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Abstract

This thesis has two themes. Firstly, it concerns the original application of holographic

beam shaping, employed through the methods associated with optical manipulation, to

three microscopic fields of research. Secondly, it studies the optical trapping of aerosol

droplets through experimentation and computational modelling.

The aims are to not only provide an account of the work carried out but also a base for

future researchers and students.

Chapter 1 provides an intoduction to the field of optical manipulation and the relevance

of my studies. Chapter 2 outlines the construction of an optical tweezers which is the

basis of advanced experimental work described in later chapters. It also overviews how

optical tweezers operate and are quantified.

In chapter 3 I describe how beam shaping is implemented for my investigations with a

spatial light modulator and phase-only holograms. I detail the algorithms and software

written before discussing their performance and finally the optimisation of the apparatus.

Chapter 4 describes three original applications of beam shaping, including the trapping

and coagulation of multiple aerosols, the manipulation of filamentous fungi hyphal tips

and novel digital microfluidic operations using thermocapillary forces. I also lay down

preliminary results for observing orbital angular acceleration using beams carrying orbital

angular momentum.

To study single optically trapped aerosols I use two methods. Firstly, their Brownian

motion is investigated through sub diffraction limit position detection. Unique results in

optical tweezers are shown with liquid droplets behaving as under-damped Brownian oscil-

lators. Through these studies I demonstrate a new technique for sizing trapped aerosols,

with significant advantages over current methods. I also show the droplets can be be

parametrically excited which can result in trap failure.

Secondly, in chapter 6, I use a theoretical model to describe the forces imparted to a

trapped droplet. I extend current theories to include the effects of a three medium focal

region to accurately describe airborne optical traps. The work qualitatively explains the

phenomena observed experimentally.

The work contained here leaves much scope for future investigations, for which I provide

an overview in chapter 7.
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Chapter 1

Introduction

Light’s interaction with matter has long been a fascination of man. Trying to understand

its nature has driven people to dangerous experiments; Newton stared at the sun for hours

on end and placed bobkin needles around the back of his eye. It was in the late 19th and

early 20th century when its wave and quantum nature was described in full. I cannot

say light is “fully understood” as it still throws up surprises and indeed there are still

controversies in its interpretation1.

Without these descriptions of the nature of light, microscopy could not have reached its

full potential as a tool for scientists. The ability to observe and study microscopic pieces of

matter including crystals, plant cells, liquid crystals, pollen grains, animal cells and their

infrastructure, chromosomes and nuclei, to name but a few, has lead to major advances

in the understanding of our world. The evolution of normal brightfield microscopy into

confocal, phase contrast, darkfield and fluorescence microscopy for example, is constantly

improving the tools at our disposal hence improving our understanding further still.

Microscopy techniques have used the shaping of matter, in the form of lenses and mirrors,

to manipulate light for specific purposes. In the latter half of the 20th century the opposite

began to occur with the advent of the laser, light began to ‘shape matter’. It is well

known that light can be used to control the cooling of matter at the atomic level, even

so far as to create a new state of matter, the Bose-Einstein condensate. Perhaps less well

known is the work which lead up, and evolved parallel, to it; the application of light to

mechanically manipulate microscopic objects. Starting in the early 1970s this topic has

matured considerably and shows no sign of slowing down. Now, not only can objects

be observed through microscopes, they can also be repositioned, ablated, cut, probed,

stimulated and isolated, amongst much more. Just as microscopy lead to advances in

many diverse disciplines through providing new research tools, optical manipulation will

1
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extend our limits of knowledge even further.

The fact that the manipulated objects are visible through microscopes means the field of

research is visual and thus easily appreciated on a basic level by the general public. The

ability to observe with ones own eyes the mechanical forces imparted by something as

ethereal as light is not only exciting upon first introduction but remains so for years to

come. The research raises more questions as it progresses and the answers found provide

interesting and beautiful demonstrations of physical principles from the undergraduate

level to in-depth high level academic discussions. However, the simplicity of these visual

experiments should not overshadow some of the awesome abilities optical manipulation

can provide. The boundaries of optical manipulation are constantly being pushed forward

and this thesis should be regarded as a snapshot in time of the state of the art.

In this thesis I not only develop, but also apply optical manipulation tools for specific

applications that have not been considered before. A large portion of this thesis delves

deep into the understanding of the physics behind one particular application and covers a

broad range of topics including hydrodynamic interactions, fluid flow, Brownian motion,

light scattering, beam aberrations, harmonic potentials, stochastic processes, parametric

oscillation and computational approaches. The number of topics touched on demonstrates

the diverse nature of this field of research.

As the main tool used to manipulate microscopic matter with light is the optical tweezers

this will be covered first.

1.1 Optical Tweezers

Optical tweezers use tightly focussed laser beams to manipulate microscopic objects. The

techniques of optical manipulation have matured considerably in the four decades since

Ashkin first demonstrated the acceleration of particles using radiation pressure2. Tight

focusing however is now no longer a necessity although it is still the tool of choice. The leap

forward that firmly established the field was the demonstration of a single beam gradient

force trap, christened optical tweezers, by Ashkin et al.3. These tweezers have developed

into a tool that is routinely used to probe biological function4,5, colloidal dynamics6,7,

properties of light beams8,9 as well as to facilitate stable trapping and manipulation of

particles at the micron scale in further, wide ranging, disciplines. In recent years the field

has started to revisit Ashkin’s early experiments in the form of dual beam traps delivered

through fibre optics10 and the more precise manipulation of objects in air11,12. The history

and understanding of the early experiments is not only interesting but provides a good

starting point for our discussion.
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1.1.1 Arthur Ashkin

In 1969 with a “back of the envelope”13 calculation Arthur Ashkin gave birth to the field

of optical manipulation. He simply considered the force created by the reflection of elec-

tromagnetic radiation from a perfect mirror, termed radiation pressure. Incident light

with power P will have Pλ/hc photons striking the mirror per second, each carrying a

momentum h/λ. Assuming each photon reflects back to its source the total momentum

change of the light, and hence mirror, per second is (2Pλ/hc)(h/λ) = 2P/c. Equivalently

the mirror will experience a force Fmirror = 2P/c in the propagation direction of the inci-

dent light. A power of 10 mW produces a very small force, Fmirror = 70 pN, but Ashkin

realised its potential by considering the possibility of focusing the incident light onto a par-

ticle ≃ 1 µm in diameter. Continuing the poor assumption of 100% reflectivity, particles

with a density ≃ 1 gcm−3 would receive an acceleration of aparticle = Fmirror/mparticle ≃
104 ms−2 ≃ 103g. Even with the approximations made this should be easily observable.

Using a Gaussian laser beam as his source of momentum Ashkin performed the first

radiation pressure experiments in late 1969 and observed, as expected, particle motion in

the propagation direction of the laser. Unexpectedly, an additional force was seen that

drew particles toward the higher intensity beam centre. “Particles stayed there...even if

the entire beam was slewed back and forth within the chamber. Particles were being

guided by the light!”13.

During the 1970s and 1980s Ashkin published three seminal papers describing four exper-

iments; acceleration, dual beam trapping, levitation in air and vacuum, and single beam

gradient force trapping of microscopic particles. The study of these themes has recently

been returned to and some are detailed in this thesis. Reviewing their history and evo-

lution assists in appreciating the nature of this field and will therefore be briefly outlined

here.

Figure 1.1 shows the apparatus used by Ashkin to observe the “acceleration of freely

suspended particles by the forces of radiation pressure from...laser light”2. It uses a

relatively simple setup with a focussed laser beam propagating horizontally through a

sample containing an aqueous suspension of latex spheres. The light, having been focussed

to dimensions similar to that of the particles, provides enough momentum transfer to

produce observable displacement. In this setup the motion will continue until the particle

reaches the sample cell wall.

Having proved the principle of acceleration via radiation pressure Ashkin performed an-

other experiment using two counter-propagating laser beams constructed as shown in

figure 1.2. A particle placed in an arbitrary position in either beam travels along its
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Figure 1.1: The geometry of Ashkin’s first experiment in 1970 which demonstrated
the acceleration of microscopic particles along the propagation direction of a tightly
focused laser beam with waist w0. The small circles represent either 0.59, 1.31 or
2.38 µm diameter particles in aqueous suspension contained in a cell with t = 120 µm.
The sample is observed down beam through a microscope M. (Diagram adapted from
Ashkin2).

propagation direction but no longer reaches the sample cell wall. Instead the second

beam provides an equal but opposite force creating, effectively, an ‘optical potential well’

equidistant from each beam waist. Any displacement from the centre of this well results

in a restoring force and so the particle is said to be in an ‘optical trap’.

Figure 1.2: The set-up used by Ashkin to create the first ‘optical trap’. Two focussed
counter-propagating laser beams, with waist w0, enter an open cell containing an
aqueous suspension of micrometer size spheres. The light scattered by the particles
was observed through a microscope M. (Diagram adapted from Ashkin2).

A further experiment in 1971 used the force produced by radiation pressure from a ver-

tically propagating laser beam to balance a particle’s weight, resulting in an equilibrium

position just above the beam waist14. The apparatus is shown in figure 1.3 and remains

similar to those previous.

An observation common to all the experiments was the microscopic particle’s tendency to

move into the beam centre, when viewed perpendicular from the direction of propagation.

It was this ‘gradient force’, named after the lateral intensity gradient in a Gaussian beam,
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Figure 1.3: The levitation apparatus used by Ashkin. A focussed Gaussian laser beam,
with waist w0, is directed vertically upwards, against gravity, into a sealed vessel
containing spheres ≃ 15 − 25 µm in diameter in either air or vacuum. The levitating
spheres are viewed through the microscope M. Inset in the dashed box is a free force
diagram of the levitating sphere. At the point of equilibrium the scattering force Fscat

equals the spheres weight Fmg and thus moves neither up nor down. (Diagram adapted
from Ashkin and Dziedzic14).

that in 1986 Ashkin and colleagues realised could be used to produce a single beam

gradient force optical trap3. Shown in figure 1.4 is the relatively simple apparatus used

by Ashkin et al.3 to demonstrate the first optical tweezers. It is important to note that the

experiment used neither counter propagating beams nor a balance of forces with gravity

to produce an optical potential well and hence a stable optical trap.

1.2 State of the art of optical optical manipulation

Since its early development by Ashkin optical manipulation has mainly been applied to

colloidal6,15–20 and biological21–25 studies in the micron size regime, situated in a liquid

medium26–28. Many of these results are not only technologically impressive but are also of

great scientific importance. The Block group directly observed the transcription of DNA

into mRNA, a vital step in the synthesis of proteins, with a resolution of the order of the

Bohr radius29. Dual beam fibre traps also demonstrated cells in the human retina have

evolved to behave as optical fibres, thus solving the mystery as to why photoreceptive

cells in the retina are positioned well below the surface on which light is incident. The
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Figure 1.4: Diagram of the first ‘Optical Tweezers’ apparatus. An argon
(λ = 514.5 nm) laser beam is focussed down into an open cell using a high numerical
aperture water immersion microscope objective lens. The cell contains an aqueous
suspension of micron sized particles. The sample is viewed from the side through the
microscope M. (Diagram adapted from Ashkin and Dziedzic14).

experiments even showed that the nucleus of cells occupy a specific position to increase

forward light scattering30. The understanding of the transfer of spin and orbital angular

momentum has advanced due to its direct observation on microscopic objects with many

fundamental results9,31–33. More esoteric applications come in the form of optical mat-

ter34; the interaction or ‘binding’ between scattering objects meaning perturbations to

one particle affects all others35. This ‘optical matter’ created through scattering can itself

manipulate light34,36.

One major advancement is the ability to manipulate multiple particles simultaneously

using several different techniques37–41. Applications of these methods have been few but

with the availability of commercial systems they are finding more uses in different disci-

plines42,43. Similar methods have allowed the shaping of beams beyond single Gaussians

enabling for example applications in the sorting of biological samples22,44 and cellular

transfection45.

The beginnings of optical manipulation mostly began with studying solid particles but its

use was quickly applied to objects of similar dimensions such as bacteria46 and mammalian

cells47. They are now also applied in the world of chemistry to study liquid in liquid

systems48. This interdisciplinary use continues and is where the technology really comes

to fruition.

One area that has fallen behind is airborne manipulation. Through combinations of tech-

niques, incredible results are possible with measurements of radii precise to < 2%49, and

the detection of 0.1 mK temperature changes50, all in situ and non-destructive.
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One main group51 has picked up the reins of airborne tweezing with the aim of furthering

the understanding of atmospheric chemistry. The advances in optical manipulation have

not been brought to bear on this field and is one of the aims of this thesis. Next I shall

discuss the importance and interest in aerosols and hence why they should be studied.

1.3 Aerosols

An aerosol is a multiphase system composed of a suspension of fine solid particles or

liquid droplets in a gas. They occur in a broad range of subject fields directly important

to people’s everyday lives.

Toxic airborne particles from industry and individuals’ lifestyles can penetrate deep within

the lungs where the body is designed with superb efficiency to exchange gas with the blood

stream52. There is also strong evidence suggesting delivery of medication via the lungs has

advantages over conventional oral delivery53. Clearly, understanding aerosol behaviour in

the lungs and how they enter and interact with the body is relevant for both the effects

of pollution on the human population and the efficacy of medicinal drugs.

Furthermore, understanding their creation can help design techniques for removal of

aerosol after combustion, for example the removal of particulate non-combusted mate-

rial in coal fired power stations by electrostatic precipitators.

The current interest in climate change highlights the need for confidence in scientists’

explanations and predictions of how the atmosphere affects the climate. Aerosols are a

massive constituent of the atmosphere and a major factor in determining its chemical

balance, for example the ozone hole and acid rain54. They also impair visibility and con-

tribute to radiative balance52. Clearly, their precise understanding is key to predicting

future trends and interpreting current data and hence form part of large efforts to improve

the understanding of how aerosols affect climate from the ‘bottom up’55. When deter-

mining the effects of all the necessary factors that can change Earth’s temperature the

largest error on known values is from aerosols, due to lack of their understanding, as can

be seen in one of many reports from the Intergovernmental Panel on Climate Change56.

These uncertainties have not really improved since the report six years earlier57 again

highlighting the need for new tools for use in the study of aerosols.

The reasons I have given are brief but clearly the continued advancement of our under-

standing of aerosols is paramount.

Aerosols can be grouped into three main categories or modes. The nucleation mode

consists of small emitted or newly nucleated particles with a mean radius less than 0.05 µm.
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Upon growth and coagulation these particles move into the accumulation mode with radii

between 0.05 µm and 1 µm. Finally the coarse mode of aerosols consists of particles with

radii greater than 1 µm52.

In terms of surface area to volume ratio, accumulation mode aerosol constitutes the largest

proportion of atmospheric aerosol and therefore dominates atmospheric aerosol chem-

istry54. This mode is also able to penetrate deep into the lungs playing a major role in

the interaction of aerosol with the human body. Its near wavelength size also affects visi-

bility52. My work concentrates on coarse mode liquid phase aerosols, particularly relevant

in drug delivery and atmospheric chemistry. However, the questions that can be answered

with current techniques are limited so they will need to be altered to allow accumulation

mode aerosol to be studied. Analysis of the limits and how to push them is discussed in

chapters 5 and 6.

In general aerosol systems, the droplet and gas phases are coupled; changes in composition

or temperature of the gas will affect the properties of the droplets and vice versa. The

composition at the droplet surface can vary significantly from the bulk aerosol system58

thus quantification of the chemistry involved cannot be determined through studying the

bulk system. Instead one must analyse individual aerosol droplets.

The majority of techniques to study aerosols to date have used ensemble averaging of

data over a distribution of particle sizes to infer information about the properties of single

aerosols. They include methods such as impactors and cyclones for size fractionation,

fibrous and porous filters for particle collection, and optical and electrostatic methods for

sizing; a more thorough review is given by Reid54. These techniques are often destructive

so evaluation of particle parameters and composition can only be followed as an average

over many independent experiments. Additionally, droplet lifetime within real world sam-

ples, such as clouds, is unkown which again impacts on the precision of the properties

extracted59.

To study without ensemble averaging and destroying the object under study one must

look towards methods of isolating the aerosol of interest from its surroundings. To do

so the object must, ideally, be trapped at a single location indefinitely by overcoming its

weight, Brownian motion if significant, and any other forces, for example, occurring from

external air flows.

Several approaches have been undertaken with this aim. Sonic levitation uses the nodes

within a longitudinal standing pressure wave to trap not only liquid droplets but also solid

particles with radii and density in the ranges of 22 µm to 2.5 mm and 0.5−8×103 kgm−3

respectively, hence are generally limited to the coarse mode of aerosol60–62. Electrostatic

levitation uses the interaction of an electric field with a charged particle to overcome grav-
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ity as in Millikan’s classic oil drop experiment, but is obviously limited to particles with

additional charge63. Magnetic levitation has many tight constraints including requiring

diamagnetic materials and large fields. The final method allows particles from 100 nm to

0.1 mm to be trapped; this method is the topic of my thesis; optical manipulation.

Since the early experiments of Ashkin optical manipulation studies have concentrated on

experiments within liquid environments. This is understandable with the large range of

interesting questions that can be answered by studying such systems. Perhaps another

reason is the complexity of trapping in different environments. In particular there may

have been the belief that there is not sufficient damping in air to remove energy from the

object’s Brownian motion to keep it trapped in a single beam gradient force trap.

However, in recent years a resurgence of interest in the ability to trap and localise par-

ticles via optical methods has lead to a ‘boom’ in research. Initial radiation pressure

experiments looked at levitation in air, as described, with later studies on airborne liq-

uid droplets64. The field has since intermittently explored more levitation experiments

including the levitation of non-spherical solid particles65, solid66 and liquid67,68 particles

for further analysis by Raman spectroscopy, and frozen droplets69,70.

Levitation has its problems as the particles are not necessarily very stable nor well localised

and their imaging is often difficult leading to mis-interpretation of results71,72. Although

some stabilisation of levitated particles was achieved73, a true single beam gradient force

trap would improve particle localisation, control, movement and observation. Also it

would allow for better integration with the wide range of powerful analysis techniques

developed for optical tweezers and enable the sampling of smaller particle sizes. Only a

few studies using the optical tweezing of aerosols have been described in literature. Firstly

Omori et al.11 used a piezoelectric transducer to ‘shake’ a coverslip with microparticles

resting on it until one ‘jumped’ into the optical tweezers created above by a specialised

air microscope objective lens. Magome et al.74 demonstrated that water droplets could

be stably tweezed by creating them in a supersaturated environment with a nucleation

site resulting from a reaction between hydrochloric acid and ammonia, and subsequently

studied their growth.

The piezoelectric method has been attempted several times in my group and others with

no success as the van der Waals forces between coverslip and particle are too great. One

method that has not been tested to enable the tweezing of airborne particles is the use

of a high power pulsed laser to break the bond between coverslip and sphere as has been

done for levitation experiments75. This method however could be difficult due to the high

peak powers and carefully constructed microscope objective lenses needed for tweezing.

The first meaningful forays into the optical tweezing of liquid aerosols were performed by
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Hopkins et al.12 and King et al.76. Hopkins et al. successfully trapped 2 − 7 µm radius

water or decane droplets over a range of powers and with various microscope objective

lenses. Of great benefit when studying airborne droplets is their obvious preference to

forming spherical bodies, due to their high surface tension. These spheres act as very

good optical cavities and so coupling their tweezers with a technique called cavity enhanced

Raman spectroscopy (CERS)77, dependent on the morphology of the illuminated object68,

enables their radius to be measured incredibly precisely, to within < 2%49. The same

spectroscopy can be used to study composition allowing systematic studies of processes

on and within aerosols to be carried out with the atmospheric sciences being the main

beneficiaries58 as demonstrated by King et al.

Only a handful of researchers and groups have studied or used airborne tweezing since

with none considering solid particles. The localisation of droplets in this way has mainly

allowed their use as atmospheric probes. For example, they have been used to probe

the Raman spectra of a trapped seawater droplet76, have helped the characterisation of

organic layers on the surface of inorganic aqueous aerosols78 and many others performed

by the Reid group in Bristol.

There has been little development of techniques and methods for the trapping of airborne

particles until recent years79–82. Also no investigation of the physics that governs them

has been carried out, although some of their potential in accessing interesting physics has

been realised with experiments in optical binding71 and Brownian oscillators83.

The further development, exploration of parameter space, and understanding of optical

manipulation techniques for airborne particles is a major theme of this thesis. It is the

first time a detailed study of the properties and parameters has been carried out not only

resulting in its detailed understanding and explanation, but also in novel applications for

the field of airborne trapping. There are clear advantages to increasing the number of

particles that can be trapped and the method chosen, holographic optical manipulation,

forms the second theme of this thesis.

1.4 Holographic Optical Tweezers (HOTs)

In the ten years since diffractive optical elements were first used for optical tweezers84 and

the seven years since the first holographic optical tweezers85 a large number of journal

articles have been published on the subject. For example, improvements in algorithms

have been developed41,85–88, slightly different implementations have been described88–93,

improvements in computation hardware have been demonstrated94,95, novel user interac-

tion techniques explored96–98 and detailed studies of precision and limits undertaken99–101.
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However, only relatively few applications have been found with the majority centered on

tweezing objects of various different geometries and morphology102–105. There has been

a slow increase in the past two to three years of truly novel applications; they have been

used to assist in the microscopy of cells106, studying objects at an air-water interface107,

creating microfluidic pumps and flow sensors108, studying two dimensional fluids109,110,

and are starting to be used as multipoint force transducers111. In chapter 3 I shall discuss

three new areas of application of HOTs extending the disciplines over which they are used

and moving away from the manipulation of simple aqueous suspensions of various sphere

like objects.

1.5 Further topics

Aerosols and holographic optical tweezers are the underlying themes of this thesis, how-

ever, as mentioned, three novel applications of HOTs will also be discussed. Each have

their own subtleties which will be introduced and discussed later within their dedicated

chapters and sections.

1.6 Aims and outline

One aim of this thesis is to document the information necessary to perform the experiments

described hence benefit future researchers wishing to investigate similar topics. So, in

chapter 2 I will describe the building of a basic optical tweezers, how to understand their

principle of operation, and some ways to quantify and measure their parameters.

Another aim is to improve the versatility of holographic optical tweezers and apply them

to diverse research fields outwith physics. Before being able to do this one must under-

stand how they operate and are constructed. In chapter 3 I will introduce the various

methods available to beam shape before going on to describe how my choice of device,

the spatial light modulator, operates. I will describe the best methods for kinoform gen-

eration in holographic optical tweezers and discuss their performance in the context of

optical traps. The integration of spatial light modulators in optical manipulation will

be explained along with the generation software I have created. Finally, I will consider

methods of optimisation in order to maximise the quality of the beam shaping performed.

Having described how optical manipulation is performed on both simple single beam and

complex holographic levels I will, in chapter 4, demonstrate three original applications of

holographic optical tweezers.
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It has been described how the development of optical tweezing techniques can improve

tools for many different areas of research. Pushing these tools toward improving aerosol

investigation is another aim of this thesis, but to really push the limits one must under-

stand the physics that governs the system. To this end I investigate, in chapter 5, the

mechanical parameters of liquid aerosols trapped in optical tweezers.

One piece of physics that cannot be easily inferred through the techniques of chapter 5 is

the optical forces acting on the objects due to the momentum of light. So, in chapter 6

I consider the computational modelling of optical tweezers in an attempt to understand

the remaining physics of the system.

Finally, in chapter 7, I discuss where the work of this thesis leaves the field of research

and what should be done in future.



Chapter 2

Optical Tweezers Basics

The field of optical tweezers is full of terminology unfamiliar to the uninitiated. Before

tackling the main body of the thesis I shall begin by describing how a simple optical

tweezers is constructed and operates, thus setting a background for the reader. A large

amount of variation is found in the literature but only a basic optical tweezers will be

described here which is the starting point for any laboratory.

In this chapter I neglect both gravity and buoyancy, unless otherwise stated, to simplify the

discussion without loss of generality. Indeed for the majority of work this is a reasonable

approximation with the objects under study having approximately the same density as

their surrounding environment.

Common terms throughout this thesis are the two directions axial and lateral; referring

to the directions parallel and perpendicular to the beam propagation direction and also

gravity where applicable, respectively. These definitions are shown in figure 2.1.

Figure 2.1: Definition of the axes used in this thesis. The axial axis is along the beam
propagation direction and centred on the beam axis. The lateral axis is perpendicular
to the beam propagation direction and crosses the axial axis.

13
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2.1 How are optical tweezers built?

For the simplest optical tweezers the equipment does not need to be of the highest stan-

dard. However, as one wishes to improve the nature of experiments then specialised

equipment is necessary, which will be discussed in later chapters. There are eight main

components used to construct an optical tweezers. A source of trapping light, namely a

laser, a microscope objective lens, a sample of interest, an illumination source, steering

mirrors, a dichroic mirror, a camera, and finally an application specific set of optics be-

tween laser and objective lens. The two most commonplace designs are ‘inverted’ and

‘non-inverted’ where the laser propagates toward the laboratory ceiling or floor respec-

tively. A simple schematic of an entry level optical tweezers in the inverted geometry is

shown in figure 2.2 along with the eight main components.

Figure 2.2: A basic optical tweezers. A laser beam passes through a set of application
specific optics and is then steered into the back aperture of a microscope objective
lens (OBJ) via steering mirrors (M) and lenses (L1 and L2). The dichroic mirror
(DM) allows the transmission of the image light but reflects the trapping laser light.
The image light is passed through a filter (F) to remove any unwanted laser light and
imaged onto a camera via a tube lens (TL). The objective focusses the trapping light
into a sample (S) which is illuminated via a condenser lens (CL) and illumination
source (IS).

The most common arrangement I have observed is the inverted geometry and hence I

will tackle the subject from this perspective. The choice between the two can be crucial

when wanting to perform the experiments described within this thesis, as will become

obvious in chapter 6. Horizontally propagating beams are feasible and practiced in certain

applications112 but I prefer to propagate the beam with or against gravity as this can keep

the experiment cylindrically symmetric thus simplifying certain aspects of analysis.

The detailed specifications of the components required can vary greatly with application

and I will not outline what is necessary for each as there are many review articles that

provide an introduction19,20,24–28,77,113, but, I will look at each component’s purpose and
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how it fits into the apparatus.

The laser produces a collimated, monochromatic, and coherent Gaussian beam to enable

focussing to a diffraction limited waist at the focussing lens’ back focal plane. This pro-

duces highly convergent light propagating through an area comparable in size to objects

in the microscopic size regime. The focussing ability of an objective is characterised by

its numerical aperture, NA = nm sin θ where θ is the cone of focus half angle. The larger

this NA the tighter the focussing.

The microscope objective lens serves three purposes in most optical tweezers. It is

used to image the sample in exactly the same manner as when used in a commercial

microscope. It also focusses the beam from the aforementioned laser to a diffraction

limited waist approximately the same order of magnitude in size as the object under study.

Finally, it produces highly convergent light with some rays considered to be travelling near

perpendicular to the beam propagation direction. Microscope objective lenses used in the

context of optical tweezers are usually oil immersion. The aim is to refractive index match

the glass objective to the microscope slide by using viscous liquids of specific refractive

index.

The sample is perhaps the most simple of elements. Most objects to be trapped are

suspended in fluid media, namely water, and their refractive index np must be higher

than the surrounding medium’s. This produces forces in the correct direction as I will

show later. It is possible to trap objects with lower refractive indices but this requires

a slightly more sophisticated approach. The sample normally consists of a shallow well

above a microscope coverslip that allows transmission of the focussed beam to just inside

the well. A second coverslip is placed on top of the sample to enclose the system and allow

illumination from above. Mounting the sample on an x, y, and z translation stage enables

control over the position of the tweezer in the sample plane without any beam movement.

The illumination source and the manner in which it is conveyed to the sample is of

great importance. The simplest method is to place the source directly above the sample;

slightly more efficacious is critical illumination where the source is focussed on the sample

using a lens. Finally, a far superior method is Köhler illumination, where the source

is relayed to the sample via multiple lenses and controlled with adjustable diaphragms,

which I shall discuss specifically in the next section.

Although feasible without steering mirrors they are a helpful addition to optical tweez-

ers and must be used if two dimensional manipulation is required without translation

stages. The optimum location for these mirrors is discussed in detail in the following

pages.
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In their simplest form the application specific optics are two lenses designed to expand

or reduce the incident laser beam before entering the microscope objective. This expansion

is again a critical part of an optical tweezers as we shall see later. In more complex systems

the optics can take the form of holographic elements, steerable mirrors, gratings, spatial

filters, special glass optics, and much more.

Traditionally optical tweezers take the form of a classic microscope arrangement with an

imaging objective and condenser lens for illumination. To create an optical tweezers an ex-

tra light path must be inserted for the laser which can practically only be via the condenser

or microscope objective lens. As objective lenses are designed to output a collimated beam

of light producing an image at infinity they are perfectly suited to focussing collimated

input beams to diffraction limited waists. This, along with the appropriate field of views

normally obtained, makes the imaging objective the ideal tweezers lens. However, this

still poses the problem of placing the laser and image paths coincident. To enable this a

dichroic mirror is used that only reflects the laser’s wavelength of light and transmits

the remaining illumination light. As such the beam can be reflected into the objective

whilst still allowing the image to propagate onto the camera (via appropriate tube lenses).

The mirror also helps to remove any scattered laser light from being imaged on the cam-

era which are often sensitive to wavelengths other than those in the illumination source.

Sometimes a filter is also needed to completely remove any unwanted scattered light. It

is also possible to use the imaging and trapping objective as the illumination condenser

but this choice is really down to the type of sample being imaged or trapped.

Finally the last element is the camera . In this thesis a Firewire CMOS camera is used

that through adjustment of its area of interest allows videos to be taken at speeds up to

1000 frames per second. For basic tweezers a simple 30 frames per second analogue CCD

is sufficient. The quality of the camera can be important when the images produced are

used to extract data for quantitative analysis.

I will now look in detail at Köhler illumination and steering mirrors as they convey im-

portant messages that are necessary when building an optical tweezers.

Köhler illumination

It is hard to overestimate the importance of good illumination and in many setups this is

the limiting factor in image quality. There is no point in having a high NA microscope

objective lens to image samples if the light being used to illuminate the sample does not

also converge with high NA. Köhler illumination is illustrated in figure 2.3; it provides

a uniform field of illumination across the sample field of view and allows control over
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contrast and resolution.

Figure 2.3: Köhler illumination. The light path shows the path of the imaging rays.
The lens system is arranged to image the illumination source onto the condenser di-
aphragm which is then imaged into the sample by the condenser lens to provide a
uniform illumination. The lens system also images the field diaphragm into the sam-
ple plane to reduce glare and hence increase image contrast. Adjusting the condenser
diaphragm alters the resolution and contrast of the image, which at the correct balance
improves image quality.

A 4f imaging system is used to image the lamp structure, whether it be a filament or fibre

bundle, onto the condenser diaphragm. A second 4f imaging system, using the condenser

and penultimate lens in the optical train images the field diaphragm into the sample plane.

Adjustment of the field diaphragm reduces glare and hence increases contrast, however,

adjustment of the condenser diaphragm alters both the contrast and resolution of the

image. A balance between contrast and resolution has to be determined depending on the

optical properties of the sample under study.

Steering mirrors and conjugate planes

In order to manipulate objects in two dimensions the beam needs to move laterally in the

focal plane of the trapping objective lens. Simple ray optics allows one to clearly see that

collimated beams entering a lens at an angle produces this lateral shift of focus in the focal

plane. This could be simply achieved by displacing an additional lens off-axis or placing

a tiltable mirror before the focussing objective lens. However, the first option will induce

additional aberrations and both options will shift the beam so it is no longer centred on

the back aperture of the lens, thus deforming the focus, creating an asymmetric focus and

trap.

The solution is to place the objective at one end of a 4f imaging system, with a tiltable

mirror at the other, as illustrated in figure 2.4. This illustrates several conjugate planes
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which are defined as planes whose intensity distribution is an image of the intensity distri-

bution across a corresponding plane114. When set up in this way an angular displacement

at the mirror has a matching angular displacement at the objective back aperture, without

any lateral movement, thus creating a symmetric focus and trap. This is the ideal steering

mirror configuration but in reality other constraints may prevent it from being possible

and less precision in the relative locations of the lenses and mirrors can be tolerated.

Figure 2.4: A steering mirror and objective setup in the ideal manner to achieve lateral
control of foci in the sample plane. Planes A1 and A2, and B1 and B2 are conjugate
to each other. Angular displacement of the mirror results in angular deviation of the
laser beam. As the planes are conjugate this angular deviation also occurs as it enters
the back aperture of the objective lens. An angular deviation into the back aperture
of the objective lens results in a lateral displacement of the focus in the sample plane.
The device can also be thought of as imaging plane B1 to its conjugate B2. The rear
of the objective in this case coincides with its front focal plane. f is the focal length
of the lenes.

2.2 How does it work?

A rigorous description of how the forces in optical tweezers arise is complex and be will

discussed in chapter 6. Here I shall give a somewhat hand waving description that will

allow the reader to appreciate the principles of optical tweezers which can be very helpful

from day to day in the laboratory. These ideas can accurately explain the phenomena

observed when looking in detail at colloidal systems but the ideas begin to break down

when considering some of the experiments contained within this thesis and new extensions

to the more rigorous theories must be developed.

Following tradition115 the force created by the interaction of incident radiation with di-

electric particles in optical tweezers is resolved into two separate components. One is the

scattering force, which causes acceleration of particles in the light’s propagation direction,

the other is the gradient force, which draws particles into regions of higher intensity.

As stated earlier, in order to observe these two forces the laser beam is focussed to a size

similar in dimensions to the particle. This allows the majority of the light to be incident



2.2 How does it work? 19

upon the particle while also creating a high spatial intensity gradient. Focussing the light

to pass through an area ∼ 1 µm in diameter increases the spatial intensity gradient ≃ 106

times, thus providing a highly inhomogeneous electric field.

Consider the effect of the two force components individually on a dielectric particle. The

scattering force can be understood by simply extending Ashkin’s back of the envelope

calculation (see section 1.1.1). In reality a particle is not a perfect mirror and light is

scattered in various directions and also partially absorbed. Both processes still cause a

momentum change between incident and scattered light, and hence the particle. If one

would like to trap an object with a single beam then the scattering force must be overcome

with an equal but opposite force acting back along the beam propagation direction, as

Ashkin showed3. If the particle is spherical and centred about the axial axis the scattering

and absorption will be symmetric and all force components perpendicular to the beam

will cancel each other out resulting in a force along the propagation direction alone.

Normally the scattering component will dominate, as demonstrated and taken advantage

of in acceleration and levitation experiments. However, a tightly focussed laser beam

creates a region of high intensity gradient where, as basic electrodynamics show, a point

dipole placed in an inhomogeneous electric field will experience a force along the field

gradient116. The laser induces fluctuating dipoles in the dielectric particle and their

interaction with the highly inhomogeneous electric field at the beam focus gives rise to

the gradient force. This force is proportional to both the dielectric’s polarisability and the

magnitude of the intensity gradient28.

This simple view using point dipoles is clearly inappropriate for a large number of objects

studied. Their finite extent complicates matters such that the calculation of forces created

in an optical tweezers falls into three categories depending on the sizes of the objects under

study relative to the wavelength of trapping light.

Each category, or regime, is shown schematically in figure 2.5. Firstly, the Rayleigh regime

is appropriate where the particle’s radius is far below the wavelength of trapping light,

R≪ λ. Secondly, the geometrical optics regime is suitable where the radius is far greater

than the wavelength, R ≫ λ. Finally, the third regime encompasses the parameter space

in between, where the radius is approximately that of the trapping wavelength, R ≃ λ.

