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Quantum photonic integration circuits are a promising approach to scalable quantum processing

with photons. Waveguide single-photon-detectors (WSPDs) based on superconducting nanowires

have been recently shown to be compatible with single-photon sources for a monolithic integration.

While standard WSPDs offer single-photon sensitivity, more complex superconducting

nanowire structures can be configured to have photon-number-resolving capability. In this work,

we present waveguide photon-number-resolving detectors (WPNRDs) on GaAs/Al0.75Ga0.25As

ridge waveguides based on a series connection of nanowires. The detection of 0–4 photons

has been demonstrated with a four-wire WPNRD, having a single electrical read-out. A

device quantum efficiency of �24% is reported at 1310 nm for the transverse electric polarization.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820842]

It is essential to increase the functionality and the com-

plexity of quantum optics experiments in order to extend our

understanding of interacting quantum systems and to provide

a route to quantum information processing and manipulation.

That requires increasing the number of quantum bits (qubits)

in the quantum optical network to few tens and beyond. It is

challenging to implement such systems with bulk optics due

to the extreme stability requirements, the complexity and

size, and the losses that scale proportionally. Integrated

quantum photonics1 is addressing those formidable chal-

lenges by replacing bulk optics with a more compact and ef-

ficient integrated configuration. In order to realize such

quantum photonic integrated circuits (QPICs), single-photon

sources, passive circuit elements such as waveguides, cou-

plers and phase shifters, and single-photon detectors are

required to be integrated on a single photonic chip.1,2 In par-

ticular, waveguide-single photon detectors (WSPDs) have

been demonstrated recently, based on superconducting

nanowires3–6 and transition edge sensors (TESs).7 The super-

conducting nanowire approach can provide low dark count

rates, excellent timing resolution and short dead time8 and

benefits from the high modal absorption of the guided mode

that allows unity absorptance with waveguide lengths of a

few tens of micrometers. Whilst integrated single-photon

detectors are powerful components for a QPIC, detectors

providing photon-number resolution are important in quan-

tum communication and linear-optics quantum computing.9

Recently, there has been a considerable effort to realize

photon-number-resolving detectors (PNRDs) for free-space

coupling using TESs,10 charge integration photon detec-

tors,11 silicon photomultipliers12 and avalanche photodiodes

(APDs),13 as well as time-multiplexing using Si-APDs14 and

superconducting single-photon detectors (SSPDs),15 and spa-

tial multiplexing with APDs16 and SSPDs.17–20 Up to date,

only TES detectors have been reported in a waveguide con-

figuration.7,21 Nevertheless, TESs are thermal detectors;

therefore, they are relatively slow and unsuited for high-

speed quantum information processing. In this report, we

demonstrate waveguide photon-number-resolving detectors

(WPNRDs), utilizing NbN superconducting nanowires,

which provide high efficiency and short deadtime.

Figure 1(a) shows a schematic of a WPNRD. The detec-

tor is based on four NbN superconducting nanowires on top

of a GaAs/Al0.75Ga0.25As (0.35 lm/1.5 lm-thick) waveguide

heterostructure. The nanowires represent distinct detecting

elements sensing different parts of the same waveguide

mode and the number of switching wires can be determined

from the output voltage as described below. We simulated a

3.85 lm-wide and 350 nm-thick ridge GaAs waveguide

etched by 260 nm on top of Al0.75Ga0.25As cladding layer

with a finite-element solver (Comsol Multiphysics). The

wires are 5 nm thick and 100 nm wide with a spacing of

150 nm and a total length of 60 (2� 30) lm (Fig. 1(a)). In

the simulation, we consider a 100 nm-thick SiOx layer that is

left on top of the NbN nanowires as a residue of the hydro-

gen silsesquioxane (HSQ) resist after the patterning. The

structure is optimized for nearly equal absorption for differ-

ent wires along the lateral direction of the waveguide. The

symmetric configuration with a wider waveguide than

WSPDs3 is appropriately engineered to alleviate the differ-

ence in the absorption of the guided light by the central and

lateral wires, while maintaining the absorptance of the quasi-

transverse electric (TE) and transverse magnetic (TM)

