
A Generic Storage API

Graham N.C. Kirby, Evangelos Zirintsis, Alan Dearle & Ron Morrison

School of Computer Science

University of St Andrews

St Andrews, Fife KY16 9SS, Scotland

{graham, vangelis, al, ron}@dcs.st-and.ac.uk

Abstract

We present a generic API suitable for provision of highly

generic storage facilities that can be tailored to produce

various individually customised storage infrastructures.

The paper identifies a candidate set of minimal storage

system building blocks, which are sufficiently simple to

avoid encapsulating policy where it cannot be customised

by applications, and composable to build highly flexible

storage architectures. Four main generic components are

defined: the store, the namer, the caster and the

interpreter. It is hypothesised that these are sufficiently

general that they could act as building blocks for any

information storage and retrieval system. The essential

characteristics of each are defined by an interface, which

may be implemented by multiple implementing classes.

Keywords: generic storage abstractions

1 Introduction

It is increasingly recognised that the traditional approach

to software system building, in which fixed abstract

components or layers are encapsulated to encourage

software reuse, is overly restricting for many

applications. The problem is that such fixed software

boundaries require the early fixing of policy decisions,

which are thus necessarily made to suit the predicted

requirements of “typical applications”. The policies are

then hidden from the application, even though the

application may have vital information about which

policies are best suited to its needs.

There are various approaches to opening up such

restrictions in a controlled manner, so that where

appropriate an application may exert control on the

policies operated by the underlying software platform.

Here we assume that such a mechanism is available, and

focus on one particular area of functionality: that of

storage.

Previously we have been involved in building a number

of object stores—including Napier88 (Morrison, Connor,

Kirby, Munro, Atkinson, Cutts, Brown and Dearle, 1999),

CASPER (Vaughan, Schunke, Koch, Dearle, Marlin and

Barter, 1992), Flask (Munro, Connor, Morrison, Scheuerl

and Stemple, 1994) and Lumberjack (Hulse, Dearle and

Howells, 1999). Here we are interested in identifying

basic storage abstractions that are sufficiently simple and

generic to avoid encapsulating particular policies to any

significant degree. These abstractions could then be used

as building blocks in the construction of various

individually customised storage infrastructures. This

paper proposes an API embodying one possible set of

primitive storage abstractions.

1.1 Context

It is straightforward to identify a number of desirable

properties of storage systems:

 unbounded capacity

 zero latency

 zero cost

 total reliability

 location independence

 no unauthorised access

 provision of historical views

This set of properties is, of course, a Utopian dream that

is never realisable and can only be approximated. Thus

storage implementers are faced with a series of

technological challenges to meet the aspirations of users.

For example, unbounded capacity may be approximated

by utilising free space on the network, and zero latency

may be approximated by parallel access and caching.

This assumes, of course, that data and systems can be

organised appropriately to make use of available

resources without imposing undue complexity on the

user.

In this work we have taken a more limited view,

considering the following aspirations:

 Actors, whether users or individual processes,

should be able to bind to, update and manipulate

data and programs transparently with respect to

their respective locations. Thus a given program

should work anywhere (with the appropriate

infrastructure installed), regardless of its

physical location or that of the data accessed.

The program should not need to be aware of its

own physical location or that of the data

accessed.

 Similarly, programs should be expressed

independently of the storage and network

technology involved in their execution.

 Storage facilities should be structure-neutral:

they should not impose their own structure on

the information stored. Actors should be able to

impose multiple interpretations over

information, simultaneously and safely.

 Information should not be discarded; arbitrary

historical views should be supported, so that

actors may reconstruct information extant at any

previous time.

 Protection and security should not be enforced

by restricting access to particular information

based on user authentication. Rather, raw stored

information should be open to all; where

restrictions on its use are required this should be

achieved using cryptographic techniques.

Although it was clearly not feasible to meet these

aspirations completely, they served as a useful focus in

guiding exploration of the various possibilities. The

methodology followed was to design a small set of

orthogonal components, specified by well-defined

interfaces, which could form the building blocks for

various storage architectures.

