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Introduction  64 

 65 

The physiology and clinical utility of anti-Müllerian hormone (AMH) are not completely established. 66 

However, because of the tremendous amount of data collected in recent years, it appeared timely for 67 

this group of experts to bring together the current knowledge. These experts met in Lille, France, in May 68 

2012 for an ESHRE Campus workshop. This review offers a structured proceeding of this workshop that 69 

has been updated with the most recent data published in the literature since then. Its aim is to provide 70 

an extensive overview of the current knowledge and position of AMH as a tool in female health and 71 

fertility care. While covering most aspects of the physiology and utility of AMH, some aspects (e.g., use 72 

in diagnosis of granulosa cell tumours) were not covered, but are discussed in excellent reviews (e.g., La 73 

Marca et al., 2007). 74 

 75 

Historical perspective and state of the art 76 

 77 

AMH is a dimeric glycoprotein and a member of the transforming growth factor β (TGF-β) family of 78 

growth and differentiation factors (Cate et al., 1986). AMH has been predominantly known for its role in 79 

male sexual differentiation. From castration experiments in the fetal rabbit, Jost demonstrated that a 80 

testicular factor distinct from testosterone was responsible for the regression of the Müllerian ducts 81 

during male fetal sex differentiation (Jost, 1947). In later years, it was demonstrated that this factor is 82 

produced by Sertoli cells in the testis (Josso et al., 1993).  83 

The ovary is also able to produce AMH. In the chicken, this occurs from early embryonic development to 84 

adulthood (Hutson et al., 1981) but in human, AMH production by granulosa cells was detected only at 85 

the end of gestation (Rajpert-De Meyts et al., 1999). Interest into the role of AMH in the female was 86 

principally evoked through studies of AMH-deficient mice. Although female mice appeared fertile in the 87 

absence of AMH (Behringer et al., 1994), more detailed analysis of the ovarian follicle pool revealed that 88 

AMH acted as an inhibitor of primordial follicle recruitment. Also, later studies demonstrated a potential 89 

role for AMH in dominant follicle selection in the follicular phase of the menstrual cycle (Visser and 90 

Themmen, 2005). The development of sensitive assays soon enabled measuring AMH in serum (Hudson 91 

et al., 1990; Josso et al., 1990; Baker et al., 1990). Release of AMH from the granulosa cells of antral 92 

follicles leads to measurable serum levels, and these concentrations have shown to be proportional to 93 

the number of developing follicles in the ovaries. Therefore, AMH was considered to be a marker for the 94 

process of ovarian ageing (Kevenaar et al., 2006).  95 

To date, AMH has developed into a factor with a wide array of clinical applications, mainly based on its 96 

ability to express the number of antral and pre-antral follicles present in the ovaries (Hansen et al., 97 

2011). Predicting ovarian response to hyperstimulation of the ovaries for IVF, with the possibility of 98 

individualized counseling and adjustments of the stimulation regimen, is the most appealing application 99 

under development so far. Assessment of damage to the ovarian follicle reserve inflicted by iatrogenic 100 
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sources such as pelvic irradiation, chemotherapy, uterine artery embolization or ovarian surgery using 101 

AMH may open avenues of choosing strategies to prevent this damage in selected cases by applying 102 

fertility preservation strategies. The emerging data on the relation between AMH level at a certain age 103 

and the timing of menopause has set a scene for an individualized prediction of the reproductive 104 

lifespan, and from there potential prevention of infertility based on early ovarian ageing. Finally, 105 

marking the excess of antral follicles in women with Polycystic Ovarian Syndrome (PCOS), AMH may 106 

soon replace the ultrasound ovarian morphology criterion in the diagnosis of this syndrome, as well as 107 

become an additional tool for diagnosing premature ovarian insufficiency (POI).  108 

Physiology 109 

The roles of AMH in ovarian physiology 110 
 111 

AMH is specifically expressed in granulosa cells of small growing follicles. In rodents, expression is 112 

initiated as soon as primordial follicles are recruited to grow, and highest expression is observed in 113 

preantral and small antral follicles. AMH is no longer expressed by mural granulosa cells during the FSH-114 

dependent stages of follicular growth, nor is it expressed in atretic follicles (reviewed in Durlinger et al., 115 

2002). However, expression persists in the cumulus cells of preovulatory follicles (Salmon et al., 2004). In 116 

the human ovary, AMH shows a very similar expression pattern (Rey et al., 2000; Weenen et al., 2004; 117 

Grondahl et al., 2011; Jeppesen et al., 2013). 118 

Functional roles of AMH in ovarian folliculogenesis were revealed by analysis of the follicle pool in 119 

ovaries of AMH-deficient mice at various ages. In the absence of AMH, primordial follicles are recruited 120 

at a faster rate, resulting in an exhausted primordial follicle pool at a younger age (Durlinger et al., 121 

1999). The inhibitory effect of AMH on primordial to primary follicle transition was confirmed by in vitro 122 

studies of neonatal ovaries and ovarian cortical strips of various species, including human (Durlinger et 123 

al., 2002; Nilsson et al., 2007; Gigli et al., 2005; Carlsson et al., 2006). However, contradictory results 124 

using human ovarian cortical tissue have also been reported (Schmidt et al., 2005). In the mouse AMH 125 

inhibited the effect of several growth factors known to have a stimulatory action on primordial follicle 126 

recruitment, such as KitL and bFGF (Nilsson, et al., 2007). In the absence of AMH, ovaries contain more 127 

growing follicles, yet AMH-deficient mice have a normal ovulation rate. Increased oocyte degeneration 128 

and follicular atresia suggests that AMH may also be a survival factor for small growing follicles (Visser et 129 

al., 2007). AMH also reduces follicle sensitivity to FSH in vivo, and in vitro AMH inhibited FSH-induced 130 

preantral follicle growth (Durlinger et al., 2001). Thus, there is clear evidence that AMH is involved in the 131 

regulation of follicle growth initiation and the threshold for FSH sensitivity (Figure 1).  132 

AMH has also been suggested to exert a physiological effect on antral follicles in the human ovary 133 

before final selection. There exists a fine-tuned and delicate balance between estradiol (and inhibin) 134 

output by the preovulatory follicle and gonadotrophin secretion by the pituitary to ensure that ovulation 135 
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is triggered exactly at the right time (Baird and Smith, 1993). Recently, it has been suggested that AMH 136 

may exert a physiological role in down regulating the aromatizing capacity of granulosa cells until the 137 

time of follicular selection (Figure 1). Several studies have shown that AMH expression remains high 138 

until a follicle reaches a diameter of around 8mm (Weenen, et al., 2004, Andersen et al., 2010, 139 

Jeppesen, et al., 2013). The intrafollicular concentrations of AMH in normal human antral follicles show 140 

a gradual reduction as the diameter of the follicle increases, and a sharp decline is observed around 141 

8mm (Andersen, et al., 2010). The rapid decline in AMH expression corresponds with the selection of 142 

follicles for dominance, which is characterized by a transition from a low-estrogen producing state to 143 

one of rapidly increasing estrogen production. Estradiol is instrumental in this decline through estradiol 144 

receptor , which interacts with the AMH promoter region (Grynberg et al., 2012) (Figure 1). 145 

Several lines of evidence suggest that AMH acts as gatekeeper of follicular estrogen production:  146 

1) Early studies on fetal ovine ovaries showed that AMH repressed aromatase biosynthesis (Vigier 147 

et al., 1989). A quantitative bioassay for AMH was subsequently developed based on inhibition 148 

of cAMP-induced aromatase activity in fetal rat ovaries (di Clemente et al., 1992).  149 

2) In granulosa-lutein cells from IVF patients AMH reduces the expression of CYP19a1 at both gene 150 

and protein level and FSH-induced E2 production was significantly reduced in the presence of 151 

AMH (Grossman et al., 2008). 152 

3) In human small antral follicles there is a distinct inverse association between intrafollicular 153 

concentrations of AMH and estradiol concentrations and CYP19a1 gene expression in the 154 

corresponding granulosa cells (Andersen and Byskov, 2006, Andersen and Lossl, 2008, Nielsen et 155 

al., 2011). 156 

4) Using adjacent ovarian sections of preovulatory sheep follicles it was observed that the oocyte 157 

cumulus complex showed an almost complete inverse expression pattern of AMH and 158 

aromatase (Campbell et al., 2012). AMH continues to be expressed in cumulus cells of 159 

preovulatory follicles in the human (Grondahl, et al., 2011). 160 

5) Association analysis of genetic variants of the AMH signaling pathway showed that the AMH 161 

Ile49Ser and AMH type 2 receptor (AMHR2) -482A>G variants were related to follicular-phase 162 

estradiol levels in normo-ovulatory women. Women carrying the minor allele of the AMH or the 163 

AMHR2 polymorphism had higher estradiol levels compared to non-carriers, with carriers of 164 

both minor alleles having the highest levels (Kevenaar et al., 2007). In vitro, the AMH 49Ser 165 

variant yields a less active AMH protein that could result in weaker inhibition of FSH-induced 166 

aromatase activity and follicle growth (Kevenaar et al., 2008).  167 

Thus, AMH may act as a follicular gatekeeper and ensure that each small antral follicle produces little 168 

estradiol prior to selection (i.e. up to a follicular diameter of approximately 8mm) allowing a direct 169 

ovarian/pituitary dialogue regulating the development of the selected follicle that will undergo 170 

ovulation (Jeppesen, et al., 2013) (Figure 1).  171 
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 Assessment of AMH in serum: assay development 172 

AMH is produced as a precursor protein, consisting of 70 kDa disulphide-linked monomers (Picard and 173 

Josso, 1984). Proteolytic processing yields a 55 kDa N-terminal proregion and a 12.5 kDa C-terminal 174 

mature region (Pepinsky et al., 1988, Nachtigal and Ingraham, 1996). The pro- and mature homodimers 175 

remain non-covalently associated, resulting in a 140 kDa complex in circulation (Lee and Donahoe, 1993) 176 

(Figure 2). The mature region of AMH holds the biological activity of the protein, but in contrast to other 177 

TGFβ family members, requires the N-terminal proregion to obtain its full activity (Wilson, 1993). It has 178 

been suggested that the proregion is involved in protein stability and folding (Belville et al., 2004).  179 

Measurement of serum AMH was first reported in the 1990s, with the development of three AMH 180 

enzyme-linked immunosorbent assays (ELISAs) (Baker et al., 1990; Hudson, et al., 1990; Josso et al., 181 

1990). The AMH ELISAs were initially developed to measure AMH as a marker for testicular function 182 

during childhood, when serum concentrations are much higher than in females. Using a monoclonal and 183 

a polyclonal antibody that were both raised against recombinant human AMH (rhAMH), and which both 184 

recognize epitopes in the proregion of AMH, a sensitivity of 0.5 ng/ml was reached (Hudson, et al., 185 

1990). Baker et al developed an assay with antibodies raised against bovine AMH and rhAMH, but this 186 

assay was unable to detect AMH in female serum samples because of the relatively high detection limit 187 

of 6.25 ng/ml and the presence of inhibitory effects of serum. The assay developed by Josso and 188 

colleagues used a single polyclonal antibody raised against purified bovine AMH with rhAMH as the 189 

standard (Josso, et al., 1990). In this assay, the minimal detectable dose of AMH was 0.02 ng. This assay 190 

was subsequently modified to a sandwich ELISA using a monoclonal and polyclonal antibody raised 191 

against rhAMH. These antibodies recognize epitopes in the pro- and mature region of AMH (Figure 2), 192 

and increased the sensitivity of the assay to 14 pmol/L (1 ng/ml = 7.14 pmol/L) (Carre-Eusebe et al., 193 

1992). A further improvement in sensitivity to 0.7 pmol/L was reached by the use of two different 194 

monoclonal antibodies (Long et al., 2000). This ultrasensitive assay, known as the IOT assay, became 195 

commercially available through Beckman-Coulter (originally Immunotech-Coulter). 196 

The importance of assessment of serum AMH levels in females followed the insight (based on the 197 

expression pattern) that serum AMH might be a proxy for the size of the primordial follicle pool 198 

(reviewed in Visser et al., 2006). This led to the development of an additional sensitive AMH ELISA. 199 

Highly specific monoclonal antibodies to the proregion of AMH were generated by immunization of 200 

female AMH-deficient mice with rhAMH (Al-Qahtani et al., 2005). These antibodies had different 201 

epitope specificities and, with rhAMH as the standard, the detection limit improved to 0.078 ng/ml (Al-202 

Qahtani, et al., 2005). This assay was subsequently improved with another pair of highly specific 203 

monoclonal antibodies, which recognize epitopes in both the proregion (F2B/7A) and mature regions 204 

(F2B/12H) (Kevenaar, et al., 2006) (Figure 2). This assay is therefore expected to measure total AMH, 205 

and was commercially available through Diagnostic Systems Lab (DSL), has a detection limit of 6.3 pg/ml 206 

