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Abstract 

We present a generic API suitable for provision of highly 

generic storage facilities that can be tailored to produce 

various individually customised storage infrastructures. 

The paper identifies a candidate set of minimal storage 

system building blocks, which are sufficiently simple to 

avoid encapsulating policy where it cannot be customised 

by applications, and composable to build highly flexible 

storage architectures. Four main generic components are 

defined: the store, the namer, the caster and the 

interpreter. It is hypothesised that these are sufficiently 

general that they could act as building blocks for any 

information storage and retrieval system. The essential 

characteristics of each are defined by an interface, which 

may be implemented by multiple implementing classes. 

Keywords:  generic storage abstractions 

1 Introduction 

It is increasingly recognised that the traditional approach 

to software system building, in which fixed abstract 

components or layers are encapsulated to encourage 

software reuse, is overly restricting for many 

applications. The problem is that such fixed software 

boundaries require the early fixing of policy decisions, 

which are thus necessarily made to suit the predicted 

requirements of “typical applications”. The policies are 

then hidden from the application, even though the 

application may have vital information about which 

policies are best suited to its needs. 

There are various approaches to opening up such 

restrictions in a controlled manner, so that where 

appropriate an application may exert control on the 

policies operated by the underlying software platform. 

Here we assume that such a mechanism is available, and 

focus on one particular area of functionality: that of 

storage. 

Previously we have been involved in building a number 

of object stores—including Napier88 (Morrison, Connor, 

Kirby, Munro, Atkinson, Cutts, Brown and Dearle, 1999), 

CASPER (Vaughan, Schunke, Koch, Dearle, Marlin and 

Barter, 1992), Flask (Munro, Connor, Morrison, Scheuerl 

and Stemple, 1994) and Lumberjack (Hulse, Dearle and 

Howells, 1999). Here we are interested in identifying 

basic storage abstractions that are sufficiently simple and 

generic to avoid encapsulating particular policies to any 

significant degree. These abstractions could then be used 

as building blocks in the construction of various 

individually customised storage infrastructures. This 

paper proposes an API embodying one possible set of 

primitive storage abstractions. 

1.1 Context 

It is straightforward to identify a number of desirable 

properties of storage systems: 

 unbounded capacity 

 zero latency 

 zero cost 

 total reliability 

 location independence 

 no unauthorised access 

 provision of historical views 

This set of properties is, of course, a Utopian dream that 

is never realisable and can only be approximated. Thus 

storage implementers are faced with a series of 

technological challenges to meet the aspirations of users. 

For example, unbounded capacity may be approximated 

by utilising free space on the network, and zero latency 

may be approximated by parallel access and caching. 

This assumes, of course, that data and systems can be 

organised appropriately to make use of available 

resources without imposing undue complexity on the 

user. 

In this work we have taken a more limited view, 

considering the following aspirations: 

 Actors, whether users or individual processes, 

should be able to bind to, update and manipulate 

data and programs transparently with respect to 

their respective locations. Thus a given program 

should work anywhere (with the appropriate 

infrastructure installed), regardless of its 

physical location or that of the data accessed. 

The program should not need to be aware of its 

own physical location or that of the data 

accessed. 

 Similarly, programs should be expressed 

independently of the storage and network 

technology involved in their execution. 

 Storage facilities should be structure-neutral: 

they should not impose their own structure on 

the information stored. Actors should be able to 

impose multiple interpretations over 

information, simultaneously and safely. 

 Information should not be discarded; arbitrary 

historical views should be supported, so that 

actors may reconstruct information extant at any 

previous time. 

 Protection and security should not be enforced 

by restricting access to particular information 



based on user authentication. Rather, raw stored 

information should be open to all; where 

restrictions on its use are required this should be 

achieved using cryptographic techniques. 

Although it was clearly not feasible to meet these 

aspirations completely, they served as a useful focus in 

guiding exploration of the various possibilities. The 

methodology followed was to design a small set of 

orthogonal components, specified by well-defined 

interfaces, which could form the building blocks for 

various storage architectures. 

