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Abstract
We describe some unsolved problems of current interest; these involve quantum critical points in
ferroelectrics and problems which are not amenable to the usual density functional theory, nor to
classical Landau free energy approaches (they are kinetically limited), nor even to the Landau–
Kittel relationship for domain size (they do not satisfy the assumption of infinite lateral diameter)
because they are dominated by finite aperiodic boundary conditions.

Keywords: perovskites, ferroelectrics, multiferroics

1. Introduction

Puzzles involving vertex domains in nano-ferroics of different
geometries, defect-dominated dynamics, and paradoxes
involving high-temperature multiferroics transcend the usual
theoretical approach because in some cases (e.g., faceting and
domain nucleation) they are controlled by kinetics and not
thermal equilibrium—and thus the traditional Landau free-
energy approach fails; or they are completely determined by
aperiodic boundary conditions (faceting again! or domain
widths and switching in nano-crystals) for which neither the
density functional theory (DFT) cylindrical periodic boundary
conditions nor the Landau–Kittel assumption of infinite lat-
eral surface diameter is satisfied. Finally we consider the
idiosyncrasies of quantum critical points (QCPs) in uniaxial
ferroelectrics and multiferroics. In the quantum critical
description of phase transitions the dynamics of the order
parameter fluctuations affect the thermodynamic properties

such as the dielectric constant below a certain characteristic
temperature scale. We also note that in such cases is that
although the electrocaloric coefficient diverges near T= 0, it is
not permissible to use the Maxwell relations for indirect
measurement of cooling ΔT, because those are entropy-based
thermodynamic relationships.

1.1. Semantics: vortex and vertex domains: winding numbers

One of the early reviews on topological defects in crystals
was that of Mermin in 1979 [1], which showed the difference
between vertex domains (simple crossings of three or more
domain walls) and vortex domains. The latter require a curl of
polarization. A few authors use vertex and vortex inter-
changeably, which we argue against. Some claim that one can
discriminate vertex from vortex by winding numbers. This is
not true, as illustrated in [1]; all three polarization geometries
in that review have winding number +1, but one is a pure
divergence; one is a pure curl; and one has both. See also
figure 1 below. A more complex set of ferroelectric winding
numbers from −1 to +3 is discussed in detail elsewhere [2, 3].
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2. Dynamics of shape-induced phase transitions in
domain patterns

2.1. Stress and strain in nano-crystals

It was shown by some of us [4] that the Landau–Lifshitz–
Kittel Law, which predicts domain stripe width w propor-
tional to the square root of sample thickness D, is well
satisfied for D all the way from nm to mm. However, this is
true theoretically and experimentally only for specimens of
infinite lateral width—or more precisely, of samples for
which the lateral width Y≫D (hence the aspect ratio is
essentially infinite). The present interest in nano-devices
made it desirable to extend such theories to incorporate finite
diameters [5].

2.2. Clock models, Potts models, hexagons, hexatics and
Kosterlitz–Thouless melting

Early work [6] showed that vertex domains in a ferroelectric
could be stable as fourfold vertices or as adjacent pairs of
threefold vertices (vortex–antivortex pairs), but not both. For
a three state Potts model (extension of scalar Ising model to
three dimensions), the fourfold vertex is unstable and

separates into adjacent threefold pairs. In contrast, for the
three state clock model (vector Potts model), the threefold
vertices are unstable and will coalesce into a single fourfold
closure domain vertex. Both tungsten bronzes [7] and per-
ovskites [8] favor the three-state Potts model.

One might ask whether hexagonal vertex structures in
ferroelectric polarization exist in thin films, and if so, whether
they imply hexatic phases requisite for two-dimensional
melting. The answer is that they do exist [9–11] but as
kinetically driven nonequilibrium states. And recent work has
shown that Potts models with n> 5 are required to generate
hexatic Kosterlitz–Thouless melting in two dimensions [12].