The key advances of the research were:

 the identification of a candidate set of minimal

storage system building blocks, which are

sufficiently simple to avoid encapsulating policy

where it cannot be customised by applications,

and composable to build highly flexible storage

architectures

 insight into the nature of append-only storage

components, and the issues arising from their

application to common storage use-cases

2 Related Work

The compliant systems architecture approach is to

separate policy from mechanism wherever possible

(Morrison, Balasubramaniam, Greenwood, Kirby, Mayes,

Munro and Warboys, 2000). Each component’s

functionality is delivered by a set of mechanisms, and the

policy for using these mechanisms can be supplied by

components at conceptually higher levels. In the context

of the work described here, we wish to provide storage

facilities that are compliant to the needs of particular

applications. The storage mechanisms should be made

available to applications without forcing on them any

particular set of policies for their use.

The open implementation approach also aims to expose as

much policy decision as the applications require, but no

more. Techniques include the provision of reflective

middleware, allowing inspection and adaptation of the

middleware’s components (Duran-Limon and Blair,

2002), and meta-object protocols (Kiczales, Lamping,

Lopes, Maeda, Mendhekar and Murphy, 1997). Either of

these could be used to allow applications to select from a

range of storage facilities composed from the primitives

introduced here, or to define their own.

The basic storage abstraction proposed here offers

append-only storage without update or deletion. This is

motivated by work on the log-structured object store

known as Lumberjack (Hulse, Dearle and Howells,

1999), which is based on the store technology employed

within the persistent operating system Grasshopper

(Rosenberg, Dearle, Hulse, Lindström and Norris, 1996).

A unique contribution of the Lumberjack store is its non-

destructive update of both data and address maps, which

allows historical views of the store to be provided to

users. Furthermore, the store allows multiple logical logs

to be superimposed on a single physical log to facilitate

concurrent update.

A number of projects address the provision of storage

facilities using peer-to-peer overlay networks. These

include OceanStore (Kubiatowicz, Bindel, Chen,

Czerwinski, Eaton, Geels, Gummadi, Rhea,

Weatherspoon, Weimer, Wells and Zhao, 2000),

Mnemosyne (Hand and Roscoe, 2002), PAST (Rowstron

and Druschel, 2001b), Pastry (Rowstron and Druschel,

2001a), FreeHaven (Dingledine, Freedman and Molnar,

2001) and Freenet (Clarke, Sandberg, Wiley and Hong,

2000).

Recently efforts have been made to identify a common

API to facilitate comparison of such overlay networks

(Dabek, Zhao, Druschel, Kubiatowicz and Stoica, 2003).

The motivation is similar to that of the work described

here, although their design differs in supporting deletion

as a primitive operation.

3 Proposed Storage API

3.1 Generic Components

Four main generic components are proposed: the store,

the namer, the caster and the interpreter. It is

hypothesised that these are sufficiently general that they

could act as building blocks for any information storage

and retrieval system. The essential characteristics of each

are defined by an interface, which may be implemented

by multiple implementing classes.

3.1.1 Stores

A store component allows arbitrary bit-strings to be

inserted and later retrieved. No assumptions are made

about the format or length of the bit-strings. So that a bit-

string may be retrieved, a key is returned by the store on

its insertion. A key is itself an arbitrary bit-string. All

stores implement the following interface:

interface Store {

 put: BitString -> Key

 get: Key -> BitString // may fail

 getStoreID: -> BitString

}

Fig. 1: Store Interface

The put operation inserts a given bit-string into the store,

and returns a key. If that key is later presented via the get

operation, the original bit-string is returned. The get

operation fails if presented with an unknown key. There

are no update or deletion operations, thus a store may be

viewed as a monotonically increasing set of key—bit-

string bindings. This property was deliberately chosen to

make stores suitable as the fundamental building blocks

for a storage system with a full historical archive. Where

the effects of update and deletion are required by an

application, these may be obtained using namers as

described later.

