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Abstract

We study inertial-range dynamics and scaling laws in unforced two-dimensional magnetohydro-

dynamic turbulence in the regime of moderately small and small initial magnetic-to-kinetic energy

ratio r0, with an emphasis on the latter. The regime of small r0 corresponds to a relatively weak

field and strong magnetic stretching, whereby the turbulence is characterized by an intense con-

version of kinetic into magnetic energy (dynamo action in the three-dimensional context). This

conversion is an inertial-range phenomenon and, upon becoming quasi-saturated, deposits the con-

verted energy within the inertial range rather than transferring it to the small scales. As a result,

the magnetic energy spectrum Eb(k) in the inertial range can become quite shallow and may not

be adequately explained or understood in terms of conventional cascade theories. It is demon-

strated by numerical simulations at high Reynolds numbers (and unity magnetic Prandtl number)

that the energetics and inertial-range scaling depend strongly on r0. In particular, for fully devel-

oped turbulence with r0 in the range [1/4, 1/4096], Eb(k) is found to scale as kα, where α & −1,

including α > 0. The extent of such a shallow spectrum is limited, becoming broader as r0 is

decreased. The slope α increases as r0 is decreased, appearing to tend to +1 in the limit of small

r0. This implies equipartition of magnetic energy among the Fourier modes of the inertial range

and the scaling k−1 of the magnetic potential variance, whose flux is direct rather than inverse.

This behavior of the potential resembles that of a passive scalar. However, unlike a passive scalar

whose variance dissipation rate slowly vanishes in the diffusionless limit, the dissipation rate of the

magnetic potential variance scales linearly with the diffusivity in that limit. Meanwhile, the kinetic

energy spectrum is relatively steep, followed by a much shallower tail due to strong antidynamo

excitation. This gives rise to a total energy spectrum poorly obeying a power-law scaling.
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I. INTRODUCTION

Magnetohydrodynamic turbulence differs from its usual counterpart in some fundamental

aspects. In the former, dynamo action can convert a substantial amount of kinetic energy

into magnetic energy. This phenomenon, which has become a subject of active research

[1–11], gives rise to several interesting effects. First, dynamo action may help to rid the

large scales of kinetic energy, an addition to the usual loss of kinetic energy due to the

direct energy transfer through the vortex stretching mechanism. Second, dynamo action,

upon becoming saturated (or quasi-saturated), may deposit a substantial amount of the

converted magnetic energy in the inertial range. Hence, the magnetic modes in this range

may be more strongly excited than those of a passively advected field. For strong dynamo

action, the inertial range may no longer be considered an energy-free “conduit”, through

which the energy is transferred to the dissipation scales. This is in a sharp contrast to

fluid systems governed by the three-dimensional Navier–Stokes, surface quasi-geostrophic

and Burgers equations, whose inertial ranges are virtually devoid of energy. Third, upon

losing energy to dynamo action, the velocity field becomes weaker, necessarily rendering

less effective magnetic and vortex stretching. Arguably, the delineation of these effects is

essential for a detailed understanding of the turbulence. Nonetheless, relatively successful

theories in the literature have neither directly addressed nor been concerned with these

apparent effects [12–15]. Note, however, that Iroshnikov [12] and Kraichnan [13] envisaged

a reduction of energy transfer by Alfvén waves. This is in a qualitative agreement with the

weakening of magnetic and vortex stretching by dynamo action presently discussed.

In two dimensions, energy conversion plays a particularly prominent role in the inertial-

range dynamics and energy transfer. The reason is that in the absence of genuine vortex

stretching, the Lorentz force is solely responsible for vortex amplification. This amplification

has been known to give rise to bounded enstrophy, even in the limit of zero magnetic Prandtl

number [16]. As a result, the dissipation of kinetic energy vanishes in this limit and the

conversion of kinetic into magnetic energy becomes the only mechanism through which the

large scales can rid themselves of kinetic energy. However, since this conversion exhausts

rather than excites the mechanical modes, the reverse process (referred to in Blackbourn

and Tran [17] and this study as antidynamo action) is required to excite and replenish the

mechanical modes (particularly those in the inertial range) if a persistent energy flux is to
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be realizable. Hence, antidynamo action also plays a key role in the energy transfer. A

detailed analysis of the problem of energy conversion responsible for the energy transfer can

be found in a recent study by Blackbourn and Tran [17]. A brief review of this problem is

given in § II for convenience.