2.3. Stress in ellipses and rectangles

It has also been of interest to specify not only the diameter/
thickness aspect ratio of ferroelectrics, but to include also
their length/width ratio, since many nano-devices, such as
memory elements in the Samsung 16 Gbit ferroelectric ran-
dom access memory, are rectangular rather than circular or
square. Work in 2011 showed [13] that rectangular ferro-
electric films exhibited changes in the location of domain
vertex centers related to the ratio b/a of their sides. A
numerical simulation confirmed that this was the low-energy

Figure 1. Schematic real space dipole patterns (left-hand side in each box) along with diagrammatic constructions used to determine winding
numbers (right-hand side in each box). The development of the winding number diagrams involves consideration of a closed loop path in the
real space dipole pattern (in each case considered, the path is marked with a red dashed line). On traversing the path in an anticlockwise
sense, the orientations of dipoles successively encountered are recorded as poles on a circle, where the pole represents the intersection of the
circle circumference and the dipole vector direction. After traversing the complete loop, the winding number is determined as the number of
times the dipole vector poles rotate around the circle in an anticlockwise sense. As can be seen, rotating dipole patterns (a) and diverging
dipoles (b) both have winding numbers of +1. Since they share the same winding number, one pattern can seamlessly transform to the other
without the introduction of additional topological defects (c).
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configuration, and the order parameter (vertex displacement)
was identified, but the conjugate force remained enigmatic
[13]. Showed that the position of closure domain vertices in
ferroelectric thin films shifted off-center in rectangular spe-
cimens a× b in dimension by an amount related to the aspect
ratio b/a. This was found to be compatible with geometry
minimization of energy, but the conjugate field was not
identified. That is, the kinematics were detailed, but the
driving force was ambiguous (kinetics without dynamics).

In the present work we show that this phenomenon is
compatible with stress, including hoop stress, which has
usually been ignored in nano-physics [14, 15] but is well
known in architecture [16].

Before proceeding to the nano-domain data in rectangular
ferroelectric crystallites, it is pedagogically simpler to begin
with disks, ellipses, and squares. Electron micrographs
(STEM) of barium titanate are shown in figure 2.

In a circular closure domain, as illustrated in [17] the
vertex usually lies at the center of the disk. This is also true in
square specimens, as shown in figure 4 [18].

If we have an ellipse instead of a circular domain array,
the vertex moves to one of the ellipse focal points. Recall that
this shift is f/2, where

= −f b a (1)2 2 1/2⎡⎣ ⎤⎦
and b and a are the major and minor axes.

In a rectangle the sides of length b and a are analogous to
the major and minor axes of an ellipse, and as shown in
figure 3, the vertex loci shift strongly off-center.

The formula for maximum stress in two-dimensional
rectangular plates has been solved analytically, but to our
knowledge only for torsional strain along the long rectilinear
axis; even in that case it is algebraically complicated, invol-
ving infinite series. However, for a few integer ratios of the
side lengths b/a, results can be found in the literature [19]. In
figure 4 we compare the shear stress minima calculated [19]
with our experimentally domain pattern for b/a= 2. The

results are similar but certainly not a match, and a quadratic
relationship between the two loci is found empirically
(figure 5). We have also compared not the equipotentials but
the field contours of constant electric field E. However, the
agreement between vertex loci for closure domains and
extremal points in the field contours is also poor. This sug-
gests that if the vertex sites are at extremal points in the strain

Figure 2. Scanning transmission electron microscopy (STEM)
images of the ferroelastic domains that form, on cooling through the
Curie temperature, in patterned single crystal BaTiO3 shapes. The
vertex point, where domain bundles meet, moves from approxi-
mately the geometric center in squares and circles (a) to strongly off-
center in oblongs (b).

Figure 3. Plot of the degree to which domain vertex junctions move
off-center as a function of the expected degree of off-centering if
vertex positions were positioned at one of the foci in an ellipse with
major and minor axes equivalent to the length and width of the
rectangular BaTiO3 bars. While there is clearly a correlation, the
relationship is nonlinear.

Figure 4. Plot of the degree to which domain vertex junctions move
off-center as a function of the square of the off-centering associated
with the foci of ellipses with major and minor axes given by the
length and width of the rectangular BaTiO3 bars. While the plot is
reasonably linear, it has a gradient of approximately 0.5 (as opposed
to 1).
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field, the strain in our rectangles is definitely not torsional
about an axis. Further cases are under study.

We do note that the trajectory of vertex collisions in
ferroelectrics reported [8] with its abrupt 90° turn follows the
path of constant deformation (strain) calculated [19], sug-
gesting an explanation for such motion that transcends the
atomic-scale lattice structure and dominated by macroscopic
or mesoscopic boundary conditions.