The key advances of the research were: 

 the identification of a candidate set of minimal 

storage system building blocks, which are 

sufficiently simple to avoid encapsulating policy 

where it cannot be customised by applications, 

and composable to build highly flexible storage 

architectures 

 insight into the nature of append-only storage 

components, and the issues arising from their 

application to common storage use-cases 

2 Related Work 

The compliant systems architecture approach is to 

separate policy from mechanism wherever possible 

(Morrison, Balasubramaniam, Greenwood, Kirby, Mayes, 

Munro and Warboys, 2000). Each component’s 

functionality is delivered by a set of mechanisms, and the 

policy for using these mechanisms can be supplied by 

components at conceptually higher levels. In the context 

of the work described here, we wish to provide storage 

facilities that are compliant to the needs of particular 

applications. The storage mechanisms should be made 

available to applications without forcing on them any 

particular set of policies for their use. 

The open implementation approach also aims to expose as 

much policy decision as the applications require, but no 

more. Techniques include the provision of reflective 

middleware, allowing inspection and adaptation of the 

middleware’s components (Duran-Limon and Blair, 

2002), and meta-object protocols (Kiczales, Lamping, 

Lopes, Maeda, Mendhekar and Murphy, 1997). Either of 

these could be used to allow applications to select from a 

range of storage facilities composed from the primitives 

introduced here, or to define their own. 

The basic storage abstraction proposed here offers 

append-only storage without update or deletion. This is 

motivated by work on the log-structured object store 

known as Lumberjack (Hulse, Dearle and Howells, 

1999), which is based on the store technology employed 

within the persistent operating system Grasshopper 

(Rosenberg, Dearle, Hulse, Lindström and Norris, 1996). 

A unique contribution of the Lumberjack store is its non-

destructive update of both data and address maps, which 

allows historical views of the store to be provided to 

users. Furthermore, the store allows multiple logical logs 

to be superimposed on a single physical log to facilitate 

concurrent update. 

A number of projects address the provision of storage 

facilities using peer-to-peer overlay networks. These 

include OceanStore (Kubiatowicz, Bindel, Chen, 

Czerwinski, Eaton, Geels, Gummadi, Rhea, 

Weatherspoon, Weimer, Wells and Zhao, 2000), 

Mnemosyne (Hand and Roscoe, 2002), PAST (Rowstron 

and Druschel, 2001b), Pastry (Rowstron and Druschel, 

2001a), FreeHaven (Dingledine, Freedman and Molnar, 

2001) and Freenet (Clarke, Sandberg, Wiley and Hong, 

2000). 

Recently efforts have been made to identify a common 

API to facilitate comparison of such overlay networks 

(Dabek, Zhao, Druschel, Kubiatowicz and Stoica, 2003). 

The motivation is similar to that of the work described 

here, although their design differs in supporting deletion 

as a primitive operation. 

3 Proposed Storage API 

3.1 Generic Components 

Four main generic components are proposed: the store, 

the namer, the caster and the interpreter. It is 

hypothesised that these are sufficiently general that they 

could act as building blocks for any information storage 

and retrieval system. The essential characteristics of each 

are defined by an interface, which may be implemented 

by multiple implementing classes. 

3.1.1 Stores 

A store component allows arbitrary bit-strings to be 

inserted and later retrieved. No assumptions are made 

about the format or length of the bit-strings. So that a bit-

string may be retrieved, a key is returned by the store on 

its insertion. A key is itself an arbitrary bit-string. All 

stores implement the following interface: 

 

interface Store { 

 put:    BitString -> Key 

 get:    Key -> BitString // may fail 

 getStoreID: -> BitString 

} 

Fig. 1: Store Interface 

The put operation inserts a given bit-string into the store, 

and returns a key. If that key is later presented via the get 

operation, the original bit-string is returned. The get 

operation fails if presented with an unknown key. There 

are no update or deletion operations, thus a store may be 

viewed as a monotonically increasing set of key—bit-

string bindings. This property was deliberately chosen to 

make stores suitable as the fundamental building blocks 

for a storage system with a full historical archive. Where 

the effects of update and deletion are required by an 

application, these may be obtained using namers as 

described later. 