I shall now briefly discuss the former two limits but will leave the latter for chapter 6 as

it is far more complex.
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Figure 2.5: Illustration showing the relative dimensions of trapping laser wavelength
and particle for three different limiting regimes over which the forces on particles can
be calculated. Left) Rayleigh regime; R ≪ λ. Centre) Mie regime; R ≃ λ. Right)
Geometrical optics regime; R ≫ λ.

2.2.1 Rayleigh scattering limit R ≪ λ

Spherical particles in this limit are treated as point dipoles allowing the force to be sep-

arated into two components. The scattering force, Fscat, is due to the absorption and

re-radiation of light by the dipole28, directed along the axis of incident light. It is given

by3

Fscat =
I0
c

128π5R6

3λ4
0

(

m2 − 1

m2 + 2

)2

nm, (2.1)

where I0 is the intensity of incident light, R is the radius of the sphere, c is the speed of

light in vacuum, λ0 is the wavelength of the light, nm is the suspending mediums refractive

index, and m = np/nm, the ratio of the refractive indices of the particle and medium. The

second component, the gradient force, Fgrad, is directed with the intensity gradient at the

beam focus and given by3

Fgrad = −nm
2
α∇E2 = −n

3
mR

3

2

(

m2 − 1

m2 + 2

)2

∇E2, (2.2)

where E is the electric field, α is the particle’s polarisability and the remaining symbols

retain their same meaning.

The two forces are opposed in direction so to achieve a stable axial trap, against the

lasers propagation direction, the ratio of Fgrad to Fscat must be greater than unity3. Fscat

is directly proportional to intensity while Fgrad scales with intensity gradient so simply

adjusting the laser power is insufficient to form the stable state. Instead the intensity

gradient of the focussed laser beam must be increased to change Fgrad alone. In most

standard optical tweezers this is accomplished by focussing the laser with a high numerical

aperture and high magnification immersion microscope objective lens which gives a small
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and highly converging focal point in the sample plane.

Outside the Rayleigh regime the optical force no longer naturally splits into the scattering

and gradient components but the nomenclature is kept throughout.

2.2.2 Geometrical Optics (GO) limitR ≫ λ

When the radius of light scattering particles is much larger than the wavelength of the

trapping light the scattering becomes independent of the wavelength and ray optics can

be used to calculate the optical forces on the particles. Although the ray optics regime’s

quantitative results may not always apply, its qualitative results remain appropriate and

useful for understanding optical tweezers.

Consider a silica sphere, suspended in a medium with a lower refractive index, placed near

a tightly focussed Gaussian laser beam, as depicted in figure 2.6. Due to the intensity

gradient in the focussed beam more intense light passes through the left of the sphere

than the right, indicated by the larger arrows. The higher refractive index sphere acts as

a small positive lens, refracting the rays toward each other.

Figure 2.6: Lateral Trapping. The larger the arrow the higher the light intensity and
the larger the forces. The sphere pushes more light to the right than to the left so by
Newton’s third law the light pushes the sphere to the left.

The best way to understand the forces qualitatively is as follows. As more intense light

enters the left of the sphere, the sphere pushes more light to the right than the left, thus

by Newton’s third law the light pushes the sphere more to the left than the right. Overall
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the sphere is drawn towards the beam centre.

At the beam centre the sphere exists at a lateral equilibrium position where any dis-

placement from the centre results in a restoring force. This simple thought experiment

shows how particles are trapped laterally but how does the gradient force overcome the

scattering force to create a stable axial trap? There are two cases to consider; where the

sphere is either above or below the beam focus. If the sphere centre is above the beam

focus, represented by the black spot in figure 2.7, it will push the light in a more upward

direction than when incident and thus the light pushes the sphere downwards. In the

second case the sphere centre is below the beam focus, figure 2.8, and directs the refracted

light in a less upwardly direction than when incident so the sphere is forced upwards. In

both cases the sphere is drawn toward the beam focus.

Figure 2.7: Axial Trapping. With the sphere above the focus (black spot) the rays are
refracted upward. From Newton’s third law the effect of light being pushed up is to
push the sphere down.

The more quantitative approach to the forces created in the ray optic regime on which the

preceeding is based was developed by Roosen117–120 and applied to single beam gradient

force traps by Ashkin115. It begins with a known distribution of parallel rays entering the

back aperture of an objective lens assumed to focus to a point. The lights reflection and

refraction at the surface of a sphere which contribute to the force is calculated for a single

ray together with all the internally reflected and refracted rays. The exact geometry of

the system is detailed in figure 2.9.
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Figure 2.8: Axial trapping. With the sphere below the focus (black spot) the rays are
refracted more obliquely. From Newton’s third law the effect of light is to push the
sphere up.

The force, F , due to a single ray of power P , on a transparent sphere in this geometry is

then24,115

F = F scat + F grad =
nmP

c

[(

1 + r cos 2θ1 −
t2 [cos (2θ1 − 2θ2) + r cos 2θ1]

1 + r2 + 2r cos 2θ2

)

k̂

+

(

r sin 2θ1 −
t2 [sin (2θ1 − 2θ2) + r sin 2θ1]

1 + r2 + 2r cos 2θ2

)

l̂

] (2.3)

where θ1 is the angle of incidence, θ2 is the angle of refraction, k̂ and l̂ are unit vectors

parallel and perpendicular to the direction of the incident ray, r and t are the Fresnel

reflection and transmission coefficients respectively, and the remaining symbols retain

their previous meaning. The total force acting on the sphere is just the sum of the vector

F for each constituent ray of the beam that originally entered the objective lens’ back

aperture.

Using figure 2.9 and equation 2.3 it is clear the smallest forces occur back along the beam

propagation direction and to achieve a good trap all efforts must be made to maximise

the forces in this direction. Increasing the laser power alone will not do this, the two unit

vectors k̂ and l̂ must be rotated. As the two unit vectors are parallel and perpendicular to

the incident ray the rotation is simply achieved with an increase in angle of incidence, θ1.

This leads to a most significant conclusion; a highly convergent laser beam must be used
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Figure 2.9: Geometry of the system considered when calculating the force on a di-
electric sphere in the ray optic regime. θ1 is the angle of incidence, θ2 is the angle of
refraction, k̂ and l̂ are unit vectors parallel and perpendicular to the direction of the
incident ray, n̂ is the unit normal vector, f is the focal point, rap is the radius of the
objective back aperture, and Fscat and Fgrad are the scattering and gradient forces
respectively (adapted from Svoboda and Block24).

to increase the number of rays incident at large angles and hence increase trap stability.

The forces calculated in the two regimes described are exact and very good when study-

ing objects well within their limits. Unfortunately the particles normally trapped within

optical tweezers have a radius that falls within an order of magnitude of the trapping

wavelength and cannot be accurately described by either Rayleigh scattering or geomet-

rical optics theory. I will discuss in chapter 6 how these descriptions fair against more

realistic ones. In the meantime it should be re-iterated that the ideas presented in the

previous two sections do provide some interesting insights into the different parameters

that affect optical tweezers and the things one must consider when designing them which

I shall now briefly discuss.

Both theories imply simply increasing the laser power will not help form a stable optical

trap. The magnitude of the vector in the negative axial direction must be increased.

Using the geometrical optics model Ashkin showed the ratio of the beam waist incident

on the lens to the lens aperture is an important parameter in governing the maximum axial

restoring trapping efficiency115. The larger this ratio the stronger the axial trap due to

an increase in gradient component of the optical forces. This is because the external rays
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in the focussed beam effectively have a greater relative intensity now that the Gaussian

beam’s rays at the extremities are not entering the back aperture of the objective lens.

This is an important criterion for optical tweezers; the back aperture of the objective

lens should be slightly overfilled to optimise the trap efficiency and stability in the axial

direction.

Another way to improve the performance is to increase the converging angle, NA, of the

focussed beam which in turn creates rays of light with larger angles of incidence on the

sphere. These ‘new’ rays have a larger component of force acting in the negative axial

direction than the previously most external rays which helps to create a more stable trap.

Along with an increase in NA a decrease in wavelength allows focussing to a smaller

diffraction limited volume. If wishing to trap sufficiently small particles this becomes

important to ensure the external rays (the ones that have a large gradient relative to

scattering vector) are incident on the particle. These two effects are nicely summarised

by the beam waist after focussing by a lens, given by

w =
λ

πNA
, (2.4)

where w is the beam waist and the other symbols retain their same meaning.

Although more complex the effect of changing the relative refractive index between parti-

cle and medium can be considered as follows; an increase in the relative refractive index

between sphere and medium will increase Fresnel’s reflection coefficient for both polari-

sations and hence the scattering force, in turn increasing the force in the positive axial

direction. However, there will be an associated increase in the gradient force due to the

light being refracted more at the medium to particle interface. The interplay between these

two points is complex and can only really be elucidated through numerical modelling.

If the refractive index of the particle is less than that of the surrounding medium, np <

nm, then one effect would be immediately noticeable. Considering the lens analogy of

geometrical optics, the light rays would be refracted in the opposite sense creating forces

in the opposite direction to those previously considered. This will result in the particle

being repelled from regions of high intensity gradient. Clearly, it is important that the

relative refractive index, m = np/nm > 1 to enable trapping in a Gaussian beam. There

are ways to circumvent this requirement but they are not of concern to this thesis.

It is also clear that removal of the central core of the beam will decrease the scattering

to gradient force ratio. Ashkin used a doughnut mode (TEM01) rather than a Gaussian

beam in his calculations to show this is true because the highly scattering centre rays do

not exist115. This has also been shown to be the case experimentally 121.
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Finally it is important to consider an obvious problem with geometrical optics theory.

The theory is size-independent, but, as any experimenter will quickly observe there are

certain particle sizes that trap far better than others and can withstand larger external

forces before falling from their trap (even with the drag difference due to size taken into

account). This is a problem with the limiting regime in which the theory operates and to

obtain a more realistic explanation of observations more complex theories are used, as is

done in chapter 6.

2.3 How are optical tweezers quantified?

There are several parameters that quantify the performance of an optical tweezers and I

shall briefly describe the most basic ones here. There is the efficiency with which light

momentum is transferred to a force, the stiffness with which the particle is retained in the

trap, and the potential well the trap forms.

I provide the easiest method to measure the trap efficiency but an explanation of how the

others are determined is more complex and is more suitably discussed in later chapters.

Efficiency

Following tradition115 the magnitude of trapping forces is given by

F = Q
nmP

c
, (2.5)

where P is the power in the incident laser beam, nm is the suspending medium’s refractive

index, c is the speed of light in vacuum, and Q is a dimensionless parameter describing

the efficiency with which the power is transferred to a force27. Q depends upon physical

parameters of the tweezing system which are the numerical aperture of the focussing

objective lens, the laser wavelength and mode structure, the light polarisation state, the

geometry of the trapped particle, and the ratio of the particle’s refractive index to the

surrounding medium’s24.

I define both an axial and lateral efficiency, Qz and Qρ respectively. To experimentally

determine Qz, for a given power, a particle is trapped and the power reduced until it

falls away in the axial direction. This gives the power needed, Pmin, to just overcome

the weight of the particle and hence, taking into account buoyancy, the axial efficiency is

given by

Qz =
(ρsphere − ρmedium)Vspheregc

nmPmin
, (2.6)
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where ρsphere and ρmedium are the particle and medium density respectively, Vsphere is the

sphere volume and g is the acceleration due to gravity. The simplest method to find Qρ is

to laterally displace the trapped sphere at increasing velocity until it falls from the trap.

Equivalently the sphere can remain stationary while the fluid is moved. The increasing

velocity, v, increases the drag force Fstokes acting on the sphere, given by Stokes’ law,

Fstokes = −6πηRv, (2.7)

where η is the dynamic viscosity of the medium and R is the sphere radius, with the

maximum force occurring just before the particle falls from the trap†. Thus it is simple

to calculate Qρ through

Qρ =
6πηRvmaxc

nmP
, (2.8)

where vmax is the sphere velocity just after release from the trap. This method’s principle

still applies for non-spherical objects as long as its associated drag is correctly determined,

which can be very complex.

Stiffness

The force exerted by the light on a particle is usually considered to be Hookean thus

giving a restoring force F = −κx. Its measurement is slightly more complex and will be

discussed in chapter 5 but simplistically it is related to the gradient of the force on the

particle as a function of displacement.

Potential

Finding the potential is relatively straightforward if the force versus displacement is known

by using Ur = −
∫

Fdr, except one must be careful to define the correct value of the

potential at infinity. If the full force curve is unknown more complex experiments need to

be carried out to determine the shape and size of the potential well123,124.

2.4 Conclusion

An outline of how to build, understand and quantify a simple single beam optical tweezers

has been described. Should one wish to improve the apparatus, develop a more advanced

†It should be noted that this treatment is rather simplistic with any lateral movement also resulting in
axial displacement122.
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understanding or provide more precise physical explanations, the basics covered in this

chapter are a useful background.

In the next chapter I delve into my first more advanced optical technique; holographic

beam shaping.



Chapter 3

Beam Shaping

In the preceding chapters I have discussed the development of optical manipulation based

around the use of Gaussian laser beams. Altering the beam’s shape, in terms of amplitude

and phase, will help to increase the versatility of optical manipulation.

Only beams that are solutions to the wave equation can propagate through space by

imaging themselves and so can be manipulated after creation. Beam shaping is essential

to produce multiple beams or patterns of light with their creation being a clear advantage

to technology. One could, for example, carry out multiple processes in parallel, investigate

the effects of non ‘normal’ beams on matter125, project images of objects in space126 or

use non-diffracting beams for optical interconnections127.

This thesis mainly concerns directional alterations to laser beams using optical elements

that sometimes evolve through time. This does not involve changing the temporal shape

of laser pulses, as seen in ultrafast studies, but rather directional changes over a time span

of seconds. As well as changing the direction occasionally the beam’s amplitude, phase,

or both, are varied.

There are numerous techniques for beam shaping which I shall outline in the context

of optical manipulation before detailing how the method of choice is implemented. The

techniques can be coarsely grouped into three categories, complex modulation, amplitude-

only modulation and phase-only modulation. Complex modulation devices alter both

phase and amplitude but these are relatively hard to produce especially if time varying

beam shaping is required.

Amplitude-only modulation is possible128 but the efficiency of such modulators is low (they

work by removing sections of the beams) and their production or purchase is relatively

difficult. With this in mind I turn to phase-only modulation which is far more efficient

29
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and the devices are easier to produce and come by. They can be coupled with further

elements such as polarisers128 or phase contrast filters93 to effectively create amplitude

modulation devices.

Within optical manipulation the power reaching the sample is of great concern therefore

so is the efficiency with which the methods of beam shaping work. Another concern is

the ease with which techniques can be implemented. So, although amplitude modulating

methods have roles at which they excel, it is for ease of implementation and efficiency

reasons that most optical tweezers laboratories choose phase modulation devices, as I do

here.

Within phase modulating techniques there are two main areas; static or dynamic methods,

which will now be discussed.

3.1 Static methods

Methods which produce beams that do not alter their shape over time are considered

static and for many purposes are the best choice, allowing for simplicity and cost efficiency.

However, they are generally limited to a specific application and are not very versatile.

The majority of optical elements such as lenses, mirrors, prisms and gratings can be

considered static methods of beam shaping. However, only the more complex diffractive

optical elements will be discussed here as they challenge the boundaries of propagating

beams.

Diffractive optical elements (DOEs) are commonly either amplitude or phase only objects.

It is well known that variations in transmission within an object can cause diffraction and

with the aid of computing can allow complicated patterns of light to be formed129,130.

By controlling the ‘optical depth’ and hence phase retardation, across a DOE, phase only

‘masks’ can be created that vary the phase profile of a transmitted beam. In the context

of optical manipulation DOEs have allowed the creation of three dimensional interfer-

ence patterns to sort particles17, create multiple trapping sites131, and create crystal like

lattices of colloid132.

There are many ways to understand how diffractive optical elements work, they can be

thought of, for example, as retarding the phase of a single wavefront, as splitting a single

wavefront into many, as a blazed grating, or simply as a collection of prisms and lenses.

The calculation of the correct phase profile is the same as when dealing with dynamic

methods and therefore will be discussed later in section 3.3.
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3.2 Dynamic methods

Dynamic methods are those deemed to be easily changeable over time but tend to be more

expensive than static methods. Yet they hold a great advantage to the experimenter in

the quick and easy ability to test and evaluate ideas and designs, without the need to

undertake complex production processes.

There are two main methods of approach for dynamic beam shaping; either a single beam

is re-positioned continuously and is ‘shared’ between desired directions or the single beam

is ‘split’ between all directions simultaneously.

In this thesis I design holograms to work with spatial light modulators that distribute the

incident beam simultaneously into multiple beams. Next I will place this work in context

by considering a number of alternate time-sharing techniques.

Deformable mirrors

Deformable mirrors provide wavefront modulation by physically altering the optical path

length the light takes. The path length is usually modulated by some form of actuator

placed behind the mirror to deform it. Either multiple actuators support a whole single

mirror or the mirror is made from multiple segments each supported by an individual

actuator.

When dealing with optical tweezers, beams more complex than a simple Gaussian are often

desired, for example Laguerre-Gaussian, Bessel, or Matthieu beams. These, however,

require a discontinuity in the phase wavefront of the beam which deformable mirrors

cannot achieve unless they are segmented133.

Although the mirrors have reasonably high speeds ∼ 1 kHz134, their magnitude of beam

deflection is small putting limits on their usefulness. However, they are ideally suited to

correction of aberrations within optical tweezers135.

Scanning mirrors

Galvanometer and piezo-electric driven mirror techniques are relatively low cost with

negligible optical power loss and allow large beam deflection angles at quite high speeds of

∼ 2 kHz, but they do suffer from wobble and jitter stability problems38. They have been

easily integrated into optical tweezers enabling the spatial patterning of particles136–138.

They also enable the trapping of particles where the ratio of medium and particle refractive
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indices is opposite to that required for trapping in a normal Gaussian beam139,140.

Acousto- and Electro-Optic Deflectors (AODs and EODs)

AODs have a reasonable optical transmission of ∼ 80% but for both x and y deflection

this decreases to ∼ 64%. In the context of optical tweezers where the time duration of the

potential is important their high speed, ∼ 20 kHz, allows the time sharing of more traps.

One disadvantage is the variation of diffraction efficiency over the acoustic bandwidth of

the device resulting in variation in powers of ∼ 10 − 15% for different diffraction angles.

EODs can perform at much higher speeds, ∼ 10 MHz, have a higher optical transmission

of ∼ 90% (∼ 81% for x and y together), a far more uniform diffraction efficiency as a

function of angle and increased accuracy38,141.

AODs and EODs have been used to perform some of the most stunning experiments with

optical tweezers such as studying certain biomolecular processes at the single molecule

level with no ensemble averaging142.

3.2.1 Spatial Light Modulators (SLMs)

Spatial light modulators (SLMs) are relatively slow in comparison to the previous tech-

niques operating at ∼ 75 Hz but have the major advantage of diffracting beams into

multiple directions simultaneously although this does decrease the peak power per beam.

There are ferro-electric SLMs available capable of speeds of tens of kilohertz but these can

only produce two levels of phase retardation, significantly reducing their efficiency90.

Nematic spatial light modulators can achieve efficiencies of ∼ 50%143, significantly below

that of its competitors. However, two more major advantages contribute to making them

useful versatile devices. Firstly, they can perform mode conversion on propagating beams,

for example they can convert a Gaussian into a Laguerre-Gaussian beam. Secondly, they

can also change the phase profile of a beam along its axial direction enabling the focussing

of beams with no physical optical element.

Finally, at the time of purchase, the cost and ease with which the device could be plugged

in and up and running (its ‘plug and play nature’) was far superior to its then competitors.

At the time of writing other methods are becoming more user friendly but there are still

challenges to overcome such as limits on resolution set by digital to analogue conversion

on computer hardware144.

Although in this thesis I will concentrate on SLMs, the techniques are applicable to all
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phase-only diffractive optical elements. Within the literature there are slight variations

on the apparatus and design, for example it is possible to use Fresnel based systems91,

amplitude modulation145,146 and ferroelectric SLMs90,147.

Having established my use of SLMs a background of their operation will now be given.

How the phase is modulated

Rather than varying the thickness of a glass substrate, as for phase-only DOEs, materials

can be used that alter their retardation properties without changing size, namely liquid

crystals. Liquid crystals are an additional state of matter lying between liquid and solid

such that they do not possess positional order but do exhibit orientational order. On

average, over time, the elongated liquid crystal molecules tend to point in a given direction

called the director, n, of the liquid crystal as shown in figure 3.1.

Figure 3.1: Image showing the elongated nature of liquid crystal molecules along with
their orientational, but not positional, order. The arrow and vector n indicate the di-
rector which on a time average points along the direction of orientation of the molecules.

The basic design of all spatial light modulators is similar; they consist of a thin layer of liq-

uid crystal between either two transparent electrodes or one reflective and one transparent

electrode as shown in figure 3.2.

The nematic phase possesses a dielectric anisotropy, ∆ǫ, governing its response to an

electric field, defined as

∆ǫ = ǫ‖ − ǫ⊥, (3.1)

where ǫ‖ and ǫ⊥ are the dielectric permittivity measured parallel and perpendicular to the

director respectively. Under an applied electric field the molecules will try and minimise

their electric energy density by aligning perpendicular or parallel to the electric field given
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Figure 3.2: A Liquid Crystal over Silicon (LCoS) spatial light modulator. The indi-
vidually addressed pixels, which act as one electrical contact are shown at the bottom
and a transparent second electrical contact layer is placed above the liquid crystal.
When an electric field is applied the liquid crystal molecules, hence director, rotate
and change the local extraordinary refractive index, thus altering the retardation im-
parted to the wavefront in that pixels area.

that the dielectric anisotropy is either negative or positive respectively. They also compete

against an opposing force due to the elasticity of the liquid crystal, hence the molecules

also attempt to minimise their elastic energy density148.

As an electric field is applied across individual pixels the molecules, wishing to align with

the electric field, begin to rotate until they reach an equilibrium with the elastic energy

density (figure 3.2). With larger fields the molecules, hence local director, will rotate

further. With no voltage applied across the liquid crystal polarized light entering along

the extraordinary axis, will experience a refractive index ne. As a voltage is applied and

the director rotates through an angle, θd, the light will experience a modified extraordinary

refractive index ne(θd) giving an effective birefringence

∆n = ne(θd) − no, (3.2)

where no is the refractive index along the optical axis. Therefore the phase of the light

incident on a specific pixel area is retarded by

δ =
2π

λo
d |∆n| , (3.3)

where d is the thickness of the liquid crystal layer and λ0 is the wavelength of light.

So, increasing the electric field across a nematic liquid crystal varies the extraordinary

refractive index of the material, hence produces a shift in the phase of the incident light.

The fact that the voltage alters the refractive index along the extraordinary axis of the

material means the amount of retardation is polarisation sensitive and it must be ensured
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that the incident light’s polarisation is aligned with this axis. Either a rotatable polariser

or half-wave plate can be used.

3.3 Beam shaping for optical tweezers

It is only appropriate to discuss a brief history of the type of instrument I am trying to

build before going into the detailed discussion of how my specific system is implemented.

In the two decades since Ashkin’s first single beam optical trap many techniques have

been developed to produce multiple trapping sites with user interactivity. The first step

beyond single beam tweezers are dual beam traps149 allowing two traps to be created

with easy control over their position. These can be simply created with everyday optics

without need for complex apparatus.

The majority of multi-beam techniques involve utilising the beam shaping technologies

discussed in sections 3.1 and 3.2 to create multiple (> 2) beams for multiple traps by

focussing them through the normal microscope objective. The details are slightly more

subtle but for now this will suffice. As alluded to previously, the methods can coarsely be

placed into two categories; those techniques that ‘share’ a single beam between multiple

beams like computer controlled galvonometer or piezo actuated mirrors138 or acousto-

optic deflectors38 and allowing the beam to be ‘stationary’ at certain points. Or, those

that ‘split’ a single beam between spatially separate locations like diffractive optics131 or

SLMs85. The choice of method can be critical to the operation of certain experiments44,144

as is the case here and will be demonstrated in section 5.6.

Before attempting to explain how SLMs can create multiple beams and traps with complex

algorithms I will begin by considering the simplest case of how a phase altering optical

element can be used to ‘deflect’ a single beam. A simple glass prism can perform such a

task but let us see why. Figure 3.3 shows a plane wave incident on and transmitted by

such a prism.

Ideally the prism does not alter the wave’s amplitude but does its phase, as a function of

x or y position. This is because its ‘optical depth’ varies due to the thickness variation

but constant refractive index. Delaying the phase in this manner results in an angular

shift of the plane wave and hence change in beam propagation direction.

Stepping into the third dimension it is realised that to obtain an axial displacement of

the objective lens’ focus, the beam’s collimation as it enters the lens must be altered.

A diverging or converging beam will be focussed past or before the lens’ ‘true’ focus

respectively, and to obtain such a beam a simple concave or convex lens can be placed
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Figure 3.3: Plane waves incident on a prism are slowed down within the glass, with a
change in λ. The portion of the wave to emerge first increases in speed thus giving it
a ‘head start’ over the wavefront remaining in the prism. As this continues an inclined
wavefront is produced. α is the prism angle in the x-plane and not shown is the y-plane
prism angle β.

in the incident beam’s path. Again, the lens works by delaying the phase of the incident

plane wavefront via its varying optical depth but this time the result is a curved wavefront

as shown in figure 3.4.

Figure 3.4: Plane wavefronts entering a convex lens are ‘held up’ more in the centre of
the lens due to the slower speed of light within glass and the larger thickness than at
the edge. Therefore, upon emerging the wavefronts are spherically shaped. The same
occurs for a concave lens except the waves are more held up at the edges and hence
the spherical waves diverge as they propagate away.

These two optical elements are described by the prism and lens phase profiles, φprism and

φlens respectively, given by

φprism =
2π

λ
(sinα+ sinβ), (3.4)

and

φlens =
2π

λf
p2, (3.5)

where α and β are the prism angles and p =
√

x2 + y2, the position of a point on the lens.
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Knowing the phase profiles they can be programmed onto an SLM to emulate the physical

optical elements. When using the SLM as a device to shift angular deviation, it is apparent

that it can replace the mirror in figure 2.4. This setup is shown in figure 3.5 where the

ability to axially shift foci is also illustrated. It must be ensured that the angle of incidence

of the incoming beam is as small as possible (preferably < 10◦) which makes sure the

maximum amount of light exits each pixel and also that the light interacts with the liquid

crystal in the correct orientation.

Figure 3.5: Multiple beams are diffracted at varying angles from an SLM placed in
the plane conjugate to the objective’s back aperture so that each beam is entering the
objective with an angular deviation. The foci of light are laterally displaced in the
objective focus without incurring any additional aberration. Ideally the SLM should
be angled at < 10◦ to ensure the light interacts with the liquid crystal molecules in the
correct orientation. Also a lens function can now be added to axially shift a focus in
the first image plane and hence the conjugate sample plane. The rear of the objective
in this case coincides with its front focal plane.

Included in figure 3.5 is a zeroth order. This is a consequence of the non-perfect nature of

the diffraction optics, for example the pixellated construction and polarisation sensitivity,

causing no phase modulation on a significant fraction, ≃ 40%, of the incident light. This

can significantly affect the distribution of desired light in the sample plane and so should

be removed before reaching it. The method I use and others are discussed later on.

So, it can be seen how, for a monochromatic wave, a single beam and hence focus can be

laterally and axially displaced by applying simple optical elements to an SLM. Varying

the deflection angle in a simple time-sharing manner will achieve my goal of multiple

foci105. However, the programming of the SLM to emulate these optical elements and the

production of multiple beams simultaneously is more subtle and will be explained next.
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3.3.1 Holography

Clearly, splitting into multiple beams produces multiple foci, but this picture is really

only suitable when looking at discrete points of light. If one wishes to create a continuous

pattern of light in a sample plane it is hard to understand how this is created when

considering that diffraction from SLMs consists of multiple beams. Therefore an alternate

method of analysing the problem must be found, hence I turn to holography.

Most people are familiar with the term ‘hologram’ and associate it with the little one on

their credit cards or possibly interactive three dimensional ones from the world of science

fiction. These holograms are generally a piece of material that contains both the phase

and amplitude information about a particular three dimensional object and are called

complex holograms. It is also possible to produce amplitude- and phase-only holograms

that influence only the amplitude or phase of the incident light respectively. Having

decided on SLMs as the beam shaping method of choice (section 3.2.1) with their forté

being phase modulation, it is to the computation of phase-only holograms that I dedicate

a large portion of what remains in this chapter.

Ideally I would like to create a particular distribution of phase and amplitude in a spe-

cific three dimensional volume; this can be achieved experimentally with holography. It

happens that the basic premise of optical tweezers, the focussing of a collimated beam

by a lens, is ideally suited to the task. To see why, let me construct the problem and

solution in what follows. Consider the most basic lens system in figure 3.6. Using Fourier

optics114 it is possible, given the field of complex intensity and phase incident on the lens,

to calculate the field in the back focal plane of said lens.

Figure 3.6: Planes in a simple lens system. Positions in the front and back focal planes
of a lens are described by the vectors ρ and r respectively. Here f is the lens’ focal
length and d is the distance in front of a lens at which we know the complex field.

Considering a collimated, monochromatic wave incident upon a lens with amplitude u(ρ)

and phase ϕ(ρ) that has been modulated by a hologram in the front focal plane of a lens
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at position d, as shown in figure 3.6, then the complex field in the back focal plane is

E (r) =
e

(

i π
λf

(

1− d
f

)

r·r
)

iλf

∫ ∫

u(ρ)eiϕ(ρ)e
−i 2πr·ρ

λf d2ρ. (3.6)

where λ is the wavelength of light, f is the focal length of the lens, d is the distance to

the wavefront modifying element, the vector r describes position in the back focal plane

of the lens, and the vector ρ describes position in the front focal plane. Of particular

interest is the quadratic phase prefactor and will become important later.

Knowing the amplitude and phase modulation imparted to the beam from an SLM, equa-

tion 3.6 can be used to calculate the field distribution in the back focal plane of the

lens. Unfortunately it would be far more useful to start with the field distribution desired

and calculate the phase modulation needed to impart onto the beam. However, inverting

equation 3.6 is non-trivial and the challenge presented is a classic ‘inverse problem’150.

Several solutions exist that allow the discovery of the answer to this inverse problem

depending on the exact form of the output field desired. In the following section I will

discuss these in detail, but first I will start with a brief review of the history of the relevant

topic.

The solution to this problem is through computer generated holography151, a sub-category

of holography. Conventional holography creates a hologram by interfering a reference wave

with one scattered from a three-dimensional object152. Conversely, in computer generated

holography no object needs to exist. Also, as already stated, rather than knowing the

diffracting object and calculating the resulting image, the desired image is known and the

diffracting object, or hologram, calculated129. The earliest forms of computer generated

holograms consisted of an opaque mask with transparent areas that represent the desired

image’s Fourier transform. The lateral shift in the transparent areas gave rise to the name

detour phase holograms while they were also referred to as binary holograms due to the

transmittance value of either 0 or 1129. A more detailed account of the earliest forms of

computer generated holograms can be found in Tricoles151 with an extensive bibliography

relevant to the subject.

These detour phase or binary holograms are inefficient84 but by creating true phase-only

holograms, or kinoforms, this efficiency can be greatly improved, along with a decrease

in computation time153. As discussed the spatial light modulator is my device of choice

so it is the kinoform approach that I have taken.

Having found a solution to the problem of constructing a desired three dimensional pattern

of light the next challenge was to discover an algorithm that provided quick kinoform
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computation with reconstruction producing efficient and uniform results. This has been

a major direction in research since inception.

An important early development in the field of computer generated holography was the

Fourier transform hologram which uses a simple lens to perform an optical Fourier trans-

form154 and is the basis of the techniques used in this thesis. The idea was further

developed to take advantage of the Gerchberg-Saxton algorithm155, an iterative Fourier

transform algorithm for phase retrieval, to reduce the error in the optical reconstruction

of the kinoform156.

An additional method that produces high quality kinoforms at the expense of computation

time is the direct search algorithm. This is nicely exemplified for phase only holograms by

Clark and Smith157 who design binary holograms to produce simple geometric shapes and

discuss the appropriate use of cost function, pixel selection, and their effects. The method

can be further extended to produce high quality three dimensional greyscale continuous

patterns of light158.

To my knowledge the first use of diffractive elements combined with optical tweezers was

performed by He et al. by producing ‘vortex’ beams with a blazed spiral phase computer

generated hologram and passing it into a microscope84. The next major step was taken

by Reicherter et al.159 where the kinoforms were displayed on a liquid crystal display to

enable dynamic lateral control of the ‘vortex’ tweezers and was soon developed to control

the axial displacement too160.

The previous three studies used analytical solutions to calculate their computer generated

holograms. The first experiment to use a true algorithm to design the kinoform used

in optical tweezers started life as the ‘hexadeca-tweezer’131 which used a commercially

available diffractive 4 × 4 square array generator. The diffracted beams were collimated

and then imaged into the focal plane of the optical tweezers. A few years later this was

extended to more complex patterns of tweezers85 and the computation of diffractive optical

elements, or more specifically, kinoforms, became important. To calculate the kinoforms

the adaptive-additive algorithm was employed161, an extension of the iterative Gerchberg-

Saxton algorithm, that converges to a solution for the desired output of tweezers.

Having discussed the use of kinoforms in optical tweezers I will now only discuss the

algorithms in this context. A definitive discussion of the algorithms currently in use for

holographic optical tweezers is discussed in di Leonardo et al.87 with a heavy mathematical

basis which should be used for reference. Here I will discuss the algorithms from a more

practical and concise perspective.
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3.3.2 Algorithms

As one may expect the most commonly desired field of light in optical micromanipulation

is multiple foci†, leading to multiple tweezers. It is to this topic I will dedicate most time

but I will also diverge into creating continuous fields of light although this has not been

investigated as fully. The differences between the kinoforms generated by each algorithm

is subtle and to appreciate them I shall consider three important metrics relating to their

optical reconstruction. Firstly, the efficiency

ǫ =

∑

m Im
I0

=

∑

mA
2
m

A2
0

, (3.7)

where Im and Am are the intensity and amplitude of each foci respectively, I0 and A0

are the incident intensity and amplitude respectively and the efficiency, ǫ, is defined to

be the ratio of the theoretically predicted total intensity to the incident intensity. Other

definitions of efficiency can be defined as the ratio of light in the first diffracted order to

that in the zeroth order or the ratio of light in the first diffracted order to that incident

on the SLM.

Secondly, the uniformity is defined as

u = 1 − Imaxm − Iminm

Imaxm + Iminm

, (3.8)

were Imax and Imin are the maximum and minimum intensities in the image plane respec-

tively.

Finally the standard deviation is defined as

σ = 100

√

〈(I − 〈I〉2m)〉m
〈I〉m

. (3.9)

One major effect that inhibits all three parameters from reaching their optimum value

is the production of ghost tweezers which arise due to constructive interference from the

higher order modes of diffraction99. It is often an aim of the algorithms to remove these

unwanted traps.

I will start with the simplest of algorithms that takes the idea of prisms and lenses and

applies them to SLMs, as illustrated in figure 3.5, but now will be more rigorous in

the description of how a three dimensional object can be placed on an, effectively, two

dimensional device.