The policy for key generation is under control of

individual stores. Possible policies include: creating keys

containing random bit sequences, with sufficient length

ensuring low enough probability of accidental clashes;

creating keys containing numbers within an increasing

sequence; and creating keys by hashing on the content of

the bit-strings being stored. Again, with suitable lengths

the probability of accidental clashes can be reduced to

negligible levels. Using a hashing scheme would open the

possibility of information being shared between stores,

allowing a data item to be retrieved from a different store

from that in which it was originally inserted, since the

scheme would ensure that all stores involved mapped the

same key to the same bit-string. Thus a store need not

necessarily be a container for information, so long as it

allows insertion and retrieval through the standard

interface.

Fig. 2 illustrates the use of the put and get operations to

add a bit-string and later retrieve it.

Fig. 2: Main Store Operations

The getStoreID operation returns a bit-string that is, with

high probability, unique to that store instance. This

provides a mechanism for encoding references to other

stores within a given store. One application for this is the

proxy store implementation described later.

A desire for simplicity drove the decision to have a store

generate the key for a given bit-string, rather than let the

key be supplied by the caller. It could be argued,

however, that this departs from the other main motivating

principle, that of avoiding the encapsulation of policy, in

that the caller cannot control the key generation policy.

This design also results in additional complexity when it

comes to storing cyclic data structures. For these reasons

it might be preferable to add a second variant of the put

operation with an explicit key:

 put: BitString, Key

3.1.2 Casters

A caster component translates information for storage

into a bit-string representation suitable for insertion into a

store, and vice-versa. A particular caster may be generic,

thus applicable to a range of entities, or specific to a

particular type of entity. For example, a generic caster has

been defined for programming language objects, and

specific casters for MS Word documents and XML

documents. All casters implement the following interface,

where t is the type over which the caster operates:

interface Caster[t] {

 reify: t -> BitString

 reflect: BitString -> t // may fail

}

Fig. 3: Caster Interface

Here it is assumed that t may encompass a range of

subtypes. The reify operation translates a given entity into

a bit-string representation. The reflect operation performs

the inverse, taking a bit-string representation and

returning the represented entity. This will fail if presented

either with an intrinsically invalid representation, or with

a representation for an entity that is not of type t. If

appropriate, a caster may use cryptographic techniques to

verify that a presented bit-string has not been tampered

with, and that it did originate from a reified entity of the

correct type.

3.1.3 Interpreters

An interpreter maps one bit-string to another, and may

encompass arbitrary computation. Typical uses are for

encryption and compression. All interpreters implement

the following interface:

interface Interpreter {

 interpret: BitString -> BitString

}

Fig. 4: Interpreter Interface

3.1.4 Namers

The components described above are sufficient to allow

information of any kind to be stored and retrieved. For

practical use, however, two further abilities are required:

 to support update and deletion operations, even

though the underlying storage components never

discard information;

 to be able to access stored information through

symbolic names as well as arbitrary system-

specified keys.

These are provided by a namer component, which

implements a modifiable many-to-many mapping

between symbolic names and keys. A name may be

bound to multiple keys, allowing a set to be retrieved in a

single operation; a key may be bound to multiple names,

giving aliasing. Mappings may be updated so that a given

name may refer to various keys over time. All namers

implement the following interface:

interface Namer {

 bind: Name, Key

 unbind: Name, Key

 lookup: Name -> set[Key]

}

Fig. 5: Namer Interface

The bind and unbind operations establish and remove a

binding between the given name and key respectively.

The lookup operation returns all the keys currently bound

to the given name; this may be an empty set.

Fig. 6 illustrates the use of the bind and lookup operations

to add a name to key binding, and later to retrieve the set

of keys currently bound to that name.

Fig. 6: Main Namer Operations

An update operation may thus be provided with respect to

symbolic names: a name n may be initially bound to a

key k1 using a particular namer; when presented to an

appropriate store k1 allows a data item d1 to be retrieved.

The n-k1 binding may then be removed from the namer

and a new binding between n and a key k2 established.

The key k2 allows the retrieval of a different data item d2

from the store. Thus the overall effect is an update of the

data item corresponding to the name n, even though the

initial data item d1 is never discarded from the store.

3.2 Implementation

Various implementations of the generic components were

developed, and a number of implementation dimensions

identified.

