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Burkholderia pseudomallei isolates with shared multilocus sequence types (STs) have not been isolated from different
continents. We identified two STs shared between Australia and Cambodia. Whole-genome analysis revealed substantial
diversity within STs, correctly identified the Asian or Australian origin, and confirmed that these shared STs were due to
homoplasy.

Burkholderia pseudomallei, the bacterium that causes melioid-
osis, is well-recognized in the regions of northern Australia

and Southeast Asia where melioidosis is prevalent. The prevalence
of B. pseudomallei is increasingly being recognized in other trop-
ical regions including parts of Africa, the Americas, and other
Asian regions such as India (1). Melioidosis is a potentially fatal
disease with mortality rates ranging from 10 to 50% of infected
individuals (2). The majority of B. pseudomallei infections are ac-
quired from the environment following percutaneous inocula-
tion, inhalation, or ingestion of contaminated soil or surface wa-
ter; human-to-human transmission is exceedingly rare (2). The
nature of melioidosis acquisition, coupled with restricted B. pseu-
domallei environmental dissemination patterns, has contributed
to the evolution of localized genetic populations with finite geo-
graphic distribution (3–5). Phylogeographic studies using multi-
locus sequence typing (MLST) (6) and whole-genome sequencing
(4) have identified two distinct populations of B. pseudomallei
corresponding to Asia and Australia (3, 4, 7, 8). Knowledge of this
population structure has facilitated source attribution for unusual
melioidosis cases, particularly those occurring in regions where
melioidosis is not endemic, such as returning travelers (9, 10).
Despite the success of previous studies in identifying robust phy-
logeographic patterns within B. pseudomallei populations, the in-
herently high recombination rate of this bacterium and greater
sampling efforts were predicted to inevitably reveal shared se-
quence types (STs) between these distinct geographic locations
(11). In the present study, we identify for the first time two such
instances of B. pseudomallei STs being shared between Cambodian
and Australian isolates.

B. pseudomallei sequence type 105 (ST105) and ST849 isolates
were analyzed from both Australia and Cambodia; a total of four
isolates were analyzed. MLST was performed as previously de-
scribed (6). MSHR282, the Australian ST105 isolate, was obtained
in 1994 from an Australian patient enrolled in the Darwin Pro-
spective Melioidosis Study (12), and the Cambodian ST105
isolate, CAM41, was isolated from a Cambodian melioidosis pa-
tient in 2008. To date, no other ST105 isolates have been sub-
mitted to the MLST database (http://bpseudomallei.mlst.net/).

MSHR4004, the Australian ST849 isolate, was isolated from an
Australian soil sample in 2010, and the Cambodian ST849 isolate,
SHCH2430, was isolated from a Cambodian melioidosis patient
in the same year. Clinical isolates were from patients with strong
epidemiological data to support local acquisition of their infec-
tions, including no documented travel history to other regions
where melioidosis is endemic. Ethics were approved by the Hu-
man Research Ethics Committee of the Northern Territory De-
partment of Health and Families, the Menzies School of Health
Research, and the Cambodian National Ethical Committee.

The MLST profiles of all Cambodian and Australian B. pseu-
domallei strains in the MLST database (as of 13 June14) were first
analyzed with eBURST V3 (13) (Fig. 1). eBURST showed some
evidence of ST clustering according to geographic source; how-
ever, these groupings contained multiple cases of Asian isolates
grouping with isolates of Australian origin (Fig. 1). Overall,
eBURST was unreliable for inferring the geographic origin of STs,
most likely due to very high rates of recombination in B. pseu-
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domallei, which has previously been shown to confound accurate
prediction of recent ancestry using this tool (11).

