ESTIMATING WILDLIFE DISTRIBUTION AND
ABUNDANCE FROM LINE TRANSECT SURVEYS
CONDUCTED FROM PLATFORMS OF OPPORTUNITY

Fernanda F. C. Marques

A Thesis Submitted for the Degree of PhD
at the
University of St Andrews

2001

Full metadata for this item is available in
Research@StAndrews:FullText
at:
http:/ /research-repository.st-andrews.ac.uk

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10023/3727

This item is protected by original copyright


http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/3727

Estimating wildlife distribution and
abundance from line transect surveys

conducted from platforms of opportunity

Fernanda F. C. Marques

Thesis submitted for the degree of
DOCTOR OF PHILOSOPHY
in the School of Mathematics and Statistics,
UNIVERSITY OF ST ANDREWS.

May, 2001.




Declarations

1. I, Fernanda F. C. Marques, hereby certify that this thesis, which is approximately

carricd out by me and that it has not been submitted in any previous application

for a higher degree.

2. I was admitted as a research student in May 1996 and as a candidate for the degree
of PhD in May 1997; the higher study for which this is a record was carried out in

the University of St Andrews between 1996 and 2001.

date . 6/ é/o .. signature of candidate

3. I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of PhD in the University of St Andrews and

that the candidate is qualified to submit this thesis in application for that degree.

............ signature of supervisor

4. In submitting this thesis to the University of St Andrews I understand that I am
giving permission for it to be made available for use in accordance with the regula-
tions of the University Library for the time being in force, subject to any copyright
vested in the work not being affected thereby. I also understand that the title and
abstract will be published, and that a copy of the work inay be made and supplied

to any bona fide library or rescarch workoer.

date .. / g / 0/ . signature of candidate

ii



Acknowledgments

I would like to thank my supervisor, Prof. Steve Buckland, for his patience, help and
support, without which this thesis would have never been possible. I would also like to
thank the staff of the Research Unit for Wildlife Population Assessment (RUWPA) at
the University of St Andrews, especially Drs. David Borchers, Louise Burt, Liz Clarke
and Len Thomas, for sharing their knowledge of statistics and computing with me. Dr.
Simon Wood always found the time to answer my questions, for which I am grateful. 1
am also very grateful to Sam Strindberg, Sharon Hedley, Rachel Fewster, Miguel Bernal
and Nicole Augustin, for their help, encouragement, and friendship. Finally, I would like

to thank my parents for their unconditional support throughout.

Funding for this work was provided by the Inter-American Tropical Tuna Commission
(IATTC), for which I am very thankful. Additional financial support provided by an
Overseas Research Student (ORS) Award is gratefully acknowledged.

iii



Abstract

Line transect data obtained from ‘platforms of opportunity’ are useful for the monitoring
of long term trends in dolphin populations which occur over vast areas, yet analyses of
such data are problematic due to violation of fundamental assumptions of line transect
methodology. In this thesis we develop methods which allow estimates of dolphin relative

abundance to be obtained when certain assumptions of line transect sampling are violated.

Generalised additive models are used to model encounter rate and mean school size as
a function of spatially and temporally referenced covariates. The estimated relationship
between the response and the environmental and locational covariates is then used to
obtain a predicted surface for the response over the entire survey region. Given those
predicted surfaces, a density surface can then be obtained and an estimate of abundance
computed by numerically integrating over the entire survey region. This approach is

particularly useful when search effort is not random, in which case standard line transect

methods would yield biased estimates.

Estimates of f(0) (the inverse of the effective strip (half-)width), an essential component
of the line transect estimator, may also be biased due to heterogeneity in detection prob-
abilities. We developed a conditional likelihood approach in which covariate effects are
directly incorporated into the estimation procedure. Simulation results indicated that the
method performs well in the presence of size-bias. When multiple covariates are used, it

is important that covariate selection be carried out.

As an example we applied the methods described above to eastern tropical Pacific dolphin
stocks. However, uncertainty in stock identification has never been directly incorporated
into methods used to obtain estimates of relative or absolute abundance. Therefore we

illustrate an approach in which trends in dolphin relative abundance are monitored by

small areas, rather than stocks.
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Chapter 1

Introduction

Knowledge of population size plays a crucial role in wildlife ecology and environmental
biology. Estimates of relative or absolute abundance are used to monitor the status of
vulnerable and endangered species, to test hypotheses concerning the mechanisms dictat-
ing population dynamics and trends, and to devise management strategies for particular

ecosystems and/or populations, among other applications.

For many populations, particularly of marine species, complete censuses are not feasi-
ble, and abundance estimates are based on sampling methods. Seber (1982) provides a
comprehensive review of sampling-based abundance estimation procedures. The methods
he describes can be classified into two geﬁeral categories: capture-recapture methods, in
which abundance estimates are obtained based on ratios of the number of individuals
either marked (mark-recapture) or removed (change in ratio, catch-effort) from the popu-
lation at a first capture occasion to the number recaptured/sampled at a second occasion;
and sightings survey methods (Buckland et al. 1993), where animal density is estimated
either by counting the number of animals located within survey strips (strip transects), or
by modelling the radial distance of sightings from survey points (point transect sampling)
or the perpendicular distance of sightings from the transect line (line transect sampling).
Of these, line transect sampling (Seber 1982, Buckland et al. 1993) is the most commonly

used method for populations of marine mammals which occur over vast areas.

Unlike capture-recapture methods, line transect sampling does not require repeated sur-
veys in order to yield an estimate of abundance. In addition, when the population of
interest is large, sample sizes required by other methods to yield abundance estimates
with a level of precision compatible with the required objectives can be prohibitive. Take

the Petersen method as an example, in which abundance estimates are based on the



product of the number of animals captured at the first and second sampling occasions,
respectively, divided by the number of animals captured at both occasions (this corre-
sponds to the method originally proposed, but a modified version of the method is usually
applied instead; for details see Chapman (1951) and Seber (1982)). Assume that indi-
viduals can be relatively easily marked. Following Seber (1982, p.64), let the accuracy
of the estimator be defined as the margin by which the estimated population size may
differ from the true population size, at 95% confidence levels. Then, given a true popu-
lation of 500 000 individuals, the Petersen method would require approximately 0.7% of
the population to be sampled at each capture occasion to yield an estimate of the true
population size within 50% of the true population abundance (Appendix 1.5.1). Although
this percentage is low, it corresponds to about 3 500 individuals being marked/recaptured
at each sampling occasion, a non-negligible number considering that the population may
be spread over a large area. If more precise estimates of abundance are required, say
within 25% of the true population abundance (at the 95% confidence level), the number
of individuals to be captured at each occasion rises to approximately 5 850. In contrast,
abundance estimates for populations of comparable size based on line transect data can
be obtained using sample sizes of less than 400. As an example we estimate the expected
number of detections under two different required levels of precision using published data
from dolphin sightings surveys (Appendix 1.5.2). For a target coefficient of variation (CV)
of 50%, a total of 94 sightings are estimated to be made, whereas for a CV of 25% the
estimated number of detections rises to 378. These results are consistent with examples

from the literature (e.g. Forney and Barlow 1993).

This thesis addresses methodological issues associated with line transect data when certain

assumptions of the method are violated.

1.1 Line transect sampling

The derivation of the line transect estimator presented below is taken from Seber (1982)
and Buckland et al. (1993). Given a region of size A containing IV objects, let there be k
transect lines of total length L (L = Z;?:l L;) randomly or systematically placed over the
region so that each point in the region has equal probability of being sampled (Figure 1.1).
An observer travels along each transect and records the perpendicular distance z; (i =
1,...,n) of each detected object from the transect line. In many cases it is not feasible to
measure the perpendicular distances directly, so instead the radial distance r; and sighting

angle ¢; to each detected object are recorded and later converted to perpendicular distance.

2



Figure 1.1: Survey region showing three transect lines placed in a systematic fashion.
Objects in this case correspond to whales.

Although objects may be detected out to oo, for simplicity we assume that only objects
out to some distance W from the transect line are recorded, so that 0 < z; < W. Denote
by n; the number of objects detected in transect § within distance W from the transect
line, and let n = 2;?.__1 n; indicate the total number of detected objects. The abundance

of objects in the survey region is given by (Buckland et al. 1993):

N=A.D, (1.1)

where D denotes the density of objects, given by:

_ _En]
D=stw.p (12
and estimated by:
D=1 _. (1.3)
2LW - P

Here 2LW denotes the area of the survey region which has been surveyed and P, estimated
by P, is the unconditional probability that an object within the surveyed strip is detected.

If objects occur in clusters, then an estimate of the expected cluster size, IE[s], must be

incorporated into the expression above:

TR (1.4)



Defining g(z) as the probability that an object is detected, given that it is at distance z
from the transect line, and assuming that all objects located on the line are detected with

certainty, that is, g(0) = 1, then P is given by:

P = /OW g(z) n(zx) dz

I 9(z)dz (1.5)
W

=2
W?
with u = fow g(z) dz. It can be shown (Seber 1982, Buckland et al. 1993) that u = 1/f(0),
where f(0) denotes the probability density function (pdf) of the observed perpendicular

distances evaluated at z = 0. Hence the estimator of the density of objects in the survey

region is given by:

and, in the case where objects occur in clusters, the expression above becomes:

p-nBli0) 0

Assuming no correlation between the various terms, the variance of the density estimate

can be approximated using the delta method (p.7-9 in Seber 1982), so that:

o [T | 0]
sar(D) = D° { = TGO } 9

and, in the case where objects occur in clusters:

W®=W{WW+WWW+WWW} (1.9)
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1.2 Assumptions of line transect methodology
The above estimators rely on the following assumptions (Buckland et al. 1993):

(i) Transect lines are randomly placed over the survey region according to some survey

design, so that all points in the region have equal coverage probability.
(ii) All objects located on the line are detected with certainty (i.e. g(0) = 1).
(iii) Objects are detected before any responsive movement.
(iv) Non-responsive movement is slow relative to the speed of the observer.
(v) Measurements are recorded without error.

(vi) Detections are independent events.

(vii) Transect lines are randomly placed with respect to the objects.

Line transect methodology is explicitly based on the assumption of equal coverage prob-
abilities throughout the survey region, so that the probability that an object falls within
the area surveyed is given by 2LW/A. In addition, random line placement ensures that all
objects within the area surveyed are uniformly distributed in the interval [0, W], that is,
the pdf of the perpendicular distances of all objects within distance W from the transect
line, 7 (z), is given by 7(z) = WL, This latter result forms the basis of the definition
of P (cf expression (1.5)). Violation of assumption (i) is often caused by non-random
sampling, and potentially introduces bias in the density estimates as the area surveyed

may not contain densities representative of the true density over the entire survey region.

Assumption (ii) is the most fundamental assumption of line transect sampling. If g(0) < 1,
then the estimators given by expressions (1.6) and (1.7) will underestimate the true density
of objects in the survey region. Although methods to estimate g(0) have been developed
(e.g. Butterworth and Borchers 1988, Schweder 1990, Borchers 1996, Borchers et al.
1998a), they all require two independent platforms simultaneously surveying the region.
Thus unless g(0) estimation is explicitly incorporated into the survey design, unbiased
estimation based on standard (i.e. single platform) line transect methodology can only be

achieved by ensuring that all objects located on the line are detected.

Assumptions (iii) and (iv) are only applicable to mobile objects. If objects systemati-

cally avoid the observer, and such responsive movement occurs prior to the objects being
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detected, then the observed distribution of the perpendicular distances of the detected ob-
jects will exhibit a very low number of detections near the transect line, potentially leading
to a substantial underestimate of f(0), and hence of density. Conversely, if objects tend to
turn towards the observer before they are detected, then there will be a large number of
observations near the transect line, which will result in a substantial overestimate of f(0).
Bias in f(0) estimates may also result if non-responsive movement is fast relative to the
speed of the observer (Hiby 1986). Approaches which are robust to the violation of this
assumption are presented in Buckland and Turnock (1992) and Hammond et al. (1995).

Violation of assumption (v) is usually caused by rounding of the observed (radial or perpen-
dicular) distances and/or sighting angles, and results in ‘heaping’ at certain perpendicular
distances, which can lead to poor estimates of the detection function. Heaping at zero is
particularly problematic (¢f. the discussion of the effects of violation of assumptions (iii)

and (iv) above). Approaches for the modelling of measurement error have been proposed
by Chen (1998) and Cooke and Leaper (1998).

Assumptions (vi) and (vii) are required for unbiased estimation of the variances. However,

if empirical estimators for the variance are used, then these assumptions may be relaxed.

Two additional assumptions often mentioned are that (viii) objects are not counted more
than once and (ix) the detection function g(z) has a ‘shoulder’ (i.e. g’(0) = 0). Violation
of the former does not necessarily introduce bias in the resulting estimates, unless objects
are being systematically counted more than once within the same transect line, which
would result in an overestimate of encounter rate, and hence of density. Violation of

assumption (ix) may lead to a poor fit of the detection function.

A further implicit assumption is that detection probabilities depend solely on the perpen-
dicular distances of the objects from the transect line. If other factors, such as weather
conditions or the size of the objects, affect detection probabilities, then standard line tran-
sect estimates of f(0) may be biased. In addition, when size-bias is present, estimates of

the expected cluster size based on the observed mean cluster size will also be biased.

Throughout this thesis it is assumed that assumption (ii) holds, so that standard line

transect estimation procedures can be applied.



1.3 ‘Platforms of opportunity’ and the use of design-based
versus model-based methods of estimation

Line transect sampling is a design-based approach to abundance estimation, where the
inclusion probabilities inherent to the sampling design form the basis of the estimator,
thus avoiding the need for assumptions about the distribution of the population of in-
terest (Hansen et al. 1983, Thompson 1992). To see this, it is useful to view the line
transect estimators from expressions (1.6) and (1.7) from a Horvitz-Thompson (Horvitz
and Thompson 1952) perspective. A Horvitz-Thompson estimator of the abundance of
objects in the survey region, N, is given by (Thompson 1992):

A n Yi
Fur =Y &, (1.10)

i=1 Pi
where y; corresponds to the cluster size of the ith sampled object (i = 1,...,n) and p;
denotes the probability that the ith object is included in the sample. For simplicity assume
that objects correspond to single individuals, that is, y; = 1, although the results below

also apply to objects that occur in clusters. The estimator from the previous expression
is then:

n

A 1 .

Npr=3 = (1.11)
i=1 Pi

Note that N T is unbiased if the p; are known.

In the context of line transect sampling, p; is the probability that object 4 is within the area
surveyed and is detected. From assumption (i) from the previous section, the probability
that an object is in the area surveyed is given by 2LW/A. Define p; to be the probability
that object ¢ is detected, given that it is within the area surveyed, that is (Borchers 1996):

pi =E[g(z;)]

. (1.12)
= [ s@ @)z,

where g(z) = f(z)/f(0). Assuming that transect lines are randomly placed within the
survey region, then n(z) = 1/W and so:
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(1.13)
1
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Note that it is assumed that W is small relative to the size of the study area. If it is

not, and W extends beyond it, the assumption that the objects are uniformly distributed

relative to the transect line (i.e. w(z) = 1/W) is violated.

We then have

AW
p' e A pl
(1.14)
_ 2L
A-f(0)
which can be estimated by:
2L
p; = —, 1.15
=170 (19

Substituting the above result into expression (1.11), a Horvitz-Thompson estimator of the

abundance of objects in the survey region is given by:

A XK.
E'Z;f(o)

Nuyr =

R F(0) (1.16)
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which corresponds to the standard line transect estimator from section (1.1). Note that,

conditioning on 7, the above estimator will be unbiased as long as f(0) is unbiased.

Although under the design-based approach prior knowledge about the target population
is not directly incorporated into the estimator, it can be used to increase the efficiency of

the estimator via the survey design (Hansen et al. 1983). For example, if it is known a



priori that the density of objects in the population varies according to the characteristics
of the various habitats within the survey region, then this information may be used to
stratify the survey region by habitat and optimise the allocation of effort across the various

habitats to be surveyed (e.g. Buckland et al. 1993).

Dedicated design-based surveys, however, are often costly. A typical example is the ;:ase
of surveys of marine mammals, which generally occur over vast areas that are expensive
to survey. Thus opportunistic survey platforms, such as commercial vessels or ferries,
are often used in place of dedicated survey vessels. Such platforms usually follow pre-
determined routes that do not conform to any survey design, and which may not encompass
areas with densities representative of the entire survey region. As a result, line transect
estimates of abundance may be substantially biased. For example, if effort is concentrated
in areas of high density, total population abundance will be overestimated. Nonetheless,
data collected from opportunistic survey platforms often span relatively long periods of
time, and can provide useful information on trends in abundance of the population of
interest if the bias in the estimates can be eliminated. Even if bias cannot be completely
eliminated, but instead minimised and maintained relatively constant throughout the time

period of interest, trends in relative abundance may be used to assess the status of the

population.

Bias in abundance estimates resulting from non-random search effort may be minimised
through the use of either a design-based or a model-based approach. An example of the
former is post-stratification (Anganuzzi and Buckland 1993), where strata are defined
based on similarities between smoothed values of the variable of interest (or a proxy that
correlates well with the variable of interest) over a grid of cells, and estimates of the value
of the variable of interest are then obtained for each stratum. An overall estimate is
obtained as an area-weighted average of the values from all strata, thus minimising the
bias that results from a greater allocation of effort to some areas. The method can be
applied to the many components of an estimator (e.g. for line transect sampling such
components would be encounter rate, mean school size and effective strip (half-)width),
with different stratifications used for each component. However, one limitation of this

approach is that it may perform poorly if effort is very sparse or very concentrated within
a small area (Anganuzzi and Buckland 1993).

In contrast, model-based procedures make use of knowledge about the distribution of
the variable of interest and its relationship with auxiliary variables which are thought

to affect it. Thus, even though data from opportunistic survey platforms may not cover



areas representative of the entire region, model-based estimators can recognise the trends
in the response variable, thus minimising bias resulting from the non-random search effort.
Values of the variable of interest where data are missing can then be predicted, allowing
inference about the entire population to be made. Depending on the model used, the
required sample sizes may be relatively small (Hansen et al. 1983). As with the post-
stratification approach, different components of the estimator may be separately modelled.
The above mentioned features rely on the assumption that the model is correct, in which
case the estimator would be unbiased. However, if the model has been mis-specified,

inference about the population being modelled may be misleading.

1.4 Thesis organisation

The remainder of this thesis is organised in four Chapters. Chapter 2 presents a model-
based abundance estimation procedure that can be applied to line transect data, and which
is particularly useful when survey effort is not random. Generalised additive models are
used to separately model encounter rate and mean school size as a function of spatially
and temporally referenced variables, and later used to generate a density surface for the
entire region. An overall estimate of abundance is obtained by numerically integrating the
density surface over the entire study area. The method relies on the assumption that f(0)
is constant throughout the region, as sample sizes usually preclude separate estimation of
£(0) across space and time. This limitation may be overcome through the application of the
methodology proposed in Chapter 3, which presents a conditional likelihood approach that
allows the effects of covariates on the detection function to be modelled. The estimated
model parameters can then be used to obtain estimates of f(0) which vary in space and
time. Estimates of abundance can then be obtained either via standard line transect
estimation or through the use of a Horvitz-Thomson-like estimator. Chapter 4 looks at
the estimation of trends in abundance, including a description of an approach for assessing
the status of populations which does not rely on knowledge about the existence and/or

distribution of “stocks”. Finally, Chapter 5 contains a general discussion of the work

presented in the thesis and summarises the main results.

Motivation for the work presented here stemmed from the desire to develop alternative
methods to obtain estimates of eastern tropical Pacific dolphin relative abundance based
on sightings data collected by observers placed on board tuna vessels. These data are used

in all the examples presented in the thesis, hence a detailed description is contained in
Appendix A.
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1.5 Appendices
1.5.1 Estimation of sample sizes required by the Petersen method
Seber (1982) formulates the precision of abundance estimates N based on the probability

that the estimate will not differ from the true population size N by more than 100A%;
that is:

1—a$Pr[—A<NJ;N<A].

Choice of values for a and A will depend on the objectives of a given study, but Seber
recommends 1 — a = 0.95 and A = 0.50 for when only rough estimates of abundance are

required, and 1 — o = 0.95 and A = 0.25 for management purposes.

Given o and A, define:
AVD —-AVD
l‘a—d’(m) ‘¢<m)’ (117)
where ¢(-) denotes the cumulative standard normal distribution, and let:

. nnp(N-1)
D= —m)

where n; and ny denote the number of individuals sampled at each capture occasion.

Solving expression (1.17) for D, we can then solve the expression above by assuming

ny =ng=n.

Seber (1982, p.67) provides values of D for selected o and A. In the case of populations
greater than 100 individuals, D = 24.4 for @ = 0.05 and A = 0.50, and D = 69.9 for
a =0.05 and A = 0.25. Thus given a value for N of 500 000 individuals, we get n = 3 469

and n = 5 843 for each of the two scenarios mentioned, respectively.
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1.5.2 Estimation of the expected number of detections required by the
line transect estimator

In the context of line transect sampling, we use the coefficient of variation, CV[NV], of the
abundance estimate N as our measure of precision, where CV[N] = SE(N)/N. Given
initial estimates of encounter rate (ng/Lo), f(0) and the expected cluster size of the
population (IE[s]), and their respective variances (i.e. var (ng) , a7 { f (0)} and var(1£[s])),
the total line length L required for a certain target level of precision (CVi[N]) to be
achieved is given by (Buckland et al. 1993, p.303-306):

b+ {CViEls) - va) L
- {ovmp no’

where b = {@ar(no)/no + no - ar{f(0)}/{f(0)}2}. Solving the above expression, the

estimated number of detections, given L, can be obtained by solving Ly/ng = L/n for n.