The policy for key generation is under control of 

individual stores. Possible policies include: creating keys 

containing random bit sequences, with sufficient length 

ensuring low enough probability of accidental clashes; 

creating keys containing numbers within an increasing 

sequence; and creating keys by hashing on the content of 

the bit-strings being stored. Again, with suitable lengths 

the probability of accidental clashes can be reduced to 

negligible levels. Using a hashing scheme would open the 



possibility of information being shared between stores, 

allowing a data item to be retrieved from a different store 

from that in which it was originally inserted, since the 

scheme would ensure that all stores involved mapped the 

same key to the same bit-string. Thus a store need not 

necessarily be a container for information, so long as it 

allows insertion and retrieval through the standard 

interface. 

Fig. 2 illustrates the use of the put and get operations to 

add a bit-string and later retrieve it. 

 

Fig. 2: Main Store Operations 

The getStoreID operation returns a bit-string that is, with 

high probability, unique to that store instance. This 

provides a mechanism for encoding references to other 

stores within a given store. One application for this is the 

proxy store implementation described later. 

A desire for simplicity drove the decision to have a store 

generate the key for a given bit-string, rather than let the 

key be supplied by the caller. It could be argued, 

however, that this departs from the other main motivating 

principle, that of avoiding the encapsulation of policy, in 

that the caller cannot control the key generation policy. 

This design also results in additional complexity when it 

comes to storing cyclic data structures. For these reasons 

it might be preferable to add a second variant of the put 

operation with an explicit key: 

 

 put:    BitString, Key 

3.1.2 Casters 

A caster component translates information for storage 

into a bit-string representation suitable for insertion into a 

store, and vice-versa. A particular caster may be generic, 

thus applicable to a range of entities, or specific to a 

particular type of entity. For example, a generic caster has 

been defined for programming language objects, and 

specific casters for MS Word documents and XML 

documents. All casters implement the following interface, 

where t is the type over which the caster operates: 

interface Caster[t] { 

 reify: t -> BitString 

 reflect: BitString -> t // may fail 

} 

Fig. 3: Caster Interface 

Here it is assumed that t may encompass a range of 

subtypes. The reify operation translates a given entity into 

a bit-string representation. The reflect operation performs 

the inverse, taking a bit-string representation and 

returning the represented entity. This will fail if presented 

either with an intrinsically invalid representation, or with 

a representation for an entity that is not of type t. If 

appropriate, a caster may use cryptographic techniques to 

verify that a presented bit-string has not been tampered 

with, and that it did originate from a reified entity of the 

correct type. 

3.1.3 Interpreters 

An interpreter maps one bit-string to another, and may 

encompass arbitrary computation. Typical uses are for 

encryption and compression. All interpreters implement 

the following interface: 

interface Interpreter { 

 interpret: BitString -> BitString 

} 

Fig. 4: Interpreter Interface 

3.1.4 Namers 

The components described above are sufficient to allow 

information of any kind to be stored and retrieved. For 

practical use, however, two further abilities are required: 

 to support update and deletion operations, even 

though the underlying storage components never 

discard information; 

 to be able to access stored information through 

symbolic names as well as arbitrary system-

specified keys. 

These are provided by a namer component, which 

implements a modifiable many-to-many mapping 

between symbolic names and keys. A name may be 

bound to multiple keys, allowing a set to be retrieved in a 

single operation; a key may be bound to multiple names, 

giving aliasing. Mappings may be updated so that a given 

name may refer to various keys over time. All namers 

implement the following interface: 

interface Namer { 

 bind:   Name, Key 

 unbind: Name, Key 

 lookup: Name -> set[Key] 

} 

Fig. 5: Namer Interface 

The bind and unbind operations establish and remove a 

binding between the given name and key respectively. 

The lookup operation returns all the keys currently bound 

to the given name; this may be an empty set. 