An important parameter in two-dimensional magnetohydrodynamic turbulence is the

magnetic-to-kinetic energy ratio, say r(t). Apparently, the regime r ≪ 1 corresponds to

a relatively weak field and strong magnetic stretching, whereby the dynamics should be

dominated by an intense conversion of kinetic into magnetic energy. On the other hand, the

regime r ≫ 1 corresponds to relatively weak advection (weak magnetic stretching), whereby

a conversion of magnetic into kinetic energy could be a key dynamical feature. We are not

aware of comprehensive investigations of these extreme regimes. Recently, Blackbourn and

Tran [17] studied the energetics and inertial-range scaling laws of two-dimensional magneto-

hydrodynamic turbulence at unity magnetic Prandtl number (Pm = 1) for moderate values

of r0 = r(0) in the range [1/16, 16]. It was found that for fully developed turbulence, the

energy conversion, upon becoming saturated (dynamo saturation in the three-dimensional

context), strongly excites the inertial range as expected. The kinetic, magnetic and total

energy spectra in this range appear to depend on r0. Most notably, the total energy spec-

trum was observed to be significantly shallower than k−3/2, particularly for the cases with

lower r0. These dynamical features do not appear to be adequately addressed by available

theories [12–15, 18]. Hence further investigation is highly desirable.

This study extends the results of Blackbourn and Tran [17] with an aim to better un-

derstand the dynamical features described in the preceding paragraph, by doubling the

resolution from 4096× 4096 to 8192× 8192 and broadening the range of r0 toward the weak

field regime, down to r0 = 1/4096. This allows us to examine in detail the dependence of

the inertial-range dynamics and scaling laws on r0, for r0 ≪ 1. Another aim is to address in

a quantitative manner the observation by Blackbourn and Tran [17] that strong conversion

of kinetic into magnetic energy can suppress the inverse transfer of the magnetic potential

variance. It is demonstrated by numerical simulations at Pm = 1 and for r0 ∈ [1/4, 1/4096]

that the magnetic energy spectrum is much shallower than its kinetic counterpart. The sum

of these highly “incongruous” spectra, i.e. the total energy spectrum, poorly approximates

a power-law scaling. The slope of the magnetic energy spectrum is found to increase dra-

matically with r0, appearing to tend to +1 in the small r0 limit. This scaling corresponds
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to equipartition of magnetic energy among individual Fourier modes and equipartition of

magnetic potential variance among the wave-number octaves in the inertial range. The

transfer of the magnetic potential variance, induced by strong energy conversion, is direct

rather than inverse. This is reminiscent of the dynamics of a passive scalar advected by a

large-scale flow. Note, however, that there are fundamental differences between the passive

scalar and the present cases. In the former, the mean-square scalar gradient can be amplified

without bound in the diffusionless and infinite-time limits, while in the latter, the magnetic

energy is bounded uniformly in time for bounded initial total energy. In some sense, the

direct transfer of a passive scalar can be considered relatively more spontaneous than that

of the magnetic potential. Another difference is that antidynamo interaction is an integral

part of the magnetic potential dynamics. Hence the magnetic potential is an active scalar

in its own right.

II. THEORETICAL BACKGROUND

The evolution of the magnetic induction and the motion of a two-dimensional incom-

pressible and electrically conductive fluid are governed by

∂ω

∂t
+ J(ψ, ω) = J(a,∆a) + ν∆ω, (1)

∂a

∂t
+ J(ψ, a) = µ∆a. (2)

Here ψ is the stream function, ω = ∆ψ is the vorticity, a is the magnetic potential, J(·, ·)

denotes the Jacobian and ν and µ are the kinematic viscosity and magnetic diffusivity,

respectively. The divergence-free fluid velocity u and magnetic induction b are given in terms

of ψ and a by u = (−ψy, ψx) and b = (ay,−ax), where subscripts denote differentiation.

The current density j is given by j = −∆a. For convenience, we consider a doubly periodic

domain, over which all the fields involved have zero average.

Let 〈·〉 denote the domain average. The evolution (conversion and decay) of the kinetic

energy 〈|∇ψ|2〉 /2 = Eu and magnetic energy 〈|∇a|2〉 /2 = Eb (per unit area) are governed

by

1

2

d

dt

〈
|∇ψ|2

〉
= 〈ψJ(a, j)〉 − ν

〈
ω2

〉
= 〈ψJ(a, j)〉 − ǫu, (3)

1

2

d

dt

〈
|∇a|2

〉
= −〈jJ(ψ, a)〉 − µ

〈
j2
〉
= −〈jJ(ψ, a)〉 − ǫb. (4)
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When ν = µ = 0, the total energy E = Eu +Eb is conserved as the triple-product terms on

the right-hand sides of (3) and (4) cancel each other. These terms represent the conversion

between Eu and Eb and play a key role in the transfer of E to small scales (direct transfer).

Note that the variance of the magnetic potential 〈a2〉 (among other quantities) is conserved.

The conservation of 〈a2〉 prohibits significant kinetic-to-magnetic energy conversion from

taking place at large scales [17]. Further implications of this conservation law are discussed

in § III. On phenomenological grounds, 〈a2〉 is expected to be transferred to large scales [19–

21]. The inverse transfer of 〈a2〉, however, is relatively weak due to amplification of Eb [17].