We use estimates of encounter rate, expected cluster size and effective strip half-width
(1/£(0)) for eastern spinner dolphins in 1985 (Table 18 in Buckland and Anganuzzi 1988b),
whose estimated population size N is 570 000 (although this is an estimate of relative
rather than absolute abundance, the estimated parameters will serve for our illustrative
purposes). Following the procedure described above, we have b = 13.0769 and, given

no/Lo = 2.4, an estimated number of detections n = 94 and n = 378 for a CV;[N ] of 50%
and 25%, respectively.
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Chapter 2

Spatio-temporal modelling of line
transect data from opportunistic
surveys

2.1 Introduction

In the previous Chapter it was recognised that opportunistic survey platforms often provide
the only means to obtain data on species that occur over vast areas, for which dedicated
design-based surveys are too costly. However, application of line transect methodology to
such data are problematic, as the non-random survey effort will likely introduce bias in
the resulting line transect estimates of abundance. If effort is concentrated in areas where
densities are high, for example, abundance estimates will be biased upwards. Anganuzzi
and Buckland (1993) proposed a post-stratification procedure that minimises bias associ-
ated with non-random search effort (c¢f. Chapter 1), and applied the method to estimate
encounter rate, mean school size and effective strip (half-)width using eastern tropical Pa-
cific dolphin sightings data obtained by observers placed on board tuna vessels (Anganuzzi
and Buckland 1989). However, their method may perform poorly in areas with little or no
effort, as values of the variable of interest may have to be smoothed over large distances,

within which the values of the variable of interest may vary considerably.

In this Chapter we present a model-based approach to abundance estimation based on the
application of generalised additive models (Hastie and Tibshirani 1990) to line transect
data. As an example we apply the method to estimate relative abundance of eastern trop-
ical Pacific dolphins using the tuna vessel observer data previously analysed by Buckland

and Anganuzzi (1988b) and Anganuzzi and Buckland (1989), and described in detail in
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Appendix A.

2.2 Spatial and spatio-temporal generalised additive models

Generalised additive models (GAMs) have been widely applied in ecological studies to
describe the spatial relationship between some quantity of interest, such as density or
abundance, and a set of explanatory variables (see Augustin (1999) for a review). Exam-
ples include the modelling of the effects of oceanographic and bathymetric variables on
fish density and/or abundance (Swartzman et al. 1994, 1995, Welch et al. 1995, Swartz-
man 1997); the examination of vegetation type distributional patterns as a function of
topographic and biophysical variables (Brown 1994); and the assessment of the influence

of environmental variables on the distribution and abundance of cetaceans (Forney 1997,
1999).

A second application of spatial and spatio-temporal GAMs has been in abundance estima-
tion, where the estimated parameters from the spatially and temporally referenced GAM
can be used to predict a surface for the response variable over areas which have not been
surveyed. The predicted surface may be the quantity of interest itself (e.g. density or
abundance), or it may be some quantity which is required for abundance estimation. An
example of the latter is given by Swartzman et al. (1992), who used GAMs to estimate
the mean catch-per-unit-effort (CPUE) at each survey point for a number of groundfish
species in the Bering Sea. The estimated CPUE values can be later rescaled and summed,
to provide an estimate of fish abundance over the desired stratum. Another example is
given by the work of Borchers et al. (1997a,b) and Augustin et al. (1998), who applied
GAMs with spatially and temporally referenced covariates to model the abundance of fish
eggs. Hedley et al. (1999) and Hedley (2000) developed spatio-temporal models for line
transect data using a GAM framework. She obtained estimates of cetacean abundance by

modelling either the number of detected animals within transect segments or the detected

areas between sightings.

An underlying assumption of all of the above models is that any spatial correlation in the
response variable has been explained by the covariates included in the models (Augustin
et al. 1996), something which can be assessed through either formal (statistical tests)
or informal (graphical examination) means using the models’ residuals. However, this
poses difficulties for the interpretation of the underlying relationship between the response

variable and the covariates, as it is not always possible to separate the covariate effects from
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spatial autocorrelation (Augustin 1999). For example, the presence of autocorrelation in
the model residuals may reflect a poor model fit, rather than any real spatial dependence
in the response. Conversely, the absence of any autocorrelation may simply indicate that
such autocorrelation has been absorbed by one or more covariates in the model. One way
of minimising this problem is to identify the spatial resolution for the response variable at
which it does not show any spatial dependence on neighbouring values (e.g. Swartzman et
al. 1992). In the case where the model is used mainly to predict a surface for the response,
however, this problem is not as critical since the main objective is prediction, rather than
inference. Under such circumstances, it suffices to ensure that the model residuals do

not exhibit any spatial dependence, as the approach is robust to the presence of spatial

dependence (Augustin 1999).

2.3 GAM framework

GAMs are an extension of generalised linear models (GLMs; McCullagh and Nelder 1989),
in which the response variable is modelled as a smooth function of one or more explanatory
variables (Hastie and Tibshirani 1990):

q N

pi=g! (ﬁo +> fr (Uki)) : (2.1)
k=1

Here p; (i = 1,...,n) denotes the expectation of independent and identically distributed

(iid) random variables y; which follow one of the distributions from the exponential family.

ni = Bo + X h=y fi (uk;) is an additive predictor which is a function of the explanatory

variables ug; (k = 1,...,q), with fy as the intercept and where fi(-) denotes a smooth
function of the kth covariate ux. The y; are related to the additive predictor n; via the

link function g(-), so that g(u;) = n; (Hastie and Tibshirani 1990). Choice of link function
will depend on the specified distribution of the y; and the desired structure for the model.

Parameters of the above model can be estimated by minimising the penalised residual sum
of squares (PRSS):

n q 2 g , 2
PRSS =) {yi ->, fk(uik)} +) M / {fk (t)} dt. (22)
i=1 k=1 k=1
The first term is akin to the residual sum of squares from standard regression, which gives
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a measure of how well the model fits the data. The second term penalises the curvature
in the function, with the constant A; denoting the amount of smoothing of the function
fi(-). Note that if A is set to zero, the second term vanishes and the solution to the
above equation results in a function fx(-) which interpolates the data. If, on the other
hand, A approaches infinity, the penalty term will also approach infinity unless fi(t) is
linear, so that f,'c' (t) = 0 (Hastie and Tibshirani 1990). The advantage of GAMs over
other regression-based approaches lies in this flexibility of the smoother f(-), which is not

restricted to having a linear form.

A number of functional forms for f(-) may be specified, all based on the averaging of
observations over some neighbourhood around a target value (see Hastie and Tibshirani
(1990) for a comprehensive review). The way this averaging is done depends on the choice
of smoother. In the simplest cases, straight averages are used. For example, given a set
of observations (z;,¥;) (i = 1,...,n), a smoother f(z) may correspond to the average of
the observations y; that fall within neighbourhoods defined by the values of zj-1 and z;
(j =1,...,m) such that zj_; < z; < z;j (bin smoother), or to the average of k observations
y; to the left and to the right of each data point z; (running mean). Kernel smoothers,
on the other hand, compute a weighted mean of the y; over some neighbourhood around
the target value zo according to some specified function (kernel), in a way such that the
weight applied to each y; decreases the further away its corresponding value of z; is from

zo. A common choice of kernel is the Gaussian density.

The remaining smoothers are all based on piecewise polynomials (splines) applied to re-
gions defined by knots along the z-axis, and which are forced to have continuous first and
second derivatives at the knots, so that they join smoothly at those knots. Both regression
splines and cubic smoothing splines are based on piecewise cubic polynomials, but they
differ in the way they are constructed. While the former requires the specification of both

the number and location of the knots, cubic smoothing splines are directly obtained as
the minimiser of the PRSS (Appendices 2.7.1 and 2.7.2).

Hastie and Tibshirani (1990) point out that there are few explicit comparisons of the
various smoothers in the literature, and hence no single smoother may be recommended
over the others. However, kernel smoothers and smoothing splines generally provide a
smoother fit than other smoothers based on straight averaging. An exception is the locally-
weighted running-line smoother (loess) of Cleveland (1979), which gives the smoothness
of kernels and splines via the smoothing of weighted averages of observations over some

specified neighbourhood. We chose to use cubic smoothing splines in all models presented
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in this Chapter, with the degree of smoothing of each term specified by its effective number
of parameters or ‘degrees of freedom’ (df; Hastie and Tibshirani 1990). The latter ranges

from 1 df (a linear term) to a number of df that approaches the number of observations

(and hence interpolates the data).

Model selection in GAMs involves both the choice of covariates to be included in the
model and the degree of smoothing of each smooth covariate term. Clearly the number
of potential models to be selected is prohibitively large, as the number of combinations of
which covariates to include in the model and the df for each covariate is great. One way
of narrowing the potential number of models to be considered is to constrain the number
of df to be applied to each covariate. As an example, Fewster and Buckland (1996) fitted
GAMs to annual estimates of bird abundance as a function of time (year), and selected
a cut-off point for the df of the covariate term based on the wiggliness of the fit. Since
the interest in that case was to model long term trends, rather than annual fluctuations
in abundance, models with a small degree of smoothing (i.e. large df) that reproduced
much of the noise in the annual estimates of abundance were ruled out. They then applied

model selection criteria to choose a final model amongst the restricted set of models. This

is the general approach we adopted.

2.4 Modelling line transect data using GAMs

Let there be a set of data obtained from standard line transect surveys conducted over somé
survey region of size A. If surveys were carried out according to some survey design, and
all assumptions of line transect methodology held, then standard line transect estimation
procedures could be applied to yield an estimate of the abundance of the objects of interest
within the survey region A. Here we are concerned with the case where the survey was
poorly designed, or data were collected from opportunistic platforms, so that survey effort
was either not random, or coverage of the survey region was poor, or both. In such cases
standard line transect estimation procedures would likely result in biased estimates of
density, and hence of abundance, as estimates of encounter rate, the expected cluster size,
and f(0) (the inverse of the effective strip (half-)width) would not be representative of the
entire survey region. In this Chapter we concentrate on the estimation of encounter rate

and the expected cluster size, deferring the problem of estimating f(0) to Chapter 3.

Given the poor coverage of the survey region, some areas will not have been surveyed,

and so no data with which to estimate encounter rate and the expected cluster size are
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available for those areas. Hence we need to model those quantities, so that an estimate
of abundance over the entire survey region may be obtained. In addition, surveys may
also exhibit poor coverage in time, in which case our models must be both spatially and
temporally referenced. We use the GAM framework described in the previous section to
model encounter rate and the expected cluster size, estimated by the observed mean cluster
size, in space and time over the entire survey region as a function of a set of spatially and

temporally referenced explanatory variables.

To make the model from expression (2.1) spatially and temporally explicit, define a spatio-
temporal grid of cells indexed ‘by It, where ! (I = 1,...,m) specifies each cell in space and
t (t=1,...,T) in time. For each cell we compute estimates of encounter rate (n;;/Li)
and the mean cluster size of detected objects (s;;) using all observations within each cell.
Here n;; denotes the total number of detected clusters and Ly; is the total amount of effort
surveyed. If we had observations for all m x T cells, we would not have to model the
data. Hence assume that not all m x T cells contain observations, although values for the

explanatory variables uy (uy = uyy,... » Uglt) must be available for all cells.
2.4.1 Modelling encounter rate

In order to apply GAMs to model encounter rate, we need to specify a distribution for that
quantity. However, it is not clear what distributional form encounter rate may exhibit.
Instead we model the number of detected clusters nj; within each cell according to a
Poisson distribution and using a log link function. Since the encounter rate for cell It is
defined as ny /Ly, where L; denotes the total search effort expended within that cell, we
can then include the logarithm of the latter quantity as an ‘offset’ in the model, so that it

is effectively treated as a constant. Hence we have:

IE{n;] = exp {loge(Lu) + Bo + i fk (Ukzt)} , (2.3)

k=1

which can be written as:

ni g
tog, { Sl o+ 3 o) (2.4

Note that if the survey period is short enough so that encounter rates are unlikely to
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have changed in space over time, the latter can be omitted from the model so that data
across all time periods can be pooled. Otherwise, one of the explanatory variables in the
model must be some measure of time, such as month or year, so as to allow estimates of
abundance at different times ¢, and also overall (averaged over the entire survey period)

to be obtained (see section 2.4.3).

The Poisson distribution assumes that the variance is equal to the mean. However, if the
number of detected clusters within the cells shows great variability, then the variance will
be greater than the mean; this is commonly referred to as overdispersion. In such cases,

the use of the negative binomial distribution may be more appropriate (¢f. Venables and
Ripley 1994).

2.4.2 Modelling mean cluster size

The mean cluster size within a given cell is a continuous quantity, although its underlying
distribution is not clear. Hence we follow the approach described for encounter rate, so
that our response variable is the total number of objects detected at location ! and time
t (Ni: = Tty si), with the offset being the logarithm of the total number of detected

clusters within that cell (n;;). Assuming a Poisson distribution with a log link function,

we then have:

IE[Ny] = exp {loge(nu) + Bo + }3 fk(uklt)} ) (2.5)

k=1

which can be expressed as:

log, {%JZR]} = o + Zq: Fi(uge) (2.6)
k=1

and where Nj;/ny; corresponds to the mean cluster size s;; in cell It.

Like the modelling of encounter rate, in the presence of overdispersion the negative bino-

mial distribution may be used in place of the Poisson.
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2.4.3 Density and abundance estimation

Given the estimated parameters from the encounter rate and mean cluster size GAMs,
we can then obtain a predicted surface for each of those quantities for all m x T cells.
Assuming an estimate of f(0) is available, an estimate of the density of objects at spatial

location ! and time t (Dy;) is obtained using standard line transect methodology (Buckland
et al. 1993):

———
T

. 1 .

Dy ==-f(0)- » 81t .
iw=5-f(0) I (2.7)

An estimate of the overall abundance of objects at time ¢ (IV;) can then be obtained by

numerically integrating the predicted density surface at time ¢ over the entire survey region.

As it is implicitly assumed that the predicted density estimate for each cell is constant

within each cell, this effectively corresponds to the sum of the abundance estimates from

all m cells at time ¢; that is:

A m ~
Ny =) N
=1
=Y A Dy ‘ (2.8)
f

N

m
(0) ' Z Ag- -Plt’
=1

where A; denotes the size of the Ith cell and P, = (nue/ L) » 814

If the survey period extends over, say, 12 months, an overall estimate of abundance may

be obtained as the average of the monthly estimates of abundance:

T x
- _+ N,
= 2zl ’ (2.9)

where in this case T = 12.
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2.4.4 Variance estimation

Estimates of the variance for the encounter rate and mean school size predicted surfaces
from the GAMs cannot be directly obtained from the fitted models, as it is not possible
to obtain estimates of the standard error for cells which did not originally have any obser-
vations. In addition, analytic estimates of the variance would rely on the assumption that
observations from different cells were independent, something which is clearly not valid

due to spatial correlation between values from neighbouring cells.

Instead, a bootstrap procedure (Efron and Tibshirani 1993) can be used to obtain an
estimate of the variance of the final estimate of abundance, as follows. At each of B
bootstrap iterations transect lines are resampled, with replacement, and the modelling of
encounter rate and mean school size carried out as described in sections 2.4.1 and 2.4.2.
We use transect lines as our resampling units so that observations from different transect
lines can be assumed to be independent; if the observations themselves were resampled
the assumption of independence might not hold. However, in opportunistic surveys where
a survey design is not implemented, transect lines are often difficult to define. In such
cases, it is important to choose the resampling units in a way such that observations from
different units are independent, even though observations within a given unit may not
be. To obtain an estimate of the abundance of objects, either one of two approaches can
be adopted. If an estimate of f(0) and its standard error is already available, then that
estimate can be used to obtain an estimate of the abundance of objects at time ¢, Nt, or,
if desired, an overall estimate of abundance, IV, as described in section 2.4.3. An estimate
of the standard error of the estimate of abundance can then be computed based on the
B bootstrap estimates of N; or V, and an overall estimated coefficient of variation (cV)
may be obtained as the square root of the sum of the squared CVs of the estimates of
abundance and f(0). Alternatively, at each bootstrap iteration an estimate of f(0) based
on standard estimation procedures (cf. Buckland et al. 1993) may also be computed,
and an estimate of abundance obtained as previously described. Estimates of standard
error can then be computed based on the B bootstrap estimates of N; or N. In addition,

‘percentile’ confidence intervals (Efron and Tibshirani 1993) can also be obtained from
those bootstrap estimates.
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2.5 Example: Spatio-temporal modelling of eastern tropical
Pacific dolphin relative abundance

A number of authors have demonstrated strong correlations between certain oceanographic
variables and dolphin distribution (Reilly 1990, Fiedler and Reilly 1994, Reilly and Fiedler
1994). We exploit these relationships to model encounter rate and mean school size of east-
ern tropical Pacific (ETP) dolphins as a function of spatially and temporally referenced
oceanographic and locational variables. We use dolphin sightings data collected by ob-
servers placed on board tuna vessels (Appendix A). The method is applied to stocks of
offshore spotted dolphins (Stenella attenuata), with stock boundaries located as described
in Dizon et al. (1994). As we are interested in applying the results from our models to
obtain estimates of dolphin relative abundance, we use annual estimates of f(0) obtained
using the approach described by Anganuzzi and Buckland (1989) (and available from An-
ganuzzi and Buckland 1994, IATTC 1994, 1995, 1996, 1997, 1998, 1999), so that f(0) is

effectively constant in space within each year.

Dolphin sightings data for the ETP are available for the period 1975-1997. Potential
oceanographic variables to be included in the models are available for 1° x 1° latitude-
longitude cells for each month within 1975-1997. Hence we compute the total number
of detected dolphin schools (n), the total number of dolphins sighted (/V) and the total
amount of effort surveyed (L) for each 1° x 1° latitude-longitude cell for each month. We

followed the same data selection criteria used by Buckland and Anganuzzi (1988b), and
applied a truncation distance of 5nm.

Due to the large size of the dataset, and potential difficulties in fitting a model to such a
long time series, we modelled the data separately for each year. Potential oceanographic
variables to be included in the models were sea surface temperature (sst), thermocline
depth (tcd), thermocline strength (tcs) and a habitat suitability index (hab) which sum-
marises the relationship between dolphin distribution and various oceanographic variables
(Reilly and Fiedler 1994). Locational covariates included latitude (lat) and longitude

(lon); and month (mo) was entered as a temporal index.

Thus our initial model for encounter rate for any given year was:
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nye = exp {log. (L) + Po + f (mou; df) + f (laty; df) + f(lonus; df) + f (sstue; df)
(2.10)
+f(tedi; df) + f(tesy; df) + f(haby; df) } + e,

where f(+;df) denotes a cubic smoothing spline with df degrees of freedom, ! = 1,...,m
corresponds to the spatial locations, and ¢ = 1,...,12 corresponds to the months, and
where ¢ is the error term. To model mean school size, we also considered the inclusion
of effort (eff) as a potential covariate in the model, since in areas of higher search effort

schools may break up into smaller units. Our initial model for mean school size was then

given by:

Ny, = exp {log,(ny) + Bo + f(moy; df) + f(laty; df) + f(lony; df) + f(ssty; df )
(2.11)
+f(tedy; df) + f(tesis; df) + f (haby; df) + f(ef fus df) } + e

To restrict the potential number of df to be considered for each covariate, we started by
fitting models which included all potential covariates with the same level of smoothing
(i.e. same df). Possible df considered included 1 (i.e. linear terms), 2, 4, 6, 8 and 10.
Examination of plots of the smoothed covariates showed that models with 4 and 6, and
8 and 10 df resulted in similar smooth functions. To minimise the possibility of spurious
patterns in the data being reflected in the models, we chose to consider only the lowest
degree of smoothing of each pair (i.e. 4 and 8 df). Given the large number of data points
for each year, which includes much noise, we chose to include terms with 2 df in place of
linear terms, as the latter appeared not to exhibit enough flexibility. Given the above set of
potential df for each covariate, stepwise backward and forward selection was then carried
out by varying the df of each smoother, beginning with a full model containing all possible
covariates with an intermediate degree of smoothing (i.e. 4 df), and allowing for terms
to be omitted from the model. The inclusion of any given covariate with a given df was

determined based on Akaike’s Information Criterion (AIC; Akaike 1973, Appendix 2.7.3).

Examination of diagnostic plots for the encounter rate models applied to offshore spotted
dolphin sightings data revealed strong departures from normality in the residuals, sug-

gesting that the Poisson distribution was not adequately modelling all the variability in
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the data. A large proportion of the observed encounter rates had a value of zero, but
a few observations exhibited very high values. As a result, the Poisson model tended to
overfit the zeros whilst trying to fit those large encounter rate values, thus resulting in
poor model fits. Some of the large encounter rate values observed were obtained in cells
with very little effort. Based on the examination of the distribution of encounter rates
from all cells, we discarded observations from cells in which encounter rates were greater
than 0.5 schools sighted per nm searched. This resulted in a maximum of 0.34% of the
observations from any given year being discarded (ranging from 0.03% to 0.34%, with
mean 0.14%). Nonetheless, the Poisson model still did not adequately fit the data. The
use of the negative binomial distribution (discussed in the next paragraph) in place of the
Poisson yielded similar results. Hence we chose to follow a two-stage modelling approach,
as follows. The presence or absence of any dolphin schools within each cell was modelled
as a binomial distribution, with the probability of a school being present in any given
cell being obtained from the fitted model. In addition, 13 “structural zeros” (Figure 2.1)
were added to data from each month and each year, at the same locations; these are
additional observations placed at locations just outside the stock boundaries, with the
intent of preventing the model from extrapolating beyond the range of the data. Those
structural zeros were placed in areas of suitable dolphin habitat, in which the models
were consistently predicting unrealistically high values, but where the number of dolphin
sightings was usually small (e.g. Dizon et al. 1994). We assigned 1000nm of effort and
a value of zero sightings to each of those 13 cells; by assigning a relatively small amount
of effort to these observations, their weight in the model fit is minimised, though they are
still effective in preventing the model from predicting unrealistically large values near the
outer boundaries of the survey region. However, the use of up to 8 df for the smooths
in the models appeared to be contributing to the prediction of unrealistically high values
near the outer stock boundaries. Therefore we restricted the df to 2, and used AIC to
select whether to include a smoothed covariate term with 2 df or not. The total number
of schools within each cell, conditional on at least one school having been recorded, was
separately modelled by assuming a Poisson distribution and using observations from cells
in which at least one school was observed. As with the binomial model, we used 13 struc-
tural zeros, except that in this case we assigned a value of one to the number of dolphin
schools sighted in those cells. In addition, we also restricted the df to 2. However, for
1977, 1978 and 1996 we still obtained very poor model fits. In those years there were
a few observations with very little effort but which resulted in extremely high encounter
rates. Therefore, for those years we omitted those observations (which resulted in 0.24%,

0.12% and 0.05% of the observations deleted for each year, respectively) and did not use
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any structural zeros, and let the df of the smooth covariate terms vary between 2, 4, or
8. A predicted encounter rate surface was finally obtained by multiplying the predicted

surfaces from the models for presence/absence and for the total number of schools.