modes high. Moreover, the design is tolerant to the variation

of the etching depth between 250 and 300 nm. We calculated

the total absorptance for the lowest-order TE and TM

modes, with the respective modal absorption coefficients of
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aTE
tot ¼ 478 cm�1 and aTM

tot ¼ 654 cm�1 (assuming nNbN¼ 5.23

� 5.82i (Ref. 22)). As depicted in Fig. 1(b), that allows 76%

TE and 86% TM absorptance along a 30 lm-long wave-

guide. The modal absorption coefficient by only the two cen-

tral wires aTE
cent¼ 282 cm�1 and aTM

cent¼ 380 cm�1 is higher

than the corresponding absorption by the two lateral wires

aTE
lat ¼ 198 cm�1 and aTM

lat ¼ 276 cm�1 for both polarizations

due to the confinement profile of the mode (see the inset of

Fig. 1(b)). The probability of absorption after propagating

over a length L, easily derived as PcentðlatÞðLÞ
¼ acentðlatÞ

atot
ð1� e�atotLÞ, is plotted for both TE and TM polariza-

tions for the two central (circles) (lateral (diamonds)) wires

in Fig. 1(b). The situation is analogous to an unbalanced

N-port splitter23 followed by single-photon detectors. The

corresponding unbalance in detection probability does not

significantly limit the fidelity of the PNR measurement, as

discussed below.

The electrical structure of WPNRDs is based on the se-

ries connection of four wires, each shunted by a resistance

(see Fig. 1(a)).19 The photon detection mechanism in each

wire is the same as in SSPDs.8 The wire is biased with a cur-

rent close to its critical current (Ic), and upon absorption of a

single photon, a resistive region is formed across it. While in

SSPDs, the bias current (Ib) is diverted to the external load

resistance, in these series-nanowire detectors Ib is redirected

to the resistance integrated in parallel to each wire, produc-

ing a voltage pulse. The inset of Fig. 2(b) depicts the equiva-

lent electrical circuit (showing only two wires for

simplicity). If several wires switch simultaneously, a voltage

approximately proportional to the number of switching wires

is read on the load resistance.19

WPNRDs integrated on a GaAs waveguide are defined

using five steps of direct-writing electron beam lithography.

We use a high resolution Vistec EBPG 5HR system

equipped with a field emission gun with acceleration voltage

of 100 kV. In the first step, Ti(10 nm)/Au(60 nm) electrical

contact pads (patterned as a 50 X coplanar transmission line)

and alignment marks are defined using a positive tone poly-

methyl methacrylate electronic resist, evaporation, and lift-

off. In the second step, we define additional Ti(5 nm)/

Au(20 nm) pads by electron beam lithography on polymethyl

methacrylate, evaporation, and lift-off. These pads are

needed to allow the electrical connection between the nano-

wires and the parallel resistances (yellow-colored pads in the

inset of Fig. 2(a)). In the third step, the 100 nm wide mean-

dered nanowires are defined on a 140 nm thick HSQ mask

using an e-beam process optimized for GaAs substrates. The

pattern is then transferred to the NbN film with a

FIG. 1. (a) Schematic of a WPNRD consisting of four wires in series with a

resistance (Rp) in parallel to each wire (contact pads are not shown). (b)

Calculated absorptance of a WPNRD for TM (red, dashed line and empty

symbols) and TE (black, continuous line and filled symbols) polarizations.

The absorptance is calculated for the four wires (lines), the two central

(circles), and the two lateral wires (diamonds). Inset: contour plot of the

electric field for the fundamental quasi-TE mode at 1300 nm.

FIG. 2. (a) Scanning electron microscope image of a WPNRD. Inset on the

upper left: a blow-up image of the four wires before the waveguide etching

step, where the wires have been colored for clarity. Inset on the upper right:

a close-up, false-colored image of four AuPd parallel resistances (4�Rp).

The scale bar of both the insets is 500 nm. (b) IV characteristic of a four-

element WPNRD. The inset shows the equivalent circuit of the series con-

nected nanowires (modeled with a normal resistance (Rn) and an inductance

(Lk)), each shunted by an integrated resistance (Rp).
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(CHF3þ SF6þAr) reactive ion etching. The left inset of

Fig. 2(a) shows a scanning electron microscope (SEM)

image of nanowires. In the fourth step, we fabricate the

Ti(10 nm)/AuPd(50 nm) resistances. Each resistance is

500 nm wide and 3.5 lm long corresponding to a design

value of Rp¼ 49 X. The right inset in Fig. 2(a) shows a mag-

nified micrograph of the resistances. In the next step, we

define the 180 nm thick and 3.85 lm wide HSQ-mask for the

waveguide patterning by carefully realigning this layer with

the previous one. This layer also protects the Ti/Au pads and

the Ti/AuPd resistances during the GaAs etching process.