In § III, this weak transfer can be seen to reverse direction by strong kinetic-to-magnetic

energy conversion.

The respective kinetic, magnetic, and total energy dissipation rates ǫu(t), ǫb(t) and ǫ(t) =

ǫu(t) + ǫb(t) are key dynamical parameters. Recent mathematical studies [16, 22, 23] have

derived important constraints on these quantities. In particular, given µ > 0, 〈ω2〉 and 〈j2〉

were shown to be uniformly bounded in time independently of ν. It follows immediately

that in the regime of small magnetic Prandtl number Pm, ǫu decreases linearly with Pm.

This may have far reaching implications, which have yet to be fully explored. In § III, the

dependence of ǫu(t), ǫb(t) and ǫ(t) on r0 and on ν at Pm = 1 is examined.

In wave-number space, the exact cancellation of the triple-product terms on the right-

hand sides of (3) and (4), i.e. the conservation of total energy, manifests itself through

interacting wave triads, each conserving energy individually. To see this, consider a vector

triad k = ℓ + m with the associated modal energy components k2|ψ̂k|
2/2, ℓ2|âℓ|

2/2 and

m2|âm|2/2. Here k = |k|, ℓ = |ℓ|, m = |m| and ψ̂k and âk denote the Fourier transforms

of ψ and a, respectively. The equations governing the energy transfer (without diffusion)

within this triad are given by [17]

d

dt
k2|ψ̂k|

2 = (ℓ2 −m2)ℓ×m

(
ψ̂∗

k
âℓâm + ψ̂kâ

∗

ℓ
â∗
m

)
, (5)

d

dt
ℓ2|âℓ|

2 = −ℓ2ℓ×m

(
ψ̂∗

k
âℓâm + ψ̂kâ

∗

ℓ
â∗
m

)
, (6)

d

dt
m2|âm|2 = m2

ℓ×m

(
ψ̂∗

k
âℓâm + ψ̂kâ

∗

ℓ
â∗
m

)
, (7)

where ℓ ×m = ℓxmy − ℓymx and the asterisk denotes a complex conjugate. The terms on

the right-hand sides of (5), (6) and (7) sum up to zero, indeed implying energy conservation

within individual triads. Note that the magnetic potential variance is also conserved by

individual triads as is clear from (6) and (7).
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A simple analysis of (5), (6) and (7) in Blackbourn and Tran [17] concludes that energy

conversion and transfer go hand in hand and are facilitated by two distinct types of triads.

One of these converts kinetic to magnetic energy, i.e. negative growth of k2|ψ̂k|
2 in Eq. (5),

while the other converts magnetic to kinetic energy, i.e. positive growth of k2|ψ̂k|
2 in Eq. (5).

For convenience, these triads are referred to as dynamo and antidynamo triads, respectively.

For a qualitative behavior of these triads, see Fig. 1. The former helps to rid the large scales

of kinetic energy and gives rise to a direct magnetic energy flux. Hence, the operation of

dynamo triads is crucial in the energy transfer. However, since dynamo triads themselves

exhaust rather than excite the mechanical modes, their persistent operation in the inertial

range is impossible without help from antidynamo triads to excite and replenish these modes.

As far as the direct energy transfer is concerned, this help comes with a cost as antidynamo

interaction involves an inverse magnetic energy flux (see Fig. 1). It is not known with pre-

cision to what extent this flux can neutralize its direct counterpart. Nonetheless, a nearly

complete neutralization is possible in fully developed turbulence, where dynamo saturation

in three dimensions and energy conversion saturation in two dimensions are widely observed

[3, 11, 17]. Note that dynamo triads involving large-scale mechanical modes can be fully

operative independently of antidynamo triads, provided that their mechanical modes have

yet to be exhausted. These triads represent large-scale advection and require a magnetic

energy spectrum not steeper than k−1 for a nonvanishing magnetic energy flux [24]. This

corresponds to a relatively weak transfer, in the sense that a highly excited inertial range

is required. Given the cancellation (whether partial or nearly total) between the dynamo

and antidynamo fluxes and the weak transfer by large-scale advection, the direct energy

transfer in two-dimensional magnetohydrodynamic turbulence can be expected to be rela-

tively weak. Indeed, Blackbourn and Tran [17] found energy spectra significantly shallower

than the classical k−5/3 spectrum (in fact, shallower than the Iroshnikov and Kraichnan

k−3/2 spectrum) and suggested the possibility of a k−1 scaling. This scaling is found to be

a poor approximation to the present numerical results for small r0. Indeed, it can be seen

in § III that the magnetic energy spectrum closely obeys the power-law scaling kα, where

α becomes positive for small r0. On the other hand, the kinetic energy spectrum is rela-

tively steep, though with a shallow tail due to antidynamo excitation of the small scales.