(Kevenaar, et al., 2006). 207 
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With the availability of two commercial assays, research on the clinical application of serum AMH 208 

increased tremendously. However, because these assays use different antibody pairs, and even more 209 

importantly different AMH calibrators, values of serum AMH differed significantly between the assays 210 

being 3- to 4- fold lower in the DSL assay (Freour et al., 2007). In later publications, similar AMH values 211 

were reported for both assays (Streuli et al., 2009, Lee et al., 2011), indicating that the assays continued 212 

to evolve. This may, in part, explain the different conversion factors that have been reported in various 213 

studies (Hehenkamp et al., 2006, Freour, et al., 2007). As a consequence, values obtained by one assay 214 

may not be directly translated to results obtained with the other assay.  215 

With the acquisition of DSL by Beckman-Coulter, the two existing assays were replaced by a new ELISA. 216 

This Beckman-Coulter AMH Gen II assay continues to use the antibodies of the previous DSL assay but 217 

uses native AMH in heat-inactivated bovine calf serum as a standard. The Gen II assay was calibrated to 218 

the IOT AMH ELISA, yielding a sensitivity of 0.08 ng/ml (Kumar et al., 2010). Comparison of the AMH Gen 219 

II assay with the previous assays showed that AMH values obtained with the AMH Gen II assay had a 220 

good correlation with those of the DSL assay but higher values (22-40%) were obtained with the Gen II 221 

assay (Wallace et al., 2011, Li et al., 2012). Because the AMH Gen II assay was calibrated to the IOT 222 

assay, this difference could potentially be accounted for by the previously observed difference between 223 

the DSL and IOT assays. However, Li et al also observed a 35% increase in sample value in the Gen II 224 

assay compared to the IOT assay (Li, et al., 2012). This finding is unexpected given that the AMH Gen II 225 

assay was calibrated to the IOT assay. Furthermore, there have been studies questioning the stability of 226 

AMH upon storage, sample handling and sample diluting, either prior to or by sequential addition to the 227 

microtitre plate, which all might affect serum AMH values (Rustamov et al., 2012). In contrast, stable 228 

serum AMH values were reported upon long term storage at -20°C with the previous DSL assay 229 

(Kevenaar, et al., 2006). Also with the AMH Gen II assay fairly stable values were reported for serum 230 

AMH but not for whole blood (Kumar, et al., 2010, Fleming and Nelson, 2012, Fleming, et al., 2013). 231 

Concerns about the robustness of the AMH Gen II assay have been fuelled by recent safety notices and 232 

technical update letters from Beckman-Coulter, indicating that undiluted samples may give falsely low 233 

values due to interference from complement, but also that some samples diluted prior to addition to the 234 

plate may give falsely elevated values. Therefore, results published so far with the AMH Gen II assay 235 

have to be taken with caution and will probably need to be revisited once the technical issues are 236 

resolved. Furthermore, it is recommended that these changes are validated in independent research 237 

before clinical application of the assay. Adapting clinical cut-off values from the IOT assay to the Gen II 238 

assay is not recommended, because a different antibody pair is used. Likewise, a simple conversion 239 

factor to recalculate values from the DSL assay to AMH Gen II is also not recommended, given the issues 240 

raised above. Therefore, although the clinical application of serum AMH, as discussed in this review, is 241 

not in question, it is also not recommended to compare absolute values from clinical studies that use 242 

different assays. To maximise the clinical utility of AMH measurement it is also critical to develop an 243 
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international standard for AMH that is safeguarded and distributed by a competent authority such as 244 

the National Institute for Biological Standards and Control. This would allow harmonization of current 245 

and potential new AMH assays, thereby eliminating the need to establish assay-specific normative and 246 

cut-off values.  247 

 248 

Variability of serum AMH in normal women  249 

 250 

Inter-individual variability of AMH is high, mainly due to the very high variability in the number of antral 251 

follicles within groups of subjects of similar age (Gougeon, 1998; La Marca et al., 2011; Almog et al., 252 

2011). There also seems to be ethnic variation, with African-American (Seifer et al., 2009; Schuh-Huerta 253 

et al., 2012) and Hispanic (Seifer, et al., 2009) women having lower serum AMH levels than those found 254 

in Caucasian women which may indicate a discrepancy between ovarian follicle number and AMH 255 

production. Some studies have indicated a negative relationship between BMI and AMH (Freeman et al., 256 

2007; Steiner et al., 2010) but this has not been consistent (Halawaty et al., 2010; Skalba et al., 2011, La 257 

Marca et al., 2012; Overbeek et al., 2012). In a recent study, AMH was negatively related to BMI but the 258 

relationship was age-dependent (La Marca, et al., 2012) suggesting that the relationship is secondary to 259 

the stronger relationship of the two variables with age. Contradictory result have also been reported on 260 

the relationship between smoking and AMH, with some studies reporting reduced AMH levels in 261 

smokers (Freeman, et al., 2007, Plante et al., 2010, Freour et al., 2012) and others reporting similar 262 

values (Nardo et al., 2007; Dafopoulos et al., 2010; Waylen et al., 2010; La Marca, et al., 2012).   263 

Analysis of intra-individual variability may be secondary to true biological variations in AMH levels in the 264 

circulation. The inter-menstrual cycle variability has been appropriately analyzed in two prospective 265 

studies (Fanchin et al., 2005, van Disseldorp et al., 2010), both of which concluded that 89% of the 266 

variation in AMH was due to between-subject variation, while only 11% of variability was secondary to 267 

individual fluctuation in AMH levels. Both studies found a similar intra-class coefficient (ICC) of 0.89, 268 

which is the ratio of the inter-individual variability over the total variability thus the higher the ICC, the 269 

lower the intra-individual variability. The majority of studies indicate that AMH is relatively stable 270 

through the menstrual cycle, as would be expected since the dominant follicle and corpus luteum do not 271 

secrete AMH (Hehenkamp, 2006; La Marca et al., 2006; Tsepelidis et al., 2007) (Figure 3). Van 272 

Disseldorp, et al. (2010) calculated the intra-individual CV of AMH to be 13 %, with intra-individual 273 

fluctuations within the same quintile in 72% of women and to cross two quintiles in only 1%. In contrast, 274 

a recent but small study found a reduction in circulating AMH in the luteal phase and intra-individual 275 

variance of AMH to be as high as 80% (Hadlow et al., 2013). In a prospective study based on 20 women, 276 

the authors described two different patterns for AMH dyanmics throughout the menstrual cycle. The 277 

“younger ovary” pattern had higher mean AMH and significant variations in AMH levels throughout the 278 

cycle. This was in contrast with an “aging ovary” pattern with low mean AMH, shorter menstrual cycle 279 
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lengths, and very low variation in AMH levels, suggesting diminished ovarian reserve. Fluctuations were 280 

randomly distributed during the cycle indicating that measuring on a fixed day would not be 281 

advantageous. 282 

The literature also contains contradictory reports regarding the influence of conditions associated with 283 

gonadotrophin suppression, particularly hormonal oral contraception use and pregnancy, with serum 284 

AMH level. It seems likely that weak study size and design underlies this confusion. Recently a cohort 285 

study based on 863 women (228 OC-users and 504 non-users) reported that AMH serum levels were 286 

29.8% lower in oral contraception users than controls (Bentzen et al., 2012). This has been recently 287 

confirmed by Dolleman et al. (2013). In a small but randomized trial of 42 healthy women administered 288 

oral, transdermal or vaginal ring hormonal contraception for 9 weeks, AMH levels decreased by almost 289 

50% in all treatment groups (Kallio et al., 2013). Conversely, serum AMH level increases in subsequent 290 

natural cycles after stopping with hormonal contraception (van den Berg et al., 2010). Similarly in 291 

relation to pregnancy, in the only longitudinal study available (n=60) a significant decrease in AMH levels 292 

was found in the 2nd and 3rd trimesters compared to the 1st trimester, with a mean reduction at the end 293 

of pregnancy of about 50% (Nelson et al., 2010). Such a decline in AMH levels during pregnancy has 294 

been recently confirmed by Köninger et al. (2013) in a cross-sectional study. While this no doubt reflects 295 

reduced follicular maturation, there may also be a contribution of pregnancy-associated haemodilution 296 

and increased plasma-protein binding.  297 

In conclusion, fluctuations in AMH levels have been reported for a number of conditions and this has to 298 

be taken into account when interpreting values in clinical practice. While fluctuations in the menstrual 299 

cycle appear to be random and minor hence permitting the measurement of AMH independently of the 300 

cycle phase, ovarian suppression as induced by physiological or pharmacological interventions may 301 

reduce AMH levels. Thus, serum AMH may not retain its accuracy as a predictor of the ovarian reserve in 302 

women using long-term hormonal contraception. 303 

 304 

Derivation of a normative model for AMH from conception to menopause 305 

The emerging value of AMH measurement requires understanding of its pattern across the whole 306 

female life-course. Most published studies that report AMH in normal girls and women include only a 307 

relatively small age range, thus a ‘data-driven’ approach has been used (Kelsey et al., 2012). This 308 

involved extracting data using a semi-automated procedure, and combined it with other unpublished 309 

data. The resulting combined dataset (n = 3,260; age range -0.3 years to 54 years)(Kelsey et al., 2011) 310 

forms a representative sample of AMH levels in the population of healthy female humans, and can 311 

therefore be used as a basis for a predictive model of serum AMH level with changing age and was used 312 

to generate  and validate the model.  313 
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Analysis of the model shows that the dynamics of circulating AMH levels throughout life can be split into 314 

several distinct phases (Figure 4). A peak shortly after birth confirms that girls also undergo a ‘mini 315 

puberty’ of the neonate, following which there is a sustained rise to about 9 years of age. There is an 316 

inflection with even a slight decline during the pubertal ages (9–15 years), followed by a second growth 317 

phase to a peak at an age of about 25 years. After this, there is a steady decline to undetectable levels at 318 

an average age of 50–51 years, corresponding to the menopause.  319 

When non-growing follicle (NGF) recruitment dynamics are considered and compared to AMH levels 320 

(Figure 4) there is a strong and positive correlation (r = 0.96) between declining AMH and declining 321 

numbers of recruited NGFs after age 25 (the average age of peak AMH). This observation underpins the 322 

use of serum AMH level as an indirect indicator of human ovarian reserve for ages after the mid-323 

twenties. Before the age of 25, the relationships between AMH and ovarian reserve are more complex 324 

with overall a positive relationship between rising AMH and increasing follicle growth activation, and 325 

thus we would recommend caution in the interpretation of AMH concentrations in girls and young 326 

women as an indirect indicator of ovarian reserve.  327 

Ovarian Reserve assessment 328 

Assessment of Ovarian Reserve in normal women 329 

From the ART literature, it is clear that AMH can predict the ovarian response to hyperstimulation (Broer 330 

et al., 2013). AMH is superior to female age in assessing the quantitative aspects of the ovarian reserve 331 

but its value is much more limited in the prediction of ongoing pregnancy. Indeed no combination of 332 

ovarian reserve tests (ORTs) has been able to improve the accuracy of female age in identifying those 333 

with a close to zero prognosis (Hendriks et al., 2008, Broer, et al., 2013). Qualitative aspects of the 334 

ovarian reserve are much more difficult to capture.  335 

The role for AMH as a predictor of natural fertility has been studied in a limited number of papers. In a 336 

prospective study of women mostly in their 30’s, those with low AMH had significantly reduced 337 

fecundability, after adjustment for age (Steiner, et al., 2010). In contrast, fecundability in healthy young 338 

women with no prior knowledge of their fecundity, appeared not to be compromised if very low AMH 339 

levels were present (Hagen et al., 2012). However, it must be stressed that these results were obtained 340 

with the Gen II assay that provided at that time lower measurement than it was believed (see “assay” 341 

section). Conversely, the probability of conceiving was reduced in women with high AMH levels, 342 

suggesting that this represented women with overt or mitigated conditions of anovulation. Being a 343 

quantity marker, the true value for AMH may therefore be found in predicting the timelines in the 344 

ovarian ageing process that are dictated by quantity alone. 345 

 346 
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To study the value of the ORTs in the assessment of the future ovarian reserve status, long term follow 347 

up studies are required, where several factors assessed at initiation of the follow up are linked to the 348 

final outcome age at menopause. As menopause has a fixed time relation to earlier events such as onset 349 

of cycle irregularity (average age 46 years) and the loss of natural fertility (average age 41 years), a 350 

woman’s reproductive lifespan can be predicted from forecasting age at menopause. To date, a total of 351 

four datasets are available addressing this issue. In two small studies, it has been demonstrated that 352 

across a period of 9 and 12 years, AMH level will adjust the predictions that can be based on female age 353 

at the moment of AMH sampling, so that women with low age-specific AMH will have menopause 354 

earlier and vice versa (Tehrani et al., 2009, Broer et al., 2011). A larger analysis is now available from the 355 

Iranian study (Tehrani et al., 2013). A third study confirmed these findings in a group of women of late 356 

reproductive age, but with still detectable levels of AMH (Freeman, et al., 2007). All these datasets 357 

however have very wide confidence intervals in the predictive value of a single AMH measurement. The 358 

rate of change over time may also affect the time to menopause, and be susceptible to extrinsic as well 359 

as intrinsic factors. 360 

Genetic factors have proven to play a major role in determining the variation in menopausal age, 361 

as demonstrated in several mother-daughter, twin and sib-pair studies. Next to genetic factors, several 362 

environmental and life-style factors like smoking, body mass index, use of alcohol and parity have 363 

claimed to influence menopausal timing as well. Thus, menopausal age is considered a complex genetic 364 

trait. From a recent review (Voorhuis et al., 2010), it became apparent that a number of genetic regions 365 

and variants involved in several possible pathways underlying timing of age at menopause could be 366 

identified. Regarding a potential role for AMH or its receptor in modulating the rate of follicle loss form 367 

the primordial follicle pool, it has been demonstrated in two separate studies that common variation in 368 

the AMHR2 gene modifies the relationship between parity and age at natural menopause (Kevenaar et 369 

al., 2007; Voorhuis et al., 2010). Moreover, interactions between common variation in the AMH and 370 