3.2.1 Stores

Two styles of store component were implemented. A

local store is confined to a single address space on one

host machine, and holds its data on that node. A proxy

store is able to communicate with other stores, both local

and remote, and to forward insertion and retrieval A local

store may be transient, with its data held solely in

memory, or it may have the ability to make its data

persistent. One persistent variant appends all inserted bit-

strings to a single file, while another creates a new file for

each new bit-string, with the file name corresponding to

the key allocated to that data item.

A proxy store maintains a set of references to other stores

that may be contacted. To enable this to be manipulated

the store provides the operations addTarget and

removeTarget. The former adds a new store to the set;

this may be specified as a direct reference to another store

in the same address space, or as a remote reference to a

store on another node, in the form of a URL or a unique

identifier. For both local stores and proxy stores it is

possible to specify whether a store allows itself to be

contacted by other proxy stores. Fig 7 illustrates a proxy

store that is connected to two other remote stores. The

proxy store functionality could also be used to construct

richer topologies such as peer-to-peer networks.

Fig. 7: Linked Proxy Stores

To address the bootstrap problem—how does an actor

obtain access to an existing store at the start of

execution—a static operation getRootStore returns a

personal store specific to that actor. This root store is

persistent in that it organises the storage of its data on

non-transient storage. It may itself be either a local store

or a proxy store.

3.2.2 Casters

Various caster components were implemented, including

one specifically for XML documents, a generic caster for

Java objects, and a caster for store and namer

components. The store caster enables a store instance to

be reified as a bit-string and stored within another store,

thus the reify-store sequence of operations may be

applied recursively to stores themselves. The store caster

operates by reifying a store’s contents to a single bit-

string in XML form.

3.2.3 Interpreters

Simple interpreter components were implemented,

providing encryption and compression.

3.2.4 Namers

As with stores, a namer component may be transient, in

which case it may be saved by reifying it and storing the

resulting bit-string in a store, or persistent. In the latter

case the namer organises the recording of its bindings on

non-transient file storage.

It is also necessary to provide access to a root namer for

each actor, obtained via a static operation in the same

way as for root stores.

3.3 Examples of Use

In order to evaluate the applicability of the generic

components in constructing various storage architectures,

a number of storage use cases were identified,

representative of common storage paradigms. The project

report (Zirintsis, Kirby, Dearle and Morrison, 2003)

contains a full description; a single example is given here

for illustrative purposes, showing how the components

may be used to store and retrieve a programming

language object. The code fragment in Fig. 8 shows an

object being reified and inserted into a store.

// Create an instance of class Person

Person graham =

 new Person("Graham", 37);

// Retrieve the root store

Store rootStore = XBase.getRootStore();

// Create a Caster for persons

PersonCaster personCaster =

 new PersonCaster();

// Flatten the person into a bit-string

BitString personRep =

 personCaster.reify(graham);

// Put the representation in root store

Key grahamKey =

 rootStore.put(personRep);

Fig. 8: Inserting Data into a Store

The code fragment in Fig. 9 shows the object being

retrieved from a different context:

// Retrieve the root store

Store rootStore = XBase.getRootStore();

// Retrieve the representation of the

person using the key

BitString grahamRep =

 rootStore.get(grahamKey);

// Create a Caster for persons

PersonCaster personCaster =

 new PersonCaster();

// Recreate the object

Person reflectedGraham =

 personCaster.reflect(grahamRep);

Fig. 9: Retrieving Data from a Store

A caster specific to XML documents was developed. In

some senses this is not necessary, since a document’s

textual representation can already be viewed as a bit-

string. However, it would not be particularly useful to

provide a storage system that simply stored each XML

document as a single bit-string in its own file, and thus a

scheme to break down documents into multiple bit-strings

was implemented.

The XML caster allows the user to determine the

granularity of the fragments into which a document is

split. At one extreme of the spectrum, a single fragment

can contain the entire document, while at the other a

separate fragment can be generated for each XML tag.

Different points on this spectrum exhibit different

tradeoffs with respect to storage space required, overhead

in scanning the document, accessing particular regions

within it, etc.