†Here the term foci refers to more than one focus that can exist anywhere within a volume in image
space.
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Superposition of prisms and lenses

Only two things need to be changed in equations 3.4 and 3.5 to implement prisms and

lenses on SLMs in optical manipulation. Firstly, the obvious problem is the ‘flat’ nature

of SLMs and the physical extent of the optical elements. This is quickly resolved by

borrowing the idea of Fresnel lenses, just as is done in lighthouses. These effectively

remove redundant volumes of phase retarding material from a lens and then place what

remains all on the same plane, as shown in figure 3.7(a).

(a) (b)

Figure 3.7: A simple lens (a) or prism (b), that relies on phase modulation alone,
can be ‘flattened’ by removing redundant volumes of retarding material so the relative
modulation between areas is the same but the absolute difference has been removed.
The same idea is used in lighthouses to reduce the mass of the very large lenses and is
based on Fresnel lenses.

The amount of material removed is an integer multiple of the wavelength of light because

only the relative phase between positions on the wavefront contribute to the new wavefront.

The same can be done with the prism optical component as shown in figure 3.7(b) and

for both is mathematically equivalent to taking the phase profile modulo 2π.

The second fact to be considered is the mathematical relationship between the position of

a focus and the phase profile incident on what I now call the transform lens. If the optical

element is placed in the front focal plane of the transform lens (I will show why this is a

bit later) its phase retardation is

ϕprism =
2π

λf
(r · ρ) mod 2π, (3.10)

and

ϕlens =
2πz

λf2
(ρ · ρ) mod 2π. (3.11)



3.3 Beam shaping for optical tweezers 43

where z is the axial displacement required and f is the transform lens focal length. To

obtain a phase profile, ϕ3D, that displaces a focus laterally and axially simultaneously

these two functions are summed modulo 2π;

ϕ3D =
(

ϕprism + ϕlens
)

mod 2π. (3.12)

As these functions alter the phase only, they can be referred to as kinoforms. To extend

the principle into multiple foci the argument of the sum of the complex functions of the

individual kinoforms is found;

ϕS = arg

(

∑

m

eiϕ
3D
m

)

mod 2π, (3.13)

where there are m desired individual foci, hence kinoforms. The relative merits of this

technique are discussed in section 3.3.3 along with the other methods still to describe for

ease of comparison.

This prisms and lenses technique is usually referred to as ‘gratings and lenses’ or ‘super-

position’160 and is the basic starting point for everything that follows. Having established

these basic principles, I will next discuss two small extensions to this ‘algorithm’ that

provide a different route to the answer required.

Random Superposition

The same procedure as before is followed except before following equation 3.13 an addi-

tional random phase is added to each individual kinoform such that the superposition is

now

ϕRS = arg

(

∑

m

ei(ϕ
3D
m +ψ)

)

mod 2π, (3.14)

where ψ is a random number in the set [0, 2π]. Considering the phase retardation analogy

this basically means the beam creating each individual focus is placed randomly out of

phase relative to the rest. This small modification can, for many configurations of trap

locations, reduce the number of ghost traps, improve the efficiency metric and decrease

the standard deviation metric99.

Random phase mask

To understand this method it is appropriate to note that although I have been considering

the hologram to be continuous, in reality they are designed for a pixellated device with
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finite extent. As such each pixel, j, out of the N2 total pixels, for an N ×N device, must

be assigned a discrete phase value. For m desired individual trap sites there are m initial

kinoforms each with N2 pixels; a given pixel in a given kinoform is denoted φmj .

The random phase mask is found through;

ϕRMj = φbj , (3.15)

where b is a random number from the set representing the individual kinoforms, [0, m].

Qualitatively this algorithm goes through every pixel in the final kinoform and places a

phase value from a randomly chosen individual kinoform.

The algorithm can be altered slightly to drastically decrease the number of ghost tweezers

present in the focal plane162. To do this m random binary phase masks are calculated

such that each one contains N2/m ‘transparent’ pixels while ensuring that if summed the

total mask would be a transmission function of unity. Each phase mask is then multiplied

by an individual kinoform used to make one of the foci desired and the results summed

to obtain the final kinoform. Figure 3.8 explains this more clearly.

Figure 3.8: Diagram describing the random binary phase mask (RBPM) algorithm.
In this example only two foci are desired. The kinoforms for both individual foci
desired, Holo1 and Holo2, are multiplied by BPM1 and BPM2 respectively, which are
random binary phase masks each with N2/m = N2/2 pixels but making sure that if
summed the total mask would be a transmission function of unity. Finally the results
are summed to obtain the final kinoform.

So far all the algorithms have been analytical. The kinoforms used to produce the indi-

vidual foci are combined and manipulated in some way to produce a kinoform that will

create all the foci simultaneously. The remaining algorithms are all iterative in nature and

need a starting estimate for the answer which can take the form of a constant or random
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phase distribution across the kinoform. However, a more intelligent guess is to use one of

the previous analytical methods as the starting point.

Direct Search

In this simplest of iterative algorithms the correct kinoform is found by directly searching

through as many choices as possible as explained in the flow chart of figure 3.9.

Figure 3.9: Flow chart describing the simple but computationally heavy direct search
method of kinoform generation.

The choice of cost function is important and within this thesis is

C = 〈A2〉 − fσ, (3.16)

where σ is standard deviation, A is the amplitude of a focus, and f is a number between

0 and 1 that governs the balance between efficiency and uniformity. The manner in

which the pixels are cycled through has a significant impact on the computation time

but not the overall efficiency of the kinoform (see figure 9 in Clark and Smith157). A

random exhaustive pixel selection has the quickest computation time, for a given end

cost, compared to a simply random or sequential selection.
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Gerchberg-Saxton

For the following I return to equation 3.6 noting with interest the quadratic phase prefac-

tor, associated with the distance, d, between a hologram and a simple lens. If this distance

is equal to the focal length of the lens, d = f , a very important result is realised, and

equation 3.6 becomes

E (r) =
1

iλf

∫ ∫

u(ρ)eiϕ(ρ)e
−i 2πr·ρ

λf d2ρ, (3.17)

where the symbols retain their same meaning.

In this special case the field at the back focal plane of the lens is an exact Fourier transform

of the field at the hologram (front focal plane) with spatial frequencies u/λf and v/λf .

Here u and v are the spatial coordinates in the hologram plane and ρ2 = u2 + v2. It is

now clear that the simple lens in figure 3.6 becomes a Fourier transform lens when d = f .

This is an amazing result and provides a superb route to calculating holograms.

Unfortunately the inverse problem still remains. This can be simplified as the input

amplitude is known and this is not altered with phase-only holograms, hence u(ρ) is

simply a Gaussian (or equal to unity if the calculation is to be simplified still further).

Also the phase distribution at the focus is not a concern, only the amplitude. The way

to solve the inverse problem is to use an iterative scheme. The reasonable guess from the

analytical methods is Fourier transformed to give the field distribution in the focal plane.

The next step is to keep the phase information but discard the amplitude and replace it

with some other function. This is conveyed in figure 3.10.

Having calculated a ‘corrected’ field, it is inverse Fourier transformed resulting in the field

in the hologram plane. Discarding the amplitude leaves the phase required to be imparted

to the beam, the new kinoform estimate. This phase, although not perfect, will be a more

accurate estimate of the true answer. The procedure is repeated until a predetermined

error function reaches a given threshold.

In the classic Gerchberg-Saxton algorithm the discarded amplitude in the image plane is

replaced with the desired intensity distribution. For example, should the desired pattern

be a grid of sixteen foci the amplitudes at these points are replaced by A =
√
I =

√

1/16, while all other areas have zero amplitude. The mixing formula in figure 3.10 for

a Gerchberg-Saxton algorithm is simply

AGSm = Ad, (3.18)

where Ad is the desired amplitude.



3.3 Beam shaping for optical tweezers 47

Figure 3.10: The Gerchberg-Saxton algorithm. First an estimate is taken at the correct
kinoform. A Fourier transform is taken to find the field in the back focal (image) plane.
The error is calculated, then a function of the desired amplitude is mixed back in. Next,
the inverse Fourier transform is found, the amplitude discarded and the phase replaces
the phase estimate. The process is repeated until the error function, ǫ, reaches a
predetermined value. Am is the mixing formula and its exact form is important as
described in the text.

Generalised Adaptive Additive

The Gerchberg-Saxton algorithm is a limiting result of the more general adaptive additive

algorithm161 in which the mixing formula is

AGAAm =

(

(1 − ζ) + ζ
Ad

Afn

)

Ad, (3.19)

where ζ is a constant between 0 and 1 that governs the balance between uniformity and

efficiency, Ad is the desired amplitude and Afn is the amplitude from the Fourier transform

of the current estimate. Here the desired and resulting amplitudes are mixed in a manner

that can preferentially optimise efficiency or uniformity, with ζ ≃ 0.5 giving a nice balance

between the two41.

Weighted Gerchberg Saxton

Again, this is largely similar to the Gerchberg Saxton algorithm except rather than re-

placing the amplitude in each iteration with the desired amplitude, it is first weighted.

This effectively places more emphasis on improving the incorrect points of light for the
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next iteration. The mixing formula now becomes

AWGS
m =

1

Afn
wm, (3.20)

where wm also changes iteratively following

wmn+1 =
wmn

〈wmn 〉m
and wm0 = 1. (3.21)

3.3.3 Algorithm performance

The choice of algorithm to obtain the optimum performance is based on several factors;

which of the three performance metrics is most highly desired, the speed with which I want

to perform the calculation, and the type of pattern. The algorithms perform differently

when trying to create either highly symmetric or random patterns of foci. Table 3.1 shows

the relevant quantities for each algorithm having been performed on both symmetric and

asymmetric patterns of foci.

Algorithm Pattern ǫ u σ Speed (secs)

Superposition
Sym 0.18 0.32 57.4 52

Asym < 0.01 < 0.01 142 50

Random Superposition
Sym 0.50 0.24 48.7 52

Asym < 0.01 0.02 94.0 50

Random Phase Mask
Sym 0.04 0.14 46.7 50

Asym < 0.01 0.07 87.1 52

Gerchberg-Saxton
Sym 0.92 0.54 33.1 122

Asym 0.79 0.99 0.51 121

Generalised Adaptive Additive
Sym 0.93 0.84 10.9 129

Asym 0.79 0.99 0.63 128

Weighted Gerchberg-Saxton
Sym 0.93 1.00 0.14 127

Asym 0.79 1.00 < 0.01 126

Table 3.1: The results were obtained from running the generation software in fig-
ure 3.15 on a Intel Pentium M 1.73 GHz processor with 1 GB of 795 MHz RAM. The
symmetric pattern (Sym) consisted of 16 individual foci equidistantly spaced around
the origin covering an area of 30× 30 µm. The asymmetric pattern (Asym) was found
by adding a random step of 8 µm to the x and y position to each focus. The iterative
algorithms were run for n = 40 iterations and all algorithms calculated a kinoform
with a resolution of 768× 768 pixels. The Direct Search algorithm does not appear as
the time for computation on such a system for the size of hologram was unfeasible.
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As seen in table 3.1 the choice of algorithm is dependent on the task at hand. One

must decide which parameter is most important, the speed with which it needs to be

performed and the pattern type required. The optimum algorithm to use, if computation

time is available, is Weighted Gerchberg-Saxton because of its superior uniformity for both

symmetric and asymmetric patterns of foci.

One may assume SLM devices have a relatively large minimum step limit regarding the

precision with which optical tweezers can be placed due to their pixellated nature and

large pixel pitch in the device (∼ 19 µm). However, this is not the case and it has been

shown that ‘virtually continuous placement’ of optical tweezers is possible with the limit

(λf/D) (2/Ng), where λ is the wavelength of light, f is the focal length of the lens, D is

the diameter of the back aperture, N is the resolution of the device, and g is the number

of discrete phase levels possible100. For an average SLM optical tweezers setup this gives

a theoretical minimum step size of ∼ 2 pm.

3.3.4 More complex tweezers and continuous patterns

Should one wish to create an arbitrary beam mode at the tweezers location, such as

Laguerre-Gaussian, Bessel or an aberration, the process is straightforward when using the

first three non-iterative algorithms. The required phase profile, ϕaddi, is simply included

so equation 3.12 becomes

ϕ3D =
(

ϕprism + ϕlens + ϕaddi
)

mod 2π. (3.22)

and the remaining equations adopt this new ϕ3D.

I have discussed how one can displace multiple foci axially along the beam propagation

direction for the simple algorithms of superposition and random phase mask. However,

should one want to use an iterative method to calculate the kinoforms for a three dimen-

sional pattern of foci then the process is slightly more complex. There are two methods

that are somewhat equivalent. In the first one a Fourier transform into the image plane is

performed as usual but then the field is propagated to the axial plane at which the foci of

interest lies. The process is reversed and the computation carries on as normal163. The

second method follows equation 3.6, as before, except it includes a kernel that defines the

axial displacement required41. Equation 3.6 now reads

E (r) =
A

iλf

∫ ∫

u(ρ)eiϕ(ρ)K(rm,ρ)e
−i 2πrm·ρ

λf d2ρ, (3.23)

where rm is the position of the individual foci in image space. The kernel can also define
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beams such as Laguerre-Gaussian, Bessel or other novel implementations.

In chapter 4 I will demonstrate the application of continuous patterns of light which differ

from the multiple foci previously discussed because they no longer exist as discrete points

and are thus more complex to compute. In order to create continuous patterns of light

one treats the sample plane as a pixellated image space. I immediately discretise the

desired image so its resolution matches that of the output kinoform thus giving a direct

relationship between sample plane and input image. The iterative algorithms work in the

same manner except rather than determining the field at multiple individual points in

space and using the relevant mixing formula, the process is performed on the whole field.

3.4 How to implement SLMs in optical manipulation sys-

tems

Having covered optical tweezers, SLMs, beam shaping, and holography they can be com-

bined to build a holographic optical tweezers (HOTs). Re-considering the conjugate planes

in figure 3.5 where angular deviation is created by the SLM, it is this that forms the basis

of a HOTs system, shown in figure 3.11. Note the SLM is placed one Fourier transform

lens focal length away from the transform lens to ensure that the quadratic phase factor

in equation 3.6 vanishes to become equation 3.17.

Figure 3.11: The basic setup for any holographic optical tweezers. The beam is incident
on the SLM at as smaller angle as possible. Lenses FT and L2 form one 4f imaging
system while lenses L2 and OBJ form another. These lenses allow the conversion of
angular to lateral displacement, demagnification of the beam to ensure it still slightly
overfills the back aperture, and also keeps the relationship between image and hologram
space a simple Fourier transform.

The reasons for the 4f systems in figure 3.11 are three-fold. It allows the conversion of

angular to lateral displacement (without introduction of aberration), the demagnification

of the beam reflected by the SLM to ensure it slightly overfills the back aperture, and also
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keeps the relationship between image and hologram space a simple Fourier transform.

The three lenses in figure 3.11 can be thought of as two interconnected 4f imaging systems.

The first uses lenses FT and L2 to image the SLM onto the back aperture of the objective

(its conjugate plane). The second uses lenses L2 and OBJ to image the FT lens image

plane into the sample plane (its conjugate plane). Thinking of it in these terms allows

one to understand and predict what effect changing something in one plane will have.

In reality the system uses five lenses after the SLM to obtain the required demagnification

and relay particular conjugate planes through the system while keeping their Fourier

relationship. The system used in experimental investigations is illustrated in figure 3.12

Figure 3.12: Experimental setup. W is a half-wave plate to control the polarisation
incident on the SLM. Lenses L1 (100 mm) and L2 (750 mm) are a Keplarian telescope
(lenses separated by the sum of their focal lengths) to expand the laser source to slightly
overfill the short axis of the spatial light modulator (SLM). Lenses L3 (400 mm) and
L4 (250 mm), and, L5 (175 mm) and L6 (100 mm) form two 4f imaging systems (lenses
separated by the sum of their focal lengths) to image the SLM onto the back aperture
of the objective (OBJ). Lens L7 is a the tube lens used in conjunction with OBJ to
form an image on the camera (C). The mirrors (M) are broadband dielectric mirrors
and a green dichroic mirror (DM) is used to reflect the trapping beam and transmit
illumination and image light. A beam block, BB, is used to remove the SLMs zeroth
diffraction order. The cream coloured block represents the ‘generic sample’ (GS) into
which the light is focussed. Lenses L4 and L5, and, L6 and OBJ can also be thought
of as imaging the first Fourier transform plane into the sample plane at the focus of
OBJ.

A 532 nm beam from a continuous wave Laser Quantum Finesse laser (beam diamter

2.2 mm with 0.4 mrad divergence) is controlled in power by using a half-wave plate and
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polarising beam splitter cube so plate rotation results in power variation. A second half-

wave plate is used to rotate the output plane polarised light to optimise the diffraction

efficiency of the SLM because as noted earlier (section 3.2.1) it is polarisation sensitive.

The beam is then expanded with lenses L1 and L2 so that it completely overfills the active

area of the short axis of the Holoeye LCR-2500 SLM. The reflected beam is demagnified by

two 4f imaging systems using lenses L3 and L4, and L5 and L6, to image the SLM onto,

and slightly overfill, the back aperture (5 mm in diameter) of the microscope objective.

As mentioned earlier lens L3 acts as the Fourier transform lens and lenses L4, L5, L6,

and the objective act to image the Fourier or image plane into the sample plane. Köhler

illumination is used for observation in conjunction with the dichroic mirror, DM, that

allows the transmission of a large fraction of the visible light that is then imaged with an

objective and tube lens, L7, onto the Firewire CMOS camera. The illumination system is

not shown here, but remains the same as described in figure 2.3.

As noted earlier the SLM creates an undiffracted order due to specular reflection. As this

light can dominate the desired pattern it is usual to remove it. The simplest method is to

block the zeroth order from passing through the first image plane. I have mainly used a

sharp edge of metal placed on a translation stage (at the focal plane), BB in figure 3.12,

but one could equivalently paint or lithographically deposit a metallic spot on a thin

sheet of glass placed in the image plane to transmit the desired light pattern but block

the unwanted zeroth order. This technique can be further improved by making the beam

incident on the SLM convergent to allow efficient blocking of the undiffracted light88.

There are many ways to align optical systems with personal preference playing a major

role. To align my optical systems I generally follow a few simple procedures. First I

remove all lenses and mirrors, then use two pinholes to align the laser beam using the

mirrors from laser to sample. Taking a reference of the focussed beam location in the

sample plane I introduce each lens in turn starting nearest the sample. For each lens I

ensure the focus returns to the original reference location with no asymmetry.

Having set the experiment up it must be noted that the system can only be aligned

perfectly for a single on-axis beam and all others will undergo some aberration. Thus

during system set up the usual image plane ‘origin’ (zeroth order) must be replaced with

one chosen by the user through tipping and tilting the SLM. In this way the +1st order

occupies the ideal path through the optical train.
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3.4.1 Generating software

There are few commercially available software packages for producing and displaying ki-

noforms on SLMs, and those that do exist are rather poor in terms of user interactivity,

speed, and quality. The choice was made to develop my own software that can deal with

the specific challenges I would encounter but also lay down a basic foundation of soft-

ware to be shared amongst fellow researchers that do not necessarily have the physics

background to develop such a system.

There are many programming languages that can be chosen from, all with the usual ad-

vantages and disadvantages. My choice was National Instruments LabVIEW which has

superb user interactivity, instrument communication capabilities and can be very mod-

ular. This modular nature lends itself well to creating interactive programs to calculate

holograms as once the basics have been understood and programmed they can easily be

included in further programs.

The re-mit was to develop software that was able to calculate and display, in as close

to real time as possible, phase-only kinoforms for both three dimensional distributions of

individual foci and continuous patterns of light. The developed software constitutes three

programs that perform these duties and that can be used either independently or jointly.

Many other programs have been developed, including firewire camera interfaces, Zernike

aberration correction programs and video editing software but here I shall only briefly

outline my end product hologram generation software.

The first piece of software utilises the adaptive-additive algorithm to calculate kinoforms

from two different starting points. The user can either input the parameters of a grid of

spots that can be displaced, expanded and rotated or the user can input an 8-bit greyscale

bitmap representing either a pattern of foci or a continuous field of light. In figure 3.13 a

photo is chosen as the input image with a theoretical estimate of the optical reconstruction

of the calculated kinoform shown.

It is this program that discretises the hologram and image planes to enable fast and simple

computation of continuous light fields. The light field desired is simply created as an 8-

bit bitmap image with intensity represented as greyscale values. The image is fed in as

the desired amplitude distribution and the program iteratively calculates the kinoform

required.

Next, I have also written software that allows user interactivity with the sample plane

(figure 3.14). Through the superposition and random superposition algorithms this pro-

gram allows the user to simply click on the sample image and place a tweezers at that

location.
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Figure 3.13: Screen shot of the adaptive additive algorithm program that allows calcu-
lation of symmetrical grid points of tweezers or any arbitrary greyscale image, which
can either be an arrangement of tweezers locations or a continuous field. The input
image shown here is a photograph (left) and the program calculates the theoretical
optical reconstruction (right) of the calculated kinoform.

Figure 3.14: Screenshot of user interactive software that allows a simple point and
click method of optical tweezing using the superposition algorithm. Multiple tweezers
can be created and manipulated by simply clicking on the sample image and deleted
as desired. The program can correct for ghost images by applying the random super-
position algorithm, apply specific aberrations and trap locations can be imported and
exported.
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Multiple tweezers can be added and moved from location to location and deleted as nec-

essary. Trap locations chosen using this program can be exported for refinement through

the next, final, program described.

In the final program all the previous algorithms are implemented. The input into the

program is a spreadsheet where the columns represent trap locations and the rows their

evolution through time. The program performs an initial kinoform estimate using either

random superposition or random phase mask and then feeds the estimate into one of the

iterative algorithms which refine the three performance metrics, efficiency, uniformity, and

standard deviation (figure 3.15). The resulting kinoforms, after the required number of

iterations can be saved to files for later use or displayed as calculated on the SLM.

Figure 3.15: Screenshot of the software that can perform all the algorithms discussed.
Using a simple spreadsheet input the user only has to decide on the location of the
tweezers required and how they evolve over time.

Figure 3.16 shows, as a few examples, desired intensity patterns, calculated kinoforms,

their theoretical Fourier transforms, and images of their true reconstruction.

(a) (b) (c)

Figure 3.16: In clockwise order from the top left image for (a), (b) and (c) are the
desired input intensity pattern, the calculated kinoform, its true optical reconstruction
and its theoretical reconstruction. All images, except for kinoforms, are negatives of
the true images for clarity.
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Of interest in figure 3.16(c) is the relative intensity of the diagonal and horizontal lines of

light which, even though the same length, have differing diffraction efficiencies and hence

intensity. This highlights the complex nature of how SLMs operate and also one difficulty

in measuring the trapping power at the sample plane.

The current state of the art for holographic optical tweezers comprises many different

interaction methods and is nicely exemplified in the work of Gibson et al.96. Knowing

how to build HOTs and how kinoforms can be generated it is worth the effort to optimise

the system to obtain as close to diffraction limited resolution, high efficiency and ideal

phase to true phase retardation conversion. These are the topics I turn to next.

3.5 Optimisation

3.5.1 Phase characterisation

As with most phase retardation based optical devices SLMs have a wavelength sensitive

refractive index and hence diffraction of white light would create chromatic dispersion. For

example, if a 2π phase change is applied to 700 nm light using the SLM, it is likely 400 nm

incident light would undergo more than a 2π phase change. Another consideration is the

non-linear response of phase retardation against voltage signal applied, occurring due to

the complex energy change associated with balance between electric and elastic energy

densities148, mentioned earlier. For these two reasons the system must be optimised for a

single wavelength. Fortunately, the wavelength has stayed constant throughout this thesis

so I have only had to perform the wavelength optimisation once. This process is simple

to perform when required as I will now explain.

Clearly, with 256 discrete phase levels, represented by 256 greyscale values, an individual

pixel can change the phase by 2π/256 or for 532 nm light a distance of 532 nm/256 ≃
2.1 nm. The voltage that would give rise to these increments in retardation over the full

2π range needs to be determined. The only way to measure such small values is using

interferometry, such as placing the SLM as one mirror in a Mach-Zehnder interferome-

ter143,164 and varying its retardation instead of moving a mirror. However, for simplicity

and using the addressability of SLMs to my advantage I followed the method given by

Kohler et al.165. I simply illuminated the whole SLM with an expanded Gaussian laser

beam of the desired wavelength and then masked the incident beam to create two spatially

separate beams that arrive on separate halves of the SLM. The two reflected beams from

the SLM are then passed through a lens, interfering with each other at the focus. They

are then projected via a microscope objective lens on to a camera as shown in figure 3.17.
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Figure 3.17: An input Gaussian beam is apertured by a mask with two ≃ 5 mm holes
to produce two separate beams incident onto two separate halves of the SLM. By
changing the retardation of one half of the SLM the interference fringes produced at
the focal plane of the lens shifts laterally. This fringe is imaged onto a CCD camera
and images taken for later analysis.

To create the effect of an interferometer the phase retardation level requested on one half

of the SLM is varied in uniform increments while keeping the other half constant. In

this way with each new increment the interference fringe pattern at the focus of the lens

laterally displaces a fraction of the full 2π range.

Extracting a single line from the same place in each interference pattern and stacking them

vertically gives figure 3.18(a). Analysing this allows determination of what fraction of 2π

a given grey level can retard enabling the plotting of figure 3.18(b), phase retardation

against grey level.
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Figure 3.18: (a) Each line in this image, one pixel in height, is taken from the interfer-
ometer image for a given grey level displayed. As is clear the interferometer pattern
shifts to the right with each new grey level, hence image line. Extracting the phase
retardation per grey level allows a plot of phase modulation against grey level, shown
in (b).
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Clearly the function is non-linear so a correction must be applied to either alter the

voltage addressed for a given phase level or to manipulate the desired grey level to obtain

the correct voltage. The former can be performed within the hardware of the Holoeye

LCR-2500 SLM using a Look Up Table (LUT) transferred via parallel port and the latter

can be performed in software when the kinoform is calculated. An example correction

applied in our case is shown in figure 3.19.
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Figure 3.19: Correction to the voltage versus grey level value that should be placed on
the SLM hardware to act as the LUT.

Placing this correction on the hardware of the SLM driver and re-running the experiment

gives the corrected phase retardation as a function of grey level, shown in figure 3.20,

which is reasonably linear and significantly superior to before correction.
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Figure 3.20: Having placed the correction LUT of figure 3.19 on the SLM driver the
experiment is repeated to find (a), a line of amplitude from each interference image,
one pixel in height. Extracting the phase retardation per grey level from this image
the corrected phase modulation against grey level is plotted in (b).
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3.5.2 Aberration correction

To optimise the focussing of beams and to also remove any additional experimental errors

it would be ideal to approach, as closely as possible, a diffraction limited focus. A measure

of how well this is achieved is the Strehl ratio, S, defined as the ratio of the peak intensity

measured at the aberrated focus to the theoretical maximum or166

S ≃ e−(2πσ)2 , (3.24)

where σ is the wavefront standard deviation. The Marèchal criterion166 states that the fo-

cus is well corrected if S > 0.8 which corresponds to a standard deviation in the wavefront

deformation of λ/14.

It is well known that liquid crystal over silicon (LCoS) SLMs can have very non-flat back

planes. Any beam incident on the SLM will take on the non-flatness as an additional

phase distribution, or aberration. When transmitted by a lens this wavefront is no longer

focussed to a diffraction limited Gaussian waist but takes on a deformed shape governed

by its aberration.

Further aberrations can be induced by mis-alignment in the optical train, such as off-

axis lenses and tilted mirrors. Borrowing techniques from adaptive optics in astronomical

observation helps combat these problems. Zernike167,168 developed a set of orthogonal

polynomials that when combined can describe any aberration. The SLM, hence phase

retardation, can be used to place a phase correction on the wavefront that will remove

the aberration and return the focus to the diffraction limit. To do this I precalculate

kinoforms representing each mode of aberration, from −2λ to 2λ in uniform increments,

and display them on the SLM in order. For each one a measure of the quality of a focussed

diffracted beam is taken using the method outlined by Wulff et al.169 where the beam is

focussed on a coverslip and an image taken with the camera through the microscope. This

image is then analysed and the metric

Ms =

(

∑

ij Iij

)2

∑

ij I
2
ij

, (3.25)

calculated, where Iij is the intensity of the ijth pixel. Repeating the procedure 20 times

and finding the mean, I obtain figure 3.21 showing the metric performance as the correction

passes through from −2λ to 2λ in magnitude for each orthogonal polynomial.

Clearly a minimum exists for one component and using the corresponding magnitude of

aberration this is easily converted into a phase profile using the polynomials. Finally this
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Figure 3.21: Plot of the metric in equation 3.25 as a function of the magnitude of
aberration for the first five non-trivial Zernike polynomials. The lower the metric the
more closely the reflection of the focussed beam resembles a Gaussian. There is a
clear offset to the Y astigmatism curve indicating that placing a kinoform on the SLM
for this aberration mode of magnitude ≃ 0.9λ will make the beam significantly more
Gaussian.

is added modulo 2π to each kinoform before being displayed on the SLM. An example of

the 8-bit correction kinoform displayed on the SLM in addition to the normal kinoform is

shown in figure 3.22.

Figure 3.22: Correction kinoform calculated from determining which Zernike polyno-
mials describe the aberration in the system and with what magnitude. If more than
one is in error then they are summed modulo 2π.

Using this correction kinoform and repeating the previous experiment gives figure 3.23

showing full correction for the SLM non-flatness and mis-alignments in the optical train.

Measuring the Strehl ratio of a system is difficult as it requires knowledge of the theoretical

point spread function or maximum intensity so usually an increase is quoted170. In my
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Figure 3.23: Plot of the metric in equation 3.25 as a function of the magnitude of
aberration for the first five non-trivial Zernike polynomials with the correction kinoform
of figure 3.22 included with each kinoform displayed on the SLM.

system I measured a six fold increase in Strehl ratio.

The method of Wulff et al.169 is chosen as it is simple to implement in current optical

tweezers; no apparatus needs to be moved and the aberration correction is performed for

the whole instrument not just the SLM. Since this experiment and subsequent correction

was performed another method has been described. It uses optical vortex beams to infer

information about the aberration171 which is more precise due to the susceptibility of such

beams to aberrations in the optical train.

3.5.3 Problems

Larger lateral and axial displacements from the zeroth order require higher spatial frequen-

cies to be displayed on the SLM with a resulting loss in diffraction efficiency172. Also as

the spatial frequencies required become higher and higher, due to increased displacement

or complexity, aliasing can occur from the pixellation of the SLMs. Their finite resolu-

tion means that when discretising sufficiently complex kinoforms the true phase profile is

not sampled at twice the maximum spatial frequency (as required by Nyquist sampling)

resulting in aliasing and again a lowered diffraction efficiency172.

The usual dual objective method173 is performed to quantify the amount of light transmit-

ted to the sample plane relative to a given point at the start of the optical train. However,

difficulties appear when trying to measure the power in a holographically generated light
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field. Clearly, it is unreasonable to assume the efficiency will always be the same if the

same algorithm is used as the hologram generation can start form different points. A

good place to measure the power would be in the Fourier transform plane of the kinoform

but it is not advisable to focus light onto photodetectors and any light unwanted in the

measurement would need to be masked out.

The approach taken was to mask out, as much as feasible, the unwanted light in the

Fourier transform plane, then allowing the beam to propagate into an area of collimation

where the power could be measured. This still poses a problem when dynamically altering

the kinoform as masking becomes a great hinderence. In this case the measurement was

made after completion of the time sensitive experiment.

3.6 Conclusion

Although other methods have been described, holographic beam shaping with an SLM is

the instrument of choice due to the ease with which it can be set up, relative low cost, its

ability to convert between different beam modes and the axial shaping possibilities.

I have described how one should design kinoforms for the efficient generation of the desired

light pattern and also how to optimise the SLM to perform correctly.

In the next chapter I will describe how the work of this chapter can be implemented into

three new applications for microscopic systems.



Chapter 4

Applications of Holographic Beam

Shaping

The state of the art in optical manipulation using holographic beam shaping was dis-

cussed in chapter 1. The main body of literature describes improvements in techniques,

algorithms and their understanding with few true applications to be found.

In this chapter the application of holographic optical manipulation to three fields of re-

search that have not previously been considered is described, which cover two orders of

magnitude in dimension.

Firstly, I apply the techniques to micron sized airborne particles, specifically liquid aerosols.

Normally, the liquid medium surrounding biological and colloidal samples acts to damp

out the motion of microscopic particles. Combined with their buoyancy trapping such

samples is relatively straightforward. To trap particles in the absence of such a highly

damping medium (such as air) is more difficult, as will be demonstrated, and less relevant

for studies to date. Secondly, I will move to a size regime of ∼ 10 µm and into a kingdom

of biology rarely investigated with optical tweezers; fungi. Most biological applications of

optical tweezers lie within the animalia kingdom but here the methods will be shown to

be of use to mycologists. Finally, I move into the ∼ 100 µm regime and look at appli-

cations in digital droplet microfluidics where my methods provide a versatile non-contact

multi beam and pattern extension of optically induced thermocapillary forces174. These

have allowed the manipulation of objects far larger in size than optical forces alone would

permit.

Each subject area in this chapter has its own commonly associated figures of merit which

I will briefly review next. Some of the quantities remain relevant for further chapters also.

63
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4.1 Quantities relevant to experiments

When studying processes of microscopic dimension, common sense no longer applies and

new parameters must be defined that can indicate how such systems will behave. For

example, taking the behaviour of a microfluidic system and applying it to water running

off a table, these parameters would indicate that water does not run off but would rather

travel around and underneath still ‘attached’ to the table.

The first parameter of interest relates the ratio of inertial and viscous forces within the

fluid flow59. This Reynolds’ number , Re, is given as

Re =
vL

ν
, (4.1)

where v is the velocity of fluid or particle, L is the characteristic length scale and ν =

µ/ρfluid, the kinematic viscosity where µ is the dynamic viscosity and ρfluid is the density

of the fluid. The characteristic length is a parameter of the particular system, for example

the radius of a microsphere or the width of a microfluidic channel. The value of the

dimensionless Reynolds’ number indicates whether the system will exhibit turbulent or

laminar flow175. If Re < 500 then it is generally considered the flow will be laminar175, as

is the case in most microfluidic systems. If Re ≪ 1 then Stokes’ flow occurs and viscous

forces dominate over inertial forces. In this case the drag on a sphere is given by Stokes’

law,

Fstokes = −6πρfluidνRv, (4.2)

where R is the particle radius, v is the relative velocity of particle and fluid, and the

remaining symbols retain their meaning.

Next the behaviour of a particle in fluid relative to the fluid molecules is considered.

The average distance travelled by a molecule before collision with another is called the

mean free path, λ, of the fluid. If the particle is much larger than the mean free path of

its surrounding fluid than it will ‘experience’ a continuous fluid. If the particle is much

smaller than the mean free path then it can be treated as another fluid molecule. An

adimensional number representing this is the Knudsen number defined as

Kn =
λ

R
, (4.3)

For Kn≪ 1 the fluid is said to behave as a continuum, for Kn≫ 1 the fluid resides in the

kinetic regime and the region in between is the transition regime. In terms of microspheres

in fluids, as the Knudsen number increases towards unity, the drag force on the particle

decreases to less than that predicted by Stokes’ law. These noncontinuum effects can be
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corrected by including the empirical slip correction factor, Cc, so Stokes’ law becomes

Fstokes = −6πνρfluidRv

Cc
, (4.4)

where

Cc = 1 +
λ

R

(

1.257 + 0.4e(−
1.1R

λ )
)

. (4.5)

giving ≃ 5.5% − 1.6% reduction in drag for 3 − 10 µm diameter droplets, respectively59.