AMH receptor II gene in their effect on menopause have further supported a potential role for factors 371 

that steer initial follicle recruitment (Braem et al., 2013). 372 

The value of predicting age at menopause serves multiple targets. First of all, the ability to assess the 373 

future ovarian reserve status, and thereby the reproductive lifespan of an individual women, will have 374 

implications for female infertility. Because of the fixed time interval that is believed to be present, 375 

prediction of age at menopause will predict the age of natural end of fertility. If such predictions could 376 

be made early in life, with sufficient accuracy, this could have a great influence on individual women 377 

making decisions regarding career and a wish to have children. It is at present unclear whether AMH 378 

measurement meets those criteria. 379 

AMH in the assessment of ovarian damage from chemotherapy, radiotherapy and surgery.   380 

 381 
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The relationship between serum AMH and the number of small growing and indeed primordial follicles 382 

has made it a prime potential tool for the investigation of gonadotoxicity of cancer therapy and of loss 383 

of the ovarian reserve from ovarian surgery. AMH offers the possibility of a more accurate assessment, 384 

revealing partial loss of the ovarian reserve, as well as ovarian failure. It may also be of value in children 385 

where FSH and inhibin B are not useful, and in individualising the degree of damage when measured 386 

prospectively.   387 

A decrease in serum AMH was first described in women who had had childhood cancer but who still had 388 

regular menses, compared to an age matched control group (Bath et al., 2003).  In contrast there was no 389 

difference in serum FSH or inhibin B between groups.  Similar findings have been shown in breast cancer 390 

survivors (Partridge et al., 2010). AMH was decreased in a study of ovarian function in young adults 391 

following treatment for childhood Hodgkin lymphoma with a clear dose response demonstrated 392 

between the number of chemotherapy cycles and the serum AMH (van Beek et al., 2007). FSH also rose 393 

with increasing treatment, but AMH appeared to have greater sensitivity to detect ovarian damage at 394 

lower doses of chemotherapy. The gonadotoxicity of alkylating agent based protocols has been shown in 395 

a range of childhood and adult malignancies (Rosendahl et al., 2008; Lie Fong et al., 2009; Gracia et al., 396 

2012) but is most clearly demonstrated in a prospective study in young women with lymphoma 397 

(Decanter et al., 2010): AMH concentrations fell in all women during therapy but in the non-alkylating 398 

agent group there was then recovery to concentrations similar to pre-treatment whereas there was no 399 

evidence of recovery in women treated with alkylating agent based therapies. 400 

Radiotherapy is also widely recognised to cause ovarian damage even at low doses and women treated 401 

with radiotherapy that includes the pelvis (including abdominal pelvic therapy in children or total body 402 

irradiation) generally have very low or undetectable AMH concentrations (Gracia, et al., 2012) (Lie Fong, 403 

et al., 2009).  404 

Most of these studies were retrospective in nature, with no pre-treatment samples taken. There is also a 405 

dearth of data linking post treatment AMH to other clinical variables, most importantly fertility and 406 

subsequent reproductive lifespan, although a recent analysis shows a high prevalence of successful 407 

pregnancy in childhood lymphoma survivors despite low AMH concentrations (Hamre et al., 2012). A 408 

prospective study in women with newly diagnosed breast cancer linked pre-treatment AMH with long 409 

term ovarian function at 5 years (Anderson and Cameron, 2011), pre-treatment serum AMH being 410 

markedly higher in women who continued to have menses. The predictive value of AMH for post-411 

chemotherapy ovarian function has subsequently been confirmed (Anderson et al., 2013) allowing the 412 

development of prediction tools combining age and AMH (Figure 5). It therefore appears that in addition 413 

to reflecting post-chemotherapy (or radiotherapy) damage, AMH is also able to predict on-going ovarian 414 

activity after such treatment, and the existing data suggest it is likely to be more robust than either FSH 415 

or inhibin B in this regard.  Consistent with this, a study in younger women has demonstrated that 416 

pretreatment AMH predicts post-chemotherapy recovery, with a more rapid recovery in women with 417 
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higher pretreatment AMH (Dillon et al., 2013). Older women with cancer may have lowered 418 

pretreatment AMH concentrations; this was not observed in younger women (Su et al., 2013).  419 

Substantial prospective studies are required to develop a clearer analysis of the predictive value of AMH 420 

in different circumstances and it may be of value in information provision for example regarding the 421 

need for fertility preservation strategies.   422 

AMH is detectible in girls of all ages, unlike other reproductive hormones, and rises steadily through 423 

childhood thus may be of value in the assessment of ovarian function in pre-pubertal girls. In a 424 

prospective analysis of girls with varied diagnosis (and therefore undergoing differed therapies) at 425 

different ages, AMH declined during repeated chemotherapy cycles (Brougham et al., 2012).  Strikingly, 426 

in girls judged to be at medium or low risk of long-term ovarian damage, AMH recovered to 427 

concentrations similar to pre-treatment, whereas in girls judged to be at high risk, serum AMH at the 428 

end of treatment was undetectable and showed no evidence of recovery. Post-treatment AMH 429 

therefore appeared to identify even very young girls who are very likely to require pubertal induction, 430 

distinct from others who may be able to be reassured as to the likelihood of satisfactory ovarian 431 

function later in life. Long term follow up of these different groups is required to ascertain fully the value 432 

of post childhood cancer AMH in predicting long term ovarian function whether reflected in achieving 433 

spontaneous puberty, fertility or reproductive lifespan. 434 

The impact of ovarian surgery on the ovarian reserve as measured by AMH has also been investigated, 435 

and two systematic reviews of the impact of ovarian surgery for endometriosis have been published 436 

(Raffi et al., 2012; Somigliana et al., 2012). Both analyses highlight the heterogeneity of study design and 437 

the difficulty in pooling data. However both conclude that ovarian endometrioma surgery is associated 438 

with a decline in serum AMH, indicating the removal of a significant part of the ovarian reserve. A 439 

subsequent large retrospective analysis has confirmed the impact of endometrioma surgery on the 440 

ovarian reserve as detected by serum AMH (Streuli et al., 2012), and these findings should be taken in to 441 

account in the planning and decision making process relating to ovarian surgery in women desirous of 442 

future pregnancy.   443 

Assessment of Ovarian Reserve in infertility and ART patients 444 

Age and ovarian reserve are potentially the most important patient characteristics determining the 445 

success of assisted conception, with interpretation of AMH in an age-specific manner now feasible 446 

(Nelson et al., 2011a; Nelson et al., 2011c; Almog, et al., 2011). Recognition of the linear relationship of 447 

AMH with oocyte yield was a critical step forward (Nelson et al., 2007; La Marca et al., 2010). That AMH 448 

can predict ovarian response accurately (Broer et al., 2011)(Broer et al., 2009) enables clinicians to avoid 449 

iatrogenic complications and to choose the optimal stimulation strategy. This also ensures that patients 450 

are counselled appropriately with realistic expectations of the outcome of their ovarian stimulation.   451 
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At one extreme of the response spectrum we can identify women who are at risk of OHSS (Al-Inany et 452 

al., 2011, Broer, et al., 2011). We can adjust our stimulation strategy to incorporate GnRH antagonists 453 

(Al-Inany, et al., 2011) reducing the risk of this potentially fatal complication (Acolet et al., 2005, Braat et 454 

al., 2010). Choosing a GnRH antagonist prtocol and adjusting the FSH dose according to a high serum 455 

AMH level should preclude OHSS but at present, however, only locally-derived thresholds can be used 456 

since there is no consensus on an universal threshold (Broer, et al., 2011). This approach has particular 457 

benefits for women undergoing altruistic oocyte donation, removing much of the integral risk of IVF 458 

(Bodri et al., 2009).  Conversely maximising follicular recruitment would seem appropriate if a poor 459 

response was anticipated, although the optimal strategy for the poor responder remains debated 460 

(Ferraretti et al., 2011). At present the value of a mixed strategy in an ART programme has yet to be fully 461 

elucidated, but for centres where agonist strategies still dominate the advantage of an AMH-based 462 

approach over conventional dose adjustment and long course agonist for all has been demonstrated 463 

(Nelson et al., 2009). 464 

The ability to predict a very poor response has resulted in some centres withholding the first treatment 465 

cycle if a very low AMH is detected, with an overall improvement in results of the programme and 466 

substantial cost savings (Yates et al., 2011). However even women with AMH concentrations at the limit 467 

of assay sensitivity have a significant chance of conception through IVF, thus this approach appears 468 

unjustified (Anderson et al., 2012). Inevitably this chance will be lower than for a woman of the same 469 

age with a higher ovarian reserve (La Marca, et al., 2010) but to withhold treatment and not actually 470 

confirm a predicted poor response at present purely based on an AMH would seem inappropriate. This 471 

is particularly the case as this approach has not been incorporated into cost-effectiveness models with 472 

other more accurate population level models available (Lawlor and Nelson, 2012; Nelson and Lawlor, 473 

2011).  474 

Whether knowing the anticipated oocyte response has a beneficial psychological effect for the couple 475 

and thereby reduces cycle drop out has not been formally evaluated. Discussion of the ovarian 476 

assessment report may set patient’s expectations appropriately particularly at the bottom end of the 477 

spectrum where only a few oocytes may be retrieved. Given that many women do not fully appreciate 478 

the detrimental effect of age on oocyte number, the ability to guide them on overall success using a 479 

combination of their age as a surrogate for oocyte quality, and AMH for oocyte yield is a powerful tool 480 

(La Marca et al., 2011).   481 

It is likely in the future that with standardisation of AMH measurement and stimulation strategies, 482 

multivariate prediction models with tight confidence intervals will be able to be created and 483 

individualised reports generated. Steps on this path have already been made with optimal prediction of 484 

excessive response achieved by combining age, AMH and antral follicle count (Broer et al., 2011a) and 485 

refinement of gonadotropin dosing by combining AMH with FSH and age (La Marca et al., 2012). The 486 
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future is therefore likely to harness the collective power of biomarkers including AMH to ensure true 487 

personalisation of ovarian stimulation. 488 

 489 

Factors influencing the relationship between and the predictability of AMH and antral follicle count 490 

(AFC)  491 

The follicular pool that influences serum AMH levels the most probably is that of 1-2 mm follicles, 492 

although some analyses have suggested a slightly larger size (Jeppesen, et al., 2013) (see section 3-1). 493 

This notion assumes a particular importance not only when we analyze the strength of the relationship 494 

between the ultrasonographic counting of antral follicles (AFC) and serum AMH levels but also when we 495 

compare the clinical predictability of both parameters.  496 

Although the positive relationship between AFC and serum AMH levels has been recognized for over ten 497 

years (Fanchin et al., 2003), cases of discrepancy are sporadically observed (Schipper et al., 2012). These 498 

cases may result, at least in part, from technical difficulties but other physiological contingencies may 499 

influence this expected relationship. According to recent guidelines (Broekmans et al., 2010) and current 500 

clinical practice worldwide, ultrasonographic counting considers antral follicles whose diameter varies 501 

considerably, from 2 to 10 mm. It is also noteworthy that ultrasound technology cannot distinguish 502 

healthy from atretic follicles. Therefore, the strength of the correlation between AFC and serum AMH is 503 

influenced by at least 2 additional factors. The first is antral follicle sizes. It is likely that a patient whose 504 

AFC is mostly represented by small follicles (1-2mm) will display higher serum AMH levels than a patient 505 

who has a majority of large antral follicles (>6 mm). The second factor is follicle “health“ as granulosa 506 

cell atresia may hinder AMH production. Further clinical studies are needed to confirm these 507 

hypotheses. 508 

In line with this, both AMH and AFC have been shown to be useful markers of the ovarian response to 509 

controlled ovarian hyperstimulation (Broer, et al., 2013). Again here, two other refinements should be 510 

brought to this clinical observation. On the one hand, it is probable that, in the beginning of the follicular 511 

phase, it is the large antral follicles that will respond first to gonadotropin treatment. As these follicles 512 

are already losing their ability to produce AMH, AFC might better predict ovarian response than AMH 513 

(Mutlu et al., 2013). On the other hand, if we consider that atretic antral follicles will not properly 514 

respond to exogenous FSH, AMH should be the most reliable marker as it is not produced by atretic 515 

follicles that still are counted by ultrasound. Another pertinent issue regarding both biomarkers is that, 516 

contrary to AFC, AMH is also an important regulator of ovarian function, as discussed above. In the 517 

ovary, AMH exerts an inhibiting role on many follicular functions, including granulosa cell sensitivity to 518 

FSH. In support of this, antral follicle responsiveness to exogenous gonadotropins, clinically assessed by 519 

the Follicle Output RaTe (FORT), is inversely correlated with serum AMH (Genro et al., 2011). 520 
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Therefore, from a clinical standpoint, both AMH and AFC provide the physician with useful information 521 

regarding ovarian follicular status and responsiveness to controlled ovarian hyperstimulation. While 522 