Thus the enigmatic driving force for shape-driven tran-
sitions in domain patterns, particularly of the off-centering of
closure domain vertices, has been given a plausible quanti-
tative explanation in terms of the aspect ratio b/a for rectan-
gular specimens, but no quantitative agreement is found for a
specific (torsional) strain.

The agreement shown above implies that uniaxial stress
is only a vague qualitative mechanism (conjugate field) for
the off-centering of domain vertices in ferroelectrics.

3. Hoop stress

As discussed above, the Landau–Lifshitz–Kittel Law for
stripe domain width is based upon the balance of axial stress
and depolarization fields. If there were only axial stress,
materials would usually exhibit single-domain states. How-
ever, breaking up into narrow domains saves depolarization
energy at the surfaces. But such domains increase wall
energy. In their calculations Landau and Kittel ignored ‘hoop
stress’ (or cylinder stress), because they were modeling par-
allel-plate capacitors of infinite lateral area. Of course, mod-
ern physics and device engineering emphasize nano-crystals

of small lateral size (the crystals studied in [20] are only 8 nm
in diameter). This finite size implies that ‘hoop stress’ (or
cylinder stress) is not negligible. This is well known to
architects and mechanical engineers. This is an azimuthal or
tangential stress that increases the circumference of a ring or
disk. The important thing is that it varies not as reciprocal area
of the base, but as the circumference. Putting this extra term
in 1/r into the Landau free energy, together with the original
1/r-squared stress term gives the result shown in figure 6 and
equation (2) below

= − −Uw Bd cw D w/ [( / ) 1]. (2)2

For small r (nano-disks) the dependence of w upon
thickness D is linear (figure 6). This seems to be confirmed
(figure 7) in very new data on PbTiO3 from [21, 22]; see
also [23].

4. Creep and domain wall velocities

The domain wall velocities measured are ca. 1 nm s−1 for
small fields E. This agrees with the creep velocities measured
earlier [24] and seems characteristic of most oxide
perovskites.

5. Quantum critical point in a uniaxial ferroelectric

We have examined the dielectric constant and loss in highly
uniaxial ferroelectrics tris-sarcosine calcium bromide and
TSCB substituted with chlorine or iodine. Unlike the pseu-
docubic SrTiO3 or KTaO3, these have effective dimension-
ality deff = 5 and are predicted [25] to exhibit dielectric
constant ε′(T) varying as −T 3 rather than the −T 2 observed in
strontium titanate and potassium tantalate. However, their
polarizations are ultra-weak (Curie constant ca. C= 25–45 K

Figure 5. Direct comparison between the domain pattern developed
in BaTiO3 rectangular dots with length/width ratio 2:1 and the
torsional stress distribution in a twisted bar of the same aspect ratio,
adapted from the model calculated by Francu et al [19]. While the
domain pattern vertex junction does not obviously sit at a stress
minimum, it is conceivable that it could if the stress pattern
developed were in a different mode of distortion.

Figure 6. Prediction of the scaling behavior of ferroelectric domain
width (w) with thickness (d) according to a Landau–Lifshitz–Kittel
scaling law modified by the addition of hoop stress (equation (2) in
the text). The hoop stress term dominates at low thickness values,
generating a purely linear dependence.
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compared with 50 000 K in BaTiO3), resulting in an experi-
mental dependence of −T 2.0 from ca. 1 to 50 K. Fits to the
Barrett equation are discussed elsewhere.

5.1. Theory

5.1.1. General QCPs: pseudocubic perovskites. The general
phase diagram of a quantum critical point [26] n a
ferroelectric is schematically illustrated in figure 8.

The excitations around the critical point for a second-
order displacive ferroelectric phase transition are propagating
soft transverse optic phonons of very long wavelength (q= 0),
which at the critical temperature are gapless. The long range
dipole term is Coulombic in origin rather than relativistic as in
the magnetic case, and is thus orders of magnitude stronger.In
a multi-axial displacive ferroelectric the transverse optical
mode exhibits dispersion of form Ω q

