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Abstract

In this thesis, we are concerned with continuous-variable quantum optical state

engineering protocols. Such protocols are designed to repair or enhance the non-

classical features of a given state. In particular, we build a weak measurement model

of Gaussian entanglement concentration of the two mode squeezed vacuum state.

This model allows the simultaneous description of all possible ancilla system varia-

tions. In addition, it provides an explanation of the Gaussian-preserving property

of these protocols while providing a success criterion which links all of the degrees

of freedom on the ancilla. Following this, we demonstrate the wider application

of weak measurements to quantum optical state engineering by showing that they

allow probabilistic noiseless amplification of photon number. We then establish a

connection between weak measurements and entanglement concentration as a fun-

damental result of weak measurements on entangled probes. After this, we explore

the trade-off between Gaussian and non-Gaussian operations in the preparation of

non-Gaussian pure states. In particular, we suggest that an operational cost for an

arbitrary non-Gaussian pure state is the largest Fock state required for its approx-

imate preparation. We consider the extent to which this non-Gaussian operational

cost can be reduced by applying unitary Gaussian operations. This method relies

on the identification of a minimal core state for any target non-Gaussian pure state.
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Chapter 1

Introduction and overview

1.1 Motivational remarks

Historically, quantum mechanics was born from a necessity to explain a number of

counter intuitive phenomena unintelligible from a classical point of view. Whilst

the empirical successes of quantum mechanics are undeniable, the absence of a

universally accepted physical interpretation means that the theory remains rather

enigmatic. In particular, many of the key theorems of quantum mechanics such as

the uncertainty principle, measurement theory and entanglement are presented in

a negative light [6]. However, an alternative viewpoint has begun to emerge from

the invention and development of quantum information theory. Its central tenet

is the realisation that quantum mechanical systems can be exploited to perform

computational and information processing tasks in a manner that could offer dis-

tinct advantages over the nearest classical counterpart. Consequently, it allows for

an appreciation of the phantom properties of quantum states as potentially useful

physical communication and computation resources [6]. This is the inspiration that

has led to the discovery of applications such as quantum teleportation [7, 8], fast

factorization algorithms [9, 10] and quantum key distribution [11–13].

Thus, the legacy of quantum information theory is the understanding that quan-

tum mechanics can offer certain subtle advantages provided one has access to the

necessary non-classical resource. This view point immediately engenders a motiva-
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tion to pursue two related fields of study. The first is concerned with the conception

of protocols which exploit a given non-classical resource. The second is focused on

the preparation, repair and augmentation of particular non-classical features for use

in the aforementioned protocols. This second branch is called state engineering and

it forms a crucial part of quantum information.

While the notion of state engineering applies to any quantum system, we con-

fine our attention to the continuous-variable quantum degrees of freedom of the

light field. Ultimately, this is because the technology required to produce a variety

of Gaussian quantum optical states and operations is very well developed and un-

derstood [14]. Thus, such states and operations can be implemented with relative

ease. However, these successes are tempered by the limitations set by restricting

ourselves to Gaussian states and operations alone. Indeed, while a number of known

quantum algorithms can be implemented using just Gaussian states and operations

[15], there exist a few important exceptions. These include entanglement distillation

of Gaussian states [16–18] and universal quantum computing with Gaussian states

[19, 20]. Both of these require additional non-Gaussian states and operations to

work. These non-Gaussian states and operations are difficult to produce experimen-

tally and lack a comprehensive theoretical understanding enjoyed by their Gaussian

cousins [15, 21].

It is in this fertile area of quantum information with continuous-variable quan-

tum optical systems that this thesis resides. In particular, this thesis is concerned

with the study of state engineering protocols which require the use of non-Gaussian

resources in addition to Gaussian ones to achieve the desired result. In this context,

this thesis carries two main messages. Firstly, weak values and weak measurements

can be an extremely useful tool in understanding the mechanism behind certain

quantum optical state engineering protocols. We demonstrate this utility with re-

spect to entanglement concentration of Gaussian states and their ability to allow

probabilistic noiseless amplification of photon number for a subset of quantum op-

tical states. Secondly, we explore non-Gaussian pure state preparation. In this

context, we investigate the potential benefits of the judical application of optimized

11



unitary Gaussian operations in the probabilistic preparation of non-Gaussian pure

states. Thus, this thesis seeks to investigate two specialized open problems of state

engineering with respect to continuous-variable quantum optical information.

1.2 Overview: thesis in a nutshell

We begin this thesis with two review chapters which aim to revise a number of

standard and extremely useful results from quantum optics, bipartite entanglement

theory and Gaussian state entanglement concentration. These notions are discussed

in chapters two and three. The latter ends with some open problems related to a

particular Gaussian entanglement concentration protocol. The resolution of these

outstanding issues can be found in the notion of weak values and weak measure-

ments reviewed in chapter four. In chapter five we outline the first of our novel

contributions by demonstrating a link between weak measurements and entangle-

ment concentration. The origin of this link is found in attempting to generalize the

non-linear medium protocol discussed in chapter three to arbitrary ancillary sys-

tems. In essence, the preparation and eventual measurement of the ancilla before

and after its interaction with the entangled state can be interpreted as pre and post-

selections. Thus, one can view the protocol as a weak measurement of the ancilla

encoded onto the entangled state. The prerequisites of a weak measurement are

directly responsible for the Gaussian-preserving effect manifest in such protocols.

Following our discussion of the application of the weak measurement formal-

ism to Gaussian entanglement concentration, we present our next contribution by

extending the utility of weak measurements. In particular, in chapter six we demon-

strate how weak measurements allow the probabilistic realisation of the non-physical

operation of noiseless amplification on a subset of quantum states. In this context,

non-physical means that the probabilistic back-action applied to the probe state

does not obey all of the axioms of a positive operator valued measure (POVM)

for arbitrary states. Instead, these axioms are only satisfied on a reduced set of

states that obey the weakness conditions. The implications of this noiseless ampli-
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fication is then discussed for a variety of quantum protocols including amplifying

weak Schrödinger cat states, cloning weak coherent states and weak coherent state

quantum key distribution.

Further investigation in chapter six leads to our next contribution by revealing

a novel and fundamental connection between weak values and the manipulation of

entangled states. In particular, we show that a weak measurement where the probe

state is prepared in an arbitrary pure bipartite entangled state can increase the en-

tanglement available if the encoded weak value has a non-zero imaginary component.

Ultimately, this is due to the non-unitary effect accompanying the imaginary part of

the weak value. A further condition emerges on the observable acting on the probe

in the interaction Hamiltonian: the probe observable must be able to distinguish

between states of different Von Neumann entropies. To understand this condition,

we make an appealing analogue with the notion of entanglement witnesses employed

in the discussion of mixed state entanglement.

Leaving behind the weak measurement paradigm in chapter seven, we present our

final contribution where we consider the possible application of deterministic Gaus-

sian operations in the conditional state preparation of pure non-Gaussian states.

This idea is based on the ability to conditionally generate a finite superposition of

Fock states using an array of photon subtraction or addition measurements. One

can regard this process as a way to obtain finite dimensional approximations, to

a given accuracy measured by the fidelity, of a desired infinite dimensional non-

Gaussian state. We suggest that unitary Gaussian operations can be used to reduce

the non-Gaussian resources required for the construction of the state. The basis of

this postulate is the notion of a core state, related to the target state via Gaussian

unitary operations. This core state can require a smaller non-Gaussian resource

overhead to construct than a direct truncation of the desired target. Thus, we sug-

gest that one construct the core state and then apply Gaussian unitary operations

to obtain the desired target to a specified accuracy. We demonstrate the utility of

this method by applying it to the Schrödinger cat states.
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Literature review
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Chapter 2

Theoretical quantum optics

2.1 Quantisation of the field

Quantum optics provides the most accurate understanding of the electromagnetic

field in the non-relativistic regime. We will begin by outlining the standard textbook

canonical quantisation approach as described in [22–29], to name but a few. The

starting point of quantum optics is the quantisation of the electromagnetic field by

the replacing of classical fields E(r, t) and B(r, t), with quantum mechanical observ-

ables Ê(r, t) and B̂(r, t). In the non-relativistic regime, this task is accomplished by

adopting the Coulomb gauge ∇ ·A(r, t) = 0, before solving the associated vacuum

wave equation

∇2A(r, t) = c−2∂2
t A(r, t) (2.1)

while imposing periodic boundary conditions. Consequently, the general solution

can be written as a Fourier decomposition over plane waves

A(r, t) = (ε0V )−1/2
∑
k

2∑
s=1

eks

(
akse

ik·r−iωt + a∗kse
−ik·r+iωt

)
. (2.2)

Where eks are unit polarisation vectors defined by k ·eks = 0 ensuring that the field

is transverse in nature. Each mode is labeled by the wavevector k and polarization

s. The k is discrete since the classical field exists inside an imaginary cube of length

L and volume V = L3 with periodic boundary conditions at the walls.
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The quantisation of this field is performed by replacing the complex coefficients

{aks, a
∗
ks} with bosonic creation and annihilation operators {âks, â

†
ks}. This is done

in anticipation of the emergence of bosonic quanta of the field (photons) and is com-

pletely consistent with the linear nature of the classical field equations. The creation

and annihilation operators are subject to the equal-time commutation relations

[âks(t), â
†
k′s′(t)] = δkk′δss′ , [âks(t), âk′s′(t)] = [â†ks(t), â

†
k′s′(t)] = 0. (2.3)

Thus, the quantized vacuum field solution is then

Â(r, t) =

√
~

2ε0V

∑
k,s

eks

(
âkse

ik·r−iωt + â†kse
−ik·r+iωt

)
(2.4)

and so, the corresponding field observables can be obtained from the quantised

vector potential via the relations ∇× Â = B̂ and Ê = −∂tÂ and, in turn, allow the

calculation of the Hamiltonian of the field

Ĥ =
1

2

∫
d3r

(
ε0Ê

2 +
1

µ0

B̂2

)
=
∑
k

2∑
s=1

ωk~(â†ksâks + 1/2). (2.5)

The interpretation of this equation is clear - the quantum electromagnetic field is

analogous to an infinite set of independent quantum harmonic oscillators. Conse-

quently, most of the physics of the field can be understood through the properties

of these oscillators and the quantum mechanical formalism associated with them.

Quantum mechanics requires an association between each mode and an appro-

priately defined Hilbert space [30]. In this case, each mode is a simple harmonic

oscillator labeled by wavevector k and polarization s and has a state space Hks.

The entire state space of the field is then given as:

H =
⊗
k

2⊗
s=1

Hks =
⊗
k

Hk1 ⊗Hk2. (2.6)

From now on, we will only consider very simple fields composed of one or two modes.

Accordingly, we will drop the index notation for brevity.

Following the derivation of the Hamiltonian of the field, we use its eigenstates to

define the associated Hilbert space of each mode. These aforementioned eigenstates

are the Fock or photon number states

n̂|n〉 = â†â|n〉 = n|n〉. (2.7)
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In the standard analysis of the quantum harmonic oscillator, the number states

correspond to a definite energy of the oscillator labeled by the quantum number n.

A similar interpretation applies here, which follows from the conventional wisdom of

second quantized field theories, namely that the field operators Ê(r, t) and B̂(r, t)

create and annihilate their associated quanta. This follows from the action of the

creation and annihilation operators on Fock states as

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉, (2.8)

i.e. the operators â and â† reduce or increase the number of photons by one. Con-

sequently, the states |n〉 describe the case when the field is composed of n photons

with a well defined energy En = ~ω(n+ 1/2). Thus, the ground or vacuum state of

the field describes the complete absence of photons i.e. â|0〉 = 0 and so the energy

in the vacuum state is just the zero-point energy of the field E0 = ~ω/2.

The excited states |n〉 can be obtained from the vacuum by the application of

the creation and annihilation operators

(â†)n√
n!
|0〉 = |n〉, (â)n√

n!
|n〉 = |0〉. (2.9)

Mathematically, the Fock states are complete meaning that they allow a resolution

of the identity
∞∑
n=0

|n〉〈n| = Î , (2.10)

and can, consequently, allow the linear decomposition of any other state of the field

ρ̂ =
∞∑

m,n=0

〈n|ρ̂|m〉|n〉〈m| =
∞∑

m,n=0

ρnm|n〉〈m| (2.11)

and for pure states we get |ψ〉 =
∑∞

n=0 ψn|n〉. The existence of Fock states is

the precise manifestation of particulate behaviour of light. That is, the Fock states

describe the quantized excitations, photons, of the underlying quantum field, i.e. the

particulate nature of the field. However, caution must be exercised when employing

this picture since the photons are not particles in the traditional sense as they are

delocalized over the quantisation volume of the field [28, 29].
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2.2 Phase space description

2.2.1 Wigner functions

To aid in the visualization of quantum optical states it is useful to consider their

phase-space representation in order to exploit intuition gained from classical physics

[15]. This phase space representation of states and operations follows from the

mathematical description employed by quantum mechanics. On one level, pure

states are represented as normalised vectors in a Hilbert space H equipped with an

inner product (|ψ〉, |φ〉) := 〈ψ|φ〉. However, the operators which act on these states

also form their own larger Hilbert space which has its own inner product defined by

(Â, B̂) := Tr(Â†B̂). Consequently, in analogue to decomposing a vector in terms of

a basis, we can equally decompose any operator in terms of a basis of this larger

space. For example, suppose the operators {ω̂}ω∈Ω form such a basis, then any

operator Â can be decomposed as

Â =
∑
ω∈Ω

(ω̂, Â)ω̂ =
∑
ω∈Ω

Tr(ω̂†Â)ω̂. (2.12)

This notion of decomposing operators also applies to quantum states ρ̂ allowing

ρ̂ =
∑

ω∈Ω Tr(ω̂†ρ̂)ω̂. The phase space description of states and operations then

follows from a particular choice of basis operators [31]

Ô =
1

π

∫
d2α Tr(D̂(α)Ô)D̂†(α), (2.13)

where α = (q − ip)/
√

2. Then (q, p) are the canonical coordinates of phase space

and

D̂(α) = exp
(
αâ† − α∗â

)
, (2.14)

is the unitary Weyl or displacement operator and obeys D̂†(α)D̂(α) = D̂(−α∗)D̂(α) =

Î. In addition, the displacement operator also obeys [31] Tr(D̂(α)) = Tr(D̂†(α)) =

πδ2(α) = πδ(<(α))δ(=(α)) and D̂(α1)D̂(α2) = e(α1α∗2−α∗1α2)/2D̂(α1 + α2).

Thus, just as a particular pure state |ψ〉 can be described by a continuous-

variable wave-function ψ(q) = 〈q|ψ〉, an operator Ô admits a phase space function

O(q, p) = Tr(D̂(α)Ô). Furthermore, since quantum states can also be described as
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density operators ρ̂, then we can replace the wave-function description with that of

a characteristic function [15]

χ(α) = Tr
(
ρ̂ D̂(α)

)
. (2.15)

Where the Fourier transform of this characteristic function yields the associated

quasi-probability distribution

P(α) = (2π)−1

∫
d2β ei(αβ

∗+α∗β)χ(β), (2.16)

where α = 2−1/2(q+ ip). This quasi-probability distribution is known as the Wigner

function [32] and the above can be re-written [27] in the form

Wρ(q, p) =
1

2π

∫ ∞
−∞

dxeipx
〈
q − x

2

∣∣∣ ρ̂ ∣∣∣q +
x

2

〉
. (2.17)

Since the Wigner function is a quasi-probability distribution then it obeys [27]

Wρ(q, p) = W ∗
ρ (q, p),

∫ ∞
−∞

∫ ∞
−∞

dq dp Wρ(q, p) = 1, (2.18)

whilst allowing the calculation of the marginal distributions [27]

〈q|ρ̂|q〉 =

∫ ∞
−∞

dp Wρ(q, p), 〈p|ρ̂|p〉 =

∫ ∞
−∞

dq Wρ(q, p). (2.19)

Both of these attributes are shared with actual classical joint probability distri-

butions, however the distinguishing feature of the Wigner function that grants it

the status of a quasi-probability distribution is its potential for negativity. Thus,

there are some quantum states ρ̂ which have associated Wigner functions that have

negative regions and so cannot be considered proper probability distributions [28].

There are several motivations for employing the Wigner function description

of quantum states. Firstly, Wigner functions allow an immediate visualisation of

a particular state ρ̂ in terms as a distribution over a phase space with canonical

coordinates (q, p) from α = 2−1/2(q+ ip). This picture can aid in both the definition

and identification of certain characteristics of quantum states. For example, Wigner

functions allow a classification of quantum states as either Gaussian or non-Gaussian

depending on their shape [15]. Secondly, the fact that some quantum states can have
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negative or ill-behaved Wigner functions has led to the notion of non-classicality (i.e.

the degree by which the Wigner function cannot be considered a proper probability

distribution) of the associated state [33–36] and the ability to quantify this non-

classicality via the negativity of the Wigner function. Thirdly, the Wigner function

allows the calculation of operator moments on phase space by making use of the

trace rule

Tr(ρ̂Â) = 2π

∫ ∞
−∞

dq dp Wρ(q, p)WA(q, p), (2.20)

with Wρ(q, p) being the Wigner function of ρ̂ and WA(q, p) begin the analogous

object for Â:

WA(q, p) =
1

2π

∫ ∞
−∞

dxeipx
〈
q − x

2

∣∣∣ Â ∣∣∣q +
x

2

〉
. (2.21)

In particular, the Wigner function is ideally suited to the calculation of the average

of any symmetric polynomial of q̂ and p̂ denoted by S(q̂m, p̂n) , for example S(q̂, p̂) =

(q̂p̂+ p̂q̂)/2, as

Tr (ρ̂S(q̂m, p̂n)) = 2π

∫
dq dp W (q, p)qmpn. (2.22)

Finally, we note that the single mode Wigner function can be generalized to a field

of N modes with

W (q1, p1, . . . , qN , pN) =
1

(2π)N

∫ ∞
∞

. . .

∫ ∞
∞

N∏
j=1

dxje
ipjxj

×
〈
q1 −

x1

2
, . . . , qN −

xN
2

∣∣∣ ρ̂ ∣∣∣q1 +
x1

2
, . . . , qN +

xN
2

〉
(2.23)

being the Wigner function for the N mode field state ρ̂. For example, the Wigner

function of the single mode vacuum state is W0(q, p) = (π)−1 exp(−q2− p2) [27] and

the N mode vacuum is W0(q1, p1, . . . , qN , pN) = (π)−N
∏N

j=1 exp(−q2
j − p2

j).

2.2.2 Quadratures

The phase space picture of quantum states provide by the Wigner function is also

directly related to the canonical position and momentum observables of each field

mode. These observables follow from the mathematical description of field modes

as quantum harmonic oscillators and are called the quadratures of the field

Q̂ks =

√
~

2ωk

(âks(t) + â†ks(t)), P̂ks = i

√
~ωk

2
(â†ks(t)− âks(t)). (2.24)
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These operators observe the usual commutation relations

[Q̂ks(t), P̂k′s′(t)] = i~δk′kδss′ , [Q̂ks(t), Q̂k′s′(t)] = [P̂ks(t), P̂k′s′(t)] = 0, (2.25)

and can be understood, physically, as the Fourier components of the electromagnetic

field observables [27] and not the position and momentum of the underlying quanta.

To see this, consider the electric field observable of a single mode field (with constant

polarization):

Ê(r, t) = iE0

(
âei(k·r−ωt) + â†e−i(k·r−ωt)

)
. (2.26)

Next substitute for the relation: â = 2−1/2(q̂+ ip̂), where we defined the dimension-

less quadratures q̂ =
√

ω
~ Q̂ and p̂ = 1√

~ω P̂ to give

Ê(r, t) = E0

√
2 (q̂ sin(k · r− ωt)− p̂ cos(k · r− ωt)) . (2.27)

Thus, the (q̂, p̂) operators can be interpreted as the Fourier components of Ê(r, t)

which accompany the sin(k · r− ωt) and cos(k · r− ωt) plane waves, respectively.

These operators have eigenstates defined as q̂|q〉 = q|q〉, p̂|p〉 = p|p〉. Moreover,

since [q̂, p̂] = i then both q̂ and p̂ are unbounded operators with continuous spectra

and so their eigenstates are complete∫ ∞
−∞
|q〉〈q|dq =

∫ ∞
−∞
|p〉〈p|dp = Î , (2.28)

but not normalisable; They do not actually exist inside the configuration space of

the field as they are not square integrable 〈q′|q〉 = δ(q′ − q), 〈p′|p〉 = δ(p′ − p).

However, they can still be accommodated by extending the Hilbert space to include

them [25, 31]. Furthermore, we can represent these eigenstates as a function of the

creation operator on the vacuum [25, 31]

|q〉 = π−1/4 exp
(
−q2/2 +

√
2qâ† − (â†)2/2

)
|0〉, (2.29)

|p〉 = π−1/4 exp
(
−p2/2 + i

√
2pâ† + (â†)2/2

)
|0〉. (2.30)

These quadrature operators and eigenstates are directly related to the phase space

picture mentioned earlier with the Wigner functions of the quadrature observables

corresponding to the canonical coordinates of the phase space

Wq(q, p) = q, Wp(q, p) = p. (2.31)
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This means that the Wigner function of a particular state ρ̂ can be reconstructed

by repeated measurement of the quadrature observables on an identically prepared

ensemble in a process known as quantum tomography [27].

Finally, we also note a useful generalization of quadrature operators from the

standard canonical {q̂, p̂} operators to [25, 31]

x̂θ = cos θq̂ + sin θp̂ =
âe−iθ + â†eiθ√

2
. (2.32)

These generalized quadratures simply correspond to a rotation of phase space by an

angle θ since

Wxθ(q, p) = cos θq + sin θp, Wxθ+π/2(q, p) = cos θp− sin θq. (2.33)

In addition, they obey the commutation relation

[x̂φ, x̂θ] = cosφ sin θ[q̂, p̂] + sinφ cos θ[p̂, q̂] = i sin(θ − φ), (2.34)

where each x̂θ admits a complete eigenbasis {|xθ〉}xθ∈(−∞,∞)∫
dxθ|xθ〉〈xθ| = Î , (2.35)

and are not normalisable since 〈xθ|x′θ〉 = δ(xθ−x′θ). They can, however, be expressed

as a function of creation operators on the vacuum state [25]

|xθ〉 = π−1/4 exp
(
−x2

θ/2 +
√

2eiθâ† − e2iθ(â†)2/2
)
|0〉. (2.36)

2.3 Gaussian and non-Gaussian states

The phase space description of quantum states allows one to immediately recognize

the reality of two varieties of quantum optical state: Gaussian and non-Gaussian.

The former are states with Gaussian characteristic functions and corresponding

Gaussian quasi-probability distributions. Thus, for example, an N mode field state

ρ̂ is Gaussian if its associated Wigner function is a Gaussian function of the canonical

coordinates of phase space [21]

W (q1, p1, . . . , qN , pN) =
exp

(
−1

2
(ξ − d)T γ (ξ − d)

)√
(2π)Ndetγ

. (2.37)

22



Here ξ is a 2N dimensional phase space vector labeling phase space events ξT =

(q1, p1, . . . , qN , pN), related to the corresponding phase space vector operator ξ̂T =

(q̂1, p̂1, . . . , q̂N , p̂N) and d = 〈ξ̂〉 = (<(d1),=(d1),<(d2),=(d2), . . . ,<(dN),=(dN))T is

a 2N dimensional vector representing the possible displacement from the origin of

phase space. The covariance matrix γ is the 2N × 2N dimensional matrix whose

components are given by

γjk = 〈{ξ̂j, ξ̂k})〉 − 2〈ξ̂j〉〈ξ̂k〉. (2.38)

A covariance matrix must obey the generalized Heisenberg inequality γ+ iJ⊕
N ≥ 0,

where

J =

 0 1

−1 0

 , (2.39)

is the symplectic matrix [15]. The physical meaning of this inequality is that γ

must reflect the requisite conditions of both the density operator and Heisenberg’s

uncertainty relation for non-commuting quadrature observables. The latter follows

since the matrix iJ⊕
N

comprises the commutation relations of [ξj, ξk] [15, 21]. From

the above definition of Gaussian states, one immediately notes the key properties

of this class of states. Firstly, Gaussian states are exhaustively described by their

first and second order phase space moments. This follows since each Gaussian state

is exhaustively defined by its corresponding correlation matrix, which only contains

information about the first and second order moments of q̂ and p̂. Secondly, the

Wigner function of a Gaussian state is always positive and behaves as a bona-

fide probability distribution. Thirdly, Gaussian states can only be generated by

Hamiltonians which are quadratic in quadrature operators, since if this were not

the case, then we would require additional knowledge of higher order moments to

specify the state.

The distinction between Gaussian and non-Gaussian states and operations is

important because of the resource paradigm of quantum information theory. Under

this philosophy, Gaussian and non-Gaussian states and operations are regarded as

different types of resource to be used in various information protocols. Moreover,

it is clear that non-Gaussian resources are required for the successful and efficient

23



implementation of certain information processing tasks. For example, proposals

for universal quantum computation using continuous-variables require Hamiltonians

that are polynomials of quadrature operators with degree > 2 [19].

2.4 Useful Gaussian states and operations

2.4.1 Coherent states

A radiation field can be prepared in a coherent state as a result of interacting with

a classical electric current. In particular, a quantized field described by Â(r, t)

interacts with a classical current J(r, t) via the Hamiltonian [28] (in the interaction

picture)

ĤI(t) =

∫
V

d3r j(r, t) · Â(r, t). (2.40)

where J(r, t) =
∫
V
d3r j(r, t) relates the current J(r, t) to its associated current

density j(r, t). After much algebra [28], this interaction Hamiltonian can be shown

to generate the evolution operator

ÛI =
∏
ks

exp
(
α(t)∗ksâ

†
ks − α(t)ksâks

)
, (2.41)

where α(t)ks = − i
~

√
~

2ε0V

∫ t
0
dτe−iωτ j̃(k, τ) · eks. This evolution operator on the

vacuum state generates a coherent state

|α(t)〉 = ÛI
⊗
ks

|0〉ks =
⊗
ks

exp
(
α(t)∗ksâ

†
ks − α(t)ksâks

)
|0〉ks. (2.42)

The properties of coherent states are easily established in the simplifying case of

a single field mode with constant polarization |α〉 = D̂(α)|0〉 where D̂(α) = eαâ
†−α∗â

is an aforementioned Weyl operator and is also known as the unitary displacement

operator. Coherent states are eigenstates of the annihilation operator since [25]

â|α〉 = D̂(α)D̂†(α)âD̂(α)|0〉 = D̂(α)
(
â+ αÎ

)
|0〉 = α|α〉, (2.43)

which means that subtracting a photon will leave the state invariant since the post-

subtraction state

α→ â|α〉√
〈α|â†â|α〉

=
α|α〉
|α|

= eiθ|α〉 (2.44)
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is identical to the original coherent state up to an unobservable global phase. Conse-

quently, the average energy in a field mode prepared in a coherent state is invariant

under photon subtraction. Furthermore, decomposing the unitary displacement op-

erator using the Campbell-Baker-Hausdroff (CBH) decomposition [25]

D̂(α) = eαâ
†−α∗â = e−|α|

2/2eαâ
†
e−α

∗â, (2.45)

reveals the photon number distribution of the state |α〉 to be

|α〉 ∝ eαâ
†|0〉 =

∞∑
n=0

αne−|α|
2/2

√
n!

|n〉, (2.46)

which has a Poissonian photon number probability distribution

pn = |〈n|α〉|2 =
|α|2ne−|α|2

n!
. (2.47)

These states are also regarded as the most classical of the quantum optical states

since they are exhaustively described by the evolution of a complex number α(t)

e−iκtn̂|α〉 = e−|α|
2/2

∞∑
m=0

αme−iκtm√
m!

|m〉

= e−|αe
−iκt|2/2

∞∑
m=0

αme−iκtm√
m!

|m〉 = |αe−iκt〉 = |α(t)〉, (2.48)

like the equivalent case in classical optics [28]. This is also the reason for their

name “coherent” as an evolving coherent state will maintain the coherence of its

superposition.