The sum of these highly “incongruous” spectra gives rise to a total energy spectrum poorly

approximated by a power-law scaling.
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FIG. 1: (Color online) A schematic description of dynamo and antidynamo wave triads

k = ℓ+m (ℓ = |ℓ| < m = |m|) responsible for energy conversion and transfer. The arrows

indicate the direction of energy transfer.

III. NUMERICAL RESULTS

We now present and discuss our simulation results. Equations (1) and (2) were numer-

ically integrated in a doubly periodic domain of side 2π using a pseudo-spectral method.

The time-stepping procedure was a fourth order Runge-Kutta method, with the dissipa-

tive terms incorporated exactly using integrating factors. Aliasing errors were removed at

each timestep using a high-order spectral smoothing operator as described in [25]. In all

simulations, the initial magnetic field was confined to the wave-number range [4, 6], and its

Fourier modes within this range were given random phases and equal magnitudes. We used

localized and fully developed velocity fields in separate sets of simulations. This allows us

to understand the different effects of these fields on the magnetic field dynamics. In the first

two sets of simulations the velocity field was initialized in the same fashion as its magnetic

counterpart, albeit being confined to the wave-number range [5, 7]. Both initial fields were

then rescaled to produce various r0. In the third set this seed velocity field was first evolved

according to the two-dimensional Navier–Stokes equations until the time of maximum en-

strophy dissipation, when the turbulence could be considered fully developed. At this time

it was noted that the enstrophy spectrum (not shown) was close to the classical k−1 form

for about a decade of wave numbers. This field was then used as the initial velocity field

(see Fig. 2). While the energy is virtually unchanged during the initial nonmagnetic evo-

lution, it should be noted that the enstrophy does decay by about 10%. The first set of
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FIG. 2: (Color online) Representative initial magnetic potential field (left) and spectrally

localized (center) and fully developed (right) initial vorticity fields used in the simulations,

presented here for r0 = 1/256.

simulations corresponds to r0 = 1/4, 1/16, 1/64, 1/256, 1/1024, with unity total energy.

For each r0, four simulations at resolutions of 1024 × 1024, 2048 × 2048, 4096 × 4096 and

8192× 8192 were run, with ν = µ taking values 9.60× 10−4, 3.81× 10−4, 1.51× 10−4 and

6.00× 10−5 respectively. This represents a decrease in viscosity by a factor of 24/3 when the

resolution is doubled, as suggested by the estimates for the number of degrees of freedom

derived by Tran and Yu [26]. The choice of Pm = 1 is mainly for computational expedi-

ency rather than physical relevance. Actual Prandtl numbers vary widely depending on the

physical situation, with the solar tachocline and liquid metals typically having Pm in the

range [10−5, 10−3]. The second and third set correspond to r0 = 1/256, 1/1024, 1/4096,

with Eb(0) = 0.001 fixed. This amounts to a total energy of 4.097 for the case r0 = 1/4096.

For each r0, one simulation at 8192 × 8192 grid points was run, with ν = µ = 7.9 × 10−5.

Note that an increase in ν and µ in these simulations compared with the previous ones at

the same resolution is necessary due to the more energetic initial condition for r0 = 1/4096.

A. Energy budget

Fig. 3 shows the evolution of the energy components Eu(t) and Eb(t) and their ratio

r(t) = Eb/Eu. For all simulations, strong magnetic stretching is a prominent dynamical

feature during the early stage. For r0 = 1/4, 1/16, r(t) becomes quasi-steady upon attaining

values about 2.0. This is in agreement with the findings of Blackbourn and Tran [17],
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where the initial fields are twice as energetic, and of Biskamp and Welter [27]. From the

highest resolution runs (least diffusive effects), it can be seen that (maximal) amplification

of magnetic energy is approximately by threefold for r0 = 1/4, eightfold for r0 = 1/16,

twentyfold for r0 = 1/64, fortyfold for r0 = 1/256 and fiftyfold for r0 = 1/1024. The case

r0 = 1/64 appears critical, in the sense that magnetic stretching is barely able to give rise

to a parity of Eu(t) and Eb(t) (at t ≈ 1.7). Note that the conservation of 〈a2〉 imposes

a stiff constraint on magnetic energy amplification in the spectral vicinity of the magnetic

reservoir, but in principle allowing for this amplification to proceed toward smaller scales

until saturation. It is not known whether there exists a bound for the ratio rpeak/r0, where

rpeak denotes the peak value of r(t), as r0 → 0. Further results below suggest a negative

answer to this question. In any case, r(t) diminishes in the limit r0 → 0. Indeed, Fig. 3

indicates that for r0 = 1/64, 1/256, 1/1024, the relation between rpeak and r0 is virtually

linear.