10

-10

-160 140 .120 -100 -80

Figure 2.1: Location of structural zeros. Solid lines indicate stock boundaries for offshore
spotted dolphins. See Section 2.5 for details.

Initial fitting of the mean school size model using a Poisson distribution resulted in ex-
tremely large (> 100) estimates of the dispersion parameter, which is assumed to be 1 for
this distribution (so that the variance is equal to the mean). Examination of diagnostic
plots for these models showed that they failed to provide good model fits for observations
near the upper extreme of the range of the distribution. Thus we used instead the neg-
ative binomial distribution, which allows for extra variability via the scale parameter ¢,
where var(Y) = p + p?/¢. Maximum likelihood estimation of ¢ in the context of GAMs,
however, is not feasible due to the iterative nature of the backfitting algorithm used to
obtain the estimates of the smooth functions f(-). Hence we started by fitting a GLM
with a negative binomial distribution to the data, including all potential covariates, and
obtaining an estimate of ¢. We then fitted a GAM with a negative binomial distribution,
conditioning on our estimate of ¢ obtained from the initial GLM model. Model selection
was then carried out as previously described, with ¢ held constant. A predicted surface

for mean school size was then obtained based on the final selected model.

Density estimates were obtained as described in section 2.4.3, and estimates of relative
abundance for the northeastern and southern-western stocks of offshore spotted dolphins,
as well as for both stocks combined, were obtained by integrating the density surface
within the corresponding stock boundaries. Estimates of the variance of the annual es-

timates of abundance were obtained by bootstrapping. However, in the case of the tuna
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vessel observer data, transects are difficult to define. Hence we chose individual cruises as
our resampling units, which can assumed to be independent, and followed the balanced
bootstrap (c¢f. Davison and Hinkley 1997) approach adopted by Buckland and Anganuzzi
(1988b), in which each cruise appears the same number of times over all bootstrap iter-
ations, although it may appear more than once, or not at all, in any given iteration. At
each bootstrap iteration, encounter rate and mean school size were modelled as described
above, conditioning on the final model originally selected. In the case of mean school size,
in which a negative binomial GAM was used, an estimate of the scale parameter ¢ was first
obtained by using a GLM. Estimates of dolphin density and abundance were obtained as
previously described, using estimates of f{0) from the literature, and bootstrap estimates
of standard error were then computed based on the bootstrap estimates of abundance.
Log-normal confidence intervals for each of the annual estimates of dolphin relative abun-

dance were then obtained. Due to the large computational cost, a total of 79 bootstrap

iterations were carried out for each year.

Note that in the bootstrap procedure described above we did not re-estimate f(0), as es-
timates of its standard error are already available (Buckland and Anganuzzi 1994, IATTC
1994, 1995, 1996, 1997, 1998, 1999). Hence our bootstrap estimates of standard error were
for {N /f (0)} - £(0), and not for N. To obtain an estimate of the standard error for N,

define N =N - f (0), where N = N/{(0). We can then use the delta method (cf. Seber
1982) to obtain an estimate of the CV of N:

{ov (8]} = {ev &)} +{cv [fo]}". (2.12)

— -~ ~ 2
From the bootstrap we can compute vary {N f}; therefore, an estimate of {CV [N f]}
can be obtained as:

{ov ]y = :LN{fﬂl 19

from where we have:

var(N) = N2 gary {Nf} n W‘{f(O)}

(2.14)
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To examine trends in relative abundance of both offshore spotted dolphin stocks, we
applied a GAM with a Gamma distribution and a log link function to the annual point
estimates of dolphin relative abundance, using year as a covariate. We used AIC to select
the amount of smoothing in the model, letting the df vary from 1, 2, 4 or 8. 85% log-
normal confidence intervals were computed based on the standard errors of the GAM
model. Confidence intervals for the most recent year were then used to test for significant
differences (at the 5% level) in relative abundance over time (Buckland et al. 1992), based

on whether any of the 85% confidence intervals from previoug years overlapped or not with

those from the most recent one.

The covariates included in the final models for each year, as well as their degree of smooth-
ing, are shown in Tables 2.1, 2.2 and 2.3. For illustrative purposes, plots of the smoothed
covariates as a function of the covariate values for the binomial, count and mean school
size models for 1995 are shown in Figures 2.2, 2.3 and 2.4, respectively. Predicted surfaces
for encounter rate, mean school size and density for the years 1975-1997 are shown in

Figures 2.5, 2.6 and 2.7, respectively.

Estimates of relative abundance for all stocks of offshore spotted dolphin are shown in
Table 2.4. Clearly the estimates for all stocks for 1977 are unrealistically large. These
poor estimates were caused by a bad fit for the encounter rate models; however, attempts
to fit other models to the data did not improve the results. This is likely a result of the
limited coverage and data available for that year, and/or data quality issues associated
with data from the early years (Lennert-Cody et al. In prep). Bootstrap estimates of
standard error for all stocks were proportionally larger for the 1970s, decreasing with
time. This is likely a result of the greater amount of data available for the later years, and

12 . . . .
also better coverage, which resulted in more precise estimates of abundance.

Trends in offshore spotted dolphin relative abundance over the years 1975-1997 are shown
in Figures 2.8 and 2.9 for the northeastern and southern-western stocks, respectively. Due
to their extremely large values, estimates for all stocks for 1977 were omitted from all

plots. For comparison we also show estimates of relative abundance obtained using the
post-stratification approach.
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Year mo lat lon sst ted tcs hab

197 4 8 8 4 - 8 4
1976 2 8 8 4 8 8 2
1977 4 8 8 8 8 4 8
1978 8 8 8 8 2 8 8
1979 2 8 8 - 8 8 8
1980 2 8 8 - 8 8 4
1981 8 8 8 8 8 8 -
1982 8 8 8 4 4 8 8
1983 8 8 8 - 8 - 8
194 8 8 8 - 8 8 -
1985 8 8 8 8 8 8 4
1986 8 8 8 8 8 2 2
1987 8 8 8 8 8 4 8
1988 4 8 8 4 8 8 2
19899 8 8 8 8 8 4 4
1990 8 8 8 4 2 8 2
1991 8 8 8 8 8 - -
1992 8 8 8 8 8 8 4
1993 4 8 8 4 8 8 2
1994 2 8 8 8 4 8 4
199 8 8 8 8 8 8 8
1996 8 8 8 8 8 8 8
1997 8 8 8 - 8 4 8

Table 2.1: Covariates selected for the presence/absence models for offshore spotted dol-
phins for the years 1975 - 1997. Numbers indicate the degrees of freedom of the smooth
term. Potential covariates included month (mo), latitude (lat), longitude (lon), sea sur-

face temperature (sst), thermocline depth (tcd), thermocline strength (tcs), and a habitat
suitability index (hab).
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Year mo lat lon sst ted tecs hab

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
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Table 2.2: Covariates selected for the models based on the total number of offshore spotted
dolphin schools sighted within each cell, conditional on at least one school having been
recorded, for the years 1975 - 1997. Numbers indicate the degrees of freedom of the
smooth term. Potential covariates included month (mo), latitude (lat), longitude (lon),

sea surface temperature (sst), thermocline depth (tcd), thermocline strength (tcs), and a
habitat suitability index (hab).
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Year mo lat lon sst ted tcs had

1975 2
1976 4
1977 2
1978 4
1979 4
1980 4
1981 2
1982 4
1983 8
1984 2
1985 2
1986 2
4
4
2
4
4
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4
8
8
2
8
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Table 2.3: Covariates selected for the mean school size models for offshore spotted dol-
phins for the years 1975 - 1997. Numbers indicate the degrees of freedom of the smooth
term. Potential covariates included month (mo), latitude (lat), longitude (lon), sea sur-

face temperature (sst), thermocline depth (ted), thermocline strength (tcs), and a habitat
suitability index (hab). ’
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Figure 2.2: Plot of smoothed covariates, scaled relative to their mean value, against covari-
ate values for the binomial model for the presence/absence of dolphin schools, for 1995.
Solid lines indicate the smoothed covariate values; dashed lines correspond to two standard
errors. Tick marks on the x-axes indicate observations. mo = month; lat = latitude; lon

= longitude; sst = sea surface temperature; tcd = thermocline depth; tcs = thermocline
strength; hspot = habitat suitability index.
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Figure 2.3: Plot of smoothed covariates, scaled relative to their mean value, against covari-
ate values for the model for the number of dolphin schools, for 1995. Solid lines indicate
the smoothed covariate values; dashed lines correspond to two standard errors. Tick marks
on the x-axes indicate observations. mo = month; lat = latitude; lon = longitude; sst =

sea surface temperature; tcs = thermocline strength; tcd = thermocline depth; hspot =
habitat suitability index.
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Figure 2.4: Plot of smoothed covariates, scaled relative to their mean value, against co-
variate values for the mean school size model for 1995. Solid lines indicate the smoothed
covariate values; dashed lines correspond to two standard errors. Tick marks on the x-
axes indicate observations. mo = month; lat = latitude; lon = longitude; sst = sea surface
temperature; ¢cs = thermocline strength; hspot = habitat suitability index.
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Figure 2.5: Predicted encounter rate surfaces for offshore spotted dolphins, averaged across
months within each year, for the years 1975-1997.
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Figure 2.5: Predicted encounter rate surfaces for offshore spotted dolphins, averaged across
months within each year, for the years 1975-1997.[continued]
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Figure 2.6: Predicted mean school size surfaces for offshore spotted dolphins, averaged
across months within each year, for the years 1975-1997.
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Figure 2.6: Predicted mean school size surfaces for offshore spotted dolphins, averaged
across months within each year, for the years 1975-1997.[continued]
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Figure 2.7: Predicted density surfaces for offshore spotted dolphins, averaged across
months within each year, for the years 1975-1997.
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NE spotted SW spotted All offshore spotted

A -~ -~

Year N SE N SE N SE
1975 1133 290 551 227 1685 483
1976 796 188 974 207 1785 328
1977 25743 5.95e+018 58250 2.47e4-019 85155 2.85e+019
1978 222 40 1237 410 1460 428
1979 825 123 755 175 1433 226
1980 781 123 617 115 1394 187
1981 467 58 681 151 1000 124
1982 642 104 667 304 1195 298
1983 377 119 406 128 831 233
1984 506 108 268. 73 740 136
1985 782 88 390 68 1128 134
1986 860 91 389 58 1235 109
1987 878 92 793 110 1667 110
1988 725 70 567 82 1283 112
1989 784 68 751 89 1505 113
1990 706 49 629 71 1320 93
1991 702 49 725 85 1337 99
1992 784 56 348 41 1100 71
1993 483 30 299 30 . 775 48
1994 517 28 476 41 985 49
1995 547 31 499 54 1066 58
1996 582 39 346 66 932 92
1997 517 25 466 45 973 51

Table 2.4: Estimates of relative abundance and its standard error for northeastern offshore

spotted dolphins, southern-western offshore spotted dolphins, and all stocks of offshore
spotted dolphins combined, for the years 1975 — 1997,
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Figure 2.8: Trends in relative abundance for the northeastern stock of offshore spotted
dolphins for the years 1975-1997, obtained using (a) the spatio-temporal modelling ap-

proach and (b) using the post-stratification method. Dashed lines indicate 85% confidence
intervals.
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Figure 2.9: Trends in relative abundance for the southern-western stock of offshore spotted
dolphins for the years 1975-1997, obtained using (a) the spatio-temporal modelling ap-

proach and (b) using the post-stratification method. Dashed lines indicate 85% confidence
intervals.

42



2.6 Discussion

The spatio-temporal models presented in this Chapter provide a means of obtaining es-
timates of density and abundance from line transect data obtained in the absence of a
proper survey design. However, although the models do not require large sample sizes,
they are constrained by the need for good spatial and temporal coverage of the survey
region. The spatio-temporal models fitted to offshore spotted dolphin sightings data ap-
peared to capture well the observed distribution of encounter rate and mean cluster size
within the northeastern offshore spotted dolphin stock boundary. In most years there is
good spatial and temporal coverage both within and immediately outside the stock area,
and hence the models do not extrapolate beyond the range of the data. In contrast, search
effort is generally sparse within the boundaries of the southern-western stock of offshore
spotted dolphins, and some of the predicted values near the outer range of the survey
region may not be reliable. Structural zeros were useful in preventing the models from
predicting unrealistically high values near the outer stock boundary. However, simulations

are required to determine exactly how the models behave under those circumstances.

Provided good spatial and temporal coverage of the survey region, an advantage of the
spatio-temporal modelling approach, in comparison with some design-based methods, is
that it allows a more detailed examination of the predicted distribution of the popula-
tion of interest. This in turn may help our understanding of ecological and behavioural
characteristics of that population. In addition, it provides a means of assessing some of
the assumptions we make about the population, Take the northeastern stock of offshore
spotted dolphins as an example. Estimates of relative abundance for that stock are based
on a set of fixed stock boundaries, determined based on morphological, biological and
distributional characteristics (Dizon et al. 1994). In practice it is likely that such bound-
aries vary annually, or even monthly, according to changes in environmental conditions
and prey availability. Indeed our models show variability in the predicted density surface
for that stock between years, which suggests that some amount of movement across the
stock boundaries might be taking place. If that is the case, then much of the annual

fluctuations in dolphin relative abundance will be a reflection of such movement, rather

than of an underlying trend in the population.

One of the motivations for the development of spatio-temporal models for line transect
data was to try to improve the accuracy and precision of estimates of ETP dolphin relative

abundance based on tuna vessel observer data. For the stocks of offshore spotted dolphin,
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the CVs for the estimates based on the spatio-temporal models were generally smaller
than those obtained following the procedures of Buckland and Anganuzzi (1988b) and
Anganuzzi and Buckland (1989), with the exception of estimates for the 1970s, which
were greater than those obtained using the post-stratification procedure. In either case,

nevertheless, the differences were small.

However, point estimates of offshore spotted dolphin relative abundance obtained froﬁ the
spatio-temporal models were consistently lower than those obtained using the traditional
approach. This is likely a result of the different way in which the methods generate
a predicted surface over areas where there are no observations. Search effort near the
southern boundary of the survey region is generally very limited, especially in the early
years. Under the traditional approach, the smoothing procedure will generate values for
that region which are somewhat similar to those from the nearest area where there is
survey effort. But the nearest area where there is effort is usually located further north,
where dolphin densities are greater. In contrast, the spatio-temporal models are being
influenced by the structural zeros, so that the further south you go, the lower are the
encounter rates and mean cluster size; hence the lower density values. If this assumption
is correct, and the available data appears to support it (e.g. Dizon et al. 1992, 1994),

then the predicted surfaces from the spatio-temporal models are likely more realistic than

those obtained based on the traditional approach.

Nonetheless, trends in relative abundance for the northeastern stock of offshore spotted
dolphin were comparable between the two methods, with the spatial-temporal modelling
procedure yielding a slightly smoother trend. Both methods suggest that the population
has been relatively stable since the early 1980s. Although a decline is apparent during
the 1990s, it is not significant at the 5% level. Given the observed decline around the
strong El Nifio year of 1983, it is possible that the same pattern is being repeated in
the late 1990s as a result of the strong 1997-1998 El Nifio event. The spatio-temporal
models also gave smoother trends than the post-stratification method for the southern-
western stock of offshore spotted dolphins (note that the scale in the y-axis of the plots in
Figure 2.9 differ; if we were to use the same scale in both plots, we would almost obtain
flat trend estimates for the spatio-temporal models). Both methods suggest a decline in
relative abundance since the 1970s, with an apparently cyclic variation which coincides
with the occurrence of strong El Nifio events. For the late 1990s, nonetheless, the spatio-
temporal models suggest a much more stable trend than the post-stratification method.
According to results from the spatio-temporal models, there appears to be no significant

trends in southern-western offshore spotted dolphin relative abundance, except for an
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apparent decline between 1978 and 1984. However, a word of caution is required for the
interpretation of trends in relative abundance for the 1970s. Even for the northeastern
stock of offshore spotted dolphins, which is located within an area with good coverage,
some of the estimates of relative abundance for the early years are very large. While
this may lead to the interpretation that there was a massive decline in abundance during
those years, data quality was generally poor (cf. Lennert-Cody et al. In prep) and effort
was limited, and hence it is likely that such high estimates are a reflection of the latter.
This possibility is even more compelling for the southern-western stock of offshore spotted
dolphins: while the post-stratification procedure suggests a decline from about 5 million
animals in 1975 to less than 2 million in 1984, something which may not even be possible
to occur from a biological point of view, the spatio-temporal models show that population
almost doubling its size and then returning to approximately the same level within a six
year period (1975-1980). We do not claim that a decline has not occurred since the 1970s;
however, given issues of data quality and coverage, we believe that the magnitude of such
decline during the late 1970s cannot be quantified using the tuna vessel observer data.
Figures 2.10 and 2.11 show trends in northeastern and southern-western offshore spotted
dolphin relative abundance for 1979-1997. For the northeastern stock, the spatio-temporal
models indicate a significant decline since the late 1980s. However, estimates for the early
years from both the spatio-temporal models and the post-stratification method are not
significantly different from the most recent estimates. Trends for the southern-western
stock based on the spatio-temporal models are considerably smoother than those given by

the post-stratification method, and do not indicate any significant differences in relative

abundance for that stock over time.

A number of issues remain to be addressed. The first is the need for simulation studies to
assess how the models behave when required to extrapolate over areas of the survey region
where data are scarce. A well known feature of cubic smoothing splines is that they are
linear beyond the range of the data (Hastie and Tibshirani 1990). This implies that linear
relationships between the response and the models’ covariates are applied beyond the range
of the observed values, which may lead to unreliable estimates. In general extrapolation
beyond the range of the data should be avoided. However, in the case of the tuna vessel
observer data, search effort is often small or non-existent near the outer boundaries of
some of the stocks for which estimates of relative abundance are required for management
purposes, and extrapolation provides the only means of obtaining such estimates. The use
of structural zeros allows the incorporation of prior knowledge about the distribution of

dolphin populations within the modelling framework. If we can understand the models’
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Figure 2.10: Trends in relative abundance for the northeastern stock of offshore spotted
dolphins for the years 1979-1997, obtained using (a) the spatio-temporal modelling ap-

proach and (b) using the post-stratification method. Dashed lines indicate 85% confidence
intervals.
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Figure 2.11: Trends in relative abundance for the southern-western stock of offshore spot-
ted dolphins for the years 1979-1997, obtained using (a) the spatio-temporal modelling

approach and (b) using the post-stratification method. Dashed lines indicate 85% confi-
dence intervals.
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behaviour when extrapolating over such areas, we can make more effective use of structural

zeros to obtain reliable estimates for those dolphin stocks.

A second issue is the incorporation of the variability in the environmental covariates in-
cluded in the models. Currently the grid of values of the oceanographic covariates is
obtained based on a smoothing procedure applied to oceanographic observations from the
Pacific Ocean/(Fiedler 1992). These values are then effectively treated as constants in the
models, in the same way that locational covariates (i.e. latitude and longitude) are used.
In practice, however, the oceanographic covariates are random variables, each belonging
to some distribution. One way of incorporating this variability in the oceanographic co-
variates is by using mixed models. In mixed models some of the covariates are treated as
“known” (e.g. latitude and longitude) whereas the variance associated with the remain-
ing covariates is directly incorporated into the estimation procedure. However, while the
theoretical basis for fitting mixed models within a GLM ffamework is well developed (e.g.

McCullagh and Nelder 1989), they are not yet available for GAMs.

2.7 Appendices

2.7.1 Derivation of cubic smoothing splines
The derivation below is taken primarily from Green and Silverman (1994).
2.7.1.1 Definitions and notation

Let ty,...,t, denote a set of real numbers in the interval [a, ], wherea < t; <... <t <b.

A function g is defined to be a cubic smoothing spline in the interval [a, b} if:

1. g is a cubic polynomial on each interval (a,t1), (t1,t2),..., (tn,b); and

2. the piecewise polynomials join smoothly at the points (also referred to as knots)

t1,+..stn, S0 that g, g and g" are continuous at each ¢;, and thus on all of [a, b).

A cubic smoothing spline g in the interval [a, b] is a natural (cubic) smoothing spline if its
second and third derivatives are equal to zero at a and b, so that g is linear in the intervals

[a, 1] and [ty, b]. These are called the natural boundary conditions.
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For the remainder of this derivation let g; = g(t;), the value of ¢ at the ith knot, and let
~i =g (&), the second derivative of g at the ith knot.

2.7.1.2 Constructing a cubic smoothing spline

Although g can be intuitively represented as:

9(t) = ai +bi(t — t:) + et — )2 + dilt — t:)®

for t; < t < tiy1, it turns out that it is easier to construct a cubic smoothing spline using
the value of g and its second derivative within an interval. Thus given the interval [tz,¢r],

let g(tL) = gz, 9(tr) = gr, 9 (tf) =71, and g’ (t5) = &
Since g is cubic, it follows that its second derivative is linear on [t1,tg], so that, using

standard linear algebra and defining h = tg — t1 we have:

n

g'(t) = (t=tL)yr+ (LR —t)YL

= 2.1
; (2:15)
and
g"(t) =L, (2.16)
Green and Silverman (1994) state that:
t—1 +(tp—t
g(t) = ( L)gR - ( R )gL
(2.17)

~S(t-t)(tn 1) {(1 + t';lt") TR + (1 + 2= t) n}.

A proof of this statement can be obtained by showing that the four required conditions
are met — namely that g(tgr) = gr, 9(t1) = g1, g (tf) = L and g (tg) = 7r. The first
two conditions can be easily shown to hold by substituting ¢ for tg and £, in the previous
equation. Thus for ¢ = tp:
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(tr=tL)gr+(tr—tR)gL _,
h

g(tr) =
=J9r
and, for t — ¢

tr—t tR—t
o(tr) _ (tr L)QR';;(R L)L _,

=9L-

Now it remains to show that the second derivative of expression (2.17), evaluated at t = tg
and t = tr, corresponds to yg and 7, respectively. Hence, ignoring the first term in that

equation (which is linear, and hence will vanish once it has been differentiated twice), we

have:

J) =-z (—2t+tR+tL){(1+t-htL)7R+(1+tRh_t)'YL}

1 2 YR =L
6(—t +ttp + thr + tatr) {—-——-———-h }

and

g () =':'1,; {(1+t—ht[')’YR+(1+tRh_t)'7L}

L TR =L
5 ( 2t+tR+tL){_h_"}

1l YR =L

—% (=t + ttn + ttr, - thL) 0
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_1 t—tg, tR—t> }
=3 {(1+ A )’m+(1+ T YL

1 ’YR—'YL}
3( 2t+tR+tL){ - .