AMH provides information essentially on the number of very small, non-atretic follicles, AFC is 523 

contributive to detect follicle sizes and evaluate size discrepancies, with both analyses being 524 

complementary to the proper adaptation of the type of stimulation required by the patient. 525 

Polycystic Ovary Syndrome (PCOS) 526 

AMH and its putative role in PCOS pathophysiology 527 

PCOS, a heterogeneous condition, is the most prevalent endocrine disorder in women, affecting 5 to 528 

10% of the female population (Franks, 2008).  Women with PCOS present with a range of symptoms 529 

such as acne, hirsutism and/or menstrual irregularities and have an increased risk of type II diabetes. 530 

The condition imposes a considerable economic burden on health systems internationally (Azziz et al., 531 

2005). Polycystic ovaries (PCOs) are characterised by an increase in the number of follicles at all growing 532 

stages (Hughesdon, 1982; Webber et al., 2003; Maciel et al., 2004). PCOS is almost certainly a genetic 533 

condition (Kosova and Urbanek, 2013), but the cause of the change in ovarian and the cause of 534 

anovulation which affects a subgroup of these women remains unknown. 535 

The ability of AMH to alter early follicle growth was demonstrated by the AMH knock-out mouse model 536 

(Durlinger, et al., 1999, Durlinger, et al., 2002) in which there is an increase in the initiation of primordial 537 

follicles into the growing pool (see section 3). This morphology appeared similar to that seen in 538 

polycystic ovaries (PCOs) and so an assessment of the production of AMH by PCOs was carried out. 539 

Stubbs et al., 2005 found fewer primordial and transitional follicles positively stained for AMH from 540 

anovulatory PCO than in normal ovaries. Reduced AMH in anovulatory PCO might enhance the transition 541 

of follicles to the growing phases, or might be a marker of abnormal early follicle growth in PCOS.   542 

Serum AMH is two to four-fold higher in women with PCOS than in normal women (Pigny et al., 2003; 543 

Laven et al., 2004; Park et al., 2010; Lie Fong et al., 2011). This increase in serum AMH was thought to 544 

reflect the increased number of small antral follicles in which AMH production is highest. However, 545 

when production of AMH per granulosa cell was compared between normal ovaries, ovulatory and 546 

anovulatory PCOs (Pellatt et al., 2007), AMH production was on average 75 times higher per granulosa 547 

cell from anovulatory PCOs and 20 times higher from ovulatory PCOs. This indicates that the increase in 548 

AMH is due to an intrinsic property of granulosa cells in PCOs, a property that persists even after 549 

stimulation for IVF (Catteau-Jonard et al., 2008). These increased concentrations are also found in 550 

follicular fluid (Das et al., 2008).  551 

The cause of such high levels of AMH in antral follicles in PCOS is currently unknown. However there is 552 

evidence to support a role for androgens as a positive correlation with AMH in serum has been reported 553 
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(Carlsen et al., 2009; Pigny, et al., 2003; Laven, et al., 2004; Eldar-Geva et al., 2005), and over-production 554 

of androgens is an intrinsic defect of theca from PCOs (Gilling-Smith et al., 1994). It is curious that AMH 555 

should be lower in preantral follicles and then higher once the follicle reaches the antral stage, however 556 

prenatal testosterone treatment of sheep produced precisely this effect (Veiga-Lopez et al., 2011). In 557 

vitro however, androgens have not been shown to do this and indeed androgens have been shown to 558 

reduce antral follicle granulosa cell AMH production in a bovine model (Crisosto et al., 2009). In human, 559 

serum AMH levels decrease in female to male transsexual women using testosterone as cross-sex 560 

therapy (Caanen M et al., 2013). Other groups have demonstrated inhibition of AMH production by 561 

gonadotrophins, particularly FSH (Baarends et al., 1995; Panidis et al., 2011). Others found no such 562 

inhibitory effect on granulosa cells from normal ovaries; in contrast, FSH did inhibit AMH production in 563 

cultured granulosa cells from polycystic ovaries (Pellatt, et al., 2007) whereas LH significantly stimulated 564 

production. 565 

Although many aspects of AMH action in the ovary remain to be elucidated, knowledge is emerging. 566 

AMH significantly decreases FSH- and LH- induced aromatase expression in granulosa cells as well as 567 

reducing the activity of the ovary-specific aromatase promoter II (see section 3).  This results in a 568 

significant reduction in estradiol production (Pellatt et al., 2011). AMH also inhibits FSH-stimulated FSH 569 

receptor mRNA expression (Pellatt, et al., 2011). The fact that AMH is inhibitory of factors required for 570 

follicle growth adds considerable significance to the finding of high AMH in PCOS. LH reduces AMHRII 571 

expression in granulosa luteal cells collected from women with normal ovaries and ovulatory PCOS, but 572 

was unable to do so in women with anovulatory PCOS (Pierre et al., 2013). It can be envisaged that AMH 573 

content in antral follicles in these ovaries would be sufficient to inhibit FSH-stimulated aromatase 574 

expression and would thus prevent the inhibitory effect of estradiol on AMH production (Figure 1). This 575 

effect would be amplified by the loss of LH-induced down-regulation of AMHRII expression in women 576 

with anovulatory PCOS. These findings suggest that AMH may contribute to anovulation in PCOS. In 577 

agreement, it has been shown that emergence of a dominant follicle in anovulatory women with PCOS 578 

under recFSH is preceded by a significant reduction in serum AMH level (Catteau-Jonard et al., 2007).  579 

AMH in diagnosing PCOS: a shift from ultrasound to laboratory  580 

Given its strong involvement in the pathophysiology of PCOS (see section 5.1), serum AMH is a subject 581 

of special interest for clinicians involved in this field. There is considerable interest in whether it might 582 

become part of the diagnostic criteria for the condition, although this is at present premature. It may 583 

also shed light on different subtypes of this diverse condition leading to greater understanding of the 584 

disordered follicle growth. Certainly, the serum AMH concentration appears to be greatly increased in 585 

most patients with PCOS (Pigny, et al., 2003, Laven, et al., 2004, Li et al., 2011). This elevation is highly 586 

pertinent as it has been shown that polycystic ovaries (PCO) exhibit an increased number of AMH-587 

producing pre-antral and small antral follicles, the latter expressing the most AMH (Weenen, et al., 588 
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2004) and contributing the most to the circulating AMH (Jeppesen, et al., 2013). In addition, production 589 

of AMH is greatly increased in GC from PCO, especially if the patient is oligo-anovulatory, as discussed 590 

above (Pellatt, et al., 2010). Therefore, not surprisingly, many authors have reported a strong correlation 591 

between plasma levels of AMH and follicle count on ultrasound in PCOS patients. The strength of this 592 

relationship is even greater with newer ultrasound technology allowing the counting of 1-2 mm follicles 593 

(Dewailly et al., 2011).  594 

The strong association between AMH and follicle count has led some authors to compare the 595 

performance of one against the other for the diagnosis of PCOS. However, the results in the current 596 

literature are not homogeneous between studies, as well demonstrated in a recent compilation 597 

(Iliodromiti et al., 2013). Part of this heterogeneity is due to the lack of well-defined populations. In 598 

particular, it must be stressed that many authors have used the threshold for follicle excess that was 599 

established in 2003 at the Rotterdam Consensus Conference to define PCOM (Balen et al., 2003), namely 600 

12 follicles of 2-9 mm diameter per ovary. With the latest generation of ultrasound equipment and using 601 

well-defined populations, recent studies have proposed to increase this threshold to 19 or 25 (Dewailly, 602 

et al., 2011, Lujan et al., 2013, respectively). This threshold will probably continue to evolve in parallel 603 

with the technical improvement of ultrasound equipment. 604 

Beside the flaw in the ultrasound definition of controls and patients, the variability of the results can 605 

also be explained by the problem that prevails with serum AMH assays. About half of the previous 606 

studies were performed using either the DSL or IOT assays (Iliodromiti, et al., 2013), for which 607 

concordance in the values is problematic (see above). More recent studies using the Gen II kit should 608 

also be interpreted with caution (see above).  609 

It is therefore impossible to date to propose a consensual and universal diagnostic threshold for serum 610 

AMH that is predictive of PCOS. Using the IOT assay, serum AMH was found to be more efficient than 611 

the follicle count with excellent sensitivity and specificity for a threshold of 35 pmol/l (4.9 ng/ml) 612 

(Dewailly, et al., 2011). Contrary to other studies, specific thresholds for AMH and follicle count were 613 

calculated without using pre-determined values. In addition, women with supposedly asymptomatic 614 

PCOM were excluded from the control group of regularly menstruating women by cluster analysis. If 615 

these results can be replicated with the new AMH assays, serum AMH may become an accurate and 616 

reliable marker that may eventually replace the follicle count which itself, in turn, suffers from great 617 

controversy in the current literature. It is reasonable to propose that the increased serum AMH is a 618 

surrogate to the term "PCOM" in the Rotterdam classification (Rotterdam ESHRE/ASRM-sponsored PCOS 619 

consensus workshop group, 2004). Further, since we have now at our disposal two different markers, 620 

one being morphological (PCOM) and the other being biochemical (increased serum AMH), the terms 621 

“PCO-like abnormalities” (PCO-L) may become more accepted as the third item of the Rotterdam 622 

classification (Robin et al., 2012). 623 
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In addition, the serum AMH correlates with the severity of PCOS and precisely with the severity of both 624 

hyperandrogenism (Piouka et al., 2009) and oligo-anovulation (Laven, et al., 2004, Catteau-Jonard et 625 

al., 2012). By principal component analysis, it has been shown that a high serum AMH level can be 626 

considered a marker of hyperandrogenism and may therefore also be considered as a replacement for 627 

this other item in the Rotterdam classification (Dewailly et al., 2010). This would reconcile the different 628 

classifications currently available for the diagnosis of PCOS since some of them necessarily require the 629 

presence of hyperandrogenism to retain the diagnosis (Azziz et al., 2009). The only exception to this 630 

assertion would be the presence of PCOS in women with type 1 diabetes, where serum AMH does not 631 

correlate to androgen levels (Codner et al., 2007).  632 

Therefore, to establish the diagnosis of PCOS, after exclusion of other diagnoses, oligo-anovulation and 633 

HA should first be required. In the cases where one is missing, then “PCO-L” (i.e., high AFC and/or serum 634 

AMH level) could be used as a surrogate for either oligo-anovulation or HA. It must be stressed, 635 

however, that the thresholds for an excessive AFC and serum AMH level have to be revisited and 636 

validated worldwide in populations of different ethnicity. Meanwhile, local in-house control data can be 637 

used. We think this information is important and useful for diagnostic concerns as well as for 638 

phenotype/genotype analysis within genetic studies.  639 

The diagnostic value of serum AMH concentrations has also been studied in adolescents since 640 

ultrasound is often unreliable in detecting PCOM in this population. A study in Chilean adolescents 641 

identified a cut-off serum AMH concentration of 60 pmol/l (with the IOT assay) to diagnose PCOM in 642 

regularly menstruating adolescents, with a sensitivity and specificity of 64% and 90% (area under the 643 

ROC curve = 0.87) (Villarroel et al., 2011). The results were not as good in Australian adolescents with 644 

the same assay (area under the ROC curve = 0.67) leading the authors to conclude that serum AMH was 645 

a questionable surrogate for PCOM in adolescents (Hart et al., 2010). 646 

Finally, in addition to its diagnostic role, the determination of AMH could be used in the future to 647 

establish treatment protocols, and in particular to define the strategy for the induction of ovulation in 648 

infertile oligo-anovulatory PCOS women. To date, there are very few studies that have examined the 649 

predictive power of AMH assay for response to clomifene, recombinant FSH or to ovarian drilling. 650 

Similarly, AMH is of value as a good predictor of the risk of ovarian hyperstimulation in an IVF setting 651 

(Broer, et al., 2011) .  652 

The current technical difficulties with the determination of serum AMH may have dampened the 653 

enthusiasm of some clinicians for this marker of PCOM. However there are sufficient data to support the 654 

view that this assay may replace (or be an alternative for) AFC in the Rotterdam classification, which will 655 

make it even more reliable and more flexible, especially in situations when ultrasound is uninformative 656 

or impossible, as in obese women or adolescents. 657 

 658 

Future avenues 659 
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Recent years have shown multiple ways in which AMH is not only a “male” hormone but is emerging as 660 

an invaluable tool offering new insights into ovarian function in childhood, adolescence and through the 661 

reproductive years. Although knowledge of its precise roles in ovarian physiology still requires extensive 662 

fundamental and clinical studies, it is already clear that AMH is crucial in maintaining the right tempo of 663 

folliculogenesis in the ovary (although there are only very limited human data), making it one of the 664 

most important ovarian hormones and one of the most crucial factors underpinning female fertility. 665 

Whether its action is exclusively intra-ovarian, within and between follicles, is a challenging issue for 666 

future research. We should think about possible endocrine effects of this hormone, possibly in ovary-to-667 

ovary interaction or in hypothalamic-pituitary-ovarian integration.  668 

At the current time, the clinical use of serum AMH assay is hampered by technical issues undermining its 669 

reliability. It is likely that these issues will be rapidly solved and the advent of more sensitive assays may 670 

confirm that serum AMH level is the best biochemical marker of ovarian function in a large array of 671 

clinical situations, both in childhood and adulthood. For the first time in female reproductive biology, we 672 

have at our disposition an easy measure of the submerged part of the iceberg of follicle growth, i.e., the 673 

intrinsic so-called “acyclic” ovarian activity.  674 

 675 

676 



 21 

Author’s Roles 677 

This paper is a summary of the presentations at the ESHRE campus workshop on AMH in Lille, France, on 678 