Various notations for expressing this granularity were

experimented with. The most flexible allows the user to

specify a simplified XML schema to which the document

conforms; the amount of detail given in the schema

determines the fragmentation granularity, and allows

control over which sub-parts of the document are reified

together within the same bit-string. A simple graphical

tool was provided to ease the task of creating this schema,

making it relatively straightforward to specify a simple

fragmentation pattern: the user simply collapses a sub-

tree within the schema in order to specify that

corresponding sub-parts in the document should be

reified together. This is illustrated in Fig. 10.

Fig. 10: Specifying Fragment Granularity

Other issues include the format of the individual

fragments—it was chosen to make these well-formed

XML documents in their own right—and the means of

representing references between fragments. Inter-

fragment references can be represented using keys, where

one fragment contains the key corresponding to another

fragment, which may be retrieved from an appropriate

store. This is simple, but precludes any later update of the

document since key-data bindings are fixed. For more

flexibility symbolic names may be used, allowing for

subsequent modification of the structure. In both cases

there is a requirement for some other mechanism to

establish which store and/or namer to use. Yet another

approach is to make the references fully self-describing,

by including some denotation of the appropriate store

and/or namer within the reference itself—at the cost of

making all references significantly larger.

A further problem with using keys to represent references

is that keys are generated within stores rather than

externally, so it is not possible to form a reference to a

fragment until after that fragment has been inserted into a

store and its key obtained. This is not insurmountable for

XML, given that the fragment graph is always acyclic, so

long as the caster creates the fragments in the correct

order. It would be a more significant problem for

potentially cyclic structures, as would arise if this

approach were to be applied to storage of complete object

graphs. In this case, either names would be used to

represent references, or, if available, the variant put

operation described in section 3.1.1 could be used with

prior generated keys.

4 Further Work

The key advances of this research, as identified earlier,

are: the identification of a candidate set of minimal

storage system building blocks, and insight into the

nature of append-only storage components. Although the

tangible results—interface definitions and component

implementations—may appear relatively straightforward,

these were only arrived at after a prolonged design

process that explored a wide range of possibilities.

4.1 Autonomic Storage

The research is being continued in a new project “Secure

Location-Independent Autonomic Storage Architectures”.

This will build on the work described here by further

developing the idea of a distributed log-structured (i.e.

append-only) storage architecture, in which information

may be stored and retrieved transparently with respect to

location. The autonomic management aspect (IBM, 2002)

will attempt to address the complexity arising from both

changing patterns of usage and the various technological

opportunities available to the implementer. Infrastructure

changes are required to intercept new technologies as

they become available. User behaviour changes such as

mobility, e.g. working more at home than at work, and

software restructuring, e.g. using new or different

software, all require complex restructuring of the storage

software. User patterns are also influenced by diurnal

cycles worldwide; reacting to these patterns efficiently

will be essential for high availability. On top of all this,

the infrastructure will have to deal with hardware failures.

The project will attempt to relieve the store implementer

of the complex tasks of reasoning about computations and

resources, allocating, replicating, and moving

computations and data to optimise performance, resource

usage, and fault-tolerance to meet the desired intrinsic

properties. The infrastructure should approximate the

Utopian set of ideal characteristics: unbounded capacity;

zero latency; zero cost; complete reliability; location

independence; a simple interface for users; complete

security; and provision of a complete historical archive.

Our approach to engineering a useful approximation

involves designing a write-once log-structured storage

layer operating above a P2P overlay network. Content-

based addressing can be used to achieve location-

independent access to data; replication of data “in the

right place, at the right time” can be used to achieve

reliability and low latency.

Our vision is one of an autonomic storage architecture

that presents a simple interface abstracting over all

implementation technologies to approximate the user’s

desired properties which are extracted automatically from

observed usage patterns. This turnkey solution would

plug into the user’s chosen operating systems and present

a simple view of the store regardless of user location. The

aim is to design, implement and evaluate a prototype

system of this nature. To achieve this aim we have

identified 3 objectives:

 to design a secure location-independent

autonomic storage architecture, specified in

terms of open interfaces

 to design and implement a corresponding set of

plug-compatible components that provide

autonomic storage

 to evaluate the architecture and the prototype

implementation by deploying it and observing its

evolving behaviour under varying loads and

usage patterns

Such an architecture is highly dynamic: data flows around

the system in response to: changes in users’ location and

behaviour; changes in the access patterns of processes;

changes in the physical resources allocated to the system;

or changes in the topology of the physical infrastructure.