The fact that coherent states are eigenstates of a non-Hermitian operator means

that they do not form an orthonormal basis. Instead they are mathematically over-

complete [25]
1

π

∫
d2α|α〉〈α| = Î , (2.49)

meaning that we can decompose field states in terms of coherent states

|ψ〉 = π−1

∫
d2α ψ(α, α∗)|α〉 (2.50)

and

ρ̂ = π−2

∫
d2α d2β ρ(α, α∗, β, β∗)|α〉〈β| (2.51)
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and that they are non-orthogonal with

〈α|β〉 = exp

(
−|α|

2

2
− |β|

2

2
+ α∗β

)
. (2.52)

In addition, coherent states are minimum uncertainty states as they reduce the

quadrature uncertainty principle

Vψ(q̂)Vψ(p̂) ≥ 1

4
(2.53)

to an equality

Vα(q̂)Vα(p̂) =
1

4
, (2.54)

where Vψ(Â) = 〈ψ|Â2|ψ〉−〈ψ|Â|ψ〉2. Consequently, such states allow for the smallest

error in the simultaneous measurement of q̂ and p̂. In addition to this, coherent

states also have a symmetric noise profile that is independent of the amplitude α

with Vα(p̂) = Vα(q̂) = 1/2. Thus, all coherent states have the same quadrature

noise profile of the vacuum state i.e. they all possess the same shot noise [27].

Accordingly, all coherent states are regarded as displaced vacuum states since they

only differ from the vacuum in their first moments with

〈α|q̂|α〉 =
√

2<(α), 〈α|p̂|α〉 =
√

2=(α). (2.55)

This can also be seen from a phase space point of view where displacing a state

|ψ〉 i.e. D̂(α)|ψ〉 is described by a canonical transformation with WD(α)ψ(q, p) =

Wψ(q+
√

2<(α), p+
√

2=(α)) [27] and so the location of the distribution is displaced

from the origin. Thus, the Wigner function of a coherent state is

Wα(q, p) =
1

π
e−(q−

√
2<(α))2−(p−

√
2=(α))2

, (2.56)

and can be easily identified as a Gaussian state.

2.4.2 Linear optical devices

Linear optics is the study of the linear interactions between light and matter. The

linear term follows from the particular response of the medium in question. A

dielectric medium responds to the presence of an electric field by generating a
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polarization vector P(r, t) and so the propagating field is the displacement field

D(r, t) = εE(r, t) + P(r, t) [37, 38]. The polarization of the field can be expanded

as a function of the vacuum electric field

P = ε0
(
χ(1)E + χ(2)EE + χ(3)EEE + . . .

)
. (2.57)

Where mathematical consistency demands that χ(2) and χ(3) are tensor quantities.

Consequently, any optical device constructed from a homogenous dielectric material

whose response to external electric fields is dominated by a χ(1) interaction is a

linear device [15, 37]. In this section we consider lossless transmission of the field

meaning that we assume that χ(1) is entirely real. Linear optical elements are also

characterized by their passive nature with respect to the propagating field mode i.e.

they do not change the total number of photons. Thus, the creation and annihilation

of photons in such elements is balanced to ensure that the total number of photons

in all the interacting modes is conserved [37, 38]. Another crucial property of linear

optical interactions is that they are Gaussian operations. That is, they preserve

the Gaussian character of any Gaussian input states. This stems from the fact that

the Hamiltonians which generate such interactions are quadratic functions of the

quadrature operators [38].

Phase shifter

The phase shifter [37] is described by the following unitary operator

Ûθ = eiθn̂, (2.58)

which acts to change the relative phase between each Fock state term in a superpo-

sition

Ûθ|ψ〉 =
∞∑
n=0

ψnÛθ|n〉 =
∞∑
n=0

ψne
iθn|n〉. (2.59)

In phase space, such an operation corresponds to an active rotation of the state

around the origin.
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a

b

T

c=T aR b

d=T b−R a

Figure 2.1: The lossless beam splitter is a four port linear optical device which

transforms input mode operators into outputs that are linear combinations of the

inputs.

Lossless beam splitter

The next linear optical element considered here is the lossless beam splitter [27, 37].

This device allows a linear coupling between two distinct field modes, labeled by

operators (â, b̂), and is governed by the interaction Hamiltonian

ĤBS(t) = ~κ(â(t)†b̂(t) + â(t)b̂(t)†), (2.60)

then the corresponding unitary operator generating this evolution is given by

ÛBS = exp
(
ξâ†b̂− ξ∗âb̂†

)
. (2.61)

Each beam splitter is characterized by its reflection and transmission coefficients

R = sin2 |ξ| and T = cos2 |ξ|, which determine the proportion of the mixture of the

input modes available in each output port of the device as illustrated in Fig.2.1.

Thus, when T = 1 or R = 1 then the beam splitter is completely transparent for

one mode while being perfectly reflecting for the other.

Direct application of the above unitary operator to a global input state vector

|Ψ〉AB can be difficult to calculate even if we employ its Campbell-Baker-Hausdroff

(CBH) decomposition [15]:

ÛBS = ee
iθ
√
R/T â†b̂ T b̂

†b̂−â†â e−e
−iθ
√
R/T âb̂† . (2.62)

However, there is an alternative method that exploits the Heisenberg transformation

of the mode operators that allows a potentially easier method for calculating the
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output states [27, 37]. In the Heisenberg picture, the input mode operators {â, b̂}

transform according to

Û †BS

 â

b̂

 ÛBS =

 √
T −e−iθ

√
R

eiθ
√
R

√
T

 â

b̂

 . (2.63)

Consequently, the inverse of the above can be employed to calculate the transfor-

mation of the state |Ψ〉 =
∑∞

n=0

∑∞
m=0(m!n!)−1/2Ψmn(â†)m(b̂†)n|0, 0〉 to

ÛBS|Ψ〉 =
∞∑
n=0

∞∑
m=0

Ψmn
(
√
T â† + e−iθ

√
Rb̂†)m√

m!

(
√
T b̂† − eiθ

√
Râ†)n√

n!
|0, 0〉. (2.64)

After some algebra, the final state can be written as

ÛBS|Ψ〉 =
∞∑
n=0

∞∑
m=0

Ψmn√
n!m!

n∑
`=0

m∑
k=0

 m

k

 n

`

 (
√
T )k+`e−i(m−k)θei(n−`)θ

×(−1)n−`(
√
R)m+n−k−`

√
(k + `)!(m+ n− k − `)!|k + `,m+ n− k − `〉.

Essentially, the lossless beam splitter will act to distribute the photons in each input

mode into the two output modes since it must conserve energy and, hence, mean

photon number.

2.4.3 Squeezed states

A pure quadrature squeezed state is a state |ψ〉 which exhibits a quadrature noise

level below the threshold set by the vacuum shot noise i.e. Vψ(x̂θ) < V0(x̂θ) for a

given x̂θ. Its name is derived from its property of “squeezing” the uncertainty in

a particular quadrature [15]. In addition, such squeezed states are also minimum

uncertainty states, like the coherent states, and exhibit an asymmetric quadrature

noise profile as a result of their squeezing with

Vψ(q̂) = cV0(q̂) < V0(q̂), Vψ(p̂) = c−1V0(p̂) > V0(p̂). (2.65)

Physically, such states can be generated by nonlinear optical processes. For example,

single mode squeezed states can be formed from the interaction between a light field

and a non-linear medium with a χ(2) non-linearity in a process called degenerate
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parametric down-conversion. Essentially, a pump field of frequency 2ω is incident

on a non-linear medium, which responds by emitting two photons of frequency ω

for every pump photon that it absorbs. If we treat the pump beam as classical then

the corresponding unitary evolution operator for this process is

Ŝ(reiφ) = exp
(r

2
{eiφ(â†)2 − e−iφâ2}

)
. (2.66)

The real parameter r, which is dependant on the intensity of the pump beam and

the coupling constant of the medium, is known as the squeezing parameter since

it ultimately dictates the magnitude of the ratio between the squeezed state and

the vacuum shot noise. The Ŝ(reiφ) is called the single mode unitary squeezing

operator and it obeys Ŝ†(reiφ) = Ŝ(−re−iφ) and Ŝ(reiφ)Ŝ(−re−iφ) = Î and it can

be decomposed as [25, 31]

Ŝ(reiφ) = exp

(
eiφ tanh r

2
{â†}2

)
e−

1
2

(â†â+ââ†) ln(cosh r) exp

(
−e−iφ tanh r

2
â2

)
. (2.67)

If the signal mode is initially in the vacuum state then this interaction results in

the so-called squeezed vacuum state

|reiφ〉 ∝ e
eiφ tanh r

2
{â†}2|0〉 =

1√
cosh r

∞∑
n=0

√
(2n)!

n!

(
eiφ tanh r

2

)n
|2n〉. (2.68)

When φ = 0 the above state is squeezed in the q̂ quadrature as it exhibits a smaller

variance than the vacuum state

Vr(q̂) =
e−2r

2
< V0(q̂), Vr(p̂) =

e2r

2
> V0(p̂). (2.69)

The squeezing operation is a Gaussian operation, which can easily be seen replacing

the creation and annihilation operators with the corresponding quadrature operators

[24]

Ŝ(r) = exp
(
−ir

2
(q̂p̂+ p̂q̂)

)
. (2.70)

Alternatively, this fact is also obvious from phase space where the Wigner function

of Ŝ(r)|ψ〉 is related to the Wigner function of |ψ〉 by the canonical phase space

transformation WS(r)ψ(q, p) = Wψ(e−rq, erp). For example, the Wigner function of

a squeezed vacuum state given as

W (r, q, p) =
1

π
exp

(
−e−2rq2 − e2rp2

)
. (2.71)
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Thus, the state has an elliptical cross section corresponding to the asymmetric

quadrature noise profile with one quadrature exhibiting a lower noise level than

the vacuum.

The notion of squeezing and squeezed states is not confined to quadrature squeez-

ing or to minimum uncertainty states and it can be generalised as VSQ < VCoh where

VCoh is the variance of a coherent state with respect to some observable and VSQ is

the variance of the squeezed state. For example, this very general definition allows

the notion of polarisation squeezed states with respect to the Stoke’s observables

[39]. In this thesis, we shall restrict our attention to quadrature squeezed states and

we will refer to them simply as squeezed states.

2.4.4 Homodyne detection

Balanced homodyne detection

Balanced homodyne detection [27, 31, 37] involves the measurement of one of the

quadratures of the input field and requires both a beam splitter and photo-detection.

Essentially, the signal field is incident on a 50-50 beam splitter with a very intense

local oscillator field as shown in Fig.2.2. The local oscillator field is assumed to be so

intense that we can neglect its quantum fluctuations and treat it as a purely classical

field. Consequently, this means that we can replace the mode operators of the local

oscillator field with a complex amplitude b̂→ αLO. This semi-classical treatment is

desirable because it leads to a very simple result in contrast to a quantum treatment

of the pump [40].

Each output field then falls onto a photo-detector that responds to the intensity

of each of the electric fields. Consequently, each detector measures the current

observable associated with the intensity of the incident field mode i.e. Î ∝ n̂.

These currents are then subtracted electronically and so in the case where an input

quantum field â is mixed with a classical local oscillator field b̂→ αLO the detector

approximately measures the observable [27]

Î ≈ |αLO|(e−iθâ+ eiθâ†) =
√

2|αLO|x̂θ. (2.72)
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I

Figure 2.2: The balanced homodyne detector measures the difference in current be-

tween the signal state and a semi-classical local oscillator field. In this limit, the

homodyne detector is allows the measurement of the quadrature observable x̂θ.

Where we note that the phase of the local oscillator field θ is experimentally ac-

cessible and can be tuned at will [27] to select one of the quadratures from the set

{x̂θ}θ∈[0,2π]. The homodyne detection is dependent on a well defined phase relation-

ship between the signal and local oscillator fields. This is normally taken care of by

ensuring that the signal and local oscillator field originate from the same source [27].

The balanced homodyne detector approximately induces the probabilistic transfor-

mation

|ψ〉 → 〈xθ|ψ〉, (2.73)

where |xθ〉 is the un-normalised field state registered by the detector [31]. Following

this measurement the field mode is projected onto the vacuum state and so balanced

homodyne detection is a Gaussian transformation.

Double Homodyne detection

While a balanced homodyne detector allows the measurement of a single quadrature

observable x̂φ, a double homodyne detector allows the measurement of pairs of

incompatible quadratures on two input field modes, i.e. Ûφ = x̂φ,A − x̂φ,B and V̂φ =

x̂π/2+φ,A + x̂π/2+φ,B, i.e. a measurement of relative position and total momentum.
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Figure 2.3: The double homodyne detector allows the joint measurement of the sum

and difference of incompatible quadrature observables.

Such a measurement is possible since

[Ûφ, V̂φ] = [x̂φ,A, x̂π/2+φ,A]− [x̂φ,B, x̂π/2+φ,B] = i− i = 0, (2.74)

meaning that these global operators commute even though the local operators do

not. This linear optical device is composed of two balanced homodyne detectors and

two additional beam splitters with two input modes {â, b̂} and two local oscillators

{Â1, Â2} as shown in Fig.2.3. This detector measures the currents Ĵ1 = ĉ†1ĉ1 − ĉ†2ĉ2

and Ĵ1 = ĉ†3ĉ3 − ĉ†4ĉ4. After expressing these currents in terms of the input modes

and their accompanied local oscillators and assuming Â1 → |α|eiφ with |α| >> 1

while leaving Â2 unexcited allows the above currents to be given as [31]

Ĵ1 =
|α| (x̂φ,A − x̂φ,B)√

2
, Ĵ2 =

|α|
(
x̂π/2+φ,A + x̂π/2+φ,B

)
√

2
, (2.75)

thus allowing us to simultaneously measure Ûφ and V̂φ.

Double homodyne detection is an example of an entangling measurement since

it measures an observable with entangled eigenstates i.e. it projects onto entangled

states. In this case, the double homodyne detector projects onto the maximally

entangled and un-physical EPR states, which can be written for φ = 0 as [31]

|z〉〉 =
1√
π

(
D̂(z)⊗ Î

) ∞∑
k=0

|k, k〉. (2.76)
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These states form a basis in the product configuration space HA ⊗HB by allowing

a resolution of the identity
∫
d2z|z〉〉〈〈z| = ÎA ⊗ ÎB, and 〈〈z|z′〉〉 = δ2(z − z′).

Furthermore, these states are the eigenstates of the Û0 and V̂0 [31], with

Û0|z〉〉 =
√

2<(z)|z〉〉, V̂0|z〉〉 =
√

2=(z)|z〉〉, (2.77)

and so the real and imaginary parts of z are the simultaneous eigenvalues of Û0 and

V̂0, respectively. The measurement postulate for the double homodyne detector is

given as

|Ψ〉AB → 〈〈z|Ψ〉AB. (2.78)

However, if one of the input modes to the detector is in the vacuum state, then the

detector measures the remaining field mode in a random coherent state instead of an

EPR state [31]. This follows since 〈〈z|0, ψ〉 ∝
∑∞

k=0〈k|D̂(−z∗)|0〉〈k|ψ〉 ∝ 〈z|ψ〉. The

double homodyne detector is Gaussian since it projects the incident field modes onto

the vacuum state. One of the main applications of the double homodyne detector

is as an entangled measurement for continuous-variable teleportation [41].

2.5 Useful non-Gaussian states and operations

2.5.1 Binary photo-detectors

A binary photo-detector is a device which can distinguish between the presence and

absence of photons. An avalanche photo-diode is a physical example of such a device

where incident photons ionize a number of atoms in the detector and the liberated

electrons then promote the further release of more electrons, thereby building up a

measurable voltage. In the ideal case of unit quantum efficiency, such a detector is

mathematically described as [31]

Π̂noclick = |0〉〈0|, Π̂click = Î − |0〉〈0|. (2.79)

This measurement is non-Gaussian since Π̂click =
∑∞

k=1 |k〉〈k| and, therefore, by

linearity, has a Wigner function Wclick(q, p) =
∑∞

k=1Wk(q, p) where Wk(q, p) is the
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associated Wigner function for the Fock state |k〉 which is [27]

Wk(q, p) =
1

π
e−q

2−p2

(−1)kLk(2(q2 + p2)), (2.80)

where Lk(x) is a Laguerre polynomial. Incidently, this also reveals that the Fock

states are non-Gaussian states. Consequently,

Wclick(q, p) =
1

π

(
1− e−q2−p2

)
, (2.81)

which is also clearly non-Gaussian [31].

2.5.2 Photon subtraction

The probabilistic photon subtraction operation is a useful resource in state engineer-

ing and has been used in continuous-variable entanglement distillation protocols

[42], de-gaussification protocols [43], the preparation of non-Gaussian states [44],

quantum optical universal quantum computing with single photons [45] and in the

construction of arbitrary finite dimensional superpositions of Fock states [46]. Con-

ditional photon subtraction on the state |ψ〉 can be achieved by combining |ψ〉 on

a beam-splitter with the vacuum before measuring the reflected port with a binary

photo-detector as shown in Fig.2.4(a). This will subtract the vacuum from the state

|ψ〉 to a very good approximation provided that
√
T ≈ 1 i.e. provided the beam

splitter is highly transmitting. The subtraction succeeds when the photo-detector

clicks. In this presentation we will restrict ourselves to ideal resources and assume

that the detector has unit quantum efficiency.

If |ψ〉|0〉 =
∑∞

n=0 ψn|n, 0〉 is incident on the input ports of the beam splitter then

the global state at the output ports is given by

|Ψ〉 =
∞∑
n=0

ψn

n∑
k=0

√
n!

k!(n− k)!

√
T
n−k√

R
k
|n− k, k〉. (2.82)

However, since the beam-splitter is highly transmitting and weakly reflective then
√
R
k ≈ δ0k +

√
Rδ1k and so

|Ψ〉 ≈
∞∑
n=0

ψn
√
T
n
|n〉|0〉+

∞∑
n=1

ψn

√
n!

1!(n− 1)!

√
T
n−1√

R|n− 1, 1〉. (2.83)
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Figure 2.4: Photon subtraction shown in (a) requires the binary photon detector to register

the presence of photons, while in photon addition in (b), the measurement must project

onto the vacuum.

In the event that the detector clicks the final state of field mode and detector is

|Ψ′〉 ∝ Π̂click|Ψ〉, with

Π̂click = Î − |0〉〈0| =
∞∑
k=1

|k〉〈k|, (2.84)

and so the vacuum term in (2.83) disappears and

|Ψ′〉 ∝
∞∑
n=1

ψn
√
n
√
T
n−1√

R|n− 1, 1〉. (2.85)

After tracing out the state of the detector, the final field state is

|ψf〉 ∝
∞∑
n=1

ψn
√
n
√
T
n−1√

R|n− 1〉 ∝
√
R
√
T
n̂
â

(
∞∑
n=0

ψn|n〉

)
. (2.86)

Thus, we denote the conditional photon subtraction operation by the operator X̂ =
√
R
√
T
n̂
â. Accordingly, this conditional operation can be viewed as the annihilation

of a photon in the field mode followed by noiseless decay by a factor of
√
T . This is

the reason for the name photon subtraction.

The probability of success of this operation is dependant on the probability

of the detector clicking. This is PS = 〈Ψ|(Π̂click ⊗ Î)|Ψ〉 and after substituting

Π̂click =
∑∞

k=1 |k〉〈k| we can obtain PS = R
∑∞

n=0 |ψn|2T n−1n. Hence, this reveals a

trade-off between our ability to perform this photon-subtraction operation and the

probability of success since we require R ≈ 0.
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2.5.3 Photon addition

Given a field mode in state |ψ〉, we can conditionally perform the converse operation

to photon subtraction. This is called photon addition and it requires an ancillary

single photon state and a noiseless beam splitter in addition to a measurement

scheme that allows the projection onto the vacuum state as shown in Fig.2.4(b).

Photon addition operations are also useful in generating non-classical states of light

[47, 48], the preparation of finite dimensional superpositions of Fock states [49] and

in measurement-induced non-linearities [50]. In this case, the initial global state

incident on the beam splitter is |ψ〉|1〉 =
∑∞

n=0 ψn|n〉|1〉, which transforms into the

global output state |Ψ〉 = Û |ψ, 1〉 with

|Ψ〉 =
∞∑
n=0

ψn
(
√
T â† +

√
Rb̂†)n(

√
T b̂† −

√
Râ†)√

n!
|0, 0〉. (2.87)

Following this interaction the ancilla output port is conditionally projected onto the

vacuum state |0〉〈0|. This can either be done with a binary photo-detection or by

double homodyne detection. In the former case, the protocol succeeds when the

detector does not click. The latter method is successful when the double homo-

dyne current is zero or very close to zero. In this case, the homodyne measurement

projects onto a coherent state very close to the vacuum. These different measure-

ment strategies lead to different probabilities of success which we will consider later.

Assuming the vacuum projection is successful, the global state of the field mode and

detector is |Ψ′〉 ∝ (Î ⊗ |0〉〈0|)|Ψ〉. This is given by

|Ψ′〉 ∝
∞∑
n=0

ψn
√
T
n
(−
√
R)(â†)n+1

√
n!

|0, 0〉, (2.88)

and after tracing out the state of the detector, the final field mode state is

|ψf〉 ∝
√
R

T

√
T
n̂
â†|ψ〉 ∝ Ŷ |ψ〉. (2.89)

Where we denote Ŷ as the conditional photon addition operator. Thus, this condi-

tional operation is equivalent to adding a photon followed by noiseless decay of the

state.
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As noted above, the probability of success of this protocol is dependant on the

measurement strategy used to project onto the vacuum state. If we use a binary

photo-detector then the probability of success is PS = 〈Ψ|(|0〉〈0| ⊗ Î)|Ψ〉 which is

explicitly given as

PS = R
∞∑
n=0

|ψn|2T n〈n|ââ†|n〉 = R

∞∑
n=0

|ψn|2T n(1 + n) = R〈ψ|T n̂(1 + n̂)|ψ〉. (2.90)

In contrast, if we use double homodyne detection to project onto a coherent state

|reiθ〉 that is very close to the vacuum, then the probability of success is given by

PS =

∫ ε

0

dr

∫ 2π

0

dθ〈Ψ|reiθ〉〈reiθ|Ψ〉, (2.91)

with ε ≈ 0. Thus, in this latter case the probability of projecting onto the vacuum

using homodyne detection can only be obtained approximately. This is because

the probability of projecting onto a single state from a continuum is necessarily

zero. Instead, we can associate a probability density of projecting near the vacuum

as ρ(ε, θ) = 〈Ψ|(|reiθ〉〈reiθ| ⊗ Î)|Ψ〉. In either case, this configuration allows a

probabilistic photon addition operation.

2.5.4 Cross-Kerr effect

The cross-Kerr effect is a non-linear optical effect between two field modes propa-

gating through a material with a χ(3) non-linear response. Essentially, each of the

traveling field modes experience a refractive index that is dependant on the intensity

of the electric field of the co-propagating mode. Thus, if we label the modes A and

B then the refractive index as experienced by mode A is nA = n0 + γ|EB|2 and the

index experienced by mode B is nB = n0 + γ|EA|2 with γ being a function of the

intrinsic parameters of the medium. Consequently, each field mode experiences a

phase shift that is dependant on the number of photons in the co-propagating beam.

The quantum mechanical Hamiltonian which generates this interaction is

ĤKerr = ~κn̂An̂B (2.92)
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with κ as the strength of coupling between the two modes. The corresponding

evolution operator for this interaction is

ÛK = e−iκT n̂An̂B , (2.93)

and so, this interaction is non-Gaussian because it is not quadratic in the quadrature

operators. In quantum information, the cross-Kerr effect has many potential appli-

cations and is a vital component in photon number resolving detectors [51], photonic

Fredkin gates [52], photonic C-NOT gates [53], Gaussian entanglement concentra-

tion [1, 54], quantum state conversion [55] and in the generation of non-Gaussian

quantum states of light [56, 57].

2.5.5 The Schrödinger cat states

The Schrödinger cat state is the quantum optical version of the hypothetical state

dreamt up by Schrödinger in his famous thought experiment, where the cat is

prepared in is a superposition of macroscopically distinguishable states such as

|ψ〉 = (|alive〉 + |dead〉)/
√

2. In quantum optics, the coherent states {|α〉, | − α〉}

play the role of the macroscopically distinguishable states since |〈α| −α〉|2 = e−2|α|2

and so as |α| → ∞ then {|α〉, | − α〉} become distinguishable. The even and odd

Schrödinger cat states are then defined as

|ψ±(α)〉 =
|α〉 ± | − α〉√
2(1± e−2|α|2)

, (2.94)

and both of these states have associated symmetries [28]. In the case of the even

parity cat, only the even number Fock states make a contribution to the state

|ψ+(α)〉 = (2 + 2e−2|α|2)−1/2

∞∑
n=0

e−|α|
2/2

√
n!

(αn + (−α)n)|n〉

=
1√

cosh |α|2

∞∑
n=0

α2n√
(2n)!

|2n〉, (2.95)

since all the odd n terms vanish. In the odd parity cat, the opposite is true and all

the even Fock state contributions cancel out

|ψ−(α)〉 = (2− 2e−2|α|2)−1/2

∞∑
n=0

e−|α|
2/2

√
n!

(αn − (−α)n)|n〉
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=
1√

sinh |α|2

∞∑
n=0

α2n+1√
(2n+ 1)!

|2n+ 1〉, (2.96)

and so these states are orthogonal 〈ψ−(α)|ψ+(α)〉 = 0. They are also non-Gaussian

since their Wigner functions, are given by [28]

Wψ±(α)(q, p) =
e−(q−

√
2α)2−p2

+ e−(q+
√

2α)2−p2 ± e−q2−p2
cos(2

√
2αq)

2π(1± e−2α2)
. (2.97)

We also note that these cat states are considered non-classical since their Wigner

functions have negative values in some regions of phase space [27]. In quantum in-

formation, the Schrödinger cat states allow for universal quantum computation with

linear optics [58, 59], and are therefore regarded as a valuable resource in continuous-

variable quantum computing. Schrödinger cat states can be conditionally generated

either by off-resonance interaction with ions in cavity quantum-electrodynamics [28]

or by the linear optics and a weak self Kerr state [60]. To date, these cat states have

been generated experimentally for |α| < 1 and are the so-called kitten states [61].
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Chapter 3

Gaussian state entanglement

concentration

3.1 Bipartite pure state entanglement

3.1.1 Historical evolution

Entanglement like most other predictions of quantum mechanics has had an inter-

esting evolution. Originally noted by Schrödinger as the essential quantum char-

acteristic, it was subsequently was employed by Einstein, Podolsky and Rosen [62]

as a device to argue for the incompleteness of quantum mechanics. Following this,

entanglement languished in obscurity for decades, ignored by physicists for its seem-

ingly purely philosophical character. This remained the case until Bell revisited the

concept and went on to derive the inequality that now bears his name. His con-

tribution was to show that the predictions of quantum mechanics, in particular

the measurement statistics of entangled subsystems, could not be duplicated by a

hidden-variable theory that obeyed Einstein causality [63]. This result was cat-

apulted into mainstream physics following the experimental verification by Aspect

[64]. Today entanglement is viewed as a resource to be consumed in various quantum

information protocols. For example, entanglement can be readily used to teleport

unknown quantum states [7]. To understand the mechanics behind such exploita-
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tions, requires a mastery over the underlying mathematics of entangled states.