May 10-11, 2012, with literature update until September 2013. All authors contributed to the 679 

manuscript and approved the final version. 680 

We are grateful to Ronnie Grant for assistance with the figures. 681 

 682 

Funding 683 

No specific funding was obtained for this article. 684 

 685 

686 



 22 

References 687 

Acolet D, Fleming K, Macintosh M and Modder J Confidential Enquiry into Maternal and Child Health: 688 
Pregnancy in Women with Type 1 and Type 2 Diabetes in 2002–03, England,Wales and Northern 689 
Ireland. 2005, CEMACH, London. 690 

Al-Inany HG, Youssef MA, Aboulghar M, Broekmans F, Sterrenburg M, Smit J and Abou-Setta AM 691 
Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane 692 
Database Syst Rev 2011: CD001750. 693 

Al-Qahtani A, Muttukrishna S, Appasamy M, Johns J, Cranfield M, Visser JA, Themmen AP and Groome 694 
NP Development of a sensitive enzyme immunoassay for anti-Mullerian hormone and the 695 
evaluation of potential clinical applications in males and females. Clin Endocrinol (Oxf) 2005; 63: 696 
267-273. 697 

Almog B, Shehata F, Suissa S, Holzer H, Shalom-Paz E, La Marca A, Muttukrishna S, Blazar A, Hackett R, 698 
Nelson SM et al. Age-related normograms of serum antimullerian hormone levels in a 699 
population of infertile women: a multicenter study. Fertility and sterility 2011; 95: 2359-2363, 700 
2363 e2351. 701 

Andersen CY and Byskov AG Estradiol and regulation of anti-Mullerian hormone, inhibin-A, and inhibin-B 702 
secretion: analysis of small antral and preovulatory human follicles' fluid. J Clin Endocrinol Metab 703 
2006; 91: 4064-4069. 704 

Andersen CY and Lossl K Increased intrafollicular androgen levels affect human granulosa cell secretion 705 
of anti-Mullerian hormone and inhibin-B. Fertility and sterility 2008; 89: 1760-1765. 706 

Andersen CY, Schmidt KT, Kristensen SG, Rosendahl M, Byskov AG and Ernst E Concentrations of AMH 707 
and inhibin-B in relation to follicular diameter in normal human small antral follicles. Hum 708 
Reprod 2010; 25: 1282-1287. 709 

Anderson RA and Cameron DA Pretreatment serum anti-mullerian hormone predicts long-term ovarian 710 
function and bone mass after chemotherapy for early breast cancer. J Clin Endocrinol Metab 711 
2011; 96: 1336-1343. 712 

Anderson RA, Nelson SM and Wallace WH Measuring anti-Mullerian hormone for the assessment of 713 
ovarian reserve: when and for whom is it indicated? Maturitas 2012; 71: 28-33. 714 

Anderson RA, Rosendahl M, Kelsey TW and Cameron DA Pretreatment anti-Müllerian hormone predicts 715 
for loss of ovarian function after chemotherapy for early breast cancer. Eur J Cancer 2013; 49: 716 
3404-3411 717 

Azziz R, Marin C, Hoq L, Badamgarav E and Song P Health care-related economic burden of the polycystic 718 
ovary syndrome during the reproductive life span. J Clin Endocrinol Metab 2005; 90: 4650-4658. 719 

Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, 720 
Legro RS, Norman RJ, Taylor AE et al. The Androgen Excess and PCOS Society criteria for the 721 
polycystic ovary syndrome: the complete task force report. Fertility and sterility 2009; 91: 456-722 
488. 723 

Baarends WM, Uilenbroek JT, Kramer P, Hoogerbrugge JW, van Leeuwen EC, Themmen AP and 724 
Grootegoed JA Anti-mullerian hormone and anti-mullerian hormone type II receptor messenger 725 
ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and 726 
gonadotropin-induced follicle growth. Endocrinology 1995; 136: 4951-4962. 727 

Baird DT and Smith KB Inhibin and related peptides in the regulation of reproduction. Oxford reviews of 728 
reproductive biology 1993; 15: 191-232. 729 

Baker ML, Metcalfe SA and Hutson JM Serum levels of mullerian inhibiting substance in boys from birth 730 
to 18 years, as determined by enzyme immunoassay. J Clin Endocrinol Metab 1990; 70: 11-15. 731 

Balen AH, Laven JS, Tan SL and Dewailly D Ultrasound assessment of the polycystic ovary: international 732 
consensus definitions. Hum Reprod Update 2003; 9: 505-514. 733 

Bath LE, Wallace WH, Shaw MP, Fitzpatrick C and Anderson RA Depletion of ovarian reserve in young 734 
women after treatment for cancer in childhood: detection by anti-Mullerian hormone, inhibin B 735 
and ovarian ultrasound. Hum Reprod 2003; 18: 2368-2374. 736 

Behringer RR, Finegold MJ and Cate RL Mullerian-inhibiting substance function during mammalian 737 
sexual development. Cell 1994; 79: 415-425. 738 



 23 

Belville C, Van Vlijmen H, Ehrenfels C, Pepinsky B, Rezaie AR, Picard JY, Josso N, di Clemente N and Cate 739 
RL Mutations of the anti-mullerian hormone gene in patients with persistent mullerian duct 740 
syndrome: biosynthesis, secretion, and processing of the abnormal proteins and analysis using a 741 
three-dimensional model. Molecular endocrinology 2004; 18: 708-721. 742 

Bentzen JG, Forman JL, Pinborg A, Lidegaard O, Larsen EC, Friis-Hansen L, Johannsen TH and Nyboe 743 
Andersen A Ovarian reserve parameters: a comparison between users and non-users of 744 
hormonal contraception. Reprod Biomed Online 2012; 25: 612-619. 745 

Bodri D, Guillen JJ, Galindo A, Mataro D, Pujol A and Coll O Triggering with human chorionic 746 
gonadotropin or a gonadotropin-releasing hormone agonist in gonadotropin-releasing hormone 747 
antagonist-treated oocyte donor cycles: findings of a large retrospective cohort study. Fertility 748 
and sterility 2009; 91: 365-371. 749 

Braat DDM, Schutte JM, Bernardus RE, Mooij TM and van Leeuwen FE Maternal death related to IVF in 750 
the Netherlands 1984–2008. Human Reproduction 2010; 25: 1782-1786. 751 

Braem MG, Voorhuis M, van der Schouw YT, Peeters PH, Schouten LJ, Eijkemans MJ, Broekmans FJ and 752 
Onland-Moret NC Interactions between genetic variants in AMH and AMHR2 may modify age at 753 
natural menopause. PloS one 2013; 8: e59819. 754 

Broekmans FJ, de Ziegler D, Howles CM, Gougeon A, Trew G and Olivennes F The antral follicle count: 755 
practical recommendations for better standardization. Fertility and sterility 2010; 94: 1044-1051. 756 

Broer SL, Dolleman M, Opmeer BC, Fauser BC, Mol BW and Broekmans FJ AMH and AFC as predictors of 757 
excessive response in controlled ovarian hyperstimulation: a meta-analysis. Hum Reprod Update 758 
2011a; 17: 46-54. 759 

Broer SL, Eijkemans MJ, Scheffer GJ, van Rooij IA, de Vet A, Themmen AP, Laven JS, de Jong FH, Te Velde 760 
ER, Fauser BC et al. Anti-Mullerian hormone predicts menopause: a long-term follow-up study in 761 
normoovulatory women. J Clin Endocrinol Metab 2011b; 96: 2532-2539. 762 

Broer SL, Mol BW, Hendriks D and Broekmans FJ The role of antimullerian hormone in prediction of 763 
outcome after IVF: comparison with the antral follicle count. Fertility and sterility 2009; 91: 705-764 
714. 765 

Broer SL, van Disseldorp J, Broeze KA, Dolleman M, Opmeer BC, Bossuyt P, Eijkemans MJ, Mol BW and 766 
Broekmans FJ Added value of ovarian reserve testing on patient characteristics in the prediction 767 
of ovarian response and ongoing pregnancy: an individual patient data approach. Hum Reprod 768 
Update 2013; 19: 26-36. 769 

Brougham MF, Crofton PM, Johnson EJ, Evans N, Anderson RA and Wallace WH Anti-Mullerian hormone 770 
is a marker of gonadotoxicity in pre- and postpubertal girls treated for cancer: a prospective 771 
study. J Clin Endocrinol Metab 2012; 97: 2059-2067. 772 

Caanen, M ,Soleman, R ,Kuijper, E ,Kreukels, B ,Hompes, P , Trotsenburg, M ,Broekmans, F ,Lambalk, C. 773 

Anti-mullerian hormone serum levels decrease in female to male transsexual women using 774 

testosterone as cross-sex therapy Human Reproduction 2013;28 Supplement 1: 78-78  775 

Campbell BK, Clinton M and Webb R The role of anti-Mullerian hormone (AMH) during follicle 776 

development in a monovulatory species (sheep). Endocrinology 2012; 153: 4533-4543. 777 

Carlsen SM, Vanky E and Fleming R Anti-Mullerian hormone concentrations in androgen-suppressed 778 
women with polycystic ovary syndrome. Hum Reprod 2009; 24: 1732-1738. 779 

Carlsson IB, Scott JE, Visser JA, Ritvos O, Themmen AP and Hovatta O Anti-Mullerian hormone inhibits 780 
initiation of growth of human primordial ovarian follicles in vitro. Hum Reprod 2006; 21: 2223-781 
2227. 782 

Carre-Eusebe D, Imbeaud S, Harbison M, New MI, Josso N and Picard JY Variants of the anti-Mullerian 783 
hormone gene in a compound heterozygote with the persistent Mullerian duct syndrome and 784 
his family. Human genetics 1992; 90: 389-394. 785 

Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NM, Cheung A, Ninfa EG, Frey AZ, Gash DJ, Chow EP 786 
et al. Isolation of the bovine and human genes for Mullerian inhibiting substance and expression 787 
of the human gene in animal cells. Cell 1986; 45: 685-698. 788 



 24 

Catteau-Jonard S, Pigny P, Reyss AC, Decanter C, Poncelet E and Dewailly D Changes in serum anti-789 
mullerian hormone level during low-dose recombinant follicular-stimulating hormone therapy 790 
for anovulation in polycystic ovary syndrome. J Clin Endocrinol Metab 2007; 92: 4138-4143. 791 

Catteau-Jonard S, Jamin SP, Leclerc A, Gonzales J, Dewailly D and di Clemente N Anti-Mullerian 792 
hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by 793 
granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J Clin 794 
Endocrinol Metab 2008; 93: 4456-4461. 795 

Catteau-Jonard S, Bancquart J, Poncelet E, Lefebvre-Maunoury C, Robin G and Dewailly D Polycystic 796 
ovaries at ultrasound: normal variant or silent polycystic ovary syndrome? Ultrasound Obstet 797 
Gynecol 2012; 40: 223-229. 798 

Codner E, Iñíguez G, Villarroel C et al. Hormonal profile in women with polycystic ovarian syndrome with 799 
or without type 1 diabetes mellitus. J Clin Endocrinol Metab 2007; 92:4742-4746. 800 

Crisosto N, Sir-Petermann T, Greiner M, Maliqueo M, Moreno M, Aedo P and Lara HE Testosterone-801 
induced downregulation of anti-Mullerian hormone expression in granulosa cells from small 802 
bovine follicles. Endocrine 2009; 36: 339-345. 803 

Dafopoulos A, Dafopoulos K, Georgoulias P, Galazios G, Limberis V, Tsikouras P, Koutlaki N and Maroulis 804 
G Smoking and AMH levels in women with normal reproductive history. Arch Gynecol Obstet 805 
2010; 282: 215-219. 806 

Das M, Gillott DJ, Saridogan E and Djahanbakhch O Anti-Mullerian hormone is increased in follicular fluid 807 
from unstimulated ovaries in women with polycystic ovary syndrome. Hum Reprod 2008; 23: 808 
2122-2126. 809 

Decanter C, Morschhauser F, Pigny P, Lefebvre C, Gallo C and Dewailly D Anti-Mullerian hormone follow-810 
up in young women treated by chemotherapy for lymphoma: preliminary results. Reprod 811 
Biomed Online 2010; 20: 280-285. 812 

Dewailly D, Gronier H, Poncelet E, Robin G, Leroy M, Pigny P, Duhamel A and Catteau-Jonard S Diagnosis 813 
of polycystic ovary syndrome (PCOS): revisiting the threshold values of follicle count on 814 
ultrasound and of the serum AMH level for the definition of polycystic ovaries. Hum Reprod 815 
2011; 26: 3123-3129. 816 