2 =Δ2 + v2q2 with Δ
going to zero at the critical temperature T= Tc. The parameter
v is the speed of sound of the phonons when the gap Δ
vanishes. The longitudinal optical mode frequencies remain
finite at the critical point (but in tris-sarcosine calcium
chloride—see below—become very small also at approxi-
mately 2 cm−1 (60 GHz) at exactly Tc). In the self-consistent
field model, which has been shown to be quantitatively
applicable without any adjustable parameters in a number of
ferroelectric systems [26, 27], the correction to the dielectric
susceptibility due to quantum critical fluctuations is

∫δ χ
Ω

Ω
∼− ( )q n

qd . (3)
q q

q

1

0

2
c

Here n(Ωq) is the Bose population at the transverse optical
phonon frequency, and qc is a cut-off wavevector typically
taken to be the Brillouin zone boundary. In the classical
regime for a material with or without a finite Curie
temperature, and well away from the quantum critical point,

the model predicts a Curie–Weiss like susceptibility χ−1

proportional to (T− Tc). Close to the quantum critical point
the equations become independent of the cut-off wavevector
and lead to a temperature dependence which may be
expressed in closed form as follows

χ = +
∈

ℏ
− a

k b

cv
T

5

18
, (4)1 0 B

2
2

where a, b and c are the parameters of the Ginzburg–Landau
free-energy expansion in the polarization P at zero tempera-
ture, i.e. f= (a/2)P2 + (b/4)P4 + (c/2) (∇P)2, ∈0 is the permit-
tivity of free space, kB the Boltzmann constant and h the
Planck constant.

5.1.2. Khmelnitskii uniaxial QCP [25]; non-perovskites. The
situation is quite different for the case of a uniaxial system
where due to the crystalline details the polarization is
confined to vary along only the z direction. In this situation
as well as the splitting of the frequencies between transverse
and longitudinal optical phonon frequencies, the dispersion of
the transverse phonons is modified as follows:

Ω Δ υ λ= + +q
q

q
(5)q

z2 2 2 2 2
2⎛

⎝⎜
⎞
⎠⎟

in which

λ π
μ

= Q

V

4
(6)2

2

0

with V0 the volume of the unit cell; Q, the effective charge
associated with the soft mode; and μ, the reciprocal mass of
this normal mode. The non-analytic character of the last term
in the right-hand side of equation (5) (it does not vanish as the
wave-vector goes to zero) originates from the long-range
character of dipole–dipole interactions. This is the case for
both classical and QCPs. Noting that (qz/q)

2 = cos2θ where θ
is the angle between the z axis and the direction of wave

Figure 7. Domain size (determined by Fourier analysis of real space
piezoresponse force microscopy images of PbTiO3 thin films grown
onto SrRuO3 lower electrodes between insulating SrTiO3 spacer
layers) as a function of ferroelectric thickness by Lichtensteiger
et al [21, 22].

Figure 8. Schematic phase diagram for a quantum critical point. The
tuning parameter x can be pressure, percentage atomic substitution,
etc. The equations shown in the figure are for the case for a three
dimensional system with a multi-axial polarization.
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propagation q, the integral in equation (3) now becomes

∫ ∫δχ
Ω

Ω
θ∼−

−

( )q n
qdd (cos . (7)

q q

q

1

0 1

1 2
c

With an additional dimension and by an appropriate
change of variables, the integral may be solved analytically
close to the quantum critical point where Δ approaches zero.
The result in this case is that the inverse susceptibility varies
as the cube of the temperature [10]. Again this may be solved
numerically giving the full temperature dependence of the
susceptibility for uniaxial systems. Effectively the cos(θ)
integral acts as one extra dimension:

χ ∼− T . (8)1 3

More generally, the inverse susceptibility defines an
exponent γ, such that it varies as γT , and γ is defined as
γ= (d+ z− 2)/z, (for pseudo-cubic symmetry z= 1, d = 3), so
γ= 2 in pseudocubic perovskites. Here z is the dynamical
exponent and is defined as the dependence of soft mode
frequency upon wave vector near q= 0 in a displacive
ferroelectric. In classical Newtonian physics the spatial
fluctuations are separate from the temporal ones, so the
temporal fluctuations do not enter the thermodynamics near
Tc; but in a quantum mechanical system these are intermixed
because momentum and position do not commute.

Ferroelectricity in TSCC may be tuned to absolute zero
using bromine substitution as shown in figure 9. The
ferroelectric transition in TSCC is observed to be second
order in all experiments carried out so far, an uncommon
feature among ferroelectrics, which implies that the zero
temperature transition is a QCP with quantum fluctuations.