3.1.2 Mathematical definition

Let A and B be two physical systems of interest with associated state spaces HA

and HB, respectively, then the state space for the total system A + B is given by

the tensor product rule [9, 13, 65]:

HAB = HA ⊗HB. (3.1)

Consequently, the states living in HAB fall into one of two classes. Separable states

are given by product states |ψ〉 = |φ〉 ⊗ |ϕ〉 = |φ, ϕ〉 = |φ〉|ϕ〉, such states describe

systems with no non-local correlations. In contrast, entangled states are those which

cannot be represented as a product of subsystem states |Ψ〉 6= |ψ〉 ⊗ |φ〉.

A particularly powerful tool used in the understanding of entangled states is

provided by the Schmidt decomposition [9, 13, 65]. Obviously, we can decompose

any |Ψ〉 ∈ HA⊗HB into a superposition of basis elements ofHA⊗HB. If {|i〉}Mi=1 and

{|j〉}Nj=1 are orthonormal bases ofHA andHB, then {|i, j〉}M,N
i,j=1 forms an orthonormal

basis for HAB. Accordingly, any vector |Ψ〉 ∈ HAB can be represented as an unique

expansion relative to this basis:

|Ψ〉 =
M∑
i=1

N∑
j=1

Ψij|i, j〉. (3.2)

The coefficients Ψij are the components of a M ×N complex matrix that describe

the projection of |Ψ〉 onto the basis element |i, j〉. However, because of a remarkable

theorem due to Schmidt it is always possible to find a change of basis of HAB such

that any |Φ〉 can be expressed as

|Ψ〉 =
K∑
k=1

sk|ek, fk〉, (3.3)

with K = min(M,N). The derivation of this result is both simple and compelling

and follows from the singular value decomposition of complex matrices [9]. The

values of sk are unique to each vector and they obey sk ∈ <,
∑K

k=1 s
2
k = 1 and sk ≥ 0.
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These coefficients are called the Schmidt coefficients and the orthonormal basis

{|ek, fk〉}Kk=1 is called the Schmidt basis. The number of non zero Schmidt coefficients

of a vector is called its Schmidt rank. The power and elegance of the Schmidt

decomposition is that it allows an immediate identification of the separability of a

state via its Schmidt rank. In particular, separable states must have a Schmidt rank

of one, while any entangled state must have a Schmidt rank greater than one.

3.1.3 Entanglement as a resource

The central reason for the resource interpretation of entangled states is due to their

remarkable non-local properties. In particular, a composite system prepared in

an entangled state will display non-local correlations between locally performed

measurements on the entangled subsystems [9]. This leads to the conclusion that

the outcomes of local measurements are interdependent even if the subsystems are

separated by a spacelike interval. For example, suppose two observers shared an

identically prepared ensemble of spin singlet states

|Ψ〉AB = 2−1/2(| ↑, ↓〉AB − | ↓, ↑〉AB) (3.4)

and each observer measures the spin on their local particle while recording the re-

sults. After comparing their measurement data via classical communication, they

discover perfect anti-correlation in their results where spin up for one observer is

always accompanied by spin down for the other and vice versa. Furthermore, these

correlations exist even though the local measurements on each subsystem could have

no casual influence on each other. It is the exploitation of this non-casual connec-

tion between entangled subsystems that allows all of the celebrated applications of

entanglement.

The non-local correlations manifest in entangled states are a direct result of the

non-separable nature of such states and while the question of separability of a given

composite pure state is binary, the degree by which a given non-separable state is

considered entangled is not. Thus, different entangled states with different Schmidt

coefficients have different degrees of non-separability. The degree of non-separability

43



is the mathematical expression of the lack of individuality of the entangled subsys-

tems, i.e. if a composite system is in a pure entangled state then the subsystems

cannot be assigned pure quantum states. They can, however, be assigned mixed

states, called reduced density matrices. These are obtained by tracing out the other

subsystem. For example, if we assume our composite system is in the state |Ψ〉AB
then we can obtain the reduced density matrices by

ρ̂A = TrB(|Ψ〉〈Ψ|) =
∑
k

∑
j

sksjTrB (|ek〉〈ej| ⊗ |fk〉〈fj|)

=
∑
k

∑
j

sksjTr (|fk〉〈fj|) |ek〉〈ej| =
∑
k

s2
k|ek〉〈ek|, (3.5)

where ρ̂B = TrA(|Ψ〉〈Ψ|) can also be done by tracing out subsystem A. The in-

terpretation of the disorder of these reduced density matrices is due to the lack of

individuality of each subsystem as a result of their non-local connection.

Thus, the degree of disorder in the states of the subsystems quantifies the the

strength of the non-local correlations [9, 66] between these systems. This disorder

or lack or purity in a given ρ̂ can be measured by the Von Neumann entropy SV N :

SV N(ρ̂) = −Tr (ρ̂ ln ρ̂) . (3.6)

This entropy is zero if ρ̂ is a pure state, since if ρ̂ is pure then there exists some |φ〉

such that ρ̂ = |φ〉〈φ| and so

SV N(ρ̂) = − ln(1)〈φ|φ〉 = 0. (3.7)

On the other hand, assuming that ρ̂ is mixed with ρ̂ =
∑K

j=1 pj|ϕj〉〈ϕj| then

SV N(ρ̂) = −
∑K

k=1 pk ln pk is maximized when all the weights are equal p1 = p2 =

. . . = pK = 1/K. This can be easily verified using Lagrange multipliers on SV N(ρ̂)

with respect to the normalization condition
∑K

k=1 pk = 1. Such maximally mixed

states are proportional to the identity operator

ρ̂max = K−1Î . (3.8)

This has the maximum degree of disorder because it does not favour any of the

individual pure states involved in its convex decomposition. Thus, it is equally
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unlike any possible pure state. This statement can be made rigorous by appealing

to the fidelity of states. The fidelity of any two states ρ̂ and σ̂ is defined as F(ρ̂, σ̂) =

(Tr
√
ρ̂1/2σ̂ρ̂1/2)2 and is the probability of confusing ρ̂ with σ̂ if one can perform only a

single measurement in an attempt to distinguish them [13]. Then F(|ψ〉〈ψ|, ρ̂max) =

〈ψ|ρ̂|ψ〉 = K−1 for any pure state |ψ〉.

Returning to entanglement, the Von Neumann entropy forms the basis of an

entanglement measure for bipartite pure states. This measure is called the entropy

of entanglement [9, 65, 67]:

E(|Ψ〉〈Ψ|) = {SV N ◦ Trj}(|Ψ〉〈Ψ|), (3.9)

where Trj is the partial trace with respect to the jth subsystem with j = (A,B).

The Schmidt decomposition allows an immediate calculation of the entropy of en-

tanglement associated with each state

E(|Ψ〉〈Ψ|) = −
K∑
k=1

s2
k ln s2

k. (3.10)

Note that E(|Ψ〉〈Ψ|) = 0 if |Ψ〉 is separable because the Von Neumann entropy of the

reduced density matrices of the subsystem is zero. Thus, if A+ B is in a separable

state then ρ̂A and ρ̂B are in pure states and the VN entropy is zero. Conversely, the

VN entropy has a maximum Smax = ln(K) when A and B have the states

ρ̂A =
1

K
ÎA, ρ̂B =

1

K
ÎB, (3.11)

which leads to the definition of maximally entangled states

|Ψ〉 =
1√
K

K∑
i=1

|ek, fk〉. (3.12)

Physically, maximally entangled states correspond to the case where the states of the

subsystems are completely undefined and hence correspond to maximum entropy.

It is this connection between local disorder and non-local correlations together

with the proven ability of harnessing these correlations to achieve an information

processing effect [7, 8] that leads to the resource interpretation of entanglement.

Simply put, entanglement allows the execution of tasks which cannot be completed
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by solely relying on local quantum operations and classical communication (LOCC)

between agents [68]. Consequently, entanglement allows the implementation of pro-

tocols that would otherwise be impossible to perform if limited to LOCC. Ergo,

any measure of the degree of entanglement must be non-increasing under LOCC.

Operationally, an entanglement measure is a real valued function E(|Ψ〉〈Ψ|) on the

state space of the composite system A+B which obeys

1. E(|Ψ〉〈Ψ|) = 0 if |Ψ〉 is seperable.

2. Entanglement is invariant under local unitary operations on each subsystem:

E(|Ψ〉〈Ψ|) = E(ÛA ⊗ ÛB|Ψ〉〈Ψ|Û †A ⊗ Û
†
B). (3.13)

3. Entanglement should not increase on average under operations involving local

measurements and classical communication only

E(|Ψ〉〈Ψ|) ≤
∑
ω∈Ω

pω E

(
Âω|Ψ〉〈Ψ|Â†ω

pω

)
. (3.14)

Here pω = Tr(Â†wÂω|Ψ〉〈Ψ|) is the probability of obtaining the ω outcome and

{Âω = Âω,A ⊗ Âω,B}ω∈Ω are the corresponding Kraus [68] operators for the

general POVM measurement [68].

In the case of pure bipartite entangled states, any one of the entropic measures

of density matrices, including the Von Neumann entropy and the linear entropy

SL(ρ̂) = 1 − Tr(ρ̂2), can be shown to obey these constraints [69]. In addition,

more general manifestations of entanglement including mixed state entanglement

and multipartite entanglement rely on these and other axioms to define a resource

theory of entanglement [65].

3.1.4 Procrustean entanglement concentration

Traditionally viewed as a source of contention over the completeness of quantum

mechanics [62], entanglement has undergone a change in perception. The turning

point came with the discovery of the teleportation of quantum states [7]. For the first
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time, it was realised that entangled states could transfer unknown quantum states

between potentially space-like separated systems. However, the efficiency of such

protocols is governed by the degree of entanglement present in the shared state.

Optimized performance comes with the use of maximally entangled states. The

difficult part is in the distributing of the shared entangled state to the observers who

require it. Ultimately, this requires the propagation of the physical carriers prepared

in the entangled state, whether it be a pair of spin half particles or radiation modes.

The rest of the universe then makes its presence felt by corrupting the initially pure

state via decoherence and dissipation processes. Such processes conspire to reduce

both the purity and available entanglement, thereby reducing the efficiency of the

non-local protocol the entangled state is destined to be consumed in.

Fortunately, the observers Alice and Bob are not defenceless against this assault

and can employ entanglement distillation protocols to counteract the consequences

of unwanted environmental interactions. Such protocols allow for the probabilistic

repair of the state back to its former glory by purification and replenishing lost en-

tanglement. In this thesis, we restrict our attention to the considerably simpler task

of entanglement concentration, where the input state of the protocol is a pure entan-

gled state. The goal is then to probabilistically increase the entanglement content of

the input state using only local quantum operations and classical communication on

each of the entangled subsystems. The restriction to LOCC allows the entanglement

to be modified after it has been distributed to the agents.

In this thesis, we investigate entanglement concentration where the entangled

state has been distributed to the spatially separated observers and has suffered a loss

of purity and entanglement as a result. It is then assumed that the observers employ

some conditional purification procedure to restore the purity of a sub-ensemble of

all the distributed states. At this point, the Alice and Bob are left with an ensemble

of pure, possibility reduced, entangled states. To optimize the performance of the

entanglement-aided protocol that they wish to execute, they apply an entanglement

concentration protocol to their remaining sub-ensemble. One such method is the

Procrustean method [70] where Alice and Bob use LOCC to conditionally transform
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the Schmidt coefficients of each input entangled state to obtain a more entangled

output state. Whether an individual run of the protocol is successful is dependant

on the probabilities inherent to the particular scheme being used. Symbolically, such

protocols can be represented by the state transformation

|ψin〉 =
K∑
k=1

sk|ek〉 ⊗ |fk〉 −→ |ψout〉 =
K∑
k=1

tk|ek〉 ⊗ |fk〉, (3.15)

where the post-protocol state must exhibit a higher degree of entanglement than

the original state. Such protocols must have a success condition to allow Alice and

Bob to distinguish between success and failure outcomes of the protocol.

Procrustean Entanglement concentration protocols are unavoidably probabilis-

tic due to a fundamental theorem by Nielsen concerning entanglement transforma-

tions [71]. This idea makes use of the concept of majorization [72] which measures

the degree of disorder between two normalised vectors a = (a2
0, a

2
1, . . . a

2
K)T and

b = (b2
0, b

2
1, . . . b

2
K)T , where the elements of these vectors are arranged in descending

numerical order, i.e. a2
0 ≥ a2

1 ≥ . . . ≥ a2
K and b2

0 ≥ b2
1 ≥ . . . ≥ b2

K . Then a is said to

be majorized by b, denoted a ≺ b, if

K∑
k=`

b2
k >

K∑
k=`

a2
k, (3.16)

for 1 ≤ ` ≤ K. This means that the components of b are more alike than the

components of a and is therefore a more globally disordered vector than a. This

latter point follows since the majorization order is preserved by a set of functions

called the Shur convex [69]

a ≺ b =⇒ f(b) > f(a), (3.17)

of which, Von Neumann’s entropy

S(a) = −
K∑
k=0

a2
k ln a2

k, (3.18)

is a member.

In Nielsen’s theorem [71], our ability to transform one pure bipartite entangled

state into another via deterministic local operations (i.e. local unitary operations)
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and classical communication is determined by the majorization relation between the

eigenvalues of the reduced density matrices of the input and output states. Thus, if

s = (s2
0, s

2
1, . . . s

2
K)T is the ordered vector of the eigenvalues of the reduced density

matrices for |ψin〉 and t = (t20, t
2
1, . . . t

2
K)T is the equivalent quantity for |ψout〉 then

the latter can be transformed into the former via deterministic LOCC if

t ≺ s. (3.19)

Consequently, this means that we can only transform |ψin〉 −→ |ψout〉 by deter-

ministic LOCC if the input state is more entangled than the output state. This

follows since t must have a smaller entropy than s and, therefore, has a smaller

degree of entanglement. Thus, since entanglement concentration aims to proceed

in the opposite manner it must be probabilistic. Generalizations of this theorem to

entanglement transformations under probabilistic LOCC places restrictions on any

single-copy entanglement concentration protocol [73–75]. In particular, in [74], the

probabilistic transformation of |ψin〉 −→ |ψout〉 can only occur if∑
j

pjtj ≺ s, (3.20)

where pj is the probability that the entanglement concentration protocol yields the

entangled state characterised by tj and denoted by |ψout(j)〉. Physically this means

that on average entanglement concentration cannot occur i.e. for every |ψout(j)〉

which is more entangled than |ψin〉 there is another which is less entangled than the

input state. Thus, such protocols come with a success condition that is dependant on

achieving a particular outcome j. This is in accordance with the defining properties

of an entanglement measure where LOCC cannot increase the entanglement on

average.

3.2 Gaussian state Procrustean entanglement con-

centration

So far, entanglement has only been discussed in the regime of finite dimensional

quantum systems. However, as noted earlier, the experimental ease of preparation
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of Gaussian states and operations motivates the development of quantum informa-

tion protocols that exploit these resources. It is therefore natural to explore the

continuous-variable entangled states and the equivalent non-local protocols they

can be exploited in. Moreover, Gaussian entangled states are natural candidates for

such protocols since they are readily producible and can be exploited to perform

teleportation [8], dense coding [41] and entanglement-assisted communication [76].

Thus, in accepting the utility of such entangled states we are forced to consider

protocols which increase or repair entangled states as they are distributed. This is

the subject of this section.

3.2.1 No maximally entangled states

While most of the intuition of entanglement developed from finite dimensional pure

bipartite states equally applies to infinite dimensional Gaussian entangled states,

there are nonetheless a few eccentricities. The Schmidt decomposition still holds

meaning that entangled states can be decomposed as

|Ψ〉 =
∞∑
k=1

sk|ek〉|fk〉, (3.21)

where {|ek〉}k and {|fk〉}k are bases for the spaces HA and HB. Furthermore, Von

Neumann entropy of its reduced density matrices serve to quantify the degree of

entanglement available in the state with

ρ̂A = TrB (|Ψ〉〈Ψ|) =
∞∑
k=1

s2
k|ek〉〈ek|, (3.22)

and so

E(|Ψ〉) = −
∞∑
k=1

s2
k ln s2

k. (3.23)

This is where the first peculiarity of Gaussian entangled states emerges, namely

that there are no physical maximally entangled states. This fact follows from the

standard definition of maximally entangled states

|Ψmax〉 =
1√
K

K∑
k=1

|ek〉|fk〉, (3.24)
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and so in the limit of K → ∞ these states become undefined. Consequently, since

the Schmidt decomposition applies, by design, to normalisable states then maximally

entangled infinite dimensional states must be non-normalisable.

This property follows from the fact that infinite dimensional states, unlike finite

dimensional states can be eigenstates of operators with continuous spectra. In par-

ticular, maximally entangled Gaussian states are simultaneous eigenstates of relative

canonical position Û0 = q̂B − q̂A and total canonical momenta V̂0 = p̂A + p̂B [31].

These EPR states exhibit perfect correlations between the local conjugate position

and momentum at the price of being non-physical. Indeed, the Wigner function for

such an EPR state is WEPR(q1, p1, q2, p2) = δ(q2 − q1)δ(p2 + p1) and so∫
dq1dq2dp1dp2 δ(q2 − q1)δ(p1 + p2) =

∫
dq2dp2 =∞. (3.25)

Ultimately, this fact has profound implications for any continuous-variable entan-

glement concentration protocol because it means that maximally entangled states

are unobtainable. Instead, one need content oneself to use partially entangled con-

tinuous variable states and therefore never achieve optimal performance from any

entanglement based protocols. This disadvantage of continuous-variable entangle-

ment is to be contrasted with the ease at which Gaussian entangled states can be

obtained experimentally [14].

3.2.2 The necessity of non-Gaussian operations

The second interesting feature of Gaussian state entanglement concentration is that

it cannot be achieved by involving local Gaussian operations and classical communi-

cation alone. This fundamental result applies to all Gaussian entangled states both

mixed and pure as detailed in [16–18]. Consequently, all Gaussian entanglement

distillation protocols will always require the inclusion of a non-Gaussian operation

in order to work. Thus, the only examples of Gaussian distillation or concentration

protocols known either involve a non-Gaussian operation or the inclusion of non-

Gaussian noise. In the context of entanglement concentration, this theorem means

that either non-linear optical devices or photon subtraction/addition techniques are

51



required to increase the shared entanglement.

3.2.3 The two mode squeezed vacuum

The Gaussian entangled two mode squeezed vacuum state (TMSV) is a finite entan-

gled version of the EPR state which exhibits non-local correlations in the variances

of the relative canonical position Û0 and total momenta V̂0 observables. Its opti-

cal realisation is generated by a nonlinear process called non-degenerate parametric

down-conversion [14], where photons in an intense pump beam of frequency ωp are

absorbed by the medium and re-emitted as pairs of entangled photons (traditionally

called signal and idler photons) with frequencies ωs and ωi, such that ωp = ωs + ωi.

Mathematically, the two mode squeezed vacuum state is related to the vacuum by

a suitable unitary evolution in the limit of a classical pump field ζ = reiθ [25]

ŜAB(ζ) = exp
(
ζâ†b̂† − ζ∗âb̂

)
, (3.26)

and can be decomposed into

ŜAB(ζ) = exp
(
â†b̂† eiθ tanh r

)
exp

{
− ln(cosh r)(â†â+ b̂b̂†)

}
exp

(
−âb̂ e−iθ tanh r

)
.

Here r is the so-called squeezing parameter and it is a function of the probe of

intensity and the coupling constant of the medium, while the second equality follows

from a CBH decomposition [25]. The TMSV with θ = 0 is given, in its Schmidt

decomposition, as

|ζ〉 ∝ etanh râ†b̂†|0, 0〉 =
1

cosh r

∞∑
n=0

tanhn r|n〉|n〉, (3.27)

and so it contains all amplitudes for obtaining different numbers of photons in the

signal and idler modes. Consequently, the Fock basis is the Schmidt basis for this

state and (tanh r)n/ cosh r are the Schmidt coefficients of |ζ〉. It is also very useful

to introduce the parameter λ = tanh r, which transforms the Schmidt coefficients

into cn =
√

(1− λ2)λn for reasons discussed later. Alternatively, this state can be

described via its Wigner function [15]

W (q1, p1, q2, p2) =
4

π
e−e

−2r(q2+q1)2−e−2r(p2−p1)2−e2r(q2−q1)2−e2r(p1+p2)2

, (3.28)
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Figure 3.1: The degree of entanglement in the TMSV is a monotonically increasing

function of λ since the greater lambda, the more energy injected in the signal and

idler modes and the flatter the Schmidt components become.

and so, we can identify the TMSV as a Gaussian entangled pure state.

The entanglement content of the TMSV can be measured by calculating its Von

Neumann entropy. In this case we get [31]

E(|ζ〉) = −
∞∑
n=0

c2
n ln c2

n = −2λ2 lnλ

1− λ2
− ln(1− λ2), (3.29)

which as illustrated in Fig.3.1 is a monotonic increasing function of λ and tends to

infinity as λ→ 1, which is the reason for employing the λ parametrisation in the first

place. This occurs because λ is a re-scaling of the pump intensity r which controls

the number of photons available in each of the signal and idler modes. Thus, by

increasing the pump intensity we increase the energy injected into the signal and

idler modes and increase the probability of detecting ever larger number of photons

in each mode. This also increases the entanglement since it flattens the Schmidt

components i.e. more energy means that the amplitude for |n, n〉 for n > 0 increases

at the expense of the vacuum contribution |0, 0〉. This also explains the non-physical

nature of the maximally entangled EPR states which are related to the TMSV in

the limit λ→ 1, since reaching this limit requires an infinite amount of energy. This

follows from the expectation value of the free Hamiltonian, while ignoring the zero
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point contributions, of the single and idler modes

〈E(λ)〉 = 〈ζ(λ)|(n̂A + n̂B)|ζ(λ)〉 =
2λ2

1− λ2
, (3.30)

and so 〈E(λ)〉 → ∞ as λ → 1, i.e. the average energy available in the state tends

to infinity.

3.2.4 Photon-subtraction protocol

Non-Gaussian operations are a vital prerequisite for the concentration of Gaus-

sian continuous-variable entanglement. To date, the only technologically feasible

non-Gaussian entanglement concentration protocol of the TMSV involves photon

subtraction via binary photo-detectors [42]. In this protocol, Alice and Bob both

attempt to subtract a photon from the entangled mode in their possession. This

requires each agent to propagate their entangled mode through a noiseless beam

splitter with the vacuum before subjecting one of the output modes to binary photo-

detection [42]. This protocol is deemed successful if both register a click correspond-

ing to the presence of photons in each detector and provided that they share their

results then the final shared state between Alice and Bob is given by

|Ψf〉 ∝
(

Π̂click ⊗ ÎBC ⊗ Π̂click

)
ÛBS ⊗ ÛBS|0, ζ(λ), 0〉ABCD, (3.31)

where Π̂click =
∑∞

k=1 |k〉〈k| is the POVM element corresponding to the detection

of a single photon state and {â, b̂, ĉ, d̂} are the mode operators for modes A,B,C

and D. This entanglement transformation is actually Procrustean, since |Ψf〉 ∝

X̂b ⊗ X̂c|ζ(λ)〉, where X̂b =
√
R
√
T
n̂
b̂ with a similar expression for X̂c as noted in

chapter two, and thus

|Ψf〉 ∝
∞∑
n=1

T nλnn|n− 1, n− 1〉 =

√
(1− T 2λ2)3

1 + T 2λ2

∞∑
n=0

λnT n(1 + n)|n, n〉. (3.32)

The protocol is probabilistic and succeeds with the probability [21]

PS =
(1− T )2λ2(1− λ2)(1 + T 2λ2)

(1− T 2λ2)3
. (3.33)

The verification of entanglement concentration is done by comparing the entan-

glement content of the initial state with the final state. This can be demonstrated
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Figure 3.2: The features of the photon subtraction protocol can be understood con-

sidering the relationship between (a) probability of success and (b) the increase in

entanglement for T = 0.95.

by considering the ratio of the Von Neumann entropies Si = S(ρ̂i) and Sf = S(ρ̂f )

where

ρ̂i = (1− λ2)
∞∑
n=0

λ2n|n〉〈n|, (3.34)

and

ρ̂f =
(1− T 2λ2)3

1 + T 2λ2

∞∑
n=0

(Tλ)2n(1 + n)2|n〉〈n|. (3.35)

Thus, entanglement concentration occurs when ∆S = Sf/Si > 1. This protocol

can be characterised by the behaviour of this ratio together with the behaviour of

the probability of success. The behaviour and efficiency of this protocol is shown in

Fig.3.2 for T = 0.95. In particular, we note from Fig.3.2(b) that, for T = 0.95, the

entanglement concentration succeeds for 0 < λ < 0.97 i.e. the photon subtracted

state is almost always more entangled that the initial TMSV unless λ > 0.97. Thus,

the relative increase in entanglement is most dramatic for very weakly entangled

input states and decreases as the entanglement in the initial TMSV increases. Fur-

thermore, we also note from Fig.3.2(a) the tradeoff between entanglement increase

∆S with the probability of success, with greater increases occurring when the proba-

bility of success is at its smallest. Nevertheless, the current technological state of art

has meant that this entanglement concentration protocol has been experimentally

verified [77].
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3.2.5 Cross-Kerr protocol

An alternative scheme [54] relies on the use of a non-Gaussian coupling between one

of the entangled modes of light and an ancillary light mode prepared in a coherent

state |α ∈ <〉, i.e. the global input state is |ψin(0)〉 = |ζ(λ), α〉. The coherent state

and Bobs half of the squeezed state are fed into a nonlinear medium that exhibits

the cross-Kerr effect with a κT phase shift per photon. This interaction results in

entanglement between the coherent beam and Alice and Bobs beams:

|ψin(t)〉 =
(
ÎA ⊗ e−iκT b̂

†b̂ĉ†ĉ
)
|ψin(0)〉

=
∞∑
m=0

∞∑
n=0

cne
−α2/2αme−iκTnm√

m!
|n, n,m〉

=
∞∑
n=0

cn|n, n〉 ⊗
∞∑
m=0

e−|α exp(−inκT )|2/2 (αe−iκTn)
m

√
m!

|m〉

=
∞∑
n=0

cn|n, n, αe−inκT 〉. (3.36)

A local double homodyne measurement is then performed on the coherent state,

which ultimately projects it onto a random coherent state |β〉. Consequently, the

final state shared between Alice and Bob is given by

|ψf〉 ∝
∞∑
n=0

λn〈β|αe−iκTn〉|n, n〉, (3.37)

and in the regime of weak non-linearity κT << 1, the induced back-action is given

by

|ψf〉 ∝
∞∑
n=0

λne−iκTnαβ
∗ |n, n〉. (3.38)

Thus, if the measurement results in a =(β) < 0 then the squeezing and entanglement

is increased since

λ→ λeκTα=(β). (3.39)

The impossibility theorem of distillation of Gaussian entanglement means that the

non-Gaussian coupling, i.e. the cross-Kerr interaction, between the modes must

be maintained. However, a number of open questions remain with regard to this

protocol.
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1. Are there other measurement strategies on the ancilla that will achieve en-

tanglement concentration, possibly to a greater degree, in this weak nonlinear

regime?

2. What is the fundamental mechanism that is responsible for the Gaussian-

preserving entanglement modification effect in this weak regime?

3. How accurate is the output entangled state given here for the weak limit

κT << 1 and how constraining is the requirement of weak non-linearities?