Thus, for ¢t = tg we have:

" _l tph—11 tR'_tR
g (tr) =3 {(1+——h )'m+(1+ A )'YL}

. {tR ; tL} {vr =L}

{2yr +L + YR — 1L}

=R

and, for t =t

" 1 tp—t tR—1
g =3 {(1+27%) e+ (1+25 L)n}

-5 { 2} om - )

1 :
=3 {w+2n -+l
= 9Ly

completing the proof./,

Expression (2.17) can be used to obtain values of g within each interval [t;, ti41] on [ty,tn).

This can be shown by defining h; = t;41 — t;, for i =1,...,n = 1. Then:

51



— t:)a: . 1 —1)g; —t tirq —1
ot) = (t — t:)giv1 + (tit1 — t)g —-l-(t-—t,-)(ti+1—t) {(1 + t_ﬁ) yis1 + (1 + ﬁ'l__) %.}
hi . 6 hg h;
(2.18)

for t; < t < tiz1. To obtain values for g when t < t; or t > t, (i.e. outside the range of
the knots), recall that from the boundary conditions we know that g must be linear on

the extreme intervals [a, ;] and [t,,b]. From expression (2.17) we have:

' g 1
g (ef) = T2 — =h(2v +m) (2.19)
and
_ —gp , 1
g'(tR) L 7 9L Eh(7L + 27R). (2.20)

Hence the derivatives of ¢ at ¢; and ¢, are given by:

' - 1
gt) =229 Z(ty-t1)1r (2.21)
to—t; 6

and

! gn — gn-1 1
tp) = —m— 4+ =(t, — tp~ -1. .
g ( n) tn—th1 + G(tn tn 1)'7n 1 (2 22)

A value for g’ at t = ty, where # < t1, is then obtained by substituting ¢y for #; in
expression (2.21) and solving for go:
g (to) = L= _ l(t1 —to)1-
ti—2t9 6

Noting that from the boundary conditions we have that ; =0 and g (to) = ¢ (1), then:

!
g ()t —t) =91 - 90
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so that:

g0 = g1 — (t1 — to)g ().
For t = t,41 we have:

n4+1 —Ggn

1
- =(th41—1 .
tnil — tn 6( n+l = tn)¥n

gl (tn+1) =

Noting that 4, = 0 and g (tn41) = ¢ (), then:

g, (tn+l)(tn+1 - tn) =0n+1 = Ggn

and so:

In+1 = gn + (tnt1 — tn)g' (tn)-

We can now evaluate the cubic smoothing spline g at each interval (tg,21),..., (tn,tn41).
It remains for us to ensure that g is continuous at all knots; that is, g'(t,* ) must equal
g (t7). Substituting ¢} and t;” in expressions (2.19) and (2.20), and equating the two, we
have:

;-0 1 IRy, T |
gt—_g'——l + —hic1 (-1 +27) = g'il—_& = =h; (2% + Yi41)
hz-—l 6 h, 6

and so:

- - - - 1 1 1 1
givrhi ' + gi(—=h7Y) + gi(=hiY) + gimhY = -6-'Yi+1hi + §7ihi + g%‘—lhi-l + §'ﬁhi-1

- - - - 1 1 1
git1hi L+ gi((=h7 1) (=hi)) + gimhTY = E'Yi—lhi—l + 37 (hihi-1) + g vi+1hie
(2.23)

33



Using the above equation we can then construct the matrices required to solve for « (see
p.12 in Green and Silverman (1994) for details).

2.7.2 Cubic smoothing splines as the solution to the PRSS

We use the definitions and notations from Appendix 2.7.1. In addition, let y1,...,¥n
denote observations, and let S(g) be the PRSS, given by:

Z{yz g(t:)}? + X / ¥ :r:)} dz (2.24)

=1

and described in section 2.3. Denote by § the estimated curve which minimises S(g). Here

we present results given by Green and Silverman (1994), which show that § is a natural

cubic spline with knots at the points ;.

Given a function §(t;) = z;, define a function h = §—g. Since both § and g interpolate the

values z;, then h = 0 at all points ¢;, We need now to solve the integral f: g (t)h"(t)dt,
a result which will be needed later, Integrating by parts gives:

BIOR O =g OKO[ - [ Kod" @

n-1 i+
=g KB -g" @K@ - ¢"(t) / "R @) de.

J=1

The first two terms will vanish as, according to the definition of a natural cubic spline,
g (a) =g (b) = 0. Further, since g" (t) is zero on the intervals (a,#;) and (,b), and is

constant on (£;,¢4+1) with value g" (t;-*), we obtain the last term on the right hand side of
the previous equation. We then have:

/ ROLHOr Zg”'(t+) /' B (t) dt

n-1
= =3 ¢" (") (hlts41) - hits)} (2:25)
i=1 |
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since A(-) = 0. The above result can then be applied in the derivation below:

/a b {vs?"(t)}2 dt = fa b (g"® +h"(t))2 dt
/ g'()} dt+2 / 'SR (1) de + / b (o) a (2

._/ g"(t)} dt+/ {h”(t dt>/ g (t)

which shows that f: {h" (t)}? dt must be equal to zero for the equality to hold, so that h

is linear on [a,b]. However, as by definition A = 0 at all ¢;, then g and § are the same

function - that is, a natural cubic spline.

Having show‘n that the function that minimises the penalty term is a natural cubic spline,
it remains for us to show that the minimiser of S(g) is also a natural cubic spline. To this
end, let g be any curve which is not a natural cubic spline, and define g to be the natural
cubic spline which interpolates the values of g(¢;). Thus, by definition, g(t;) = g(t)
for all 4, and it follows that Y%, {y; = 3(t:)}* = T, {v: — 9(t;)}. Given the result
from expression (2.26), then [{g" (t)}?dt < [{g"(t)}?dt. As A > 0, then it follows that
S(g) < S(g); that is, the minimiser of S(g) is a natural cubic spline.

2.7.3 Validating the use of AIC in the context of GAMs

AIC is a commonly used criterion to select amongst competing models, and is defined as:

AIC =D+2
(2.27)
=2 T, E [logn(y:; 6) - log n(yi; 6)] +2p,

The first term in the expression above is the deviance, given by twice the log-likelihood of
the true model (or a saturated model) minus the log-likelihood obtained from some con-
tending model with estimated parameters 6. Here y;(i = 1,...,n) denote iid observations
from some distribution, and 7 (y;; ) specifies a model. The second term penalises for the

number of parameters p in the contending model. Akaike (1973) shows that minimising
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the deviance is equivalent to maximising the negative log-likelihood of the contending
model; that is, D = —2 Y"1, log 7 (y;; 6).

Two underlying assumptions implicit in the use of AIC are that:

1. parameter estimates are obtained via maximum likelihood, as AIC is based on the

Kullback-Leibler (Kullback and Leibler 1951) measure of distance; and

2. the true model (or family of models) is amongst the contending models.

Assumption (1) is violated in the context of GAMs, where the smooth functions are
obtained via an iterative procedure (the ‘backfitting algorithm’; Hastie and Tibshirani
1990) based on the minimisation of the penalised residual sum of squares. Assumption

(2) is usually unrealistic, as we have no means of asserting whether the true model is one
of the contending models.

Moody (1991, 1992) and Murata et al. (1994) derived generalisations of AIC in the context
of neural networks which allow for any function to be used in place of the likelihood, and
where the true model is not necessarily included amongst the contending models. Here we
show how their generalisation easily applies to GAMs, and hence justifies the use of AIC

in that context. The derivation given below is taken primarily from Ripley (1996).

Let y = y1,...,yn denote iid observations with pdf n(y), and let n(y; @) be a parametric
model fitted to the data and where 6 is a g-dimensional parameter vector. Denote by
6 the estimate of @ which maximises the log-likelihood £(8;y) = S, log 7(y;; ) with
respect to 8. Also, suppose that this function has a unique maximum at 8 = 8y, where

0o is not necessarily assumed to correspond to the true parameter value.

Ripley (1996) shows that n x D, the latter being the expected deviance from expression
(2.27), corresponds to:

nxD=2 zn: E [log 7 (yi;00) — log n(y;;é)] + 2p* + O(1/+/n), (2.28)

=1

where p* = trace[KJ~1], with

(2.29)

7 = g |8 log(y; 60)
8066T
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and

K= [ (6log1r y,oo))], | (2.30)

where J is the negative expectation of the Hessian matrix and K corresponds to Fisher’s
information matrix. The error in expression (2.28) is of the order 1/4/n. If the parametric

model fitted to the data contains the true model, then p* = p, the number of parameters
in the model.

It can be shown (Ripley 1996) that  converges to 6p without the need to assume that
the parametric model 7(y; §) belongs to the family which contains the true model. Also,
by changing the definition of J and K, the above results hold for any function %(-) other
than the likelihood, and which gives parameter estimates 6 that minimise 3%, 1(8; ;).
Thus, in the context of GAMs, replace the log-likelihood by the PRSS from expression
(2.2). For notational simplicity we rewrite expression (2.2) as ¥(0;y;) = R(vi; 8) +AC(6).
Substituting £(-) for () gives the Network Information Criterion (NIC) of Murata et al.
(1994):

NIC =23 {(Rw:s6) +1C(6)) - (Ryis ) + AC(@))} + 25
i=1

(2.31)
=D+ 2p*

where the first term gives a measure of the model fit (deviance), p* = trace [KJ~1], and

_ | 8*%(00;y)
_E[__aoaoT ] - (232)
and
oY (0o;
K= [var (-i(é;—y—))] . (2.33)

As the integral from expression (2.2) does not depend on the data, it does not contribute

to the variance and hence can be omitted from expression (2.33). Thus we have:

o7



K= e (2E3001)). oy

Thus NIC provides a generalisation of AIC which can be applied to any model fitted to
data based on any objective function other than the likelihood, and which does not rely on

the assumption that the contending model belongs to the family of models which includes

the true parameter value 6g.

The question then is how to estimate J and K, and hence p*. To obtain an estimate of
J we can simply replace 6g by their estimates 8; this is the approach of Moody (1991,

1992). Rewriting expression (2.2) in matrix notation (cf. Hastie and Tibshirani 1990, p.
29) gives:

V(0;y) =(y-£)7T (y-f)+MTQf

(2.35)
=yTy - 2yTf + £7f + MTQf.
Then substituting the above expression into expression (2.32) yields:
j o= O*yTy = 2yTf + fTf + MTQf
00007
_ 02 (f -y + \Qf) (2.36)
00
=2(I+ Q).

To estimate K, define 6(y) = dR(y;#)/86. Then a Taylor’s expansion of §(y) about y
gives:

o) 8(%) + 252 (- 37, (237

The first term in the above expression is a constant. Now, recall that if a vector of

observations y has variance-covariance matrix [var (y)] = Io?, then from standard results

in linear regression (cf. Seber 1977, p. 11) a function of y, say U = Ay, will have
variance-covariance matrix [var (U)] = A [var(y)] AT. Hence:
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[ {5(y)}] ~ [_ag(_;»)] Io? [Qfg_;’lr, (2.38)

Substituting dR(y; 8)/0 for §(y) gives:
. [ [oR(y;8)]
¢ -[o )

L
(2.39)

Q

PR(y:0)] ;.. [*R:0)]
8yd6 O0yd6 !

where Io? is the variance of the y and

?R(y;0)| _ 0%yTy —2yTf+£7f
dy06 - Oyo0

_02(f = Y) (2.40)
=~

= —2I.

The trace of [ff J '1] from expressions (2.36) and (2.39) is then given by:

trace [RJ=!] = trace [21 (2(I + AQ))™" Io%21]
= trace [(I + AQ) ™ 2021 (2.41)
= 2a2p'.

The expression above corresponds to Moody’s (1991, 1992) expression for computing the
number of parameters in the model (cf. expression (14) in Moody 1992). By analogy with
linear regression, it can then be shown that the estimate of p* above should be replaced by
p*/20? (Simon Wood, University of St Andrews, Mathematical Institute, North Haugh, St

Andrews, Scotland; personal communication). To see this, define 7(8;y) as the likelihood
function to be maximised; that is:
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™(Biy) = 2}7 Iy -8 |

1
= 53 (v7y - 287"y + BTxTxp).
Then
62(1/20%) (yTy — 267xTy + A7xTx)
- 2pop"
Tx
p—rg ?—
and
*r(8;y)] _ 9°(1/20%) (yTy - 2687xTy + TxTxB)
dyopB - dydpT
X
]
so that
A xTx
K - 7.
Then

T T\ "1
-1 _ XX {X*Xx
trace [KJ™!] = trace [—02 (_02 ) ]

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

where p corresponds to the number of parameters in the model. If an objective function
other than the likelihood is used, say the RSS, then following the derivation above we
have trace [KJ~!] = p/20?. Hence, in the context of GAMs, where the objective function
is the PRSS, we replace p* by p*/202%. This corresponds to trace [(I + AQ)"'I], which is
exactly how the df of GAMs are computed (Hastie and Tibshirani 1990), hence justifying
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the use of AIC in the context of GAMs.
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Chapter 3

Incorporating covariates into
standard line transect analysis

3.1 Introduction

Standard line transect data consist of records of the amount of effort associated with
each transect surveyed, as well as the number of sightings, perpendicular distance of each
sighting to the transect line, and the cluster size of each sighting (if applicable). In addi-
tion, auxiliary (covariate) information is also routinely recorded. Such covariate data can
be classified into three categories: those associated with detections only {cluster size, for
example, can be thought of as a covariate); those associated with the effort (e.g. Beau-
fort, search equipment used); and spatial covariates that are available for the whole study
region (e.g. altitude/depth, oceanographic variables). The latter are usually obtained
independently from the line transect survey. Covariate information can potentially be
incorporated into the estimation of encounter rate, mean school size, or f(0). In Chap-
ter 2 we presented a method that uses spatial covariates to model encounter rate and
mean school size in space and time. In this Chapter we address the issue of incorporat-
ing covariate information into the estimation of f(0) which, as with the spatio-temporal

modeling approach described earlier, may be particularly useful for the case where data

were obtained from opportunistic surveys.

Standard line transect methodology assumes that the probability of detection of an object
depends solely on its perpendicular distance from the transect line. In practice, it is widely
known that a number of variables may affect the detection probability (e.g. Caughley 1974,
Gunnlaugsson and Sigurjénsson 1990). Attempts to minimise or eliminate heterogeneity

in detection probabilities are usﬁally carried out in two ways (Buckland et al. 1993). One

62



way is by stratifying the data according to some set of covariate values and separately
estimating f(0) for each stratum. Stratification can be carried out before the survey
takes place, when a priori information is available, or can be based on examination of the
data after the survey has been conducted (post-stratification). When object density is
low, however, small sample sizes may preclude stratification or result in biased estimates

of f(0), and hence of density, if stratification is carried out. A second approach is to

incorporate covariates into f(0) estimation.

Beavers and Ramsey (1998) proposed regressing the logarithm of the observed perpendic-
ular distances on the covariates and adjusting these distances to average covariate values
using the estimated regression parameters. The main advantage of this approach is that it
allows standard software to be used for the estimation of f(0), by analysing the adjusted
distances (e.g. Fancy 1997). However, it is somewhat ad hoc in two respects. Firstly, it
requires some arbitrary small value to be added to perpendicular distances equal to zero.
Secondly, it relies on a common truncation distance to be applied to all adjusted distances,
irrespective of their associated covariate values. This may introduce bias in the resulting
estimate of f(0), as it is unlikely that the tail of the distribution of the adjusted ob-
served perpendicular distances will encompass similar proportions of the various covariate
values associated with the detected objects. Thus truncation of those extreme adjusted
distances at the tail of the distribution may result in a systematically higher proportion

of observations having a few specific covariate values being excluded from the analyses.

Alternatively, the covariates can be directly incorporated into the estimation procedure
via a multivariate detection function. This requires estimation of the joint density of

the observed perpendicular distances z and associated covariates z (z = 21,...,24) (Ap-
pendix 3.7.1):

[(z,2) = 9(z,z) n(z,z)

Iz I'x 9(z,2) 7 (z,2) dz dz’ (3.1)

where g(z,z) is a multivariate detection function, #(z,z) is the joint density of z and z in
the population, and integration is done over the range of the indicator variable. Assuming

that the z and z are independent, then 7 (z,2z) = n(z) n(z), where n(z) and 7(z) denote

the densities of the z’s and 2’s, respectively, so that we have:

flz,2) = g(x,z) 7(z) n(z)
, Jz Ix 9(z,2) n(z) (z) dz dz’

(3.2)
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Given random line placement, 7(z) = 1/W, 0 < r < W, and the expression above is

reduced to:

_ g9(z,z) n(z)
flaz) = Iz ™(2) [x 9(z,2z)dzdz’

(3.3)

n(z) is usually not known, and so must be either estimated or factored out. For univari-
ate z, Chen (1996) proposed a bivariate density estimator based on the product of two
Gaussian kernels. The density f(z,z) is then directly estimated from the data, without
the need to assume any parametric form. A similar method based on a single Gaussian
kernel has been proposed by Mack and Quang (1998). Both methods were developed with
the primary aim of estimating mean school size and its effect on detectability. Although
they seem to perform relatively well, they suffer from a few disadvantages. One difficulty

is the choice of bandwidth h. For the estimators of Chen and Mack and Quang, h = 6n~%,
where ¢ is the sample estimate of the standard error, n corresponds to the total number
of detected objects, and § is a constant. The choice of value for § depends on the crite-
rion being used to derive unbiased distributional properties. As the rate of shrinkage of
the bandwidth varies according to the criterion being used, confidence intervals may be
biased (Mack and Quang 1998). In addition, density estimates may depend on the choice
of bandwidth (e.g. Buckland 1992a). Secondly, as the kernel method is based on local
averaging of observations, it is more likely to produce biased estimates when the detection
function is not very smooth near x = 0 (see, for example, Buckland 1992a). Finally, at

least one of the methods (Mack and Quang 1998) requires relatively large sample sizes

(n = 70) for unbiased estimation of mean school size.

Alternatively, maximum likelihood estimation of the conditional density of the z's given

the observed z’s also does not require knowledge of m(z). Following the derivation of
Borchers (1996) we have:

= _ _m(2z) Jx 9(=,2) n(z) dz 4
1= /Xf(x’ =) da = JzIx 9(-’;(’ z) n(z) n(z) dz dz - (349

and, given random line placement so that n(z) = 1/W, then

oo < f@3) _ _sle)
flaln) == S0, (35)
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so that the conditional likelihood is given by:

£(63%,2) = I f(i | 2) = [T =252 (36)

i=1 i=1 fXg Ty Z;) dz

A number of authors have used this conditional approach to develop estimators for f(0)
(Drummer and McDonald 1987, Ramsey et al. 1987, Quang 1991). Quang (1991) modified
the Fourier series model of Crain et al. (1979) to include an additional variable other than
perpendicular distance. All other estimators assume that the covariates enter the detection
function via the scale parameter. Empirical evidence (Otto and Pollock 1990) supports
this contention, as long as detection on the line is certain (i.e. g(0,z) = 1). In the case

where covariates affect detection on the line, methods that estimate g(0,z) (e.g. Borchers
et al. 1998a) should be used instead.

Ramsey et al. (1987) formulated an estimator for variable-area circular plot surveys based
on the density of detected areas y, where y = 722 in the case of point transects. In the
context of line transect sampling, modelling of detected areas is equivalent to the mod-
elling of the observed perpendicular distances themselves. Thus, following the notation
used throughout this Chapter, and using the observed perpendicular distances in place
of detected areas, Ramsey et al’s estimator has the form g(z,2z) = h(z/u(z)). Here
u(z) = [x g(z,2z) dz and h(-) is a detection function with properties such that the con-

ditional density of the observed perpendicular distances given the associated covariates,

7(z | 2), is given by:

(e |2) = %ﬁ (3.7)

Thus Ramsey et al’s estimator is equivalent to the conditional expression from (3.5).
By assuming that log, (4(z)) = Bo + Xj-; Bjzj, and that 7(z | z) follows a Weibull
distribution with a single shape parameter v, 7(z | z) is then estimated by maximising

the log-likelihood with respect to the g+ 1 covariate parameters and the shape parameter
v, conditional on the observed values of the covariates.

The bivariate density estimator proposed by Drummer and McDonald (1987) is based on
a family of models which satisfy the assumption that [y g(z,2) dz =c- [y g(z) dz, with

¢ = z8. As in Ramsey et al’s formulation, this approach is a special case of expression
(3.5).
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It can easily be seen that both p(z) and ¢, denoted in the expression below by o, have the
form (Borchers 1996):

o =exp (ﬂo + iﬁjt(zj-)) , (3.8)

j=1

with t(z;) = z; for Ramsey et al’s p(z), and B = 0, t(z;) = log.(2;) and ¢ = 1 for
Drummer and McDonald’s ¢. Palka (1993) applied Drummer and McDonald’s method pa-
rameterised as in (3.8) to fit a bivariate detection function based on the hazard-rate model

of Hayes and Buckland (1983) and estimate the effect of school size on the detectability

of harbour porpoise.

The conditional likelihood methods described above are based on either a series represen-
tation (Quang 1991) or a specific parametric functional form (Drummer and McDonald
1987, Ramsey et al. 1987) for the detection function g(z,2) (Borchers 1996). Buckland
(1992a,b) developed a unifying framework where the two approaches are combined to
model f(0) in the case where the probability of detection is a function of the perpendicu-
lar distances alone. Buckland'’s approach involves the fitting of a known parametric form
(the ‘key function’) to the data, with additional adjustment terms used when necessary
to improve the fit. This semiparametric approach is very flexible, and so is ‘model robust’
in the sense of Burnham et al. (1980). In addition, as model parameters are estimated by

maximum likelihood, objective model selection criteria can be employed (Borchers 1996).

We propose a géneralisation of Buckland’s approach in which covariates are incorporated
into the estimation of the detection probabilities via the scale parameter o. In this for-
mulation, the covariates are assumed to affect the rate at which detectability decreases
as a function of distance, but they do not influence the shape of the detection function.
Unlike kernel-based methods, this approach does not involve local fitting, and so it is more
robust to rounding of measurements. Also, confidence interval estimation is not sensitive
to the parameterisation used. Finally, the method allows for the inclusion of more than

one covariate (other than perpendicular distance), and it is easy to implement.