In relation to aerosols I will need to consider the relative humidity (RH) of the envi-

ronment surrounding the liquid droplet being trapped. This is defined as the ratio of the

actual vapour pressure of the liquid’s vapour, p, to the saturation vapour pressure of the

liquid, p∗, at the given temperature and is normally expressed as a percentage59,176:

RH =
p

p∗
× 100%. (4.6)

The saturation ratio, S, is defined as (%RH/100). S < 1 for subsaturated vapour, S = 1 for

saturated vapour, and S > 1 for supersaturated vapour. The Kelvin equation shows that

“the vapour pressure over a curved interface always exceeds that of the same substance

over a flat surface” thus p > p∗ 59. Therefore for equilibrium of a pure water droplet, a

curved surface, in air the surrounding environment must be supersaturated. However, this

equilibrium is unstable59 and droplets in the atmosphere never consist solely of water.

To create a stable equilibrium dissolved impurities, namely sodium chloride, NaCl, are

introduced which decreases the equilibrium vapour pressure over a water surface176. Now,

imagine a droplet made from an aqueous solution of sodium chloride, as it increases in

size two processes occur;

• the curvature of the surface decreases, hence the vapour pressure over the curved

water surface also decreases.

• the NaCl concentration decreases, hence the vapour pressure increases.

These two competing effects determine the saturation ratio (∝ RH) at which an equilib-

rium size of droplet is achieved and is more quantitatively described using Köhler theory59.

The result is demonstrated nicely in figure 4.1 where the equilibrium curves for pure water

and three masses of sodium chloride are plotted as a function of radius and saturation

ratio. As discussed it is not possible for pure water to reach an equilibrium size in a

non-supersaturated environment. Including salt allows the droplets to exist in a subsat-

urated environment which is possible to create in the laboratory. Of importance to the

investigations here is that for larger dry particle masses of salt larger liquid droplets can
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exist.

Figure 4.1: Change in droplet radius for varying salt concentration as a function of
saturation ratio. The radius scale here extends from ∼ 0.1 to 10 µm. Examples of
the mass of salt in the droplet for curve (c) is ∼ 10−15 g, for (b) is ∼ 10−16 g and
∼ 4 × 10−17 g for (a). (Adapted from Monteith and Unsworth176).

Figure 4.2 displays the evolution of particle radius as a function of relative humidity

allowing an appreciation of the physical chemistry at work. My studies exist on the far

right curve of the plot above crystalisation and below RH ≃ 95%.

Figure 4.2: An example plot for a specific salt mass of the radius of a droplet as
a function of relative humidity showing the hysteresis in the crystalisation (C) and
droplet formation (DF) processes. In the regions SP and D only solid and liquid
particles exist respectively. I work on droplets that exist on the far right curve of
the plot above crystalisation and below RH ≃ 95%. (Adapted from Monteith and
Unsworth176).
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4.2 Aerosols

The ability to trap and interrogate multiple airborne particles in a controlled manner

offers much to those who wish to study aerosol properties, composition and dynamics.

In this section I describe the first use of the holographic methods discussed earlier to

optically trap and manipulate airborne particles, in this case liquid droplets. Making

use of such devices allows for arrays of particles to be trapped simultaneously, as well as

allowing their controlled x, y and z translation and thus coagulation. Coupling HOTs

with cavity enhanced Raman spectroscopy (CERS) to create micro total analysis systems

(µTAS) is also discussed.

4.2.1 Apparatus specific to the manipulation of aerosols

As with all subsequent experiments in this thesis the experiment is performed in a specific

type of chamber above a glass cover slip or microscope slide. The apparatus and techniques

are described in chapter 3, the only differences here are the microscope objectives used

and the application specific sample. For the holographic optical trapping of aerosols I use

a 100× Nikon microscope objective (CFI E Plan Achromat 100× oil, NA 1.25) and use

the sample chamber pictured in figure 4.3 which takes the position of ‘generic sample’ in

figure 3.12.

Figure 4.3: Representation of the chamber into which nebulised salt solution is inserted.
The nebuliser uses a vibrating mesh driven by piezoelectrics and the resulting aerosol is
passed into the chamber via a custom made glass nozzle. In one corner of the chamber
distilled water soaked tissue paper is placed to assist in creating a humid environment.
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The glass cube is placed on a type one coverslip through which the trapping light is

focussed. A piece of blue tissue paper is saturated with distilled water and placed inside

the chamber to increase the relative humidity. The liquid aerosol is produced by nebulising

a salt solution with an Omron MicroAir NE-U22 vibrating mesh nebuliser which produces

a polydisperse sample of liquid droplets with a mass median aerodynamic diameter of

4.9 µm177,178. The aerosol is transferred through a hole in the chamber side via a custom

made tapered glass nozzle81.

The chambers are not perfectly sealed so achieving 100% relative humidity is unrealistic

but, as explained, the addition of sodium chloride to water allows droplets to reach stable

equilibrium at lower relative humidity. So I use the addition of impurities to the aerosol

to my advantage by creating salt solutions of varying concentrations. Within this section

the salt concentration was set to be 20 gL−1 and kept constant throughout. However, in

chapter 5, variations in concentration are used to coarsely adjust droplet size.

The insertion of nebulised salt solution into a closed chamber creates a cloud of aerosol

that, unless trapped, will inevitably settle on the coverslip surface. The ‘puddles’ of water

created, 10s of microns across, are problematic. They can aberrate the trapping beam

to such an extent that not only do droplets fall from traps but also imaging is distorted

preventing video microscopy sizing, unless they are sited directly over the puddles centre

where curvature is at a minimum and symmetric. The solution is to treat the coverslips

by placing them in a 50% distilled water dilution of ‘Decon 90’ for longer than one week

and rinsing them with distilled water before use. This increases the hydrophilicity of

the surface and provides a thin and uniform layer of water, above which, aerosol can be

trapped.

4.2.2 Holographic optical trapping of aerosol droplets

Arrays of aerosol droplets, shown in figure 4.4, can be trapped179 although the images also

illustrate one of the difficulties of trapping in air. In a liquid medium colloidal particles

are relatively slow moving and one can actively seek them out without too much trouble.

Alternatively the trap can be static with particles flown in to try and fill the sites, but

this can lead to multiple particles in a single trap, jamming, or particles knocking each

other out.

In air the aerosols move far more quickly than colloids in water, and at times it is difficult

to discern individual particles until they are stationary in traps. So, there is no choice but

to place the trap sites in the desired locations and wait for the particles to ‘fall’ into the

traps.
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In the current experimental geometry trap loading is far from optimised. The images

shown illustrate that although the trap pattern is relatively simple, and would be easy

to fill in liquid, it may be that no sites at all are filled if no aerosol passes through the

trapping region of any site. Possible reasons for this difficulty of capture will be discussed

in more detail in chapter 6.

Figure 4.4: Top left image shows the backscattered light from the bottom of the mi-
croscope slide revealing the holographic trapping pattern. The remaining images show
the resulting trapped water droplets after multiple uses of the nebuliser in attempts to
fill all trap sites. As indicated in the text, although the trapping pattern is relatively
simple, it is hard to fill all the sites at once. Scale bar is 5 µm.

In chapter 3 it was shown that near continuous resolution of movement is possible if the

correct algorithm is used to calculate the kinoforms. The experiment’s speed has two

limiting factors, firstly the refresh rate of the SLM, ∼ 75 Hz, and secondly the diffusivity

of the particles given by

〈x〉2 =
kBTCct

3πµR
, (4.7)

where kB is Boltzmann’s constant, T is temperature, Cc is the slip correction factor, µ

is the dynamic viscosity of the surrounding fluid, R is the droplet radius, and t is time.

When tweezing in liquid the movement of a trap site cannot be too large an increment

because the particle motion is so heavily over-damped it may not follow the trap quickly

enough and in effect ‘lag’ behind. When trapping in air the converse problem occurs;

if the trap site is not re-positioned quickly enough the Brownian diffusivity may be too

great and the droplets will have diffused too far away to be affected by the trap in its

new position. Figure 4.5 plots the Brownian diffusivity of particles in water and air media

against radius, illustrating the need for careful thought before choosing the manipulation

scheme.

The apparatus is able to trap a range of droplet sizes from ≃ 2.5 to 12 µm in diameter
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Figure 4.5: Theoretical curves showing displacement after 16 ms (SLM response time)
due to Brownian diffusion as a function of particle radius when suspended in water
(dashed blue curve) or air (solid red curve).

with the minimum power required to trap an aerosol being 380 ± 20 µW giving an axial

efficiency, Qaxial, of 0.22 ± 0.01, comparable to results in conventional tweezers121.

It is common knowledge when working with optical tweezers that a lower limit on the

power needed to trap exists, with an increase in power improving trap stiffness and the

ease with which a nearby particle is ‘captured’. Some things entirely unintuitive occur

when trapping objects in air; there is a linear dependence of ‘captured’ droplet size as a

function of trapping power no overall change in ease of capture and small droplets cannot

be ‘captured’ at large powers. This is shown in figure 4.6

In liquid based tweezers nearly all studies are reliant upon using microspheres with a

highly calibrated radius to ensure the same conditions throughout repeated experiments.

The situation in aerosol trapping is vastly different with the nebulised aerosol having a

large polydispersity and no robust method of selecting size, although figure 4.6 suggests

some size selectivity may be possible.

The size distribution within the sample chamber is dependent upon the water’s salt con-

centration, the nebuliser used, flow conditioning81 and perhaps chamber geometry. It is

also possible that the duration between nebulisation and trapping can influence coagula-

tion and settling. It is therefore a reasonable assumption that the gradient and intercept

of figure 4.6 will vary between experiments79.

The stable trapping and precise manipulation of water droplets allow not only their in-

dividual control but also the ability to coagulate multiple droplets, as demonstrated in
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Figure 4.6: Graph showing the variation of droplet size as a function of power. The
vertical standard error bars increase in size with power indicating that not only can
higher powers trap, on average, larger droplets but also a greater distribution of sizes.
The horizontal error bars mostly arise from the non-perfect intensity uniformity of the
trapping sites.

figure 4.7. Axial control is also achievable (figure 4.8) using algorithms described in sec-

tion 3.3.2.

Figure 4.7: A series of four images showing the coagulation of eight water droplets
into three by altering the kinoforms displayed on the SLM. The numbers indicate the
video frame with the time between frames being 1/30th of a second. The scale bar is
5 µm.
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Figure 4.8: A series of microscope images demonstrating the axial control of water
droplets from −10 to +10 µm. The white bar indicates a scale of 5 µm.

The system is not limited to homogeneous species, for example, figure 4.9 shows the

coagulation of aqueous NaCl and dodecane droplets.

Figure 4.9: Still images taken from a video showing the coagulation of two dodecane
droplets with two separate aqueous sodium chloride droplets. The white arrows in the
first frame indicate the two dodecane droplets before movement. The numbers indicate
the frame number where the time between single frames is 1/30th of a second. Scale
bar is 5 µm.

The problems with trap loading are exacerbated when dealing with two different species

of chemical. There is no easy way to load each different one into a predetermined trap site

or indeed to prevent them from coagulating accidentally as they become trapped. Again,

it is a matter of patience and fortune as to whether the desired species are trapped at the

desired locations.

The figures with images of trapped droplets highlight a major hurdle in quantitative

analysis with the inability to precisely size droplets from video images alone. This is due

not only to their dynamic nature but also to the poor definition of their circumference

on the video output. Far more precise techniques are already in frequent use12 and when

coupled with the holographic manipulation outlined here enable a robust airborne micro

total analysis system (µTAS) which will be described shortly. I have also developed a

new simple and quick method of sizing aerosols, as will be discussed in section 5.4.2. One

difficulty is how to extend this technique to size multiple droplets simultaneously but I
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will also present some ideas to solve this problem.

The quantitative results given here are specific to a single concentration of sodium chloride,

with any alteration in the aerosol composition significantly altering the droplet’s proper-

ties (figures 4.1 and 4.2). This obviously increases the complexity compared to simple

monodispersed or even polydispersed microspheres with fixed dimensions and properties

because droplets can condense, evaporate, absorb, and constantly interact with their sur-

roundings. These challenges can be overcome by designing better chambers180 and using

multiple particles as controls181 and will hopefully allow for interesting and useful science

not just in atmospheric chemistry but also in fundamental physics as will be discussed in

chapter 7.

The experiments described here were the first demonstration of optically trapped arrays of

aerosols with controlled manipulation and coagulation. It has been shown that, perhaps

counter-intuitively, SLMs can reposition traps fast enough so the aerosols will not be out

of the trap’s capture range. Published at approximately the same time the second type

of popular beam shaping method, AODs, were also used to trap arrays of aerosols181,

but this technique cannot displace the trap in the axial direction and may also present

further problems by the nature in which they operate. The time-sharing of the beam

between trap sites causes an oscillation in power, going from zero to maximum (with

a specific response time), at a specified frequency. I will show later in section 5.6 that

this oscillation can completely and catastrophically change the trapping properties of the

system if the frequency is not selected correctly.

Since the work was carried out improved kinoform generation algorithms have been de-

veloped87. When trapping aerosols the efficiency with which HOTs operate is not of

paramount concern as only very small powers are required. However, these algorithms

can vastly improve the uniformity of the trap intensities which, given the linear depen-

dence of captured droplet size on power, is essential for more controlled experiments.

Issues remain with holographic optical trapping. The input of an aerosol sample mimics

that of atmospheric aerosols to some extent but for ‘in the field’ applications more robust

methods of trapping must be developed82. For airborne microfluidic applications, where

specific chemical reactions wish to be carried out, improved loading strategies must be

investigated. Piezoelectric driven micro droplet generators have been tried but due to

the bulk of the device and the high velocities upon exit these have proved difficult to

use. I feel there is potential in optically guiding the airborne particles to the trap sites

using either free80 or enclosed182,183 beams. A more recent device which creates micron

size droplets in liquid-liquid phase microfluidics184 may be adapted in future to suit the

airborne situation allowing the precise creation and placement of airborne droplets.
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I have established that holographic optical tweezers can be repositioned quickly enough

to prevent the loss of optically trapped droplets. However, I made the assumption that

the beam to be relocated is simply turned off instantly, moved, and switched back on

instantly. This is likely to be a bad assumption with the finite response time of the SLM,

therefore, it is worth noting how the repositioning of traps really occurs. In order to do

this I recorded at high speed, and display in figure 4.10, the translation of a single focus

through a microscope objective reflected at a coverslip to water interface.

Figure 4.10: Images of the translation of a single focus reflected from a coverslip to
water interface taken at high speed. The time between start and end is ≃ 100 ms. The
light does not simply disappear and reappear within the response time of the SLM as
may have been expected but rather seems to spread out between original and new foci.

One’s first, näıve, assumption would be that the light completely disappears from the

focus but as can be seen the original focus extinguishes as the new focus appears with the

intensity not only split but also spread out between the two. Perhaps this helps to ‘guide’

the aerosol between the traps.

Having established the technique of holographic manipulation of aerosols it is interesting to

explore the technique’s power. A crucial parameter of a liquid-gas phase droplet system

is the relative humidity (RH) but there is difficulty in measuring it for the gas phase

accurately. It has been shown that using multiple droplets enables the use of one as a

local probe of RH enabling comparative measurements between droplet species180. By

implementing HOTs with spectroscopic techniques, collaborators and I have shown that

multiple aerosols can be simultaneously manipulated, sized with CERS, and coagulated.

Using one droplet as a RH probe enables the prediction of the size evolution of those

remaining and using coagulation allows the upper limit on droplet size to be pushed185.

In conclusion I have established the use of HOTs in aerosol studies to manipulate ho-

mogeneous and inhomogeneous species of aerosol in three dimensions with the ability of

coagulation, thus improving the toolbox at the disposal of atmospheric chemists.
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4.3 Orbital Angular Momentum (OAM)

One application of beam shaping is the ability for mode conversion. Creating a Laguerre-

Gaussian beam with the SLM allows the creation of beams carrying orbital angular mo-

mentum186, which is closely related to spin angular momentum9. A famous experiment

was carried out by Beth187 that showed a torque could be produced by the refraction of

circularly polarised light through a waveplate suspended on a torsional pendulum due to

spin angular momentum. The magnitude of what he observed was tiny because of the

small angular forces imparted, σ~ per photon, and the relatively large mass of the object.

The use of optical tweezers has allowed the study of the fundamental properties of light,

such as its momentum, to be more accessible. Construction of experiments to study the

beam properties with optical tweezers is far simpler as no vacuum equipment or careful

manufacture and setup of torsional pendulums is needed. It has also allowed the detailed

study of orbital angular momentum with several classic experiments9,32,33. Based on the

same principles as Beth’s original, these experiments allow the focussing of light onto

microscopic objects and hence the effect is hugely magnified.

Although the transfer of SAM and OAM has been shown successfully, angular acceleration

has not been observed in microscopic experiments but only macroscopically with SAM

by Delannoy et al.188. Is there improved potential for observing microscopic angular

acceleration in an air medium due to its lower dynamic viscosity?

Focussing a Laguerre-Gaussian beam189, created with the HOTs apparatus, with az-

imuthal index l = 80, into the aerosol chamber it is possible to trap multiple droplets

around its circumference. The rotation rates are far more rapid than for colloidal particles

in water due to both the increased momentum transfer and the higher terminal velocity

in air. An example is shown in figure 4.11, although a full rotation is not illustrated,

multiple orbits can be achieved.

Figure 4.11: Rotation of water aerosol using a Laguerre-Gaussian beam. The three
droplets are trapped in a single l = 80 beam with the upper one staying in the upper
half of each image. The clockwise rotation is clearly seen as a function of time. Full
rotation of complete circuits is possible but not shown. Scale bar is 5 µm.
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Although there are clear increases in rotation speed due to the reduced dynamic viscosity

the system still reaches terminal velocity too quickly to observe angular acceleration. If

the power was lowered to reduce acceleration then droplets are unlikely to be trapped.

The angular acceleration is given by

α =
3Plλ

8π2R3
(

2
5R

2 + r2
)

ρc
, (4.8)

giving the time to reach terminal velocity to be

tterm =
16π2

27

R5g
(

2
5R

2 + r2
)

ρ2c

3rP lλη
. (4.9)

where P is the laser power, l is the azimuthal index, λ is the wavelength, R is the particle

radius, r is the beam radius at waist, ρ is the density of the sphere, η is the fluid’s dynamic

viscosity, c is the speed of light and g is the acceleration due to gravity.

An order of magnitude estimate for a reasonably large aerosol (R = 5 µm) gives tterm =

0.25 ms. This is below the frame rate of even relatively fast cameras capable of 1000 frames

per second and to obtain enough data the exposure time would need to be approaching

100 µs. Therefore to observe acceleration either the detection technique needs to be faster

or the experiment parameters changed. Decreasing the dynamic viscosity would help but

to do this a vacuum greater than one thousandth of an atmosphere would need to be

created before the viscosity starts to change190. At this pressure water would boil and

we can see that this experiment begins to become increasingly complex; solid aerosol will

be needed in a high quality vacuum chamber which presents its own challenges, not least

how to get the aerosol in the sealed chamber.

The other option is to use a faster detection method such as a very high speed camera

that tracks particle position in hardware191 to sample at well below the time to reach

terminal velocity.

In conclusion more work is necessary but it is hoped the advantage of microscopic orbital

angular momentum experiments in air can be brought to bear on angular acceleration due

to orbital angular momentum.

4.4 Fungi

The second new field of application that I apply HOTs to, is in the manipulation of the

filamentous fungi Neurospora Crassa, a common fungus also known as bread mould. In

this section I step up an order of magnitude and start to look at objects that are ∼ 10 µm
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in width, and begin to move away from direct manipulation with optical forces and look

at indirect methods using the light as the initiating tool. The ability of optical tweezers to

precisely position a highly localised intensity gradient of light is the reason for its choice

here. Here I provide evidence to support that it is not direct optical manipulation of

fungus that causes the effects observed but that the effect must be mediated by some

other method.

This section describes work that was carried out as a collaboration with the Fungcal Cell

Biology group from the University of Edinburgh. The project was caried out jointly by

myself and Graham Wright and lead my Nick Read and David McGloin.

Light is well known to affect many biological processes and can be used to experimentally

manipulate growth at both organismal192 and cellular levels193. The focussing of light

through a microscope is ideal for manipulation at the cellular level and optical tweezers

have proved themselves useful in many areas of biology.

In recent years optical tweezers have been used extensively as tools for micromanipu-

lating biological systems. The techniques of Ashkin quickly found use in manipulat-

ing individual cells, viruses, and bacteria46,194. They have been used in a wide range

of applications including micromanipulating cells to redirect their growth195–199, micro-

manipulating organelles within cells195,200,201, isolating individual cells, organelles and

chromosomes202,203, measuring the forces produced by motor proteins and RNA poly-

merases204–207, measuring the biophysical properties of DNA26,208–212, fusing cells213,

providing localised mechanostimulation to cells214 and automated cell sorting215.

Whilst optical tweezers have been widely used in biological investigations, their use with

filamentous fungi has been largely unexplored. The filamentous fungi are an extremely

important group of organisms. They cause human and crop diseases, spoil food, recycle

nutrients in the biosphere, promote the growth of plants with which they have symbiotic

associations, and are used in food production, brewing, and as a source of pharmaceuti-

cal drugs216. The colony of a filamentous fungus develops into a complex interconnected

network of multinucleate, tubular cellular elements called hyphae (figure 4.12a)217. These

hyphae grow at their tips and penetrate with force and by digestion through the microen-

vironments which they inhabit. Hyphae exhibit tip growth as the result of the activity of

a multi-component structure called the Spitzenkörper. The Spitzenkörper secrete vesicles

in a localised region (the extension zone) to allow for ‘wall-building’ exclusively at hyphae

tips (4.12b)218,219. Neurospora crassa, the species used throughout this investigation, is

commonly used as a model system for experimental studies220,221 and was the first fil-

amentous fungus to have its complete genome sequenced216,222. It produces large, fast

growing hyphae making it an excellent system for combining live-cell microscopic imaging
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with experimental micromanipulation using optical tweezers223,224. After initial inocula-

tion from a parent colony the hyphae can grow into a new colony covering ∼ 15 mm in

diameter in less than one day if left in a non-regulated environment, making it ideal for

investigation outside a specialised fungal cell biology laboratory.

Figure 4.12: (a) The colony of a filamentous fungus composed of a network of hyphae.
The hyphae studied in the present investigation are those located at the colony periph-
ery. (b) A confocal image of a growing hyphal tip of Neurospora crassa at the colony
periphery after staining with the membrane-selective fluorescent dye, FM4-64225. Note
the concentration of stained secretory vesicles within the Spitzenkörper (Spk), the re-
gion of hyphal extension (1), and the non-extending region (2) (adapted from Wright
et al.226). Scale bar is 5 µm.

The first use of optical tweezers with filamentous fungi showed that organelles could be

manipulated inside living hyphae without causing damage200. Later single beam optical

tweezers were used to change the direction of hyphal growth, concentrate secretory vesi-

cles and induce branching196. The most significant observation in this work was that the

Spitzenkörper seemed to be repelled by the laser rather than being trapped, which was con-

firmed and investigated more recently223,224,226. The refractive index of the Spitzenkörper

is predominately higher than the adjacent cytoplasm227, so one would expect it to become

trapped196. Wrightet al.226 used optical tweezers to measure the growth forces generated

by hyphae at the colony periphery of N. crassa (figure 4.12). Calibrated optical traps

placed beads in the path of growing hyphal tips to study the forces induced upon contact

from particle displacement. It was found the hyphae were able to generate growth forces

in excess of the forces achievable with the optical trap used (i.e. > 19 pN). It was later

shown that specialized hyphae, namely germ tubes, produced during spore germination

and which are involved in colony establishment, are not able to completely displace the

optically trapped beads, suggesting that they produce growth forces < 19 pN. The germ

tubes responded to the trapped beads by undergoing apical swelling until the beads were

removed whereupon their growth extension resumed223,224. In contrast, the fast growing

hyphae at the colony periphery when mechanically stimulated with beads only underwent

a slight redirection in growth and their rate of extension was unaffected223.

Fungi possess a variety of photoreceptors and a range of responses to light but little is
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known about light-mediated responses of fungal hyphae, except that hyphal tips have been

shown to avoid 785 nm223,224,226 and 830 nm196 light. Whether these are photoreceptor-

mediated responses or some sort of physical repulsion of the Spitzenkörper by the tweezers

is unknown.

Previously, alterations in the pattern of hyphal tip growth have been induced by what can

be termed active methods; single or dual beam conventional Gaussian tweezers have been

actively moved to interfere with the hyphal tips196,223,224. However, this work aims to use

passive methods, in which the hyphae are allowed to grow towards and through stationary

optical tweezers. Of significant interest would be the possibility to not only briefly redirect

the hyphal tips but to manipulate hyphal growth over significant distances, and possibly

into complex patterns allowing controlled studies of inter-hyphae signalling.

In chapter 3, I discussed how optical beam shaping proves to be a useful technique that al-

lows light to be ‘sculpted’ into more complex structures than single or dual beam Gaussian

tweezers. Although yeast cells and ungerminated spores have previously been manipulated

with multiple optical traps228–230, fungal hyphae, and hyphal tip growth, have not. Here

I describe the first use of holographic optical tweezers, and more generally holographic

beam shaping, to create both multiple single beam tweezers and extended patterns of

light to manipulate filamentous fungi.

By borrowing the light sculpting techniques of optical tweezers, but without the sole

purpose of trapping, the main aims of this study were to further assess what processes

give rise to the redirection of hyphal growth by light, and to determine how the pattern

of hyphal growth and branching can be manipulated over extended distances with HOTs.

4.4.1 Apparatus and experimental procedure specific to fungi

Three different wavelengths of light were investigated, 532 nm, 785 nm, and 1064 nm

produced using a Laser Quantum finesse, a Blue Sky Research laser diode (VPSL-0785-

070-x-5-A) and a IPG Photonics YLM series lasers respectively. Each wavelength used a

separate piece of apparatus, but all are based upon the systems described in the preceding

chapters. In particular the 785 nm apparatus is a basic tweezers as described in chapter 2

and has been used in previous fungi studies224. The 532 nm system was the same HOTs

apparatus shown in figure 3.12 and to create a comparable single beam tweezers the SLM

was replaced by a mirror.

The holographic apparatus remains the same except for the sample into which the light is

focussed and the microscope objectives used. In this the objective was either a Nikon Plan

(objective A) or a Nikon E Plan (objective B), 100× 1.25 NA oil microscope objective.
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The objective used for the results presented here is indicated in each figure.

The continuous light patterns produced through holography only exist with a reasonable

fidelity in a relatively shallow axial plane. Experiments with axially extended light fields,

or ‘pseudowalls’ of light were also performed, as discussed later. These walls consisted

of multiple, two dimensional, continuous light patterns displaced above and below the

normal focus. Figure 4.13 illustrates the clear difference between these pseudowalls and

the simple, axially compact, structures normally produced. The kinoform to be placed on

the SLM is created simply by calculating those required to produce particular patterns

at desired axial planes and then finding the argument of their complex sum, in a similar

manner to equation 3.13. The result is a single kinoform producing patterns in multiple,

spatially separated, axial planes.

Figure 4.13: Representation of a hyphal tip approaching (a) a single line of light, as
shown in the results of figures 4.16-4.19, or (b) nine, axially stacked, single lines of
light, or a pseudowall as shown in the result of 4.20.

Fungal strains, culture conditions and sample preparation

The Neurospora crassa wild-type strain 74-OR23-1VA (# 2489, FGSC, Kansas City, KS,

USA) was used. It was grown and maintained on solid Vogel’s minimal medium220 at room

temperature. An agar plug was used to inoculate a plate at one edge, allowing growth for

∼17 hours before experimentation. To image and manipulate hyphal tips, the inverted

agar block culture method was used225 and replaced the generic sample in figure 3.12.

Hyphal tips were given > 30 minutes to recover and resume normal growth once sample

preparation was completed.

4.4.2 Results

Each experiment was carried out between 2 and 15 times.
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Gaussian Beams

It has been established that both 785 nm and 830 nm simple optical traps can be used

to manipulate hyphal growth and branching196,223,224,226. Here I examined the effects

of 532 nm and 1064 nm light and included further experiments with 785 nm light for

comparison.

The range of powers needed to cause a change in the pattern of hyphal growth varied

largely with wavelength; for 1064 nm light 150 − 500 mW, for 785 nm 40 − 70 mW,

and for 532 nm light 1.9 − 14 mW. For each range stated the minimum power was the

lowest to cause an observable effect and the maximum was the highest to cause an effect

without producing irreparable damage to the hyphae. The laser powers quoted are those

incident on the back aperture of the microscope objective with the focus approaching the

diffraction limit for each wavelength.

Examples of changed growth patterns for each wavelength, are shown in figure 4.14. The

altered growth effect in each case was clearly associated with the proximity of the hyphal

tip (and thus Spitzenkörper) to the optical trap. Once the hyphal tips had passed the

trap, normal growth resumed back along its original direction, unless growth was stopped

because a hyphal tip was exposed to too high a laser power. In all experiments it was

important to judiciously use the minimum laser power necessary to cause a change in

hyphal growth patterns otherwise it would commonly be stopped.

Unfortunately, the alteration of direction is short lived, both in time and distance, for

all wavelengths studied. The usefulness of optical manipulation here would be greatly

increased if the hyphae could be controlled over extended distances. To combat this the

holographic methods are introduced.

Multiple Gaussian Beams

Figure 4.15 shows the result of allowing a hyphal tip to grow into a curve made from nine

individual tweezers, produced using the holographic techniques already described.

The results were wildly inconsistent, rarely ending in a hyphal tip following the full pat-

tern of multiple tweezers. These unsuccessful results generally occurred for one of two

reasons. Firstly, the spacing of the tweezers often allowed hyphal tips to grow through the

gaps between them without causing redirection. Secondly, if the hyphae grew through a

tweezers their growth could cease from overexposure to the laser beam.

To minimise these factors the light needs to be evenly distributed along the desired alter-
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Figure 4.14: Examples of redirecting growth using 532 nm, 785 nm, and 1064 nm single
Gaussian beam traps. The power required to cause the effect is between 1.9− 14 mW
at 532 nm, 40 − 70 mW at 785 nm and 150 − 500 mW at 1064 nm. The white circle
indicates the position of the optical trap. Scale bar is 10 µm.

Figure 4.15: Continuous redirection using nine 532 nm Gaussian traps produced with
HOTs and objective A. The hyphal tip grew from bottom left to top right. White dots
represent the position of each focussed trap. The laser power per tweezer focus was
≃ 2 − 3 mW. Scale bar is 10 µm.

ation pattern. This even distribution is again possible through the use of holography to

create continuous light patterns.

Continuous Light Patterns

Generating single, continuous, 30 µm long lines of light at an angle ≥ 50◦ to the direction

of growth consistently caused hyphal redirection as demonstrated in figure 4.16. The time

stamps on subsequent figures are displayed in minutes:seconds.
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Figure 4.16: Extended redirection using a single continuous line of 532 nm light pro-
duced with objective A and introduced at 57◦ to the original axis of hyphal growth
at time 0 min. The final image in the sequence was captured after the laser filter
was removed from its location in front of the camera, allowing visualisation of the
laser pattern and position. The total laser power spread over the whole pattern was
8.1 ± 0.1 mW. Scale bar is 10 µm.

Producing a ‘channel’ of light made the hyphae ‘bounce’ down it to be guided along as

shown in figure 4.17.

Figure 4.17: Guiding a hyphal tip through a 17 µm wide channel bordered by 60 µm
long lines of light produced with objective B. The final image in the sequence was
captured after the laser filter was removed to show the laser pattern and position. The
white ‘smudge’ appearing in each image is an optical artifact. The total laser power
spread over the whole pattern was 16.0 ± 0.3 mW. Scale bar is 10 µm.

Instances where the hypha was wider than the light channel resulted in width constriction

as it entered the channel as exemplified in figure 4.18.

Additionally the first point of interaction between the hyphal tip and the light induced

branch formation. In figure 4.18 this causes a hyphal branch to form at the lower left of

the image and in figure 4.19 at the centre right of the last image. Hyphal branching never

occurred within a channel bordered by light or from a hypha growing up against a line of

light.

Switching between pre-calculated kinoforms on the SLM, hence optical fields in the sample

plane, two sharp continuous redirections in hyphal growth can be produced as shown in

figure 4.19. Having redirected the hyphae at an angle of 45◦ by time 4:44 minutes, the
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Figure 4.18: Constriction and branching caused by a relatively thin channel (17 µm
wide) bordered by 60 µm long lines of light produced with objective B. The final image
in the sequence was captured after the laser filter was removed to show laser pattern
and position. The white ‘smudge’ appearing in each image is an optical artifact. The
total laser power spread over the whole pattern was 9.0±0.2 mW. Scale bar is 10 µm.

kinoform was changed to produce a second line of light redirecting the hyphae by another

53◦ by time 10:27 minutes.

Figure 4.19: Multiple redirections of hyphal growth caused by switching between dif-
ferent kinoforms produced with objective A. The switch in light patterns took place
between 4:44 minutes and 4:49 minutes at which time the laser filter was removed to
show laser pattern and position. The total laser power spread over each light pattern
was 8.1 ± 0.1 mW. Scale bar is 10 µm.

As discussed in section 3.5.3 it is difficult to accurately measure laser power in holo-

graphically generated beams. Here, the laser power input into the system was carefully

selected by following a simple procedure. First, an estimate of the power required was

made and then hyphal manipulation was attempted. If unsuccessful the power was either

increased or decreased depending on whether the hyphae had been unaffected or overly

affected respectively. It was also at times necessary to search and find a new hyphal tip

to experiment on had the power needed been overestimated and caused damage.

A pseudowall of light, as described in section 4.4.1, improved the precision of growth

redirection, an example of which is shown in figure 4.20. To produce the pseudowall of

light the hologram used for figure 4.16 was axially stacked to produce nine axial planes of

light, four each side of the normal focus, each separated by 0.5 µm. This axial extension

over 4µm makes the pattern more comparable in height to the hyphal tips (< 18 µm).
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The hyphae consistently followed the edge of the pattern more closely with light sculpted

in this way than with those used in the previous experiments.

Figure 4.20: Extended growth redirection using a pseudo 3D wall of 532 nm light
produced with objective A. The final image in the sequence was captured after the
laser filter was removed to show laser pattern and position. The total laser power
spread over the whole pattern was 8.1 ± 0.1 mW. Scale bar is 10 µm.

4.4.3 Discussion

It has been shown hyphal tip growth in N. crassa can be redirected using optical tweezers

with three different wavelengths of light (532 nm, 785 nm and 1064 nm), and the lower

the wavelength used, the lower the laser power required to produce the changes.

Ranges, rather than average powers with associated errors have been quoted, at which

hyphal growth alteration occurs for each wavelength. This is because, as is well known,

biological systems have a large amount of variability and hence the resulting values are

largely dependent on the size of the hyphal tips being studied and the patterns being

produced. For a given run of experiments an effective power can quickly be found using

trial and error with the aim of minimising the level of irradiation whilst still eliciting a

response in the pattern of hyphal growth.

Assuming a diffraction limited focus, the range of laser intensities required at the focal

plane of the tweezers to ellicite a response is lower for lower wavelengths, indicating a

wavelength dependence. The cause of this is unknown. Possibilities include photoreceptors

more sensitive to certain ranges of wavelength, preferential absorption of light by the

medium and subsequent heating, or perhaps an optical repulsion, in the opposite sense to

optical tweezers.