4. Can this scheme be extended to non-optical ancilla systems and interactions?

5. What is the origin of the measurement based success criterion?

Surprisingly, all of these open questions can be answered rather elegantly in a sin-

gle entanglement concentration model based on the weak measurement formalism.

However, to understand this we must first review the notion of weak values and

weak measurements. This is the subject of chapter four and then in chapter five we

apply these notions to entanglement concentration.

3.3 Other methods

3.3.1 Schmidt projection

For completeness, we note that the Procrustean method is not the only method

to be suggested that allows entanglement concentration. An alternative method

is called Schmidt projection [70], where the protocol takes a ensemble of weakly

entangled states and projects onto a maximally entangled state on a subspace of

the initial entangled states. In the context of Gaussian entanglement concentration,

this method has been employed by Duan et. al. [78, 79] for the two mode squeezed

vacuum, with Alice and Bob initially sharingK copies of the entangled state |ζ(λ)〉 =
√

1− λ2
∑∞

n=0 λ
n|n, n〉 which can be written as

|Ψin(λ)〉 =
K⊗
i=1

|ζ(λ)〉Ai,Bi = (1− λ2)K/2
∞∑
L=0

λL
√
d

(K)
L |L〉Ai,Bi . (3.40)
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The |L〉Ai,Bi states are finite dimensional maximally entangled states

|L〉Ai,Bi =
1√
d

(K)
L

i1+i2+...+iK=L∑
i1,i2,...,iK

|i1, i2, . . . iK〉Ai |i1, i2, . . . iK〉Bi , (3.41)

with d
(K)
L = (L+K−1)!/(L!(K−1)!. Thus, this entanglement concentration protocol

requires a non-demolition measurement of the total photon number in Alice’s modes

and it yields the final shared state |L〉 with a probability P
(K)
L = (1− λ2)Kλ2Ld

(K)
L .

This non-Gaussian non-demolition measurement can be accomplished by using an

array of noiseless beam splitters and photon counting [78, 79].

3.3.2 Non-Gaussian noise approach

Another alternative method of entanglement distillation for continuous-variable states

lies in the introduction of a source of non-Gaussian noise which can then be corrected

by Gaussian operations. Such schemes have recently been experimentally realised

[80–82].
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Chapter 4

Weak measurements and weak

values

The previous chapter ended with the desire to generalise the optical entanglement

concentration protocol to include arbitrary ancilla systems. In attempting to do

so, we are faced with two immediate problems: What measurement strategies can

be employed to allow conditional entanglement concentration? And: What are the

general constraints required to produced Gaussian preserving entanglement concen-

tration? Both of these issues have a common resolution in the framework of weak

measurements. Indeed, one can consider the previous entanglement concentration

protocols as examples of weak measurements where the probe state is initially en-

tangled. This realisation is surprisingly powerful as it yields a criterion for selecting

different ancillary ingredients.

4.1 Weak Values

4.1.1 Definition of weak values

Any physical theory makes contact with empirical observations through the observ-

able numbers it predicts. In quantum theories, there are three types of observable

numbers: eigenvalues or measurement results, expectation values and weak values
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[83]. The first set of numbers follow from the basic formulation of observables and

measurements in quantum mechanics. Simply put, the results of a measurement of

an observable A coincide the eigenvalues of its associated self-adjoint operator

Â =
∑
j

aj|aj〉〈aj|. (4.1)

These numbers are observable in a single measurement on a quantum mechanical

system. Next is the notion of an expectation value, i.e. the statistical average of an

observable on a particular quantum state

〈A〉 = 〈ψ|Â|ψ〉. (4.2)

Expectation values only emerge on a statistical level following measurements per-

formed on an identically prepared ensemble. These numbers are also used to estab-

lish a correspondence with classical theories [30].

The final set of observable numbers in quantum mechanics are a recent addition

called weak values [83, 84]. A weak value, like an expectation value, is only a

statistically observable number, but unlike an expectation value or eigenvalue, it

can be complex. Weak values are only applicable to quantum systems which have

been both pre and post-selected in particular quantum states. Thus, the weak value

of the observable A on a system which is pre-selected in the state |Φ1〉 and post-

selected in |Φ2〉 is defined as

AW =
〈Φ2|Â|Φ1〉
〈Φ2|Φ1〉

, (4.3)

where it is assumed that |Φ1〉 and |Φ2〉 are non-orthogonal. From a physical point

of view, weak values are regarded as the possible values of the observable at inter-

mediate times between the pre and post-selections [85].

4.1.2 Some properties of weak values

To gain a better appreciation for weak values it is worthwhile to consider how they

are related to both eigenvalues and expectation values of a given observable. In the
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first case, the weak value of Â coincides with an eigenvalue if either of {|Φ1〉, |Φ2〉}

coincide with an eigenstate of Â:

AW =
〈aj|Â|Φ1〉
〈aj|Φ1〉

= aj
〈aj|Φ1〉
〈aj|Φ1〉

= aj, (4.4)

AW =
〈Φ2|Â|ak〉
〈Φ2|ak〉

= ak
〈Φ2|ak〉
〈Φ2|ak〉

= ak. (4.5)

The weak value becomes undefined if both the pre and post-selected states are dis-

tinct eigenstates of Â (assuming that Â has a completely non-degenerate eigenvalue

spectrum). On the other hand, a weak value of Â coincides with an expectation

value of Â if the pre and post-selected states are identical:

AW =
〈ψ|Â|ψ〉
〈ψ|ψ〉

= 〈ψ|Â|ψ〉 = 〈A〉. (4.6)

Furthermore, any expectation value of Â can be linearly decomposed into a sum of

different weak values of Â [85, 86] since

〈ψ|Â|ψ〉 = 〈ψ|

(∑
j

|j〉〈j|

)
Â|ψ〉 =

∑
j

|〈ψ|j〉|2 〈j|Â|ψ〉
〈j|ψ〉

=
∑
j

P (ψ|j)AW (j), (4.7)

where the complete basis used in the above does not coincide with the eigenbasis of

Â and P (ψ|j) is the probability of obtaining |ψ〉 given |j〉. This allows an alternative

interpretation of expectation values as a probabilistic mixture of weak values [86].

In addition, it demonstrates two possibilities for the imaginary components of weak

values, either =(AW (j)) = 0 for all j or they are mixed with some positive for some

j and others negative. This follows from

=
(
〈ψ|Â|ψ〉

)
= 0⇒

∑
j

P (ψ|j)=(AW (j)) = 0. (4.8)

Thus, since not all of the P (ψ|j)s can be zero then either =(AW (j)) = 0 for all

j or they are mixed. So, in contrast to both eigenvalues and expectation values,

weak values can assume complex numerical values whilst remaining observable at

the statistical level. To understand the process by which this is possible, we now

discuss the notion of weak measurements [83].
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4.2 Weak measurements

4.2.1 General configuration

Operator weak values are observable, but only in an indirect sense on the statis-

tical level [83]. To illustrate this point, we recall the standard concept of a weak

measurement. A weak measurement can be regarded as a modification of the con-

ventional model of an indirect quantum measurement. Historically, such indirect

measurement models were were originally introduced by Von Neumann [87] in or-

der to describe the process of quantum measurement in a more realistic manner,

the idea being that we displace the “Heisenberg” cut [63] between the classical and

quantum world by one system. Hence, there are two quantum systems of interest.

The first system, called the signal, possesses the property that is to be measured.

The other, called the probe, is an additional system required to witness the property

of interest. In this original context, the probe is regarded as the degree of freedom

of the measurement apparatus which interacts with the system to be measured (the

signal). Consequently, the measurement is regarded as the entangling of the pointer

degrees of freedom of the probe with the eigenstates of the chosen observable of the

system. In the original model [87], the cut is reintroduced by the postulating the

collapse of the probe into one of its pointer eigenstates.

Weak measurements represent a departure from this traditional model in two

respects. Firstly, the signal system is required to be both pre and post-selected

by completely independent processes to the one that mediates its interaction with

the probe. Secondly, the coupling strength between the probe and signal must be

weak. A quantitative expression for this requirement of weakness will be presented

in due course. If these vital pre-requisites are not met then the weak measurement

will fail and the probe will not be able to witness the desired weak value. The

general configuration of a weak measurement is portrayed in Fig.4.1. In the context

of measurement theory, we can regard a weak measurement as a very low resolution

indirect quantum measurement where the signal is both pre and post-selected. That

is, the coupling and the initial state of the probe are tuned to ensure that there is
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∣1 〉

∣ f 〉H I

∣2 〉

∣i 〉

Figure 4.1: The general schematic of a weak measurement involves a system which

is both pre and post selected in particular states. In this diagram, the probe system

is the top system and the signal is the bottom one. The signal is mixed with the

probe at intermediate times between the selections and if the coupling is weak then

the probe encodes the weak value of an observable.

insufficient resolution to indirectly observe the eigenvalue spectrum of the observable

imprinted on the probe and it can be regarded as an unsharp measurement [30].

4.2.2 Actual implementation

It is worth considering the actual implementation of a weak measurement [85].

Clearly this cannot be done in a single measurement since the processes which

underly the pre and post-selection procedures will almost certainly be probabilistic

in nature. As a consequence, a weak measurement of a weak value can only be

implemented on an identically prepared ensemble. Thus, suppose that we have such

an ensemble of signal and probe systems. The pre- and post-selection of the signal

states can be achieved by initially measuring the observable X on every signal and

only keeping systems which correspond to the result X = x. This sub-ensemble is

then allowed to interact with the ensemble of probe states. After this, we measure

Y on every remaining signal system in the sub-ensemble and only keep systems cor-

responding to Y = y. X and Y are chosen such that [X̂, Ŷ ] 6= 0 and [Â, X̂] 6= 0 and

[Â, Ŷ ] 6= 0 where the observable A is the operator acting on the signal in the inter-

action Hamiltonian. Consequently, this sub-ensemble contains only signal systems

that are pre-selected in |X = x〉 and post-selected in |Y = y〉. Then the desired
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weak value

AW =
〈Y = y|Â|X = x〉
〈Y = y|X = x〉

, (4.9)

can be obtained from the sub-ensemble of final probe states i.e. the statistical

distribution of the results of the probe pointer measurements allow the recovery of

the probe’s final wavefunction.

4.2.3 Encoding the weak value

We now demonstrate that a weak measurement leads to the encoding of a given

weak value. Following Fig.4.1, we consider the case where the signal is pre-selected

in the state |Φ1〉 and post-selected in the state |Φ2〉. We assume that the dynamics of

this model follow the interaction picture and that the probe system has an infinite

dimensional Hilbert space with canonical observables q̂, p̂ where [q̂, p̂] = i~. We

interpret q̂ as the pointer position observable i.e. as representing the position of the

pointer of the measuring device’s gauge. Accordingly, p̂ is viewed as the pointer’s

canonical momentum and the interaction between signal and probe is mediated by

the Hamiltonian

ĤI = ~κ(t)Â⊗ p̂, (4.10)

where Â is the observable of interest, i.e. we want to measure the weak value of

Â. For simplicity, we assume that κ(t) = const and that interaction persists for

T = tf − ti seconds. It is assumed that all of the systems have vanishing free

Hamiltonians. This can be done provided we note that all results are unique up to

a suitable local unitary transformation.

In addition, we also assume that the probe is initially prepared in a Gaussian

superposition of pointer eigenstates

|Ψi〉 ∝
∫
dq exp

(
− q2

4∆2q

)
|q〉, (4.11)

where ∆2q is the uncertainty in pointer observable. This is another departure from

the original indirect model offered by Von Neumann. In the original, the probe was

assumed to be initially prepared in a pointer eigenstate. However, in this case, the
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finite width of the probe state is also important as we shall see later. The interaction

is generated via

ÛI = exp

(
−iκ

∫ tf

ti

Â⊗ p̂ dt
)

= e−iκT Âp̂. (4.12)

The final state of the probe following both the interaction with the system and the

final post-selection is

|Ψf〉 ∝ 〈Φ2|e−iκT Â⊗p̂|Φ1〉|Ψi〉 ∝
∞∑
n=0

(−iκT )n

n!
〈Φ2|Ân|Φ1〉p̂n|Ψi〉. (4.13)

Assuming 〈Φ2|Φ1〉 6= 0 and defining

AW = 〈Φ2|Â|Φ1〉/〈Φ2|Φ1〉, (4.14)

we obtain:

|Ψf〉 ∝
∞∑
n=0

(−iκT )n

n!
(AW )np̂n|Ψi〉

+
∞∑
m=2

(−iκT )m

m!

(
〈Φ2|Âm|Φ1〉
〈Φ2|Φ1〉

− (AW )m

)
p̂m|Ψi〉. (4.15)

The state of the probe records the so-called weak value only if the second term

in (4.15) vanishes. This condition constrains both the magnitude of the coupling

constant and the noise in the initial state of the measuring device. This follows from

considering the momentum wavefunction of |Ψi〉 given by Ψ̃i(p) = e−p
2∆2q. Thus,

the second term in (4.15) vanishes if

e−p
2∆2q

(
〈Φ2|e−iκT Âp|Φ1〉
〈Φ2|Φ1〉

− e−iκTAW p

)
≈ 0 ∀ p ∈ (−∞,∞), (4.16)

is true. If the coupling constant is small (κT << 1) then (4.16) is satisfied for small

p. For large p, the above can only be satisfied if the noise in the initial state of the

measuring device is large i.e. ∆2q >> 1 and so the superposition is broad. The

measuring device then receives little information about the observable A on the

system. This, in conjunction with the weak coupling, is required in order to allow

the weak value to be encoded on the state of the probe.

Consequently, the weak value is only observable if a combination of factors are

realized together. Thus, we need both the weakness of the coupling and the noise in
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the probe for the weak value to be encoded and we can gain some intuition about

this by considering the following. Note that the pre and post-selected states of

the probe admit the decompositions |Φ1〉 =
∑

k ck|ak〉 and |Φ2〉 =
∑

k dk|ak〉 where

Â|ak〉 = ak|ak〉. To understand the emergence of weak values, we must first consider

what happens to the probe state in general. In this case, each probe and signal

evolves according to∫ ∞
−∞

dqe−q
2/4∆2q|q〉|Φ1〉 →

∑
k

∫ ∞
−∞

dqe−q
2/4∆2qck|q + κTak〉|ak〉, (4.17)

where we assume that the interaction lasts for T seconds and ignore normalization

for the moment. Thus, in this regime (i.e. no restriction on the size of the coupling

constant) the probe pointer degrees of freedom become entangled with the eigenval-

ues of Â. Following this evolution, the signal (for all members in this sub-ensemble)

is post-selected as |Φ2〉:∑
k

∫ ∞
−∞

dq e−q
2/4∆2qck|q+κTak〉|ak〉 →

∫ ∞
−∞

dq
∑
k

ckd
∗
ke
−q2/4∆2q|q+κTak〉. (4.18)

Hence, the wavefunction of the final probe state is a summation of Gaussian func-

tions centered around a particular eigenvalue of A:

Ψf (q) ∝
∑
k

ckd
∗
k exp

(
−(q − κTak)2

4∆2q

)
(4.19)

and the associated probability density is

ρf (q) =

∣∣∣∑k ckd
∗
k exp

(
− (q−κTak)2

4∆2q

)∣∣∣2∫∞
−∞ dq

∣∣∣∑k ckd
∗
k exp

(
− (q−κTak)2

4∆2q

)∣∣∣2 . (4.20)

Thus, the measurement statistics of the probe’s pointer position will reveal a series of

Gaussian peaks centered at (up to a scalar multiple) the eigenvalues of the observable

A.

In contrast, if we restrict ourselves to the weak value regime then the final probe

state is given by

|Ψf〉 ∝ exp (−iκTAW p̂) |Ψi〉 ∝
∫ ∞
−∞

dp e−p
2∆2qe−iκT <(AW )p+κT =(AW )p|p〉, (4.21)
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and so the momentum probability density yields

ρ̃W (p) =
|Ψ̃f (p)|2∫∞

−∞ dp |Ψ̃f (p)|2
=

√
2∆2q

π
e−2∆2q(p−κT =(AW )/2∆2q)

2

, (4.22)

and the position probability density

ρW (q) =
|Ψf (q)|2∫∞

−∞ dq |Ψf (q)|2
=

1√
2π∆2q

e−(q−κT <(AW ))2/2∆2q. (4.23)

The pointer position and its conjugate momentum are both displaced by the compo-

nents of the weak value of observable A and not any of its eigenvalues. In particular,

in the weak value regime the expectation value of the canonical variables of the probe

change in response to the weak value [86, 88–90]

〈q〉f =

∫ ∞
−∞

dq q ρW (q) = κT<(AW ), 〈p〉f =

∫ ∞
−∞

dp p ρ̃W (p) =
κT=(AW )∆2q

2
.

Hence, the change of these first order moments of the probe encode the components

of the weak values

∆〈q〉 = κT<(AW ), ∆〈p〉 =
κT=(AW )∆2q

2
. (4.24)

It is in this sense that both the real and imaginary components of the weak value

are observable, albeit in an indirect manner on a statistical level.

4.2.4 An example of a weak measurement

To make this discussion of weak measurements and values concrete, we will consider

the following example [85, 91]. We assume that the signal system is a spin-1/2

particle and that the observable of interest is the z-component of spin

Ŝz =
1

2
| ↑〉〈↑ | − 1

2
| ↓〉〈↓ |, (4.25)

where we assume ~ = 1. Accordingly, the pre and post-selected states are superpo-

sitions of the eigenstates of Ŝz

|Φ1〉 =
1√
2
| ↑〉+

1√
2
| ↓〉, (4.26)

|Φ2〉 =
1√
3
| ↑〉+

√
2

3
| ↓〉. (4.27)
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The probe is once again prepared as a Gaussian superposition of pointer eigenstates

|Ψi〉 ∝
∫

dq e−q
2/4∆2q|q〉, (4.28)

with ∆2q defining the width of the superposition. The interaction Hamiltonian

which mediates the interaction between signal and probe is given by

ĤI = κŜzp̂. (4.29)

Physically, such and interaction describes the coupling of the spin of the signal to

momentum shifts in the probe.

To illustrate the circumstances for which the weak measurement model is valid,

we will compare it to the general case of indirect measurement with pre and post-

selection which results in a final probe state that is a superposition of Gaussians

centered around the eigenvalues of Ŝz

Ψf (q) ∝
1√
6
e
− (q−κT/2)2

4∆2q +

√
2

6
e
− (q+κT/2)2

4∆2q , (4.30)

and so the position probability density for this final state is then

ρf (q) ∝

(
1√
6
e
− (q−κT/2)2

4∆2q +

√
2

6
e
− (q+κT/2)2

4∆2q

)2

, (4.31)

up to a normalization factor.

However, if we perform the above indirect measurement in the weakness regime

then the state of the probe encodes the weak value of Ŝz corresponding to the

particular choice of pre and post-selection. In this case, the weak value is real and

is given by

(Sz)W =
〈Φ2|Ŝz|Φ1〉
〈Φ2|Φ1〉

=
1/
√

6−
√

2/
√

6

2/
√

6 + 2
√

2/
√

6
= −3

2
+
√

2. (4.32)

The weak measurement of this weak value is portrayed in Fig.4.2 and leads to a final

probe state

Ψf (q) ∝ exp

(
−(q − κT (Sz)W )2

4∆2q

)
, (4.33)

and so the pointer position probability density of the final probe state in the weak

measurement regime is (up to a normalization factor):

ρfW (q) ∝ exp

(
−(q − κT (Sz)W )2

2∆2q

)
. (4.34)
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∣1 〉 ∣2 〉

≪1

H I= S z p

Figure 4.2: This diagram portrays the features of the weak measurement regime for

the previous indirect measurement. This regime is only reached provided the coupling

is sufficiently weak. The probe is initially prepared in a Gaussian superposition of

pointer states with a mean position of zero (green line). After the weak measure-

ment, the probe has experienced a shift in average position (pink line) that is directly

proportional to the real part of the weak value of interest.

Clearly, the two cases lead to very different measurement statistics for their final

probe states (4.31) and (4.34). However, in the limit of weak coupling both give

identical results as shown in Fig.4.3.

Consequently, this demonstrates that the results of weak measurements, i.e. the

measuring of weak values are only correct in the limit of weak coupling combined

with finite ∆2q. This is clearly illustrated in Fig.4.3 where the distinct Gaussian

peaks of (4.31) represented by the blue curve merge into a single Gaussian which

coincides with (4.34) represented by the red curve as the coupling strength is de-

creased. Furthermore, this approximate equivalence between (4.31) and (4.34) can

only occur provided ∆2q is sufficiently large otherwise the distinct peaks of (4.31)

would remain forever distinct for all non-zero coupling strengths. Thus, the mea-

surement of weak values in weak measurements occur if the indirect measurement is

very inefficient - the resolution of the probe state is low and the interaction between

signal and probe is weak. We will see this combination of effects arising whenever

we wish to discuss weak values.
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Figure 4.3: This diagram shows that weak measurements emerge as a special exam-

ple of indirect measurements with pre and post-selection where the coupling is weak

and the probe has sufficiently poor resolution. Here, ρf (q) in the general indirect

measurement is plotted in blue and for large κT exhibits distinguishable peaks cor-

responding to the eigenvalues of Ŝz. This case coincides with the equivalent pointer

position probability density of the final probe state for the weak measurement regime

represented by the red curve in the limit of weak coupling. This demonstrates the

appropriate conditions for which weak measurements provide a valid description.
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4.3 The development and application of weak val-

ues

The concept of weak values and weak measurements began in the context of obtain-

ing spin values outside the eigenvalue spectrum of the corresponding Pauli operators

[84]. That is, it was shown that a weak indirect measurement on a pre and post-

selected ensemble of spins can result in very large observed values of spin. Elements

of this original proposal proved to be erroneous [92], but the overall concept was

shown to be sound [92]. It was Aharonov and Vaidman [83] who developed and

refined weak values and weak measurements into its currently understood form.

Since their original conception, weak values have enjoyed a great deal of theoretical

investigation and eventual experimental confirmation.

The former has revealed the great versatility of weak values and weak mea-

surements in providing an explanatory basis for a number of physical phenomena.

Indeed, weak values and weak measurements explain or appear in: fast and slow light

effects [93], superluminal quantum tunneling effects [94, 95], optical telecommuni-

cations networks [96], the quantum back-action of charged particles on a classical

field [97], an approach to a time-symmetric formulation of quantum mechanics [98–

101]. Furthermore, their contextual nature and relation to hidden variables has

been explored [102] as has their semi-classical approximation [103]. In the context

of quantum information theory, weak values have found application in communica-

tion protocols [104], so-called “weak cloning” [105] and in the control of transitions

between different states [106]. This theoretical investigation has also given away

to eventual experimental observation of weak values in quantum optical systems

[107–111].

In relation to entanglement concentration, there are two aspects of weak values

and weak measurements that could be of potential use. The first point to notice

is that weak measurements engender a simple back-action on the probe as a con-

sequence of imprinting the weak value. Ultimately, the real part of the weak value

accompanies a unitary back action on the state of the probe, whereas, the imaginary
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part induces a non-unitary back action [83, 88]. This back action has be thoroughly

investigated in the case of the interaction Hamiltonian ĤI = ~κÔp̂ for a variety of

different single mode probe states in [86, 88]. In such investigations, the back action

is analyzed via the measurement statistics of the pointer and momentum observables

of the probe. Secondly, other authors have shown that weak measurements can also

apply to mixed probe states [112]. Thus, this understanding immediately inspires

two questions: can weak measurements be generalized to entangled probe states and

can the back-action of the weak value be related to the non-classicality properties

of the probe? Both of these questions have positive answers and they allow us to

use the weak value as a calculation tool in entanglement concentration protocols.
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Original research
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Chapter 5

Weak values and Gaussian

entanglement concentration

5.1 Introduction

We now begin to detail the first of our original contributions in this thesis. Chapter

three ended with a discussion of open questions surrounding the indirect measure-

ment entanglement concentration approach. Perhaps unexpectedly, weak measure-

ments can account for all of these issues in single coherent explanation as outlined

in this chapter. That is, we demonstrate that the previous family of entangle-

ment concentration protocols are actually examples of weak measurements where

the probe state is initially prepared in an entangled state. Indeed, we have discov-

ered that [1, 54] are special cases of a general weak measurement interaction. Using

the weak value paradigm, we demonstrate how to construct a general model of such

Procrustean protocols. Moreover, we identify that the features of these protocols,

namely success conditions and Gaussian preservation are not unique to the particu-

lar choices advocated in both [1, 54]. Instead, our general analysis reveals that the

origin of these features lie with the consequences of performing a weak measurement.

Furthermore, our model constrains the pre and post-selected ancilla states whilst

providing a method for determining which possible combinations work.
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5.2 Weak measurement induced entanglement con-

centration

5.2.1 The protocol

Our weak measurement model is based on the following configuration. As depicted

in Fig.5.1, the entangled state in modes A and B is coupled to ancilla state in

mode C by means of a unitary evolution between B and C. The requirements of the

Procrustean method dictate that the interaction Hamiltonian describing this process

must be of the form

ĤI = ~κ(t)n̂B ⊗ ÔC . (5.1)

The form of this interaction Hamiltonian is required to preserve the Schmidt basis of

the TMSV, i.e. the Fock basis. In addition, we assume vanishing free Hamiltonians

for all modes, meaning that our results are unique up to a suitable unitary trans-

formation. Assuming the interaction persists for T seconds, then the corresponding

unitary evolution operator is

Û = e−i
∫ T
0 κ(t)n̂BÔc = e−iκT n̂BÔC , (5.2)

where κT = κ(T )− κ(0).

Bob's measurement on ancilla

TMSV

∣1 〉

∣2 〉

H I

Figure 5.1: Bob mixes his half of the TMSV with an ancillary mode pre-selected

in |Φ1〉 via an non-linear interaction described by the Hamiltonian ĤI . The ancilla

mode is then subjected to a post-selected measurement leaving it in the state |Φ2〉.

Following this, Bob performs a measurement on the ancilla and post-selects it in
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the state |Φ2〉. Consequently, the state shared between Alice and Bob is given by

|ψf〉 = N〈Φ2|e−iκT n̂BÔC |ζ(λ)〉|Φ1〉 = N ′
∞∑
m=0

(−iκT )m

m!

〈Φ2|Ôm
C |Φ1〉

〈Φ2|Φ1〉
n̂mB |ζ(λ)〉. (5.3)

The weak value of ÔC is defined as

OW =
〈Φ2|ÔC |Φ1〉
〈Φ2|Φ1〉

, (5.4)

and so the final state of the system is given by

|ψf〉 = N ′ exp (−iκTOW n̂B) |ζ(λ)〉, (5.5)

if the weakness condition
∞∑
m=2

(−iκT )m

m!
{Om

W − (OW )m} n̂mb |ζ(λ)〉 ≈ 0|φ〉 (5.6)

is obeyed. Here |φ〉 is an arbitrary vector in HA ⊗HB and

Om
W = 〈Φ2|Ôm

C |Φ1〉/〈Φ2|Φ1〉. (5.7)

By using the linear independence of the Schmidt basis of the TMSV we can express

(5.6) as set of equations:

λn

(
〈Φ2|e−iκTnÔC |Φ1〉
〈Φ2|Φ1〉

− e−iκTnOW
)
≈ 0 ∀n ∈ [0,∞). (5.8)

Assuming that the above weakness condition is satisfied means that the output

state is another TMSV as (5.5) yields

|ψf〉 =
√

1− λ2e2κT=(OW )

∞∑
n=0

λne−iκTOWn|n, n〉, (5.9)

This only holds subject to λ2e2=(OW )κT < 1, otherwise the output state is un-physical

as the normalisation constant will not converge. From (5.9) it can be seen that

the real part OW induces a phase shift on the TMSV whereas the imaginary part

modifies the average number of photons in the state. Put succinctly, the induced

transformation is λ → λ′ = λe−iκTOW . Thus, the average number of photons has

been altered [25],
2λ2

1− λ2
→ 2λ2e2κT=(OW )

1− λ2e2κT=(OW )
, (5.10)

meaning that we can subtract or add an indefinite number of photons to our target

state.
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5.2.2 Verification of concentration and configuration selec-

tion

The use of the weak value in our entanglement concentration model is entirely dif-

ferent to the usual presentation of weak measurements, where the goal is to observe

the weak value from a sub-ensemble of final probe states. However, in our model

the weak value is a function of the measurement result on the ancilla OW = OW (ω),

where ω is the measurement outcome. Thus, in each run of the protocol a different

ω is obtained and a different weak value OW (ω) is imprinted on the shared entangled

state. So the aim is not to observe the weak value of the ancilla system, but to use

it as a calculational aid to understand the general nature of the back action on the

entangled state. This point is crucial to avoid confusion over the application of weak

values and measurements here. With this in mind, we now show how the encoded

weak value can transform the entanglement content of the TMSV.