5.1.3. Reconciliation of the Khmelnitskii paradox. Generally
speaking theories of quantum criticality in ferroelectrics
assume that the spontaneous polarization Ps(T) increases
slowly as T approaches zero and is a constant for low T.
However, there are a few exceptions. In comparison with
ferromagnets, where the Curie constant in the Weiss theory is
not an independent parameter but is given by

μ= + ( )C Ng S S k( 1) 3 , (9)2
B

2
B

where g, μ, and k are the gyromagnetic ratio, Bohr magnerton,
and Boltzmann constant, in ferroelectrics C is an empirical
adjustable fitting constant of dimension T, given by

ε ε= + −( )C T T . (10)0 c

Some authors [28–30] have defined a ‘bare’ Curie
constant

=C Np k(bare) / , (11)2
B

and term the ratio C/C(bare) the Rhodes–Whohlfarth ratio, in
analogy with ferromagnets.

In order to describe Rochelle salt, early work [31]
assumed a rotating rigid dipole model in which the
polarizability

α = ( )p k T/ 3 , (12)2
B

where each rotating dipole has polarization p.
The internal field is then given by

β π= +E E P(applied) ( /4 ) . (13)

For the crude approximation of an array of point dipoles
in a random lattice, β= (4/3) π and C = 3 Tc. The data for C
(Tc) in TSCC/TSCB are show that C is indeed linear in Tc, but
it is ca. 1/9 Tc, not 3 Tc; hence the model of point dipoles in a
random lattice gives the correct functional dependence but is
quantitatively an order of magnitude off for the proportion-
ality constant.

Hence in TSCC or its Br-isomorphs, C decreases to zero
as bromination increases, down to the QCP. This renders the
assumption of constant P(T) by Khmelnitskii and Larkin
invalid and means TSCC/TSCB will behave as an isotropic
material asymptotically as Tc approaches zero [30]. Conse-
quently, and for reasons idiosyncratic to TSCC, this highly
uniaxial material behaves like a pseudocubic perovskite near
its QCP.

5.2. Electrocaloric effect

The electrocaloric effect is predicted to diverge as T approa-
ches zero, due to the fact that from the Maxwell relations, in
equilibrium, there is an indirect way of determining the
temperature cooling ΔT

Δ = −T T C T t T t T Eintegral [1/ ( , )]dP( , ) /d d (14)

and this expression contains an integral over specific heat C
that normally diverges faster as T goes to zero than can be
compensated by its linear prefactor of T. However that
assumes that polarization P is large and rather independent of
T as T becomes very small (required by the Third Law of
Thermodynamics); in the present case P is exceptionally
small, and the numerical values of the electrocaloric effect are
extremely small, even at low T.

Perhaps more interesting is the time dependence of these
relations. The estimate in equation (14) is from the Maxwell
relations and generally agrees within a factor of 2 or better

Figure 9. Phase diagram [27] of brominated tris-sarcosine calcium
chloride (pseudo-hexagonal at all T, in contrast with SrTiO3, which
is pseudo-cubic below T = 105 K).
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with direct measurements of ΔT [32]. However, it is not exact.
It is based upon equilibrium thermodynamics (dubious in the
case of relaxors), and it ignores time dependences. P(T)
actually depends upon time for real ferroelectrics due to
relaxation processes [33], especially in oxide perovskites,
where losses are often due to oxygen vacancies. After a
voltage is applied P(T,t) decays with time t, on several dif-
ferent time scales, depending upon temperature T. Typically
the long-term value of polarization P is ca. 50–80% of the
short-term value. In some modern test equipment, the rema-
nent polarization Pr at long times is denoted with a
circumflex.

Thus if ΔT is measured on a time scale long compared
with the relaxation time tau, care must be taken to use the
proper value of P in equation (14), which may be only half
that of the short-time measured electrical value from the I(V)
hysteresis curve. This will generally lead to an overestimate
of ΔT inferred from the ‘indirect’ method described by
equation (14), and by as much as 30–50%. No published
electrocaloric data include this time dependence of the
Maxwell relations. To be more self-consistent, ΔT must be
measured as a function of time t in applying equation (14),
and the time scale must be commensurate with the relaxation
time P(T,t) and also the time constant for the specific heat
measurements C(T,t).