The results demonstrate that holographic beam shaping enables production of fixed pat-

terns of light that can redirect or constrict hyphal growth over extended distances or

initiate hyphal branching.
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With all the optical methods employed to alter growth it is possible to use either too little

or too much power. If too little power was used then hyphal tip growth was unaffected and

the hyphae grew through the light. If the laser power was too high, then hyphal growth

ceased, a response common in filamentous fungi exposed to stress. In the particular case

of single optical tweezers, too high a power could cause hyphae to burst resulting in the

cytoplasm leaking from the hyphal tip. A number of papers have assessed the damage

caused to a variety of biological specimens by optical tweezers231–233. Potential sources

for photodamage were cited as the generation of reactive oxygen species, two-photon

absorption and transient local heating. It would be interesting to analyse the possible

influence of these factors in future work.

It has previously been proposed that repulsion of the Spitzenkörper organelle complex

by the optical trap is responsible for the variety of growth responses observed196,223,224.

The work presented here provides further evidence to support this. It is only when the

optical tweezers or light patterns were positioned at the hyphal apex that redirection of

tip growth took place. Repeatedly switching the irradiation of the growing hyphal apex

from one side to the other resulted in a repeated redirection of the growth axis giving

rise to a zig-zag pattern of filamentous growth218,223. Figure 4.15 shows that even though

the gaps between multiple optical traps were much smaller than the width of the hyphal

tip it was not smaller than the Spitzenkörper which could therefore fit through the gaps

without being influenced by the laser. Lines and ‘pseudowalls’ of light were shown to be

much more effective at redirecting hyphal growth and when sufficient power was used, the

hyphal tips were unable to grow across the light barriers.

It is not possible to say whether the effects of light at the green, near infrared and in-

frared wavelengths are a physical phenomenon. Examples include optical repulsion of

the Spitzenkörper224 or aversion to localised heating. Other possible phenomena include

local intracellular generation of reactive oxygen species231 or a photoreceptor-mediated

negative phototropism224.

It is believed that the growth alteration for both discrete and continuous patterns of light

cannot be explained simply by the physics, i.e. optical forces, but must involve some

unknown biological phenomenon.

The reason why hyphal branches were induced when hyphae became constricted by grow-

ing into narrow channels bordered by light is unclear. It is possible that the initial per-

turbation of hyphae by laser irradiation resulted in branch formation. Hyphal branch

induction is often observed at the point of initial exposure to a laser trap223 and has

also been initiated by using tweezers to apparently concentrate secretory vesicles within

hyphae196.
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The axial extent of the two dimensional continuous light patterns produced was very small

compared to the actual vertical extent of the hyphal tips (< 18 µm) so the alignment of

the system and point of focus are thus highly critical. In order to increase the alignment

tolerance, ‘pseudowalls’ of light were investigated and found to produce very consistent

results in terms of redirecting hyphal growth. Also, the hyphae seemed less perturbed

by the walls and followed the barriers much more closely than the single line of light.

Two possible reasons for the improvement in results obtained with the three dimensional

pseudowalls of light are as follows. Firstly, the same total power was used for both the

pseudowalls and lines of light, but the pseudowall was spread between nine individual

planes so at any one point the light was less intense, thus less damaging to cells. Secondly,

because the pseudowalls were extended axially, given a misalignment in the system, there

was a higher chance of the hyphal tip and Spitzenkörper being coplanar with the light field.

It is foreseen that one of the main advantages of holographic beam shaping is its ability

to produce light patterns with axial extent, unlike, for example, AODs. To increase the

tolerance still further, the possibility of creating true three dimensional walls of light234

could be explored in future.

4.4.4 Conclusion

Optical tweezers provide a useful tool to manipulate the pattern of growth in filamentous

fungi. More advanced techniques offer the potential to create artificial networks of hyphae

in three dimensions by growing these filamentous organisms through light mazes. Fungal

hyphae within mycelial networks sense and respond to each other in complex ways which

regulates the morphology of the colony. Being able to precisely manipulate the three

dimensional nature of these networks with light mazes may provide a useful experimental

technique to analyse cell-to-cell communication in these complex systems.

4.5 Thermocapillary digital microfluidics

This third application of beam shaping is in the manipulation of objects ∼ 100 µm in

size, sealed within microscopic channels. The objects are microscopic droplets of liquid

water carried in a flow of oil and confined within microfluidic channels. Microfluidics is

currently a very ‘hot-topic’ largely encompassed by the term ‘lab-on-a-chip’. The aim

of the majority of this research is to establish techniques that allow processes normally

carried out in large laboratories to be performed on hand held chip sized devices. With

many macroscopic experimental techniques it is the analysing, sorting, counting, mixing,

assaying and labelling of liquids and their contents that is key.
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The work described was carried out as a collaboration with Laboratoire d’Hydrodymanique

at École Polytechnique in Paris. The project was caried out by myself, Maria-Luisa

Cordero, David McGloin and Charles Baroud.

The essence of the field is to minimise the amount of analyte used, down to microscopic

volumes, and to provide automation through the miniaturisation of fluid handling systems

to enable efficient and highly parallel measurements of biological and chemical processes.

The benefits are clear, for example, rather than taking a syringe of blood from patients a

pin prick drop will suffice to perform a multitude of tests.

Many approaches are being explored towards this goal, of which the manipulation of

droplets in microchannels is one of the most promising235–237. In this binary-like ‘digital

microfluidics’ each droplet can be thought of as an independent vessel containing a reac-

tion one may want to perform repeatedly, for example in the case of controlled chemical

synthesis236, or instead, vary the parameters of in order to explore a large number of

combinations237–239.

One major criticism of this area of research is that rather than the devices being lab on a

chip they are more like chips in a lab, with the small devices requiring a large amount of

surrounding apparatus for them to operate. The experiments here fall within this latter

category with the large holographic apparatus described thus far being a crucial part.

However, I see this investigation as a proof of principle with a clear direction to possible

commercial designs because of its flexibility and isolation from the microfluidic channels.

To perform the basic operations required several integrated methods have previously been

described, including electrical240–242, direct optical manipulation243,244 and indirect op-

tical245. All these techniques require direct integration with, or modification of, the mi-

crofluidic channel. The holographic method requires no such modification or integration

allowing for much greater versatility. Should specific processes, and those alone, be re-

quired it is not far fetched that truly lab on a chip devices could be made, especially when

considering microscopic devices that already exist246.

I introduced HOTs in chapter 1 as a versatile tool in standard colloidal and biological

studies247. They are also providing increasingly complex possibilities in the control of

droplets in the micrometer size range179. Currently manipulation through optical forces

alone is limited to these micron size regimes but here I extend the idea that optics can

induce a process, which itself creates far larger forces and hence can act affect larger

objects248.
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4.5.1 How it works

Our technique varies the surface tension of the droplets locally, through the use of a

focussed laser beam, thus inducing a thermocapillary force on the drop. For liquids without

surfactant, local heating produces a reduction in surface tension at the interface and a

Marangoni flow is set up from hot to cold regions (low to high surface tension). However,

for liquids with surfactant, the surface tension increases with local heating so the flow is

in the opposite direction, from cold to hot regions, opposite to what one may expect. This

action can produce a net force that can block the formation of drops, carry out simple

routing174, fuse them, synchronise them or control their division248.

Here I demonstrate that the combination of microfluidics with my holographic methods,

that have formed the core of this chapter, extends the possibilities of droplet manipulation.

The contactless nature of the holographic manipulation system allows the use of different

laser patterns to implement complex operations that are not possible using the current

electrical forcing and direct optical manipulation methods. The ability to vary the shape

of the laser beyond a simple Gaussian beam provides an additional degree of freedom

which can extend the limits of the technique. I investigate the effect of the laser beam’s

shape on the blockage of droplets then go on to demonstrate novel implementations which

show conceptually new operations on drops in microchannels.

4.5.2 Apparatus and experimental specific to microfluidics

Again I employed the apparatus in figure 3.12 except with one key difference between

our approach and standard optical tweezers. Here the forces are only indirectly produced

by the application of the laser beam. Therefore, there is no need for high NA optics, as

optical gradient forces will not affect droplets of the sizes used (∼ 200 µm).

Two objectives were used over the course of the experiments; the first was a Nikon 10x

(NA = 0.25) and the second a Mitutoyo 10x (NA = 0.26) both of which focus the beam

into the prefabricated microfluidic channels positioned on the usual three axis translation

stage above the objective taking the place of the ‘generic sample’.

The microfluidic chips were fabricated with molded polydimethylsiloxane (PDMS) (Syl-

gard 184, Dow Corning) using standard soft lithography techniques and sealed against

a glass microscope slide. The dimensions of the channels ranged from 75 to 200 µm in

width and were 50 µm in height. Oil (Hexadecane + Span 80, 2% w/w) and an aqueous

solution (water + ink 2% v/v) are injected into the channel using syringe pumps. Dark

blue Parker pen ink was added to the water in order to absorb the 532 nm light to in-
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duce heating. Were chemically, biologically, or physically sensitive material to be placed

within the droplets it is possible to use other absorbing dyes depending on absorption

requirements and the laser wavelength used248.

In order to investigate the effect of different light patterns on drops, the minimum optical

power, Pmin, required to block the advance of a drop, was studied for three different shapes.

These were a Gaussian focus with 0.5 µm radius beam waist, a straight line aligned along

the flow direction, and a straight line orthogonal to the flow direction. Both lines were

2 µm in width and 200 µm in length. The PDMS microchannels had two oil inlets and

one for aqueous solution. Droplet size is determined by the ratio between the first oil flow

rate Qoil−1 and the water flow rate Qwater, which were both kept constant. The second

oil flow rate Qoil−2 was used to tune the total flow rate Qtot = Qoil−1 +Qoil−2 +Qwater.

This enabled the size of the droplets to be kept constant while their velocity varied with

Qtot.

4.5.3 Results

The first observation, as the drops reach the laser beam, is that the water-oil interface

adapts to the laser shape, as seen in figure 4.21. When the line is parallel to the direction

of flow, the front interface is flattened and the drop stops after advancing through a

significant portion of the line. In the case of a line perpendicular to the flow direction,

the surface of the drop is even more flat than in the previous case, taking on the shape of

the line. For a Gaussian beam the drop behaves similarly to the former case but not with

as large a magnitude.

Figure 4.21: The effect of (a) a line parallel to the flow, (b) a line perpendicular to the
flow, and (c) a Gaussian beam, upon the profile of a droplet. It is clear in image (b)
that the droplet morphs to match the pattern. The black marks and the reason for
their occurence are described in section 4.5.4.

For each optical pattern, the total flow rate was varied from Qtot ≃ 1 − 11 nLs−1 in

increments of 0.17 nLs−1 and for each rate the laser power was started at high values and

reduced for successive drops, until the minimum power Pmin that still held the drops was

reached. The maximum flow rate attained was limited by the water in the drops boiling,

not by the laser being unable to block the droplets.
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The minimum laser power for each of the laser distributions is plotted against the total

flow rate in figure 4.22. The minimum optical power scales approximately linearly with

flow rate for each pattern with gradients and intercepts differing for all three cases. The

use of a line perpendicular to the flow allows the blocking of drops at higher flow rates, up

to more than 10 nLs−1. Conversely, even though a lower laser power is necessary to hold

the droplets in the case of a single Gaussian beam, it was not possible to hold droplets for

flow rates higher than about 5 nLs−1. This was also the case for the line parallel to the

flow.

Figure 4.22: Minimum laser power required to block a drop at varying flow rates for a
Gaussian beam and lines parallel and perpendicular to the direction of flow.

If the pattern intensity is calculated and plotted instead of power, the minimum intensity

Imin necessary to block a droplet is found to be several times higher for a Gaussian beam

than for a line distribution as shown in figure 4.23. The perpendicular line is found to

block droplets for the lowest value of Imin.

I will now consider the advanced operations made possible by the use of holographic beam

shaping and how single beam applications can be extended.

Routing (simple sorting)

Firstly I demonstrate the re-direction of droplets into different channels at a trifurcation.

Making use of the ability to both dynamically switch the optical patterns projected into the

microfluidic channel and the ability to create extended patterns (in this case four separate

Gaussian beams), droplets can be deflected through large angles and sent into preferred

channels. This is shown using a four way cross channel in figure 4.24 demonstrating the

droplets being routed to the left, straight on or to the right. The switching time of the
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Figure 4.23: Minimum laser intensity required to block a drop at varying flow rates
for a Gaussian beam and lines parallel and perpendicular to the direction of flow.

droplets into a given channel is limited only by the update speed of the SLM, ∼ 75Hz. With

integration of simple image recognition software and hologram switching this could provide

a robust method for sorting in digital microfluidics, one of its major applications. One

could imagine the sorting being based on droplet size, chemical composition, fluorescence

measurements or simply the contents of a drop.

100 µm

(a) (b) (c)

Figure 4.24: Four Gaussian beams are aligned to route droplets into either (a) the
left-hand channel, (b) the center channel, or (c) the right channel. The flow is from
image bottom to top. The insets show the positions of the holographically generated
multiple Gaussian foci within the channel.

Storage and re-ordering

Next I show an example that goes beyond simple Gaussian beams by using continuous

line patterns of light to store droplets at given points in the channel while rerouting other

droplets to move past the stored droplet. The line patterns produced cannot be treated

like a simple Gaussian beam and exist with relatively low fidelity over the same axial
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distance but remain sufficiently intact to produce the desired effect. Snapshots from an

example video using such lines are shown in figure 4.25. The first line upstream is set

to move a droplet into one side of the larger channel. The droplet is then stored by the

second, downstream, line further along the channel. The first line is then changed so as to

move subsequent droplets in the flow past the first droplet. Thus droplets can be stored

and could be interrogated without the need to stop the flow, which is important if one

wishes to obtain longer interrogation times. Note that the ability to focus the laser to a

small area on the drop, allows real droplet-level manipulation, contrary to electrical fields

which produce a uniform forcing on a region of the microchannel. This is what allows the

drop order to be inverted in this case.

t = 0 s

100 µm

t = 0.4 s

t = 3.3 s

t = 5.8 s

t = 8.1 s

t = 8.7 s

Figure 4.25: Image sequence (left column followed by right column) showing droplet
storage and potential re-ordering. The initial drop is sent down and held stationary
and droplets thereafter are sent up past the first. The flow is from left to right. Dashed
lines overlay the position of the laser patterns.

Multiple Storage (Memory)

Extending the previous idea allows multiple droplet storage, shown in figure 4.26. Here

several droplets are trapped at once, first one, then two and finally three using three lines

of light. Again this is in the presence of droplets flowing through the channel. It is then

possible to shuttle the droplets through the pattern, by turning the whole pattern on and

off, so the first droplet is lost and the second droplet takes its place and so on. This allows

large scale storage and controlled movement of many droplets simultaneously which may

be useful for analysis of droplets, droplet re-ordering or droplet ‘memory’ applications.
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Figure 4.26: A drop treadmill holds up to three droplets and can function as a first-in-
first-out buffer memory. The triangle marks the same droplet in the different images
(sequenced left column followed by right column), indicating its movement. Dashed
lines overlay position of the laser patterns. Total power in sample plane is ∼ 475 mW.

Finally I demonstrate, in figure 4.27, the forces produced are large enough to stop droplets

filling the whole channel or touching the channel walls. It is hoped with further work it

may be possible to design microfluidic channels and optical fields that would allow ‘wall-

less’ microfluidics.

Figure 4.27: Five separate Gaussian beams are placed in a line parallel to one wall. In
the left-hand image the laser is off and the droplet touches the top wall as it is formed.
In the right-hand image the laser is on and the droplet is prevented from touching the
upper wall. Three foci are clearly visible, due to droplet contact, with two more to
their left. Scale bar is 100 µm.

4.5.4 Discussion

I have extended previous work that allows optical fields to induce the production of forces

well above those possible from the scattering and gradient forces alone. The use of dynamic

holography allows a system of microfluidic control whose purpose of operation can be

altered in real time and allows microfluidic channels to be easily interchanged.

Outlined above are just a few simple examples providing some novel operations. The

system is sufficiently simple and user friendly that if the desired operation for a particular
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application does not exist, it can be created with relative ease.

The operations explored here are either controlled by the user manually choosing the

kinoform to be displayed or by a simple timer between displayed kinoforms. This could be

automated in several ways. Should the system be used in conjunction with spectroscopy or

other forms of analysing system the results could be fed back into the kinoform software to

produce the desired operation on the droplet under study. Using computer aided machine

vision, particularly in LabVIEW, the automation could be quickly implemented and with

training could recognise a plethora of shapes, colours or patterns with which to decide the

outcome of the kinoform displayed.

The droplet throughput of the system is really limited by the speed at which the light

patterns can be altered. In this setup it is calculated that the number of droplets which

could be affected using the perpendicular line, hence the system’s limiting throughput

from the maximum force imparted, is ≃ 2200 s−1.

Quite obviously some results in this section show ‘black marks’, most noticeable in fig-

ures 4.21 and 4.26. These marks are believed to be a mixture of ink and surfactant that

has been released from the surface of the droplets upon interaction with the laser focus

that is then deposited on the upper PDMS surface. Their effect is negligible unless a large

amount of power is left at a single location for prolonged periods of time.

The process of optically induced thermocapillary forces works due to a localised heating

and subsequent temperature gradient. This temperature has been shown to rise by up

to 55◦C249 which could both hinder and assist future applications. For example, many

reaction rates increase with higher temperatures but should one study mammalian cells

this heating of the surroundings can be detrimental. Temperatures greater than ∼ 42◦C

cause denaturation of proteins and DNA ending in cell apoptosis250,251, a known problem

in optical manipulation232. There are mechanisms that could circumvent this problem by

pre-stressing cells so subsequent stress is less damaging252.

4.5.5 Conclusion

In conclusion this work demonstrates that holographic beam shaping has a number of

advantages over conventional methods of inducing thermocapillary forces on droplets.

Extended patterns of light offer significant additional functionality over techniques using

a single optical tweezers, which can lead to enhanced control in digital droplet microfluidic

devices.

This optically induced thermocapillary force technique is superior to electrical forcing
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methods as no electrodes need to be built into the system with careful design. The method

also outweighs manipulation through optical forces alone should one wish to manipulate

mesoscopic scale objects.

4.6 Outlook

All the applications in this chapter have not only produced the results contained here but

the principles continue to be used by colleagues and collaborators where the experiments

have been developed further.

The Aerosol Dynamics group in Bristol, headed by Dr Jonathan Reid, uses the software

and apparatus in combination with spectrometers, as discussed earlier, to further advance

their understanding of atmospheric chemistry with the multiparticle abilities providing a

unique tool. The Ritchie group in Oxford, headed by Dr Grant Ritchie, uses a HOT system

with my software for applications in the probing and controlling of chemical processes.

4.7 Conclusion

In conclusion I have demonstrated three entirely new applications of holographic optical

tweezers through two orders of magnitude in dimension. This is starting to show the

versatility of optical manipulation in inter-disciplinary fields of research.

Without the application of SLMs the physics and effects observed could be greatly differ-

ent. For aerosols this will be discussed in parts of the next chapter. For fungi the ability

to make three dimensional ‘walls’ of light to increase the phenomenon efficacy would not

have been possible. In microfluidics the timescales over which the different types of beam

shaping work allows interaction with the hydrodynamics of the system due to similar

timescales in this area of physics253.

I have also shown a preliminary investigation using beam conversion to transfer orbital

angular momentum to airborne droplets that has promise in tackling the problem of

observing the orbital angular acceleration of objects due to the orbital angular momentum

of light.

The first application of this chapter regards the optical manipulation of aerosols, the

understanding of which is unclear. It is for this reason that the next two chapters are

dedicated to the study of single beam gradient traps of liquid aerosols in the hope of

gaining an understanding of how such experiments behave and operate.



Chapter 5

Single Beam Studies of Trapped

Aerosol Dynamics

Most aerosol tweezing has been applied in the study of atmospheric chemistry with no

detailed studies into the physics or limits of such experiments. This is understandable

because the experiments often work well enough to provide precise results without ques-

tioning how it works. However, should one wish to push forward the boundaries of the

technique, its understanding will clearly assist. For example the current size range of

aerosol trapped is approximately 2−7 µm in radius, within the coarse mode, but to move

into the atmospherically important accumulation mode the physics will need to be pushed.

This chapter describes the investigation of the parameters affecting airborne tweezing,

the limits these produce and the surprising physics arising. The information contained

within has allowed a new method for sizing to be developed, will help to improve similar

techniques and will assist future researchers.

5.1 Brownian motion

Anyone who has peered down a microscope at suspended microscopic objects will have

noticed their ‘random walk’ through the sample. It is now well known that the factor dom-

inating this ‘walk’ arises from the thermal motion of surrounding molecules. First noticed

by Brown254, it was not explained until Einstein255 and subsequently by Smoluchowski256

and Langevin257 who realised the particle in motion would diffuse just like a molecule in

the fluid, hence its diffusion could be calculated using the equipartition of energy theorem.

Finally, Perrin258 performed an experiment that agreed with their predictions and proved

97
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the atomic nature of matter259,260. Since then Brownian motion has provided many op-

portunities for analogies in areas beyond microscopic diffusion, for example in the stock

market261, and over 100 years after its explanation255 research continues into its further

understanding and application262.

The understanding of Brownian motion can be used in conjunction with optical detection

to determine the size of microscopic colloidal suspensions263,264 or to measure Avogadro’s

number260. Recently it has allowed optical traps to provide a useful tool in diverse research

fields capable of acting as a force transducer for molecular biology142, viscometry265, mi-

croscopy266, and fundamental physics267. These applications often use the power spectrum

method268 to detect position269, measure forces270, or investigate colloidal dynamics271

and rely on the study of over-damped systems272.

The investigation of over-damped systems via optical trapping has produced classic ex-

periments with important physical results including tests of Kramer’s theory273, measure-

ments of critical Casimir forces267 and cross correlations between colloids271. The various

optical potentials created through optical manipulation have, for example, been used to

investigate colloidal crystals274,275, with particle dynamics providing analogies in thermal

ratchets101 and freezing276.

All experiments in optical tweezers in a water type environment behave as over-damped

oscillators but there have been discussions that under-damped motions are reachable277

and comments that this should not be possible272,278. Rarely have systems that are

not over-damped been investigated83,277 but as mentioned in the introduction, there is

a resurgence in the original airborne particle experiments of Ashkin14,58,79. Due to the

importance of inertia in such systems they provide a drastically different damping envi-

ronment and hence experimental possibilities. This would allow the testing of whether

under-damped motion in an optical trap is possible as expected theoretically.

Little thought has gone into the mechanical dynamics of airborne systems279 but these

need to be investigated with the realisation they could provide access to the little probed,

under-damped regime83. To define the problem and construct the solution of describing

a Brownian particle’s motion I will use the approach taken by Langevin257 due to its

relative simplicity.

5.2 Theory

Throughout this work I assume the particle velocity is well below the speed of sound and

the propagations of interactions in the fluid are instantaneous, hence the fluid is treated
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as incompressible280. It has been established the frictional viscous drag force on a sphere,

with vanishing Reynolds’ number, immersed in a fluid is governed by Stokes’ law, and

with corrections due to the finite Knudsen number is

Fstokes = −6πνρfluidRv

Cc
= −γ0ẋ, (5.1)

so the equation of motion for such a particle is

mẍ+ γ0ẋ = 0, (5.2)

or equally

ẍ+ Γẋ = 0, (5.3)

where x is position, Γ = γ0/m = 1/τ , τ is the velocity relaxation time, m is the particle’s

mass and all other symbols retain their previous meaning.

Equation 5.2 is only valid when the particle mass is large enough that its velocity due to

thermal fluctuations is negligible. For sufficiently small particles one must consider their

thermal energy which, from the equipartition theorem, is

1

2
m
〈

ẋ2
〉

=
1

2
kBT, (5.4)

where kB is Boltzmann’s constant and T is temperature. If the particle mass is still large

compared to that of the molecules equation 5.3 can be modified to include the effect of

thermal motions becoming281

ẍ+ Γẋ = Λ(t), (5.5)

where the time fluctuating force per unit mass Λ = λ(t)/m and λ is a stochastic force.

Λ(t) has the properties that its average over an ensemble (of measurements for example)

is zero;

〈Λ(t)〉 = 0. (5.6)

Given that the duration of a collision between molecule and particle, τ0, is shorter than

the time difference t′ − t then
〈

Λ(t)Λ(t′)
〉

= 0, (5.7)

but usually the collision time is so brief compared to the relaxation time, τ = 1/Γ, that

the limit τ0 → 0 can be used and hence

〈

Λ(t)Λ(t′)
〉

= qδ(t− t′). (5.8)

The spectral density of Λ(t) is, by the Wiener-Khintchine theorem281, the Fourier trans-
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form of the correlation function in equation 5.8;

SΛ =

∫ ∞

−∞
e−iωτ

〈

Λ(t)Λ(t′)
〉

dτ =

∫ ∞

−∞
e−iωτqδ(τ)dτ = q, (5.9)

and is hence independent of frequency, ω. With some maths (pages 32-34 in Risken281)

equation 5.5 can be used to find the velocity correlation function to be

〈ẋ(t1)ẋ(t2)〉 =
q

2Γ
e−Γ|t1−t2|, (5.10)

thus the average energy of the particle is

〈E〉 =
1

2
m
〈

ẋ2
〉

=
1

2
m

q

2Γ
. (5.11)

Combining this with equation 5.4 gives

q =
2ΓkBT

m
(5.12)

therefore the equation of motion for a particle undergoing thermal fluctuations, or Brow-

nian motion, is281

ẍ+ Γẋ =

(

2ΓkBT

m

)
1
2

η (t) . (5.13)

where 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′). When studying the behaviour of particles in

traps, the physics is modified slightly by placing the particle under motion in an external

potential. Traditionally this is said to be a harmonic potential well arising from the

focussed laser and to within a good degree of accuracy this picture is correct282.

Previously I defined the Reynolds’ number as equation 4.1 involving a velocity term.

Unfortunately only the frequency of oscillation is known in our case, but knowing the

approximate amplitude of oscillation, a, the velocity of the sphere is of the order aω hence

I redefine the Reynolds’ number to be280

Re =
aωR

ν
, (5.14)

where the symbols retain their same meaning. The oscillation of the sphere generates

waves which are damped by the surrounding viscous fluid as they propagate away from

the sphere surface. Therefore, introduced is the term depth of penetration,

δ =

√

2ν

ω
, (5.15)

such that the wave amplitude falls off by a factor of e in a distance δ.
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In order to simplify the Navier-Stokes280 equation, such that the drag on a sphere simplifies

to Stokes’ law, there are the two conditions

δ ≫ R hence R2ω ≪ ν (5.16)

and
ωaR

ν
≪ 1. (5.17)

Using equation 5.13 multiplied by m and assuming the fulfillment of the criteria in equa-

tions 5.16 and 5.17 the Langevin equation describing the motion of a microsphere of radius

R, mass m, in a fluid of temperature T , kinematic viscosity ν, density ρfluid and trapped

in a harmonic potential of stiffness κ is280,283

mẍ (t) + γ0ẋ(t) + κx (t) = λη (t) , (5.18)

where γ0 = 6πρfluidνR is the viscous damping of the medium, λ =
√

2kBTγ0 is the Brow-

nian stochastic force281,284 and kB is the Boltzmann constant. This equation describes

the motion of an optically trapped particle residing in a harmonic potential well that

experiences a Hookean restoring force when displaced by Brownian stochastic forces.

Generally the two unknown quantities are κ and γ0, as these system properties are complex

to ascertain without direct experimental observation. By studying the Brownian motion of

particles in harmonic potentials these parameters can be deduced and hence the properties

of the tweezers or surrounding environment. It is possible to obtain the particle mass,

or radius, from studying their Brownian motion but there are several complications that

make this difficult as will be explained in section 5.4.2.

The third term in equation 5.18 arises as the optical forces are treated as a Hookean spring

such that given the trap stiffness κ (normally in units of pNµm−1) the force, F , can be

obtained from

F = −κx. (5.19)

This simple formula in the right instrument can yield incredible results. It is the dis-

placement calibration of instruments that allows precise displacement measurements, far

beyond the diffraction limit of the light being used to tweeze. This in combination with

trap stiffness calibration allows calculation of the forces being exerted on trapped objects.

Optical tweezers can measure a range of forces from ∼ 10’s fN to ∼ 100’s pN27,285. These

forces and associated displacements are in the realm of those that occur at the biomolec-

ular level so provide a wonderful tool for their study, for example it enables displacement

measurements reaching down to the Angström level142, and force measurements of 25

fN285.
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The advent of numerical models enable precise calculation of theoretical forces, stiffnesses,

and other parameters when tweezing objects within a specific system. Comparing these to

experimental data governed by equation 5.18 allows the determination of the viscosity of

environments, the viscoelastic properties of complex fluids286 or measurements of particle

refractive index287.

5.2.1 How can the parameters be measured experimentally?

Optical tweezers have been coupled with advanced position detection systems providing

incredibly precise measurements of force285, displacement142, and, in conjunction with

complex numerical simulations, physical properties of microscopic systems287 in the liquid

phase. Position and force measurement relies on calibration of the detection system or

measurement of trap stiffness, respectively, through position sensitive detectors, video

tracking or quadrant photodiodes (QPDs) to detect particle position288,289.

I will give a brief overview of how the instruments can be calibrated and the trap stiffness

determined. The escape force method was described in section 2.3 as an introduction

to measuring lateral efficiency, Qρ, and so I will begin with the next most complicated

method.

Drag force method

This is the first method that really needs precise position measurement. Taking equa-

tion 5.19 and knowing the displacement for a given force allows calculation of trap stiff-

ness38,290; κ = −F/x. This known force can be created by relative flow between fluid and

particle but the position sensor must be calibrated to give κ in the correct units. As with

the escape force method the viscous drag must also be known, which unless for a spherical

particle, can be complex to determine.

Equipartition method

Using the equipartition theorem of energy, equation 5.4, for a particle bound in a harmonic

potential;
1

2
kBT =

1

2
κ
〈

x2
〉

, (5.20)

κ can be determined. No knowledge of the medium viscosity is needed but the position

detection system must be well calibrated to provide precise true positions with the detector

having a high bandwidth38,291. A disadvantage is the susceptibility of the technique to
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noise which will increase the average squared displacement.

Power spectrum method

The power spectrum method269,270,290,291 is considered the most reliable292 and works

through the equipartition theorem at non-zero frequency. By measuring and calculating

the power spectrum of position fluctuations one can obtain the trap stiffness, κ, indepen-

dently of the detector calibration. If an absolute detector calibration is known then the

viscous damping can be extracted which, if the radius is known, can give the viscosity of

the fluid. There are subtle differences in analysis when studying a system where inertia is

and is not a significant contributor to the motion. The manner in which parameters can

be extracted and the pre- and co-requisites required, vary between the two situations and

I will discuss this in section 5.4.2.

Step response method

An extension of the drag force method, the response of a trapped particle to a stepwise

translation of the trap allows calculation of the stiffness. For a small step, xt, the response

in displacement, after time t, is293,294

xb = xt

(

1 − e−κt/γ0
)

, (5.21)

where again the viscous drag, γ0, must be known but the detector calibration is not

required.

Combining the latter two methods, the viscous drag on the particle does not need to be

known in order to find the trap stiffness295. The particle can be oscillated with AODs or

a sample stage allowing determination of both trap stiffness and viscosity independently

from experimentally measured parameters alone.

To measure the power spectrum of harmonically confined Brownian motion the ideal

method would be both highly precise and fast. Interferometry allows high precision mea-

surements of particle position through the interference of scattered light from an optically

trapped object. Coupled with detection on a photodiode, with bandwidths in the MHz

regime, these ideal goals are achieved.

In this investigation, to characterise the Brownian motion of droplets within optical traps,

a QPD was employed and the power spectrum method used as it is considered the most

reliable292. Although I am mainly concerned with observing the dynamics of trapped
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aerosols, it is feasible to use this method to measure precise forces and position. Normally

the method is used for calculation of trap stiffness with prior knowledge of the surrounding

medium’s viscosity and the particle radius28, but, it will be shown that when in air, only

the radius is needed.

5.2.2 Why should the dynamics of optically trapped aerosols be studied?

The interest and benefits of aerosol tweezing was discussed in chapter 1 and the introduc-

tion to this chapter. The experiments described and those of colleagues throws up many

questions relating to the physics of the system. With no real detailed study on airborne

tweezing, beyond the most basic level11, coupled with unusual behaviour it was felt it

would be pertinent to investigate the system fully.

The unusual trapping behaviour in air, compared to trapping in liquid media, include

the following. Varying trapping power alters the axial equilibrium position of droplets

resulting in ‘power gradients’279 with further increases causing its loss, as shown in fig-

ure 5.1. Given a polydisperse nebulised sample the initial power used to capture a droplet

gives a pronounced size selectivity12,179 and once trapped the droplet can undergo vertical

oscillations at frequencies of ∼ 0.1 − 10 Hz.

Figure 5.1: Images showing increasing defocus as a function of increasing power (left
to right). The defocus is due to the increase in height at which the droplet sits above
the coverslip, hence image plane. The droplet can be returned to its lower position by
simply decreasing the power. At times it can be pushed so far it is no longer visible
yet it can still be recovered.

So, the aim of this study is to develop an understanding of the process of aerosol trapping.

This will be done by looking at the transition from over- to under-damped motion in

detail, investigating whether the mechanical dynamics of the system cause the observed

phenomena and exploring the parameter space by analysing dependence on power, size

and depth into the sample.
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5.2.3 Theory for power spectrum of harmonically trapped microspheres

I will begin by looking at the classical use of power spectra in optical trapping. For

a colloidal system the characteristic time for loss of energy through friction, tinert =

m/γ0 ≃ 100 ns, is far shorter than the experimental time resolution ≃ 20 µs, and so it

is a reasonable approximation to follow Einstein255 and neglect inertia. In this case the

Langevin, equation 5.18, becomes

ẋ (t) + ωcx (t) = Dη (t) , (5.22)

where ωc = κ/γ0, the corner frequency and D = kBT/γ0, Einstein’s diffusion coefficient.

Fourier transforming equation 5.22 and finding the expectation value decomposes the

motion into its frequency components to give the power spectrum of position fluctuations

to be

Soverx (ω) =
2kBT

γ0

1

ω2 + ω2
c

. (5.23)

The corner frequency is defined as the frequency at which the power reaches half its low

frequency asymptotic value. The power spectrum has a characteristic tail with gradient

ω−2 and a low frequency plateau of amplitude 2kBTγ0/κ
2.

When studying objects in air the time for loss of energy through friction, tinert, is now,

due to the lower dynamic viscosity, longer than the experimental time resolution and so

inertial terms can no longer be neglected. Re-arranging equation 5.18 now gives

ẍ(t) + Γẋ(t) + Ω2x(t) = Λη(t), (5.24)

where Ω =
√

(κ/m) is the natural angular frequency of the droplet’s position fluctuations,

Γ = 6πηR/mCc is the viscous damping of the medium, and Λ =
√

(2kBTΓ/m) is the

Brownian stochastic force per unit mass281,284 where kB is Boltzmann’s constant.