66



3.2 A unifying framework for incorporating covariates into
the estimation of detection probabilities

Let there be a set of transect lines of total length L placed over a survey region of area
A according to some survey design. An observer travels along each transect and records
the perpendicular distance z; and covariate values z; (z; = 21i,...,2gi) associated with
each detected object i (i = 1,...,n). Only objects located up to distance W from the
line are recorded. The usual assumptions of line transect methodology are deemed to hold
(see Chapter 1 and Buckland et al. 1993 for a review of assumptions and implications of
violations). Of primary importance are the assumptions that (i) all objects located on or
near the line are detected with certainty (i.e. g(0,2) = 1); (ii) objects are detected prior

to any responsive movement; and (iii) measurements are made without errors.

Following the ‘key function’ formulation of Buckland (1992a), and using the result from
(3.5), the conditional density f(z | z) is given by:

z|z k(z, 2) 1 aj s
fz|z) = Y Ka,2) [1+ TP appy (=) dx[ +'Z—:1 Py (& )}

(3.9)

k(x, Z) [1 + Z ajpj (xa)]

“u(z) o)

Here k(z,z) is a parametric function (e.g. half-normal or hazard-rate), py is an adjust-
ment term (cosine, simple or Hermite polynomials) of order j' (j' = 1,...,m), aj is the
coefficient for the j'th adjustment term, and z, is a standardised z value required to avoid
numerical difficulties (Buckland 1992a) and taken to be z/o, where o is the scale term
(see below). The integral fOW k(z,z) [1 + 271 ajepje (x,)] dz, in which W denotes the
truncation distance, is a normalising function of z and the parameters, required to en-
sure that f(z | z) integrates to 1. We consider just the half-normal and hazard-rate key

functions; other key functions available in DISTANCE (Laake et al. 1993) either do not

allow the inclusion of covariates (uniform key) or have an implausible shape close to z = 0

(exponential key), and hence are not considered here.

Assume that the covariates affect detectability via the scale term 0. We investigate two
functional forms for o, namely:

67



q
0; = exp (ﬂo + Zﬁjzij) ) (3.10)

=1

where the covariate effects are multiplicative as previously assumed by other authors (cf.

expression (3.8)), and a linear form:

q
=Bo+ Y Bjzj. (3.11)

=1

Parameter estimates are obtained by maximising the conditional log-likelihood

n n

¢ =log, [L(0;x,2)] = log, [H f(zi | Zi)] = log, [f(zi | )] (3.12)
i=1 i=1 )

with respect to the parameter vector 8, where 8 = 0y,...,0k1g414m, and k, ¢+ 1 and m

refer to the number of shape parameters of the key function, scale and adjustment terms,

respectively. Note that k& = 0 for the half-normal key, whereas for the hazard-rate key
function k =1 (the ‘power’ parameter). Defining

t(z,z) = k(z, z) [l + i ajrpj'(z,)] , (3.13)
i'= | ‘
we Vha.ve
— Tiy 2Zi)
14 ;lo p [ @)
(3.14)
= ; loge [t(.'L',,Z,)] - Z loge Z,)]
and
Ot _ (\Olog, [t(zi,z:)] < Olog, [u(z:)]
09; ; 90; - g 80;
(3.15)

n

_ Bt(zi, z:) 1 ()
Et(x,,z,) 69 —gﬂ(zi) 39_-,' '
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For 6; = Ok41,...,0k+q+1 (i.e. the parameters of the scale term), it is convenient to
rewrite the equation above as:

9 &K1 OMziyzi)00; <~ 1 Op(z)Oo;
00; = t(zi,2z;) Oo; 06 = p(zi) Oo; 00;

(3.16)

so that now the only additional computation required in comparison with the standard
estimation approach are the partial derivatives of the o; with respect to 6; (i.e. the g;s
from expressions (3.10) and (3.11)).

We use the algorithm described by Buckland (19924,b), extended to include the covariate
parameters, to estimate the model parameters. It uses the Newton-Raphson method
with a Marquardt procedure to fit the key function to the data. Once the key function
has been fitted, polynomial terms are fitted conditional on the estimated key parameters.
Another iteration is then carried out to estimate the key function parameters, conditioning
on the estimated polynomial coefficients. This procedure is repeated until it approaches
convergence, at which stage all parameters are maximised simultaneously. We use initial
parameter estimates as described in Buckland (1992b), with the sample variance and the
logarithm of the sample variance being used as initial estimates of Gy under the linear
and exponential formulations for the scale term, respectively, and all other coefficients

corresponding to the covariate parameters set equal to zero.

Selection of the number of adjustment terms to be included in the model can be carried
out based on either likelihood ratio tests or Akaike’s information criterion (AIC; Akaike

1973). Variance estimates are obtained from the Hessian matrix using the final parameter
estimates (Buckland 1992a).

The method described above is specific to ungrouped line transect data, although the

approach can be easily extended to point transects and to grouped (line transect or point
transect) data (Appendix 3.7.2).

3.3 Abundance estimation

3.3.1 Single objects

The standard univariate (i.e. based on perpendicular distances alone) line transect esti-

mator of abundance is given by (Buckland et al. 1993):
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A A A o
N3=A‘D3=—'n'f(0), (3.17)
2L
where N, is an estimate of the total abundance N,, D, is an estimate of the density of
objects D, and n is the total number of detections (see Chapter 1, Seber (1982) and
Buckland et al. (1993) for the derivation of the above estimator). The variance of N, is

obtained using the delta method (Seber 1982, p.7), and it can be estimated by (Buckland
et al. 1993):

gar(lV,) = A%Gar(D,)

(3.18)

_ g | VO
{fo} ™

To derive an estimator for the case where we have a multivariate conditional density
f(0| z), it is convenient to view the above abundance estimator as a Horvitz-Thompson
(Horvitz and Thompson 1952) like estimator. Horvitz-Thompson estimators are based
on inclusion probabilities, and do not require the assumption that all objects have the
same probability of being included in the sample. Hence, in the context of line transect

sampling, define p; to be the probability that object ¢ is detected within the strip of width
W, conditional on the observed values of z;; that is:

pi =E(g(zi,z) | z]
W (3.19)
=/0 9(z,z;) n(z | z;) dz,

where g(z,z;) = f(z | z;)/f(0 | z;). Assuming the z and z are independent, and that

objects are uniformly distributed relative to the transect line, then n(z | z;) = n(z) =
1/W. Thus:
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p;i = /OW 9(z,z;) w(z) dz

Slks

/()Wg(x, z;) dz (3.20)

1
£ =)

S| -

Taking the p; as known, a Horvitz-Thompson estimator of M,, the total number of objects

within the area surveyed, is then given by:
R n 1 n
M= ==wW5> f0|=z), (3.21)
i=1 Pi i=1

with a Horvitz-Thompson-like estimator of the total abundance N, in the survey region
given by (Borchers 1996, Borchers et al. 1998b):

N A .
Nyrs = WM’
(3.22)
A n
=3 > £(0] z).
=1

Taking the expectation of f(0 | z) with respect to the distribution of the observed z we
have (Borchers 1996):

E.[/012)]= [ }ow%f@) da. (3.23)

Using the definition of f(z) from expression (3.4), and remembering that [, 7(z) = 1, and

that by assumption ¢(0,z) must equal 1, we then have:

e (2
B Y S e HE HIOr Ty 29

Given random line placement w(z) = 1/W and so we have;
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1

B, [f(0]2)] = W [ Ix 9(z,2) n(z) n(z) dz dz’ (3:25)
Recall that:
50 = [ 10,24z
(3.26)
_ / 9(0,2) 7(0) 7(z) dz
Jz Ix 9(z,2) 7(z) n(z) dz dz
and, since by assumption g(0,z) = 1, then:
_ () ]
f0) = Jz Ix 9(z,2) m(z) n(z) dx dz /zﬂ( ) dz. (3:27)
But since 7(0) = 7(z) = 1/W, then:
1
f(0)= (3.28)

W [z Ix 9(z,z) n(z) 7(2) dz dz’

Therefore the result from expression (3.25) for the conditional expectation of f(0) given
the covariates, is f(0). Thus, given an estimate of f(0 | z), we can then obtain an estimate
of £(0) as the average of the f(0 | z;) (Borchers 1996).

Horvitz-Thompson estimators are unbiased (Thompson 1992). Thus, conditional on n,

replacing £(0 | z) by its estimator f(0 | z) in expression (3.22) yields an unbiased estimate

of Ny, as long as the estimates of f(0 | z;) are unbiased (Borchers 1996).

Under the assumption that detections are independent, the variance for M, is given by:

n )
war(l) =S =B (3.29)
i=1 Pi ;

which can be estimated by (Thompson 1992):

gar(it,) = Y 1o, ~ (3.30)



Substituting p; by its estimator yields the follow expression for the estimate of the variance
of M, (Borchers 1996):

n
gar(M,) = W2y f(0|2)? - M, (3.31)
i=1

As the estimator Ngr, is conditional on the observed covariate values and parameter

estimates, using standard results for conditional variances (Seber 1982, p.9) we have:

var(NHT,) = lEé [var (NHT, | 9)] + var; ( [NHT,, | 8]) (3.32)

which can be estimated by:

2 no r
@ () = (5777 {wzglf(ounz—M, 5:‘,}:*””’

5 } (3.33)

where r in the summations refers to all k 4+ ¢ + 1 4+ m parameters and H (9,-1)’1 denotes

the jlth element of the inverse of the Hessian matrix, which is given by (Buckland et al.
1993):

(3.34)

_ 0loge [f(0 | zi)] Slog, [f(0] =)]
H(b;) = - 2 95; o0, ]

An advantage of viewing the estimator of N, as a Horvitz-Thompson-like estimator is
that its estimate of the variance, given by the expression above, incorporates the variance
component due to estimation of the parameters of the detection function. This avoids the
negative bias common to Drummer and McDonald’s (1987) and Quang’s (1991) estimators
of precision (Borchers 1996), which effectively treat the estimated parameters as known.
Alternatively, the variance of Nyrs can be estimated using the bootstrap (Efron and
Tibshirani 1993). Assuming that detections from different transect lines are independent,
the transects can be taken to be the sampling units, and the procedure would then be
as follows: At each of B bootstrap iterations, resample transect lines along with their
corresponding detections, with replacement, until the total amount of effort from the

resampled lines approximates the original total effort. Estimates of f(0 | z) can then
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be obtained using the methodology described in this section, and abundance estimates
obtained using expression (3.22). If at each iteration model selection is carried out, then

this approach has the advantage of incorporating model selection uncertainty into the

estimate of precision.

3.3.2 Objects in clusters

In the case where objects occur in clusters, the standard line transect estimator of abun-
dance is given by (Buckland et al. 1993):

N=A4-D=2n 1[5 §(0), (3.35)

where IE[s] denotes the estimated mean cluster size of the population. An estimator of

the variance of N is then given by (Buckland et al. 1993):

gar(N) = A%zar(D)
 ( (3.36)
BYPIYS KA tiO) BN . (0-0) £ T
= A?. —
oy ey
A Horvitz-Thompson estimator of the total number of clusters within the area surveyed is

given by expression (3.21). A Horvitz-Thompson estimator of the total number of objects

within the area surveyed, M, is given by (Thompson 1992):

M= Z = (3.37)

where s; denotes the size of the ith detected cluster. Following the derivation from the
previous section we then have:

M= W‘:s; - f(0] z). (3.38)
i=1

An estimate of the overall abundance of objects in the survey region, N7, is then obtained

by substituting the expression above into equation (3.22), so that:
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(3.39)
=3 Z si+ f(0 z).

i=1

As in the case of single objects, substituting f(0 | z;) by its estimator £(0 | z;) will yield

unbiased estimates of abundance as long as the f(0 | z;) are unbiased.

Assuming that detections are independent, an estimate of the variance of M is given by
(Thompson 1992):

n
aron) =3 (L)
=1\ P

(3.40)
= {W? 0|z -Wwi0| =)} s,
=1

with an estimate of the variance of the total abundance of objects in the survey region

given by:

n

gar(Ngr) = (ﬁ)z {z {W2 folz)?2-wio] Zi)} s}

i=1
(3.41)

+ZZ

aM
H @ t)'1 .
i=iic 99 !

Note that an estimate of the expected mean cluster size IE[s] is readily obtained as:

a

1E[s] ,=£‘/I—

8

(3.42)
_ Zhasi- f(0]z)
=1 (0] z)

with an estimate of its variance obtained using the delta method, so that:
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PPN var(M,) . var(M) 200'0(M,,M)
var(E[s]) = E[s ]2{ i + e FPAT }, (3.43)

where §ar(M,) and 5ar (M) are obtained from expressions (3.31) and (3.40), and &% (M,, M)
can be approximated by (Seber 1982, p.9):

v (M,, M : .
cov(M,, M) = éi—zl;cov(z;, L az, az'

i£]

However, estimation of cov(z;,21;) requires knowledge of the pdf of the covariates z.
Alternatively the variance of IE[s] can be obtained by bootstrapping the transect lines
as described at the end of section 3.3.1. At each bootstrap iteration, M, and M can be
computed based on the resampled data, and an estimate of the mean cluster size can be
obtained using equation (3.42). Under this approach it is assumed that transect lines
are independent, but detected objects and their cluster size need not be. Hence we can

directly estimate the variance of IE[s] from its bootstrap estimates.

3.4 Simulations

3.4.1 Size-bias

The most common scenario addressed in the literature is when the cluster size associated
with a particular object influences the probability of that object being detected, which is
commonly referred to as size-bias. Size-bias is of special concern since it may result in a
biased estimate of the expected cluster size, which in turn may lead to a biased estimate of

the density of objects (see pp. 125-135 in Buckland et al. (1993) for a detailed discussion).

To investigate the statistical properties of the estimator derived in section 3.2, and to
allow a comparison with the performance of alternative estimators developed explicitly to
deal with size-bias, we follow the simulation procedure of Chen (1996). We simulate a
population N of 300 objects uniformly distributed in the interval [0, W], with W = 10. To
ensure that the density of objects in the area surveyed D = 1.0, we specify the survey area
to be equal to 2LW, with the transect length L = 15. The cluster size s associated with
each object is generated from a x2 distribution. Size-bias is introduced via the bivariate

detection function of Drummer and McDonald (1987), namely:
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g(z,8) = exp (—b (;—EE) a) , (3.44)

which is used to obtain the detection probabilities for each simulated object. The rejection
method (cf. Ripley 1987) is then applied to determine which objects are detected. As
in Chen (1996), we fix b = 0.5 and vary the parameters a and ¢ (c¢f. Table 3.1). The
density of objects D within the area surveyed is estimated as D = n - f(0)/2L, where
F(0) =™, f(0]2;)/n. An estimate of the mean cluster size Iﬁ[s] is obtained according
to expression (3.42). A total of 240 simulations, with 119 bootstrap iterations carried
out for each simulation, were performed. Estimates of bias, standard errors, root mean
squared errors (RMSE) and coverage of the density and mean school size estimators were
computed using the simulation estimates. Choice of the number of simulations and boot-
strap iterations to be performed was based on the need to reduce simulation error relative
to statistical error (¢f. Davison and Hinkley 1997), and also taking into account computa-
tional costs. We used the model fitted to the original data in all bootstrap iterations and,
as Chen (1996), condition the bootstrap estimates on the simulated number of detected
objects (n). Bootstrap iterations in which no convergence was achieved were discarded
and new iterations carried out to ensure a total of 119 iterations for each simulation. In-
dependent simulations were carried out to evaluate the estimators based on the scale term
as an exponential function (expression (3.10)) and as a linear function (expression (3.11)).
The latter did not perform well in comparison with the former, and so we only present

simulation results for the estimator based on an exponential form for the scale parameter
(Table 3.1).

Point estimates of density of clusters (D) and mean cluster size (IE[s]) were close to their
true values, although they both showed a slight upward bias. Estimates of standard error
varied little between the various combinations of parameter values, with the exception
of the estimate for simulated data with a small shoulder (a = 1.5) and small size-bias
effect (c = 0.2), which presented an estimate of standard error more than twice as large as
that of all others. Examination of simulated estimates for this combination of parameter
values revealed a single estimate of D (D = 5.34) and E[s] (E[s] = 15.53) much greater
than the observed average. Omitting this outlier results in estimates of bias and standard
error closer to the observed values for the other parameter cases (D = 1.02, RMSE(D) =
0.1011, Bias(D) = 0.0157, SE(D) = 0.0988, Bias(D)/SE(D) = 0.1589, Efs] = 5.10,
RMSE(IE[s]) = 0.4261, Bias(E[s]) = 0.0969, SE(E[s]) = 0.4043, Bias(&[s])/SE(E[s)) =

0.2396). For both estimators coverage was satisfactory, generally near the nominal value

7



a=1.5 a=20 a=25

c=02 ¢=0.6 ¢c=02 ¢=0.6 c=02 ¢=0.6

~

D 1.0337 1.0251  1.0252 1.0436  1.0262 1.0481
RMSE(D) 02092 0.0859  0.0912 0.1006  0.0826 0.1198
Bias(D) 0.0337 00251  0.0252 0.0436  0.0262 0.0481
SE (D) 02960 0.0784  0.0841 0.0796  0.0740 0.0988
Bias(D)/SE (D) 01139 03205 03002 05476 03538 04868
Coverage(D) 0.9542 09583  0.0417 0.9458  0.9583 0.8792
E[s) 51403 50860  5.1113 50998 50574 5.1199
RMSE(E([s)) 0.8084 02916  0.3429 0.2695  0.2979 0.4643
Bias(E[s)) 0.1403 0.0860  0.1113 0.0998  0.0574 0.1199
SE (E[s]) 0.7852 0.2656  0.3053 0.2300  0.2872 0.4331

Bias(E[s])/SE (E[s])  0.3279 0.3498  0.3080 0.3953  0.2606 0.3388

Coverage(EE[s)) 0.9583  0.9625 0.9583  0.9542 0.9417  0.9500

Table 3.1: Estimates of density of clusters (D) and d mean cluster size (E[s]) and their
corresponding estimates of bias (Bias(D) and Bzas(]E[s])), standard error (SE (D)
and SE (E[s])), root mean squared error (RMSE (D) and RMSE (IE[le, the ra-
tio of the estimate of bias to the estimate of standard error (Bzas(D)/SE (D) and
Bias(E[s))/SE (iE[s))), and coverage (Coverage(D) and Coverage(IE[s])) obtained using
the method described in section 3.2, with the scale parameter as an exponential function,
applied to simulated data. Here ‘a’ indicates values for the shape (‘power’) parame-
ter, whereas ‘c’ corresponds to parameter values of the scale term. Note that RMSE

=2
=4/SE" x 2=2 ""'1 + Bias . See section 3.4.1 for details of simulation procedures.
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of 95%.

3.4.2 Multiple covariates

One of the main features of the method presented in this Chapter is that it allows for
more than one covariate to be easily included in the estimation procedure. To evaluate the
performance of the method when more than one covariate is included, we again simulate
a population N of 300 objects uniformly distributed in the interval [0, W], with W = 10.
As before we specify the survey area to be equal to 2LW, with the transect length L = 15

so that the resulting density of objects within the area surveyed, D, is equal to 1.

A total of three covariates were included in the simulations: cluster size, sighting cue,
and time of day. Cluster sizes were again generated from a x? distribution; values for
sighting cue were generated from a discrete Uniform distribution in the interval (0,3);
values for time of day were generated from a Uniform distribution in the interval (6,19).
The detection probabilities associated with each simulated object were obtained based
on parameter estimates from a model fitted to offshore spotted dolphin sightings data
for the year 1989. The rejection method was then used to determine which objects were
detected. Estimates of density D and mean cluster size IE[s] were computed as described
for the size-bias case. A total of 240 simulations, with 119 bootstrap iterations carried
out for each simulation, were performed, and estimates of bias, standard errors, RMSE
and coverage were obtained using the simulation point estimates. Bootstrap iterations in
which no convergence was achieved were discarded. Due to the poor performance of the
estimator based on a linear form for the scale parameter, simulations were carried out

using only the estimator formulated with the scale term as an exponential function of the
covariates (Table 3.2).

The point estimate of D showed a much greater bias than those observed for the size-
bias case, with very poor coverage. In contrast, estimates of bias and standard error for

mean school size IE[s] were comparable to those obtained for the single covariate case, and

coverage was close to the nominal value of 95%.
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A

D 0.9325

RMSE(D) 0.1432
Bias(D) -0.0675
SE (D) 0.1069
B’Es(b) /SE (D) -0.6311
Coverage(D) 0.7625
IE[s) 5.0674
RMSE(E[s]) 0.3539
Bias([E[s)) 0.0674
SE (E[s)) 0.3415

Bias([s))/SE (E[s]) 0.1975

Coverage(IE[s)) 0.9333

Table 3.2: Estimates of density of clusters (D) and mean cluster size (]E[s]) and their
corresponding estimates of root mean squared error (RMSE (, (SE (D)) and RMSE
(SE (E[s]))), bias (Bias(D) and Bias(E[s])), standard error (SE (D) and SE lE[s])),
the ratio of the estimate of bias to the estimate of standard error (Bzas(D) /SE (D) and
Bias(E[s))/SE (IE[s])), and coverage (Coverage(D) and Coverage(£[s])) obtained using
the method described in section 3.2, with the scale parameter as an exponential function,
applied to simulated data. Here the shape (‘power’) parameter has a value of 2, whereas
the scale term is given by the following covariate parameters: 0.0007 for the effect of school
size; -1.1578, -1.4524 and -0.9764 for the effects of three levels of sighting cue (with the

fourth level corresponding to the intercept); and -0.0062 for the effect of time of day. See
section 3.4.2 for details of simulation procedures.

3.5 Example: Applying the method to eastern tropical Pa-
cific dolphin sightings data

In this Section we apply the method to ETP northeastern offshore spotted dolphin sight-
ings data collected by observers placed on board tuna vessels. Buckland and Anganuzzi

(1988b), Anganuzzi and Buckland (1989) and Anganuzzi et al. (1991, 1992) obtained
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estimates of f(0) for this stock for the years 1975-1990. We reanalysed these data, in-
vestigating the effects of covariates on the detection function and providing estimates of
£(0) which take into account any covariate effects. Due to the small sample sizes and few
covariate data recorded we do not analyse data from 1975 and 1976. To minimise any
potential biases resulting from the data collection procedures employed, especially during
the early years, we discarded observations according to the criteria used by Buckland and

Anganuzzi (1988b), and applied a truncation distance of 5 nm.