It is essential for the underlying policies to evolve in

response to such changes, but the complexity is such that

it is infeasible for this to be controlled by human users or

administrators. The system must therefore be autonomic,

managing such changes automatically.

4.2 Other Projects

The research is also feeding directly into a number of

other ongoing projects. The Cingal project (Dearle,

Connor, Carballo and Neely, 2003), a joint project

between St Andrews University and Strathclyde

University, is developing thin server technology to allow

code and data to be pushed safely to appropriate locations

in a global network. The work described here is

influencing the design of storage facilities incorporated

into thin servers.

The GLOSS project (Dearle, Morrison, Kirby, Nixon,

Connor, Dunlop, Coutaz and Clarke, 2000) seeks to

develop a distributed event-based infrastructure to

support the deployment of pervasive contextual services

on a global scale. A crucial aspect of this is the storage of

events and other contextual information on widely

distributed nodes, to which the current research will be

highly relevant (Dearle, Kirby, Morrison, McCarthy,

Mullen, Yang, Connor, Welen and Wilson, 2003) (Kirby,

Dearle, Morrison, Dunlop, Connor and Nixon, 2003).

Finally, in ArchWare (Morrison, Kirby and

Balasubramaniam, 2001), a project on evolvable software

architectures, this research is contributing to thinking on

open, software systems that are susceptible to evolution.

5 Conclusions

This paper has proposed a simple and generic storage

API, which could be exposed directly to applications that

have need to exert fine control over storage

implementation policies. The initial motivation was

flexibility; further experimentation is required to

investigate whether the API could be implemented so as

to deliver acceptable performance and scalability.

One of the most interesting research questions opened up

by this work is the viability of pervasive global storage,

accessible from anywhere, from which no information is

ever discarded. Intuitively this currently seems

unachievable, but continuing research coupled with

further advances in storage hardware technology may

well allow this ideal to be closely approximated.

6 Acknowledgements

This work was supported by EPSRC grant GR/R45154

“Bulk Storage of XML Documents”. Dharini

Balasubramaniam and Aled Sage also contributed to the

work. Further research in this area is being supported by

EPSRC grant GR/S44501 “Secure Location-Independent

Autonomic Storage Architectures”.

7 References

Clarke, I., Sandberg, O., Wiley, B. and Hong, T. W.

(2000): Freenet: A Distributed Anonymous

Information Storage and Retrieval System In

Designing Privacy Enhancing Technologies:

Lecture Notes in Computer Science 2009, Vol.

2009 (Ed, Federrath, H.) Springer, pp. 46-66.

Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J. and

Stoica, I. (2003): Towards a Common API for

Structured Peer-to-Peer Overlays In 2nd

International Workshop on Peer-to-Peer

Systems (IPTPS '03) Berkeley, CA, USA.

Dearle, A., Connor, R. C. H., Carballo, J. and Neely, S.

(2003): Computation in Geographically

Appropriate Locations (Cingal), EPSRC.

Dearle, A., Kirby, G. N. C., Morrison, R., McCarthy, A.,

Mullen, K., Yang, Y., Connor, R. C. H., Welen,

P. and Wilson, A. (2003): Architectural Support

for Global Smart Spaces In Lecture Notes in

Computer Science 2574 (Eds, Chen, M.-S.,

Chrysanthis, P. K., Sloman, M. and Zaslavsky,

A. B.) Springer, pp. 153-164.

Dearle, A., Morrison, R., Kirby, G. N. C., Nixon, P.,

Connor, R. C. H., Dunlop, M., Coutaz, J. and

Clarke, S. (2000): GLOSS: Global Smart Spaces

EC 5th Framework Programme IST-2000-

26070.

Dingledine, R., Freedman, M. J. and Molnar, D. (2001):

The Free Haven Project: Distributed

Anonymous Storage Service In Lecture Notes in

Computer Science, Vol. 2009.

Duran-Limon, H. A. and Blair, G. S. (2002):

Reconfiguration of Resources in Middleware In

7th IEEE International Workshop on Object-

Oriented Real-Time Dependable Systems.