Fig. 6 illustrates the use of the bind and lookup operations 

to add a name to key binding, and later to retrieve the set 

of keys currently bound to that name. 



 

Fig. 6: Main Namer Operations 

An update operation may thus be provided with respect to 

symbolic names: a name n may be initially bound to a 

key k1 using a particular namer; when presented to an 

appropriate store k1 allows a data item d1 to be retrieved. 

The n-k1 binding may then be removed from the namer 

and a new binding between n and a key k2 established. 

The key k2 allows the retrieval of a different data item d2 

from the store. Thus the overall effect is an update of the 

data item corresponding to the name n, even though the 

initial data item d1 is never discarded from the store. 

3.2 Implementation 

Various implementations of the generic components were 

developed, and a number of implementation dimensions 

identified. 

3.2.1 Stores 

Two styles of store component were implemented. A 

local store is confined to a single address space on one 

host machine, and holds its data on that node. A proxy 

store is able to communicate with other stores, both local 

and remote, and to forward insertion and retrieval A local 

store may be transient, with its data held solely in 

memory, or it may have the ability to make its data 

persistent. One persistent variant appends all inserted bit-

strings to a single file, while another creates a new file for 

each new bit-string, with the file name corresponding to 

the key allocated to that data item. 

A proxy store maintains a set of references to other stores 

that may be contacted. To enable this to be manipulated 

the store provides the operations addTarget and 

removeTarget. The former adds a new store to the set; 

this may be specified as a direct reference to another store 

in the same address space, or as a remote reference to a 

store on another node, in the form of a URL or a unique 

identifier. For both local stores and proxy stores it is 

possible to specify whether a store allows itself to be 

contacted by other proxy stores. Fig 7 illustrates a proxy 

store that is connected to two other remote stores. The 

proxy store functionality could also be used to construct 

richer topologies such as peer-to-peer networks. 

 

Fig. 7: Linked Proxy Stores 

To address the bootstrap problem—how does an actor 

obtain access to an existing store at the start of 

execution—a static operation getRootStore returns a 

personal store specific to that actor. This root store is 

persistent in that it organises the storage of its data on 

non-transient storage. It may itself be either a local store 

or a proxy store. 

3.2.2 Casters 

Various caster components were implemented, including 

one specifically for XML documents, a generic caster for 

Java objects, and a caster for store and namer 

components. The store caster enables a store instance to 

be reified as a bit-string and stored within another store, 

thus the reify-store sequence of operations may be 

applied recursively to stores themselves. The store caster 



operates by reifying a store’s contents to a single bit-

string in XML form. 

3.2.3 Interpreters 

Simple interpreter components were implemented, 

providing encryption and compression. 

3.2.4 Namers 

As with stores, a namer component may be transient, in 

which case it may be saved by reifying it and storing the 

resulting bit-string in a store, or persistent. In the latter 

case the namer organises the recording of its bindings on 

non-transient file storage. 

It is also necessary to provide access to a root namer for 

each actor, obtained via a static operation in the same 

way as for root stores. 

3.3 Examples of Use 

In order to evaluate the applicability of the generic 

components in constructing various storage architectures, 

a number of storage use cases were identified, 

representative of common storage paradigms. The project 

report (Zirintsis, Kirby, Dearle and Morrison, 2003) 

contains a full description; a single example is given here 

for illustrative purposes, showing how the components 

may be used to store and retrieve a programming 

language object. The code fragment in Fig. 8 shows an 

object being reified and inserted into a store. 

