguishes the labels 3, 4 and 5. Thus by (A.1.4)-(A.1.6), we must have one of the

following:

F1 ⊇
{

♦2,3
1 ,♦2,4

1 ,♦2,5
1 ,♦3,4

1

}
(A.1.11)

F1 =
{

♦2,3
1 ,♦2,4

1 ,♦3,5
1 ,♦4,5

1

}
. (A.1.12)

In case (A.1.12), we have |R1\F1| = 2, and |R2\F2| = 3 since |R2∩F| = 0; hence
∑5

i=1 |Ri\Fi| ≥ 5.

On the other hand, since we have (A.1.6) and ♦4,5
1 does not intersect ♦1,2

4 or ♦1,3
5 , the definitions of

X
(A.1.6)
i yield

Fi \Ri ⊆
{

♦2,j
i ,♦2,k

i

}
, for {i, j, k} = {3, 4, 5}. (A.1.13)

Therefore
∑5

i=3 |Fi \Ri| ≤ 6, and if this bound is attained then ♦i,k
j ∈ R \ F for {i, j, k} = {3, 4, 5}.

This would imply
∑5

i=1 |Ri \ Fi| = 5 + 3 = 8, so (A.1.8) holds.

In case (A.1.11), we use the fact that ♦3,4
1 ∈ F together with the definition of X

(A.1.4)
i to deduce that

Fi \Ri for i = 3, 4 are as in (A.1.13), and

F5 \R5 ⊆
{

♦2,1
5 ,♦2,3

5 ,♦2,4
5

}
.

Now ♦2,1
5 does not intersect ♦5,i

1 for i = 3, 4. Therefore ♦2,1
5 ∈ F would imply |F1| = 4, giving∑5

i=1 |Ri \ Fi| ≥ 5 as above. This time
∑5

i=3 |Fi \ Ri| ≤ 7 but, again by the arguments in the

previous paragraph, adding any poset in (A.1.13) to F increases
∑5

i=1 |Ri \ Fi| by 2, so (A.1.8)

holds.

Finally, suppose that ♦2,1
5 /∈ F . Then we have (A.1.13), so once again considering the elements of

Ri for 3 ≤ i ≤ 5, we see that
∑5

i=3 |Fi \Ri| ≥ 2 implies
∑5

i=1 |Ri \ Fi| ≥ 6 ≥
∑5

i=3 |Fi \Ri|.
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Daxue Xuebao 26 (1989), no. Special Issue, 112–122. Cited on page 133.
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[Moo82] Aeryung Moon, An analogue of the Erdős-Ko-Rado theorem for the Hamming schemes H(n, q),

J. Combin. Theory Ser. A 32 (1982), no. 3, 386–390. Cited on page 18.

[MS69] J. Marica and J. Schönheim, Differences of sets and a problem of Graham, Canad. Math. Bull.

12 (1969), 635–637. Cited on page 154.

[MT89] Makoto Matsumoto and Norihide Tokushige, A generalization of the Katona theorem for

cross t-intersecting families, Graphs Combin. 5 (1989), no. 2, 159–171. Cited on page 11.



BIBLIOGRAPHY 187
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