Fourier transforming equation 5.24 and finding the expectation value gives the power

spectrum of position fluctuations for a system including inertia to be

Sinertiax (ω) =
2kBT

κ

Ω2Γ

(ω2 − Ω2)2 + ω2Γ2
. (5.25)

This spectrum has a characteristic high frequency tail with ω−4 gradient and a plateau

value at low frequencies equal to 2kBTΓ/κΩ2. As inertia is included there is an additional

limiting case at the point of inflection equal to 2kBT/κΓ. I also define the ratio of damping

coefficient to natural frequency as the ‘damping ratio’, Γ/Ω. For over-damped systems this

is always greater than unity, as is found for colloidal systems where it is usually greater
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than ten. When trapping in air the system has the potential to become under-damped

and hence Γ/Ω < 1.

In figure 5.2, I plot the theoretical power spectrum of position fluctuations for two systems

that include and exclude inertia.
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Figure 5.2: Power spectrum examples for systems including and excluding inertia. (a)
Neglecting inertia for a 1 µm sphere trapped in a water medium with trap stiffnesses
1 pNµm−1 (dashed black line), 10 pNµm−1 (dash-dotted blue line) and 100 pNµm−1

(solid red line). (b) Including inertia for a 6 µm water droplet trapped with stiffnesses
1 pNµm−1 (dashed black line), 3.5 pNµm−1 (dash-dotted blue line) and 10 pNµm−1

(solid red line).

Hydrodynamic corrections

For both cases when inertia is and is not included the Langevin equations assume the

motion occurs in bulk fluid media with uniform velocity, far away from other objects and

surfaces so Stokes’ law only needs to be corrected for finite Knudsen number. However, in

reality the objects here are undergoing linear harmonic motion within reasonable proximity

(≤ 10R) of a coverslip so it is inappropriate to assume Stokes’ law still applies. Analysing

this problem it is seen there are two significant corrections that need to be applied to the

’in bulk’ theory.

Firstly I will look at the ‘true’ behaviour due to linear oscillations within fluid. Although

a limiting result of Stokes’ original paper296 was indeed the familiar law that bares his

name, describing the drag on a sphere in uniform motion through a fluid, his paper was

concerned with the oscillation of pendulums in fluid. This is similar to the processes

occurring here but, rather than gravity driven, it is stochastic Brownian motion delivering
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the energy. He showed that the friction on an oscillating sphere is280,296,297;

Ffriction = −γ0

(

1 +

√

R2ω

2ν

)

ẋ− 2

3
πρfluidR

3

(

1 +
9

2

√

2ν

R2ω

)

ẍ. (5.26)

The first term comprises the familiar Stokes’ drag plus a frequency dependent correction.

The second term arises from the inertia created by any fluid entrained due to the particle’s

past motion. This hydrodynamic correction is often neglected83,142,277,298,299, at times

with good cause, but needs to be applied when requiring precision > 10%297. Here I will

try to justify my exclusion of such terms in a little detail.

Using equation 5.26 and following Berg-Sørensen et al.297 I derive the hydrodynamically

correct power spectrum in angular frequency to be

Sinertx−hydro (ω) =
2kbT

κ

Ω2Γ

(

1 +
(

ω
ων

)1/2
)

(

Ω2 − Γ
(

ω3/2

ω
1/2
ν

)

− ω2Γ
ωm

)2
+
(

ωΓ + Γ
(

ω3/2

ω
1/2
ν

))2 , (5.27)

where ωm = Γ/(1 + 2πρR3

3m ) and ων = 2ν/R2. For systems where inertia is included the

definition of ωc clearly can no longer apply so the dependence on corner frequency has

been removed. The low density of air reduces ωm’s denominator close to unity, so effec-

tively removing any effective mass considerations as the entrained fluid is negligible300.

Decomposing equation 5.26 into frequency components via Fourier theory (equation 31 in

Berg-Sørensen and Flyvbjerg297) shows air’s larger kinematic viscosity, hence ων , produces

a reduction in any correction to Stokes’ law compared to trapping in water. Considering

these arguments, reviewing relevant and similar work, and understanding I am not at-

tempting to make highly precise measurements, I believe I am justified in neglecting the

frequency dependent friction correction. Also note that other sources of error inherent in

the experiments, discussed later, will dominate over any induced by this exclusion.

The second correction to be considered is that given by Faxén regarding the force on a

sphere in motion near a plane surface, exactly what occurs when trapping with high NA

optical tweezers due to the proximity of coverslips. Here I only consider the correction in

the lateral direction although both axial and rotational equivalents exist301,302. Faxén’s

law shows the viscous drag on a sphere increases as it approaches a plane surface according

to303

ΓFaxen =
Γ

1 −
(

9R
16L

)

+ 1
8

(

R
L

)3 − 45
256

(

R
L

)4 − 1
16

(

R
L

)5 (5.28)

where L is the distance between sphere centre and surface. For the particle sizes studied

here this can have a dramatic effect on the friction experienced; even when trapping at

distances approaching 40 µm from coverslips there can be a 7% increase.
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Calibration

The final theoretical consideration is that to compare power spectra in given data sets

one must calculate the detection system sensitivity, β, given in volts output per unit

displacement of the particle. This is because the sensitivty can alter between experiments

due to variations in power or simply geometry at the focus. Finding β allows voltage power

spectra, those directly from data, to be converted to physical spectra, nm2Hz−1 versus Hz.

Conventional methods rely on the relative simplicity of colloidal systems by using, for

example, the drag force method123, its extension to an oscillating sample stage295 or

moving a fixed bead over a known distance through the laser beam waist304. Clearly the

former two would be difficult to implement in air and the latter is obviously not a good

replica of experimental conditions305. The recent technique alluded to in section 5.2.1

combines two techniques to measure detector calibration from experimentally measured

values alone295. It is hoped, even with the unique problems of airborne trapping, by using

AODs or SLMs to oscillate the trap position this technique will be developed for future

experiments.

There is a simple and quick method to calculate β from the voltage power spectrum alone

but can be less precise than the other, previously mentioned, methods. Consider the high

frequency limit, ω ≫ ωc, of equation 5.23;

SV (ω ≫ ωc) = β2Soverx (ω ≫ ωc) (5.29)

SV (ω ≫ ωc) = β2 2kBT

γ0

1

ω2
(5.30)

ω2SV (ω ≫ ωc) = β2 2kBT

γ0
(5.31)

P V = β2 2kBT

γ0
. (5.32)

Multiplying the uncalibrated voltage power spectra SV by ω2 (the expected tail gradient)

gives a constant plateau value at high frequencies, P V , hence the detector sensitivity for

a system neglecting inertia is

βover =

√

P V γ0

2kBT
. (5.33)

The equivalent can be calculated for power spectra where the inertial term is not neglected

by multiplying with ω4 to obtain the plateau at high frequencies, thus I find the detector

sensitivity to be

βinertia =

√

P Vm

2kBTΓ
. (5.34)
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5.3 Experimental

Droplets are trapped using the custom built inverted tweezers pictured in figure 5.3. The

beam from a 532 nm Laser Quantum Finesse 4W continuous wave laser is expanded by

a Keplerian telescope to slightly overfill115 the back aperture of a Nikon Plan 100× (NA

= 1.25†) oil immersion microscope objective. The beam is focussed through a type one

coverslip into an aerosol chamber constructed from a cylindrical plastic enclosure 9 mm

in height and 35 mm in diameter. This produces an enclosed environment where a high

relative humidity can exist and also shields the trapping region from external air currents.

The top of the chamber is made from a type zero coverslip to allow for transmission

and then collection of the scattered trapping laser by a long working distance (LWD)

Mitutoyo 100× (NA = 0.55) objective, whose back aperture is imaged266 equally onto

the four quadrants of a QPD (Hamamatsu Silicon Diode Array S5980) via a 4f imaging

system. The Mitutoyo objective also acts as the condenser lens for Köhler illumination

(not shown in figure 5.3 but remains the same as illustrated in figure 2.3). The Nikon

objective and an appropriate tube lens image the sample through a laser filter onto a

Basler A602f firewire camera.

The liquid aerosol is produced using the same nebuliser as for the holographic optical

trapping of aerosols except the salt solution concentration was varied between 20 and

80 gL−1.

The trapping beam is focussed ≃ 15 µm above the coverslip which is again soaked in the

aqueous dilution of Decon 90 as described in section 4.2.1. Water saturated tissue paper is

also placed in the chamber to increase the relative humidity, but I ensure it does not touch

the cover slip as this can induce flows in the water layer. Figure 5.4 shows an enlarged

view of the trapping region’s geometry and also explains the relation between paraxial

focus height, L, and objective displacement, X.

Control over droplet size was required to fully investigate observed phenomena. Firstly,

this was achieved imprecisely by varying the concentration of the nebulised salt solution

because as discussed earlier a higher concentration decreases the droplets vapour pressure

allowing them to equilibrate with their surroundings at larger sizes (chapter 4.1). Sec-

ondly, more precise size selectivity can be induced with the, on average, positive linear

dependence of captured droplet size on laser power12,179 as mentioned in the previous

chapter.

†It is important to note that the NA clearly cannot be larger than unity in the focal region and in fact
due to total internal reflection at the glass:water:air boundary the NA is effectively reduced to ≃ 0.67. See
chapter 6 for more detail.
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Figure 5.3: Apparatus diagram. A Gaussian beam is expanded by lenses L1 and L2
and directed to slightly overfill the back aperture of the Nikon objective (TOBJ) with
mirrors M and DM. The long working distance objective (LWD) collects the droplet’s
scattered light and its back aperture is imaged onto the QPD via a 4f lens system.
Power is controlled using a polarising beam cube (PBC) and half wave plate (WP). The
same Nikon objective with an appropriate tube lens (TL) is used to image the sample
(S) through a dichroic mirror (DM) and filter (F) onto the firewire camera (CMOS).
The QPD, COBJ, and TOBJ are each mounted on three axis translation stages with
TOBJ’s axial axis controlled either manually or by digital micrometer. BD is a beam
dump.

Figure 5.4: Enlarged view of the trapping region in the sample of figure 5.3. The
refractive indices of the coverslip and index matched oil, water, and air are ng, nw and
na respectively. ∆h is the thickness of the water layer. Displacing the objective X
microns from being focussed on the first interface displaces the particle a distance L,
given in the figure.

Having trapped a droplet the nebuliser is turned off. Once the droplet has reached equi-

librium with its surrounding environment, and the remaining aerosol settled, the current

produced by the detection of light on the QPD is sent, via shielded cables, to amplification

electronics306 containing a 50 kHz anti-aliasing filter. Data was acquired at a sampling
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frequency of 50 kHz for four seconds with a National Instruments PCI-6014E DAQ card, in

differential mode. The voltage difference between left and right pairs of quadrants on the

QPD represents the x position and the difference between the top and bottom pairs rep-

resents the y position. Summing all quadrants represents the axial position. The voltage

versus time data was Fourier transformed using LabVIEW and all remaining data analysis

was performed offline at a later time. In order to minimise any parameter variation over

time the experiments were carried out as quickly as possible with raw voltage versus time

data not saved to increase speed still further. The detailed analysis of the data obtained

for a colloidal case is extensively described in Berg-Sørensen and Flyvbjerg297, and much

remains the same here. An image of the trapped droplet was also taken with each power

spectrum for later analysis.

It is an initially difficult process to obtain a sufficiently noise free signal from the amplifi-

cation electronics to enable accurate analysis. Plotted in figure 5.5 are the power spectra

of position fluctuations of the laser alone, with no particle trapped both with good and

bad noise, with a clear distinction between the two.
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Figure 5.5: Power spectra of position fluctuations for the focussed laser alone, with no
particle trapped. The red squares are from voltage data with what is considered bad
noise and the blue circles plot data with good noise.

It is essential to ensure the background noise level is as low as possible so the fluctuations

due to Brownian motion will be observed. There are several reasons unwanted noise

can occur; the current signals produced from the QPD are small so very susceptible

to interference and care must be taken to ensure the signal reaches the amplification

electronics without additional signal being induced. Also the Poynting stability of the

laser and any mechanical vibration contributes by effectively increasing the non-Brownian

noise.
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Ideally removing interference can be achieved by placing the QPD directly next to the

amplification circuit but in my case it is ensured that the cable used to transfer the signal

from the QPD to amplifier is fully shielded. To reduce mechanical noise work was always

carried out, where possible, solitarily in the laboratory and to improve the stability of

the laser it was always used at > 30% capacity and power control achieved by using a

pair of half wave plates coupled with polarizing beam cubes. The first split the beam for

two different experiments and the second controlled power for this experiment alone. The

power was varied between a minimum of 0.702±0.009 mW and a maximum of 510±6 mW.

Using these simple noise reduction schemes reduces my experimental noise spectrum by

two to three orders of magnitude, as shown in figure 5.5, and is essential to its success.

Unfortunately no matter the extent of the noise reduction schemes some cannot be removed

from the axial position signal. This is particularly true of noise inherent in the laser. When

analysing the lateral motion the voltage difference between the halves of the diode allows

cancellation of symmetric noise, i.e. noise that appears equal on each half. However, due

to the summation of quadrant voltages for axial position the noise remains, rather than

being cancelled, with sufficient strength that further data analysis cannot be attempted.

It is for this reason I consider only lateral motion.

To investigate whether droplets are becoming unstable at any point in parameter space

I investigated over a range of radii how power and height vary the damping ratio and

observed the behaviour around the point of critical damping, the most likely place for

instability.

As alluded to in section 4.2.2 unlike tweezing in water, simply increasing the trapping

power does not assist in capturing an aerosol droplet from the nebulised cloud, so initial

laser power must be carefully selected. Each droplet trapped was subject to an increase in

laser power in uniform steps with power spectra measurements taken at each. The mini-

mum attainable damping ratio for each droplet was taken from the last power spectrum

measured before it fell from the trap upon increasing the power (i.e. the highest power).

This represents an upper limit on the ratio for that size.

To study how the water-air interface to droplet height may affect the dynamics, the laser

power was kept constant and the height of the sample stage varied, controlled and mea-

sured by a micrometer. The water layer thickness was measured by observing when a

reflection of the trapping beam focus is obtained at both the water-air and glass-water in-

terfaces. Having been focussed through two refractive index mismatched interfaces (glass

to water and water to air) there is an associated focal shift307 of which a rigorous descrip-

tion is complex308,309 and not discussed here but rather in chapter 6. A simple paraxial

approximation is used to calculate the droplets position inside the chamber given a vertical
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displacement of the sample stage around a fixed objective.

5.3.1 Data analysis

To optimise the accuracy and precision of results both pre- and post-experimental sta-

tistical analysis can be used. Measurements are taken in the time domain during the

experiment for which there is an optimum timescale to reduce overall noise, hence in-

crease precision. The factors affecting the exact timescale are combinations of electrical,

mechanical, temperature, laser power and particle size and will obviously be different from

experiment to experiment. One can imagine measuring particle position for 30 seconds

and the expectation would be of thermal noise around a fixed origin. However, the system

may drift over time with a shift of origin as illustrated in figure 5.6. Ideally the data

would be binned into time periods, t, over which there is negligible drift from the local

origin yet enough data to obtain an accurate result once all periods have been averaged.

The best way of determining this timescale is through using Allan variance310.

Figure 5.6: Representation of the voltage output from a QPD as a function of time to
illustrate that although one would expect oscillation around the zero point there is an
additional overall drift. However, there are periods of time, t, over which the drift is
negligible and the data should be binned into these.

The data is also analysed in the frequency domain and so one must be careful in its

analysis too. The data obtained by Fourier transforming the particle position versus time

output from the experiment is exponentially distributed297 and I would like to perform

a non linear least squares fitting algorithm to find the parameters that define the best

fit. To do this the data must be Gaussian in distribution with associated uncertainties,

so, each power spectrum is binned into predetermined frequency windows replacing the

frequency range with the average frequency over the bin and the power value with their

mean and associated standard deviation.
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Performing the analysis in frequency space for each period of data in time space and

averaging over all of them gives the final set of data to be fit to. We use a built-in

software Levenberg-Marquardt algorithm that performs a nonlinear least squares fit to

the data by reducing chi squared weighted with the uncertainties (standard deviation);

χ2 =
(Oi − Ei)

2

σ2
i

. (5.35)

Here Oi is the observed data point, Ei is the expected data point from the fit and σi is

the associated standard deviation.

5.4 Results

5.4.1 Langevin dynamics

Typical power spectra of position fluctuations from optically trapped droplets are shown

in figure 5.7, illustrating, for a 3.7±0.2 µm radius droplet, the ease with which the system

can be transferred between over- and under-damped dynamics by varying laser power. The

tail falls off with ω−4 as expected for ω ≫ Ω from equation 5.25 and a clear resonance

peak begins to establish itself, indicative of the droplet moving through the critical and

into the under-damped regime.
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Figure 5.7: Power spectra of a droplet of radius 3.7±0.2 µm trapped at powers 40.9±0.5
(circles), 130 ± 2 (squares), and 356 ± 4 (triangles) mW resulting in damping ratios
of 1.69 ± 0.04, 0.794 ± 0.01, and 0.364 ± 0.001 respectively. As the power increases
the appearance of a resonance peak is clear indicating the move into an under-damped
regime, along with a decrease in area and hence position variance. The natural fre-
quency increases with laser power because of the associated increase in lateral trap
stiffness, κ.
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For completeness, a plot of the autocorrelation function271 of a single droplet in an under-

and over-damped state is shown in figure 5.8. It shows the classic exponential decay for

over-damped motion and sinusoidal oscillation enveloped by exponential decay for under-

damped oscillators as expected.
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Figure 5.8: Plot of experimental autocorrelation data with associated fits for a 5.2 ±

0.2 µm optically trapped aerosol in an over- (triangles) and under-damped (circles)
state trapped with powers 74 ± 1 and 442 ± 7 mW respectively. Both traces clearly
follow the classic exponential decay except in the under-damped case there is also the
sinusoidal oscillation expected.

The trend seen in figure 5.7 remains for all droplets; an increase in power increases lateral

trap stiffness and moves the system towards or into the under-damped regime. A range

of damping ratios has been observed from 3.57 ± 0.07 down to 0.260 ± 0.006 over the

4.7± 0.5 µm radius range studied. There is also an associated decrease in area under the

power spectrum curve with increasing laser power, indicating a reduction in the position

variance of the droplet.

The inclusion of inertial terms in the Brownian theory means only the particle’s mass

is needed to calculate trap stiffness. Using the radius from video microscopy I obtain

lateral trap stiffness values ranging from 0.12 ± 0.10 to 98 ± 17 pNµm−1 for 1.0 ± 0.3 to

5.7 ± 0.4 µm radius droplets.

One would expect the natural frequency of trapped droplets to vary as the square root of

laser power, assuming the trap stiffness is linearly proportional to trapping power. This is

confirmed in figure 5.9 for a 1.8±0.2 µm radius droplet. For the range of radii and powers

studied here I observe natural frequencies between 2π(328±12) Hz and 2π(3433±15) Hz,

falling close to and well above the corner frequencies measured by tweezers in liquid based

systems, although obviously not directly comparable.
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Figure 5.9: An example of how natural frequency for a 1.8 ± 0.2 µm radius droplet
increases with the square root of laser power as expected from Ω =

√

κ/m. The
lateral trap stiffness axis is displayed for interest and is non linear. The error bars
are standard error of the mean for the natural frequency rather than the trap stiffness
(although they are smaller than the points themselves).

As mentioned a curiosity of airborne trapping is an upper limit on laser power above

which particles fall from their trap. To ascertain the cause of this clear instability I plot,

in figure 5.10, the upper limit on the minimum damping ratio attainable against droplet

radius.
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Figure 5.10: Upper limit on the minimum attainable damping ratio against droplet
radius. It is an upper limit as we increase the laser power in finite increments. The
dashed horizontal line represents a critically damped system. The error bars are stan-
dard error of the mean.

Figure 5.10 illustrates there is no problem in transferring from over- to under-damped
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dynamics with no instability induced, suggesting this is not the reason for the odd phe-

nomena seen. There is clear size dependence but one must be careful to note this does

not lead to the conclusion that small droplets cannot exist in the under-damped regime;

this cannot be excluded for certain as they fall from the optical traps before they reach it.

The above results produce a downward shift in damping ratio by increasing lateral trap

stiffness with larger laser powers. A decrease in friction felt by the droplet could likewise

shift the ratio by varying the damping and as stated earlier Faxén’s correction predicts that

the proximity of a surface to our microscopic object heavily influences this. Utilising this

surface to droplet height dependence figure 5.11 demonstrates that lowering the sample

stage, hence increasing the distance, reduces the damping and transfers the system from

over- to under-damped. Note the resonance peak remains approximately at the same

frequency for each spectrum as only the damping is changing, not the trap stiffness,

contrary to figure 5.7.
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Figure 5.11: Power spectra demonstrating changes in damping as a function of surface-
droplet distance for a 3.8 ± 0.2 µm radius droplet trapped with 46.3 ± 0.6 mW. The
droplet was moved to heights of 4± 1 µm (circles), 9± 1 µm (squares), and 14± 1 µm
(triangles) above the water layer resulting in damping ratios of 3.40±0.06, 1.06±0.01,
and 0.92± 0.01 respectively. The middle and top spectra are multiplied by 25 and 200
respectively to displace the data on the y-axis for clarity.

The majority of previous work using the power spectrum method is based on tweezing solid

microspheres, with precisely known radii, in the liquid phase allowing very high precision

studies; indeed, the ability to detect sphere non-uniformity is possible295. In the studies

here a large source of error is measuring the radius using video microscopy with the likely

errors propagating heavily into some of the systems calculated properties (κ ∝ m ∝ R3).

Trapping of solid aerosols, with known radii would remove this problem81 but due to

their high refractive index compared to air this idea poses significant problems as one
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will understand from the next chapter. In addition, highly precise radius measurements

are possible via CERS180 but require sensitive spectrometers. In the following section I

demonstrate a new method to size aerosols in optical tweezers.

5.4.2 Sizing

Many fundamental properties of individual droplets are governed by their radius and hence

its measurement is of great importance. In the context of optical manipulation the main

sizing methods are light scattering analysis with lasers311,312 or broadband sources313

along wih a few methods using the physical dynamics of their motion63,279,314. Using

CERS and fitting to the excited whispering gallery modes is the most precise technique to

size trapped aerosols to date enabling very detailed studies, with precisions of ±1 nm180.

These studies have mostly concentrated on the coarse mode of atmospheric aerosols (>

1 µm in radius) but have not extended into the accumulation or nucleation modes (<

1 µm). For studies of the smaller aerosols CERS fails in measuring their radii because the

quality factor, Q, diminishes and the modes become too widely spaced to observe more

than a single peak in measured spectra315. The study of accumulation mode aerosol is

very important as it constitutes the largest proportion of atmospheric aerosol in terms

of surface area to volume ratio and so dominates atmospheric chemistry54. As optical

trapping moves into this region CERS will become redundant and must be replaced by a

new method of radius measurement.

Methods to obtain the properties of objects and their surroundings in conventional optical

tweezers have relied on trap stiffness or position detector calibration and normally require

more than one independent experiment. In the monodisperse colloid area of optical tweez-

ers the particle size is usually known, through use of size calibrated microspheres, and so

techniques are aimed at obtaining those parameters that remain, for example viscosity,

trap stiffness, displacement and forces.

However, the size of optically trapped aerosols is not precisely known before the experiment

because the nebulised sample is highly polydispersed. I propose to determine their radius

by studying their confined Brownian motion and show that being airborne presents unique

challenges and solutions, specifically that the calibration techniques important in water

need not be applied due to the significant contribution to the motion from inertia.

The literature shows one could study the low frequency plateau in the power spectrum

of force fluctuations, which is proportional to particle size, to give an indirect measure

of radius48,316 but I would like an absolute measurement. It is possible to measure the

absolute size of colloidal particles suspended in a water environment from their position
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fluctuations in free Brownian motion by using detection instruments with absolute position

calibration. Einstein’s diffusion coefficient can be extracted from the position data and the

particle radius determined assuming knowledge of viscosity. Through this method Viana

et al.317 determined the radius of spheres by measuring position in a ‘switched’ optical

trap using a camera, however, this method of detection has limits on its precision28.

Furthermore, the distance a given particle can diffuse in a set time is approximately an

order of magnitude greater when suspended in air rather than water, which means the

droplet quickly disappears from the focal plane disabling the possibility of video tracking.

Additionally, the laser modulation to take the object in and out of free Brownian motion

could cause failure of the airborne optical trap as I shall describe in section 5.6. So, for

these reasons the particle must remain localised within the optical tweezers.

Our experiment is ideally suited to the problem at hand as the position information of the

trapped droplet is not undersampled and I obtain a clear representative set of position data

by imaging the scattered laser light, related to its position, onto a high speed photodiode

via a condenser lens269. The signal to position calibration here is a little more complex

than for cameras. I have shown that the high frequency tail in the power spectrum of

position fluctuations of the particle can be used to calculate the detector calibration81,268.

However, for suspensions in both water and air equations 5.33 and 5.34 show this method

cannot be used as the particle radius is needed a priori.

As mentioned when discussing detector position calibration Tólic-Nørrelykke et al.295

coupled the power spectrum method with analysing the response of a trapped particle to

a given flow. This enables the viscous damping, trap stiffness and detector calibration to

be determined from experimentally measured parameters alone enabling, for example, the

determination of local viscosity318. This technique could equally work for determining

the radius of spheres if the medium’s viscosity is known. In the context of airborne

tweezers it is unknown what effect lateral trap oscillation will have on particle dynamics

and also whether sample stage oscillation will indeed induce the required flow in the

current chamber environment.

In air it is possible to analyse the power spectrum of the particle’s position fluctuations to

extract the radius without calibrating the detection system a priori or using the method

of Tolic-Norrelykke et al. in situ, as I shall now discuss. Furthermore, the same data and

extracted parameters then allow detector system and trap stiffness calibration a posteri-

ori 81,268.

To summarise, measuring Γ, with units of Hz, allows determination of the aerosol droplet

radius with no pre-calibration or measure of trap stiffness necessary. However, these can

be calculated from the data and fitting parameters as a result of the radius determination.
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Therefore, in air, the system for radius determination is fairly simple with cheap diodes,

electronics and a method of altering the droplet to surface height being the only additions

to normal optical tweezers.

There are slight changes to the experimental method but much remains the same as

previously. The droplet to water surface height is now controlled by a digital micrometer

(Newport NSA12). I first focus the beam ≃ 15 µm above the coverslip for ease of trapping;

once caught the sample stage is lowered, hence the droplet is moved away from the water

surface. The micrometer has a large amount of hysteresis so to begin, the droplet is

moved to approximately twice the distance from where the first measurement is made.

The sample stage is now raised in 1 µm increments until the position desired for the first

measurement is reached, by which time any hysteresis has been removed and motion is

as expected. The height was recorded and a power spectrum taken before moving the

sample stage up, hence droplet down, by the desired increment where the next spectrum

is taken. This procedure was repeated until the droplet falls from the trap, probably due

to coagulation with the underlying water layer.

Extracting damping values from data similar to figure 5.11 the dependence of friction

upon droplet to surface distance can be plotted to obtain figure 5.12. Here the micrometer

raised the sample stage in increments of 1 µm, decreasing to 0.5 µm as the surface was

approached due to the high gradient of Faxén’s correction in this region. Fitting to such

data using equation 5.28 with R as a variable and η = 1.8×10−5 allows the droplet radius

to be extracted. Clearly the fit to Faxén’s correction is critical upon knowing the distance

to the surface and as such I include an offset, h, so that L → L + h in equation 5.28 to

compensate for any errors in the trap position-paraxial focus assumption, or measurements

on the relative positions of the interfaces305,317.

The measurements made for figure 5.12 are repeated for different droplets to obtain fig-

ure 5.13, a comparison between radius measurements through video microscopy and from

studying their Brownian motion.

Figure 5.13 demonstrates droplets can be sized with good precision, better than video

microscopy, by only studying the damping they experience. There is a significant shift

from the radius measured by microscopy which I believe highlights the ambiguity in siz-

ing aerosols from microscope images. Figure 5.14 shows four images of the same droplet

taken at various stages of a sizing experiment, exemplifying the difficulty in video imag-

ing. I believe it is caused through several reasons; the trapping objective is not designed

to image through air, the condenser lens is optimised for collection of scattered light not

illumination, and there is a high refractive index mismatch between water and air. These

contribute to increased diffraction and decreased resolution, hence the ambiguity in deter-
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Figure 5.12: Variation of viscous damping experienced by a droplet, trapped with
6.2± 0.1 mW, as a function of surface-droplet height. The droplet radius is measured
by video microscopy to be 2.80±0.16 µm and 3.28±0.02 µm from the fit to experimental
damping data. For this case the height offset h = −2.84 ± 0.19 µm.
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Figure 5.13: Comparison of radius measurements made by video microscopy and
through fitting to variations in viscous damping as the droplet approaches a surface.
x and y error bars are standard errors of the mean.

mining the perimeter of the droplet images. Finally, for completeness I plot in figure 5.15

the natural frequency as a function of height from the water layer. There is a steady fall off

with distance indicating the spherical aberration induced is degrading the trap stiffness.

Unlike the data in Vermeulen et al.305 the fit is approximately linear as the trap stiffness

is independent of the viscous damping.
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Figure 5.14: Images taken during the sizing process showing the variation in droplet
appearance and indicating the ambiguous nature of determining the perimeter. By
studying the damping experienced during Brownian motion this ambiguity is removed.
This droplet is measured to be 4.77±0.21 µm from video microscopy and 5.19±0.08 µm
from fitting to Faxén’s correction. Scale bar 5 µm.
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Figure 5.15: Natural frequency as a function of distance from the water layer for the
droplet in figure 5.12.

5.5 Discussion

The reader may notice significantly more scatter in this investigation’s results compared to

experiments using similar techniques in liquid. The reasons will now be discussed briefly

showing the complex nature of the experiment and the engineering challenges faced to

improve future precision.

It is difficult to determine which individual factor, trap stiffness or damping, contributes

to the variation in damping ratio for any given experiment. For an individual droplet the

surrounding conditions can remain relatively constant over the time of a single experiment

as, with no additional aerosol flow from the nebuliser, the droplet quickly reaches equilib-

rium with its surroundings. To trap another droplet nebulisation must resume where upon

the chamber conditions can alter. Additional aerosol can settle on the coverslip changing

the water layer’s thickness and hence the optical potential309,317,319 at the trap site to-

gether with the proximity of the particle to the surface297,303,319. As mentioned variation
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in trapping power between droplets alters the droplet’s height279 and hence distance from

the underlying water layer, thus again altering the optical potential and damping. These

factors contribute to the system’s rather complex and difficult analysis.

The difficult nature (relative to colloidal tweezers) of trapping in air imposes several im-

portant experimental methods. A long working distance condenser must be used due to

the aerosol chamber height, but a higher NA lens may have been desirable to improve

detector sensitivity320. Most colloidal experiments use monodisperse suspensions of solid

particles thus allowing an arbitrary number of measurement repetitions; often up to 100

power spectra are averaged. However, with the dynamic system investigated here (the

droplets are continuously finding an equilibrium with the surrounding environment) the

conditions of the experiment may not remain constant long enough for repeated measure-

ments to improve precision, hence the choice of sampling and no averaging over multiple

power spectra. Also, I am looking at an inherently unstable region with the aim, at times,

of losing the trapped droplet so, clearly, another particle of the exact same size and com-

position cannot be found. With the current iteration of apparatus there is a clear trade

off between speed and precision.

Some studies have used a secondary, independent probe beam to monitor position fluctu-

ations as this allows greater flexibility and perhaps improved accuracy321. I employ only

a single beam because a very small amount of power is needed to tweeze in air179 and a

second beam would significantly alter the potential at the trap site.

In future studies I suggest that a system including a ‘science chamber’ be developed where

many variables can be controlled. A particle could be trapped and transferred to such a

chamber with relative humidity control, with or without a water layer, and with a lower

physical profile to enable the use of higher NA condenser optics. Also the mechanical

stability of our system is not fully optimised so the precision seen could be improved.

The precision to which aerosols can be sized through studying their Brownian motion is

currently limited by the apparatus iteration. With the outstanding precision possible in

more refined experiments301 it is believed this method can compete with CERS and will

supersede it when studying aerosols < 2 µm in radius.

For improvements in precision and accuracy of the sizing technique several problems must

be combated; firstly, the water layer on the surface of the cover slip creates a relative hu-

midity gradient and as the droplet approaches this layer its size can increase322. Secondly,

mathematical modelling (see chapter 6) shows airborne droplets are trapped significantly,

∼ R, below the paraxial focus of the beam and hence my simple paraxial approximation

for the droplet position will be slightly offset. This potential error can be absorbed into

the offset h, mentioned above, but with further work I believe much could be inferred
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about both the relative humidity gradient and the axial position offset while providing a

more accurate technique. It is also proposed that with the incredible precision of optical

tweezers and by using spheres of known radius a verification or perhaps improvement of

the empirical slip correction factor, Cc, could be performed.

The sizing technique through Brownian motion removes any subjectivity or ambiguity and

as such these results are considered to be more accurate and reliable than those from video

microscopy. An appealing experiment would be to compare this method with CERS and

will hopefully be performed in future. Unfortunately, without the necessary equipment to

obtain CERS measurements it is difficult to obtain or state an absolute accuracy for the

experiment.

Another problem is the axial stability of the droplets. Low frequency axial oscillations can

occur which in a mis-aligned system causes the droplet to, or appear to, displace laterally.

Furthermore the oscillations mean the particle position is sampled at many heights rather

than a single one. It is believed removing the central core of the trapping beam, by using

Laguerre-Gaussian beams for example, would improve the stability and hence accuracy.

For both the Langevin dynamics and the sizing experiments I have neglected any hydro-

dynamic corrections, specifically effective mass due to entrained fluid300 and the frequency

dependent Stokes’ friction296, and as such it would be pertinent to discuss the effects here.

Figure 5.16 plots the ratio of the power spectrum in equation 5.25 to the hydrodynamically

correct version in equation 5.27. Clearly for a given particle type and size the correction

is significantly smaller when studying aerosols. However, the solid line shows the error

begins to become significant for aerosols with a radius that would be considered relatively

large for particles normally used in power spectrum based studies in liquid. Should fur-

ther studies be performed the hydrodynamic correction must be investigated to improve

accuracy and precision.

Not discussed in detail here is that Faxén derived his correction for a sphere moving with

constant velocity which is not the case, so for a complete solution the frequency dependent

friction should be combined with Faxén’s correction 295,297.

When dealing with solid in fluid systems no slipping occurs at the boundary between the

two materials upon translation. However, the physics involved becomes more complicated

when studying fluid in fluid systems; slip can occur. Due to the possibility of slip at the

fluid sphere’s surface, flow can be induced inside the sphere, as illustrated in figure 5.17.

This flow causes reduction in the well known pre-factor of Stokes’ Law according to303,323
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Figure 5.16: Theoretical plot of Sx/Sx−hydro as a function of angular frequency. For
a given particle radius the hydrodynamic correction is smaller in air (red dot dashed)
than in water (blue dashed), but, for the large liquid aerosols (black solid) the effect
starts to become significant. Trap stiffness, κ = 2 pNµm−1.

Figure 5.17: A fluid sphere immersed in a laminar fluid flow will have slip occurring
at the boundary between the two materials hence a flow will be induced within the
liquid sphere. This internal flow reduces the viscous drag force on the sphere.

Fstokes = −6πνρRv

Cc

1 + 2
3σ

1 + σ
, (5.36)

where σ is the ratio of the medium to the droplet’s dynamic viscosity, µm and µp respec-

tively, giving Stokes’ law for a water droplet in air, to be

Fstokes = −5.96πνρRv

Cc
, (5.37)

which has been taken into account in the data analysis for this chapter.