To determine if entanglement concentration has occurred in a particular run of

the protocol requires that we establish whether the transformation

λ→ λe−iκTOW (5.11)

between initial and final states increases the shared entanglement. Thus, we must

calculate the entanglement entropy (3.9) for both states and then determine which

has a larger degree of entanglement. Mathematically, this requires demonstrating

S(ρ̂f (OW ))

S(ρi)
> 1, (5.12)

where ρ̂f = Trj(|ψf〉〈ψf |) and ρ̂i = Trj(|ζ(λ)〉〈ζ(λ)|) and translating it into a con-

dition that constrains the weak value imprinted onto the entangled state. Unfor-

tunately, attempting to translate this into a condition on OW is algebraically non-

trivial.

Instead we adopt the method of Majorization [72] to derive an appropriate con-

dition. Let c = (c2
0, c

2
1, . . .)

T be the ordered vector of the eigenvalues of the input

TMSV and d = (d2
0, d

2
1, . . .)

T be the analogues object for (5.9). Then the final en-

tangled state is more entangled than the initial one if c is majorized by d, which is
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written as c ≺ d and defined by [68, 69]

∞∑
k=`

d2
k >

∞∑
k=`

c2
k, (5.13)

for ` ∈ [1,∞). This follows since measures of bipartite pure state entanglement such

as the Von Neumann entropy belong to the Shur convex [69] and hence, preserve

the majorization order

c ≺ d =⇒ f(d) > f(c). (5.14)

It is sufficient for entanglement concentration to show that the eigenvalues of the

reduced density matrices of the output state majorize those of the input state. The

majorization expression for the input entangled state is given by:

∞∑
k=`

c2
k = (1− λ2)

∞∑
k=`

λ2k = λ2`. (5.15)

The proof of this is expression provided by induction. Note that (5.15) holds for

` = 1 and ` = 2 terms since

(1− λ2)
∞∑
k=1

λ2k = (1− λ2)

(
∞∑
k=0

λ2k − 1

)
= 1− (1− λ2) = λ2×1 (5.16)

and

(1− λ2)

(
∞∑
k=0

λ2k − 1− λ2

)
= 1− (1− λ2)(1 + λ2) = λ2×2. (5.17)

Thus, we assume that the expression is true for k = m then and it check for k =

m+ 1:

(1− λ2)
∞∑

k=m+1

λ2k = (1− λ2)

(
∞∑
k=m

λ2k − λ2m

)
= λ2m − (1− λ2)λ2m = λ2×(m+1). (5.18)

Hence, by induction it holds for all m and so

∞∑
k=`

c2
k = λ2`, (5.19)

is true. Accordingly, (5.13) becomes

λ2`e2κT `=(OW ) > λ2` (5.20)
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for all ` ∈ [1,∞]. The only way to satisfy (5.20) is if the imaginary part of OW is

positive for all ` (assuming κT > 0). Entanglement concentration can then occur if

the imaginary weak value is positive

=

(
〈Φ2|ÔC |Φ1〉
〈Φ2|Φ1〉

)
> 0. (5.21)

This condition allows the selection of working configurations of the ancilla ingre-

dients i.e. on the combination of initial state, interaction Hamiltonian and mea-

surement strategy. That is it provides a number of constraints that the interaction

Hamiltonian ĤI , the pre-selected and post-selected ancilla states |Φ1〉 and |Φ2〉 and

the observable ÔC must obey in order to produce entanglement concentration of

the TMSV. It is interesting to note that the weak condition (5.8) coupled with

the requirements of the Procrustean method are all that is required to preserve the

Gaussian character of the TMSV.

5.2.3 Measurement based success condition

Consequently, =(OW ) > 0 can be theoretically calculated by the agents participat-

ing in the protocol to select working configurations required for Gaussian-preserving

entanglement concentration. What is still needed is the measurement-based success

condition that allows Alice and Bob to decide whether they keep the shared en-

tangled state or not. However, such a condition is hidden in the selection criterion

above. To see this, let |Ψ〉 be a fixed pre-selected state of the ancilla and assume

that the interaction Hamiltonian is fixed with ĤI = ~κn̂Ô. We further assume that

the post-selected state in each run of the protocol is one of the eigenstates of an

operator ω̂ i.e. |ω〉. Different runs of the protocol result in different measurement

outcomes ω and imprint a different weak value on the shared entangled state:

λ→ λ exp (κT=(OW (ω))) , (5.22)

where OW (ω) = 〈ω|Ô|Ψ〉/〈ω|Ψ〉. Thus, we can establish a measurement-based suc-

cess condition from

〈Ψ|Ô|Ψ〉 =
∑
ω∈Ω

〈Ψ|ω〉〈ω|Ô|Ψ〉 =
∑
ω∈Ω

P (ω|Ψ)OW (ω), (5.23)
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where P (ω|Ψ) = |〈Ψ|ω〉|2 is the probability of finding |Ψ〉 given |ω〉. Now, given

=(〈Ψ|Ô|Ψ〉) =
∑
ω∈Ω

P (ω|Ψ)=(OW (ω)) = 0, (5.24)

and since P (ω|Ψ) ≥ 0 for all possible ω, then either =(OW (ω)) = 0 for all ω or

=(OW (ω)) > 0 ∀ ω ∈ Ω+, =(OW (ω)) < 0 ∀ ω ∈ Ω−. (5.25)

That is, there is a subset of measurement results that correspond to an increase

in shared entanglement and a subset corresponding to a decrease in entanglement.

Thus, the selection criterion is equivalent to the existence of a measurement-based

success condition. Consequently, in each run of the protocol, Bob makes the mea-

surement on the ancilla and obtains result ω, after calculating its associated weak

value, he classically communicates the result to Alice and they either keep or discard

the state depending on the result.

Accordingly, in each fixed configuration we can calculate a success probability

of the protocol. This is the probability of obtaining any ω ∈ Ω+ and it can be

obtained from the probability (or probability density if the measurement results

form a continuum) of obtaining a particular post-selected state |ω〉. We can derive

an expression for this probability (or probability density) from

ρ(ω) = Tr
{(
ÎA ⊗ |ω〉〈ω|

)
e−iκT n̂BÔC |ζ(λ),Ψ〉〈ζ(λ),Ψ|eiκT n̂BÔC

}
. (5.26)

Where |Φ〉 is the pre-selected state, i.e. the initially prepared state of the ancilla.

Expanding the above exponentials gives

ρ(ω) =
∞∑

k,m=0

(−iκT )m(iκT )k

m!k!
〈ω|Ôm

C |Ψ〉〈Ψ|Ôk
C |ω〉Tr

(
n̂mC |ζ(λ)〉〈ζ(λ)|n̂kC

)
, (5.27)

and assuming the usual weakness conditions means that

ρ(ω) ≈ P (ω|Ψ)Tr
(
e−iκT n̂BOW (ω)|ζ(λ)〉〈ζ(λ)|eiκT n̂BO∗W (ω)

)
, (5.28)

and since the initial probe state is |ζ(λ)〉 =
√

1− λ2
∑∞

n=0 λ
n|n, n〉, then the proba-

bility (or probability density) is

ρ(ω) =
P (ω|Ψ)(1− λ2)

1− λ2e2κT=(OW (ω))
. (5.29)
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The probability of success in a single run i.e. imprinting a weak value that will

increase the shared entanglement is

PS =
∑
ω∈Ω+

ρ(ω), (5.30)

and the corresponding probability of failure is then PF = 1 − PS. Consequently,

we can expect different working configurations to have different probabilities of suc-

cess. However, the maximum probability of success is limited by general theorems

concerning the conditional transformation of bipartite entangled states [73].

Ultimately, this weak measurement model encodes all of the characteristic fea-

tures of the entanglement concentration scheme in chapter 3. Moreover, it allows

the explanation of all of these features without fixing the physical implementation of

the ancillary system. Firstly, the Gaussian preserving aspect is a general feature of

weak coupling between the entangled state and the ancilla. This is directly required

to imprint the weak value of the ancilla onto the entangled state and thereby change

its mean photon number and squeezing. Secondly, the reason that only selected an-

cillary configurations change the entanglement content of the TMSV is because each

configuration has a different OW and gives rise to a different back-action. Finally,

the measurement based success condition, which allow Alice and Bob to determine

the success of the protocol, occur as a result of the fundamental properties of weak

values. The real power of the weak measurement formalism in this problem is the

extent of its applicability - it allows one to consider the protocol for all possible

ancilla systems regardless of their physical implementation.

5.2.4 Measuring the efficiency of the protocol

Finally, we note that the weak measurement formalism also provides the means to

determine the efficiency of the entanglement concentration protocol for each working

configuration. The efficiency of the protocol can be gauged by considering a number

of different quantities provided by the model.

Firstly, we quantify the accuracy of the weak measurement formalism to describe

the action of the protocol by summing over all the weakness conditions for different
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Fock numbers:

ε(Φ1,Φ2, κT , λ) =

∣∣∣∣∣
∞∑
n=0

λn

(
〈Φ2|e−iκTnÔ|Φ1〉
〈Φ2|Φ1〉

− e−iκTnOW
)∣∣∣∣∣ . (5.31)

This allows us to measure the accuracy of the weak regime in a single number which

aids its numerical simulation. Furthermore, due to the complexity of the first term

in (5.31), this quantity must be truncated at a very large finite n in the absence

of a analytical expression for the infinite series. Alternatively, we can also use the

fidelity between the final probe state in the weak regime compared to the final state

predicted in general to measure the accuracy of our weak measurement model. Thus,

we consider the fidelity F = |〈ψWf |ψGf 〉|2 with

|ψWf 〉 =
√

1− λ2e2κT=(OW )

∞∑
n=0

λne−iκTnOW |n, n〉, (5.32)

and

|ψGf 〉 =

∑∞
n=0 λ

n〈Φ2|e−iκTnÔ|Φ1〉|n, n〉√∑∞
n=0 λ

2n|〈Φ2|e−iκTnÔ|Φ1〉|2
, (5.33)

given by

F(Φ1,Φ2) =
1− λ2e2κT=(OW )∑∞

n=0 λ
2n|〈Φ2|e−iκTnÔ|Φ1〉|2

∣∣∣∣∣
∞∑
n=0

λ2neiκTnO
∗
W 〈Φ2|e−iκTnÔ|Φ1〉

∣∣∣∣∣
2

.

(5.34)

Secondly, we use the probability of success PS and its associated probability

density together with the relative increase in entanglement to quantify the efficiency

of each configuration. The expression for the former quantity has been given pre-

viously while the latter is defined as the ratio of Von Neumann entropies of the

reduced density matrices for the final and input states denoted by Sf and Si. The

quantity ∆S = Sf/Si is given explicitly as

∆S =
(1− λ2){2λ2e2κT=(OW ) ln(λeκT=(OW )) + (1− λ2e2κT=(OW )) ln(1− λ2e2κT=(OW ))}

(1− λ2e2κT=(OW )){2λ2 lnλ+ (1− λ2) ln(1− λ2)}
.

This quantity measures the relative change in entanglement as a result of imprinting

the weak value OW on the two mode squeezed vacuum.
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5.2.5 Experimental verification

Ultimately, any theory stands or falls in the face of empirical testing and the weak

measurement model suggested here is no different. Whether or not the entanglement

content of a TMSV is modified as a result of encoding certain weak values can be

verified by state tomography [27] of a sub-ensemble of output entangled states.

That is, Alice and Bob repeatedly run the protocol on an ensemble of identical

input TMSVs until they have a sub-ensemble of output states with the same weak

value imprinted onto them. They then perform tomography on that sub-ensemble

and attempt to identify whether the entanglement has been modified in accordance

with the weak measurement model.

5.3 Optical examples with the cross-Kerr effect

5.3.1 Introduction

We now demonstrate that previously discovered protocols of this type can emerge

as special examples of the general model advocated here. We will also calculate

the associate weak values and demonstrate that the weakness condition is satisfied.

The previous schemes [1] and [54] required Bob’s half of the TMSV to be mixed

with an ancillary coherent state |α〉, where α ∈ < and α > 0, in a non-linear

medium exhibiting the cross-Kerr effect ĤI = ~κ(t)n̂Bn̂C before being subjected to

a measurement and post-selection condition. Using the success condition (5.21), we

can derive a constraint on the possible post-selected ancilla states which will allow

us to select measurement strategies that lead to Gaussian-preserving entanglement

concentration. Thus, we are interested in the weak values of the number operator

n̂C :

nW =
〈Φ2|n̂C |α〉
〈Φ2|α〉

=
e−α

2/2α∂α

(
eα

2/2〈Φ2|α〉
)

〈Φ2|α〉
. (5.35)

The second equality in (5.35) follows from α∂α(αn) = nαn. Furthermore, if we

assume

〈Φ2|α〉 = R(α)eiθ(α), (5.36)
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where R(α) and θ(α) are the magnitude and phase of the scalar product of 〈Φ2|α〉,

then after some algebra (5.35) can be written as

nW = α2 +
α

R(α)

∂R

∂α
+ iα

∂θ

∂α
. (5.37)

Consequently, the success condition requires that

=(nW ) > 0⇔ α
∂θ(α)

∂α
> 0. (5.38)

Thus, the only variants of this family of protocols which achieve the desired ef-

fect are those where the phase of 〈Φ2|α〉 is a monotonic increasing function of α.

This prediction allows us to recover previously suggested protocols and uncover new

variants.

5.3.2 Double homodyne scheme

In the scheme of Fiuràšek, Mišta and Filip, (2003) [54], the ancillary coherent state is

projected onto |β〉 = ||β|eiφ〉 via double homodyne detection. This example prevails

due to the over-complete nature of coherent states

〈β|α〉 = e−α
2/2e−|β|

2/2eαβ
∗
, (5.39)

where β = βx + iβy and it is clear that the phase of the above is a monotonic

increasing function of α only if the imaginary part of β is negative. This also follows

from

nw = αβ∗ (5.40)

with the imaginary part of this weak value being

=(nW ) = α∂αθ(α) = −αβy. (5.41)

Hence, the success condition for this protocol is given by βy < 0 and only states

post-selected with respect to this condition will allow the desired effect. Moreover,

this result allows us to compensate for a weak non-linearity κT by employing a large

α. Thus, even though the coupling between probe and signal must be weak, the

encoded weak value can be very large meaning that

λ→ λe−κTαβy (5.42)
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can still lead to a non-negligible modification of entanglement. Of course, the size

of the weak value is ultimately constrained along with the coupling κT and the

squeezing λ in the initial entangled state by the weakness conditions. These are

given as

λn
(
〈β|e−iκTnn̂C |α〉
〈β|α〉

− e−iκTnαβ∗
)
≈ 0 ∀n ∈ [0,∞). (5.43)

Using the identity [25]

exp
(
σâ†â

)
=: exp

(
{eσ − 1}â†â

)
:, (5.44)

where the notation : Â : means the normal ordered version of Â with all the anni-

hilation operators gathered on the right, we can write (5.43) as

λn
(
e(e−iκT n−1)β∗α − e−iκTnβ∗α

)
≈ 0 ∀n ∈ [0,∞). (5.45)

The above is true if κT << 1 such that e−iκtn ≈ 1 − iκTn, which only holds for

sufficiently small n. Thus, for small values of n, (5.45) is satisfied. However, for

large values of n where e−iκtn 6= 1 − iκTn, (5.45) still holds because λ < 1 and

hence λn → 0 for progressively larger n. Thus, the weakness condition requires a

balancing act between the non-linear coupling and the squeezing of the input TMSV.

The authors of [54] arrive at the same conclusion.

The efficiencies of this protocol can be explored in physically realistic regime

by numerical simulation of the relevant quantities. Here, we simulate a number

of related quantities for this scheme. We take the ancilla coherent state to have

an average photon number of 108 and so α = 104. The phase shift per photon

induced by the cross-Kerr effect is taken to be κT = 2 × 10−5 rad per photon,

which is experimentally realistic for a cross-Kerr manifest in atomic vapors [113–

115]. In addition, we assume that the initial squeezing shared between Alice and

Bob is 4.5dB, which is a realistic value of squeezing and translates to λ = 0.5 [14].

The first quantity of interest is the total magnitude of the weakness conditions i.e.

the total amount of deviation between the output state as predicted by the weak

measurement formalism and what is expected in general. This quantity is precisely,
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Figure 5.2: Numerical simulation of the sum of the weakness conditions. This gives

a quantitative measure of the deviation between the final state predicted by the weak

measurement formalism and the final result expected in general.

in this case, expressed as

ε(α, β, κT , λ) =

∣∣∣∣∣
∞∑
n=0

λn
(
e(e−iκT n−1)β∗α − e−iκTnβ∗α

)∣∣∣∣∣ . (5.46)

Numerically we will truncate this sum for a very large integer. This deviation

is plotted in Fig.5.2, where we note that the largest deviation occurs in the region

where entanglement concentration occurs. In particular, for the selected parameters,

the deviation is of the order of 0.01 in the region where βy ≈ −2 and βx ≈ 9998.

The corresponding probability density of obtaining a particular complex number

β = βx + iβy in the weak regime is

ρ(βx, βy) =
e−|α−β|

2
(1− λ2)

π(1− λ2 exp(−2κTαβy))
. (5.47)

We plot this probability density in Fig.5.3 with the aforementioned parameter values

and we note from Fig.5.3 that the height of the probability density around the

region βy ≈ −2 and βx ≈ 9998 is negligible. This means that it is highly unlikely

to obtain a weak value in this regime and so the weak measurement description

remains a very good approximation to the final probe state. Furthermore, the
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Figure 5.3: The probability density of achieving a particular β = βx+ iβy is approxi-

mately Gaussian and thus, there is a very low probability density of obtaining values

that accompany large deviation in the weakness conditions.

almost Gaussian nature of the probability density means that the probability of

success is approximately 50%∫ ∞
−∞

dβx

∫ 0

−∞
dβy ρ(βx, βy) ≈ 0.50. (5.48)

Next, we consider the fidelity between the final probe state in the weak regime and

what occurs in general given as

F(βx, βy) =

∣∣∣∣∣
√

1− λ2e−2κTαβy
∑∞

n=0 λ
2neinκTαβ

∗
exp (αβ∗(e−inκT − 1))√∑∞

n=0 λ
2n| exp (αβ∗(e−inκT − 1)) |2

∣∣∣∣∣
2

. (5.49)

Finally we have the relative increase in entanglement as a result of the weak mea-

surement. This is given as the ratio of the Von Neumann entropies of the initial and

final reduced density matrices of the probe. In this case, the increased entanglement

is given by

∆S(βy) =
(1− λ2){2λ2e−2κTαβy ln(λe−κTαβy) + (1− λ2e−2κTαβy) ln(1− λ2e−2κTαβy)}

(1− λ2e−2κTαβy){2λ2 lnλ+ (1− λ2) ln(1− λ2)}
.

The performance of this weak measurement configuration for physically realistic

parameters α = 104 and κT = 2 × 10−5 is best summarized in Fig.5.4, where the
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Figure 5.4: The performance of the double-homodyne weak measurement configura-

tion for α = 104 and κT = 2× 10−5.

fidelity, relative entanglement and probability density are plotted when βx = 104

is obtained. This reveals a number of interesting features. Firstly, the fidelity is

approximately unity across the range of possible values of βy meaning that the weak

measurement description is a very good approximation. Secondly, we note that

the most probable outcome of the double homodyne measurement is the imprinting

of =(nW ) = 0 meaning that entanglement content is unchanged. Furthermore,

outcomes which correspond to increasing or decreasing the shared entanglement by

ever larger factors have ever small probability densities. Thus, the most probable

imprinted weak values are those close to =(nW ) = 0. However, in spite of this

behaviour, this protocol can still produce modest entanglement increases with a

non-negligible probability density. For example, a 30% improvement of entanglement

occurs with a probability density of ρ(104,−0.8) ≈ 0.15.

5.3.3 Balanced homodyne scheme

In the scheme by us, Menzies and Korolkova (2006) [1], balanced Homodyne de-

tection is employed by Bob, in other words, the post-selected state of the an-

88



cilla is the quadrature eigenstate |xφ〉 = |Φ2〉 where x̂φ|xφ〉 = xφ|xφ〉 and x̂φ =

2−1/2(eiφâ† + e−iφâ). Once again, this protocol works because of the nature of the

overlap between the pre- and post-selected states. In this case, we have [25]

〈xφ|α〉 = π−1/4 exp

(
−
x2
φ

2
+
√

2e−iφxφα−
e−2iφα2

2
− α2

2

)
, (5.50)

and so the weak value can be calculated to be

nW =
√

2αxφ cosφ+ α2(cos 2φ− 1)− i(
√

2αxφ sinφ− α2 sin 2φ), (5.51)

then the imaginary part of the weak value is

=(nW ) = α∂αθ = −
√

2α sinφxφ + α2 sin(2φ), (5.52)

Hence, this means that only the measurement of certain quadrature observables are

capable of inducing entanglement concentration since their eigenstates do not lead

to an non-zero =(nW ). This follows since different quadrature operators are labeled

by the phase φ of the local oscillator in the homodyne measurement. The above

condition allows us to determine which quadrature measurements which have the

potential to allow entanglement concentration by restricting the possible values of

φ. For example, any quadrature x̂φ specified by φ = (0, π, 2π) will not modify the

entanglement as =(nW ) = 0. In particular, we note that choosing to measure the

position quadrature x̂0 = q̂ will only modify the phase of the TMSV and not the

entanglement content. For those quadratures which do lead to a non-zero imaginary

weak value, the selection criterion (5.21) translates to

=(nW ) > 0⇔ xφ <
√

2α cosφ. (5.53)

The fact that a number of quadrature operators satisfy the selection criterion

immediately motivates the question of which one is optimal over the others. Our

answer to this question is that the optimal quadrature measurement is the one which

obtains a particular increase in entanglement with the highest probability density.

In other words, for ∆S = µ with µ > 1, what is the optimal φ which maximizes the

probability density of achieving that increase? To calculate this, we first need the
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probability density of obtaining a particular xφ, from a measurement of x̂φ which is

ρ(xφ) =
exp{−(xφ −

√
2α cosφ)2}(1− λ2)√

π(1− λ2e2κT=(nW ))
(5.54)

meaning that for each configuration, the probability of success is approximately 50%

as ∫ √2α cosφ

−∞
dxφ ρ(xφ) ≈ 0.5. (5.55)

The relative increase in entanglement as a result of obtaining a result xφ is then

∆S =
(1− λ2)

(1− λ2e2κT=(nW ))
(5.56)

×
(

2λ2e2κT=(nW ) ln(λeκT=(nW )) + (1− λ2e2κT=(nW )) ln(1− λ2e2κT=(nW ))

2λ2 lnλ+ (1− λ2) ln(1− λ2)

)
.

To proceed we need to solve the above for xφ as a function of µ. Unfortunately, this

is algebraically non-trivial. However, to over come this obstacle, we use a different,

but equivalent entanglement measure derived from the linear entropy. The linear

entropy is defined as

SL(ρ̂) = Tr
(
ρ̂− ρ̂2

)
= 1− Tr(ρ̂2), (5.57)

and it is reasonably straight-forward to verify that this is also an entanglement

measure. Indeed, the linear entropy is also used to quantify the disorder in a given

density matrix ρ̂ and can be consider as a linearized version of the Von Neumann

entropy [9]. As a measure of entanglement, R(|Ψ〉〈Ψ|) = (SL ◦ Trj) |Ψ〉〈Ψ|, it ranges

between

0 ≤ R(|Ψ〉〈Ψ|) ≤
(

1− 1

K2

)
, (5.58)

where K is the dimension of the tensor product space and the lower bound occurs

when |Ψ〉 is separable and the upper bound when |Ψ〉 is maximally entangled. Thus,

for Gaussian continuous-variable states the bounds are 0 ≤ R ≤ 1. Furthermore,

it is also a member of Shur’s convex and preserves the majorization order [69]. We

use it here since it has the advantage of being a polynomial in ρ̂ rather than a

logarithmic function and, hence, allows for an algebraic solution of our problem.
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Thus, in this case we need to calculate ∆R = Rf/Ri = µ where

Ri = 1− (1− λ2)2

1− λ4
, Rf = 1− (1− λ2e2κT={nW (xφ)})2

(1− λ4e4κT={nW (xφ)})
(5.59)

and then solve ∆R = µ for xφ, which, after some algebra, yields

xφ(µ) =
√

2α cosφ−
ln
(

µ
1+λ2(1−µ)

)
2
√

2ακT sinφ
. (5.60)

The above equation describes the required measurement result that will give a µ

factor improvement of the entanglement of the input state. The height of the prob-

ability density at xφ(µ) is then

ρ(xφ(µ)) =
(1− λ2µ+ λ4µ− λ4)√
π(1− λ2(2µ− 1))

× exp

− ln
(

µ
1+λ2(1−µ)

)2

8α2κ2
T sin2 φ

 . (5.61)

Thus, if all other parameters except φ are fixed then the optimal quadrature ob-

servable is the one which maximises the height of the probability density. It is

immediately obvious from (5.61) that the optimal quadrature is φ = π/2 or odd

integer multiples of this and so, the quadrature measurements which obey φ = π/2

are considered optimal.

The weakness conditions for this protocol is given as

λn
(
〈xφ|e−iκTnn̂C |α〉
〈xφ|α〉

− e−iκTnnW
)
≈ 0,∀n ∈ [0,∞). (5.62)

This can be re-expressed as (∀ n ∈ [0,∞)):

λn
[
exp

(√
2αxφe

−iφ(e−iκTn − 1)− α2e−2iφ (e−2iκTn − 1)

2

)
−

exp
(
−iκTn

{√
2xφαe

−iφ − α2e−2iφ
})]

≈ 0.

So, just as for the previous example, we see that (5.62) is equivalent to (5.45).

Thus, both schemes require the balancing between the initial Schmidt coefficients

and the magnitude of the non-linear coupling. To give a quantitative measure of the

weakness conditions, we can numerically simulate the magnitude of their sum for

physically realistic parameter values of α = 104 and κT = 2× 10−5. This magnitude
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Figure 5.5: Numerical simulation of the relevant quantities for the weak measure-

ment where post-selection is provided by balanced homodyne detection with the phase

quadrature selected.

is defined as

ε(xφ) =

∣∣∣∣∣
∞∑
n=0

λn
[
exp

(√
2αxφe

−iφ(e−iκTn − 1)− α2e−2iφ (e−2iκTn − 1)

2

)
− exp

(
−iκTn

{√
2xφαe

−iφ − α2e−2iφ
})]∣∣∣2 (5.63)

and is plotted in Fig. 5.5 for the case where the optimal phase quadrature p̂ is

measured. Examining Fig. 5.5, we note that the greatest value of this magnitude

and, hence, the greatest deviation occurs in the region where p ≈ −2. However, it is

still a small number. Consequently, we can be assured that the weak measurement

description of the protocol is a very good approximation.