 

// Create an instance of class Person 

Person graham = 

   new Person("Graham", 37); 

 

// Retrieve the root store 

Store rootStore = XBase.getRootStore(); 

 

// Create a Caster for persons 

PersonCaster personCaster = 

   new PersonCaster(); 

 

// Flatten the person into a bit-string 

BitString personRep = 

   personCaster.reify(graham); 

 

// Put the representation in root store 

Key grahamKey = 

   rootStore.put(personRep); 

Fig. 8: Inserting Data into a Store 

The code fragment in Fig. 9 shows the object being 

retrieved from a different context: 

 

// Retrieve the root store 

Store rootStore = XBase.getRootStore(); 

 

// Retrieve the representation of the 

person using the key 

BitString grahamRep = 

   rootStore.get(grahamKey); 

 

// Create a Caster for persons 

PersonCaster personCaster = 

   new PersonCaster(); 

 

// Recreate the object 

Person reflectedGraham = 

   personCaster.reflect(grahamRep); 

Fig. 9: Retrieving Data from a Store 

A caster specific to XML documents was developed. In 

some senses this is not necessary, since a document’s 

textual representation can already be viewed as a bit-

string. However, it would not be particularly useful to 

provide a storage system that simply stored each XML 

document as a single bit-string in its own file, and thus a 

scheme to break down documents into multiple bit-strings 

was implemented. 

The XML caster allows the user to determine the 

granularity of the fragments into which a document is 

split. At one extreme of the spectrum, a single fragment 

can contain the entire document, while at the other a 

separate fragment can be generated for each XML tag. 

Different points on this spectrum exhibit different 

tradeoffs with respect to storage space required, overhead 

in scanning the document, accessing particular regions 

within it, etc. 

Various notations for expressing this granularity were 

experimented with. The most flexible allows the user to 

specify a simplified XML schema to which the document 

conforms; the amount of detail given in the schema 

determines the fragmentation granularity, and allows 

control over which sub-parts of the document are reified 

together within the same bit-string. A simple graphical 

tool was provided to ease the task of creating this schema, 

making it relatively straightforward to specify a simple 

fragmentation pattern: the user simply collapses a sub-

tree within the schema in order to specify that 

corresponding sub-parts in the document should be 

reified together. This is illustrated in Fig. 10. 

 

 

Fig. 10: Specifying Fragment Granularity 



Other issues include the format of the individual 

fragments—it was chosen to make these well-formed 

XML documents in their own right—and the means of 

representing references between fragments. Inter-

fragment references can be represented using keys, where 

one fragment contains the key corresponding to another 

fragment, which may be retrieved from an appropriate 

store. This is simple, but precludes any later update of the 

document since key-data bindings are fixed. For more 

flexibility symbolic names may be used, allowing for 

subsequent modification of the structure. In both cases 

there is a requirement for some other mechanism to 

establish which store and/or namer to use. Yet another 

approach is to make the references fully self-describing, 

by including some denotation of the appropriate store 

and/or namer within the reference itself—at the cost of 

making all references significantly larger. 

A further problem with using keys to represent references 

is that keys are generated within stores rather than 

externally, so it is not possible to form a reference to a 

fragment until after that fragment has been inserted into a 

store and its key obtained. This is not insurmountable for 

XML, given that the fragment graph is always acyclic, so 

long as the caster creates the fragments in the correct 

order. It would be a more significant problem for 

potentially cyclic structures, as would arise if this 

approach were to be applied to storage of complete object 

graphs. In this case, either names would be used to 

represent references, or, if available, the variant put 

operation described in section 3.1.1 could be used with 

prior generated  keys. 

4 Further Work 

The key advances of this research, as identified earlier, 

are: the identification of a candidate set of minimal 

storage system building blocks, and insight into the 

nature of append-only storage components. Although the 

tangible results—interface definitions and component 

implementations—may appear relatively straightforward, 

these were only arrived at after a prolonged design 

process that explored a wide range of possibilities. 

4.1 Autonomic Storage 

The research is being continued in a new project “Secure 

Location-Independent Autonomic Storage Architectures”. 

This will build on the work described here by further 

developing the idea of a distributed log-structured (i.e. 

append-only) storage architecture, in which information 

may be stored and retrieved transparently with respect to 

location. The autonomic management aspect (IBM, 2002) 

will attempt to address the complexity arising from both 

changing patterns of usage and the various technological 

opportunities available to the implementer. Infrastructure 

changes are required to intercept new technologies as 

they become available. User behaviour changes such as 

mobility, e.g. working more at home than at work, and 

software restructuring, e.g. using new or different 

software, all require complex restructuring of the storage 

software. User patterns are also influenced by diurnal 

cycles worldwide; reacting to these patterns efficiently 

will be essential for high availability. On top of all this, 

the infrastructure will have to deal with hardware failures. 