Exploration of these discrepancies for optically trapped aerosols could not only provide

improved particle sizing but also insights into interesting physics which I shall discuss in

the final chapter.
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5.6 Parametric oscillation

The work described next was carried out as a collaboration with the Optics group at the

University of Glasgow and Roberto Di Leonardo at thr Universitá di Roma “La Sapienza”.

It has been shown in this chapter that water droplets trapped in air have significant

contributions from the inertial terms in their equation of motion (equation 5.18). This can

lead to the appearance of a resonance peak in their power spectrum of position fluctuations.

If the resonance peak of an oscillator, in our case a harmonically trapped aerosol droplet,

is dependent upon a number of parameters, then modulating any of them at twice the

natural oscillation frequency (Ωp = 2Ω) parametrically excites the resonance.

Parametric resonance provides an efficient and straightforward way to pump energy into an

under-damped harmonic oscillator as it is far easier to modulate a system parameter rather

than applying an oscillating driving force. Such behavior leads to surprising phenomena in

the macroscopic world such as pumping a swing, the stability of vessels and surface waves

in vibrated fluids324. In my microscopic scale system, the particle is driven by Brownian

stochastic forces325, the parametric driving of which has been shown to be at the origin

of some peculiar behaviour such as the squeezing of thermal noise in Paul traps326.

I have demonstrated that optically trapped microparticles are beautiful examples of a

Brownian damped harmonic oscillator, and it has been reported that modulating the

trap’s laser power in a colloidal system at its resonant frequency increases the amplitude

of fluctuations277,327. However, these results have been difficult to reproduce and are in

contrast to the predictions of the Langevin equation272,278,328, due to the heavy damping

objects experience in water.

The ability of our airborne trapping experiments to exist in the under-damped regime

allows the excitation of resonances through parametric oscillation. The laser power is

easy to modulate and is therefore chosen as the parameter to vary. Taking equation 5.24

but including a term that modulates the trap stiffness as a function of time gives the

Langevin with a parametrically modulated potential to be

ẍ(t) + Γẋ(t) + Ω2 (1 + gf(t))x(t) = Λη(t), (5.38)

where f(t+ τ) = f(t), −1 < (t) < 1, and 0 < g < 1 is the strength of modulation. Fourier

transforming equation 5.38 gives

(

−ω2 − iωΓ + Ω2
)

X̂(ω) + gΩ2
∞
∑

k=−∞

akX̂(ω + kΩp) = Λη(t), (5.39)
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where Ωp is the modulation frequency and ak is the coefficient of the 2πk/τ = kΩp

frequency component of the Fourier series expansion of f(t). One can see the coupling

between all frequencies that are an integer multiple of Ωp that contribute to the excitation

of the natural frequency. Following di Leonardo et al.83 the power spectrum of position

fluctuations for a particle in a power modulated optical trap is found to be

Sx (ω) =
2ΓkBTκ

Ω2

N
∑

k=−N

|G0k (ω)|2 . (5.40)

Plotted in figure 5.18 is the power spectrum of a water droplet in an under-damped regime

(white circles). Fitting the power spectrum of equation 5.25 gives Ω/2π = 2.0 kHz.

Knowing this a square wave modulation of the trapping power with g = 0.4 and Ωp/2π ≃
2Ω/2π ≃ 3.9 kHz can be applied whilst retaining the same average power as previously.

Measurements from the experiment with these system conditions yield the data shown in

black circles. The expected resonance excitement is found and predicted well (black line)

using the known parameters Ω, Γ, Ωp and g.

Figure 5.18: The measured power spectrum of a trapped water droplet for no modu-
lation of the laser power (white circles) and modulation at Ωp/2π ≃ 2Ω/2π ≃ 3.9 kHz
(black circles). The peak is higher and narrower on the resonant condition, thus in-
dicating parametric excitation. The solid line below the black circles is the predicted
spectrum from equation 5.40.

To understand the implications of this experiment re-consider the beam shaping techniques

of chapter 3 and the diffusivity of Brownian particles in section 4.2.2. In the context of

optical tweezers sharing the beam with AODs or scanning mirrors obviously removes the

potential felt by the particle for a significant portion of time, in which it could diffuse

(due to Brownian motion) out of the tweezers’ influence once the trap returns. So such

systems must be carefully designed depending on the number of trap sites, size of particles,

and optical power used. When splitting the beam this problem does not arise due to the
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constant potential, but the peak power at each individual trap site is reduced.

Now consider the optical tweezing of aerosols which have been shown to behave as under-

damped oscillators, with the potential to be parametrically excited. In such a system if

the laser is modulated with an amplitude greater than twice the damping ratio, g > 2Γ/Ω,

then the system becomes unstable. One immediately realises that should the beam shaping

method not be carefully considered, the optical trap can catastrophically fail.

5.7 Conclusion

The parameters governing the dynamics of optically trapped aerosols have successfully

been described and experimentally investigated. It has been shown that there is no insta-

bility induced by crossing through the critically damped regime leading to the conclusion

that the phenomena seen are due to the optical potential of the trapping laser. The in-

vestigation has provided results extending the boundaries of precise studies of Brownian

motion in optical tweezers into a new damping regime.

The science has already been applied to demonstrate the possibility of using Brownian

motion to precisely size aerosol droplets with relatively inexpensive apparatus. The appa-

ratus allows sizing to a greater precision than through video microscopy, works at smaller

size regimes than CERS does, and should work for arbitrarily small particles as long as

they can be trapped. The low dynamic viscosity of air, the inclusion of inertial terms in

the Langevin, and measuring the viscous damping in frequency space negate the need for

a priori system calibration, making the process simple. I have not perfected the tech-

nique so there is potential for further increases in precision by using the more advanced

techniques and apparatus.

It is hoped these results will provide researchers with a new understanding of an old tool

for studies in both fundamental and applied science, providing a rich playground of study

in the under-damped regime.

From the Langevin equation it is seen that there are only four processes providing forces

that give rise to droplet position fluctuations. There is Brownian white noise, friction,

inertia, and the optical force. Transferring from over- to under-damped dynamics does

not inhibit the stability of the system yet there is clear size dependence with which the

droplets fall from the trap. The logical conclusion is that the optical force must determine

whether the droplet remains trapped or not and this will be discussed next, in chapter 6.
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Optical Trap Modelling

As mentioned at the end of the previous chapter I would like to answer a specific question

regarding the optical force on an optically tweezed liquid droplet. This is a very difficult

task to carry out experimentally316 and the standard technique is to computational model

momentum transfer from focussed beam to particle.

From a purely scientific viewpoint modelling can increase the understanding of an experi-

ment thus giving a more complete picture of the process. Practically, numerical simulations

allow the interested party to explore many parameters sometimes faster than, or not pos-

sible through, experimentation. This way the technique’s perimeters can be probed to see

if the boundaries of the current experiment can be extended. Accurate modelling, when

compared to experimental data, can also lead to the extraction of physical parameters not

otherwise obtainable287.

The modelling of optical forces is used extensively in the field of optical manipulation

to understand, for example, force mapping329 and optical binding330. In some cases the

behaviour of colloids is so complex and counter-intuitive that the only way to explain

what is observed is through highly complex simulations331. One of the best examples is

the understanding of how optical forces affect the cellular matrix. Changes in the elasticity

of this matrix are directly related to stages of cancer within individual cells332. As shown

the optical trapping of aerosols pushes the technology to its limits so the modelling of the

optical forces involved may act as a method for testing the theories at their limits.

As with most modelling, symmetry within the system simplifies the mathematics. A

sphere in an axially symmetric beam is probably the simplest of formulations, with a

large amount of the constituent work already available. Should one like to model the

trapping of non-spherical objects then the computation becomes more complex with the

129
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T-matrix approach the most favoured method. Once the T-matrix has been calculated

for a given object it need not be calculated again for every orientation of the object in the

beam, thus making it rather advantageous. Nieminen et al.333 have used this approach to

code an ‘optical tweezers computational toolbox’ freely available for use334.

The principle problems with many of the approaches available are the over-complexity

(mine is a relatively simple problem), their inappropriateness for the size scale I am looking

at, and the lack of a description of the true trapping beam profile, as I will explain later.

A nice introduction to the inadequacies are given by Viana et al.317. The microdroplets I

am studying are ≥ 1 µm in radius so the force calculation lies above the Rayleigh regime

and to a first approximation I will approach the description of the modelling by using the

geometrical optics (GO) model. It will show that by studying airborne objects the physics

is really being pushed and that simple models, and indeed some of the more complex ones,

cannot deal with the system under study.

I shall show how and where geometrical optics breaks down before moving onto a model

that uses an integral representation of focussed light crossing refractive index interfaces

and an exact form of plane wave scattering from spheres.

The principle aim of my numerical modelling investigation is to see if the isolated physics

of optical forces leads to the phenomena observed in experiments and to see how far the

boundaries of my techniques can be pushed. I will begin by restating the experimental

observations already discussed;

1. As trapping laser power increases so does the height above the water layer or coverslip

that the droplet is trapped.

2. With further increases of power the droplet is lost from the trap. This does not

always occur and is more pronounced for smaller droplets.

3. After first capture, the droplet can undergo significant growth or evaporation coupled

with large axial oscillations. These oscillations can occur well after capture but are

far slower.

4. There is a linear dependence of ‘captured’ droplet radius with trapping power.

The boundaries I would like to determine and push are

• the range of particle refractive indices it is possible to trap,

• the limits on radii of particles that can be trapped with the current apparatus.
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Fortunately my system is highly symmetric and almost complete solutions already exist

in the literature. I will test both GO and a more rigorous full wave approach. Although

the more rigorous theory is already described in literature no computer code is readily

available and modifications must be made to suit my problem.

As noted earlier the forces exerted on spheres are decomposed into two directions, lateral

and axial (figure 2.1). That is the direction perpendicular to and crossing the beam

propagation axis, and the direction lying on the beam propagation axis respectively. To

fully understand and interpret the results of this chapter one must familiarise oneself with

the type of results output from the simulations and so I shall briefly discuss the topic here.

The simulations programmed in MATLAB calculate, for a given point on one of the two

axes described above, the efficiency with which momentum is transferred to the object,

Q, and hence, through equation 2.5, the force, F, that is exerted on it. I am interested in

observing how force varies with position along the axis and as such output force curves

that are either a function of lateral, or axial displacement. From these force curves several

parameters can be taken or calculated that describe the system under study and are

illustrated in figure 6.1.

(a) (b)

Figure 6.1: (a) Axial efficiency, Qz, as a function of axial displacement. The axial
equilibrium position, zeq, occurs where the curve crosses y = 0 with negative gradient,
Q−

z,max quantifies the traps axial strength. (b) Lateral efficiency, Qρ, as a function of
lateral position. The lateral equilibrium position, ρeq, occurs where the curve crosses
y = 0 with negative gradient. For (a) and (b) the gradient of the curve at zeq and ρeq

are proportional to the axial and lateral trap stiffness, κz and κρ respectively.

An object placed at a point where it experiences zero total force and is surrounded (within

a certain proximity) by a negative gradient is said to be in equilibrium. Should the object

be displaced the local gradient will produce a restoring force back toward this equilibrium

position. In figures 6.1(a) and 6.1(b) these positions, zeq and ρeq, are the axial and lateral
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equilibrium positions respectively.

Now consider solely the axial force, as outlined in chapter 2 to achieve a single beam

gradient force trap the force in the negative axial direction must overcome that along the

beam propagation direction. If this is accomplished then the force curve will at some

position become negative, hence allowing a point of zero force and negative gradient to

exist. The maximum magnitude of this negative force, Q−
z,max, is a good measure of

the optical trap’s axial strength335, with its sign indicating whether a stable equilibrium

position exists or not.

A quantity of interest to calculate would be the volume which a particle needs to enter

before it becomes trapped. This volume extends between the maximum and minimum

force points in the axial and lateral directions simultaneously. Its calculation, however, is

complex and will be discussed in section 6.3.5.

Finally the trap’s axial and lateral stiffness is proportional to the gradient of the force

curves at their equilibrium position, which for the lateral case, assuming symmetry, is at

zero. The trap stiffness, κ, is related to the efficiency, Q, by

κ = −nmP
c

∂Q

∂s
. (6.1)

where P is the trapping power, nm is the medium’s refractive index, c is the speed of light

and s is either z or ρ for axial and lateral respectively.

During the discussion I shall look at the force curves alone and also results that are

determined from many such curves where the parameters have been varied.

Ideally I want to model the forces on a microdroplet trapped near the focus of a beam

given only the properties readily known. In figure 6.2 a laser beam of wavelength λ, waist

w, is incident upon the back aperture of an objective lens of focal length f , aperture ρ

and focussed to the diffraction limit at a converging angle of θ0, normally quantified in

terms of numerical aperture, NA = nm sin θ0.

With this problem in mind I will now describe the theories behind a rigorous approach

to geometrical optics, an integral representation of a focussed beam, and the scattering of

light by spheres for radii approximately equal to the wavelength.
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Figure 6.2: System setup for focussing a beam of waist w through a lens of focal length
f , and back aperture of radius ρ and NA = nm sin θ0.

6.1 More rigorous Geometrical Optics (GO)

In chapter 2 I reviewed a hand-waving definition of geometrical optics but here I will be

slightly more rigorous. Figure 6.3 shows the conventions used in the geometrical optics

approach of the interaction of a single ray of light with a sphere.

Figure 6.3: Geometry of the system considered when calculating the force on a di-
electric sphere in the ray optic regime. θ1 is the angle of incidence, θ2 is the angle of
refraction, n̂ is the unit normal vector, f is the focal point and ρ is the radius of the
objective back aperture (adapted from Svoboda and Block24).

A beam with converging rays from 0 → θ0 will have rays entering the sphere with an angle
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of incidence, θ1, and resulting angle of refraction, θ2, given by

θ1 = arcsin
d⊥
R

and θ2 = arcsin
sin θ1
m

. (6.2)

where R is the sphere radius, m = np/nm, the ratio of particle and medium refractive

indices, and d⊥ is a vector defined to be the projection of the sphere position along the

direction perpendicular to a given ray, r̂(θ, φ) such that,

d⊥ = d − (r̂ · d) r̂, (6.3)

where d is the position of the sphere and d⊥ has magnitude

d⊥ (θ, φ) =
√

(

1 − sin2 θ sin2 φ
)

ρ2
d + sin2 θz2

d − sin 2θ sinφρdzd. (6.4)

where zd and ρd are the sphere position in cylindrical coordinates.

In equation 2.3, I defined the force on a sphere due to a single ray. This force was directed

perpendicular and parallel to the direction of the ray’s propagation, r̂ and now needs to

be summed over all rays, taking into account the beams Gaussian nature and the Abbe

sine condition. The Abbe sine condition is best defined with the aid of figure 6.4

Figure 6.4: Definition of parameters in an aplanatic imaging system. ρ is the hieght
at which a ray enters the system, θ is its converging angle from a lens of focal length
f . Adapted from Richards and Wolf336.

According to the sine condition the emergent ray exits the imaging system at the same

height the corresponding ray entered the system such that

ρ = f sin θ, (6.5)

with f being the focal length of the system336.

Now consider an infinitesimally thin annulus of beam has been focussed by the objective.
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The power, dP , contained in the solid angle, dΩ, subtended by the beam is

dP = I0e
−2ρ2

w2 ρdρdφ, (6.6)

where I0 is the on-axis beam intensity. Combining this with the Abbe sine condition, the

power contained in a thin annulus of beam focussed by an aplanatic imaging system with

incident intensity I0 is

dP = I0e
−2f2

w2 sin2 θf2 cos θ sin θdθdφ. (6.7)

As mentioned, equation 2.3 gives the force components due to a single ray, but more

accurately the components are Λ‖,⊥ = 1
2

(

Λ
‖,⊥
TE + Λ

‖,⊥
TM

)

, where

Λ‖
α = 1 + rα cos 2θ1 − t2α

rα cos 2θ1 + cos (2θ1 − 2θ2)

1 + r2α + 2rα cos 2θ2
, (6.8)

and

Λ⊥
α = rα sin 2θ1 − t2α

rα sin 2θ1 + sin (2θ1 − 2θ2)

1 + r2α + 2rα cos 2θ2
. (6.9)

Here rα and tα are the Fresnel reflection and transmission coefficients309 for both α = TE

and α = TM modes.

Finally, the efficiency with which momentum is transferred by a ray of power dP and

direction r̂ (θ, φ), first determined by Roosen117, is;

dQ =

(

Λ‖r̂ + Λ⊥d⊥

d⊥

)

dP

P
. (6.10)

Integrating 6.10 over dΩ gives the overall efficiency for the whole beam which is a sum

of two components Q = Q‖ + Q⊥ and can be easily converted to the force, F , using

equation 2.5. The force will be broken into the axial and lateral components from the

beams perspective, so the axial component is given by337

Q‖
z =

2γ2

πA

∫ θ0

0
sin θ cos2 θe

−2ρ2

w2 dθ

∫ 2π

0
Λ‖(d⊥)H(R− d⊥)dφ, (6.11)

and

Q⊥
z =

2γ2

πA

∫ θ0

0
sin θ cos θe

−2ρ2

w2 dθ

×
∫ 2π

0

Λ⊥(d⊥)

d⊥

(

zd sin2 θ − 1

2
ρd sin 2θ sinφ

)

H(R− d⊥)dφ. (6.12)
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Similarly the lateral efficiency is given by

Q‖
ρ =

2γ2

πA

∫ θ0

0
sin2 θ cos θe

−2ρ2

w2 dθ

∫ 2π

0
sinφΛ‖(d⊥)H(R− d⊥)dφ, (6.13)

and

Q⊥
ρ =

2γ2

πA

∫ θ0

0
sin θ cos θe

−2ρ2

w2 dθ

×
∫ 2π

0

Λ⊥(d⊥)

d⊥

[

ρd
(

1 − sin2 θ sin2 φ
)

− 1

2
zd sin 2θ sinφ

]

H(R− d⊥)dφ. (6.14)

where H is the Heaviside step function. Before calculating the forces predicted by geo-

metrical optics I need to discuss its shortcomings.

Figure 6.2 does not accurately describe the trap I wish to model nor does geomertical

optics accurately describe the interaction of the light and sphere, for several reasons.

Firstly, the NA, hence the opening angle θ0, of optical tweezers is large and the paraxial

assumption (sin θ ≃ θ) is no longer applicable. For highly convergent beams the focus is

not Gaussian but rather governed by an integral representation due to the electromagnetic

diffraction within the optical system336,338. Also, as the beam is focussed into a chamber

it must pass through a coverslip. The interface created by this glass slide and trapping

medium (usually water) creates a mismatch in refractive index through which the beam is

focussed. This discontinuity introduces spherical aberration into the focussed beam and

so can only be fully described using a full wave analysis.

Secondly, the interaction of a plane wave with a sphere where R ≃ λ is more challenging to

describe than by constructing the problem as a beam of many single rays passing through

a sphere acting as a lens, as in geometrical optics. The description really must take

into account diffraction. There is an analytical solution to Maxwell’s equations for the

scattering of a plane light wave by a single sphere for any ratio of radius to wavelength.

The solution was independently developed by Mie, Debye, and Lorenz around the turn of

the 20th century but has been historically referred to as ‘Mie theory’ or ‘Mie scattering’

since and shall be done so here339.

Thirdly, there is something intuitively wrong with the wavelength independence of geo-

metrical optics. The focal waist and scattering of light by colloidal particles is known

experimentally to be wavelength dependent so surely a theory of optical tweezers should

also be wavelength dependent. An additional complexity arises from the proximity of

reflecting surfaces which can cause ‘reverberations’317 of light that significantly change

the interaction. Finally, a true description of the physics at play must traverse the full

range of applicability from Rayleigh scattering to geometrical optics.
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6.2 Mie scattering and Richards and Wolf theory

I will first describe the tight focussing of a beam using the integral representation developed

by Richards and Wolf336,338 and then give a solution that describes light scattering from

spheres.

6.2.1 Richards and Wolf theory

A Gaussian laser beam with plane wavefronts entering the back aperture of a lens is

described by

Eobj(ρ, z) = Eobje
ik0ze−ρ

2/w2

ǫ̂, (6.15)

where k0 = 2π/λ0, z is the axial direction, ρ is the lateral direction, and ǫ̂ is a unit vector

along the wave propagation direction.

When focussed into a medium of refractive index ng, in my case glass, the beam will occupy

a conical region in space governed by the angle of convergence θ0, and the azimuthal angle

ϕ. This beam can be thought of as a superposition of plane waves and given by an

integral representation of electromagnetic diffraction described by Richards and Wolf336.

The electric field in glass is therefore

Eglass = E0

∫ 2π

0

∫ θ0

0
sin θg

√

cos θge
−γ2 sin2 θge−ik·rf eik·rǫ̂′(θ, ϕ)dθdϕ, (6.16)

where

E0 = −ingf
λ0

TobjEobj, (6.17)

and θ0 is the opening angle of the focussed beam given by the NA of a lens, θ0 =

arcsin (NA/ng), ng is the refractive index of glass, θg is the half-cone angle in glass, Tobj

is the transmission of the objective, Eobj is the electric field magnitude at the objective

lens back aperture, γ = f/w and f , ω and rf are defined in figure 6.5. ǫ̂′(θ, ϕ) rotates

the plane waves to occupy all angles from 0 to θ0 and all ϕ using a rotation by Euler

angles308,309 (ϕ, θg,−ϕ). It should be noted that within this chapter the NA of a lens in-

fers information about the opening angle of the cone of focus exterior to and immediately

before any interfaces only.

This is the classic representation of a beam focussed to a point, rf , however, my system

differs with two interfaces between exit from the lens and reaching the focal point as shown

in figure 6.5. So, the plane wave components of equation 6.16 each refract at the interfaces

at z1 = −h and z2 = −h+ ∆h. From Snell’s law the angle of refraction in the water layer

θw = arcsin (sin θg/N1) and the angle of refraction in air θa = arcsin (sin θa/Nw) where
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N1 = nw/ng and N2 = na/nw are the relative refractive indices of the glass-water and

water-air interfaces respectively.

When the opening angle of the converging beam is larger than the critical angle for the

ratio of the glass to air refractive indices, the NA of the beam is effectively reduced to

θ0 = arcsin (N1N2).

Figure 6.5: Illustration of the optical system and its parameters for my experiments
and computational modelling. Left) A beam of wasit w enters an objective lens of focal
length f with a back aperture of radius ρ. It is focussed to a point fp having propagated
through two mismatched refractive index interfaces, z1 and z2, such that the thickness
of the middle medium is ∆h. If neither interface existed then the light would be
focussed to point rf . Right) Expanded view of the focal region of the microscope
objective to the left. Light is incident on the first interface, z1, at an angle θg and
refracted to an angle θw. It is then incident on the second interface z2, a distance ∆h
away, at an angle θw where it is refracted to an angle θa and focussed to its paraxial
focus point fp. The height of the paraxial focus above the second and first interfaces is
L2 and L1 respectively. The droplet is trapped a distance h above the first interface,
z above the paraxial focus and zf below the point rf . In my experimental system of
chapter 5 and the airborne system I model in this chapter the first interface is between
glass and water, and the second interface is between water and air.

The beam representation must therefore include the effects of propagation through media

of stratified refractive index309. In this way the focussed beam in the third medium, air,
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is described by

Eair = E0

∫ 2π

0

∫ θ0

0
T (θg) sin θg

√

cos θge
−γ2 sin2 θge−i(kgz−kwz)he−ik·rf eika·rǫ̂′(θa, ϕa)dθdϕ,

(6.18)

where (kgz − kwz)h takes into account beam propagation in the glass slide up to the

first interface and ka = nak0 is the wavenumber in air and each plane wave amplitude is

multiplied by its respective Fresnel transmission coefficient

T (θg) = T1(θg)T2(θg) =
2 cos θg

cos θg +N1 cos θw

2 cos θw
cos θw +N2 cos θa

. (6.19)

The effect of the additional factors in equation 6.18 over equation 6.16 and the geometry

of figure 6.5 introduces a spherical aberration that deforms the wavefront preventing the

diffraction limited focussing to the point rf . This aberration is quantified in terms of an

aberration function as will be shown later in section 6.2.3.

Having focussed the beam through two mismatched refractive index interfaces, the height

of the paraxial focal plane above the water layer is found from the objective displacement,

X, through

L =

(

X
nw
ng

− ∆h

)

na
nw

. (6.20)

as mentioned in figure 5.4.

Using the work of Török and Varga309 on beam propagation through stratified media and

equation 6.18 I can calculate the profiles of beams focussed in my system and compare

them to the ideal beam assumed in most cases, hopefully giving some insight into the

physics.

Figure 6.6 displays the yz-plane beam profiles for beam focussing in water, through a

glass-water interface, and through glass-water-air interfaces. The axial displacement zero

point is the position that the paraxial focus, rf , would exist at when no refractive index

interfaces are in the system.

The beam focussed in water with no preceding interfaces varies smoothly at the focus

compared to those focussed in water and air having first travelled through glass coverslips.

In particular the beam focussed to a point in air has a large number of oscillations in

intensity along the axial plane. Could this interact with the particles in a non-trivial

manner?340 Particles that are large relative to this may not ‘see’ the oscillations while

small particles could be trapped at more than one of the ‘hot-spots’. The colour scale

remains the same for all plots so the maximum intensity is less in an airborne tweezers

than for others given the same input power.



Chapter 6. Optical Trap Modelling 140

y (µm)

z 
(µ

m
)

−4 −2 0 2 4
−30

−25

−20

−15

−10

−5

0

5

10

(a)

y (µm)

z 
(µ

m
)

−4 −2 0 2 4
−30

−25

−20

−15

−10

−5

0

5

10

(b)

y (µm)

z 
(µ

m
)

−4 −2 0 2 4
−30

−25

−20

−15

−10

−5

0

5

10

(c)

 

 

In
te

ns
ity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 6.6: Profile of a focussed 532 nm Gaussian beamstaken from a y-z slice through
the beam axis. (a) The beam is focussed into water (nw = 1.33). (b) The beam is
focussed into water having crossed a glass (ng = 1.517) to water (nw = 1.33) interface
after the lens. (c) The beam is focussed into air (na = 1.00) across glass (ng = 1.517)
to water (nw = 1.342) and water to air interfaces. The objective displacement X =
40 µm, the water layer is 10 µm thick, γ = 1 and θ0 = 41.23◦. Zero on the axial axis
is the position of the paraxial focus had there been no interfaces.

Having described beam focussing more realistically, specifically for stratified media, I will

move onto the scattering of light by the particles I wish to model in these beams.

6.2.2 Mie scattering

The development of the Mie theory of scattering was a means to an ends of understanding

one of the classic questions of science: Why is the sky blue? I will not attempt to delve

into the history of this period as a far more complete one is included in Kerker339. Mie

approached the problem from a slightly different perspective in the hope of explaining the

colours of scattering from gold colloidal particles in a water suspension. I will not attempt

to derive the Mie theory from first principles as a lovely version is found in Bohren and

Huffman341 but I will include the results that are important to my needs.

A plane wave incident on a spherical particle results in a scattered electric field that is

dependent on the Mie scattering coefficients an and bn
341 where n appears because of the

Legendre polynomials in the solution which have n degrees. To simplify the following the
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Riccati-Bessel functions are introduced as;

ψn(krsξ) = krsJn(krs) and ξn(krs) = krsh
(1)
n (krs), (6.21)

where k is the wavenumber, rs is from the spherical coordinates system and h
(1)
n = Jn+iyn

is the spherical Hankel function with the spherical Bessel functions Jn and yn. Using these

the scattering coefficients are

an =
mψn(mξ)ψ

′

n(ξ) − ψn(ξ)ψ
′

n(mξ)

mψn(mξ)ξ
′

n(ξ) − ξn(ξ)ψ
′

n(mξ)
(6.22)

and

bn =
ψn(mξ)ψ

′

n(ξ) −mψn(ξ)ψ
′

n(mξ)

ψn(mξ)ξ
′

n(ξ) −mξn(ξ)ψ
′

n(mξ)
(6.23)

where ξ = nmk0R is the size parameter and m = np/nm, the relative refractive index of

particle to medium.

The previous two sections have given all the necessary background to allow me to move

onto how the force in optical tweezers is calculated.

6.2.3 Force calculation

To calculate the force I follow the full electromagnetic approach where the Maxwell stress

tensor is integrated over the surface of the object;

〈F 〉 =

〈
∮

S
n̂ · T dS

〉

, (6.24)

where n̂ is the surface normal and T is the electromagnetic stress tensor. Due to system

symmetry and also momentum conservation the force simplifies so the surface is at infinity,

thus giving

F = lim
r→∞

(

−r
2

∫

Sr

r
(

ǫE2 + µ0H
2
)

)

, (6.25)

where E = Einc + Escat with equivalents for the magnetic field337.

An analytical solution to this can be complicated, even for spheres, as can be seen in Barton

et al.342. An exact partial wave approach must be taken so the effects of the refractive

index interfaces can be taken into account which cause the field of the beam to behave

as described by equation 6.18 rather than equation 6.16 (i.e. with spherical aberration).

I will take the simpler approach described by Mazolli et al.337 where the vector electric

and magnetic fields are given in terms of scalar Debye potentials, also known as Hertz

vectors168. The optical forces are calculated by following Farsund and Felderhof343, who
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derive force, torque and absorbed energy for an object of arbitrary shape and material

given the Debye potentials for the incident and scattered fields. The results of Farsund

and Felderhof343 also match those of Barton et al.342 with slight notation changes.

Debye, as early as 1909, calculated the force on a sphere due to an incident plane wave,

and here the result is generalised to a focussed beam. First, the Debye potential for a

single plane wave is337

ΠE
k(r,θ,ϕ) =

E0

k

∞
∑

j=1

ij−1Jj(kr)

√

4π (2j + 1)

j (j + 1)

j
∑

m=−j

e−i(m−1)ϕkdjm,1(θk)Yjm(θ, ϕ). (6.26)

where Jj are the spherical Bessel function and Yjm are the spherical harmonics. Using the

matrix elements of finite rotations, also known as Wigner d functions344,345, for rotation

in the basis of spherical harmonics, the Debye potential for a focussed Gaussian beam

made from a superposition of plane waves, whose field is represented by equation 6.18, is

ΠE
inc(r, θ, ϕ) =

E0

k

∫ θ0

0
sin θk

√

cos θke
−γ2 sin2 θk

∞
∑

j=1

ij−1Jj(kr)

√

4π (2j + 1)

j (j + 1)

×
j
∑

M=−j

djm,1(θk)Yjm(θ, ϕ)

∫ 2π

0
e−ik·rfe−i(kgz−kwz)he−i(m−1)ϕkdϕk. (6.27)

Evaluating the integral over the azimuthal angle the incident Debye potential becomes

ΠE
inc(r, θ, ϕ) =

E0

k

∫ θ0

0
sin θk

√

cos θke
−γ2 sin2 θk

∞
∑

j=1

ij−1Jj(kr)

√

4π (2j + 1)

j (j + 1)

×
j
∑

m=−j

djm,1(θk)Yjm(θ, ϕ)2π (−i)m−1 e−ikzf cos θke−i(kgz−kwz)h

× Jm−1(kρR sin θk)e
−(m−1)ϕf . (6.28)

From figure 6.5 the relative locations of the planes gives zf = 1
N1

(

∆h+ L2

N2

)

− L1 − z.

Substituting this into the middle two exponents of equation 6.28 I derive the aberration

function308,309,317,346, Ψ, of my system to be

Ψ = k0

(

−
(

ng
N1

∆h+
ng

N1N2
L2

)

cos θg + nw∆h cos θw + na (L2 + z) cos θa

)

. (6.29)

The Debye potential for the scattered field is found through the incident fields interaction

with a sphere and hence is dependent on Mie coefficient aj and Hankel function h
(1)
j of

section 6.2.2 to be
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ΠE
inc(r, θ, ϕ) = −2π

E0

k

∞
∑

j=1

j
∑

m=−j

ij−mGjm(ρf , zf )e
−(m−1)ϕf

√

4π (2j + 1)

j (j + 1)

× ajh
(1)
j (kr)Yjm(θ, ϕ), (6.30)

where

Gjm =

∫ θ0

0
T (θ) sin θ

√
cos θe−γ

2 sin2 θdjm,1(θa)Jm−1(kρ sin θa)e
iΨ(z,θ)dθ. (6.31)

Similar expressions can be found for the magnetic field, H, using the Mie coefficient bn.

The efficiencies are given for the lateral and axial components each with two separate

contributions, one for the rate of removal of momentum from the incident beam, Qe,

and the other for minus the rate of momentum transfer to the scattered field, Qs, so

Qρ,ztot = Qρ,zs +Qρ,ze . The forces are calculated for circularly polarised light but can equally

but done for linear polarisations346. I will start with the axial component of the trapping

efficiency given by317,337,346,347;

Qze =
4γ2

AN1N2
R

∞
∑

j=1

j
∑

m=−j

(2j + 1) (aj + bj)Gj,mG
′∗
j,m (6.32)

and

Qzs =
8γ2

AN1N2
R

∞
∑

j=1

j
∑

m=−j

(

√

j (j + 2) (j −m+ 1) (j +m+ 1)

j + 1

(

aja
∗
j+1 + bjb

∗
j+1

)

×Gj,mG∗
j+1,m +

2j + 1

j (j + 1)
majb

∗
j |Gj,m|2

)

.

(6.33)

The lateral efficiencies are

Qρe =
2γ2

AN1N2
I

∞
∑

j=1

j
∑

m=−j

(2j + 1) (aj + bj)Gj,m

(

G−
j,m+1 −G+

j,m−1

)∗
(6.34)

and

Qρs =
8γ2

AN1N2
I

∞
∑

j=1

j
∑

m=−j

√

j (j + 2) (j −m+ 1) (j +m+ 1)

j + 1

(

aja
∗
j+1 + bjb

∗
j+1

)

×
(

Gj,mG
∗
j+1,m+1 +Gj,−mG

∗
j+1,−m−1

)

, (6.35)

where A is the fraction of the beam power that enters the objective back aperture, to
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account for overfilling, and the functions G
′

j,m and G±
j,m are defined as

G
′

jm =

∫ θ0

0
T (θ) sin θ

√
cos θ cos θae

−γ2 sin2 θdjm,1(θa)Jm−1(kρ sin θa)e
iΨ(z,θ)dθ. (6.36)

and

G±
jm =

∫ θ0

0
T (θ) sin θ

√
cos θ sin θae

−γ2 sin2 θdjm±1,1(θa)Jm−1(kρ sin θa)e
iΨ(z,θ)dθ. (6.37)

The analytical solutions for force found through Farsund and Felderhof343 are converted

to trapping efficiency, again through equation 2.5.

In the limiting case where ∆h = 0 and nw = ng the results return to those of Viana et

al.317 for a glass to water interface without an intermediate water layer. For ∆h = 0

and ng = na = nw and X = 0, I find the results of Mazolli et al.337, and Neto and

Nussenzveig347 are matched.

The final crucial point concerns the computation of these equations. Rather than com-

pleting the sums in equations 6.32 to 6.35 to infinity it is useful to know that it is sufficient

to sum over j up to ξs + 4ξ
1/3
s + 2, or its nearest integer, due to the convergence of the

Mie scattering coefficients (Appendix A in Bohren and Huffman341).

Having introduced the theory and visualised the focussed beams I will move onto exam-

ining the outcome of applying the theories to ‘normal’ optical tweezers and then to my

application.