To gain further insight into the genetic relatedness and geographic
origin of these four isolates, we performed whole-genome sequencing
(WGS) using the Illumina HiSeq2000 platform (Illumina Inc., San
Diego, CA). WGS data have been deposited into the NCBI SRA da-
tabase with the following accession numbers: CAM41 (ERR539773,
ERR539807, and ERR539841), MSHR282 (ERR298339), SHCH240
(ERR298360), and MSHR4004 (ERR298343). Single-nucleotide
polymorphisms (SNPs) in the core genome were identified with
SPANDx v2.3 (14) using B. pseudomallei K96243 as a reference
sequence (15). Additional reference B. pseudomallei genomes were
incorporated into the analysis by inclusion of simulated Illumina
data using ART v2.1.8 and a quality shift of 10 (16). Using the
default settings of SPANDx, 84,839 core genome SNPs were iden-
tified. Maximum likelihood phylogenetic analysis of these SNPs
using RAxML (17) grouped the Australian isolates (MSHR282
and MSHR4004) with other Australian isolates; likewise, the
Cambodian isolates (CAM41 and SHCH2430) grouped most
closely with isolates of Asian origin (Fig. 2). To assess the effect
of recombination on phylogenetic inference, recombinogenic
regions were removed using altered SNP-filtering parameters
with GATK (18) based on a SNP density of more than two SNPs
within 300 bp or with gubbins based on default parameters
(19). GATK filtering or gubbins analysis removed 37,213
(44%) or 24,216 (13.5%) SNPs, respectively, used in the phy-
logenetic reconstruction but did not alter geographic attribu-
tion of strains or tree topology (see Fig. S1 and S2 in the sup-
plemental material). Overall, these findings suggest that both

FIG 1 eBURST analysis of 954 Burkholderia pseudomallei isolates from Australia and Cambodia, comprising 245 sequence types (STs). Both ST105 and ST849
(shaded green) contain B. pseudomallei isolates found in Cambodia and Australia. All other STs have been found solely in Australasia or Asia. STs shaded in red
indicate an Asian origin and include isolates found in Cambodia, Thailand, China, and Vietnam. STs shaded in blue represent islands in Australasia. All unshaded
STs are of Australian origin.

FIG 2 Maximum likelihood phylogenetic analysis of two Cambodian
(CAM41 and SHCH2430) and two Australian (MSHR282 and MSHR4004)
Burkholderia pseudomallei genomes in comparison to B. pseudomallei refer-
ence genomes. A total of 84,839 core genome single-nucleotide polymor-
phisms were used to construct the phylogeny. Based on multilocus sequence
typing (MLST), both MSHR282 and CAM41 isolates are ST105 (red), and
isolates MSHR4004 and SHCH2430 are ST849 (blue). However, whole-ge-
nome phylogenetic analysis clearly groups these strains based upon geographic
origin, i.e., MSHR282 and MSHR4004 group with other Australian isolates,
and CAM41 and SHCH2430 group with other Asian strains. Thus, MLST of B.
pseudomallei can, in rare cases, be confounded by ST homoplasy. The scale bar
represents the average number of nucleotide substitutions per site.
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ST105 and ST849 convergence was a consequence of both mu-
tation and multiple recombination events over considerable
evolutionary time rather than from recent recombination in-
volving the MLST loci (Fig. S1).

To complement the whole-genome SNP phylogeny find-
ings, several variable genetic markers with known geographic
associations were interrogated in silico; specifically, the viru-
lence factors encoded by Burkholderia pseudomallei or Burkhold-
eria mallei bimA (bimABp/Bm) (20) and fhaB3 (21), and the BTFC
(Burkholderia thailandensis-like fimbrial cluster) and YLF (Yersin-
ia-like fimbrial cluster) loci, the latter two of which are mutually
exclusive. All four isolates possessed fhaB3 and the bimABp sub-
type. Only the MSHR4004 isolate was positive for BTFC; all other
isolates possessed the YLF allele. The fhaB3, bimABp, and YLF
markers are more common in B. pseudomallei isolates of Asian
origin, and bimABm has yet to be observed in any Southeast Asian
isolate but is present in 12% of Australian isolates (22, 23). These
genotypes correlate with their expected prevalence in Australian
and Southeast Asian B. pseudomallei. The bimABm and BTFC loci
were not observed in the two Cambodian isolates. The discordant
YLF/BTFC profiles in the two ST849 isolates is highly unusual. To
the best of our knowledge, this has not been reported previously in
isolates with identical STs from the same geographic region.
Taken together, these results support the expected geographic or-
igin of these isolates and further consolidate the convergent nature
of these STs.

We report, for the first time, two instances of B. pseudomallei
isolates with identical STs from two continents. Isolate origins
were resolved using whole-genome phylogenetic analysis. Al-
though our study was limited by the availability of Cambodian B.
pseudomallei isolates for comparative whole-genome phyloge-
netic analysis, we showed that, in both cases, shared STs between
geographic regions were due to ST homoplasy. Our findings rule
out recent B. pseudomallei transmission between these regions and
demonstrate some limitations of MLST for source attribution of
highly recombinogenic species.
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