The performance of the protocol for the optimal quadrature measurement can

be gauged by numerically simulating the characteristic quantities that describe the

protocol for physically realistic parameter values quoted above. In this case, we need

to simulate the relative increase in entanglement defined by

∆S(p) =
(1− λ2)

(1− λ2e−2
√

2κTαp)
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×

(
2λ2e−2

√
2κTαp ln(λe−

√
2κTαp) + (1− λ2e−2

√
2κTαp) ln(1− λ2e−2

√
2κTαp)

2λ2 lnλ+ (1− λ2) ln(1− λ2)

)
. (5.64)

The fidelity between the final probe state in the weak regime and the final state

produced in general is

F(p) =
(1− λ2e−2

√
2κTαp)∑∞

n=0 λ
2n|e−i

√
2pα(e−inκT−1)+α2

2
(e−2inκT−1)|2

×

∣∣∣∣∣
∞∑
n=0

λ2neinκTα
2−
√

2nκTαp exp

(
−i
√

2pα(e−inκT − 1) +
α2

2
(e−2inκT − 1)

)∣∣∣∣∣
2

. (5.65)

In Fig.5.6 we plot these quantities along with the probability density for obtaining

p from the phase quadrature measurement

ρ(p, κT , α) =
e−p

2
(1− λ2)

√
π(1− λ2e−2

√
2κTαp)

. (5.66)

Once again, we note the typical feature where the measurement outcomes that
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Figure 5.6: Numerical simulation of the relevant quantities for the weak measure-

ment where post-selection is provided by balanced homodyne detection with the phase

quadrature selected.

generate the greatest increase or decrease in the shared entanglement are the less

probable than smaller increases or decreases. Thus, the probability distribution is
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Figure 5.7: A comparison between the performance of the double homodyne (solid

lines) and balanced homodyne (measuring p̂, dashed lines) working configurations.

The fidelities, entanglement increases and probability densities are numerically com-

pared for α = 104 and κT = 2× 10−5.

symmetric around the origin i.e. around imprinting of a weak value with =(nW ) = 0.

We also note that the fidelity is at its smallest when we are near the point p = −2

which suggests that the accuracy of the weak measurement formalism is reduced for

huge increases in entanglement. This, however, is to be expected since the ultimate

source of the increased entanglement is supplied by the interaction that couples

the TMSV to the ancilla mode. Nevertheless, we note that we can obtain a 60%

increase in the shared entanglement of λ = 0.5 if we encode the weak value labeled

by p = −1. This outcome has a probability density of ρ(−1) ≈ 0.25, meaning that

25% of the total runs of this protocol will result in the aforementioned increase.

It is interesting to compare the performance of this configuration with the earlier

example. On a purely experimental note, we observe that the measurement of a
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single quadrature in balanced homodyne as opposed to measuring two incompatible

ones the double homodyne is more simple. However, the real comparison resides

in the relative increase in entanglement for a particular probability density. This

is the subject of Fig.5.7, where we compare the fidelities, entanglement increases

and probability densities for each of these schemes assuming α = 104 and κT =

2 × 105. Note that we fix βx = 104 in the former scheme since this is the most

probable outcome related to the real part of the weak value and measure the phase

quadrature in the latter since it proved to be optimal. It is clear from Fig.5.7

that the configuration involving the balanced homodyne measurement is superior to

that of the double homodyne measurement since it is able to achieve larger relative

increases in entanglement for equal or larger values of the probability density.

5.3.4 Squeezed vacuum post-selection scheme

To generate further examples, we simply need to identify further quantum optical

states that satisfy ∂αθ(α) > 0. An immediate and obvious choice is given by selecting

the post-selected state as a single mode squeezed vacuum |Φ2〉 = |reiφ〉 since [25]

〈reiφ|α〉 =
√

sechr exp

(
−α

2

2
{1 + e−iφ tanh r}

)
. (5.67)

In practice, we could realize such a post-selection by first anti-squeezing the signal

state (following its interaction with the probe) by the desired amount and then

subjecting the mode to a binary photo-detector. The post-selection is successful

when the detector does not click and the POVM element corresponding to this

post-selection is Π̂(reiφ) = Ŝ(reiφ)Π̂noclickŜ
†(reiφ). In the event that this occurs the

weak value, that is imprinted on the entangled state, is

nW = −α2 tanh r cosφ+ iα2 tanh r sinφ = −α2e−iφ tanh r. (5.68)

Hence, in this example, the success condition (5.21) is

=(nW ) = α2 tanh r sinφ > 0⇔ 0 < φ < π/2. (5.69)

In this case, since we can select the desired squeezing deterministically, the proba-

bility of success depends on the action of the binary photo-detector. That is, this
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protocol will achieve entanglement concentration only when the detector doesn’t

click. This happens with a probability

PS(r, φ) =
|〈reiφ|α〉|2(1− λ2)

(1− λ2e2κTα2 sinh r sinφ)
=

sechr e−α
2(1+cosφ tanh r)(1− λ2)

(1− λ2e2κTα2 sinh r sinφ)
. (5.70)

This equation is enough to demonstrate that this particular configuration has a very

poor efficiency. This fact is evident since a large α is required to compensate for a

weak coupling κT to ensure a non-negligible modification factor exp(κTα
2 sinh r sinφ),

since sinφ tanh r < 1 for all squeezed vacuum post-selections. However, having a

large α in the pre-selected state |α〉 means that the post-selection on |reiφ〉 only

occurs with a very small probability. Ultimately, this is because the larger α the less

likely that the binary photo-detector will not detect the presence of photons. Thus,

this protocol requires a much larger coupling than the previous examples. This will

be evident in the following numerical simulations.

The weak condition is expressed as

λn
(
〈reiφ|e−iκTnn̂C |α〉
〈reiφ|α〉

− e−iκTnnW
)
≈ 0, ∀n ∈ [0,∞), (5.71)

where the first term on the LHS is exp
(
−α2

2
{e−2inκT − 1}e−iφ tanh r

)
and the second

is exp
(
iκTnα

2e−iφ tanh r
)
. Clearly (5.71) can only be satisfied if κTn << 1. Note

that for large n, (5.71) holds because λn → 1. Once again we can probe this

numerically by first considering the magnitude of the sum of the weak conditions

ε(r, φ) =

∣∣∣∣λn{exp

(
−α

2

2
{e−2inκT − 1}e−iφ tanh r

)
− eiκTnα2e−iφ tanh r

}∣∣∣∣2 (5.72)

and the fidelity for this configuration is then

F(r, φ) =
1− λ2e2κTα

2 tanh r sinφ∑∞
n=0 λ

2n| exp
(
−α2

2
{e−2inκT − 1}e−iφ tanh r

)
|2

×

∣∣∣∣∣
∞∑
n=0

λ2ne−iκTnα
2eiφ tanh r exp

(
−α

2

2
{e−2inκT − 1}e−iφ tanh r

)∣∣∣∣∣
2

. (5.73)

In addition, the relative increase in entanglement is then given by

∆S(r, φ) =
(1− λ2)

(1− λ2e2κTα2 tanh r sinφ)

2λ2e2κTα
2 tanh r sinφ ln(λeκTα

2 tanh r sinφ)

(2λ2 lnλ+ (1− λ2) ln(1− λ2))

+
(1− λ2) ln(1− λ2e2κTα

2 tanh r sinφ))

(2λ2 lnλ+ (1− λ2) ln(1− λ2))
, (5.74)
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Figure 5.8: The performance of the squeezed vacuum post-selection configuration

can be determined by considering the magnitude of the weakness conditions, the

probability of success of the protocol, the relative entanglement increase and the

fidelity between the possible output states. The figures are plotted from the parameter

values α = 2, λ = 0.5 and κT = 2× 10−5.
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Figure 5.9: The performance of the squeezed vacuum post-selection configuration

can be determined by considering the magnitude of the weakness conditions, the

probability of success of the protocol, the relative entanglement increase and the

fidelity between the possible output states. The figures are plotted from the parameter

values α = 2, λ = 0.5 and κT = 2× 10−2.
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All of these quantities are plotted in Fig.5.8 and Fig.5.9 for the parameter values

α = 2, λ = 0.5 and κT = 2×10−5 and α = 2, λ = 0.5 and κT = 2×10−2, respectively.

Fig.5.8 illustrates the point that the performance of this protocol is very poor for very

weak coupling κT , since α can only be increased at the expense of the probability

of success. Moreover, we note that in the regions where there is an increase in

entanglement, the probability of success is zero. Clearly, the performance of this

protocol forbids it from being a serious contender for entanglement concentration.

From Fig.5.9, we can observe a more desirable increase in entanglement when the

coupling is κT = 2×10−2, however, once again this occurs with a very low probability.

5.3.5 Experimental feasibility of all optical schemes

The experimental feasibility of these optical weak measurement schemes is primar-

ily constrained by the magnitude of the coupling constant κT . Ultimately, this is

because generating the cross-Kerr effect between two radiation modes even weakly

is an extremely challenging prospect. For example, if we used 1 m of a micro-

structured fibre to provide the non-linear interaction together with a 10fs pulsed

coherent beam with average power 1mW and repetition rate 80 µHz for the ancillary

state, then it is possible, in principle, to achieve κT ≈ 10−9 rad per photon [116]. To

compensate for this tiny nonlinear coupling would require an ancilla with α ≈ 108 to

achieve the previous mentioned performances shown in Fig.5.7. However, preparing

the ancilla with α ≈ 108 is completely unrealistic with current technology and would

likely damage the non-linear medium.

Alternatively, one could use the large cross-Kerr effect manifest in atomic Ru-

bidium [113, 114], which can yield the κT ≈ 10−5 rad per photon required by our

simulations. While achieving this coupling could prove feasible, one must also con-

sider the various sources of decoherence that can spoil the entanglement. These

include absorption by the atomic medium and a scrambling of the phase reference

of the interacting light fields. Moreover, such effects have only been experimen-

tally demonstrated for classical light fields and not for quantum states and there
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is some debate whether even a weak cross-Kerr effect suitable for quantum infor-

mation protocols can be achieved [51, 117–119]. Thus, a more realistic version of

this entanglement concentration model could be done by taking these sources of

decoherence in account and including sources of decoherence in the measurement

strategies employed in each configuration.

5.4 Concluding remarks and open problems

In this chapter, we have highlighted the utility of adopting an operational viewpoint

of weak values and demonstrated how this viewpoint can be used to understand a

family of entanglement concentration protocols. However, there remain a number

of open problems and future lines of investigation to explore. Firstly, in the case of

entanglement concentration of the TMSV, it would be interesting to know how we

select the optimal weak measurement configuration out of all the working possibil-

ities. Our work only allows the identification of working configurations, but leaves

the question of optimization unanswered. This could prove to be challenging since

different operators and pre and post-selected states could generate the same weak

value. Thus, a weak value may not correspond to an unique set of ingredients.

A second interesting question resides in the observation that the mechanism un-

derlying this weak measurement induced entanglement concentration is the noiseless

amplification of photon number. Thus, the average number of photons in shared en-

tangled state is either increased or decreased depending on the weak value encoded

on the state. In particular, it is interesting that the number of photons is amplified

without changing the purity of the entangled state i.e. without inducing noise onto

the state. It is therefore an intriguing question to determine whether this mechanism

can be put to use on other continuous-variable quantum optical information proto-

cols. Finally, it is equally interesting to understand whether the connection between

weak measurements and entanglement concentration extends beyond Gaussian en-

tangled states to arbitrary pure bipartite entangled states. In particular, is there

a deeper connection between weak measurements and entanglement? We consider
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these issues in the following chapter.
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Chapter 6

Weak measurements and state

engineering

In this chapter we build on the utility of weak measurements by demonstrating that

they have applications beyond Gaussian entanglement concentration. In particular,

we show how they can be used to realize noiseless amplification of photon number on

a set of quantum states that satisfy the associated weakness conditions. In addition,

we uncover a deeper connection between weak measurements and Procrustean en-

tanglement concentration, where we show that a weak measurement on an entangled

probe can lead to an entanglement concentration effect.

6.1 Weak noiseless amplification

6.1.1 Non-physical nature of noiseless amplification

The previous weak measurement entanglement concentration protocol can actually

be regarded as an example of a weak measurement allowing the probabilistic noiseless

amplification of photon number. Being able to implement such an operation, albeit

on a subset of states, has a number of possible applications in state engineering and

quantum information in general. Our work here can be considered as an alternative

means of achieving noiseless amplification to the method suggested in [120].
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Noiseless amplification of the photon number in a given state ρ̂ is performed

via the abstract operation Γ̂(r) = c rn̂, where r > 1 and c is a constant related

to the probability of occurrence. Such an operation does not preserve probabilities

〈ψ|ψ〉 6= 〈ψ|Γ̂†(r)Γ̂(r)|ψ〉 and cannot be achieved by a local unitary transformation

[121]. In particular, as shown in [120], assuming that noiseless amplification can be

achieved by an unitary transformation leads to a contradiction as the commutation

relation between the mode operators is not preserved. In addition, we now provide

a novel argument that demonstrates that this operation cannot be performed by

a generalised measurement as described by a POVM measurement. To do this we

recall the definition of a POVM as a set of operators {Π̂ω}ω∈Ω that obey∑
ω∈Ω

Π̂ω = Î , 〈Π̂ω〉 ≥ 0, Π̂†ω = Π̂ω. (6.1)

where Ω is the set of all possible distinguishable outcomes of the measurement with

each outcome labeled by ω, which can be either a discrete or continuous index. If

the latter is true then we need to replace all the summations with integrals. The

probability of obtaining the ω outcome on a state ρ̂ is given by Pω = Tr(Π̂ωρ̂).

To define the state transformation law that accompanies each outcome requires the

introduction of the associated Kraus operators for each POVM element [9]. These

are defined by Π̂ω = Â†ωÂω and consequently, the projection postulate for a pure

state |ψ〉 when ω is measured is [9]

|ψ〉 → Âω|ψ〉√
〈ψ|Â†ωÂω|ψ〉

, (6.2)

and the corresponding equation for a general state ρ̂ is [9]

ρ̂→ Âωρ̂Â
†
ω

Tr(ρ̂Â†ωÂω)
. (6.3)

To demonstrate that noiseless amplification cannot be achieved even by a POVM

measurement requires framing the Γ̂(r) operation in the language of POVMs. Firstly,

we identify Â1(r) = c rn̂ and Â2(r) = (Î − c r2n̂)−1/2 as the Kraus operators for the

set of operators Πz = {Π̂1, Π̂2} where

Π̂1 = Â†1(r)Â1(r) = |c|2r2n̂, Π̂2 = Â†2(r)Â2(r) = Î − |c|2r2n̂. (6.4)
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Where c is an arbitrary constant related to the probability of applying the Â1(r).

Clearly, these measurement operators obey the resolution of the identity with

Π̂1 + Π̂2 = |c|2r2n̂ + Î − |c|2r2n̂ = Î , (6.5)

and they are also obviously Hermitian. However, for r > 1 as required for am-

plification, they do not obey the positivity requirement since for arbitrary |ψ〉 =∑∞
n=0 ψn|n〉 we get

〈ψ|Π̂1|ψ〉 = |c|2
∞∑
n=0

|ψn|2r2n ≥ 0, r > 1. (6.6)

However,

〈ψ|Π̂2|ψ〉 =
∞∑
n=0

(1n − |c|2r2n)|ψn|2, (6.7)

Thus, the above is only positive if (1n − |c|2r2n)|ψn|2 > 0 for all n ∈ [0,∞), i.e.

|c|2 < r−2n for all n ∈ [0,∞). Consequently, the only way this constraint can be

satisfied for arbitrary states is if |c|2 = 0, i.e. it can only occur in the trivial case of

vanishing probability of success. Thus, noiseless amplification only obeys the axioms

of a POVM in the trivial case but is otherwise nonphysical because it leads to the

possibility of negative probabilities.

Given this general argument against the probabilistic realisation of noiseless

amplification, why can it be achieved via either weak measurements is demon-

strated in the previous chapter or in the alternative scheme suggested in [120]?

In the first case, the latter scheme is consistent because it only approximates Π̂1

by introducing a high-energy cut off. This means that they generate the operator

Π̂1(N) = |c|2
∑N

n=0 r
2n|n〉〈n| which allows amplification since the previous constraint

becomes |c|2 < r−2n for all n ∈ [0, N ], which is satisfied by selecting |c|2 < r−2N .

Consequently, they truncate their input state before performing noiseless amplifi-

cation on this subspace to approximate their desired amplified output. The weak

measurement model is also consistent with this constraint since it doesn’t hold for

arbitrary input states instead it is only valid for a certain subset of states. These

states are ones with negligible support for very large photon numbers n and thus be-

have as though they are effectively truncated. Thus, the weak measurement induced
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Figure 6.1: The probe system (at the top) is used to encode the weak value of the pre

and post-selected system. Each individual run corresponds to imprinting a different

weak value since the each measurement results in a different post-selected state.

noiseless amplification satisfies the POVM axioms on a reduced set of states that

obey the weakness conditions and not on arbitrary states. We explore this next.

6.1.2 Weak probabilistic noiseless amplification

Our weak measurement model is based on the following configuration where, as

depicted in Fig.6.1, the probe state in mode A is coupled to an ancilla state in mode

B by means of a unitary evolution between A and B. The requirements of noiseless

amplification dictate that the interaction Hamiltonian describing this process must

be of the form ĤI = ~κ(t)n̂Ô. Assuming the interaction persists for T seconds, then

the corresponding unitary evolution operator is Û = e−i
∫ T
0 κ(t)n̂Ô = e−iκT n̂Ô, where

κT = κ(T )− κ(0).

Consequently, following the evolution the ancilla is subjected to a measurement

with outcome ω corresponding to a projection of |ω〉〈ω|. Thus, the final state is

ρ̂ω ∝ TrB

(
{ÎA ⊗ |ω〉〈ω|}e−iκT n̂Ô(ρ̂i ⊗ |Φ〉〈Φ|)eiκT n̂Ô

)
,

and so ρ̂ω ∝ 〈ω|e−iκT n̂Ô|Φ〉ρ̂i〈Φ|eiκT n̂Ô|ω〉/|〈Φ|ω〉|2. Expanding the exponential

yields

ρ̂ω ∝
∞∑
m=0

∞∑
`=0

(−iκT )m

m!

(iκT )`

`!

〈ω|Ôm|Φ〉
〈ω|Φ〉

〈Φ|Ô`|ω〉
〈Φ|ω〉

n̂mρ̂in̂
`.

This can then be rewritten as

ρ̂ω = N
(
e−iκTOW (ω)n̂ + ε̂

)
ρ̂i
(
eiκTO

∗
W (ω)n̂ + ε̂†

)
, (6.8)
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where the weak value OW (ω) = 〈ω|Ô|Φ〉/〈ω|Φ〉 is imprinted on the probe provided

ε̂ρ̂i ≈ 0 · Â with Â arbitrary, i.e.

ε̂ρ̂i =

(
〈ω|e−iκT n̂Ô|Φ〉
〈ω|Φ〉

− e−iκTOW (ω)n̂

)
ρ̂i ≈ 0 · Â. (6.9)

Furthermore, by expanding ρ̂i =
∑

k pk|ψk〉〈ψk| we note that (6.9) is equivalent to

∞∑
m=0

∑
k

pk

(
〈ω|e−iκTmÔ|Φ〉
〈ω|Φ〉

− e−iκTOW (ω)m

)
〈m|ψk〉|m〉 ≈ 0 · |φ〉, (6.10)

for an arbitrary vector |φ〉. The linear independence of the Fock basis allows (6.10)

to be expressed as an infinite set of equations

∑
k

pk

(
〈ω|e−iκTmÔ|Φ〉
〈ω|Φ〉

− e−iκTOW (ω)m

)
〈m|ψk〉 ≈ 0, (6.11)

∀m ∈ [0,∞) are the weakness conditions. Satisfying these conditions for small m

is automatic provided that the coupling between signal and probe is weak κT <<

1. These conditions can still be satisfied provided
∑

k pk〈m|ψk〉 ≈ 0 for large or

intermediate m. Thus, the imprinting of the weak value OW (ω) on the probe is only

valid in the limit of weak coupling and for certain probe states.

Assuming such conditions are approximately true assumes that we are operating

in the weak regime and the post measurement probe state becomes

ρ̂ω =
e−iκTOW (ω)n̂ρ̂ie

iκTO
∗
W (ω)n̂

Tr(e2κT={OW (ω)}ρ̂i)
. (6.12)

This transformation has two components corresponding to imprinting different parts

of the weak value OW (ω) onto the probe state. On the one hand, the imprinting

of <{OW (ω)} is done by a unitary transformation e−iκT<{OW (ω)}n̂ imparting a phase

shift on the probe state. On the other, the imprinting of ={OW (ω)} is done via

the operator eκT={OW (ω)}n̂. It is this transformation that allows the conditional re-

alisation of noiseless amplification on the state with r = eκT={OW (ω)}. Consequently,

noiseless amplification occurs when r > 1 =⇒ ={OW (ω)} > 0. Thus, the imprinting

of a positive imaginary part of a weak value will lead to an increase in the average

number of photons and, hence, achieve a noiseless amplification effect.

106



The condition ={OW (ω)} > 0 can be used as a selection criterion to pick out par-

ticular ancilla configurations including the pre-selected state |Φ〉, interaction Hamil-

tonian ĤI = κ~n̂Ô, and measurement strategy that projects onto different |ω〉〈ω|.

It is this universality that is the true power of the weak measurement approach; It

allows this amplification effect to occur for a wide range of physical ancilla systems

and interactions. Ultimately, this effect is probabilistic since only a subset of all

measurement outcomes ω company a weak value such that ={OW (ω)} > 0. Ac-

cordingly, this protocol has a measurement based success condition which tells us

whether a weak value with a positive imaginary component has been encoded on the

probe state. This condition follows from the earlier identical argument in chapter 5.

Thus, there are two possibilities either ={OW (ω)} = 0 for all ω ∈ Ω, which is trivial

or ∃ω ∈ Ω+ such that ={OW (ω)} > 0 and ∃ω ∈ Ω− such that ={OW (ω)} < 0.

This latter possibility demonstrates the manifestation of a measurement based

success condition linking the measurement outcome on the ancilla with the prop-

erties of the imaginary part of the imprinted weak value. Consequently, one can

formulate a probability of success with this protocol that is directly related to the

probability of obtaining a particular ω. This probability emerges from

P (ω) = Tr
(
{ÎA ⊗ |ω〉〈ω|}e−iκT n̂Ô(ρ̂i ⊗ |Φ〉〈Φ|)eiκT n̂Ô

)
,

which becomes in the weak regime

P (ω) = |〈ω|Φ〉|2Tr
(
e2κT={OW (ω)}n̂ρ̂i

)
, (6.13)

and so the probability of success of the noiseless amplification is

PS =
∑
ω∈Ω+

P (ω), (6.14)

and the probability of failure PF = 1−PS =
∑

ω∈Ω− P (ω). Accordingly, any attempt

to optimize the amplification will need to consider the optimization of (6.14).

We are still faced with the question of accuracy of our model, i.e. for a given

initial probe state how accurate is the weak measurement model when compared to

the general predictions of quantum mechanics. We propose to measure this accuracy
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via the fidelity of the two final probe states, one in the weak regime and the other

as the general output state predicted by quantum mechanics. That is, we consider

the fidelity between ρ̂ω as defined in (6.12) and the final probe state in general given

by

ρ̂(G)
ω =

〈ω|e−iκT n̂Ô|Φ〉ρ̂i〈Φ|eiκT n̂Ô|ω〉

Tr
(
〈ω|e−iκT n̂Ô|Φ〉ρ̂i〈Φ|eiκT n̂Ô|ω〉

) . (6.15)

Thus, we use the fidelity F(ρ̂ω, ρ̂
(G)
ω ) = (Tr

√
ρ̂

1/2
ω ρ̂

(G)
ω ρ̂

1/2
ω )2 as measuring the accuracy

of the predictions from the weak measurement model for a particular state ρ̂i and

coupling strength κT . Consequently, this can be interpreted as measuring the degree

of violation of the aforementioned weakness conditions: the greater the deviation

then the smaller the fidelity.

Finally, we can show that this weak measurement obeys the axioms of a POVM

only for states which satisfy the weakness conditions derived above. With this in

mind we identify the Âω = 〈ω|Φ〉e−iκTOW (ω)n̂ as the associated Kraus operators and

Π̂(ω) = Â†ωÂω = |〈ω|Φ〉|2e2κT=(OW (ω))n̂ (6.16)

as the corresponding POVM elements. However, these can only be regarded as

POVM elements on the set of states which obey the weakness conditions. Thus, let

ρ̂ be such a state then by definition, the Π̂ω are Hermitian and the resolution of the

identity follows from the substitution of the weakness relations:∑
ω

Π̂ωρ̂ =
∑
ω

|〈ω|Φ〉|2e2κT=(OW (ω))n̂ρ̂ ≈
∑
ω

〈ω|e−iκT Ôn̂|Φ〉〈Φ|eiκT Ôn̂|ω〉ρ̂ = Î ρ̂.

While the positivity of the POVM elements is satisfied in

Tr
(
|〈ω|Φ〉|2e2κT=(OW (ω))n̂ρ̂

)
≈

∞∑
n=0

∣∣∣〈ω|e−iκT Ôn|Φ〉∣∣∣2 ρnn ≥ 0, ∀ω ∈ Ω, (6.17)

which follows since |〈ω|e−iκT Ôn|Φ〉|2 is positive for all measurement outcomes ω.

Thus, the weak measurement is a POVM on a subset of states that approximately

satisfy the weakness conditions.
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6.1.3 Applications

Our weak measurement model of a probabilistic noiseless photon number amplifier

has a number of potential uses in a diverse range of quantum information protocols.

This is in spite of the restrictions that need to be observed to grant the weak regime

validity. We now consider a number of applications of this model beginning with

the previously known application to entanglement concentration.

Gaussian entanglement concentration

This result was explicitly considered in [2] and in the last chapter for the two-mode

squeezed vacuum state |ζ(λ)〉 =
√

1− λ2
∑∞

n=0 λ
n|n, n〉 where the weak measure-

ment allowed the probabilistic transformation

λ→ λeiκT<{OW (ω)}eκT={OW (ω)}. (6.18)

Consequently, the imprinting of ={OW (ω)} leads to Gaussian-preserving entangle-

ment concentration provided ={OW (ω)} > 0. The probability of obtaining a par-

ticular ω is given by

P (ω) =
(1− λ2)|〈ω|Φ〉|2

1− λ2e2κT={OW (ω)} , (6.19)

and the efficiency of this protocol can be measured by comparing the probabilities

P (ω) with respect to a particular increase in entanglement ∆S.

Growing Schrödinger kittens

Noiseless amplification is also useful for amplifying Schrödinger cat states with |α| <

1, i.e. the so-called Schrödinger kitten states [59]. Consider the case where the probe

state is the kitten state |ψ+(β)〉 = N (|β〉 + | − β〉), then the weak measurement

induces the transformation β → βe−iκTOW meaning that the final probe state is

|ψ+(βe−iκTOW )〉 ∝ |βe−iκTOW 〉 + | − βe−iκTOW 〉. The probe state is rotated in an

amount depending on the real part of the weak value and is amplified by an amount

dependant on the imaginary part. Thus, the size of the cat state is increased if

=(OW ) > 0. The probability (or probability density) of obtaining a particular ω
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with a corresponding weak value OW (ω) is

P (ω) =
|〈ω|Φ〉|2 cosh

(
|β|2e2κT=(OW (ω)

)
cosh |β|2

, (6.20)

and the amplitude factor g = eκT=(OW (ω)) can be used as a figure of merit and the

accuracy can be measured by the fidelity F between the general result and the weak

measurement result.