A number of variables potentially affect the probability of detection of dolphin schools.
Sea state, as indicated by Beaufort, is widely known to affect sightability (e.g. Buckland
et al. 1993). If weather conditions vary seasonally, then month may also have an effect
on detection probabilities. Sighting cues, such as body, splashes, or associated birds, may
each represent a different detection function. For example, sightings for which the initial
cue was a flock of seabirds flying above the school may be visible over large distances,
whereas splashes may not. Sighting method is another potential covariate. Within the
last 15 years, the use of helicopters and/or bird radar by tuna vessels to search for schools
of dolphins has increased dramatically. The proportion of sightings made by such methods
has risen from zero in 1977 to over 33% from 1990 onwards (cf. Figure 3.1). It is possible
that the detection function for helicopter and/or bird radar sightings may exhibit a broader
shoulder than that for sightings made by the crew. Hence we investigate differences in
detection probabilities between sightings made by the crew, sightings made by helicopter,
and those made by bird radar. A fourth potential covariate is school size, which often
affects the detection function. Another covariate to be investigated is time of day, since
environmental conditions that vary throughout the day (e.g. the amount of glare) may
affect sighting conditions. Finally, we examine whether sightings that led to a set (i.e.
the vessel approaches the dolphin school and encircles it, retrieving the tuna located

underneath the school) exhibited different detection probabilities than those that did not.

We use values for Beaufort ranging from 0 to 3. Although strictly speaking Beaufort
is an ordered categorical variable, its relatively large number of parameters resulted in
convergence problems, and so we treated it as a continuous variable. Month is also a
factor, with 12 levels. However, as with Beaufort, to fit 2 model with so many parameters
was problematic. Hence we reduced the number of levels by contracting the months into
four seasons (quarters), according to typical circulation patterns of ETP surface waters
(Wyrtki 1966, Fiedler 1992). Thus the first quarter encompasses the months December -
February, the second quarter March - May, the third quarter June - August, and the last

quarter September — November. Sighting cue was also a factor, with four levels: birds;
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Figure 3.1: Proportion of northeastern offshore spotted dolphin sightings made under dif-
ferent search methods for the years 1977 - 1997. V = sightings made from anywhere on

the vessel, by naked eye or using 20x binoculars; H = from helicopter; R = using bird
radar.
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Figure 3.1: Proportion of northeastern offshore spotted dolphin sightings made under dif-
ferent search methods for the years 1977 — 1997. V = sightings made from anywhere on

the vessel, by naked eye or using 20x binoculars; H = from helicopter; R = using bird
radar.[continued|
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splashes; the dolphins themselves or some other cue sighted immediately before the actual
dolphin sighting; and logs, breezer (e.g. ripples on the surface) or other non-specified cue.
Sighting method was also a factor, with levels corresponding to sightings made from the
vessel (which includes sightings made by naked eye or by using 20 power binoculars from
various locations on the vessel, such as the crow’s nest); sightings made by helicopter; and
sightings made using bird radar. Values for school size ranged from a few dozens to a few
thousands. Hence, given this extreme range, we treated it as a continuous variable. Time
of day was also treated as a continuous variable. Finally, whether or not a sighting led to

a set was included in the models as a factor with two levels.

To investigate the potential effects of the various covariates we adopted the following
stepwise approach. For each year, we started by estimating f(0) without including any
covariates. We then applied the method described in section 3.2 separately to each co-
variate, and selected the model with the smallest AIC. If a model containing one of the
covariates was selected, we then fitted a new model in which each covariate was separately
added to the initial model containing the first selected covariate, again using AIC to de-
termine which covariates to retain. We proceeded in this manner until no new covariates

were added. An estimate of f(0) for a given year was obtained as the average of the

f(0]2).

Preliminary analyses indicated that the half-normal model tended to provide better fits
than the hazard-rate model, particularly for data from the 1990s. In addition, the half-
normal model was more effective than the hazard-rate model in minimising the effect of
the spike in the data near zero, which was commonly observed in the data from the 1970s

and early 1980s. Hence we only used the half-normal model in all analyses presented in
this Chapter.

Initial results yielded poor model fits for a number of years, with unduly large estimates of
standard error for f(0). Inspection of the data for those years revealed that there were few
or no observations for which the cue type was logs, breezer or other non-specified cue. Since
those observations amounted to at most 3.5% of all sightings within any year (ranging from

0% to 3.5%, with mean equal to 0.82%), they were not included in subsequent analyses,
so that only three levels for cue type were used.

Estimates of f(0), its analytic standard error and coefficient of variation (CV) are pre-
sented in Table 3.3. Covariates included in the models for each year are given in Table 3.4.

Since one of the main applications of the TVOD is for the assessment of trends in dolphin
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relative abundance, the estimates of f(0) presented here can be used to obtain annual
estimates of relative abundance. Hence, to minimise the variability in f(0) estimates be-
tween years, the covariates most commonly selected in all years were identified and new
estimates of f(0) were obtained using only those covariates. Covariates selected in over
half of the years were mean school size, cue type, and time of day. However, examination
of the models fitted to the data using only those covariates yielded very poor model fits
for some years. Of the three covariates, mean school size and cue type were most often
the first covariates to be selected (cf. Table 3.4), with time of day often coming amongst
the last to be included. We then re-fitted the model to the data from all years using
only mean school size and cue type as covariates. Although this made little difference to

the estimates of f(0) obtained (ranging from -0.26 to 0.01, with mean equal to -0.02)), it
considerably improved the model fits (Figure 3.2).

To reduce any bias resulting from the greater amount of effort expended in areas of high
dolphin density, estimates of f(0) were initially computed as the average of the esti-
mates for each observation within f(0) strata, where the strata were defined based on the
standard procedures of Buckland and Anganuzzi (19885) and Anganuzzi and Buckland
(1989). A final estimate of f(0) for each year (referred to as a ‘smoothed estimate') was
then computed as an area weighted average of the f(0) estimates from all strata (Ta-
ble 3.3). Results from standard analyses, without incorporating any covariate effects, are

also shown for comparison (Table 3.5; Anganuzzi and Buckland 1994, IATTC 1994, 1995,
1996, 1997, 1998, 1999).

For the 1990s, results from analyses with and without covariates are comparable, but for
the years prior to about 1992 standard analyses yield considerably larger estimates of f(0)
(Table 3.5), suggesting a strong trend of increase in estimates of the effective strip (half-
)width (the inverse of £(0)) over time. Data from the early years (1970s to mid-1980s)
contain a large number of schools detected on the transect line (Figure 3.3), a result of
the vessels having turned towards the schools before the observer recorded the original
sighting angles (Buckland and Anganuzzi 1988b). The hazard-rate model used in the
standard analyses appears to overestimate f(0) as it tries to fit the spike in the data at
distance zero. As the extent of rounding of perpendicular distances to zero decreases over
time, so do the f(0) estimates, and hence the observed trend of increase in effective strip
(half-)width. Replacing the hazard-rate model by the half-normal model minimises this
effect (Lennert-Cody et al., In prep.). The inclusion of covariates, in addition to the use

of the half-normal model, appears to further reduce the trend in f (0) estimates over time,
but this effect is small.
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Year £(0) SE{f©} %cv{i®} £ SE{f@}] %cv.{/0}

1977 0.2639 0.0298 11.31 0.2877 0.0048 1.69
1978 0.3177 0.0136 4.29 0.3204 0.0061 1.90
1979 0.2779 0.0222 7.98 0.2784 0.0065 2.32
1980 0.3095 0.0131 4.22 0.3110 0.0044 1.42
1981 0.2929 0.0125 4.28 0.2926 0.0049 1.68
1982 0.3075 0.0124 4.03 0.3088 0.0044 1.42
1983 0.3166 0.0150 4.72 0.3108 0.0072 2.33
1984 0.2971 0.0481 16.20 0.2936 0.0098 3.35
1985 0.3249 0.0077 2.36 0.3230 0.0034 1.04
1986 0.3074 0.0090 2.90 0.3063 0.0037 1.20
1987 0.2878 0.0070 2.40 0.2917 0.0021 0.72
1988 0.2858 0.0206 7.19 0.2809 0.0025 091
1989 0.2522 0.0069 2,75 0.2626 0.0022 0.84
1990 0.2616 0.0078 2.98 0.2693 0.0030 1.11
1991 0.2683 0.0207 1.73 0.2662 0.0038 143
1992 0.2716 0.0083 3.08 0.2688 0.0025 0.92
1993 0.2617 0.0175 6.68 0.2639 0.0037 1.40
1994 0.2567 0.0123 4.80 0.2588 0.0036 1.40
1995 0.2507 0.0069 2.74 0.2518 0.0031 1.24
1996 0.2392 0.0055 2.32 0.2383 0.0047 1.99
1997 0.2668 0.0079 2.96 0.2650 0.0032 1.22

Table 3.3: Estimates of £(0) (f (0)), its analytic standard error (SE{f(0)}) and percent
coefficient of variation (%CV{f(0)}) for northeastern offshore spotted dolphins for the
years 1977 — 1997. Column headings with the subscript ¢ denote estimates obtained from
analyses with covariates; those with the subscript s indicate estimates based on an area-

weighted average of f(0) estimates obtained for each of the strata determined via the
post-stratification method.
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Year Month Beaufort Time of day School size Set Sighting cue Method

1977 2 3 1

1978 1

1979 1 2 3

1980 1

1981 5 4 3 2 1

1982 | 1 2

1983 1

1984 3 5 1 4 2

1985 2 1

198 2 3 - 1 4

1987 | 2 1 3

1988 2 5 1 3 4
1989 1 )

1990 4 1 3 2

1991 4 3 2 1
1992 4 1 2 3
1993 2 3 1

1994 3 4 2 1 |

1995 5 2 3 1 4

1996 | 1 3 2

1997 4 3 2 1
Total 8 10 13 13 9 11 4

Table 3.4: Selected covariates for models applied to northeastern offshore spotted dolphin
sightings data for the years 1977 ~ 1997. The number indicates the order in which covari-

ates were selected. Also shown are the total number of times each covariate was selected
in all years.
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Yer f(0) SE {0} %cw{i©} 50 FE{i0} %cv.{/0)]

1977 0.2958  0.0188 6.36 0.3636  0.0463 12.73
1978 0.3289  0.0203 6.18 0.4484  0.0603 13.45
1979 0.2903  0.0268 9.22 0.4202  0.0530 12.61
1980 0.3143  0.0187 5.95 04016  0.0500 12.45
1081 02075 00150 503 0.3650  0.0360 9.85
1982 0.3148  0.0148 4.70 0.3802  0.0492 12.93
1983 0.3207  0.0197 6.15 0.3049  0.0325 10.67
1984 0.3036  0.0228 7.50 0.3367  0.0363 10.77
1985 03199  0.0129 4.03 0.4065  0.0297 7.32
1986 03106  0.0124 4.00 0.3937  0.0310 7.87
1987 0.2929  0.0066 2.26 0.3436  0.0154 4.47
1988 0.2846  0.0081 2.84 0.3145  0.0237 7.55
1989 0.2664-  0.0087 3.27 0.3040  0.0222 7.29
1990 0.2740  0.0093 3.40 0.2976  0.0159 5.36
1991 02729  0.0104 3.81 0.2809  0.0143 4.93
1992 0.2753  0.0061 2.22 0.2825  0.0128 4.52
1993 0.2700  0.0081 2.99 0.2519  0.0076 3.02
1994 02700  0.0176 6.52 0.2545  0.0084 3.31
1995 0.2579  0.0064 2.48 0.2532  0.0077 3.04
1996 0.2488  0.0139 5.57 0.2469  0.0110 4.44
1997 0.2717  0.0069 2.55 0.2597  0.0074 2.86

Table 3.5: Estimates of £(0) (f (0)), its analytic standard error (SE{f(0)}) and percent
coefficient of variation (%CV{f(0)}) for northeastern offshore spotted dolphins for the
years 1977 — 1997, Column headings with the subscript b denote bootstrap estimates ob-

tained from analyses with covariates; those with the subscript o indicate original estimates
without covariates.
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Figure 3.2: qq-plots of the cumulative density function (CDF) of the estimates of f (0) for
northeastern offshore spotted dolphin sightings data for the years 1977 - 1997.
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Figure 3.2: qq-plots of the cumulative density function (CDF) of the estimates of J(0) for
northeastern offshore spotted dolphin sightings data for the years 1977 — 1997, [continued]
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Figure 3.3: Histograms of perpendicular distances of offshore spotted dolphin sightings for
the years 1977 — 1997.
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Figure 3.3: Histograms of perpendicular distances of offshore spotted dolphin sightings for
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Although analytic estimates of the variance may be obtained, they rely on the assumption
of asymptotic normality of the maximum likelihood estimates of f(0 | z). This assumption
can be violated due to lack of independence of detected objects, but this problem may be
overcome by using the bootstrap, with transect lines as the sampling units, to obtain an
estimate of the variance of f (0). In the case of the tuna vessel observer data, however,
transects are difficult to define. We then instead bootstrapped using the cruises as the
resampling units. In this case, the total number of cruises ¢ within a given year was
replicated 119 times, and a random sample of ¢ cruises was selected at each bootstrap
iteration. Analyses were then carried out at each iteration of the bootstrap using the
observations from the selected cruises, following the same data selection criteria used in
the original analysis and applying a truncation distance of 5 nm. Under this approach
some cruises are selected more than once within a given iteration, but not at all at others.
However, all cruises are resampled the same number of times over all bootstrap iterations.
This is the balanced bootstrap approach of Davison et al. (1986), which minimises error
associated with the bootstrap procedure itself. In each bootstrap iteration, an estimate

of f(0) was obtained as an area-weighted average of the f(0) estimates from the strata

defined in the original analysis.

Although cruises were taken as the resampling units when bootstrapping, which implies
that detections between cruises are independent, this Ihay not necessarily be the case.
Tuna vessels in the ETP form ‘code groups’, with the aim of maximising their chances
of finding dolphin schools carrying tuna. This means that once a vessel belonging to a
particular code group finds dolphin schools, it then informs other vessels belonging to the
same code group about the location of such schools. However, the extent and nature of
the information exchanged within and between code groups are extremely complex, and
unlikely to follow any consistent patterns. Nonetheless, the existence of such code groups

may introduce some bias in the bootstrap estimates of the variance of f(0).

Table 3.5 shows bootstrap estimates based on cruises as the resampling units. Bootstrap
estimates of standard error were generally greater than the analytic estimates (¢f. Ta-
ble 3.3), suggesting that the latter were negatively biased. It is possible that such bias
may be‘a result of the post-stratification procedure applied to the data. If estimates
of f(0) within each stratum are generally similar, then the resulting estimates of their
standard error will be small. Since bootstrap estimates of standard error are based on
the final estimates of f(0) from all iterations, they are not affected by any bias caused
by the post-stratification procedure. Bootstrap coefficients of variation for estimates up

until the 1990s were smaller than those from the original estimates, becoming somewhat
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comparable in the late 1990s (Table 3.5).

3.6 Discussion

Simulation results for size-biased data were consistent for all combinations of parameter
values, suggesting that the method is robust to varying extents of size-bias effects. In
contrast, simulation results for the model containing multiple covariates yielded poor cov-
erage, and also greater bias, for estimates of density. In a number of simulations, the
bootstrap estimates of density fell either all below, or all above, 1, resulting in the poor
coverage observed. It is possible that the relatively narrow range of the bootstrap esti-
mates of density within each simulation may have been a result of convergence problems.
As the number of parameters in the model is increased, the more likely it is that conver-

gence problems will occur. This could explain the difference in simulation results for the

single and multiple covariate cases.

For the simulations, bootstrap iterations in which the models failed to converge were
discarded, with additional iterations carried out until a total of 119 bootstrap estimates
were obtained. For the size-bias case, this resulted in a mean of approximately 3.5% of the
bootstrap iterations within a given simulation being discarded. For the multiple covariate
case, the percentage of iterations which failed to converge was much greater, with the
mean at around 30%. However, if only one of the two contending models (half-normal
or hazard-rate) failed to converge, the other model - which converged - was selected,
although it may not have been an appropriate choice. Hence we are likely introducing
some bias in the simulation results for multiple covariates, given its greater incidence of
lack of convergence. To investigate this, a total of 240 simulations, with 119 bootstrap
iterations, were carried out, allowing for different covariates to be selected at each iteration.
Simulations were separately run using either the half-normal or the hazard-rate model. A

substantial improvement in the coverage for the estimates of density was obtained, as well
as a reduction in bias (Table 3.6).

Simulation results for the size-bias scenario compared favourably with those obtained by
Chen (1996) using a kernel method. Unlike Chen’s estimator, coverage of the density esti-
mator based on the conditional likelihood approach was consistently close to the nominal
value of 95% under all combinations of parameter values. In addition, the bias was smaller

than that obtained using the kernel method. Similar results were obtained for the mean
school size estimates.
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Half-normal Hazard-rate

model model
D 1.0220 0.9923
RMSE(D) ©0.1044 0.1179
Bias(D) 0.0220 -0.0077
SE (D) 0.1023 0.1184
Bias(D)/SE (D) 0.2151 -0.0650
Coverage(D) 0.9042 0.9542
IE[s] 5.0870 5.1060
RMSE(E[s]) 0.3242 0.3306
Bias(E[s]) 0.0870 0.1060
SE (E[s]) 0.3130 0.3479
Bias(E[s))/SE (E[s)) 0.2778 0.3047
Coverage(EE[s)) 0.9625 0.9708

Table 3.6: Estimates of density of clusters (D) and mean cluster size (IE[s] ) and their
corresponding estimates of root mean squared error (RMSE (. (.S’E (D)) and RMSE
(SE (IE[s]))), bias (Bias(D) and Bias(f[s])), standard error (SE (D) and SE (]E[s]))
the ratio of the estimate of bias to the estimate of standard error (Bzas(D) /SE (D) and

Bias(E[s))/SE (E[s))), and coverage (Coverage(D) and Coverage(IE[s])) obtained using
the method described in section 3.2, with the scale parameter as an exponential function,
applied to simulated data. Here the shape (‘power’) parameter has a value of 2, whereas
the scale term is given by the following covariate parameters: 0.0007 for the effect of school
size; -1.1578, -1.4524 and -0.9764 for the effects of three levels of sighting cue (with the

fourth level corresponding to the intercept); and -0.0062 for the effect of time of day. See
section 3.6 for details of simulation procedures.

In standard analyses of line transect data, model selection is aided by the use of goodness
of fit tests (Buckland et al. 1993). Although for the method presented in this Chapter
relative measures of model fit (e.g. AIC) can be employed to select among competing

models, standard tests for evaluating model fit cannot be applied. Likelihood ratio tests,
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for example, require knowledge of the distribution of the multi-dimensional detection func-
tion. Although the distribution of the perpendicular distances is implicitly assumed to be
uniform in the interval (0,W), the distribution of the covariates in the population is usually
not known, and so would have to be assumed. If the assumed distributions are incorrect,
test results could be misleading. Alternatively, Chi-square tests would not rely on any
distributional aésumptions, but depending on the number of covariates used in the mod-
els, the required grouping of observations would render the test impractical. However, the
appropriateness of a given model may be informally evaluated through the use of diagnos-
tic plots. An example would be theoretical qg-plots (cf. Chambers et al. 1983, Cleveland
1993), in which quantiles of the data are plotted against quantiles of a theoretical distribu-
tion hypothesized to correspond to that of the data. If we take the data Y (Y = 14,..., Yy)
to be the estimates of f(z; | z;) obtained for each observation, denote by F(Y;) the esti-
mated cumulative density function (CDF) for each Y;, which is given by [& f(z | z:) dz.
From the Probability-Integral Transform Theorem the CDFs of independent and iden-
tically distributed random variables Fo(Y) (Fy(Y) = Fo(Ya),. .., Fo(Yy)) are uniformly
distributed on the interval (0,1). Hence, if the estimated model for the detection function
fits the data well, F(Y) = Fo(Y) and so (F(}1),..., F(Ya)) ~ (U1(0,1),...,Us(0,1)). By
plotting the values of our fitted CDF's against a U(0,1) distribution we can assess how well
our estimated model fits the data. This approach is equivalent to the standard plotting

of observed versus fitted values, in which plotted observations are expected to follow a

straight line if the fitted values agree well with the data.

Figure 3.2 shows theoretical qqg-plots for the estimates of f(z | z) for the tuna vessel
observer data for the years 1977 — 1997. Note that, in all plots, the straight line at a
value of zero for the fitted CDF corresponds to detections made on the line (i.e. ata
perpendicular distance of zero), so that the fitted CDF is also equal to zero. This feature
of the plots highlights the unduly large number of detections on the line that were made

during the 1970s and early 1980s. In general the estimated CDF's for the covariate models
approximate the theoretical CDF's relatively well.

Unlike methods based on double-platform data (e.g. Borchers et al. 1998a), standard line
transect data do not allow estimation of the distribution of the covariates in the population.
Hence our plots of the detection function for any given covariate (e.g. Figure 3.4) are
conditional on values of the other covariates included in the model. When the other
covariates are continuous, we use values of those covariates corresponding to their 25th,
50th and 75th quantiles. In the case of factors, we use all combinations of the levels of

any factors included in the model. This way the interpretation of the effects of the various
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covariates is facilitated.

A desired property of any model for the detection function is that it is ‘pooling robust’,
that is, it yields reliable estimates even when data are pooled over many covariates which
may affect the detection function (Buckland et al. 1993). Most standard line transect
estimators are pooling robust. However, when strong covariate effects are present, the
method presented in this Chapter provides an alternative to stratification. It is particularly
useful for opportunistic survey data, which commonly have poor spatial coverage and small
sample sizes. However, data collected from opportunistic survey platforms may still result
in biased estimates of f(0), and hence of density, even when covariate effects are taken into
account. The tuna vessel observer data provide an example of an opportunistic survey
platform, in which search effort is not random relative to the distribution of the species
of interest. In the ETP, effort is concentrated in areas of high dolphin densities, so that
the vessels can maximise their chance of catching the large schools of tuna commonly
associated with some species of dolphins. In areas of lower dolphin densities, where the
intensity of effort is also lower, other cues such as logs or other flotsam are also used for
locating the tuna. Because in such areas dolphin schools are not the only target, search for
dolphins is not as actively pursued as in areas of high dolphin densities. Hence the effective
strip (half-)width in areas of lower dolphin densities is likely to be smaller than that for
the high density areas. As the majority of sightings are made in the high density areas,
standard analysis of these data, regardless of whether any covariate eﬂ'ectg are taken into

account, may result in an underestimate of f(0) (i.e. overestimate of the effective strip

(half-)width).