6. QCPs in multiferroics perovskite lead iron niobate,
lead iron tantalate, and their single-phase mixtures
with PZT

Dome-shaped phases in the graphs of T versus x in super-
conductors and magnets, where x is pressure, or magnetic
field, or percentage concentration of some constituent ele-
ment, are phenomena of great current interest. Interesting
states of matter and unusual physical properties often are
found near these phase boundaries. However, such dome-
shaped phases are highly unusual if not unique in (T,E) phase
diagrams in ferroelectrics. Here we examine the predicted
presence of such domes in both lead iron niobate
(PbFe Nb O )1/2 1/2 3 and lead iron tantalate (PbFe Ta O )1/2 1/2 3

mixed into single chemical phase compounds with lead zir-
conate titanate (PbZr0.47Ti0.53O3) to produce high-tempera-
ture magnetoelectric multiferroics (lead iron niobate zirconate
titanate PFNZT and lead iron tantalate zirconate titanate
PFTZT). Each dome-shaped phase, according to Glinchuk
et al [34] should exhibit a quantum critical point—a phase
transition at T= 0—at ca. 5% and 20% Fe+3-ion B-site
occupancy (four QCPs in all in the two materials PFNZT and
PFTZT). The experimental data do not confirm such dome
shapes in the phase diagram, but will be compared with the
general theoretical predictions of others [35–37] and with
experiments [38]. We have also measured the dielectric
properties of a non-perovskite Ba-based M-type hexaferrite
[(Ba,Sr)Fe12O19] down to 300 mK, with a view to understand
its quantum critical point. We find two unexpected results: (1)
below 5 K the dependence of dielectric constant ε′(T) is not
monotonic and resembles that in SrTiO3 and KTaO3; we

interpret this as arising from electrostrictive coupling of the
soft mode to acoustic phonons; (2) the critical exponent
gamma that describes the divergence of ε′(T) above 4 K
describes a power-law dependence with γ = 3.0 ± 0.2, which
differs significantly from the value 2.0 for quasi-cubic mate-
rials with d+ 1 = 4 but agrees with Khmelnitskii’s theory for
anisotropic uniaxial ferroelectrics with d+ 1 = 5 and γ= 3. A
model for this will be presented elsewhere that is an alter-
native to the phenomenological Barrett equation, related
to [24].

Most interesting is the non-monotonic dip in reciprocal
dielectric constant versus temperature 1/ε′(T) as T goes below
ca. 4 K. This is due to electrostrictive coupling to acoustic
phonons [26, 27], and it shows that this behavior is rather
universal and not restricted to perovskites.

7. Room-temperature magnetoelectric and
multiferroic GaFeO3

Although gallium ferrite has an ABO3 formula, it is not a
perovskite but rather an orthoferrite. Its apparent multiferroic
behavior has been puzzling [39]. We have examined the
orthoferrite GaFeO3 by atomic force microscopy (AFM),
dielectric techniques, specific heat, and resonant ultrasonic
techniques, comparing bulk samples with thin films
10–200 nm in thickness. The results show that this material is
ferromagnetic and pyroelectric at room temperature (sufficient
for magnetoelectric coupling of form PM) and also ferro-
electric. This is not compatible with the earlier conclusion
[40, 41] that the barrier between P21/a states via a centered
Pnma state of 1.1 eV is too high for switching without
breakdown.

A recent series of papers has inferred [32] multiferroic
behavior at room temperature for gallium ferrite, but the
ferroelectric hysteresis loops were somewhat unconvincing
for bulk while clear for some very thin films. Meanwhile
studies of thin films of this material [40, 41] concluded that
the coercive field at room temperature exceeds the breakdown
field, so that the material is pyroelectric with a barrier >1.0 eV
for switching, but not ferroelectric. Pyroelectricity is a sym-
metry property of crystals, whereas ferroelectricity is a prac-
tical engineering definition: If it cannot be switched via an
applied electric field, it is not ferroelectric (‘ferroelectric
metals’ not withstanding).