The ratio rpeak/r0 is a measure of the relative strength of magnetic stretching. As can be

seen from the discussion above, this ratio increases as r0 is decreased. The asymptotic behav-

ior of rpeak/r0 in the limit r0 → 0 (and limit of ideal dynamics) is interesting. This problem

is explored in some detail on the basis of the results from the second set of simulations.

Although the evolution of the total energy E is not shown explicitly, one can deduce from

Fig. 3 that E decays most rapidly for the case r0 = 1/64, where an approximate parity of

Eu(t) and Eb(t) is attained for fully developed turbulence. Qualitatively speaking, this parity

ensures both effective magnetic stretching and relatively strong antidynamo excitation of the

mechanical modes in the inertial range, required for optimal dissipation. Toward the small r0

regime, E becomes better conserved as expected. Also for r0 = 1/64 (and r0 = 1/256), Eu(t)

becomes smaller (for t > 1) as ν is decreased. This somewhat counter-intuitive behavior can

be understood by noting the relatively strong surge in Eb(t) in response to weaker diffusion.

Fig. 4 shows the evolution of the energy dissipation rates ǫu(t), ǫb(t) and ǫ(t). For similar

but twice as energetic initial fields and for r0 = 1/4, 1/16, it was observed by Blackbourn

and Tran [17] that each of these rates achieve a smaller maximum at increasingly greater

time as ν is decreased. This is no longer the case for lower r0. More precisely, when

r0 = 1/256, 1/1024 (and sufficiently small ν), each of these rates achieve a greater maximum

at increasingly greater time as ν is decreased. This behavior is consistent with the possibility

of positive limiting dissipation rate achievable in infinite time.
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FIG. 3: (Color online) Kinetic energy Eu(t), magnetic energy Eb(t) and their ratio

r(t) = Eb/Eu versus t for numerical simulations with resolutions 1024× 1024 (dotted),

2048× 2048 (dashed-dotted), 4096× 4096 (dashed) and 8192× 8192 (solid) and

r0 = 1/4, 1/16, 1/64, 1/256, 1/1024. The rows are in decreasing order of r0.
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FIG. 4: (Color online) Kinetic, magnetic and total energy dissipation rates ǫu(t), ǫb(t) and

ǫ(t), respectively, versus t for numerical simulations with resolutions 1024× 1024 (dotted),

2048× 2048 (dashed-dotted), 4096× 4096 (dashed) and 8192× 8192 (solid) and

r0 = 1/4, 1/16, 1/64, 1/256, 1/1024. The rows are in decreasing order of r0.
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FIG. 5: (Color online) Evolution of the exponential energy dissipation rates ǫu/Eu, ǫb/Eb

and ǫ/E for the highest resolution runs, with r0 = 1/4, 1/16, 1/64, 1/256 and 1/1024 given

by the dashed-double-dotted, dotted, dashed-dotted, dashed and solid lines, respectively.

The exponential energy dissipation rates (energy dissipation rates per unit energy) ǫu/Eu,

ǫb/Eb and ǫ/E versus time for the highest resolution runs are plotted in Fig. 5. The case

r0 = 1/64 corresponds to optimal dissipation (highest peak in ǫ/E) as observed earlier. The

rapid decrease of ǫu/Eu toward the weak field regime is fully expected as kinetic energy

is an inviscid invariant of Navier–Stokes turbulence. Given r ≪ 1, this decrease entails a

corresponding decrease in ǫ/E. What is interesting is the increase of ǫb/Eb and its relatively

large magnitude, implying an increasingly shallow magnetic energy spectrum in the inertial

range.

Fig. 6 shows the respective kinetic, magnetic and total energy spectra Eu(k), Eb(k) and

E(k) at time t = 2.5, which is well after the time of peak energy dissipation, when the

turbulence can be considered fully developed. Across the board, the inertial range becomes

shallower for higher resolutions as expected. The kinetic energy reservoir becomes less

depleted for lower r0 as a smaller amount of kinetic energy per unit kinetic energy may be

converted. In the energy inertial range of the lower-r0 cases, Eu(k) is significantly steeper

than k−1, though with a relatively shallower tail due to antidynamo excitation. Meanwhile

Eb(k) is surprisingly shallow (with limited extent), approximately k1. Thanks to the latter,

E(k) is slightly shallower than k−1. Note that a k1 scaling corresponds to equipartition of

magnetic energy among the Fourier modes of the inertial range. An interesting question is

whether this behavior is universal for the weak field limit. Evidence for a positive answer

to this question is presented shortly.