In addition to bias in f(0) estimates, standard abundance estimation procedures using
opportunistic survey data will also result in biases in encounter rate and mean school size
estimates, as the population sampled is not representative of the entire survey region. In
the case of the tuna vessel observer data, where vessels concentrate their effort in areas
of high dolphin densities and also target larger schools, which potentially have larger

schools of tuna associated with them, both encounter rate and mean school size will be
overestimated.

There are two ways in which the resulting bias in estimates of dolphin abundance based
on opportunistic survey data may be minimised, using the estimation procedure described
in this Chapter. One way is by using post-stratification to separately obtain estimates
of encounter rate, mean school size and f(0) (Buckland and Anganuzzi 19885, Anganuzzi

and Buckland 1989). Under this approach, the survey region is divided into a grid of cells.
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Figure 3.4: Histogram of perpendicular distances and fitted detection function for levels

of the covariate cue type based on tuna vessel observer data from 1982. Cue 1 = dolphins;
Cue 2 = splashes; Cue 3 = birds.

98



If sample size is large enough, cells may be defined both in space and time (e.g. month
or year); otherwise they will represent spatial location only, that is, data are pooled over
months, years, or some other temporal scale. Estimates of encounter rate, mean school
size and f(0) are then obtained for each cell for which there are observations. A smoothing
procedure can then be applied to generate values for encounter rate, mean school size and
£(0) over cells which were not surveyed. Strata may then be defined based on similarities
between values of the quantity of interest (e.g. encounter rate) along adjacent cells. In
the past, however, estimates of f(0) could not be obtained for each cell due to small
sample sizes within cells. Instead, strata were defined based on some other variable which
correlated well with f(0) or its inverse (effective strip (half-)width). However, using the
approach described in this Chapter, we can now obtain estimates of f(0 | z;;:) for each
observationi (i = 1,...,n) withincelll (I = 1,...,m) at timet (¢t = 1,...,T) based on the
estimated parameters from the model fitted to the pooled observations, and an estimate
of f1:(0) for that cell can be obtained as the average of the f(0 | zy;). The smoothing
procedure can then be applied, and strata defined based on the smoothed estimates of
f1:(0). Final estimates of encounter rate, mean school size and f(0) can then be obtained
as an average of the estimates from each stratum, weighted by their area. These final
estimates may then be combined to yield an overall estimate of abundance. An estimate of
the variance of the abundance estimate may then be obtained by bootstrapping, using the
cruises as resampling units, and repeating the analysis described above at each iteration.

However, a limitation of this approach is that mean school size cannot be included as a
covariate in the model for f(0).

A second approach is to employ the spatio-temporal modelling framework described in
Chapter 2, as follows. We start by using the estimated model parameters to compute
estimates of f(0 | z;;), as previously described. The Horvitz-Thompson-like estimator of
expression (3.39) can then be applied to yield an estimate of abundance Nj; for cell It. Not
all m X T cells will contain observations, although it is assumed that a set of explanatory
variables is available for all cells. We then compute Ny, for cells which have been surveyed.
To obtain an estimate of abundance for the entire survey region, we can then model the
Ny as a function of the spatially and temporally explicit explanatory variables u, and
integrate under the predicted surface. Although it is possible to model the N}, directly,
in practice the area of each cell varies with latitude. Hence it is convenient to model the
estimated cell densities (ﬁzt) instead, with the cell areas (4;) as an offset in the model.

Using the generalised additive model framework of Chapter 2, we then have:
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q
Dy = exp {loge(At) +60+ ) fk(uku)} + e, (3.45)
k=1

where ug; (k = 1,...,¢) corresponds to the kth explanatory variable available for each
cell I at time ¢, fx(+) is a smooth function 6f the kth covariate ug, and ¢; is the error
term. A Gamma error distribution may be used (e.g. Augustin 1999). The variance may
be estimated by bootstrapping on cruises and repeating the procedure described above

at each iteration. The advantage of this approach is that mean school size can then be

included as a covariate in the models for f(0).

3.7 Appendices

3.7.1 Derivation of f(z,z)

The derivation of the multivariate pdf f(z,z) follows that from Seber (1982) for the
univariate case. Define:

Pr[object at z] = 7(z)
Pr [object has covariate values z] = n(z)

Pr{object detected | object at = and has covariate values z} = g(z, z).

Assuming that the 2’s and 2’s are independent, then the joint density for the z and z in

the population, 7(z,z), corresponds to the product of the individual densities n(z) and
w(z). Then:

Pr[object detected at  and has covariate values z] = g(z, z) 7(z) 7(z)

and'

Pr{object detected] = [, [ g(z,2) =(z) 7(z) dz dz,
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so that:

Pr[object at z and has covariate values z | object detected]

__ Prfobject detected at z and has covariate values 2]
- Priobject detected|

= g(m’z) 77(37) 7I’(Z)
Iz [x 9(z,2) 7(z) n(z) dz dz

= f(:l), z)'

3.7.2 Generalising the estimator to point transects and to grouped (line
transect or point transect) data

In the context of point transects we have detection distances r, with «(r) =r/W,0<r <

W. Substituting r and «(r) for z and 7(z) in expression (3.2) gives:

) = rg(r z) n(z)
firz) Jz Ixr9(z,2) n(z) dz dz’

Following the derivation from section 3.1, the conditional likelihood is then given by:

v 1r rig(ri,z))
com = [ sl

Applying the above result to expression (3.9), and replacing ¥'(r,z) = r+k(r, z) for k(r,z),

parameter estimates can then be obtained as described for the line transect case.

In the case of grouped data, let z;; (j = 1,...,m, i = 1,...,n) denote the ith observed

perpendicular distance within the jth distance interval in which the data were grouped,

and let j be chosen such that z;_1; < z; < z;4. Similarly let r;; be the equivalent for

point transects. For line transect data the conditional likelihood is then given by:
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and, for point transects:

L(0;x,z) =

L(O;r,z) =

I f(zi | )
=1

fX g(a:, Z,‘) dr

Il

=1

n

JIBIGEED)

=1

[7, rg(r,z:) dr

n
I l Ti—1,i

i=1 erg(r,z.-) dr -’
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Chapter 4

Estimating trends in abundance -
an alternative approach

4.1 Introduction

A variety of definitions for what constitutes a “stock” have been put forward since the idea
of separately managing populations of a given species was first presented at the beginning
of the 20th century (see Gauldie (1991) and Dizon et al. (1992) for a review). Currently
favoured conceptual definitions generally focus on the value of the genetic uniqueness of
locally adapted populations. Since local adaptation is an evolutionary process, implicit
in these definitions is a certain degree of reproductive isolation between populations. As
it is not feasible to directly measure rates of gene flow between populations, a number of

proxies are commonly used to infer reproductive isolation, and hence to define stocks.

When abundance estimation procedures are applied to stocks of a given species, the re-
liability of the resulting estimates depends on the assumptions that (i) stocks have been
correctly identified; (ii) stock boundary locations have been correctly determined; and
(iii) movement of individuals between stocks is negligible or non-existent. Management
decisions based on incorrect stock classifications can potentially lead to the extinction of

locally adapted populations, or to a contraction of their (historical) range.

To minimize these risks, assessment methods that are robust to assumptions about the
existence and/or location of stock boundaries are desirable. Such an approach has been
implemented by the International Whaling Commission (IWC) to the management of large
whales, where the traditional management by stock has been replaced by the concept of
Small Management Areas (SMAs; IWC 1993b). SMAs consist, by default, of 10° x 10°
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latitude-longitude blocks where one or more stocks may be present (IWC 1992, 1993a);
the size of an SMA may vary if there is enough evidence to justify it. Because there are
no a priori assumptions about stock structure within an SMA, stock status assessments
are based on the observed proportion of a given species within the SMA. In addition,
estimates of abundance are separately obtained for each SMA, thus avoiding the risks of

extrapolating results to areas where data are limited.

In the previous Chapters we developed extensions to line transect methodology with which
estimates of density and abundance may be obtained. As an example we applied the
methods to estimate the relative abundance of ETP dolphin populations. In this Chapter
we address issues related to the definition of ETP dolphin populations, and to the impact of
such definitions on the resulting estimates of abundance. The benefits of monitoring ETP
dolphin populations by area, rather than stock, given uncertainties in stock identification,
are discussed. As an example we apply the method to stocks of offshore spotted dolphin.

In addition, guidelines for a management strategy robust to uncertainty in stock structure

are proposed.

4.2 Dolphin stocks in the ETP

Current management schemes assess the status of ETP dolphins on the basis of “stocks”
defined as populations that are “substantially reproductively isolated” and “represent an
important component of the evolutionary legacy of the species” (Dizon et al. 1994). Stock
identification is based on a comparison of distributional patterns, demographic and physio-
logical parameters, and phenotypic and genotypic traits between neighbouring populations
(Dizon et al. 1992, 1994). Currently two stocks of spinner dolphins (eastern and white-

belly) and two stocks of offshore spotted dolphins (northeastern and southern-western)
are recognized (Dizon et al. 1994),

There are a number of ways in which the status of those ETP dolphin stocks is assessed
(c¢f. DeMaster and Sisson 1992). Estimates of absolute abundance based on research vessel
sightings surveys are available for a number of years, and trends in those estimates have
been used to monitor dolphin stocks (Wade and Gerrodette 1992). In addition, estimates
of absolute abundance for a given stock have been used to determine whether that stock
was above its “maximum net productivity level”, so that it could be considered to be at
“an optimum sustainable population level” (e.g. Wade 1993, 1994). A population dynam-

ics model, based on estimates of absolute and relative abundance, as well as estimates
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of incidental mortality, has also been applied to determine the status of various stocks
(Wade 1994). Finally, trends in annual estimates of relative abundance based on tuna
vessel sightings data have been used since the 1980s to monitor ETP dolphin populations

(Buckland and Anganuzzi 1988, Anganuzzi and Buckland 1989, Buckland et al. 1992).

All of the methods mentioned above rely on the assumption that stocks have been cor-
rectly identified. When neighbouring stocks are easily distinguished in the field, such as
eastern and whitebelly spinner dolphins, stock identification is greatly facilitated. The
large morphological differences between eastern and whitebelly spinners suggest a high
degree of reproductive isolation between the populations, which is the main criterion for
defining ETP dolphin stocks. In contrast, when neighbouring stocks cannot be visually
distinguished in the field, and they are not geographically isolated, the task of identifying
stocks becomes more difficult; that is the case of the northeastern and southern-western
stocks of offshore spotted dolphin. However, the intra-specific structure of ETP dolphin
populations is characterized by a high degree of geographic variation. Take the case of
spinner dolphins as an example, Even though eastern and whitebelly spinners are quite
distinct morphologically, some individuals exhibit intermediate features of both stocks,
suggesting the existence of a gradient, a cline, between the two stocks (Perrin 1990). In
this case, the two forms are clearly mixing. How much mixing is required to occur before
substantial reproductive isolation no longer exists? But if we cannot directly ascertain the
rates of gene flow between the two stocks, how can we determine the degree of mixing that
is taking place in the first place? In the case of offshore spotted dophins, these questions
are even more difficult fo address, since we can only hypothesize that a cline also exists

between the two stocks, but we are not even able to determine that with any degree of
certainty.

Stock identification in general, and in particular with respect to ETP dolphins, has long
been recognized as a fundamental issue in the assessment and management of dolphin
populations (e.g. Wade and Angliss 1997). Variation within ETP dolphin stocks is often
discordant among the characters examined, suggesting that a number of stock divisions
are possible (Tables 4.1 and 4.2, based on data taken from Barlow 1984, Barlow and
Hohn 1984, Chivers and Myrick Jr. 1993, Dizon et al. 1991, 1992, 1994, Douglas et al.
1986, 1992, Hohn and Hammond 1985, Hohn et al. 1985, Perrin 1984, 1990, Perrin and
Henderson 1984, Perrin and Reilly 1984, Perrin et al. 1979, 1991, 1994, Schnell et al.
1986). This led Dizon et al. (1992, 1994) to propose a system of stock classification that
reflects this uncertainty. However, although the potential consequences of incorrect stock

classifications have been examined (e.g. Wade and Angliss 1997), uncertainty in stock
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identification has not been directly incorporated into the methodologies used to monitor
the status of the stocks.

The methods used to assess the current status of ETP dolphin stocks also rely on the
assumption that stock boundary locations have been correctly identified. Even if stocks
have been correctly identified, the incorrect determination of stock boundaries can lead to
erroneous inference about the status of the stocks. Take the northeastern stock of offshore
spotted dolphins as an example, and let’s first hypothesize that current boundary locations
for that stock result in a range that is smaller than its true range, though they encompass
the main area for that stock. If that stock is increasing, then one of two scenarios may
take place: either there will be an increase in dolphin density within the assumed stock
range or, if carrying capacity has been reached, then the range for that stock will expand.
In the latter case, we would not be able to detect any trends in the population using
current methodologies which rely on the correct placement of stock boundaries. Chances
of incurring this type of error are greatest when stocks cannot be visually distinguished in
the field. For example, while boundaries for the eastern and whitebelly stocks of spinner
dolphin are asymmetric, and even overlap considerably, the northeastern and the southern-
western stocks of offshore spotted dolphins are divided by straight lines, with no region
of overlap between the two. Is that a reflection of difficulties in distinguishing between
the two stocks of offshore spotted dolphin, or is the structure of offshore spotted dolphin
stocks really that different from that of the stocks of spinner dolphins? As is the case with

stock identification, uncertainty in the determination of boundary locations has not been

directly incorporated into abundance estimation methods.

In addition, management of ETP dolphins on the basis of stocks relies on the existence
of static, well-defined boundaries between stocks. However, the ETP is a dynamic envi-
ronment, in which marked changes in oceanographic conditions take place as a result of
El Nifio events (Fiedler et al. 1992). These oceanographic changes affect both primary
and secondary productivity, and coincide with shifts in the distribution of a variety of
species. Given the observed association between dolphin distribution and oceanographic
conditions in the ETP (e.g. Reilly 1990), it is likely that stock boundaries are dynamic,
non-static. In strong El Nifio years, for example, estimates of dolphin relative abundance
invariably decline, but later increase (e.g. Lennert-Cody et al. In prep). In such years
there is a drop in estimates of encounter rate and mean school size, and to a lesser extent
in estimates of the effective strip (half-)width. It is possible that these smaller schools
are more difficult to be detected, and also tend to be sighted closer to the vessels, which

would explain the lower estimates of encounter rate and effective strip (half-)width. An
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Hypothesis

Pro

Con

1 stock with
incomplete
mixing

- Regional patterning in morphol-
ogy (animals farther apart exhibit
greatest differences);

- East/west or concentric cline in
colour patterns and/or morphol-
ogy may exist;

- Peak in reproductive season
overlaps between 0-5° N (but is
this a clinal change or region of
overlap?).

- Tagging data (albeit limited -
3% recoveries) indicate lack of ex-
tensive movement by N animals;
no individuals crossed the Equa-
tor;

- Hiatus in distribution;

- Differences in the proportion of
mature, pregnant and pregnant +
lactating females between N and
S forms (but there are problems
with sampling biases);

- S, W and N (NE) forms inhabit
different habitats.

2 stocks (N
(= NE + W),
S) with no
mixing

- Distance between W and S ani-
mals is great;

- Differences in reproductive in-
dices between NE (+ W?) and S
animals exist;

- No evidence of N animals mov-
ing south across the Equator;

- Seasonal east-west movement by
NE animals provides potential for
mixing with W individuals.

- S and W animals morphologi-
cally more similar to each other
than to NE individuals;

- S and W habitats more similar
to each other than to NE habitat.

2 stocks (NE,
S+W) with

no mixing

- No observed movement of NE
animals south across the Equator;

- Morphological similarities be-
tween S and W animals, which
differ from NE individuals;

- Different peak in calving season
between NE and S individuals;

- Habitat similarities between S

and W animals, which differ from
NE habitat.

- Distance between S and W an-
imals is great (c¢f. limited move-
ment of N animals; same pattern
may be observed for S/W individ-
uals);

- East /west seasonal movement of
NE individuals provides potential
for mixing with W animals.

3 stocks (NE,
S, W) with
some degree
of mixing (?)

- Morphological differences be-
tween S+-W and NE animals, cou-
pled with great distance between
S and W individuals;

- N animals never observed cross-
ing the Equator (limited amount
of movement).

- S and W animals similar mor-
phologically;

- S and W animals inhabiting sim-
ilar habitat.

Table 4.1: Hypotheses about potential stock divisions for offshore spotted dolphins. NE
= northeastern; S = southern; W = western.
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Hypothesis

Pro

Con

1 stock with
incomplete
(local) mix-
ing

- Eastern and whitebelly overlap
in distribution (at least partially);

- Extreme morphological differ-
ences at opposite ends of their
range (radial pattern of varia-
tion); |

- Regional patterning in morphol-
ogy (animals farther apart exhibit
greatest differences);

- Limited tagging data indicate
eastern spinners have even more
restricted movement pattern than
N offshore spotted;

- No detectable differences in
mtDNA between whitebellies and
eastern form, suggesting some de-
gree of mixing,.

- Differences in tooth morphology
between eastern and whitebelly
spinners, and between N and S
whitebellies (but potentially at-
tributable to different exploita-
tion levels);

- Differences in the proportion of
pregnant + lactating females be-
tween eastern (higher rates) and
N whitebellies;

- Differences in morphological in-
dices of maturity between male
eastern spinners and male N
whitebellies (but difference more
likely to reflect different degree of
exploitation).

2 stocks
(eastern,
N+S white-

belly) with
some mixing

- Morphological differences be-

tween eastern and whitebelly
forms;

- Partial overlap in distribution;

- Evidence for limited movement
by eastern spinners;

- Differences in age, growth and
reproductive parameters between
eastern spinner and N whitebelly
(but may simply reflect differ-
ent exploitation levels of the two
forms).

- Lack of geographic concordant
variation within whitebellies;

- Great geographic distance be-
tween N and S whitebellies;

- Differences in tooth morphology
between N and S whitebellies;

- No detectable differences in
mtDNA between whitebellies and
eastern form (but could be used
as a pro).

3 stocks
(eastern, N
whitebelly, S
whitebelly)
with  some
mixing

- Hiatus (low density of animals)

in whitebelly distribution around
the Equator;

- Differences in tooth morphology
between eastern and whitebelly
spinners, and between N and S
whitebellies;

- Evidence for limited movement
by eastern spinners;

- Differences in gross reproductive
rates between eastern spinner, N
and S whitebellies (but could be
attributed to different levels of ex-
ploitation).

- Lack of geographic concordant
variation within whitebellies;

- No detectable differences in

mtDNA between whitebellies and
eastern form.

Table 4.2: Hypotheses about potential stock divisions for spinner dolphins. N = northern;

S = southern.
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alternative explanation would be that dolphin schools have broken up into smaller ones,
dispersed over a larger area. However, a large number of schools would have to disperse
beyond the stock boundary in order to have any substantial effect on the estimates of

relative abundance; this is unlikely to be the case.

Since for management purposes ETP dolphin stocks are effectively treated as isolated
units, it is also important that movement between stocks be negligible or non-existent.
For example, we may fail to detect negative trends in abundance of a given stock, even
though that stock is truly declining, if such decline is balanced by immigration from
neighbouring populations. Again, as in the case of incorrectly determining boundary
locations, chances of incurring this type of error are greater for stocks which are more

difficult to be distinguished in the field, such as the northeastern and southern-western
stocks of offshore spotted dolphin.

4.3 An alternative approach

In the last decade there has been a trend in conservation biology to incorporate uncertainty
about a number of population characteristics or parameters into estimates of abundance,
especially within a management context (e.g. Forney 2000). In the case of ETP dolphins,
however, uncertainties surrounding the identification of ETP dolphin stocks, as well as the

correct location of stock boundaries, have not been directly taken into account.

Perhaps the most obvious way of incorporating this uncertainty into assessment methods is
by varying the location of stock boundaries and obtaining estimates of absolute or relative
abundance under the various scenarios. However, this task is complicated by the fact that
we are often dealing with a series of data, since the main interest is in the monitoring
of trends. Hence, not only would we have to vary the boundary locations within each

year, but we would also have to produce a number of combinations of varying boundary
locations which would reflect variation between years.

As an alternative we propose that trends in dolphin abundance be monitored by small
areas, rather than stock. That way we do not need to rely on the assumption that stocks
have been correctly identified, and that boundary locations have been correctly deter-

mined. However, we must carefully choose both the size and the location of those small
areas.

If the areas are too small, then trends in dolphin abundance within each area will not
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be very informative, as they will likely exhibit considerable annual variability. However,
they cannot be almost as large as the stock areas. Since we are particularly interested
in trends near or around the northeastern offshore spotted dolphin stock boundary, we
let the boundary lines correspond to the dividing line between neighbouring small areas.
Given this predetermined location of the stock boundary lines, we chose to use 7° x 10°
latitude-longitude squares (Figure 4.1). This way the small areas have approximately
the same size throughout the study region, and also we end up with a few small areas

surrounding the boundary lines which separate the northeastern and the southern-western
stocks of offshore spotted dolphin.

0
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10 [} 10
JET ST SR I I

-20
Y

Figure 4.1: Location of small areas, determined with the northeastern and southern-

western stock boundary as a starting point. Solid lines indicate stock boundaries for
offshore spotted dolphins; dotted lines indicate boundaries of small areas.

We use the density surfaces obtained for offshore spotted dolphins from Chapter 2 to
compute estimates of relative abundance for each small area for the years 1979-1997 (due
to problems of data quality and coverage we omit the years 1975-1978; ¢f. Chapter 2).
The density surface within each small area and each year is numerically integrated over
the size of the small area, so that' we end up with an annual series of point estimates of
dolphin relative abundance for each small area. Trends in relative abundance within each
small area are obtained by fitting a GAM to the annual series of point estimates, with

85% log-normal confidence intervals obtained based on the standard errors from the GAM
model.