In our present studies we are comparing bulk and thin-
film gallium orthoferrite to try to resolve this paradox. We
note that bulk samples from India exhibit no stripe domains or
AFM switching, whereas thin films do. We observe good
ferroelectric hysteresis loops in 50, 100 and 200 nm GaFeO3

films up to T = 400 K, above which electrical conduction is
too high. Typically Pr = 20 μC cm−2 and Ec = 30 kV cm−1. We
further note that multiferroic behavior has been measured in
SmFeO3, which had been thought to be an orthoferrite
structure also, with any magnetoelectric coupling forbidden
[42–44], so orthoferrites like perovskites merit further study.
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8. Thermal expansion and extrinsic critical
exponents

The thermal expansion near QCPs is predicted to vary as T
(not as T )3 but this has not been measured. Our work to be
reported elsewhere tests this hypothesis for oxygen-18 iso-
tope-enriched SrTiO3, TSCC:Br, and BaFe12O19.

9. Contrast with magnetic walls

Textbooks sometimes assume that ferroelectric wall dynamics
is analogous to that of magnetic walls. This is not true in
several respects: First, magnetic walls can easily be driven
supersonic, where they emit coherent acoustic phonons at a
bow-wave angle similar to that in Cherenkov radiation,
whereas ferroelectric walls cannot be (the shock wave would
destroy the crystal), and evidence apparently to the contrary in
early textbooks arose from the false assumption that all
domains nucleated at the cathode and moved to the anode,
giving a velocity v= thickness/time; of course many of the
domains nucleated midway between the electrodes. Second,
magnetic walls obey the Landau–Lifshitz–Gilbert equations,
which are first-order in time. Such equations require instant
stopping when the external field H is turned off—no
momentum and no coasting. In contrast, ferroelectric walls
obey Newton’s Second Law, which is second order in time
and requires momentum and coasting after the field E is ter-
minated (up to 50 μm of coasting). Failure to recognize this
coasting effect caused others to make claims about ferro-
electric switching for which they ignored conservation of
momentum [42–44].

10. Semiconducting properties

The two most important things about oxide ferroelectrics are:
(1) in general they are not insulators. PbTiO3 has a band gap
of approximately 2.96 eV, well below that of wide-gap III–V
semiconductors such as GaN or II–VI’s such as ZnO.
Therefore, especially in thin-film form, they are electrical
conductors. Hence it is necessary for device development to
understand their band structure, effective masses. Typically
they are n-type with light and heavy electrons, and electron
effective mass m* of order 5.5–6.5 me, in contrast to the value
m* = 1.0 me erroneously used by one group who inferred
Fowler–Nordheim tunneling (also unlikely). [45–48];
although in principle the tunneling mass can differ from the
effective mass, they must agree for tunnel barriers >2 nm [49]
and do in careful experiments [50]. On metal electrodes with
large Fermi energies such as Pt (work function
W= 5.34 ± 0.02 eV) or Pd or Au, their large electron affinities
usually produce small Schottky barrier heights, of order
0.8–1.2 eV. Because their mean free paths are small compared
to the Schottky barrier widths, conduction is usually in the
Simmons-limit of Schottky conduction, which yields current
J(E) proportional to E times the usual exponent (qV/kT)1/2,

where V is applied voltage. For low voltages the exponential
is nearly unity, and J= bE results, giving the illusion of ohmic
conduction (but unlike ohmic transport, insensitive to thick-
ness and interface-limited); this aspect of Schottky barriers
has been widely overlooked, most recently by a group at
Cambridge, who concluded that linear J(V) currents in sys-
tems with large Schottky barriers were ohmic due to impurity
banding [51]. (2) Six is bigger than three! Direct tunneling
through oxide films is typically limited to thickness D < 6 nm,
whereas ferroelectric polarization is stable for D > 2.4 nm.
This gives a finite range of thickness for which ferroelectric
tunnel junctions are attractive devices, as developed nicely at
THALES. Unfortunately for three decades the scientific
community was under the impression, based upon misleading
work from IBM, Japan, and North Carolina that the minimum
ferroelectric film thickness for stability was tens or even
hundreds of nm. This error delayed progress for years.

11. Conclusions

The study of perovskites has recently explored situations
where finite size effects and boundary conditions play a key
role, and hence where the periodic cylindrical boundary
conditions imposed in DFT theory fail. These situations are
often kinetically limited and not in mechanical equilibrium;
therefore Landau free energy theories fail, as do simple
strain–equilibrium models such as the Landau–Lifshitz–Kit-
tel Law.
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