It is evident from the observed energy spectra, particularly from those for the relatively

weak field cases, that energy tends to linger in the inertial range rather than to cascade
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FIG. 6: (Color online) Kinetic, magnetic and total energy spectra Eu(k), Eb(k) and E(k),

respectively, for fully developed turbulence (at t = 2.5), for numerical simulations with

resolutions 1024× 1024 (dotted), 2048× 2048 (dashed-dotted), 4096× 4096 (dashed) and

8192× 8192 (solid) and r0 = 1/4, 1/16, 1/64, 1/256, 1/1024. The rows are in decreasing

order of r0. The reference lines have a slope of −1.13



FIG. 7: (Color online) Kinetic (solid) and magnetic (dashed) energy spectra for the

highest resolution from Fig. 6 in decreasing order of r0 from top left to bottom right.

to the dissipation range. This is an indication of weak energy transfer discussed in the

preceding sections.

The magnetic modes in the higher-wave-number end of the inertial range and in the

dissipation range are more strongly excited than their neighboring mechanical modes (see

Fig. 7). This discrepancy in the level of excitation becomes more conspicuous for lower r0.

As discussed in the preceding section, the said mechanical modes are excited and replenished

by their magnetic counterparts through antidynamo interaction. On physical grounds, it is

plausible to expect the “excitees” to remain weaker than their “excitors”. Our results are

consistent with this expectation. The implication is that energy equipartition (i.e. Eu(k) =

Eb(k)) in the inertial range, which was predicted by Kraichnan [13] in the three-dimensional

context and subsequently questioned by a number of authors [28–32], does not apply to the

present case (see further detail below).

B. Direct transfer of magnetic potential and equipartition of magnetic energy

No appreciable inverse transfer of 〈a2〉 has been observed across the series of simulations

presented above. On the contrary, for the lower-r0 cases, the redistribution of 〈a2〉 from the
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reservoir (initially confined to k ∈ [4, 6]) is in favor of the higher rather than the lower wave

numbers. This direct transfer can be recognized from the spectrum of 〈a2〉, which is given

by k−2Eb(k) and can be inferred from Eb(k) in Figs 6 and 7. This spectrum is sufficiently

steep and shallow for k . 5 and k & 5, respectively, clearly indicating a biased distribution

of 〈a2〉 toward k & 5. This is due to exceedingly strong magnetic stretching in these cases.

A more quantitative knowledge of the direct transfer of 〈a2〉 in the small r0 limit can be

gained from the results of the second and third set of simulations, the details of which were

described earlier. For the remainder of this section, we present and discuss these results.

Fig. 8 shows the physical space representations of the vorticity and magnetic potential

fields (at peak magnetic energy dissipation, t = 3) for the system evolving from the spec-

trally localized vorticity field. Similarly, Fig. 9 shows these fields (at peak magnetic energy

dissipation, t = 2.5) for the system evolving from the fully developed vorticity field. These

figures correspond to the case r0 = 1/256. Because of limited scale resolution, the values

of |ω| exceeding 3 〈ω2〉
1/2

have been filtered out. As large vorticity is highly concentrated

in space, this practice does not change the images in a recognizable manner. Clearly, the

magnetic potential has evolved toward the small scales (see the initial potential field in

Fig. 2 for a comparison). From the images of these fields for r0 = 1/1024 and r0 = 1/4096

(not shown), the tendency of a to evolve toward the small scale becomes increasingly more

pronounced for smaller r0. A quantitative description of this behavior is given by Fig. 10,

where the direct flux of 〈a2〉, say Π(k), is stronger for smaller r0. It can be seen that Π(k)

has a slightly sharper peak for the case of developed velocity field. Note that for the case of

localized initial velocity field and r0 = 1/4096, Π(k) is non-negative throughout, including

the wave-number region lower than that of the initial magnetic reservoir. The reason is that

in the early stage, a weak and brief inverse transfer had occurred and excited this region.

The negative flux associated with this transfer is short-lived and, by the time t = 1, is

replaced by a non-negative flux.

Fig. 11 shows the magnetic and kinetic energy Eb(t) and Eu(t), as well as the dissipation

rates ǫb(t) and ǫu(t) for r0 = 1/4096, 1/1024 and 1/256 for the simulations evolving from a

spectrally localized vorticity field. As r0 decreases, Eb(t), ǫb(t) and ǫu(t) grow more rapidly,

achieving a higher peak in a shorter time, Intuitively, this time has some bearing on the

turnover time of the turbulence. Unfortunately, a quantitative knowledge of this issue is not

possible due to insufficient data.
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FIG. 8: (Color online) Vorticity (left) and magnetic potential (right) fields at peak

magnetic energy dissipation, t = 3, for r0 = 1/256 for simulations evolving from a vorticity

field spectrally confined within the wave-number interval [5, 7]. The vorticity field is plotted

with values between −3 〈ω2〉
1/2

and 3 〈ω2〉
1/2

= 30, while the maximum value is ≈ 140.

Fig. 12 compares the magnetic energy, kinetic energy, magnetic energy dissipation and

kinetic energy dissipation for the two different initial conditions for the case r0 = 1/4096.