The project will attempt to relieve the store implementer 

of the complex tasks of reasoning about computations and 

resources, allocating, replicating, and moving 

computations and data to optimise performance, resource 

usage, and fault-tolerance to meet the desired intrinsic 

properties. The infrastructure should approximate the 

Utopian set of ideal characteristics: unbounded capacity; 

zero latency; zero cost; complete reliability; location 

independence; a simple interface for users; complete 

security; and provision of a complete historical archive. 

Our approach to engineering a useful approximation 

involves designing a write-once log-structured storage 

layer operating above a P2P overlay network. Content-

based addressing can be used to achieve location-

independent access to data; replication of data “in the 

right place, at the right time” can be used to achieve 

reliability and low latency. 

Our vision is one of an autonomic storage architecture 

that presents a simple interface abstracting over all 

implementation technologies to approximate the user’s 

desired properties which are extracted automatically from 

observed usage patterns. This turnkey solution would 

plug into the user’s chosen operating systems and present 

a simple view of the store regardless of user location. The 

aim is to design, implement and evaluate a prototype 

system of this nature. To achieve this aim we have 

identified 3 objectives: 

 to design a secure location-independent 

autonomic storage architecture, specified in 

terms of open interfaces 

 to design and implement a corresponding set of 

plug-compatible components that provide 

autonomic storage 

 to evaluate the architecture and the prototype 

implementation by deploying it and observing its 

evolving behaviour under varying loads and 

usage patterns 

Such an architecture is highly dynamic: data flows around 

the system in response to: changes in users’ location and 

behaviour; changes in the access patterns of processes; 

changes in the physical resources allocated to the system; 

or changes in the topology of the physical infrastructure. 

It is essential for the underlying policies to evolve in 

response to such changes, but the complexity is such that 

it is infeasible for this to be controlled by human users or 

administrators. The system must therefore be autonomic, 

managing such changes automatically. 

4.2 Other Projects 

The research is also feeding directly into a number of 

other ongoing projects. The Cingal project (Dearle, 

Connor, Carballo and Neely, 2003), a joint project 

between St Andrews University and Strathclyde 

University, is developing thin server technology to allow 

code and data to be pushed safely to appropriate locations 

in a global network. The work described here is 

influencing the design of storage facilities incorporated 

into thin servers. 

The GLOSS project (Dearle, Morrison, Kirby, Nixon, 

Connor, Dunlop, Coutaz and Clarke, 2000) seeks to 

develop a distributed event-based infrastructure to 



support the deployment of pervasive contextual services 

on a global scale. A crucial aspect of this is the storage of 

events and other contextual information on widely 

distributed nodes, to which the current research will be 

highly relevant (Dearle, Kirby, Morrison, McCarthy, 

Mullen, Yang, Connor, Welen and Wilson, 2003) (Kirby, 

Dearle, Morrison, Dunlop, Connor and Nixon, 2003).  

Finally, in ArchWare (Morrison, Kirby and 

Balasubramaniam, 2001), a project on evolvable software 

architectures, this research is contributing to thinking on 

open, software systems that are susceptible to evolution. 

5 Conclusions 

This paper has proposed a simple and generic storage 

API, which could be exposed directly to applications that 

have need to exert fine control over storage 

implementation policies. The initial motivation was 

flexibility; further experimentation is required to 

investigate whether the API could be implemented so as 

to deliver acceptable performance and scalability. 

One of the most interesting research questions opened up 

by this work is the viability of pervasive global storage, 

accessible from anywhere, from which no information is 

ever discarded. Intuitively this currently seems 

unachievable, but continuing research coupled with 

further advances in storage hardware technology may 

well allow this ideal to be closely approximated. 
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