Dewailly D, Pigny P, Soudan B, Catteau-Jonard S, Decanter C, Poncelet E and Duhamel A Reconciling the 817 
definitions of polycystic ovary syndrome: the ovarian follicle number and serum anti-Mullerian 818 
hormone concentrations aggregate with the markers of hyperandrogenism. J Clin Endocrinol 819 
Metab 2010; 95: 4399-4405. 820 

di Clemente N, Ghaffari S, Pepinsky RB, Pieau C, Josso N, Cate RL and Vigier B A quantitative and 821 
interspecific test for biological activity of anti-mullerian hormone: the fetal ovary aromatase 822 
assay. Development 1992; 114: 721-727. 823 

Dillon KE, Sammel MD, Prewitt M, Ginsberg JP, Walker D, Mersereau JE, Gosiengfiao Y and Gracia CR 824 
Pretreatment antimullerian hormone levels determine rate of posttherapy ovarian reserve 825 
recovery: acute changes in ovarian reserve during and after chemotherapy. Fertility and sterility 826 
2013; 99: 477-483. 827 

Dólleman M, Verschuren WM, Eijkemans MJ, Dollé ME, Jansen EH, Broekmans FJ, van der Schouw YT. 828 
Reproductive and lifestyle determinants of anti-Müllerian hormone in a large population-based 829 
study. J Clin Endocrinol Metab. 2013;98:2106-2115. 830 

Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, Rose UM, de Jong FH, Uilenbroek 831 
JT, Grootegoed JA et al. Anti-Mullerian hormone attenuates the effects of FSH on follicle 832 
development in the mouse ovary. Endocrinology 2001; 142: 4891-4899. 833 

Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA and Themmen AP Control of 834 
primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology 835 
1999; 140: 5789-5796. 836 

Durlinger AL, Visser JA and Themmen AP Regulation of ovarian function: the role of anti-Mullerian 837 
hormone. Reproduction 2002; 124: 601-609. 838 

Eldar-Geva T, Margalioth EJ, Gal M, Ben-Chetrit A, Algur N, Zylber-Haran E, Brooks B, Huerta M and Spitz 839 
IM Serum anti-Mullerian hormone levels during controlled ovarian hyperstimulation in women 840 
with polycystic ovaries with and without hyperandrogenism. Hum Reprod 2005; 20: 1814-1819. 841 



 25 

Fanchin R, Schonauer LM, Righini C, Guibourdenche J, Frydman R and Taieb J Serum anti-Mullerian 842 
hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH 843 
and LH on day 3. Human Reproduction 2003; 18: 323-327. 844 

Fanchin R, Taieb J, Lozano DH, Ducot B, Frydman R and Bouyer J High reproducibility of serum anti-845 
Mullerian hormone measurements suggests a multi-staged follicular secretion and strengthens 846 
its role in the assessment of ovarian follicular status. Hum Reprod 2005; 20: 923-927. 847 

Ferraretti AP, La Marca A, Fauser BC, Tarlatzis B, Nargund G and Gianaroli L ESHRE consensus on the 848 
definition of 'poor response' to ovarian stimulation for in vitro fertilization: the Bologna criteria. 849 
Hum Reprod 2011; 26: 1616-1624. 850 

Fleming R, Fairbairn C, Blaney C, Lucas D and Gaudoin M Stability of AMH measurement in blood and 851 
avoidance of proteolytic changes. Reprod Biomed Online 2013; 26: 130-132. 852 

Fleming R, Kelsey TW, Anderson RA, Wallace WH and Nelson SM Interpreting human follicular 853 
recruitment and antimullerian hormone concentrations throughout life. Fertility and sterility 854 
2012; 98: 1097-1102. 855 

Fleming R and Nelson SM Reproducibility of AMH. Hum Reprod 2012; 27: 3639-3641; author reply 3641-856 
3632. 857 

Franks S Polycystic ovary syndrome in adolescents. Int J Obes (Lond) 2008; 32: 1035-1041. 858 
Freeman EW, Gracia CR, Sammel MD, Lin H, Lim LC and Strauss JF, 3rd Association of anti-mullerian 859 

hormone levels with obesity in late reproductive-age women. Fertility and sterility 2007; 87: 860 
101-106. 861 

Freour T, Masson D, Dessolle L, Allaoua D, Dejoie T, Mirallie S, Jean M and Barriere P Ovarian reserve 862 
and in vitro fertilization cycles outcome according to women smoking status and stimulation 863 
regimen. Arch Gynecol Obstet 2012; 285: 1177-1182. 864 

Freour T, Mirallie S, Bach-Ngohou K, Denis M, Barriere P and Masson D Measurement of serum anti-865 
Mullerian hormone by Beckman Coulter ELISA and DSL ELISA: comparison and relevance in 866 
assisted reproduction technology (ART). Clinica chimica acta; international journal of clinical 867 
chemistry 2007; 375: 162-164. 868 

Genro VK, Grynberg M, Scheffer JB, Roux I, Frydman R and Fanchin R Serum anti-Mullerian hormone 869 
levels are negatively related to Follicular Output RaTe (FORT) in normo-cycling women 870 
undergoing controlled ovarian hyperstimulation. Hum Reprod 2011; 26: 671-677. 871 

Gigli I, Cushman RA, Wahl CM and Fortune JE Evidence for a role for anti-Mullerian hormone in the 872 
suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath 873 
the chick chorioallantoic membrane. Mol Reprod Dev 2005; 71: 480-488. 874 

Gilling-Smith C, Willis DS, Beard RW and Franks S Hypersecretion of androstenedione by isolated thecal 875 
cells from polycystic ovaries. J Clin Endocrinol Metab 1994; 79: 1158-1165. 876 

Gougeon A Ovarian follicular growth in humans: ovarian ageing and population of growing follicles. 877 
Maturitas 1998; 30: 137-142. 878 

Gracia CR, Sammel MD, Freeman E, Prewitt M, Carlson C, Ray A, Vance A and Ginsberg JP Impact of 879 
cancer therapies on ovarian reserve. Fertility and sterility 2012; 97: 134-140 e131. 880 

Grondahl ML, Nielsen ME, Dal Canto MB, Fadini R, Rasmussen IA, Westergaard LG, Kristensen SG and 881 
Yding Andersen C Anti-Mullerian hormone remains highly expressed in human cumulus cells 882 
during the final stages of folliculogenesis. Reprod Biomed Online 2011; 22: 389-398. 883 

Grossman MP, Nakajima ST, Fallat ME and Siow Y Mullerian-inhibiting substance inhibits cytochrome 884 
P450 aromatase activity in human granulosa lutein cell culture. Fertility and sterility 2008; 89: 885 
1364-1370. 886 

Hadlow N, Longhurst K, McClements A, Natalwala J, Brown SJ and Matson PL Variation in antimullerian 887 
hormone concentration during the menstrual cycle may change the clinical classification of the 888 
ovarian response. Fertility and sterility 2013; 99: 1791-1797. 889 

Hagen CP, Vestergaard S, Juul A, Skakkebaek NE, Andersson AM, Main KM, Hjollund NH, Ernst E, Bonde 890 
JP, Anderson RA et al. Low concentration of circulating anti-Müllerian hormone is not predictive 891 
of reduced fecundability in young healthy women: a prospective cohort study. Fertility and 892 
sterility 2012; 98: 1602-1608. 893 

Halawaty S, ElKattan E, Azab H, ElGhamry N and Al-Inany H Effect of obesity on parameters of ovarian 894 
reserve in premenopausal women. J Obstet Gynaecol Can 2010; 32: 687-690. 895 



 26 

Hamre H, Kiserud CE, Ruud E, Thorsby PM and Fossa SD Gonadal function and parenthood 20 years after 896 
treatment for childhood lymphoma: a cross-sectional study. Pediatric blood & cancer 2012; 59: 897 
271-277. 898 

Hansen KR, Hodnett GM, Knowlton N and Craig LB Correlation of ovarian reserve tests with histologically 899 
determined primordial follicle number. Fertility and sterility 2011; 95: 170-175. 900 

Hart R, Doherty DA, Norman RJ, Franks S, Dickinson JE, Hickey M and Sloboda DM Serum antimullerian 901 
hormone (AMH) levels are elevated in adolescent girls with polycystic ovaries and the polycystic 902 
ovarian syndrome (PCOS). Fertility and sterility 2010; 94: 1118-1121. 903 

Hehenkamp WJ, Looman CW, Themmen AP, de Jong FH, Te Velde ER and Broekmans FJ Anti-Mullerian 904 
hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation. J Clin 905 
Endocrinol Metab 2006; 91: 4057-4063. 906 

Hendriks DJ, te Velde ER, Looman CW, Bancsi LF and Broekmans FJ Expected poor ovarian response in 907 
predicting cumulative pregnancy rates: a powerful tool. Reprod Biomed Online 2008; 17: 727-908 
736. 909 

Hudson PL, Dougas I, Donahoe PK, Cate RL, Epstein J, Pepinsky RB and MacLaughlin DT An immunoassay 910 
to detect human mullerian inhibiting substance in males and females during normal 911 
development. J Clin Endocrinol Metab 1990; 70: 16-22. 912 

Hughesdon PE Morphology and morphogenesis of the Stein-Leventhal ovary and of so-called 913 
"hyperthecosis". Obstet Gynecol Surv 1982; 37: 59-77. 914 

Hutson J, Ikawa H, Donahoe PK. The ontogeny of Mullerian inhibiting substance  in the gonads of the 915 
chicken. J Pediatr Surg. 1981;16:822-827 916 

Iliodromiti S, Kelsey TW, Anderson RA and Nelson SM Can anti-mullerian hormone predict the diagnosis 917 
of polycystic ovary syndrome? A systematic review and meta-analysis of extracted data. J Clin 918 
Endocrinol Metab 2013; 98: 3332-3340. 919 

Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K, Raine-Fenning N, 920 
Campbell BK and Yding Andersen C Which follicles make the most anti-Mullerian hormone in 921 
humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol 922 
Hum Reprod 2013; 19: 519-527. 923 

Josso N, Cate RL, Picard JY, Vigier B, di Clemente N, Wilson C, Imbeaud S, Pepinsky RB, Guerrier D, 924 
Boussin L et al. Anti-mullerian hormone: the Jost factor. Recent progress in hormone research 925 
1993; 48: 1-59. 926 

Josso N, Legeai L, Forest MG, Chaussain JL and Brauner R An enzyme linked immunoassay for anti-927 
mullerian hormone: a new tool for the evaluation of testicular function in infants and children. J 928 
Clin Endocrinol Metab 1990; 70: 23-27. 929 

Jost A The age factor in the castration of male rabbit fetuses. Proceedings of the Society for Experimental 930 
Biology and Medicine Society for Experimental Biology and Medicine 1947; 66: 302. 931 

Kallio S, Puurunen J, Ruokonen A, Vaskivuo T, Piltonen T and Tapanainen JS Antimullerian hormone 932 
levels decrease in women using combined contraception independently of administration route. 933 
Fertility and sterility 2013; 99: 1305-1310. 934 

Kelsey TW, Anderson RA, Wright P, Nelson SM and Wallace WH Data-driven assessment of the human 935 
ovarian reserve. Mol Hum Reprod 2012; 18: 79-87. 936 

Kelsey TW, Wright P, Nelson SM, Anderson RA and Wallace WH A validated model of serum anti-937 
Müllerian hormone from conception to menopause. PloS one 2011; 6: e22024. 938 

Kevenaar ME, Laven JS, Fong SL, Uitterlinden AG, de Jong FH, Themmen AP and Visser JA A functional 939 
anti-mullerian hormone gene polymorphism is associated with follicle number and androgen 940 
levels in polycystic ovary syndrome patients. J Clin Endocrinol Metab 2008; 93: 1310-1316. 941 

Kevenaar ME, Meerasahib MF, Kramer P, van de Lang-Born BM, de Jong FH, Groome NP, Themmen AP 942 
and Visser JA Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool 943 
in mice. Endocrinology 2006; 147: 3228-3234. 944 

Kevenaar ME, Themmen AP, Laven JS, Sonntag B, Fong SL, Uitterlinden AG, de Jong FH, Pols HA, Simoni 945 
M and Visser JA Anti-Mullerian hormone and anti-Mullerian hormone type II receptor 946 
polymorphisms are associated with follicular phase estradiol levels in normo-ovulatory women. 947 
Hum Reprod 2007; 22: 1547-1554. 948 



 27 

Köninger A, Kauth A, Schmidt B, Schmidt M, Yerlikaya G, Kasimir-Bauer S, Kimmig R, Birdir C. Anti-949 
Mullerian-hormone levels during pregnancy and postpartum. Reprod Biol Endocrinol. 950 
2013;11:60 951 

Kosova G and Urbanek M Genetics of the polycystic ovary syndrome. Mol Cell Endocrinol 2013; 373: 29-952 
38. 953 

Kumar A, Kalra B, Patel A, McDavid L and Roudebush WE Development of a second generation anti-954 
Mullerian hormone (AMH) ELISA. Journal of immunological methods 2010; 362: 51-59. 955 

La Marca A, Volpe A. The Anti-Mullerian hormone and ovarian cancer. Hum Reprod Update. 2007; 956 
13:265-73 957 

La Marca A, Nelson SM, Sighinolfi G, Manno M, Baraldi E, Roli L, Xella S, Marsella T, Tagliasacchi D, 958 
D'Amico R et al. Anti-Mullerian hormone-based prediction model for a live birth in assisted 959 
reproduction. Reprod Biomed Online 2011; 22: 341-349. 960 