As mentioned above the initial fully developed vorticity field has less enstrophy, meaning

that the kinetic energy dissipation rate is lower throughout.

Fig. 13 shows the magnetic and kinetic energy spectra at the time of maximum mag-

netic energy dissipation. Across the board, the spectrum Eb(k) has a positive slope and

becomes wider for smaller r0. Remarkably, this positive slope appears to tend to unity in

the small-r0 limit. Such limiting scaling corresponds to equipartition of magnetic energy

among individual Fourier modes and equipartition of magnetic potential variance among

the wave-number octaves of the inertial range, respectively. The spectrum Eu(k) possesses

two distinct ranges. At lower wave numbers Eu(k) is significantly steeper, which is slightly

more distinct in the case having evolved from a fully developed vorticity field, then shallows

to approximate the classical Kolmogorov k−5/3 spectrum. Evidently, the overall spectrum

is poorly represented by a single scaling exponent. Note that the difference in the initial

velocity field has little effect on Eu(k) and Eb(k). Fig. 14 replots the magnetic and kinetic
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FIG. 9: (Color online) Vorticity (left) and magnetic potential (right) fields at peak

magnetic energy dissipation, t = 2.5, for r0 = 1/256 for simulations evolving from a fully

developed vorticity field. The vorticity field is plotted with values between −3 〈ω2〉
1/2

and

3 〈ω2〉
1/2

= 19.5, while the maximum value is ≈ 87.

energy spectra for the case r = 1/4096 from Fig. 13 for comparison.

Some remarks about the asymptotic behavior of Eb(k) are in order. Compelling evidence

from Fig. 13 suggests the spectrum Eb(k) = Ck1, which extends to an ever-higher wave

number, say km, as r0 → 0 (and in the limit of ideal dynamics). For such a spectrum, the

conservation of 〈a2〉 requires

〈
a2
0

〉
= C

∫ km

k0

k−1 dk = C ln

(
km
k0

)
, (8)

where k0 can be taken as the system’s smallest wave number. The divergence of km implies

a logarithmic decrease of C, i.e. a logarithmic collapse of Eb(k). Meanwhile the magnetic

energy is given by

Eb = C

∫ km

k0

k1 dk ≈ Ck2m =
〈a2

0
〉

ln(km/k0)
k2m. (9)

Apparently, this corresponds to no upper bound for Eb in the limit r0 → 0, or equivalently,

the kinetic energy available for conversion is unlimited. Note that this theoretical picture

would become complete if a dependence of km on r0 could be established.
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FIG. 10: (Color online) Flux of magnetic potential variance at the time of peak magnetic

energy dissipation for r0 = 1/256 (dashed-dotted), r0 = 1/1024 (dashed) and r0 = 1/4096

(solid). These occur at t = 3, t = 1.6 and t = 1 respectively for evolution from a localized

initial vorticity field (left), and t = 2.4, t = 1.8 and t = 1.1 for evolution from a fully

developed vorticity field (right).

The present spectrum Eb(k) = Ck may be considered as the analog of the Kazantsev

[7, 33] spectrum k3/2 in three dimensions. However, in the latter case accumulation of

magnetic energy in the inertial range is of a lesser extent, quite short of equipartition among

the Fourier modes. One may attribute this to relatively strong direct energy transfer in

three dimensions.

Cho et al. [34] simulated small-scale dynamo in three-dimensional magnetohydrodynamic

turbulence driven by large-scale mechanical forcing. In the weak field regime, these authors

found that Eb(k) scaled in a similar manner to the Kazantsev spectrum (see their Fig. 4).

Hence equipartition of magnetic energy among the Fourier modes in the inertial range found

presently may not apply to the three-dimensional case.

As observed by Cho et al. [34], dynamo primarily occurs near the truncation wave number

during the early stage. In our simulations, energy conversion initially occurs in the vicinity

of the large-scale magnetic reservoir and subsequently proceeds to smaller scales. This is

the case for both spectrally confined and fully developed initial velocity fields. Fig. 15
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FIG. 11: (Color online) Magnetic energy Eb, kinetic energy Eu, magnetic energy

dissipation rate ǫb and kinetic energy dissipation rate ǫu for r0 = 1/256 (dashed-dotted),

1/1024 (dashed) and 1/4096 (solid) for spectrally localized initial conditions.

quantitavely describes this behaviour by showing Eb(k) at three different times during the

evolution.

The residual energy Eb(k)− Eu(k) in the inertial and dissipation ranges is positive (see

Fig. 16). The wave number at which this energy becomes positive increases as r0 is decreased.

In the picture described by the preceding paragraph, this wave number grows (presumably

logarithmically) without bound in the limit r0 → 0.

