
A Framework for Constraint-Based Deployment and Autonomic
Management of Distributed Applications (Extended Abstract)

Alan Dearle, Graham N.C. Kirby and Andrew J. McCarthy
School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SS, Scotland

{al, graham, ajm}@dcs.st-and.ac.uk

Abstract

We propose a framework for the deployment and
subsequent autonomic management of component-
based distributed applications. An initial deployment
goal is specified using a declarative constraint lan-
guage, expressing constraints over aspects such as
component-host mappings and component intercon-
nection topology. A constraint solver is used to find a
configuration that satisfies the goal, and the configura-
tion is deployed automatically. The deployed applica-
tion is instrumented to allow subsequent autonomic
management. If, during execution, the manager detects
that the original goal is no longer being met, the sat-
isfy/deploy process can be repeated automatically in
order to generate a revised deployment that does meet
the goal.

We believe that the initial deployment of an appli-
cation and its subsequent evolution in the face of host
failures and other perturbations are separate but closely
related problems. Both are too complex in large appli-
cations to be handled by a human operator. We pro-
pose that both should be controlled automatically,
driven by a high-level configuration goal specified by
the administrator at the outset. We thus address spe-
cifically the first and third of Kephart & Chess’ issues
[1]: self-configuration and self-healing.

Our general approach is shown below. The applica-
tion administrator specifies a deployment goal in terms
of resources available and constraints over their de-
ployment. We propose a new domain-specific con-
straint language called Deladas (DEclarative LAn-
guage for Describing Autonomic Systems) for this
purpose. The resources include software components
and physical hosts on which these components may be
installed and executed. Constraints operate over as-
pects such as the mapping of components to hosts and
the interconnection topology between components.

The autonomic cycle is controlled by an engine,
which we call the Autonomic Deployment and Man-
agement Engine (ADME), that attempts to satisfy a
goal, specified by the administrator in the constraint
language. The engine includes a parser and constraint
solver. The result of the attempted goal satisfaction is a
set of zero or more solutions. Each solution is in the
form of a configuration, expressed as a Deployment
Description Document (DDD), which describes a par-
ticular mapping of components to hosts and intercon-
nection topology that satisfies the constraints.

If a configuration can be found, it is enacted by the
engine to produce a running deployment of the appli-
cation. From a DDD, the ADME generates a collection
of scripts which perform installation, instantiation and
wiring of the components. Once the scripts have exe-
cuted on the appropriate hosts, the application is fully
deployed in its initial configuration [2].

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

The autonomic aspect of this approach is that the
deployed application is instrumented with probes to
monitor its execution. Events generated by the probes
are sent to the ADME, which may decide that the de-
ployment no longer satisfies the original goal, for ex-
ample if a component or host fails. In this case the
ADME evolves the goal to take account of changed
resource availability—for example, removing failed
hosts and perhaps adding new hosts that may now be
available—and initiates the satisfy/enact cycle again.
This attempts to find a new solution of the constraints
that combines existing and new components, and to
enact this in an efficient manner. Assuming that such a
new configuration can be found and deployed, the sys-
tem has reacted automatically and appropriately to a
change in the application’s environment. The cycle
may continue indefinitely.

The nature of the probes required to monitor the
application depends on the constraints specified in the
goal. At the simplest level the constraints operate over
just the component/host topology, and for this, simple
probes are sufficient. Where more complex probes are
required, this can be deduced by ADME from the
specified constraints. For example, constraints can
operate over the latency or bandwidth of a channel, the
degree of replication of a component, or the mean
availability of a host. Each of these dynamic aspects
requires a specialised probe. Deladas may be extended
to incorporate new constraint types and probes.

This style of autonomic application evolution can
be achieved without human intervention. The frame-
work also accommodates the need for more wide-
ranging evolution. For example, in addition to changes
in the application’s environment, changes may occur in
the supported enterprise, requiring manual revision of
the deployment goal, including the constraints.

To illustrate the use of Deladas, we use an example
drawn from the peer-to-peer domain, in which clients
connect to routers. In the example code, the con-
straintset contains five constraint clauses. These
clauses operate over two types of component named
Router and Client. It is not necessary to specify the
concrete types of these components but it is possible to
infer that, in order to satisfy the constraints, the com-
ponent Router must have ports named rin, rout, cin
and cout. The constraints are written in first-order
logic and specify (in sequence) that:

• hosts run an instance of a router and/or a client
• each client connects to at least one router via out

and in ports and cin and cout ports respectively
• there are at most two clients for every router
• every router is connected to at least one other

router via their rin and rout ports
• routers are strongly connected

constraintset randc = constraintset {
 // 1 router or client per host

forall host h in deployment (
card(instancesof Router in h) = 1 or
card(instancesof Client in h) = 1)

 // every client connects to at
 // least 1 router
 forall Client c in deployment (

exists Router r in deployment (
 c.out connectsto r.cin
 c.in connectsto r.cout))
 // every router connects to at
 // most 2 clients
 forall Router r in deployment (

card(Client c connectedto r) <= 2)
 // every router connects to at
 // least 1 other router

forall Router r1 in deployment (
exists Router r2 in deployment (

 r1.rout connectsto r2.rin
 r1.rin connectsto r2.rout
 r1 != r2))
 // routers are reachable from each other

forall Router r1,r2 in deployment (
reachable(r1, r2))

}

In conclusion, this abstract has outlined a frame-
work to support the initial deployment and subsequent
autonomic evolution of distributed applications in the
face of perturbations such as host and link failure,
temporary bandwidth problems, etc. The knowledge
required for autonomic management is specified in the
form of a set of available hardware and software re-
sources and a set of constraints over their deployment.
We postulate that it is feasible to implement an auto-
nomic manager that will automatically evolve the de-
ployed application to maintain the constraints while it
is in operation. We are currently working on an im-
plementation to enable us to test this assertion. A full
version of this paper is available [3].

This work is supported by EPSRC Grants
GR/M78403, GR/R51872, GR/S44501 and by EC
Framework V IST-2001-32360.

References

[1] J. O. Kephart and D. M. Chess, “The Vision of Auto-
nomic Computing”, IEEE Computer, vol. 36 no. 1, pp.
41-50, 2003.

[2] A. Dearle, G. N. C. Kirby, A. McCarthy, and J. C. Diaz y
Carballo, “A Flexible and Secure Deployment Frame-
work for Distributed Applications”, Submitted To 2nd
International Working Conference on Component De-
ployment (CD 2004), 2004.

[3] A. Dearle, G. N. C. Kirby, and A. McCarthy, “A Frame-
work for Constraint-Based Deployment and Autonomic
Management of Distributed Applications”, Technical
Report CS/04/1, University of St Andrews, 2004.
http://www.dcs.st-and.ac.uk/
research/publications/DKM04a.php

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