Successively, we etch 260 nm of the underlying GaAs layer

with a Cl2þAr electron cyclotron resonance etching.

Finally, to allow probing the pads, holes are opened in the

HSQ layer using a PMMA mask and reactive ion etching in

CHF3 plasma. The fabricated detector is shown in the SEM

image in Fig. 2(a).

The experiments are performed by end-fire coupling

near-infrared light from a lensed fiber to the waveguide,

using the waveguide probe set-up described in Ref. 3.

Fig. 2(b) shows a characteristic current-voltage (IV) curve of

a four-wire WPNRD. A critical current of Ic¼ 10 lA is

measured at the base cold-plate temperature T¼ 2.1 K. The

linear slope observed in the IV curve after reaching Ic is

related to the series connection of the four resistances,

4�Rp¼ 152 X (38 X/each).

The system quantum efficiency (SQE) is defined as the

number of counts (after subtracting the dark counts) divided

by the number of photons at the fiber input of the cryostat.

The SQE is measured by using a continuous-wave laser atte-

nuated to the single photon level at 1310 nm and reaches 4%

and 3.3% in the TE and TM polarizations, respectively.

Fig. 3 shows the device quantum efficiency (DQE) of a

WPNRD, defined as the number of photocounts divided by

the number of photons coupled in the waveguide. The DQE

reaches to 24% 6 2% for TE and 22% 6 1% for TM polar-

ization at a bias current Ib¼ 9.3 lA and has been determined

from the measured SQE and the coupling efficiency (g)

of the photons from the fiber into the waveguide,

gTE¼ 17% 6 1% and gTM¼ 14.8% 6 0.6% (SQE¼DQExg).

The value of g is approximately determined from the spectral

average of the Fabry-Perot (FP) fringes measured on four,

nominally identical waveguides (with no wires on top) by

using a tunable laser around 1310 nm and its error bar is

defined as the standard deviation among the four wave-

guides. For the TM polarization, this value of g corresponds

well to the one determined (gTM¼ 14% 6 1%) from the

fringe contrast.3 For the TE polarization, coupling to multi-

ple lateral modes produces a complex fringe pattern, moti-

vating our use of the spectral average. To date, this is the

highest DQE reported for superconducting nanowire detec-

tors with a single electrical output proportional to the photon

number. The non-unity QE is attributed to the following

reasons: (1) The absorptance of the 30 lm-long waveguides

is calculated as 76% and 85% for the TE and TM polariza-

tions, respectively. Longer wires may allow a higher DQE.

(2) The deposition of very uniform NbN films is relatively

difficult on GaAs24 compared to the traditional substrates

Al2O3
8,18 and MgO.25 Whilst the sputtering requires high

temperature to promote the surface diffusion of the sputtered

particles and obtain a high quality film, the GaAs surface

starts to become rough above 350 �C.24 Therefore, the film

quality might also play a role in the quantum efficiency. We

also observe a change in the ratio of the TE and TM efficien-

cies at low bias current, which seems to indicate a polariza-

tion dependent internal quantum efficiency (probability of

detection once a photon is absorbed), as previously

observed.22

The temporal response of the WPNRD is probed with a

TE polarized pulsed laser-diode (10 MHz) at 1310 nm using

a sampling oscilloscope with the detector biased at

Ib¼ 8.8 lA. A photoresponse pulse corresponding to four-

photon absorption is shown in the inset of Fig. 3. After per-

forming a moving average over 10 data points (green line), a

1/e decay time of s1/e¼ 6.2 ns is calculated. That value

agrees well with the value of s1/e¼ 5.6 ns obtained from the

simulation using the electro-thermal model (red line).19 This

corresponds to an estimated maximum count rate of

>50 MHz.