La Marca A, Papaleo E, Grisendi V, Argento C, Giulini S and Volpe A Development of a nomogram based 961 
on markers of ovarian reserve for the individualisation of the follicle-stimulating hormone 962 
starting dose in in vitro fertilisation cycles. BJOG 2012; 119: 1171-1179. 963 

La Marca A, Sighinolfi G, Radi D, Argento C, Baraldi E, Artenisio AC, Stabile G and Volpe A Anti-Mullerian 964 
hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum Reprod 965 
Update 2010; 16: 113-130. 966 

La Marca A, Spada E, Grisendi V, Argento C, Papaleo E, Milani S and Volpe A Normal serum anti-967 
Mullerian hormone levels in the general female population and the relationship with 968 
reproductive history. Eur J Obstet Gynecol Reprod Biol 2012; 163: 180-184. 969 

La Marca A, Spada E, Sighinolfi G, Argento C, Tirelli A, Giulini S, Milani S and Volpe A Age-specific 970 
nomogram for the decline in antral follicle count throughout the reproductive period. Fertility 971 
and sterility 2011; 95: 684-688. 972 

La Marca A, Stabile G, Artenisio AC and Volpe A Serum anti-Mullerian hormone throughout the human 973 
menstrual cycle. Hum Reprod 2006; 21: 3103-3107. 974 

Laven JS, Mulders AG, Visser JA, Themmen AP, De Jong FH and Fauser BC Anti-Mullerian hormone serum 975 
concentrations in normoovulatory and anovulatory women of reproductive age. J Clin Endocrinol 976 
Metab 2004; 89: 318-323. 977 

Lawlor DA and Nelson SM Effect of age on decisions about the numbers of embryos to transfer in 978 
assisted conception: a prospective study. Lancet 2012; 379: 521-527. 979 

Lee JR, Kim SH, Jee BC, Suh CS, Kim KC and Moon SY Antimullerian hormone as a predictor of controlled 980 
ovarian hyperstimulation outcome: comparison of two commercial immunoassay kits. Fertility 981 
and sterility 2011; 95: 2602-2604. 982 

Lee MM and Donahoe PK Mullerian inhibiting substance: a gonadal hormone with multiple functions. 983 
Endocrine reviews 1993; 14: 152-164. 984 

Li HW, Anderson RA, Yeung WS, Ho PC and Ng EH Evaluation of serum antimullerian hormone and 985 
inhibin B concentrations in the differential diagnosis of secondary oligoamenorrhea. Fertility and 986 
sterility 2011; 96: 774-779. 987 

Li HW, Ng EH, Wong BP, Anderson RA, Ho PC and Yeung WS Correlation between three assay systems 988 
for anti-Mullerian hormone (AMH) determination. J Assist Reprod Genet 2012; 29: 1443-1446. 989 

Lie Fong S, Laven JS, Hakvoort-Cammel FG, Schipper I, Visser JA, Themmen AP, de Jong FH and van den 990 
Heuvel-Eibrink MM Assessment of ovarian reserve in adult childhood cancer survivors using 991 
anti-Mullerian hormone. Hum Reprod 2009; 24: 982-990. 992 

Lie Fong S, Schipper I, de Jong FH, Themmen AP, Visser JA and Laven JS Serum anti-Mullerian hormone 993 
and inhibin B concentrations are not useful predictors of ovarian response during ovulation 994 
induction treatment with recombinant follicle-stimulating hormone in women with polycystic 995 
ovary syndrome. Fertility and sterility 2011; 96: 459-463. 996 

Long WQ, Ranchin V, Pautier P, Belville C, Denizot P, Cailla H, Lhomme C, Picard JY, Bidart JM and Rey R 997 
Detection of minimal levels of serum anti-Mullerian hormone during follow-up of patients with 998 
ovarian granulosa cell tumor by means of a highly sensitive enzyme-linked immunosorbent 999 
assay. J Clin Endocrinol Metab 2000; 85: 540-544. 1000 



 28 

Lujan ME, Jarrett BY, Brooks ED, Reines JK, Peppin AK, Muhn N, Haider E, Pierson RA and Chizen DR 1001 
Updated ultrasound criteria for polycystic ovary syndrome: reliable thresholds for elevated 1002 
follicle population and ovarian volume. Hum Reprod 2013; 28: 1361-1368. 1003 

Maciel GA, Baracat EC, Benda JA, Markham SM, Hensinger K, Chang RJ and Erickson GF Stockpiling of 1004 
transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J 1005 
Clin Endocrinol Metab 2004; 89: 5321-5327. 1006 

Mutlu MF, Erdem M, Erdem A, Yildiz S, Mutlu I, Arisoy O and Oktem M Antral follicle count determines 1007 
poor ovarian response better than anti-Mullerian hormone but age is the only predictor for live 1008 
birth in in vitro fertilization cycles. J Assist Reprod Genet 2013; 30: 657-665. 1009 

Nachtigal MW and Ingraham HA Bioactivation of Mullerian inhibiting substance during gonadal 1010 
development by a kex2/subtilisin-like endoprotease. Proc Natl Acad Sci U S A 1996; 93: 7711-1011 
7716. 1012 

Nardo LG, Christodoulou D, Gould D, Roberts SA, Fitzgerald CT and Laing I Anti-Mullerian hormone levels 1013 
and antral follicle count in women enrolled in in vitro fertilization cycles: relationship to lifestyle 1014 
factors, chronological age and reproductive history. Gynecol Endocrinol 2007; 23: 486-493. 1015 

Nelson SM and Lawlor DA Predicting live birth, preterm delivery, and low birth weight in infants born 1016 
from in vitro fertilisation: a prospective study of 144,018 treatment cycles. PLoS Med 2011a; 8: 1017 
e1000386. 1018 

Nelson SM, Messow MC, McConnachie A, Wallace H, Kelsey T, Fleming R, Anderson RA and Leader B 1019 
External validation of nomogram for the decline in serum anti-Mullerian hormone in women: a 1020 
population study of 15,834 infertility patients. Reprod Biomed Online 2011b; 23: 204-206. 1021 

Nelson SM, Messow MC, Wallace AM, Fleming R and McConnachie A Nomogram for the decline in 1022 
serum antimullerian hormone: a population study of 9,601 infertility patients. Fertility and 1023 
sterility 2011c; 95: 736-741 e731-733. 1024 

Nelson SM, Stewart F, Fleming R and Freeman DJ Longitudinal assessment of antimullerian hormone 1025 
during pregnancy-relationship with maternal adiposity, insulin, and adiponectin. Fertility and 1026 
sterility 2010; 93: 1356-1358. 1027 

Nelson SM, Yates RW and Fleming R Serum anti-Mullerian hormone and FSH: prediction of live birth and 1028 
extremes of response in stimulated cycles--implications for individualization of therapy. Hum 1029 
Reprod 2007; 22: 2414-2421. 1030 

Nelson SM, Yates RW, Lyall H, Jamieson M, Traynor I, Gaudoin M, Mitchell P, Ambrose P and Fleming R 1031 
Anti-Mullerian hormone-based approach to controlled ovarian stimulation for assisted 1032 
conception. Hum Reprod 2009; 24: 867-875. 1033 

Nielsen ME, Rasmussen IA, Kristensen SG, Christensen ST, Mollgard K, Wreford Andersen E, Byskov AG 1034 
and Yding Andersen C In human granulosa cells from small antral follicles, androgen receptor 1035 
mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA. Mol Hum 1036 
Reprod 2011; 17: 63-70. 1037 

Nilsson E, Rogers N and Skinner MK Actions of anti-Mullerian hormone on the ovarian transcriptome to 1038 
inhibit primordial to primary follicle transition. Reproduction 2007; 134: 209-221. 1039 

Overbeek A, Broekmans FJ, Hehenkamp WJ, Wijdeveld ME, van Disseldorp J, van Dulmen-den Broeder E 1040 
and Lambalk CB Intra-cycle fluctuations of anti-Mullerian hormone in normal women with a 1041 
regular cycle: a re-analysis. Reprod Biomed Online 2012; 24: 664-669. 1042 

Panidis D, Katsikis I, Karkanaki A, Piouka A, Armeni AK and Georgopoulos NA Serum Anti-Mullerian 1043 
hormone (AMH) levels are differentially modulated by both serum gonadotropins and not only 1044 
by serum Follicle Stimulating Hormone (FSH) levels. Med Hypotheses 2011; 77: 649-653. 1045 

Park AS, Lawson MA, Chuan SS, Oberfield SE, Hoeger KM, Witchel SF and Chang RJ Serum Anti-Mullerian 1046 
Hormone Concentrations Are Elevated in Oligomenorrheic Girls without Evidence of 1047 
Hyperandrogenism. J Clin Endocr Metab 2010; 95: 1786-1792. 1048 

Partridge AH, Ruddy KJ, Gelber S, Schapira L, Abusief M, Meyer M and Ginsburg E Ovarian reserve in 1049 
women who remain premenopausal after chemotherapy for early stage breast cancer. Fertility 1050 
and sterility 2010; 94: 638-644. 1051 

Pellatt L, Hanna L, Brincat M, Galea R, Brain H, Whitehead S and Mason H Granulosa cell production of 1052 
anti-Mullerian hormone is increased in polycystic ovaries. J Clin Endocrinol Metab 2007; 92: 240-1053 
245. 1054 



 29 

Pellatt L, Rice S, Dilaver N, Heshri A, Galea R, Brincat M, Brown K, Simpson ER and Mason HD Anti-1055 
Mullerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human 1056 
granulosa cells. Fertility and sterility 2011; 96: 1246-1251 e1241. 1057 

Pellatt L, Rice S and Mason HD Anti-Mullerian hormone and polycystic ovary syndrome: a mountain too 1058 
high? Reproduction 2010; 139: 825-833. 1059 

Pepinsky RB, Sinclair LK, Chow EP, Mattaliano RJ, Manganaro TF, Donahoe PK and Cate RL Proteolytic 1060 
processing of mullerian inhibiting substance produces a transforming growth factor-beta-like 1061 
fragment. The Journal of biological chemistry 1988; 263: 18961-18964. 1062 

Picard JY, Josso N Purification of testicular anti-Müllerian hormone allowing direct visualization of the 1063 
pure glycoprotein and determination of yield and purification factor. Mol Cell Endocrinol 1984; 1064 
34:23-29. 1065 

Pierre A, Peigne M, Grynberg M, Arouche N, Taieb J, Hesters L, Gonzales J, Picard JY, Dewailly D, Fanchin 1066 
R et al. Loss of LH-induced down-regulation of anti-Mullerian hormone receptor expression may 1067 
contribute to anovulation in women with polycystic ovary syndrome. Hum Reprod 2013; 28: 1068 
762-769. 1069 

Pigny P, Merlen E, Robert Y, Cortet-Rudelli C, Decanter C, Jonard S and Dewailly D Elevated serum level 1070 
of anti-mullerian hormone in patients with polycystic ovary syndrome: relationship to the 1071 
ovarian follicle excess and to the follicular arrest. J Clin Endocrinol Metab 2003; 88: 5957-5962. 1072 

Piouka A, Farmakiotis D, Katsikis I, Macut D, Gerou S and Panidis D Anti-Mullerian hormone levels reflect 1073 
severity of PCOS but are negatively influenced by obesity: relationship with increased luteinizing 1074 
hormone levels. American journal of physiology Endocrinology and metabolism 2009; 296: E238-1075 
243. 1076 

Plante BJ, Cooper GS, Baird DD and Steiner AZ The impact of smoking on antimullerian hormone levels in 1077 
women aged 38 to 50 years. Menopause 2010; 17: 571-576. 1078 

Raffi F, Metwally M and Amer S The impact of excision of ovarian endometrioma on ovarian reserve: a 1079 
systematic review and meta-analysis. J Clin Endocrinol Metab 2012; 97: 3146-3154. 1080 

Rajpert-De Meyts E, Jørgensen N, Graem N, Müller J, Cate RL, Skakkebaek NE. Expression of anti-1081 
Müllerian hormone during normal and pathological gonadal development: association with 1082 
differentiation of Sertoli and granulosa cells. J Clin Endocrinol Metab. 1999;84:3836-3844 1083 

Rey R, Sabourin JC, Venara M et al. Anti-Müllerian hormone is a specific marker of Sertoli- and 1084 
granulosa-cell origin in gonadal tumors. Hum Pathol 2000; 31:1202-1208. 1085 

Robin G, Gallo C, Catteau-Jonard S, Lefebvre-Maunoury C, Pigny P, Duhamel A and Dewailly D Polycystic 1086 
Ovary-Like Abnormalities (PCO-L) in women with functional hypothalamic amenorrhea. J Clin 1087 
Endocrinol Metab 2012; 97: 4236-4243. 1088 

Rosendahl M, Andersen CY, Ernst E, Westergaard LG, Rasmussen PE, Loft A and Andersen AN Ovarian 1089 
function after removal of an entire ovary for cryopreservation of pieces of cortex prior to 1090 
gonadotoxic treatment: a follow-up study. Hum Reprod 2008; 23: 2475-2483. 1091 

Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group Revised 2003 consensus on 1092 
diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum 1093 
Reprod 2004; 19: 41-47. 1094 