IV. CONCLUDING REMARKS

We have investigated dynamical aspects and inertial-range scaling laws of two-dimensional

magnetohydrodynamic turbulence in the weak field regime, extending a previous study
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FIG. 12: (Color online) Magnetic energy Eb, kinetic energy Eu, magnetic energy

dissipation rate ǫb and kinetic energy dissipation rate ǫu for r0 = 1/4096 for a fully

developed (solid) and spectrally localized (dashed) initial velocity fields.

by Blackbourn and Tran [17] in several directions. This has been achieved by doubling

the numerical resolution and broadening the initial magnetic-to-kinetic energy ratio r0 by

almost two more decades toward the small r0 limit, i.e. toward the weak field regime.

The dynamics of this regime is characterized by strong magnetic stretching, with intense

conversion of kinetic to magnetic energy. The present focus is on quantitative effects

of r0 on the inertial-range dynamics and scaling laws. Three series of direct numerical

simulations up to 8192 × 8192 grid points at unity magnetic Prandtl number and over

r0 = 1/4, 1/16, 1/64, 1/256, 1/1024, 1/4096 were carried out. In one of these series, the

initial total energy was fixed at unity, while in the other two the initial magnetic energy

was fixed at 0.001. For the latter case two different forms of the initial velocity field were
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FIG. 13: (Color online) Kinetic energy spectrum Eu(k) and magnetic energy spectrum

Eb(k) at peak magnetic energy dissipation for r0 = 1/256 (dashed-dotted), r0 = 1/1024

(dashed) and r0 = 1/4096 (solid) for spectrally confined (left) and fully developed (right)

initial velocity fields.

used, one of which was spectrally localized while the other was fully developed. This setup

allows for probing into detailed effects of the spectral distribution of the velocity field and

its increasing strength on a fixed magnetic seed.

The total energy spectrum E(k) has been observed to be much shallower than previously

thought. This spectrum depends on r0 since its constituents, i.e. the magnetic and kinetic

energy spectra Eb(k) and Eu(k), each strongly depends on r0. In particular, Eb(k) becomes

shallower as r0 is decreased. The extent of this shallow spectrum is limited and becomes

broader for smaller r0, probably without bound in the limit r0 → 0 (with fixed initial mag-

netic energy). Furthermore, in this limit, the slope of Eb(k) appears to tend to +1. This
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FIG. 14: (Color online) Magnetic (left) and kinetic (right) energy spectra for r0 = 1/4096

at the time of maximum magnetic energy dissipation for turbulence evolving from

spectrally confined (dashed) and fully developed (solid) initial velocity fields.

corresponds to equipartition of magnetic energy among the Fourier modes, or equivalently,

equipartition of magnetic potential variance among the wave-number octaves of the inertial

range. The latter spectral distribution is reminiscent of that of the variance of a passive

scalar advected by large-scale flows. Note, however, that the observed dynamical resem-

blance between a passive scalar and the magnetic potential is rather superficial as there are

fundamental differences. One is that antidynamo interaction, which is an integral part of the

dynamics of the magnetic potential, qualifies it as an active scalar in its own right. Another

difference is that advection can amplify the mean-square gradient of a passive scalar with-

out bound in the large-time limit, whereas Eb(t) is uniformly bounded in time. This means

that the direct transfer of magnetic potential, which can be said to be induced by strong

magnetic stretching, is relatively less spontaneous than that of its passive counterpart.

Kinetic-to-magnetic energy conversion, a manifestation of magnetic stretching, may be

considered the primary interaction, while the reverse process is of a secondary nature. Hence,

it is not surprising that the inertial and dissipation ranges have been found to be more

strongly excited magnetically than mechanically.

Some arguments in the present study may apply to three-dimensional magnetohydrody-
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FIG. 15: (Color online) Magnetic energy spectra for r0 = 1/4096 at one-third the time of

maximum dissipation (dashed-dotted), half the time of maximum dissipation (dashed) and

the time of maximum dissipation (solid) for turbulence evolving from spectrally confined

(left) and fully developed (right) initial velocity fields.

namic turbulence. Intuitively, dynamo action in three dimensions and kinetic-to-magnetic

energy conversion in two dimensions can be expected to bring about similar effects. These

include the deposition of the converted magnetic energy in the inertial range and the weak-

ening of the velocity field. Note, however, that in three dimensions, dynamo action is not

known to be constrained by the conservation of a positive-definite quadratic quantity other

than the total energy. An implication is that if the magnetic energy grows without bound

in the limit r0 → 0 (with fixed initial magnetic energy), its spectrum need not collapse as

in the present case.
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FIG. 16: (Color online) Residual energy Eb(k)− Eu(k) versus k at peak magnetic energy

dissipation for r0 = 1/256 (dashed-dotted), r0 = 1/1024 (dashed) and r0 = 1/4096 (solid),

for spectrally confined (left) and fully developed (right) initial velocity fields.

and fully developed initial velocity fields.
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