In order to show the proof of PNR capability, the device

is tested under illumination with a pulsed laser diode

(�100 ps pulse width, 2 MHz repetition rate), whose photon

number distribution is described by Poissonian statistics,

using a sampling oscilloscope after amplification by three

amplifiers with a total gain of 43 dB. Fig. 4(a) shows an

example of a photoresponse of the detector in TE polariza-

tion for a photon flux of 12 photons/pulse in the waveguide,

corresponding to an average number of detected photons

lav� 2.3 per pulse at Ib¼ 8.8 lA, with a DQE of 19%. Five

distinct detection levels in the figure correspond to the detec-

tion of 0–4 photons. The slow rise time of the photoresponse

is due to the low-pass filter (DC-80 MHz) added to the circuit

to remove the high frequency noise. After measuring the

count rate at a fixed bias current, Ib¼ 8.8 lA, as a function

of the threshold voltage (Vth) of a frequency counter at dif-

ferent powers (12 MHz repetition rate, TE polarization), the

plateaus corresponding to the different photon levels are

determined. By setting the threshold levels in the counter

according to the different photon levels, the detection

FIG. 3. Device quantum efficiency (device QE) of a WPNRD measured

with TE and TM-polarized CW light at 1310 nm. Inset: photoresponse pulse

when four photons are detected. The green curve is the moving average of

10 data points showing a decay time of s1/e¼ 6.2 ns and the red curve is the

calculation from an electro-thermal simulation19 after correcting for the fil-

tering effect of the amplifiers (20 MHz–6 GHz) when four photons are

detected, giving a decay time of s1/e¼ 5.6 ns.
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probability relative to �1- (red), �2- (blue), �3 (green), and

�4- (purple) photon absorption events is measured as a func-

tion of the power in the waveguide and plotted in Fig. 4(b).

The results are in a good agreement with the expected detec-

tion probability PðnjlÞ / ln for a Poissonian source in the

regime, where detected average photon number l is l � 1,

as shown by the lx fits (black lines) in Fig. 4(a) for each pho-

ton level. The inset in Fig. 4(b) shows the peak amplitudes

(Vout) as a function of the detected photon numbers, together

with a linear fit, showing the excellent linearity of the output

voltage. The error bars represent the full-width-half-maxi-

mum (FWHM) of each peak which is nearly independent of

the photon number, showing only about 20% increase from

0- to 4-photon level, and similar excess noise as observed in

the first demonstration of a series-nanowire PNRD.20

The fidelity (a measure of how precisely a PNRD can

reconstruct the photon number) of WPNRDs is potentially

affected by five factors: (1) limited efficiency, (2) limited

number of wires, (3) the different absorption by the central

and lateral wires, (4) signal-to-noise (S/N) ratio, and (5)

crosstalk (spurious switching of a wire after photon

absorption in an adjacent one). According to our previous

study on closely packed wires in a similar configuration,26

crosstalk is negligible. We will evaluate the limitation in fi-

delity introduced by the other four factors for the case of

detecting two photons in our 4-wire WPNRD.18 Due to the

limited efficiency (DQE¼ 0.24), the calculated probability

of detecting two photons propagating in the waveguide is

P(2|2)¼ 0.058. In a 4-wire WPNRD with unity efficiency

and equal absorption probability on each wire, P(2|2)

¼ 0.75 due to the probability that two photons are absorbed

in the same wire. In our waveguide design with unbalanced

absorptance in the central and the lateral wires, P(2|2)

would be slightly reduced to 0.74. Finally, the fidelity

related to the overlap between the different photon levels

(limited S/N ratio) is 0.97. We conclude that the fidelity in

the present device is mainly limited by the efficiency18 and

could be increased to 0.74 by increasing the length and the

internal efficiency. Further improvements require an

increase in the number of wires and a more uniform absorp-

tion probability.

In conclusion, we have demonstrated WPNRDs based

on NbN superconducting nanowires on a GaAs ridge wave-

guide. The detectors can resolve up to four photons and

show device quantum efficiencies of 24% and 22% at

1310 nm for TE and TM polarized input light with an esti-

mated maximum count rate of >50 MHz. The efficiency can

be maximized by further optimizing the film quality and the

fabrication process. These WPNRDs represent a substantial

step towards the integration of highly functional detectors in

quantum photonic circuits.
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