Following the analysis in [2] and in the previous chapter, we consider the effi-

ciency of this protocol in an all optical setting configuration using the cross-Kerr

effect ĤI = κ~n̂An̂B with an ancilla coherent state |α ∈ <〉 followed by a measure-

ment strategy that projects onto |ω〉. In this case, as noted in [2], we are interested

in the weak values of the number operator n̂B which can be written as

nW =
〈ω|n̂|α〉
〈ω|α〉

= α2 +
α

Rω(α)

∂Rω

∂α
+ iα

∂θω
∂α

, (6.21)

with 〈ω|α〉 = Rω(α)eiθω(α) [2]. Thus, only measurement strategies that allow

α
∂θω(α)

∂α
> 0, (6.22)

for a subset of possible values ω ∈ Ω+, have the potential to achieve the desired

effect. Such a measurement basis was identified in [2] as the phase quadrature p̂

basis |p〉 with 〈p|α〉 = π−1/4e−p
2/2−i

√
2αp and so =(nW (p)) = −

√
2αp meaning that

any measurement outcome p < 0 leads to noiseless amplification. We plot the

relevant quantities for the parameter values κT = 4 × 10−5 rad per photon and

α = 104 and β = 0.2, including the probability density

ρ(p) =
e−p

2
cosh

(
|β|2e−2

√
2κTαp

)
√
π cosh |β|2

, (6.23)

the amplification factor g = e−
√

2αpκT and the fidelity F(p) = |〈ψ(G)
f (p)|ψf (p)〉|2

given by

F =

∣∣∣∑∞n=0
|β|2n
(2n)!

ei2nκTα
2−
√

22nκTαp exp
(
−i
√

2pα(e−i2nκT − 1) + α2

2
(e−4inκT − 1)

)∣∣∣2∑∞
n=0

|β|2n
(2n)!
|e−i

√
2pα(e−i2nκT−1)+α2

2
(e−4inκT−1)|2 cosh(|β|2e−2

√
2ακT p)

,

in Fig.6.2. From Fig.6.2, we note that the probability density ρ(p) is approximately

Gaussian and so the probability of success of the protocol PS =
∫ 0

−∞ dp ρ(p) ≈ 0.5.
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Figure 6.2: The efficiency of the noiseless amplification of cats. Here we consider the

probability density ρ(p), the amplification factor g(p) and the fidelity F (p) between

the final probe state as given by the weak formalism and what we get in general. The

numerical values are κT = 4× 10−5, α = 104 and β = 0.2.
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Furthermore, we also note that it is possible to achieve an amplification factor of

g = 2 when the outcome is p2 = −(5 ln 2)/(2
√

2) with a probability density of

ρ(p2) ≈ 0.12. In particular, the probability of achieving an amplification effect

g ≥ 1.5 is
∫ −0.72

−∞ dp ρ(p) ≈ 0.15, i.e. 15% and we also note that the fidelity is very

close to unity for all measurement results in the range p ∈ [−2, 2].

Weak coherent state cloning

It is well known that the probabilistic cloning of coherent states can be achieved

using a noiseless amplifier in combination with a 50 − 50 beam splitter [28]. This

follows from the behaviour of coherent states incident on a noiseless beam splitter

ÛBS|α, β〉 = |
√
Tα + eiθ

√
Rβ,
√
Tβ −

√
Re−iθα〉. (6.24)

The beam splitter will not entangle coherent states and the output modes are gen-

erated by constructive and destructive interference. Hence, it is possible to clone an

unknown coherent state |α〉 if it is noiselessly amplified to |
√

2α〉 before splitting it

on a 50 − 50 beam splitter with the vacuum. The output is then |α,−α〉 and a π

phase shift on the copy gives |α, α〉.

In general, the noiseless amplification is impossible for the reasons outlined pre-

viously, however, if the unknown coherent state to be copied is weak then our weak

measurement model allows cloning to be achieved conditionally. Again this follows

since it is able to induce the transformation α → α exp(−iκTOW (ω)) and so the

success of the protocol is achieved when exp(κT={OW (ω)}) ≥
√

2. The probability

of obtaining a particular ω is once again given by (6.13), where as the probability

of success for the cloning is given by∑
ω∈ΩC

P (ω) = PS, (6.25)

where ΩC is defined as

ΩC =

(
ω ∈ Ω : ={OW (ω)} ≥ ln 2

2κT

)
, (6.26)

i.e. any measurement result which leads to a ={OW (ω)} that induces a back-action

greater than or equal to
√

2. This result has important implications in weak coherent
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Figure 6.3: The efficiency of the cloning of weak coherent states. Here we consider

the probability density ρ(p), the amplification factor g(p) and the fidelity F (p) be-

tween the final probe state as given by the weak formalism and what we get in general.

The numerical values are κT = 4× 10−5, α = 104 and β = 0.2.

state quantum key distribution [12] since our model can be regarded as a non-

Gaussian attack by Eve on the channel shared by Alice and Bob. That is, Eve can

conditionally copy the states exchanged between Alice and Bob and use it to infer

the shared key without Alice and Bob’s knowledge.

We consider the efficiency of this protocol in the case where we want to clone

|β ∈ <〉 using an all optical configuration with the cross-Kerr effect ĤI = κ~n̂An̂B
and an ancilla coherent state |α〉 that is subjected to a measurement of the phase

quadrature p̂ in balanced homodyne detection. In Fig.6.3 we plot the probability

density for p

ρ(p) = π−1/2 exp
(
−p2 + e−2

√
2αpκTβ2 − β2

)
, (6.27)
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the amplification factor g = e−
√

2αpκT and the fidelity

F =

∣∣∣∑∞n=0
|β|2n
n!
einκTα

2−
√

2nκTαp exp
(
−i
√

2pα(e−inκT − 1) + α2

2
(e−2inκT − 1)

)∣∣∣2∑∞
n=0

|β|2n
n!
|e−i

√
2pα(e−inκT−1)+α2

2
(e−2inκT−1)|2

∑∞
n=0

|β|2n
n
e−2
√

2ακTnp

for physically realistic parameter values of κT = 4 × 10−5, α = 104 and β = 0.2.

From Fig.6.3, we note that the threshold for cloning is ≈ −0.8 and so the probability

of success of this protocol is
∫ −0.8

−∞ dp ρ(p) ≈ 0.20 i.e. approximately 20% in a single

run.

6.2 Weak values with entangled probes

As noted previously, it is an intriguing question whether the connection between

weak values and Procrustean entanglement concentration can be extended to a larger

class of pure bipartite entangled states. We shall answer this question in the positive

with our weak measurement model in this section.

6.2.1 Output state

The success of the weak measurement induced continuous-variable entanglement

concentration encourages an investigation in to its applicability on other bipartite

pure states. Hence, the central question here is whether weak measurements can,

in general, lead to a Procrustean entanglement concentration effect. To set the

scene, we assume a general configuration illustrated in Fig.6.4. The probe is initially

prepared in an entangled state |ψi〉 ∈ H⊗2 with Schmidt decomposition:

|ψi〉 =
K∑
k=1

sk|ak〉|ak〉. (6.28)

The usual properties are assumed with {sk}Kk=1 obeying
∑K

k=1 s
2
k = 1, sk ≥ 0 ∀ k ∈

[1, K] and 〈ak|aj〉 = δjk. One subsystem of the probe interacts with the system

initially prepared in |i〉. This mixing is provided by the interaction Hamiltonian

ĤI = ~κK̂ ⊗ Ô, (6.29)
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Figure 6.4: Mixing one of the entangled sub-systems of |ψi〉 with an ancilla system

initially prepared in |i〉, before post-selecting the ancilla in the state |f〉.

with, for simplicity, κ = const. In addition, it is assumed that all of the systems

have vanishing free Hamiltonians. This can be done without loss of generality,

provided we note that all results are unique up to a suitable unitary transformation.

Furthermore, the observable K̂ is required to admit the Schmidt basis as an eigen-

basis with K̂|ak〉 = λk|ak〉. Consequently, the appropriate unitary evolution operator

generated by (6.29) is

ÛBC = exp

(
− i

~

∫ T

0

dtĤI

)
= e−iκT K̂⊗Ô. (6.30)

Following the interaction, the observable F̂ is measured which results in the system

being post-selected in a particular eigenstate |f〉 and so the final probe state is

|ψf〉 ∝ 〈f |
(
Î ⊗ Û

)
|ψi〉|i〉. (6.31)

The critical feature of weak measurements is the “weakness” of the coupling between

probe and system, thus it is assumed that κT << 1, meaning that only linear terms

are kept:

|ψf〉 ≈ N
(
〈f |i〉Î − iκT 〈f |Ô|i〉(Î ⊗ K̂)

)
|ψi〉. (6.32)

This approximation is more strict than the previously used approximations. Ulti-

mately, this is because the result has to be applicable to any bipartite pure state and

so the Schmidt coefficients of an arbitrary state may not have a simple analytical

relationship like the Schmidt coefficients of the TMSV. The weak value of Ô is

OW =
〈f |Ô|i〉
〈f |i〉

(6.33)
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and noting that Ñ = N〈f |i〉 allows (6.32) to be given as

|ψf〉 = Ñ
(
ÎAB − iκT OW (Î ⊗ K̂)

)
|ψi〉. (6.34)

The normalisation constant Ñ is

Ñ ≈ eiφ√
1 + 2κT =(OW )〈ψi|(Î ⊗ K̂)|ψi〉

, (6.35)

where eiφ is an arbitrary global phase that can be set to φ = 0 without loss of

generality. Consequently, the final entangled state is

|ψf〉 =

(
Î − iκT OW (Î ⊗ K̂)

)
|ψi〉√

1 + 2κT =(OW )〈ψi|(Î ⊗ K̂)|ψi〉
. (6.36)

6.2.2 Modification of entanglement

From (6.36) it is clear that both the real and imaginary parts of the weak value

contribute towards the transformation of the state. However, only the latter induces

a non-unitary effect that is responsible for the modification of the entanglement

content of (6.28). The verification of this effect requires the demonstration of a

quantitative change in the entanglement content of the state. For bipartite pure

states, we use the entanglement measure derived from the Von Neumann entropy

[65, 9]:

E(|Ψ〉) = {S ◦ Trj}|Ψ〉〈Ψ| = −Tr (ρ̂j ln ρ̂j) . (6.37)

Denoting ρ̂i = |ψi〉〈ψi| and ρ̂f = |ψf〉〈ψf |, the reduced density matrices are σ̂i =

Tr1(ρ̂i) and σ̂f = Tr1(ρ̂f ). Accordingly, our starting point is the global density

matrix

ρ̂f =
ρ̂i + 2κT =(OW )K̂ρ̂i

1 + 2κT =(OW )Tr(K̂σ̂i)
, (6.38)

which leads to the reduced density matrix

σ̂f =
σ̂i + 2κT =(OW )K̂σ̂i

1 + 2κT =(OW )Tr(K̂σ̂i)
. (6.39)

Moreover,

ln(σ̂f ) = ln(σ̂i + 2κT =(OW )K̂σ̂i)− ln(1 + 2κT =(OW )Tr(K̂σ̂i))

≈ ln(σ̂i) + 2κT =(OW )(δK̂), (6.40)
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where δK̂ = K̂−Tr(K̂σ̂i) and the second line follows from keeping only linear terms

in κT . Hence

σ̂f ln σ̂f ≈
σ̂i ln(σ̂i) + 2κT =(OW )(δK̂σi + K̂σ̂i ln σ̂i)

1 + 2κT =(OW )Tr(K̂σ̂i)
, (6.41)

and so

S(σ̂f ) =
S(σ̂i)− 2κT=(OW ) Tr(K̂σ̂i ln σ̂i)

1 + 2κT =(OW )Tr(K̂σ̂i)
. (6.42)

Finally, if we note that ω̂ = −σ̂i ln σ̂i/S(σ̂i) can be formally identified as a density

matrix in its own right, then (6.42) becomes

S(σ̂f )

S(σ̂i)
=

1 + 2κT =(OW )Tr(K̂ω̂)

1 + 2κT =(OW )Tr(K̂σ̂i)
. (6.43)

The entanglement content of the probe is altered if and only if Sf 6= Si and

so Sf/Si 6= 1, which is true if both =(OW ) and Tr(K̂(σ̂i − ω̂)) (since Tr(K̂σ̂i) 6=

Tr(K̂σ̂i)) cannot be zero. The requirement that =(OW ) 6= 0 is obvious from (6.36) as

it accompanies a non-unitary transformation of the probe state. This follows from

the properties of entanglement measures which are designed to be non-increasing

under local unitary operations [65].

On the other hand, the second simultaneous requirement that Tr(K̂(σ̂i − ω̂)) 6=

0 is the precise meaning to the claim that K̂ must be able to distinguish states

of different entropies given earlier. This is because the entropy of σ̂i is identical

to that of ω̂ only when the global probe state is either separable or maximally

entangled. Essentially, the probe observable K̂ must be able to witness the difference

between the states σ̂i and ω. It is instructive to compare this requirement on K̂

with the definition of an entanglement-witness [13, 65] used in the discussion of

mixed state entanglement. Such a witness is a self-adjoint operator Ŵ that can

distinguish between the set of separable states S and a particular entangled state

ρ̂E via Tr(Ŵ ρ̂) ≥ 0 ∀ρ̂ ∈ S, Tr(Ŵ ρ̂E) < 0. The essential difference between this

and the role played by K̂ is that the latter need only distinguish between two states.
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6.2.3 Application to entanglement concentration

It is now widely acknowledged that the counter-intuitive features of quantum states

can also be interpreted as information theoretic resources. This realization has pro-

vided ample motivation for quantum state engineering, with the aim of manufactur-

ing, enhancing or repairing the desired non-classical features of a particular quantum

state. Entanglement concentration protocols are designed to augment the entangle-

ment content of a particular entangled state. From a state-engineering viewpoint,

the weak measurement with an entangled probe can be interpreted as an entangle-

ment concentration protocol. Essentially, by mixing a subsystem with an ancilla

which is both pre and post-selected can augment the initial entanglement available

in the global shared state. In particular, this association can be a calculational aid

for Procrustean entanglement concentration protocols which modify the Schmidt co-

efficients. In our case, the output coefficients are a function of the weak value of

the ancilla tk = f(sk, κT , OW ). When viewed in this manner, we can use (6.44) to

determine the requisite conditions on {|i〉, Ô, |f〉, K̂} that will collectively allow an

entanglement concentration effect. Entanglement concentration of the shared state

(previously known as the probe state) is given if Sf/Si > 1 and hence

=(OW )Tr(K̂(ω̂ − σ̂i)) > 0, (6.44)

Thus, the weak value formalism can be used in a quantum information context

to single out individual examples of entanglement concentration protocols. Conse-

quently, one can view =(OW ) as a calculational aid allowing one to pick out suitable

ancilla ingredients. Furthermore, in conjunction with condition on K̂, we find the

required properties of the interaction Hamiltonian to allow the desired effect.

6.3 Future open problems

In this chapter, we have detailed our original contributions that showcase the ability

of weak measurements to allow for noiseless probabilistic photon number amplifi-

cation and modification of the entanglement content of an arbitrary bipartite pure
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entangled probe states. These results motivate further investigation into weak val-

ues. Three immediate questions surface:

1. Can weak values be considered a quantum resource for state engineering? In

particular can one establish a rigorous resource theory related to weak values

and measurements in a similar vein to that of entanglement?

2. If weak values are a resource, can entanglement be sacrificed to increase this

resource?

3. Can weak measurements be used to modify other non-classical features of

probe states?

Answering the first issue is likely to be challenging since one would need a clear

idea of the particular processing tasks that weak values could aid. To understand

this, remember that the resource interpretation of entanglement follows from our

inability to perform certain tasks if we are limited to local operations and classical

communication. From this very general restriction, the notion of entanglement as

resource can be developed [122, 123]. In contrast, our work only highlights a par-

ticular application of weak measurements in state engineering and does not identify

the essential restriction weak measurements resolve.

Nevertheless, issues two and three are potentially easier to solve since previous

work has been done to identify the non-classicality associated to the real part of

the weak values themselves [124, 125]. The thrust of these works is that for any

observable Ô, its eigen-value spectrum and its expectation value provide a relative

definition of classicality which the real part of weak values can violate. For exam-

ple, for a continuous-variable bosonic system, the number operator n̂ = â†â has a

completely positive countable spectrum and its expectation values are positive or

zero. Thus, any choice of pre and post-selection contrary to this behaviour can be

regarded as a signature of non-classicality i.e. <(nW ) < 0. While this analysis is

restricted only to examining the real part of the weak value, a simple modification

allows this idea to include the imaginary parts of weak values. In particular, non-

classical pre and post-selections for the self-adjoint operator Â are those such that
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=(AW ) 6= 0. This is precisely the condition required for entanglement concentration

derived earlier. Thus, point two could be investigated by determining if entangled

states can be used to increase this non-classicality or not. Point three can be ad-

dressed by demonstrating that a weak measurement could modify a non-classical

feature of a probe state as measured by some non-classical measure. Some work has

already been done in this direction in the context of super-conducting qubits and

the Leggett inequality [126].
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Chapter 7

Gaussian optimized preparation of

non-Gaussian states

Non-Gaussian states are highly sought-after resources in continuous-variable quan-

tum optical information processing protocols. In this chapter, we outline our novel

method for the optimized preparation of any pure non-Gaussian state to a desired

accuracy. Our proposal arises from two connected concepts. Firstly, we define the

operational cost of a desired state as the largest Fock state required for its approxi-

mate preparation. Secondly, we suggest this non-Gaussian operational cost can be

reduced by judicial application of optimized Gaussian operations. In particular, we

identify a minimal core non-Gaussian state for any target pure state, which is related

to the core state by Gaussian operations alone. We will demonstrate this method

for the Schrödinger cat states.

7.1 Resource cost function for non-Gaussian states

7.1.1 Resource interpretation of non-Gaussian states

Non-classical features of quantum states are now interpreted as potential resources

ready for exploitation in various quantum information processing tasks. This mod-

ern viewpoint is particularly acute in the realm of optical continuous-variable quan-
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tum information, where there is a clear distinction between different types of re-

source. On the one hand, we have the Gaussian states and operations which are

readily available and relatively easy to prepare. On the other, Gaussian resources

alone are not enough for some key tasks and they must be augmented by non-

Gaussian resources, with universal quantum computation [19, 20] being a crucial

example of this. Moreover, during the last three decades, a diverse range of non-

Gaussian states of light have been successfully generated, namely, sub-Poissonian

states [127], Fock states [128, 129], superposition of Fock states [130], superposi-

tion of coherent states [61, 131], single-photon subtracted states [44, 61, 132, 133],

single-photon added states [48] and squeezed two-photon states [77]. In addition,

two-mode non-Gaussian states are now understood as potentially useful resources for

the enhancement of entanglement and continuous-variable teleportation [134–137],

the improvement of non-local correlations [138, 139] and the demonstration of the

violation of Bell’s inequalities with homodyne detectors [140–143]. The first experi-

mental demonstration of this two-photon non-Gaussian state was recently reported

in [77]. So the interest in non-Gaussian states and operations is of a fundamental

and operational character. However, these necessary states and operations are noto-

riously difficult to prepare or execute. While this point is widely acknowledged, the

question whether Gaussian operations can aid in the construction of non-Gaussian

states has been neglected.

In this chapter, we are interested in the potential application of Gaussian opera-

tions to reduce the complexity of non-Gaussian pure state preparation. We consider

this question in the context of experimentally realistic state preparation schemes

utilizing photon subtraction [46, 61, 132, 133] and addition [48, 49] techniques.

In addition, feasible schemes for multi-photon subtracted states were suggested in

[144–146]. To be concrete, in the absence of a suitable Hamiltonian, arbitrary non-

Gaussian quantum optical states can be approximately constructed using finite high

order non-classical resources via experimentally feasible photon subtraction [46, 147]

or photon addition [47, 49] methods. These schemes allow the construction of ar-

bitrary finite superpositions of Fock states
∑N

n=0 cn|n〉. For example, in [46] such
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a superposition can be conditionally prepared from a squeezed state subjected to a

sequence of N + 1 displacements interspaced with N photon subtractions before a

final anti-squeezing. Similarly, in [49], such a state can be probabilistically prepared

from a supply of N single photon states.

The non-Gaussian resources required in the idealized noiseless execution of these

schemes is N , i.e. the number of photon subtractions or the number of single photon

states required to prepare
∑N

n=0 cn|n〉. Consequently, we can identify the minimum

non-Gaussian resource cost as the minimum number of successive photon subtrac-

tions/additions to produce this state. This logic can also be applied to continuous-

variable states like |ψ〉 =
∑∞

n=0 cn|n〉 with a caveat that the desired state can only

be produced approximately by |ψN〉 = N
∑N

n=0 cn|n〉 where N is a normalisation

factor. Thus, in this case, the minimum number of photon subtractions/additions

required to prepare our desired state to a sufficient accuracy, determined by the

fidelity F(ψ, ψN) = |〈ψ|ψN〉|2, is the operational cost for that state. It should be

stressed, that this operational cost is not a measure, but a useful ruler for gaug-

ing the difficulty of preparing the state. Our method is, therefore, in contrast to

approaches which attempt to quantitatively measure the degree of non-classicality

[33–35, 148–151] or non-Gaussianity possessed by a particular state [152, 153].

7.1.2 Example of state preparation

Crucial to our idea in this chapter is the notion of the conditional preparation of

arbitrary finite superpositions of Fock states as the means of approximating desired

non-Gaussian pure states. It is therefore worthwhile to briefly discuss the protocols

which allow the construction of such states. In this section we consider the protocol

advanced by Dakna et. al. [49], where the state
∑N

n=0 cn|n〉 is conditionally manu-

factured from a N single photon states introduced into an array of beam splitters

interspaced by N + 1 consecutive displacements as shown in Fig.7.1. This protocol

is build from two simple techniques: displacement and photon addition. The former

is achieved by requiring that each of the beam splitters used to displace the state are

highly transmitting with T > 99%. This is chosen in order to avoid the generation
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Figure 7.1: One can conditionally prepare a N dimensional arbitrary finite super-

position of Fock states by a sequence of N photon additions interspaced by N + 1

displacements.

of entanglement between the ancilla coherent state |α/
√
R〉 and the input state |φ〉.

For example, consider the case where |φ〉 is the input state mixed with |α〉 on a

highly unbalanced beam splitter modeled by Û with T ≈ 1 then

Û |φ, α〉 = Û
(
Î ⊗ D̂(α)

)
Û †Û |ψ, 0〉, (7.1)

with Û
(
Î ⊗ D̂(α)

)
Û † = D̂(

√
Rα)⊗ D̂(

√
Tα) and

Û |φ, 0〉 =
∞∑
n=0

φn(
√
T â† −

√
Râ)n√

n!
|0, 0〉. (7.2)

Given that T ≈ 1 then the final state approximates to

Û |φ, α〉 ≈ D̂(
√
Rα)⊗D̂(

√
Tα)

∞∑
n=0

φn(â†)n√
n!
|0, 0〉 = D̂(

√
Rα)⊗D̂(

√
Tα)|φ, 0〉, (7.3)

and so we are able to displace the original state to a good approximation with a final

state D̂(
√
Rα)|φ〉. In the present scheme, the transformation for the jth displace-

ment is |φ〉 → D̂(αj)|φ〉. The photon addition technique is achieved as described in

chapter two, by mixing the single photon with the signal on a beam splitter before

projecting onto the vacuum at the output. This vacuum projection can be performed

either with the binary photo-detector or a double homodyne detector. When the

addition is successful, then the signal state is transformed as |φ〉 →
√
R
√
T
n̂
â†|φ〉.
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Consequently, after the N successful additions and N +1 displacements the final

state is

|ψ〉 ∝ D̂(αN+1)
√
T
n̂
â†D̂(αN) . . . D̂(α2)

√
T
n̂
â†D̂(α1)|0〉. (7.4)

Then we write
√
T
n̂
D̂(αk) = D̂(αk)

{
D̂†(αk)

√
T
n̂
D̂(αk)

}
and propagate these ex-

pressions through to the right [49]. After some algebra [49], the final result can be

shown to be

|ψ〉 = D̂†(βN)â†D̂(βN)D̂†(βN−1)â† . . . D̂(β1)â†D̂(β1)|0〉, (7.5)

where the βj are defined from

α1 = −
N∑
`=1

√
T
−`
α`+1, (7.6)

αk =
√
T
N−k+1

(βk−1 − βk), k = 2, 3, . . . N, (7.7)

αN+1 = βN . (7.8)

Finally, we note that (7.5) is equivalent to

|ψ〉 = (â† − β∗N)(â† − β∗N−1) . . . (â† − β∗1)|0〉, (7.9)

which is identical to

|ψ〉 =
N∑
n=0

ψn|n〉, (7.10)

provided that (β∗1 , β
∗
2 , . . . , β

∗
N) are the complex roots of the characteristic polynomial

[49]
N∑
n=0

ψn√
n!

(β∗)n = 0. (7.11)

Thus, to build a desired state |ψ〉, we must first calculate the (β∗1 , β
∗
2 , . . . , β

∗
N) and

use them to calculate the required (α1, α2, . . . , αN+1) displacements. The photon-

subtraction scheme [46] works in a similar manner. In both of these schemes, it is the

number of subtractions or additions which determine the length of the manufactured

superposition. In our view, this number provides an insight into the non-Gaussian

off-line resource required to produce a desired state.
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7.1.3 Reducing the non-Gaussian resource

Our inspiration for the work present here resides two simple questions. In the first

instance, can unitary Gaussian operations applied to the prepared finite dimensional

state increase the fidelity with the desired continuous-variable target state? In the

second, can the applied unitary Gaussian operations help to reduce the number of

photon subtractions/additions to reach desired fidelity? These questions are mo-

tivated by a desire to prepare non-Gaussian states in a manner which minimizes

the non-Gaussian resource overhead. If we restrict ourselves to directly preparing

truncated versions of |ψ〉 then we have no freedom in reducing the non-Gaussian

resources. This follows from the fact that the fidelity between |ψ〉 and a truncated

approximation scales with largest Fock state in the latter. Thus, a greater accuracy

requires a ever greater number of subtractions or an ever larger Fock state prepa-

ration. Here we suggest an alternative approach to the approximate preparation

of |ψ〉. Instead of directly constructing a truncated version of the target, we ad-

vocate the identification and preparation of a minimum core state. This core state

will minimize the non-Gaussian resources required to prepare a sufficiently accurate

approximation to the target. Moreover, each core is related to the desired target

through Gaussian operations alone. Consequently, we are motivated to understand

whether Gaussian operations can reduce the accumulative cost of employing ever

elaborate non-Gaussian operations. To this end we formulate a criterion to answer

this and then use it to optimize the parameters of the associated non-Gaussian

operations.