Rustamov O, Smith A, Roberts SA, Yates AP, Fitzgerald C, Krishnan M, Nardo LG and Pemberton PW Anti-1095 
Mullerian hormone: poor assay reproducibility in a large cohort of subjects suggests sample 1096 
instability. Hum Reprod 2012; 27: 3085-3091. 1097 

Salmon NA, Handyside AH and Joyce IM Oocyte regulation of anti-Mullerian hormone expression in 1098 
granulosa cells during ovarian follicle development in mice. Developmental biology 2004; 266: 1099 
201-208. 1100 

Schipper I, Visser JA, Themmen AP and Laven JS Limitations and pitfalls of antimullerian hormone 1101 
measurements. Fertility and sterility 2012; 98: 823-824. 1102 

Schmidt KL, Kryger-Baggesen N, Byskov AG and Andersen CY Anti-Mullerian hormone initiates growth of 1103 
human primordial follicles in vitro. Mol Cell Endocrinol 2005; 234: 87-93. 1104 

Schuh-Huerta SM, Johnson NA, Rosen MP, Sternfeld B, Cedars MI and Reijo Pera RA Genetic variants and 1105 
environmental factors associated with hormonal markers of ovarian reserve in Caucasian and 1106 
African American women. Hum Reprod 2012; 27: 594-608. 1107 



 30 

Seifer DB, Golub ET, Lambert-Messerlian G, Benning L, Anastos K, Watts DH, Cohen MH, Karim R, Young 1108 
MA, Minkoff H et al. Variations in serum mullerian inhibiting substance between white, black, 1109 
and Hispanic women. Fertility and sterility 2009; 92: 1674-1678. 1110 

Skalba P, Cygal A, Madej P, Dabkowska-Huc A, Sikora J, Martirosian G, Romanik M and Olszanecka-1111 
Glinianowicz M Is the plasma anti-Mullerian hormone (AMH) level associated with body weight 1112 
and metabolic, and hormonal disturbances in women with and without polycystic ovary 1113 
syndrome? Eur J Obstet Gynecol Reprod Biol 2011; 158: 254-259. 1114 

Somigliana E, Berlanda N, Benaglia L, Vigano P, Vercellini P and Fedele L Surgical excision of 1115 
endometriomas and ovarian reserve: a systematic review on serum antimullerian hormone level 1116 
modifications. Fertility and sterility 2012. 1117 

Sowers M, McConnell D, Gast K, Zheng H, Nan B, McCarthy JD and Randolph JF Anti-Mullerian hormone 1118 
and inhibin B variability during normal menstrual cycles. Fertility and sterility 2010; 94: 1482-1119 
1486. 1120 

Steiner AZ, Stanczyk FZ, Patel S and Edelman A Antimullerian hormone and obesity: insights in oral 1121 
contraceptive users. Contraception 2010; 81: 245-248. 1122 

Streuli I, de Ziegler D, Gayet V, Santulli P, Bijaoui G, de Mouzon J and Chapron C In women with 1123 
endometriosis anti-Mullerian hormone levels are decreased only in those with previous 1124 
endometrioma surgery. Hum Reprod 2012; 27: 3294-3303. 1125 

Streuli I, Fraisse T, Chapron C, Bijaoui G, Bischof P and de Ziegler D Clinical uses of anti-Mullerian 1126 
hormone assays: pitfalls and promises. Fertility and sterility 2009; 91: 226-230. 1127 

Stubbs SA, Hardy K, Da Silva-Buttkus P, Stark J, Webber LJ, Flanagan AM, Themmen AP, Visser JA, 1128 
Groome NP and Franks S Anti-mullerian hormone protein expression is reduced during the initial 1129 
stages of follicle development in human polycystic ovaries. J Clin Endocrinol Metab 2005; 90: 1130 
5536-5543. 1131 

Su HI, Flatt SW, Natarajan L, DeMichele A and Steiner AZ Impact of breast cancer on anti-mullerian 1132 
hormone levels in young women. Breast cancer research and treatment 2013; 137: 571-577. 1133 

Takahashi M, Hayashi M, Manganaro TF, Donahoe PK The ontogeny of mullerian inhibiting substance in 1134 
granulosa cells of the bovine ovarian follicle. Biol Reprod 1986; 35:447-453. 1135 

Tehrani FR, Solaymani-Dodaran M and Azizi F A single test of antimullerian hormone in late 1136 
reproductive-aged women is a good predictor of menopause. Menopause 2009; 16: 797-802. 1137 

Tehrani FR, Solaymani-Dodaran M, Tohidi M, Gohari MR and Azizi F Modeling age at menopause using 1138 
serum concentration of anti-mullerian hormone. J Clin Endocrinol Metab 2013; 98: 729-735. 1139 

Tsepelidis S, Devreker F, Demeestere I, Flahaut A, Gervy C and Englert Y Stable serum levels of anti-1140 
Mullerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women. 1141 
Hum Reprod 2007; 22: 1837-1840. 1142 

van Beek RD, van den Heuvel-Eibrink MM, Laven JS, de Jong FH, Themmen AP, Hakvoort-Cammel FG, 1143 
van den Bos C, van den Berg H, Pieters R and de Muinck Keizer-Schrama SM Anti-Mullerian 1144 
hormone is a sensitive serum marker for gonadal function in women treated for Hodgkin's 1145 
lymphoma during childhood. J Clin Endocrinol Metab 2007; 92: 3869-3874. 1146 

van den Berg MH, van Dulmen-den Broeder E, Overbeek A, Twisk JW, Schats R, van Leeuwen FE, Kaspers 1147 
GJ, Lambalk CB. Comparison of ovarian function markers in users of hormonal contraceptives 1148 
during the hormone-free interval and subsequent natural early follicular phases. Hum Reprod. 1149 
2010 ;25:1520-1527.  1150 

van Disseldorp J, Lambalk CB, Kwee J, Looman CW, Eijkemans MJ, Fauser BC and Broekmans FJ 1151 
Comparison of inter- and intra-cycle variability of anti-Mullerian hormone and antral follicle 1152 
counts. Hum Reprod 2010; 25: 221-227. 1153 

van Houten EL, Themmen AP, Visser JA. Anti-Müllerian hormone (AMH): regulator  and marker of 1154 
ovarian function. Ann Endocrinol (Paris). 2010;71:191-197. 1155 

Veiga-Lopez A, Steckler TL, Abbott DH, Welch KB, MohanKumar PS, Phillips DJ, Refsal K and 1156 
Padmanabhan V Developmental programming: impact of excess prenatal testosterone on 1157 
intrauterine fetal endocrine milieu and growth in sheep. Biol Reprod 2011; 84: 87-96. 1158 

Vigier B, Forest MG, Eychenne B, Bezard J, Garrigou O, Robel P and Josso N Anti-Mullerian hormone 1159 
produces endocrine sex reversal of fetal ovaries. Proc Natl Acad Sci U S A 1989; 86: 3684-3688. 1160 



 31 

Villarroel C, Merino PM, Lopez P, Eyzaguirre FC, Van Velzen A, Iniguez G and Codner E Polycystic ovarian 1161 
morphology in adolescents with regular menstrual cycles is associated with elevated anti-1162 
Mullerian hormone. Hum Reprod 2011; 26: 2861-2868. 1163 

Visser JA, de Jong FH, Laven JS and Themmen AP Anti-Mullerian hormone: a new marker for ovarian 1164 
function. Reproduction 2006; 131: 1-9. 1165 

Visser JA, Durlinger AL, Peters IJ, van den Heuvel ER, Rose UM, Kramer P, de Jong FH and Themmen AP 1166 
Increased oocyte degeneration and follicular atresia during the estrous cycle in anti-Mullerian 1167 
hormone null mice. Endocrinology 2007; 148: 2301-2308. 1168 

Visser JA and Themmen AP Anti-Mullerian hormone and folliculogenesis. Mol Cell Endocrinol 2005; 234: 1169 
81-86. 1170 

Voorhuis M, Onland-Moret NC, van der Schouw YT, Fauser BC and Broekmans FJ Human studies on 1171 
genetics of the age at natural menopause: a systematic review. Hum Reprod Update 2010; 16: 1172 
364-377. 1173 

Wallace WH and Kelsey TW Human ovarian reserve from conception to the menopause. PLoS One 2010; 1174 
5:e8772 1175 

Wallace AM, Faye SA, Fleming R and Nelson SM A multicentre evaluation of the new Beckman Coulter 1176 
anti-Mullerian hormone immunoassay (AMH Gen II). Annals of clinical biochemistry 2011; 48: 1177 
370-373. 1178 

Waylen AL, Jones GL and Ledger WL Effect of cigarette smoking upon reproductive hormones in women 1179 
of reproductive age: a retrospective analysis. Reproductive Biomedicine Online 2010; 20: 861-1180 
865. 1181 

Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, Hardy K and Franks S Formation and early 1182 
development of follicles in the polycystic ovary. Lancet 2003; 362: 1017-1021. 1183 

Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, Kramer P, Fauser BC and 1184 
Themmen AP Anti-Mullerian hormone expression pattern in the human ovary: potential 1185 
implications for initial and cyclic follicle recruitment. Mol Hum Reprod 2004; 10: 77-83. 1186 

Yates AP, Rustamov O, Roberts SA, Lim HY, Pemberton PW, Smith A and Nardo LG Anti-Mullerian 1187 
hormone-tailored stimulation protocols improve outcomes whilst reducing adverse effects and 1188 
costs of IVF. Hum Reprod 2011; 26: 2353-2362. 1189 

 1190 

1191 



 32 

Legends to figures 1192 

 1193 

Figure 1: Schematic model of anti-Müllerian hormone (AMH) actions in the ovary.  1194 

AMH, produced by the granulosa cells of small growing follicles, inhibits initial follicle recruitment and 1195 

FSH-dependent growth and selection of preantral and small antral follicles. In addition, AMH remains 1196 

highly expressed in cumulus cells of mature follicles. The inset shows in more detail the inhibitory effect 1197 

of AMH on FSH-induced CYP19a1 expression leading to reduced E2 levels, and the inhibitory effect of E2 1198 

itself on AMH expression. AMH, anti-Müllerian hormone; FSH, follicle stimulating hormone; T, 1199 

testosterone; E2, estradiol; Cyp19a1, aromatase. Figure modified from van Houten et al. (2010). 1200 

 1201 

Figure 2: Schematic presentation depicting the processing of AMH.  1202 

AMH is produced as a precursor protein consisting of disulphide-linked monomers. Upon cleavage by 1203 

prohormone convertases the protein is cleaved into pro- and mature homodimers, which remain non-1204 

covalently associated. AMH enzyme-linked immunosorbent assays (ELISA) have been developed to 1205 

detect AMH in circulation. The regions that are recognized by the monoclonal antibodies used in the 1206 

ultrasensitive IOT assay and the Gen II assay (previously DSL) are indicated. For the Gen II assay, the 1207 

capture antibody recognized the mature region and the detector antibody recognizes the proregion.  1208 

 1209 

Figure 3: AMH variability throughout the menstrual cycle. Serum AMH appears to be stable.  1210 

(Reproduced with permission from (a) La Marca et al., 2006, (b) Hehenkamp et al., 2006 and (c) 1211 

Tsepelidis et al., 2007). 1212 

 1213 

Figure 4: AMH and follicular recruitment profile across the lifespan. 1214 

Comparison of serum AMH concentrations with NGF recruitment rates.  The red line is the log-1215 

unadjusted validated AMH model (Kelsey et al., 2011), peaking at 24.5 years.  The blue line denotes the 1216 

numbers of NGFs recruited per month towards the maturation population (Wallace and Kelsey, 2010), 1217 

with peak numbers lost at age 14.2 years on average.  Correlation coefficients (r) are given for AMH 1218 

concentrations against follicular recruitment for each developmental phase; from birth to puberty (age 9 1219 

years), during puberty (9 – 15 years), post-puberty (15- 25 years) and mature adults (>25 years).  1220 

 1221 

Figure 5: Classification mosaic chart for ongoing menses (M) or chemotherapy-related amenorrhea (A) 1222 

using pre-chemotherapy serum AMH and chronological age as predictor variables, in women with 1223 

early breast cancer.  1224 

The primary cutoff values are both for AMH, with below 3·8 pmol/L predicting amenorrhea and above 1225 

20·3 pmol/L predicting ongoing menses. Between these AMH levels there is an age threshold at 38·6 1226 

years, above which amenorrhea is predicted and below which ongoing menses are predicted. The 1227 
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classification schema has sensitivity 98·2% and specificity 80·0%. Reprinted with permission from 1228 

Anderson et al 2013, Eur J Cancer. 1229 

 1230 

Figure 6: rationale for the use of serum AMH assay as a probe for PCOM 1231 

(A) All growing follicles secrete AMH but serum AMH reflects only the secretion from bigger follicles that 1232 

are in contact with the vascular bed. As the numbers of follicles in all growth stages are strongly related 1233 

to each other, serum AMH is considered to reflect the sum of growing follicles but not the number of 1234 

primordial follicles that do not secrete AMH (see section 3-1).   1235 

(B) In PCO, the numbers of all growing follicles is increased, resulting in a marked increase in serum AMH 1236 

level (see section 5). This marker may be considered as a deeper and more sensitive probe to define 1237 

follicle excess than the follicle count by ultrasound (U/S) since it appraises more follicle classes (blue 1238 

arrows). 1239 
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