Hand, S. and Roscoe, T. (2002): Mnemosyne: Peer-to-

Peer Steganographic Storage In 1st International

Workshop on Peer-to-Peer Systems.

Hulse, D., Dearle, A. and Howells, A. (1999):

Lumberjack: A Log-Structured Persistent Object

Store In Advances in Persistent Object Systems

(Eds, Morrison, R., Jordan, M. and Atkinson, M.

P.) Morgan Kaufmann, San Francisco, pp. 187-

198.

IBM (2002): Autonomic Computing: IBM's Perspective

on the State of Information Technology, IBM.

Kiczales, G., Lamping, J., Lopes, C. V., Maeda, C.,

Mendhekar, A. and Murphy, G. C. (1997): Open

Implementation Design Guidelines In 19th

International Conference on Software

Engineering Boston, Massachusetts, USA.

Kirby, G. N. C., Dearle, A., Morrison, R., Dunlop, M.,

Connor, R. C. H. and Nixon, P. (2003): Active

Architecture for Pervasive Contextual Services

In International Workshop on Middleware for

Pervasive and Ad-hoc Computing (MPAC 2003),

ACM/IFIP/USENIX International Middleware

Conference (Middleware 2003) (Eds, Ururahy,

C., Sztajnberg, A. and Cerqueira, R.) Pontifícia

Universidade Católica do Rio de Janeiro, Rio de

Janeiro, Brazil, pp. 21-28.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S.,

Eaton, P., Geels, D., Gummadi, R., Rhea, S.,

Weatherspoon, H., Weimer, W., Wells, C. and

Zhao, B. (2000): OceanStore: An Architecture

for Global-Scale Persistent Storage In 9th

International Conference on Architectural

Support for Programming Languages and

Operating Systems (ASPLOS 2000).

Morrison, R., Balasubramaniam, D., Greenwood, R. M.,

Kirby, G. N. C., Mayes, K., Munro, D. S. and

Warboys, B. C. (2000): A Compliant Persistent

Architecture, Software - Practice and

Experience, Special Issue on Persistent Object

Systems, 30, 363-386.

Morrison, R., Connor, R. C. H., Kirby, G. N. C., Munro,

D. S., Atkinson, M. P., Cutts, Q. I., Brown, A. L.

and Dearle, A. (1999): The Napier88 Persistent

Programming Language and Environment In

Fully Integrated Data Environments (Eds,

Atkinson, M. P. and Welland, R.) Springer, pp.

98-154.

Morrison, R., Kirby, G. N. C. and Balasubramaniam, D.

(2001): ARCHWARE: ARCHitecting Evolvable

softWARE EC 5th Framework Programme IST-

2001-32360.

Munro, D. S., Connor, R. C. H., Morrison, R., Scheuerl,

S. and Stemple, D. (1994): Concurrent Shadow

Paging in the Flask Architecture In Persistent

Object Systems (Eds, Atkinson, M. P., Maier, D.

and Benzaken, V.) Springer-Verlag, pp. 16-42.

Rosenberg, J., Dearle, A., Hulse, D., Lindström, A. and

Norris, S. (1996): Operating System Support for

Persistent and Recoverable Computations,

Communications of the ACM, 39, 62-69.

Rowstron, A. I. T. and Druschel, P. (2001a): Pastry:

Scalable, Decentralized Object Location, and

Routing for Large-Scale Peer-to-Peer Systems In

Lecture Notes in Computer Science 2218 (Ed,

Guerraoui, R.) Springer, pp. 329-350.

Rowstron, A. I. T. and Druschel, P. (2001b): Storage

Management and Caching in PAST, A Large-

scale, Persistent Peer-to-peer Storage Utility In

Symposium on Operating Systems Principles,

pp. 188-201.

Vaughan, F., Schunke, T., Koch, B., Dearle, A., Marlin,

C. and Barter, C. (1992): Casper: A Cached

Architecture Supporting Persistence, Computing

Systems, 5, 337-364.

Zirintsis, E., Kirby, G. N. C., Dearle, A. and Morrison, R.

(2003): Report on the XBase Project, University

of St Andrews CS/03/1.