4.4 Results

Trends in offshore spotted dolphin relative abundance for each small area are shown in

Figures 4.2 and 4.3. Although the large number of small areas makes the interpretation
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of the results difficult, a few patterns can be observed. Trends in relative abundance near
the coast appear relatively stable for both the northeastern and southern-western stocks of
offshore spotted dolphin. In contrast, trends from small areas around the southern bound-
ary between the northeastern and southern-western stocks exhibit considerable variability.
Moreover, there appears to be a lag in the peaks in relative abundance between small areas
north and south of the southern northeastern offshore spotted stock boundary, with the
peaks in the southern areas occurring one to five years later than the ones in the northern
areas. Not surprisingly, this lag is also observed between estimates of trends in relative
abundance for the northeastern and southern-western stocks of offshore spotted dolphins
(Figures 2.10 and 2.11). Nonetheless, no significant trends were observed in the majority
of the small areas located around the stock boundaries. Trends in relative abundance

over the southernmost region of the southern-western stock also appear relatively stable,

although estimates of relative abundance for 1979 seem unduly large.

The location of small areas from Figure 4.1 was determined to a large extent based on
current hypotheses about the structure of the stocks of offshore spotted dolphins. This is
because the location of the boundary between the northeastern and the southern-western
stocks was used as a starting point from which the small areas were generated. However,
spatial patterns in trends in relative abundance over the different small areas may poten-
tially vary depending on where the small areas are located. Say we have defined the small
areas in a way such that we have at least one small area located over the southern bound-
ary of the northeastern offshore spotted stock; that is, the small area encompasses areas
both to the north and to the south of the stock boundary. If the southern boundary be-
tween the northeastern and the southern-western stocks of offshore spotted dolphin varies
between years and say, for example, that individuals from the northeastern stock move
south in certain years, and later return to the north, while the population of southern-
western offshore spotted dolphins remains relatively stable over the period, then trends in
relative abundance for small areas located over the southern boundary between the two
stocks should be relatively stable. To investigate this, we generated a new grid of small
areas in a way such that we ended up with a few areas located over the boundary between
the northeastern and southern-western stocks of offshore spotted dolphin (Figure 4.4), and
obtained estimates of trends in relative abundance for those areas as previously described
(Section 4.3; Figures 4.5 and 4.6). However, the large number (25) of small areas made it
difficult to discern any spatial patterns in the trends. Therefore we chose to pool the small
areas, in a way such that we ended up with 8 small areas covering representative portions

of the survey region (i.e. one in the westernmost area, three located over the northeastern
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Figure 4.2: Trends in offshore spotted dolphin relative abundance by small areas, for 1979-
1997. Each plot corresponds to each of the small areas shown in Figure 4.1.
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Figure 4.3: Trends in offshore spotted dolphin relative abundance by small areas, for 1979~
1997, as in Figure 4.2. Each plot corresponds to each of the small areas shown in Figure 4.1,
Solid lines indicate offshore spotted dolphin stock boundaries.
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offshore spotted stock boundary, two completely within the northeastern stock area, and

two over the southern area of the survey region; Figure 4.7).

0
WY W B,

-10 [}

T U SIS I

20

Figure 4.4: Location of small areas, with some areas placed over the boundary between the
northeastern and southern-western stocks of offshore spotted dolphin. Solid lines indicate
stock boundaries for offshore spotted dolphins; dotted lines indicate boundaries of small
areas.

Trend estimates for the pooled small areas are presented in Figures 4.8 and 4.9. Trends in
offshore spotted dolphin relative abundance appear quite stable near the coast, especially
within the northeastern offshore spotted dolphin stock, and also within the southern area
of the southern-western stock. Most of the fluctuation in relative abundance seems to
occur around the western portion of the southern boundary of the northeastern offshore
spotted stock, as well as within the central region of the northeastern stock and the western
boundary of the northeastern offshore spotted stock. Nonetheless, in 5 out of the 8 arcas
no significant trends were observed when comparing relative abundance in 1997 with 1979.
However, a significant decline since 1979 was observed for the small area within the central
region of the offshore spotted dolphin stock, as well as for the one over the western region
of the southern boundary for that stock. In contrast, a significant increasec was observed

near the coast, over the eastern portion of the southern boundary for the northeastern
offshore spotted stock.

4.5 Discussion

In a review of the status of ETP dolphin stocks, DeMaster et al. (1992) point out that “ge-
ographically defined management units are not necessarily biologically meaningful”, and
also that “abundance can be estimated for a management unit, but trends in abundance
must be determined by pooling stocks that are thought to mix or overlap in distribution”.

However, we have little information about the degree of mixing for some of the stocks,
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Figure 4.5: Trends in offshore spottéd dolphin relative abundance by small areas, for 1979-
1997. Each plot corresponds to each of the small areas shown in Figure 4.4.
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Figure 4.6: Trends in offshore spotted dolphin relative abundance by small areas, for 1979-
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Solid lines indicate offshore spotted dolphin stock boundaries.
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Figure 4.7: Location of pooled small areas. Solid lines indicate stock boundaries for off-
shore spotted dolphins; dotted lines indicate boundaries of small areas.

especially offshore spotted dolphins. Thus the monitoring of trends in dolphin relative
abundance by small areas, rather than stocks, provides an alternative means of assessing
the current status of ETP dolphin populations. Under this approach it is not necessary
to define management units. In addition, any inference about the population of interest is

no longer conditional on stock classifications being correct, or on any assumptions about

stock structure.

The interpretation of the results, however, is not as straightforward as the simple eval-
uation of trends in abundance by stock, since we are no longer dealing with a single
measure, but instead with a composite picture of the spatial variability in dolphin relative
abundance over time. A significant decline in relative abundance since 1979 was observed
within the northeastern offshore spotted stock area, as well as over the western portion
of the southern boundary for that stock. Nonetheless, it is not clear whether or not these
declines are directly linked (i.e. caused by movement of individuals) to the observed
increase in relative abundance near the coast. Despite being highly variable, trends in

relative abundance appear to be somewhat stable throughout the remainder of the range
of ETP offshore spotted dolphins.

In addition to the assessment of the status of the populations, the observed spatial pat-
terns in trends over small areas also provide information on the structure of ETP dolphin
populations. Perhaps the most obvious result is the lack of concordance in spatial variation
in the trends (cf. Figures 4.2, 4.5 and 4.8). One potential explanation is that, although
the population is spread over a wide region, population responses occur at a much finer
(local) spatial scale. It is also possible that this result is a reflection of spatial variability

in environmental fluctuations, or of the degree of environmental variability across the re-
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Figure 4.8: Trends in offshore spotted dolphin relative abundance by small areas, for 1979-
1997. Each plot corresponds to each of the small areas shown in Figure 4.7.
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Figure 4.9: Trends in offshore spotted dolphin relative abundance by small areas, for 1979-

1997, as in Figure 4.8. Each plot corresponds to each of the small areas shown in Figure 4.7.
Solid lines indicate offshore spotted dolphin stock boundaries.
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gion. In this case, the observed variability in trend estimates for certain small areas could
then be caused either by movement of individuals, or by changes in the characteristics of
the population (e.g. schools breaking up into smaller ones, and/or spreading over a wider
area) which affect detectability. Regardless of the cause for this lack of spatial concordance
in the trends, it is likely that this additional source of variability will reduce the precision
of trend estimates, which in turn would decrease our ability to detect significant changes

in the status of the populations. This effect is likely greater when trends are estimated on

the basis of stocks..

The difficulty of interpretation of trend estimates by small areas precludes the complete
replacement of the stock-based assessment approach by one based on small areas. On the
other hand, the spatial variability in the trends reduces the efficiency of assessment meth-
ods based on stocks. In addition, some of this variability may be a result of movement of
individuals across stock boundaries, which exemplifies the need to incorporate uncertainty
about stock structure into assessment methods. Clearly both methods have limitations,
but they provide complementary information. Therefore, their combined used as a means

of assessing the status of populations is recommended.

Our results clearly indicate that both the size and location of the small areas aﬂ'éct the
spatial patterns observed in the trends. In the case of offshore spotted dolphins, we
started by generating small areas based on current hypotheses about the structure of that
population, so that assumptions related to those hypotheses could be investigated. In
addition, we also examined trends based on a grid of small areas which did not follow the
stock divisions currently in use. By examining results for the two scenarios, we were less
susceptible to biases resulting from the size and placement of the small areas that we chose
to adopt. However, simulations are required to quantify how robust the results are to these
variations in the size and location of the small areas, and also to determine whether there
exists a combination of size and location of small areas which minimises spatial variability,

so that the status of the populations can be more easily (and objectively) determined.
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Chapter 5

General discussion

5.1 Introduction

The work presented in this thesis aimed at the development of methodology robust to
violations of certain assumptions of line transect sampling. More specifically, we focused
on alternative means of estimating abundance using data from platforms of opportunity,
in which search effort is not random, and also of directly incorporating heterogeneity in
detection probabilities into estimation procedures for f(0). In addition, an alternative
means of monitoring the status of populations, based on the examination of trends in

abundance over small areas, rather than based on stocks, was also examined.

Each of those methodological developments touched a number of statistical issues (e.g.
model specification, model selection, diagnostics, variance estimation, etc.), and due to
time and computational constraints not all of those issues could be fully resolved. In addi-
tion, the tuna vessel observer data used in all examples presented a number of additional

difficulties which resulted from the nature of the data set itself. Here we discuss possible

avenues for future research in light of the results we obtained.

5.2 Spatio-temporal modelling

Model selection in the context of GAMs has been an active area of research in the last
two decades or so (c¢f. Hastie and Tibshirani 1990). Despite being perhaps the most
widely used model selection criterion, AIC tends to over-fit the models; that is, it tends
to select more complicated models over simpler ones (Hastie and Tibshirani 1990). As an

alternative, cross-validation and generalised cross-validation (GCV) have been proposed.
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The general idea behind GCV is analogous to the jackknife procedure commonly used
to estimate variances (¢f. Efron and Tibshirani 1993). In short, the model is re-fitted
n times (where n corresponds to the total number of observations), but at each one of
those times one of the observations is omitted. Some measure of model fit (e.g. sum of
squares) can then be computed based on the n fitted models. Until recently, calculation
of GCV required considerable computing power. However, a new procedure proposed by
Wood (2000) made GCV a more feasible tool to be used. Nonetheless, the large number
of potential combinations of covariates to be included in the models, together with the
various possible degrees of smoothing for each covariate, and the potential large number of

observations, continue to make model selection based on GCV a very computer-intensive

exercise.

The results from Chapter 2 clearly show that automated model selection can be misleading.
For example, in the models for the number of schools, automated model selection using
AIC tended to select relatively large (4 and 8) degrees of freedom for the smoothed co-
variates, yet examination of the predicted values from the models showed spurious results.
Therefore, while perhaps better measures of model fit (such as GCV) may be employed to

select between competing models, subjective decisions based on knowledge of the processes

being modelled should not be completely discarded.

GAMs allow a suite of diagnostic tools to be used, ranging from standard and partial
residual plots to more sophisticated graphics methods (e.g. plots of Cooke’s distance,
qg-plots). In the case of the tuna vessel observer data, however, the use of the more
standard methods is not practical as the large number of observations makes it difficult
to detect any patterns in the plots. We used qq-plots as diagnostic tools, since the simple
relationship shown in the plots facilitate the visualization of any patterns even when the
number of observations is large. Nonetheless, the use of qq-plots can be expanded by the
computation of ‘envelopes’, so that the plots can become another tool (in addition to model
selection criteria such as AIC or GCV) with which to test between competing models. To
construct these envelopes, the procedure for computing the qq-plots can be repeated for
models fitted to bootstrap resamples, from which ’percentile’ confidence intervals for the

qg-plots can be obtained. We could then test whether the original qq-plot fell within the
envelope.

In the spatio-temporal models from Chapter 2, any autocorrelation between neighbouring
cells was ignored; that is, we effectively assumed that spatial and temporal trends in the

response variable resulted from covariate effects. Work by Augustin (1999) has shown
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that abundance estimation based on the numerical integration of the predicted surface
from spatio-temporal models is robust to the presence of autocorrelation. However, it is
important that no spatial or temporal correlations be present in the residuals, as that may
be an indication of a poor model fit. Plots of residuals against ordered values of latitude,
longitude and month for the binomial model, the count model and the mean school size
model from Chapter 2 for 1975-1997 are shown in Figures 5.1 through 5.9. There does
not seem to be any strong spatial patterns in any of the models, as indicated by the plots
of residuals against latitude and longitude. Some of the plots, however, clearly show the
lack of observations over some of the spatial range. In contrast, plots of residuals against
month appear to exhibit trends in some of the years. Some of those trends may be partially
explained by lack of observations over portions of the survey region during certain months
of the year. For example, effort near the western boundary of the survey region, between
120° and 146°W, is usually scarce during the winter months. However, some of those
trends may also be due to autocorrelation, or to unmodelled variability. Distinguishing
between autocorrelation and trends due to unmodelled variability is not, however, an easy

task, and the need for further work in this area has already been highlighted (Augustin
1999).

5.3 Incorporating covariates into f(0) estimation

Simulation results from Chapter 3 suggest that the proposed approach which directly in-
corporates covariates into f(0) estimation is both accurate (unbiased) and precise, at least
when only one covariate is included in the model. In the case where multiple covariates

are used, simulation results showed the importance of carrying out covariate selection in
order to obtain accurate and precise estimates of density.

As was the case with the spatio-temporal modelling approach from Chapter 2, we used qq-
plots as a tool for model diagnostics. The use of ‘envelopes’, as described in the previous

section, could also provide a more objective means of testing the model fit.

Borchers (1996) pointed out that observed variation in detection probabilities can be
greater than analytic estimates based on estimators which include a single covariate. He
argues that this may be a result of the effect of additional covariates which have not been

included in the model. Therefore, it is recommended that robust estimators of the variance
be used in place of analytic ones.
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Figure 5.1: Plots of residuals against ordered values of latitude for the binomial model
from Chapter 2, for 1975-1997.
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Figure 5.1: Plots of residuals against ordered values of latitude for the binomial model

from Chapter 2, for 1975-1997.[continued)
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Figure 5.2: Plots of residuals against ordered values of longitude for the binomial model
from Chapter 2, for 1975-1997.
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Figure 5.3: Plots of residuals against ordered values of month for the binomial model from
Chapter 2, for 1975-1997.
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Chapter 2, for 1975-1997.
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Figure 5.7: Plots of residuals against ordered values of latitude for the mean school size
model from Chapter 2, for 1975-1997.
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Figure 5.8: Plots of residuals against ordered values of longitude for the mean school size
model from Chapter 2, for 1975-1997.
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Figure 5.8: Plots of residuals against ordered values of longitude for the mean school size
model from Chapter 2, for 1975-1997.[continued]
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Figure 5.9: Plots of residuals against ordered values of month for the mean school size

model from Chapter 2, for 1975-1997.
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Figure 5.9: Plots of residuals against ordered values of month for the mean school size
model from Chapter 2, for 1975-1997.[continued]
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5.4 'Trend estimation

Spatial variability in trend estimates over the small areas diminished our ability to discern
any patterns in the trends. This variability may be reduced via a more integrated approach,
in which both spatial and temporal variation is modelled simultaneously. This would
involve the modelling of data from all years at the same time. However, this would require
considerable simplification of the data in order to make the approach computationally
feasible. Additional research, combined with simulations, are required to address this

issue.

Another issue that remains to be addressed is the need for a more objective means of
testing for differences between trend estimates from different small areas. Standard tests
for regression are no longer applicable since we are not dealing with linear relationships in
the trends. However, since our ability to detect significant trends in relative abundance
appears to be limited, it does not seem possible to develop these objective criteria until we

have improved our ability and power to detect significant trends within each small area.
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Appendix A

Introduction

In the eastern tropical Pacific (ETP) Ocean, yellowfin tuna ( Thunnus albacares) commonly
concentrate under schools of spotted (Stenella attenuata), spinner (S. longirostris spp.)
and, to a lesser extent, common (Delphinus delphis spp.) dolphins. This relationship has
long been exploited by tuna purse seine fishermen, who often use dolphins as a cue to locate
the tuna and encircle dolphin schools to retrieve the fish underneath them (for a review
of the history of the fishery see Joseph (1994) and Hall (1998)). Incidental mortality of
dolphins during purse seine operations has negatively affected populations of spotted and
spinner dolphins (Smith 1983). Incidental takes of striped (S. coeruleoalba) and common
dolphins also occur, but the evaluation of the impact of this mortality on their abundance

has been problematic (Buckland and Anganuzzi 19885; Buckland et al. 1992).

Since 1974 the National Marine Fisheries Service of the United States has placed observers
on board US-registered tuna vessels, to monitor dolphin mortality resulting from inter-
action with the tuna fishery. Coverage of the international fleet (including US-registered
vessels) has been carried out by the Inter-American Tropical Tuna Commission since 1979.
Dolphin sightings data gathered by tuna vessel observers are used to evaluate the status of
dolphin populations. Annual estimates of dolphin relative abundance obtained using line
transect methods are used to assess trends. A description of the various methodologies

can be found in Buckland and Anganuzzi (1988b), Anganuzzi and Buckland (1989), and
Buckland et al. (1992).

"The tuna vessel observer data has been used in all examples presented in this thesis. Here
a brief description of data collection procedures relevant to the line transect methodology

is presented; for additional information see Joseph (1994), Hall (1998), and the references
cited in those papers. -
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Search effort

The tuna vessels from which the observers collect dolphin sightings data are part of a
commercial enterprise, and hence can be seen as 'platforms of opportunity’. The vessels do
not follow any survey design; instead the vast majority tends to search over areas of known
high dolphin densities, where the larger dolphin schools (which are normally associated
with the larger schools of tuna) are expected to occur. As schools of yellowfin tuna are
commonly associated with schools of offshore spotted dolphins, or with mixed schools of
offshore spotted and spinner dolphins, the vessels concentrate in areas where those species
are abundant. A smaller proportion of the vessels search for free-swimming schools of
tuna, or for schools associated with floating objects (Hall 1998), and hence cover the
remaining regions of the ETP where the density of offshore spotted and spinner dolphins
is not as high. Due to this non-random distribution of search effort, it is not possible to
obtain estimates of absolute dolphin abundance using the tuna vessel observer data, as
such estimates would be biased upwards. Instead, the data are used to estimate dolphin

relative abundance, from which trends in the populations can be ascertained provided the

biases do not change over time.

Search effort is carried out throughout most of the time the vessels are at sea, weather
permitting, during the day, and whether or not the observer is also on effort. Only when

the vessels begin to set on a school of tuna, regardless of whether it is associated with

dolphins or not, that search effort ceases.

Since the implementation of the observer program in the mid-1970s, a number of techno-
logical developments has taken place in the tuna fishery, with direct implications for the
way the data are collected (Lennert-Cody et al. In prep). Initially most of the search
effort was carried out by 20x binoculars, but in the late 1980s the use of high resolution
radar was implemented. Because the radar is able to detected seabirds flying above dol-
phin schools, it allowed sightings to be made at greater distances. At about the same time
there was an increase in the use of helicopters to search for both schools of dolphin and

schools of tuna, and now most, if not all, tuna vessels have a helicopter on board.

Political pressures have also affected the way the tuna fishery operates. The adoption of
the ’dolphin-safe’ policy, in which vessels were labelled *dolphin-safe’ if they did not inten-
tionally encircle any dolphin schools; the ban by the US government on the importation of
tuna caught by sets made on dolphins; and the imposition of limits on dolphin mortality

associated with the fishery; all these affected how the vessels searched for dolphin schools
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(see Lennert-Cody et al. (In prep) for a review).

Data collection

Each vessel has a unique cruise number associated with its current trip, and that number is
associated with all the data recorded for that particular vessel during that trip. Whenever
the vessel is on effort, i.e. searching for dolphins or tuna, it is noted whether or not the
observer is also on effort. Search for dolphins is primarily carried out by the crew of the

vessels, though the observers also make sightings.

On each vessel the observer records the position of the vessel whenever it changes course.
Sea condition (Beaufort) is also recorded whenever it changes, along with the time and

position of the vessel. The date is always recorded together with all the data.

When a dolphin sighting is made, the time and position of the vessel are noted, together
with the initial sighting angle and radial distance. It is not always possible to record the
exact position of all sightings, so an accuracy code, indicating the accuracy of the recorded
position (e.g. position known, or known to the nearest minute, etc.) is also entered. For
each sighting the sighting method and sighting cue are recorded (see Table below). An
estimate of the size of the school and its species composition are also noted, both by the
observer and the crew separately. If the sighting leads to a set, this is noted, and at the

time of the set both the observer and the crew again give separate estimates of the school

size and species composition.

Sighting method Sighting cue
By 20x from crow’s nest Birds
From crow’s nest Splashes
By 20x binoculars Log, breezer, or other cue
From helicopter The dolphins themselves

Zero people on 20x binoculars
One people on 20x binoculars
Two people on 20x binoculars
Three people on 20x binoculars
Four people on 20x binoculars
Five people on 20x binoculars
By radar
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Data handling

To minimise any biases resulting from the data collection procedures, the data are fil-
tered in a number of ways, described in detail by Buckland and Anganuzzi (1988b) and
Anganuzzi and Buckland (1989). Here only a brief summary is presented; for more infor-

mation see the papers cited.

For analyses purposes, only the search effort carried out while the observer was also on
effort is included. In addition, because under Beaufort conditions greater than three the
detectability of dolphin schools is affected (Buckland and Anganuzzi 1988b), only effort

carried out in Beaufort up to three is considered.

In the early years, the vessels often turned towards the dolphin school before the observer
recorded the initial sighting angle and distance. As a result, a large proportion of sightings
had an angle of zero. This led to a disproportionate number of zero perpendicular dis-
tances, which caused a positive bias in the estimates of f(0) obtained from these data. To

minimise this bias, cruises with an average sighting angle smaller than 20° are discarded.

Although the observers occasionally make sightings, their search pattern is substantially
different from that of the crew. In addition, the observers are often busy recording the

data, so it is difficult to quantify their search effort. Therefore sightings made by the
observers are not included in the analyses.

Estimates of school size and species composition are based on the crew’s estimates obtained
during a set. If that information is not available, a correction factor for the observer’s esti-
mates (in comparison with the crew’s estimates) is obtained and applied to the observer’s
estimates. For sightings which did not lead to a set, the crew’s estimates are then used; if

those are not available, a correction factor is then applied to the observer’s estimates.

Interpolation based on the vessel’s positions is used to estimate sighting positions for which

the exact latitude and longitude of the sighting are not known.

157