6.3 Results and discussion

Ashkin observed that even with relatively loose focussing of a Gaussian beam, particles

(with m > 1) always had the tendency to move toward the beam centre where they

would reach a lateral equilibrium position. In exactly the same manner this occurs in

airborne tweezing so its modelling is not of great importance. It is the axial efficiency

and force curves, and the associated balance between gradient and scattering forces, that

governs whether a particle is trapped or not. Although thw far more complex code has

been written to calculate lateral efficiencies, it will be the axial direction I consider as it

determines the unusual phenomena observed.

The results I present must be considered to be a set of typical examples that can be

produced using my code and is by no means exhaustive. Now written, many questions

can be asked and large areas of parameter space explored. This has already started with
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collaborators in the Aerosol Dynamics group, headed by Dr Jonathan Reid. I also note

that I have included several results pertaining to the optical tweezing of spheres in water,

not a topic of my thesis, but as a means of comparison to indicate the large difference

between these experiments and those in air.

6.3.1 Comparison of geometrical optics and Mie scattering

First I will make a comparison between the theoretical predictions of geometrical optics

(GO) against those from Mie scattering. In this first instance I will neglect the effects of

spherical aberration and show in figure 6.7 the axial trapping efficiency calculated through

both theories when a 250 nm, 1 µm, and 5 µm silica sphere is trapped with 532 nm light

in water. As described in the theory section there is a limit to the opening angle of the

focussed light and hence NA of the system under study. For a beam focussed through a

coverslip-water interface this limit θ0 = θc ≃ 62◦, thus NA = 1.33 sin θc = 1.17, and is the

value used for this first test.
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Figure 6.7: Axial trapping efficiency calculated through GO and Mie theories when
250 nm, 1 µm, and 5 µm silica spheres (np = 1.445) are trapped with 532 nm light in a
water medium (nm = 1.33) with γ = 1 and θ0 = 61.25◦ in a system like figure 6.2 with
no refractive index interfaces. The four curves are plotted on two separate graphs for
clarity. In (a) the black solid line is calculated through GO and the blue dashed line is
calculated through Mie scattering. In (b) all curves are calculated with Mie scattering.

Clearly the prediction of geometrical optics disagrees with those of Mie scattering. How-

ever, GO stands up surprisingly well even for spheres with radii similar to the wavelength

of trapping light. Testing the theory on a 5 µm sphere which is approaching the regime

where GO should become applicable it is indeed a reasonable approximation except for

the area closest to the paraxial focus and at the extremities.
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The inaccuracies are hardly surprising considering the discussion of GO’s limits made

earlier. For the small spheres Mie scattering plays a dominant role that differs to simple

ray optics and for the larger sphere the non-Gaussian beam focus plays the important role

that GO cannot account for.

I will now test how applicable geometrical optics is when trapping objects in air. Here the

NA’s upper limit is reduced (θ0 = θc ≃ 41.2◦ therefore NA ≃ 0.66) and lends itself toward

the paraxial approximation, hence GO. Yet the ratio of particle to medium refractive

index is higher than in colloidal systems thus moving further into the applicability of Mie

scattering. Figure 6.8 plots the axial efficiency for the same particles as figure 6.7 except

the medium is now air (nm = 1.00) and the particle is a water droplet (np = 1.33).
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Figure 6.8: Axial trapping efficiency calculated through GO and Mie theories for
250 nm, 1 µm, and 5 µm water droplets (np = 1.342) trapped with 532 nm light in air
(nm = 1.000) with γ = 1 and θ0 = 41.23◦ in a system like figure 6.2 with no refractive
index interfaces. The four curves are plotted on two separate graphs for clarity. In (a)
the black solid line is calculated through GO and the purple dashed line is calculated
through Mie theory. In (b) both curves are calculated with Mie theory.

The form of the geometrical curve remains similar to the previous example except with

an absolute increase in efficiency. This is probably due to an increased scattering force

component from the larger particle-medium refractive index contrast and reduction in

NA. Clearly, GO predicts the droplet will ‘just’ not obtain an axial equilibrium position

allowing it a brief reprieve in matching the more rigorous Mie theory. However, this

disappears quite quickly when noting the drastic curve change as the forces on three

sizes of spheres are computed using Mie scattering. The largest sphere, 5 µm, enters the

beginning of the GO regime (R ≫ λ), yet the theory completely fails to indicate the

occurrence of a second minima, predicted by Mie theory.

It has been shown geometrical optics, although not highly accurate, can provide reasonable
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predictions of the efficiencies of trapping colloidal particles in water, giving indications

of what one would expect in real world systems. However, in the same manner it has

been shown that GO is not an appropriate description of airborne tweezing with the

wild variation as a function of size not predicted, and the inability to predict important

features.

My next extension is where the GO description falls down, namely in the consideration

of the relevance of spherical aberration for both colloidal and airborne systems. Only

Mie theory can accommodate variations in phase wavefront profile so only this will be

considered from now on.

Figure 6.9 plots the axial efficiency curves for 1 µm and 5 µm silica spheres trapped in a

water medium when the aberration due to a single coverslip-water interface is and is not

neglected.

z/R

Q
z

 

 

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.08

−0.04

0

0.04

0.08

0.12
1µm NoAb
1µm Ab

(a)

z/R

Q
z

 

 

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.1

−0.05

0

0.05

0.1

0.15

0.2
5µm NoAb
5µm Ab

(b)

Figure 6.9: Axial efficiency curves for 1 µm and 5 µm silica spheres (np = 1.445)
trapped in water above a glass coverslip with and without the aberration induced by
the refractive index interface of glass (ng = 1.517) to water (nw = 1.33) taken into
account. The objective axial displacement X = 35 µm, γ = 1 and θ0 = 61.25◦. (a)
For a 1 µm sphere the blue solid line is without aberration and the purple dashed line
with aberration. (b) For a 5 µm sphere the red solid line is without aberration and
the black dashed line with aberration.

Spherical aberration clearly has a significant effect on optical trapping efficiency curves as

expected348,349. There is a drastic difference between the axial efficiencies from aberrated

and non-aberrated beams. The two main effects are a reduction in Q−
z,max, reducing the

trap’s axial strength, and a decrease in axial equilibrium position, zeq, so the spheres ‘sit’

lower in the trap relative to the beam’s respective paraxial focal point.

It has been established that spherical aberration plays a major role in the physics de-

scribing optical tweezing, so it must be considered in my system (figure 6.5) where there
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are two interfaces with mismatched refractive indices. The airborne tweezing geometry is

especially interesting as the intermediate thin layer of water may smooth out the abrupt

refractive index change that would otherwise exist. So, let us first repeat the previous

figure for water droplets trapped in air above a coverslip and thin water layer; figure 6.10.
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Figure 6.10: Axial efficiency curves for 1 µm and 5 µm water droplets (np = 1.342)
trapped in air (na = 1.000) above a glass coverslip (ng = 1.517) and thin water layer
(nw = 1.342) as depicted in figure 6.5. The objective axial displacement X = 40 µm,
the water layer is 10 µm thick, γ = 1 and θ0 = 41.23◦. (a) For a 1 µm sphere the blue
solid line is without aberration and the purple dashed line with aberration. (b) For
a 5 µm sphere the red solid line is without aberration and the black dashed line with
aberration.

The inclusion of spherical aberration in the description greatly affects the efficiency curves

for airborne water droplets. There is a reduction in Q−
z,max, reducing the trap’s axial

strength and for the large droplet a general ‘smoothing’ of the curve occurs with smaller

local minima created. Figure 6.11, for the same system and objective displacement but

with and without the water layer, shows a change in the axial curves indicating its signif-

icance and its necessary inclusion in the theory.

Hopefully the reader will now feel more comfortable with the optical forces and their

effects. Having established the most appropriate model to use and the physics to include,

I will now move on to trying to explain the phenomena observed, as recalled in the

introduction to this chapter.
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Figure 6.11: Axial efficiency curves for 1 µm and 5 µm water droplets (np = 1.342)
trapped in air (na = 1.000) above a glass coverslip (ng = 1.517) with and without a
thin water layer (nw = 1.342). The objective axial displacement, X = 40 µm, γ = 1,
θ0 = 41.23◦ and when the thin water layer exists it is 10 µm thick. In (a) the blue
solid and purple dashed curves are calculated without and with the thin water layer
respectively. In (b) the red solid and black dashed curves are calculated without and
with the thin water layer respectively.

6.3.2 Predicting experimental observations

All the previous theoretical results shown have neglected any particle buoyancy. For

colloidal systems this is a reasonable approximation with the density of the trapped objects

approximately that of the medium. Thus, there is only a multiplicative factor between

efficiency and force graphs via equation 2.5 which allows the axial Q curves to be treated

as scaled force curves. However, this is a very poor assumption when considering objects

suspended in air with the large density contrast; for water droplets ρfluid ≃ 1000ρair. In

order to fully appreciate what the theory predicts I must calculate the force experienced

by the microsphere using equation 2.5 and subtract its weight. The droplet and system

parameters from figure 6.10 including aberration is replicated with a trapping power of

10 mW to calculate the corresponding force curves in figure 6.12.

For the 1 µm, unlike the 5 µm droplet, the force plot has no significant effect on the

properties deduced from the efficiency plot. The weight of the 5 µm droplet is comparable

to the optical force so that an equilibrium position, zeq, exists which was not deduced

from the optical efficiency curve. I also note that F−
z,max, the force equivalent of Q−

z,max,

is large, in fact comparable to F+
z,max, making the trap far more axially symmetric.

The basics above have hopefully established an understanding of the physics in the system

and how the results should be interpreted correctly. Now I will see if the theory can predict

some of the behaviour observed during aerosol trapping experiments starting with points
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Figure 6.12: Axial force curves for 1 µm and 5 µm water droplets (np = 1.342)
trapped in air (na = 1.000) above a glass coverslip (ng = 1.517) and thin water layer
(nw = 1.342). The objective axial displacement, X = 40 µm, the water layer is 10 µm
thick, γ = 1, θ0 = 41.23◦. The red dashed line is for a 1 µm droplet and the blue solid
line is for a 5 µm droplet.

one and two at the beginning of this chapter. In figure 6.13(a) I plot for a 4 µm water

droplet, trapped in the experimental system depicted in figure 6.5, the predicted axial

force curves for increasing trapping powers. Repeating for several droplet radii the height

above the water layer a droplet is trapped, obtained from zeq, can be plotted as a function

of power as shown in figure 6.13(b).

Figure 6.13(a) successfully predicts two physical observations from experiments. As the

trapping power increases the droplet’s equilibrium position, zeq, hence height above the

underlying water layer, increases and with enough power eventually falls from the trap.

The 2 µm, 3 µm and 4 µm droplets in figure 6.13(b) do not continue for higher powers

as the droplet has no equilibrium position in its axial efficiency curve but the 5.5 µm

droplet continues indefinitely. It is easy to understand that if an equilibrium position

exists in the efficiency curves alone, then the droplet will always remain trapped. If no

such position exists then the force may eventually lose its equilibrium position with power.

This qualitatively explains my own results, figure 5.1, and by extension the power gradients

of Knox et al.279. My results indicate that their measured gradients279 are tangents to

one area of the larger curves. With this enhanced understanding their suggestion of using

power gradients as a tool for aerosol sizing applications could benefit.

Figure 6.13(b) may also explain why there is a linear dependence on captured droplet size

as a function of power and why small droplets cannot be trapped at high powers (fig-

ure 4.6). The power gradients show that above certain powers, depending on droplet ra-

dius, no equilibrium position exists. Therefore, although a ‘large’ droplet may be trapped

at relatively large powers, smaller droplets cannot be for the same power.
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Figure 6.13: (a) Variation of axial force for a 4 µm water droplet (np = 1.342) trapped
in air (na = 1.000) at trapping powers of 10 mW (blue dot-dashed line), 20 mW (green
dotted line), 50 mW (purple dashed line) and 200 mW (red solid line). The force for
each power has been normalised to unity for clarity, as it is only the axial equilibrium
position, zeq, that is of conern. (b) Variation in height above the water layer droplets
of radius 2 µm (blue dotted line), 3 µm (red dot-dashed line), 4 µm (purple dashed
line) and 5.5 µm (black solid line) are trapped as a function of trapping power (power
gradients of Knox et al.279). All but the 5.5 µm droplet’s curve stop due to the loss of
axial equilibrium position at high powers as in (a). The objective axial displacement,
X = 40 µm, the water layer (nw = 1.342) is 10 µm thick, γ = 1, θ0 = 41.23◦ and the
coverslip refractive index ng = 1.517 for both (a) and (b).

A large parameter that governs the magnitude of the spherical aberration induced by the

interfaces is the depth into the sample which the beam is focussed. For example, a lower

focus has less aberration. In figure 6.14 the beam is focussed at several depths into the

sample chamber and the force curve calculated again for a 4 µm water droplet.

The decrease in aberration not only shifts zeq closer to the paraxial focus but also increases

the strength of the optical trap with an increasing F−
z,max and overall deepening of the

potential well.

Now consider point 3 from this chapters introduction. This work investigates the interac-

tion between light and droplets of dimensions similar to the wavelength in a wave nature

context, so it is reasonable to expect the particle to exhibit some sort of interferometric

properties with reflections from the inside of the droplet interfering with themselves. This

can be demonstrated by simplifying the model and treating it as an interferometer which

performs reasonably well at estimating the axial efficiency at the paraxial focus347. In sec-

tion 4.1 it was discussed that liquid aerosols will establish a stable size once in equilibrium

with their surrounding environment, namely the relative humidity. Although the process

of growth and evaporation is relatively fast it is at times clear one of these is occurring

just after the droplet becomes trapped. The obvious step is to explore the parameter
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Figure 6.14: Variation of axial force for a 4 µm water droplet (np = 1.342) trapped
in air (na = 1.000) with 8 mW of power for microscope objective displacements of
25 µm (red dot-dashed line), 30 µm (solid black line) and 35 µm (dashed blue line).
The water layer (nw = 1.342) is 10 µm thick, γ = 1, θ0 = 41.23◦ and the coverslip
refractive index ng = 1.517.

space further by investigating how the height at which the droplet is trapped varies with

droplet radius. This is plot in figure 6.15
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Figure 6.15: Plot of the height a water droplet (np = 1.342) in air (na = 1.000) is
trapped above the underlying water layer (nw = 1.342) as a function of radius. The
objective axial displacement, X = 25 µm, the water layer is 10 µm thick, γ = 1,
θ0 = 41.23◦, the coverslip refractive index ng = 1.517 and the trap power is 10 mW

There is a clear, near sinusoidal, oscillation in droplet height as a function of its radius.

A single oscillation in height occurs over a change in droplet radius of ∼ 100 nm, going

from a local minima to maxima in half this, ∼ 50 nm. So, a change in trap height of

∼ 2 µm occurs due to only a 50 nm change in droplet radius. When observing a particle



6.3 Results and discussion 153

just after capture the change in size is clear, far above the limit of resolution, so must be

greater than 50 nm. Knowing that the oscillations are most frequent just after capture I

conclude the multiple oscillations that occur in experiments are due to changing particle

radius and hence equilibrium position zeq.

To measure this oscillation would be a challenging experiment. The droplets would need

to be imaged from the side to measure their height and also coupled with a high preci-

sion sizing technique such as CERS. With such instruments in place the droplet radius

would have to be varied by altering ambient relative humidity or varying droplet temper-

ature, but both would also change the droplet’s salt concentration hence refractive index.

This refractive index change should be possible to include in the model should such an

experiment be performed.

6.3.3 Limits of techniques

I have managed to qualitatively explain the three unique phenomena observed when trap-

ping airborne water droplets by modelling the optical forces created by the focussing of

a high NA beam through two refractive index mismatched interfaces. How far can the

boundaries of optical trapping in air be pushed? Can smaller particles (< 1 µm) be

trapped? Can the axial trap strength and capture volume be increased? What are the

limits on the particle refractive index that can be trapped? To explore these questions

Q−
z,max is calculated as a function of both particle radius and relative refractive index335,

first for particles suspended in water, figure 6.16, as means of comparison, and then for

airborne particles; figure 6.17.

The white areas on the plots represent parameter space where a negative Qaxial value does

not exist and hence no stable trap position is possible†. Of immediate note are the ‘spikes’

in the contour plots indicating resonance in the force experienced by the particles. The

effect is more pronounced as a function of radius although at the high refractive index end

of the spikes there are rapid resonances in force as a function of refractive index, creating

tiny islands of parameter space where traps can exist.

These resonances can be explained by interference effects due to spheres high refelctivity

at high relative refractive index and its associated variation with radius335. The decreased

frequency of the resonances in air is due to the lower medium refractive index (na = 1.00

and nw = 1.33).

As the plots are functions of relative refractive index it is noted that for a given particle

†This is not completely accurate as there is a very small value of Q−
z,max in the white areas but it is

negligible350,351.



Chapter 6. Optical Trap Modelling 154

Radius (µm)

n re
l

 

 

0 0.5 1 1.5 2 2.5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(a)

Radius (µm)
n re

l

 

 

0 0.5 1  1.5 2  2.5 3  3.5 4  4.5 5  
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Q
z,

m
ax

−

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b)

Figure 6.16: Q−
z,max as a function of relative refractive index and radius for spheres

trapped in a water medium (nw = 1.33). The objective axial displacement, X = 40 µm,
γ = 1, θ0 = 61.25◦ and the coverslip refractive index ng = 1.517. The colour bar in
(b) is representative for both plots. (a) is an expanded view of the first 2.5 µm of (b)
as this is the region where the boundaries would really like to be pushed.
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Figure 6.17: Q−
z,max as a function of relative refractive index and radius for spheres

trapped in an air medium (na = 1.000). The objective axial displacement, X = 40 µm,
the water layer (nw = 1.342) is 10 µm thick, γ = 1, θ0 = 41.23◦ and the coverslip
refractive index ng = 1.517. The colour bar in (b) is representative for both plots. (a)
Is an expanded view of the first 2.5 µm of (b) as this is the region where the boundaries
would really like to be pushed.

refractive index the horizontal line of interest is higher up the refractive index axis in

air than water. Looking at the sorts of particles normally trapped in both media gives

a ‘feel’ for the plots. For example, a silica sphere in water exists along the line defined

by nrel ≃ 1.09 in figure 6.16 and for a water droplet in air the line is at nrel ≃ 1.34 in

figure 6.17.

The continuous region of stability for optical tweezers in air is over a smaller range of
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refractive indices (∆nrel ≃ 1 − 1.25) than when trapping in water (∆nrel ≃ 1.33 − 1.65)

and also, the maximum negative axial efficiency values, Q−
z,max, are smaller overall for

trapping in air than in water. This is understandable because the larger relative refractive

index between particle and medium in air increases the Fresnel reflection coefficients, hence

increases scattering forces which probably overcome the gradient forces. The minimum

radius trappable is smaller in water than air probably due to the focussed beam’s increased

spherical aberration, induced by the coverslip interface, which has a larger refractive index

contrast in airborne traps. As seen in figure 6.6 this increased aberration produces larger

period oscillations in intensity allowing more ‘room’ for particles to ‘fall’ between.

These plots are deceptive; the true range of particles that would theoretically obtain an

axial equilibrium position in air has been misquoted because, as previously mentioned,

the weight of the particle is significant. F−
z,max is the truly relevant quantity that will

allow the determination of whether the spheres are isolated in three dimensions or not.

Unfortunately, this poses a problem as the force from equation 2.5 is dependent on laser

power and with this additional variable not all parameter space can be easily plotted.

Instead F−
z,max is plotted for a single power, P = 10 mW, in figure 6.18.
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Figure 6.18: F−
z,max as a function of relative refractive index and radius for spheres

trapped in an air medium (na = 1.000). The objective axial displacement, X = 40 µm,
the water layer (nw = 1.342) is 10 µm thick, γ = 1, θ0 = 41.23◦ and the coverslip
refractive index ng = 1.517. The colour bar in (b) is representative for both plots. (a)
is an expanded view of the first 2.5 µm of (b).

Comparing figures 6.17 and 6.18 I come to an interesting conclusion. For droplets with

certain particle parameters, indicated in figure 6.17, traps are created through the transfer

of optical momentum alone (single beam gradient force trap or optical tweezers). However,

figure 6.18 indicates that with the assistance of gravity a larger range of droplets can be

‘trapped’, although not with momentum transfer alone. Consider a droplet that evolves
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in size (it will also evolve slightly in refractive index due to salt concentration changes);

as the radius varies the particle’s ‘path’ in the parameter space of figure 6.17 may cross

through a non-tweezing region but due to its weight remains trapped (figure 6.18). This

difficulty in deciding whether a droplet is tweezed or levitated leads to the conclusion

that as a general name for the experimental tool being used I really have a quasi-optical

tweezers.

In figure 6.19 I superimpose the tweezing and trapping areas of figures 6.17 and 6.18.

Areas of parameter space truly optically tweezed are coloured grey, areas that are only

trapped because of the assistance of gravity are coloured red and the area that would be

truly tweezed if the droplets had neutral buoyancy is coloured blue. White areas retain

the same meaning of neither tweezing nor levitation.
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Figure 6.19: Superposition of figures 6.17(b) and 6.18(b) highlighting the areas of
parameter space, as a function of relative refractive index and radius, where water
droplets are truly optically tweezed (grey), only trapped with the assistance of gravity
(red), and optically tweezed if the droplet had neutral buoyancy (blue). The white area
represents areas where neither optical tweezing nor levitation occurs. The parameters
for these plots are the same as the respective figures.

It is clear now that the choice of inverted or non-inverted tweezers is critical in the success

of optically trapping a large range of aerosol sizes. Having established the true nature of

the technique I am using, is it possible to move more of parameter space into the tweezing

regime?
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6.3.4 Optimisation and extension of limits

I have demonstrated several points of physics that stop airborne tweezers from reaching

their optimum performance. These include spherical aberration created in the beam, a

high refractive index contrast between particle and medium causing large scattering forces,

and a lack of high converging angles (reduced NA) due to total internal reflection at the

coverslip interface.

Total internal reflection is not easily circumvented but it could be possible to correct for

spherical aberration or possibly remove the large scattering forces and I shall explore the

effects of attempting to fix these next.

Spherical aberration correction

The largest aberration that occurs in an airborne tweezing system is spherical aberration

with the results in the beam profile shown in figure 6.6. In section 3.5.2 I showed aber-

rations on the SLM and in the optical system can be removed with ease. It is feasible,

therefore, that the aberration induced by the mismatched refractive index interfaces could

be corrected for by using the SLM to display additional correction kinoforms. Any correc-

tion would clearly be advantageous creating better localisation of aerosols and hopefully

moving into the important accumulation mode size regime. In figure 6.20 I plot for the

same parameters as figure 6.17 but an additional spherical aberration is placed on the

objective’s input beam of magnitude 0.08λ.

Figure 6.20 shows an improvement in the axial strength of the optical tweezers, an increase

in the overall range of parameter space that can be tweezed but unfortunately also an

increase in the minimum particle radius that can be tweezed.

Removal of beam centre intensity

In chapter 2, I discussed that Ashkin used geometrical optics to predict an increase in

Q−
z,max if a ‘doughnut’ mode beam (TEM01) fills the back aperture of an objective. As

increasing Q−
z,max is by far the most difficult problem in airborne tweezers, as shown and

discussed, it is of clear interest to predict the effects of removing the central portion of

a Gaussian beam using Mie theory. In figure 6.21 I plot Q−
z,max against both radius and

relative refractive index for a Gaussian beam where ∼ 57% of the beam area is removed

leaving an annulus, yet the total power remains the same.

The figure shows that the area in parameter space over which a true optical tweezer can
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Figure 6.20: Q−
z,max as a function of relative refractive index and radius for spheres

trapped in an air medium (na = 1.00) with a Gaussian beam entering the back aperture
of the microscope objective with an additional spherical aberration placed on the beam
at the entrance to the objective back aperture of magnitude 0.08λ. The objective
axial displacement, X = 40 µm, the water layer is 10 µm (nw = 1.342) thick, γ = 1,
θ0 = 41.23◦ and the coverslip refractive index ng = 1.517. (a) is an expanded view of
the first 2.5 µm of (b).
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Figure 6.21: Q−
z,max as a function of relative refractive index and radius for spheres

trapped in an air medium (na = 1.000) with a Gaussian beam entering the back aper-
ture of the microscope objective with 57% of its central area removed. The objective
axial displacement, X = 40 µm, the water layer (nw = 1.342) is 10 µm thick, γ = 1,
θ0 = 41.23◦ and the coverslip refractive index ng = 1.517.

be created is greatly increased by removing the central core of a Gaussian beam, although

the minimum sphere radius tweezable has increased. The minimum radius increase could
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be due to the zero intensity that may now exist in the focal plane of the tweezers into

which a small enough sphere could sit, experiencing no forces from the surrounding light.

The predicted increase in parameter space over which aerosols can be tweezed is of great

promise to the field of aerosol optical manipulation. It is difficult to trap high refractive

index aerosols, specifically solid microspheres, yet they are of great importance to the

fields of medicinal drug lung delivery and atmospheric chemistry. It is hoped that a

definitive experiment can be performed in future to verify this huge increase in optical

tweezer parameter space.

6.3.5 Capture volume

I have demonstrated that power gradients may explain the linear dependence of captured

droplet size on trapping power but there may be more interactions occurring than thought.

In order for the droplets to become trapped they must enter the capture volume mentioned

in the introduction to this chapter, so it would be pertinent to calculate how this volume

varies with trapping power and droplet radius. Unfortunately, evaluation of this volume

requires calculation of forces for locations away from the optical axis. At these locations

there is a complex interplay between axial and lateral efficiencies317,337. This will require

more study to ascertain a suitable description and answer to the question of whether the

capture volume plays a significant role in the linear dependence of droplet size on trapping

power.

6.4 Shortcomings of theory

Within the Mie scattering theory outlined above I make the assumption that the Fresnel

transmission coefficients, ts and tp, for TE and TM modes of polarisation respectively

are equal and take ts = tp. Plotted in figure 6.22 are both modes of the transmission

coefficients as a function of incident angle on a glass to air interface to highlight the

inaccuracy in this assumption.

The discrepancy in figure 6.22 is significant. I propose that in future work both TE and

TM modes should be attempted to be placed into the theory.
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Figure 6.22: Fresnel transmission coefficients ts and tp for TE and TM modes of
polarisation respectively as a function of incident angle θ up to the critical angle
≃ 41.5◦ for a glass (ng = 1.517) to air (na = 1.000) refractive index interface.

6.5 Conclusion

The resonance type plots in this chapter go some way to explaining what the experimenter

observes although it is difficult to make anything more than hand-waving conclusions.

For example, it has been shown in this thesis that water droplets (nrel ≃ 1.342) are easily

trapped for a wide range of sizes as observed experimentally, but I can say from experience

that it is difficult to trap small water aerosols (≤ 1 µm) even though they are produced

from the nebuliser. Having worked closely with the main author of Summers et al.81 where

solid aerosols (nrel ≃ 1.445) are trapped, I can say that the expected range of particles

he could trap was odd. In colloidal systems, if two particle sizes can be trapped, almost

certainly a size between these two will also be trapped. However, in air, spheres with

certain radii could not be trapped yet sizes both above and below could.

Looking at figure 6.18 both these phenomena can be qualitatively explained with the

existence of the resonances as a function of radius and the lack of Q−
z,max for small spheres

(≤ 1 µm). Obviously, it is not easy to prove the non-result of being unable to trap certain

objects, but the results here give some indication as to why it is so hard to trap small

spheres, with a relatively high refractive index, that are so easily trapped in water.

The work of this chapter has lead to many new insights into how aerosols are trapped

in single beam gradient force traps. It has given some qualitative predictions that ex-

plain physical phenomena observed experimentally helping to define the parameters of

the current tools at our disposal. The challenge for the future is to produce quantitative

agreement between experiment and theory.



Chapter 7

Conclusion and Outlook

The work carried out within this thesis has opened areas of research not previously con-

sidered, so there are many experiments that could still be performed and questions that

should be investigated. In this chapter I highlight the most important and interesting out-

standing experiments and questions and discuss how they should progress, before finally

concluding.

7.1 Outlook

7.1.1 Single beam studies

In the future I would like to investigate the colour of thermal noise in Brownian motion.

Equation 5.9 shows that the fluctuating force per unit mass is independent of ω and hence

has a white noise spectrum. In reality, due to the frequency dependent friction, this

spectrum may be coloured262. Measuring this coloured Brownian noise is a challenging

experiment with measurement times in water needing to be approximately nine hours

in duration. Increasing the kinematic viscosity of the surrounding fluid should help to

simplify things; changing to airborne tweezing decreases the measurement time three-fold

from its difference in viscosity alone. With careful investigation further improvements

may be found due to simply trapping in air.

Another clear next step is to vary the type of trapping beam and to measure the effect.

I have already shown in section 4.3 that Laguerre-Gaussian beams can impart orbital

angular momentum to aerosol droplets. However, would the use of lower azimuthal index,

l, to trap droplets improve their performance due to the lack of intensity in the core of the

161



Chapter 7. Conclusion and Outlook 162

beam? This is partially answered in chapter 6 where the theoretical effect of a core-less

beam is calculated and has already been shown to work in a colloidal system121.

Finally, for single beam aerosol studies, as discussed in chapter 5, work by Tólic-Nørrelykke

et al.295 showed that in an over-damped system it is possible to extract the trap stiffness,

detector calibration and viscous damping from a single experiment in situ. The derivations

in the work are carried out for a system that cannot exist in the critical or under-damped

regime. I would find it interesting to carry out this work for an airborne based optical

trap to see if the same parameters can be extracted or if extra information can be gained.

7.1.2 Fungi

A good follow-up experiment would be to test the photoreceptor-mediated negative pho-

totropism hypothesis by repeating the experiments using strains in which the genes en-

coding different photoreceptors have been mutated216. Also it would be interesting to test

a greater range of wavelengths and attempt to image the behaviour of the Spitzenkörper

during redirection.

7.1.3 Sizing

At the moment the ability to size aerosol droplets from the friction they experience is

restricted to a single particle at a time. CCDs can be used to detect multiple particles

simultaneously but usually do not run at high enough frame rates to sample the motion

correctly. However, with the advent of high speed multiple particle video tracking191, it is

feasible that holographic trapping of multiple aerosols (chapter 4) can be combined with

the sizing technique (section 5.4.2) enabling simultaneous multiple aerosol sizing.

7.1.4 Hydrodynamics

I have realised, as the work in this thesis has progressed, that the physics needed to

describe the motion of optically trapped aerosols is rather complex. I have derived the

hydrodynamically correct power spectrum of position fluctuations for a sphere with oscil-

latory motion in a bulk medium, i.e. far away from surfaces. I have also demonstrated

that as a droplet approaches a surface, Faxén’s correction to Stokes’ law must be used.

However, I have not included a description of the hydrodynamic correction to Faxén’s

correction arising from oscillatory motion near a plane surface. This has not been solved

for particles trapped in air, unlike in water295. The solution in air should be determined
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if improvements in accuracy and precision are required.

Circulation frequency dependence

There is a correction to Stokes’ law when dealing with fluid in fluid systems as I discussed

for liquid droplets in air in section 5.5. This correction can reduce the viscous damping

which I have included in my analysis. However, what is not clear is whether or not this

correction also has a significant frequency dependence and is a question to be answered

in the future.

Colloidal crystals

Optically trapped microparticles are a useful tool in the study of hydrodynamic interac-

tions in colloidal suspensions109,271,275 and it has been shown that microparticles localised

in optical traps form hydrodynamically coupled arrays. Polin et al.275 predicted that

trapping larger spheres with higher trap stiffness in a lower viscosity medium would dis-

play the crossover from over-damped dynamics to a regime of under-damped propagating

elastic waves with uniformly negative group velocities (see figure 3 of Polin et al.275).

The optical trapping of aerosol experiments described in this thesis provide a route to

observing these under-damped propagating waves due to the low dynamic viscosity of

air. The difficulty is the high speed detection of more than one particle simultaneously;

in water this is not a problem as the slow frequencies of oscillation allow normal video

tracking to be used. Alternatively in a time shared beam system the laser modulation

can be synchronised with the position detection system to circumvent this problem352,

but becomes difficult for more than two objects. The recent development of high speed

cameras that track multiple particles simultaneously ‘on chip’ at greater than 10 kHz

allows studies at frequencies above the natural frequency of objects in airborne optical

traps353, providing a solution to tracking multiple (> 2) objects at high speed.

Preliminary experiments with one such high speed camera have shown that observation

of the desired under-damped waves is possible.

7.1.5 Spherical aberration correction

As suggested in chapter 6 it may be possible to correct for the spherical aberration induced

at the refractive index interfaces by using the SLM to alter the wavefront. However, the

problem is the difficulty in measuring and quantifying the amount of spherical aberration
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induced. One option would be to place a mirror a set distance above the interface and

then use the same method as explained in section 3.5.2 to measure the aberration. This

will only give the aberration for a very specific point in space with particular system

properties that are liable to variation, so realistically, a different method would need to

be developed.

Assuming trap stiffness is representative of the amount of aberration induced in the beam,

a feedback system could be implemented that measures stiffness as different correction

kinoforms are displayed on the SLM. This would iterate towards the correct kinoform for

removal of spherical aberration artefacts.

7.2 Conclusion

I have provided an introduction to the field of optical manipulation that should be useful

for novices. Starting with the basic apparatus and physical explanations in chapter 2, the

ideas have evolved to provide complex experimental instruments and theoretical models

that demonstrate several original results.

In chapter 3 I discussed the application of beam shaping methods in optical manipulation,

specifically spatial light modulators. I described the apparatus needed and its correct

construction before overviewing the software I have written to generate kinoforms through

several different algorithms all implemented in LabVIEW. I also examined the optimisation

of the system.

In chapter 4 I used the holographic optical tweezers from chapter 3 to demonstrate three

novel applications of holographic optical tweezers that cover two orders of magnitude in

dimension. These include the trapping and coagulation of multiple aerosols, the manipu-

lation of filamentous fungi hyphal tips over extended distances and novel digital microflu-

idic operations using thermocapillary forces. These experiments move holographic optical

tweezers away from direct optical manipulation, improving their versatility and the range

of other disciplines for which they can be used179,354,355. I also laid down preliminary

results for observing orbital angular acceleration using beams carrying orbital angular

momentum.

In chapter 5 I described experiments that investigated the Brownian dynamics of optically

trapped airborne liquid droplets. Exploration of the parameter space gives unique results

in optical tweezers, showing that the trapped object is able to behave as an under-damped

Brownian oscillator, that in turn can be parametrically excited. The ability for optical

tweezers to access this regime has lead to several novel results83,356, and will continue to



7.2 Conclusion 165

do so357. The results also show that when using beam shaping methods to study objects

in air, one must be careful in its design to ensure the system does not fail. Perhaps

the most useful result is the ability to determine the radius of optically trapped aerosols

from studying the damping they experience. This technique requires no calibration a

priori, thus making it simple to perform with little additional equipment over basic optical

tweezers.

In chapter 6, I used a theoretical model to describe the forces imparted to a sphere trapped

in a beam with spherical aberration, I qualitatively explain the phenomena observed in

airborne optical traps. Specifically, potential reasons for the linear dependence of captured

droplet size on laser power are given. Also, the reason droplets change in height as a

function of laser power (‘power gradients’) and why with sufficiently large powers some

droplets leave the trap, is explained. Finally, a likely mechanism for the axial oscillations

of droplets is given. A major test of these explanations will be the future quantitative

comparison to experimental results.

The work on holographic optical tweezers is already being used by three collaborating

groups to enhance their toolbox of techniques185. Also the theoretical modelling is be-

ing used by collaborators to enhance their understanding of experiments with airborne

traps358.

As described in this chapter there still remains much scope for interesting experiments to

be performed and physics to be probed, with my thesis providing the background.
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