7.2 Gaussian optimized preparation

7.2.1 Identification of core states

Our central problem is this: we want to prepare a very good approximation to the

continuous-variable non-Gaussian pure state |ψ(λ)〉 =
∑∞

n=0 ψn(λ)|n〉, where the

parameters λ = (λ1, . . . , λM) specify a particular state from a family of like states.
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For example, α labels each possible even parity Schrödinger cat state |ψ(α)〉 =

N (|α〉+ |−α〉), where N is a normalization factor. To prepare the state, we restrict

ourselves to Gaussian operations supplemented by photon subtractions or a supply

of Fock states. The implementation of the former is considerably easier than the

latter; Minimization of the non-Gaussian resource is our key priority. Thus, for a

given |ψ(λ)〉 we wish to identify the optimal Gaussian parameters that correspond

to the smallest number of photon subtractions. To this end, we introduce a family

of single-mode core states |λ, r, α, θ〉 related to the target via

|ψ(λ)〉 = Û(θ)D̂(α)Ŝ(r)|λ, r, α, θ〉. (7.12)

Where D̂(α) and Ŝ(r) are the single-mode unitary displacement and squeezing oper-

ators [27], D̂(α) = exp
(
αâ† − α∗â

)
and Ŝ(r) = exp

(
r
2
{(â†)2 − â2}

)
and Û(θ) = eiθn̂

is the phase operator. Conversely, each core state is given by the inverse on the

target

|λ, r, α, θ〉 = Ŝ(−r)D̂(−α∗)Û(−θ)|ψ(λ)〉. (7.13)

This definition of a corresponding core state allows us to distinguish between

two classes of continuous-variable non-Gaussian pure state. The first class are those

with a finite dimensional core

|ψ(λ)〉 = Û(θ)D̂(α)Ŝ(r)

(
N∑
n=0

cn(λ)|n〉

)
, (7.14)

which can be prepared with perfect fidelity by first preparing the finite core before

applying the unitary Gaussian operations. Examples of such states include the

photon added coherent state [154]

|ψ〉 =
â†|α〉√
1 + |α|2

= D̂(α)

(
α∗|0〉+ |1〉√

1 + |α|2

)
, (7.15)

which can be prepared with unit fidelity by first preparing c0|0〉+c1|1〉 and displacing

the result. The second, more general class of pure non-Gaussian states are those

with corresponding continuous-variable core states

|ψ(λ)〉 = Û(θ)D̂(α)Ŝ(r)

(
∞∑
n=0

cn(λ)|n〉

)
. (7.16)
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In contrast to the previous class, such targets cannot be perfectly prepared by either

the photon subtraction or addition techniques as they would require infinite non-

Gaussian resources. Of course, these states are typically generated from a suitable

Hamiltonian by a time evolution. Consequently, such states can only be prepared

approximately as

|ψNC (λ)〉 = Û(θ)D̂(α)Ŝ(r)

 ∑N
n=0 cn(λ)|n〉√∑N
n=0 |cn(λ)|2

 , (7.17)

to an accuracy determined by the fidelity with the target

FC = |〈ψ(λ)|ψNC (λ)〉|2. (7.18)

A little algebra reveals that the fidelity is a function of the Gaussian parameters

(r, α, θ) and the non-Gaussian resource cost N . This follows since the truncated

core is given by

|λ, r, α, θ;N〉 =
Π̂N |λ, r, α, θ〉√

〈λ, r, α, θ|Π̂N |λ, r, α, θ〉
, (7.19)

where Π̂N =
∑N

n=0 |n〉〈n| projects onto an N dimensional subspace. Thus, the

approximate target state from a truncate core is then

|ψNC (λ)〉 = Û(θ)D̂(α)Ŝ(r)|λ, r, α, θ;N〉, (7.20)

and so

〈ψ(λ)|ψNC (λ)〉 = 〈λ, r, α, θ|λ, r, α, θ;N〉 (7.21)

by virtue of unitarity of the Gaussian operations. Accordingly

〈ψ(λ)|ψNC (λ)〉 =
〈λ, r, α, θ|Π̂N |λ, r, α, θ〉√
〈λ, r, α, θ|Π̂N |λ, r, α, θ〉

, (7.22)

which leads to the conclusion

FC(λ, r, α, θ,N) = 〈λ, r, α, θ|Π̂N |λ, r, α, θ〉. (7.23)

For this latter class of states, we first fix λ and N and then we optimize the phase

θ, squeezing r and displacement α to maximize the fidelity and, hence, obtain the
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optimal agreement between |ψ(λ)〉 and |ψNC (λ)〉. This optimization process unifies

several issues related to the state preparation of non-Gaussian pure states. Firstly,

it identifies the essential non-Gaussian operational cost that underlies each non-

Gaussian pure state. Secondly, it highlights the possible tradeoffs between Gaussian

and non-Gaussian operations in this form of state preparation. In general, this

optimization must be performed numerically due to the non-trivial nature of Fock

state decomposition for each core. This is given by

|λ, r, α, θ〉 =
∞∑

n,m,k=0

e−iθkSnm(−r)Dmk(−α∗)ψk(λ)|n〉 =
∞∑
n=0

cn|n〉,

where the displacement matrix elements are given by [31] 〈m|D̂(β)|k〉 = Dmk(β)

with

Dmk(β) = (m!/k!)−1/2e−|β|
2/2(−β∗)k−mLk−mm (|β|2),

for m ≤ k and

Dmk(β) = (k!/m!)−1/2e−|β|
2/2βm−kLm−kk (|β|2), (7.24)

for m ≥ k. Note that the Lm−kk (|β|2) are the generalized Laguerre Polynomials. The

matrix coefficients for the squeezing operator [155] are 〈n|Ŝ(r)|m〉 = Snm(r). When

both m and n are even integers then

Snm(r) =
(−1)m/2

(m/2)!(n/2)!

√
n!m!

cosh r

(
tanh r

2

)(n+m)/2

(7.25)

×2F1

(
−m

2
,−n

2
;
1

2
;− 1

sinh2 r

)
,

but when both m and n are odd then

Snm(r) =
(−1)

m−1
2

(m−1
2

)!(n−1
2

)!

√
n!m!

cosh3 r

(
tanh r

2

) (n+m)
2
−1

(7.26)

×2F1

(
−(m− 1)

2
,−(n− 1)

2
;
3

2
;− 1

sinh2 r

)
,

and Snm(r) vanish for all other possibilities. Note that 2F1 are Gauss Hypergeometric

Polynomials [155].
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7.2.2 The utility of unitary Gaussian operations

The main inspiration of this work was whether Gaussian unitary operations can

reduce the non-Gaussian cost, with respect to photon subtraction/addition schemes,

involved in preparing a desired non-Gaussian target. The extent to which this is true

is revealed by comparing the non-Gaussian resources required to prepare a direct

truncation of |ψ(λ)〉 with that required for the minimum core state. Essentially,

we determine the utility of Gaussian operations by considering the approximate

preparation of |ψ(λ)〉 with and without them. This can be done by comparing the

fidelities of the states produced by each method. These fidelities are defined as

FDT (λ,N) = |〈ψ(λ)|ψNDT (λ)〉|2, (7.27)

with

FDT (λ,N) = 〈ψ(λ)|Π̂N |ψ(λ)〉 =
N∑
n=0

|ψn(λ)|2, (7.28)

where ψn(λ) = 〈n|ψ(λ)〉, for the direct truncation method and

FC = 〈λ, r, α, θ|Π̂N |λ, r, α, θ〉 =
N∑
n=0

|cn|2, (7.29)

for the core state method. The superiority of the core state method can be estab-

lished on two levels corresponding to the two questions asked in the introduction.

Firstly, the core state method is better than the direct truncation method using the

same non-Gaussian resources if

〈λ, r, α, θ|Π̂N |λ, r, α, θ〉 > 〈ψ(λ)|Π̂N |ψ(λ)〉. (7.30)

The second condition, if true, that would demonstrate the superiority of the core

method using less non-Gaussian resources over the direct truncation method is

〈λ, r, α, θ|Π̂M |λ, r, α, θ〉 ≥ 〈ψ(λ)|Π̂N |ψ(λ)〉, (7.31)

for M < N . That is, we would expect that one can better the fidelity with the target

by our approach with potentially less non-Gaussian resources than simply building

a truncated target. For the first class of states with finite dimensional cores, this is
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obviously true. This is because we can perfectly prepare the state by preparing the

core first and then applying unitary Gaussian operations

FC(N) =
N∑
n=0

|cn|2 = 1. (7.32)

In contrast, the direct truncation method yields

FDT (N) =
N∑
n=0

|ψn(λ)| ≤ 1, (7.33)

because |ψ(λ)〉 is, in general, an infinite dimensional state and is only reproduced

with unity fidelity as N →∞ and so

lim
N→∞

(FDT (N)) = FC(N) = 1. (7.34)

Thus, we would need infinite non-Gaussian resources to perfectly prepare the target

by the direct truncation method. The reason for this is because in the direct trun-

cation method the non-Gaussian subtractions/additions also contribute to building

the Gaussian envelope of the state in addition to its non-Gaussian core. In contrast,

in the core method all of the non-Gaussian resources are concentrated into prepar-

ing the non-Gaussian part of the state. Thus, for the example of the photon added

coherent state (7.15), the core method is superior since none of the non-Gaussian

subtractions/additions contribute to the construction of the displacement operator.

In contrast, in the direct truncation method, each subtraction/addition contributes

to building both the core and the displacement operator.

For the second class of states with infinite dimensional cores, the situation is

more subtle since both converge to unit fidelity as N → ∞. However, prov-

ing the optimal nature of the core state method to a direct truncation method

for arbitrary pure target states is a non-trivial task and will not be tackled here.

Ultimately, this is because the core state method is a complicated optimization

process that is dependant on the both the non-Gaussian resource N and the de-

sired fidelity. We can, nevertheless, gain a limited insight into the superiority of

the core state method over the direct truncation method from the following phase

space argument. In particular, we note that the core method can only be con-
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Figure 7.2: The superiority of the core state method as compared to the direct trun-

cation method is evident from this phase space diagram. By applying Gaussian op-

erations to the target’s Wigner function Wψ(λ)(q, p) we can generate the core state’s

Wigner function Wλ,α,r,θ(q, p). This latter quasi-distribution is closer to the origin

of phase space and has a more symmetric quadrature noise profile. This transforma-

tion achieves two simultaneous feats. One the one hand, the first and second order

moments of the core can be tuned to resemble the first and second order moments

of WΠN (q, p) and so increase its fidelity with WΠN (q, p). Such tuning cannot be per-

formed in the direct truncation method. On the other hand, the core, as a result of

this tuning, is closer to WΠN (q, p) than WΠM (q, p) for M > N since it is located

near the origin while being symmetric.

sidered as advantageous if transforming the first and second moments of the tar-

get concentrate the state on a smaller finite dimensional subspace as depicted in

Fig.7.2. This follows since the Gaussian operations can only effect the first and

second order moments Wλ,α,r,θ(q, p) = Wψ(λ)(Q(q, p, α, r, θ), P (q, p, α, r, θ)), where

Q(q, p, α, r, θ) and P (q, p, α, r, θ) are linear functions of q and p. For example, if

we restrict ourselves to only squeezing and displacing the target then the core is

given by Wλ,α,r(q, p) = Wψ(λ)(e
r(q −

√
2<(α)), e−r(p −

√
2=(α))). Thus, the core
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state method is only better in the first sense (i.e. increasing the fidelity over the

direct truncation method with the same resource) if Wλ,α,r,θ(q, p) enjoys a better

overlap with WΠN (q, p) =
∑N

n=0 Wn(q, p) than the original Wψ(λ)(q, p). This can

only happen if the first and second order moments of Wλ,α,r,θ(q, p) can be tuned

to be more like the first and second order moments of WΠN (q, p). Essentially, pro-

vided that the Gaussian parameters of the core can be tuned so that the Wigner

function Wλ,α,r,θ(q, p) is located at the origin and has a symmetric quadrature noise

profile, as is the case with WΠN (q, p) , then it is an improvement over the direct

truncation method. This is because the direct truncation method does not allow us

to modify these moments to increase the resemblance with WΠN (q, p). Of course, if

Wψ(λ)(q, p) is already located at the origin with a symmetric quadrature noise profile

then unitary Gaussian operations cannot improve on its overlap with WΠN (q, p).

In addition, this argument can also answer the second question whether the core

state method could offer an equal or better fidelity to the target for less non-Gaussian

resources. This is also evident from Fig.7.2 since the ability to tune the Gaussian

parameters of the core offers the possibility of being able to make the first and

second moments of the core more like WΠN (q, p) than WΠM (q, p). That is, by tuning

the first and second moments of the core to be close to the origin and symmetric

means that the vacuum has a larger contribution to the core state than in the target.

While this argument does not capture the full complexity of the core state method

it does allow an simplified picture that suggests the advantageous nature of the core

state method. We can build on this sentiment by providing some examples of states

for which the core method is indeed superior to direct truncation. Specifically, in

the next section, we consider the Schrödinger cat states and demonstrate that they

support our case.

7.3 Example: Schrödinger cat states

The odd parity superposition of coherent states |ψ(α)〉 = N (|α〉 − | − α〉) (where,

for simplicity, we assume α ∈ <) is a well known non-Gaussian state and is the

133



subject of numerous theoretical quantum information protocols [21, 59]. The char-

acteristic feature of this state, from a photon number point of view, is the exclusion

of all even Fock states |ψ(α)〉 = N ′
∑∞

n=0 α
2n+1/

√
(2n+ 1)!|2n+ 1〉. Consequently,

each core state |α, r, β, θ〉, where β ∈ <, has the following Fock decomposition

|α, r, β, θ〉 ∝
∞∑

n,m,k=0

(αe−iθ)2k+1

×

(
S2n,2m(−r)D2m,2k+1(−β)√

(2k + 1)!
|2n〉

+
S2n+1,2m+1(−r)D2m+1,2k+1(−β)√

(2k + 1)!
|2n+ 1〉

)
.

Thus, displacement acts to destroy the parity of the state since it destroys the

symmetry of the state around the origin of phase space. Consequently, there is good

reason to regard the optimal displacement for the cat is zero. Moreover, the optimal

phase is also zero since we assumed α ∈ <. This is also evident from our numerical

simulations and so we will restrict or attention to core states related to the target

via squeezing alone. Accordingly, the core states are of the form

|α, r〉 = N ′
∞∑

n,k=0

α2k+1S2n+1,2k+1(−r)√
(2k + 1)!

|2n+ 1〉, (7.35)

where N ′ is a normalization factor, and so, the photon number probability distri-

bution of a core state is a function of the squeezing parameter r. This behaviour is

readily illustrated in Fig.7.3, where it can be observed that for α = 1.5, each core

exhibits a different photon number probability distribution. The most important

point to be gained from this is that different cores will require different number of

minimum subtractions to approximately prepare the desired target state.

Each core state, when truncated, yields an approximation to the initial target

state |ψ(α)〉. These approximate target states are given by

|ψNC (α)〉 = N ′′
∞∑

m,k=0

α2k+1AN2m+1,2k+1√
(2k + 1)!

|2m+ 1〉, (7.36)

where AN2m+1,2k+1 =
∑N

n=0 S2m+1,2n+1(r)S2n+1,2k+1(−r), i.e. |ψN(α)〉 ∝ Ŝ(r)Π̂N |α, r〉

with N ′′ as a normalization factor. The fidelity between the actual desired target
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=1.5

a b

Figure 7.3: Each core state, for the odd and even cats, |α = 1.5, r〉 are labeled

by a different squeezing and possess a diverse range of photon number probability

distributions.

state |ψ(α)〉 and each of the approximate targets is then defined as

FC(α, r,N) =
N∑
n=0

∣∣∣∣∣N ′′
∞∑
k=0

α2k+1S2n+1,2k+1(−r)√
(2k + 1)!

∣∣∣∣∣
2

, (7.37)

and the optimal core state for a given N is obtained by maximizing this quantity.

This optimization is performed numerically due to its complexity, but we can still

gain an insight into the relationship between α and r for constant values of the above

fidelity. For example, when α = 1.5, numerical optimization of the fidelity yields

F = 0.96 for r = 0.597 and N = 1 and F = 0.999505 for r = 0.263 and N = 3. This

is precisely the content of Fig.7.4(a) and Fig.7.4(b), which show the relation between

α and r for fixed non-Gaussian resources of N = 1, 3, respectively. In addition to

this, it is important to show that the preparation of the target state |ψ(α)〉 via the

optimal core and Gaussian operations is more economical than a direct production

of a truncated version of the target from non-Gaussian operations only.

To demonstrate that this is indeed the case, we show that the core method can

produce a cat to an equal or better accuracy for smaller number of photon subtrac-
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tions. This is shown in Fig.7.4(c), where we compare the fidelities 〈α, r|Π̂N |α, r〉 and

〈ψ(α)|Π̂M |ψ(α)〉 for N < M and reveal the instances where our core preparation

method is more economical. In particular, we note that the fidelity using the core

with N = 1 is better than that of the truncated version of the target for both M = 1

and M = 3. Thus, instead of attempting to successfully perform three successive

subtractions to approximately prepare |ψ(α)〉 for 0 < α < 2, we need only perform

a single subtraction and then squeeze the state accordingly.

Finally, it is important to compare the photon number distributions of the ap-

proximate targets (|ψ1
C(α)〉, |ψ3

C(α)〉, |ψ5
C(α)〉) with the actual target |ψ(α)〉. This is

illustrated in Fig.7.4(d) for α = 1.5, where it is clear that the latter two approx-

imate targets provide an excellent approximation to |ψ(1.5)〉. Thus, for α = 1.5,

the squeezed single photon state as the core lacks a sufficient accuracy. This fact

is also readily evident when one consults the contour plot in Fig.7.4(a) as there are

no contours that satisfy FC(1.5, r, 1) ≥ 0.96. This particular example provides a

concrete understanding of our proposal and illustrates the main features of it.

An identical analysis can be performed on the even parity cat state |φ(α)〉 =

M(|α〉 + | − α〉) with α ∈ <. In this case, we find that all the essential points

of the previous example are repeated. Firstly, the even symmetry of this state

|φ(α)〉 ∝
∑∞

n=0 α
2n/(

√
(2n)!)|2n〉, means that the optimal displacement and phase

are both zero. Consequently, each core state is labeled by the corrective squeezing

|α, r〉 =M′
∞∑

k,n=0

S2n,2k(−r)α2k

coshα2(2k)!
|2n〉, (7.38)

also shown in Fig.7.3(b). Again, the reason that the external squeezing is useful

is because it preserves the symmetry of the state. Furthermore, each core state,

when truncated, yields an approximation to the even parity cat. These approximate

target states are given by

|φNC (α)〉 =M′′
∞∑

m,k=0

α2kBN
2m,2k√

(2k!)
|2m〉, (7.39)

where BN
2m,2k =

∑N
n=0 S2m,2n(r)S2n,2k(−r) and M′′ is a normalization factor. The

fidelity between the actual desired target state |ψ(α)〉 and each of the approximate
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Figure 7.4: (a) Displays the relation between α and r for different constant values

of the fidelity FC(α, r,N = 1) for one photon subtraction. (b) Shows the same

information, i.e. FC(α, r,N = 3). (c) Displays a comparison of the fidelities between

the target state and states from our core method and direct truncation. Finally, (d)

compares the photon number distributions of the approximate targets with the actual

target |ψ(α)〉 for α = 1.5 with N = 1, 3, 5. The optimal squeezing for these cores are

r = (0.597, 0.263, 0.157) giving fidelities FC = (0.9638, 0.9995, 0.9999).
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targets is then defined as

FC(α, r,N) =
N∑
n=0

∣∣∣∣∣M′′
∞∑
k=0

α2kS2n,2k(−r)√
(2k)!

∣∣∣∣∣
2

, (7.40)

and the optimal core state for a given N is obtained by maximizing this quantity.

Just as in the previous case for the odd parity cat, we consider this fidelity for

α = 1.5 in the case of N = 2 and N = 4. Already, one can consider the preparation

of the even parity cat state more complicated than the odd one since the most

basic even cat will require two photon subtractions rather than one. All of this is

is shown in Fig.7.5. Firstly, in Fig.7.5(a) and Fig.7.5(b), we plot the FC(α, r,N)

for N = 2, 4 where we once again see the non-trivial and non-unique relationship

between α and the optimal squeezing. In Fig.7.5(c), we once again demonstrate that

employing Gaussian operations is to our advantage since it allows an improvement

in the accuracy of approximating |φ(α)〉 for less photon subtractions than required

for the direct truncation method. Finally, Fig.7.5(d) shows how the states prepared

by the core method approximate the desired target |φ(α = 1.5)〉. These examples

are particularly elegant due to their inherent symmetry. In principle, this method

could provide key insights into other desirable non-Gaussian pure states and their

approximate preparation.

7.4 Discussion and concluding remarks

In summary, we have proposed that Gaussian operations can reduce the required

non-Gaussian resources for pure state preparation. It is a non-trivial problem to

establish the exact nature of this trade-off and ascertain whether it applies to all

non-Gaussian pure states. Instead, we are limited to analyzing the properties of

each desired target non-Gaussian state to determine if Gaussian operations are ad-

vantageous. Unfortunately, being able to demonstrate that this is true in general

for arbitrary pure non-Gaussian states is a non-trivial task.

It remains an open question as to the application of this method to mixed

states [156–158], which is likely to be a challenging problem. An insight into
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Figure 7.5: (a) Displays the relation between α and r for different constant values

of the fidelity FC(α, r,N = 2) for two photon subtractions. (b) Shows the same

information, i.e. FC(α, r,N = 4). (c) Displays a comparison of the fidelities between

the target state and states from our core method and direct truncation. Finally, (d)

compares the photon number distributions of the approximate targets with the actual

target |φ(α)〉 for α = 1.5 with N = 2, 4, 6. The optimal squeezing for these cores are

r = (0.376, 0.198, 0.272) giving fidelities FC = (0.9958, 0.9999, 0.9999).
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this can be gained by considering the attenuated version of the state |ψ(α)〉 as

the target state characterized by a transmission η. The target can be written as

p|ψ(ηα)〉〈ψ(ηα)| + (1 − p)/2(|ηα〉〈ηα| + | − ηα〉〈−ηα|), where p = p(α, η). Thus,

it is enough to prepare the pure state |ψ(ηα)〉 and obtain the target by applying

additional random operations which add the mixture of two coherent states. It fol-

lows, to find the core state, we have to subtract the non-Gaussian noise contribution

from the target state. However, identifying this non-Gaussian noise remains an open

problem. On the other hand, majority of the desired non-Gaussian states are pure,

therefore our result is sufficient for all practical purposes. Another outstanding issue

raised by our work is the assumption of perfect photon subtraction techniques. If we

relax this assumption to consider noisy detectors then both the number of photon

subtractions and the purity of each implemented subtraction could be advanced as

a cost function for state preparation. This generalization would be an interesting

problem to pursue. Moreover, our work here provides motivation to further inves-

tigate potential benefits of Gaussian operations on manipulations of non-Gaussian

states including transmission through noisy channels, measurement induced non-

linearity schemes and in the preparation of non-Gaussian entangled states. In this

way, we will come closer to understanding the subtle interplay between Gaussian

and non-Gaussian structure of non-classical resources in quantum information.
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Chapter 8

Conclusion

In this thesis, we have demonstrated the applicability of the weak measurement

paradigm in a novel operational manner and highlighted the power of such an inter-

pretation in certain state engineering protocols. The power of the weak measurement

is that it allows the interaction between a probe and signal system, in which the

signal is prepared and then measured in particular quantum states can be described

via a single number, the weak value, in the limit of weak coupling. We have demon-

strated its application in Gaussian entanglement concentration protocols, cloning of

weak coherent states and in general bipartite pure Procrustean entanglement con-

centration protocols. We have found that the imaginary part of the weak value

allows us to select particular configurations on the signal system that will allow the

desired outcome of the protocol. We also found that this constraint generates a

measurement-based success condition that allows the participating agents to decide

when the protocol is successful. The weak measurement formalism is particularly

elegant in this regard. Whilst the work in this thesis demonstrates the utility of

exploring a weak measurement approach to these protocols, it is not an exhaustive

analysis of the general applicability of weak measurements to quantum state engi-

neering. The question whether such an analysis is even possible is left for future

investigation.

In addition, we have also suggested and constructed an operational approach to

the issue of non-Gaussian state preparation for quantum optical information. We
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have shown that by specifying the method in which states are to be universally con-

structed allows a classification of non-Gaussian states in terms of the non-Gaussian

resource cost with respect to that method. Furthermore, it also allows an investiga-

tion into whether the non-Gaussian resource overhead required for a desired state

can be reduced by applying Gaussian unitary operations. We demonstrate this

method on the Schrödinger cat states where we show that the single mode squeez-

ing operation can be used to reduce the number of consecutive photon subtractions

to sufficiently approximate the desired state. Much remains to be explored with

this method and its wider applicability to non-Gaussian state engineering remains

an open issue.
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[18] J. Fiurášek. Phys. Rev. Lett. 89, 137904, 2002.

[19] S. Lloyd and S. Braunstein. Phys. Rev. Lett. 82, 1784, 1999.

[20] A. Kitaev D. Gottesman and J. Preskill. Phys. Rev. A. 64, 012310, 2001.

[21] N. J. Cerf, G. Leuchs, and E. S. Polzik (Eds.). Quantum Information with

Continuous Variables of Atoms and Light. Imperial College Press, 2007.

[22] R. Loudon. The quantum theory of light. Oxford University Press, 1973.

[23] D. Walls and G. Milburn. Quantum Optics. Spinger, 1995.

[24] L. Mandel and E. Wolf. Optical Coherence and Quantum Optics. Cambridge

University Press, 1995.

[25] S. Barnett and P. Radmore. Methods in Theoretical Quantum Optics. Oxford

science publications, 2002.

[26] M. O’Scully and M. Zubairy. Quantum Optics. Cambridge University Press,

1997.

[27] U. Leonhardt. Measuring the Quantum State of Light. Cambridge University

Press, 1997.

[28] C. Gerry and P. Knight. Introductory Quantum Optics. Cambridge University

Press, 2005.

[29] R. Y. Chiao J. C. Garrison. Quantum Optics. Oxford University Press, 2008.

144



[30] G. Auletta. Foundations and Interpretations of Quantum Mechanics. World

Scientific, 2001.

[31] A. Ferraro, S. Olivares, and M. G. A. Paris. Gaussian states in continuous

variable quantum information. Bibliopolis, (Napoli), 2005.

[32] E. P. Wigner. Phys. Rev. 40, 749, 1932.

[33] U. Titulaer and R. Glauber. Phys. Rev. 140, B676, 1965.

[34] R. F. OConnell, M. O. Scully, and E. P. Wigner. Phys. Reports 106, 121,

1984.

[35] L. Mandel. Phys. Scr. T12, 34, 1986.

[36] A. Kenfack and K. Zyczkowski. J. Opt. B: Quantum Semiclass. Opt. 6, 396,

2004.

[37] U. Leonhardt. Rep. Prog. Phys. 66, 1207, 2003.

[38] F. Dell’anno, S. De Siena, and F. Illuminati. Phys. Rep. 428, 2-3, 53, 2006.

[39] N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, and C. Silberhorn. Phys.

Rev. A. 65, 052306, 2002.

[40] T. Tyc and B. C. Sanders. Journ. Phys. A: Mat. Gen. 37, 7341, 2004.

[41] S. L. Braunstein and H. J. Kimble. Phys. Rev. A 61, 042302, 2000.

[42] J. Eisert, D. Browne, S. Scheel, and M. B. Plenio. Annals of Physics 311,

431, 2004.

[43] S. Olivares and M. G. A. Paris. Laser Phys. 16, 11, 1433, 2006.

[44] S. Olivares and M. G. Paris. Journ. Opt. B: Quantum Semiclass. Opt. 7,

S616, 2005.

[45] E. Knill, R. Laflamme, and G. J. Milburn. Nature 409, 46, 2000.

145
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