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Abstract 

We describe an approach to modelling a Byzantine-

fault-tolerant distributed algorithm as a family of re-

lated finite state machines, generated from a single 

meta-model. Various artefacts are generated from each 

state machine, including diagrams and source-level 

protocol implementations. The approach allows a state 

machine formulation to be applied to problems for 

which it would not otherwise be suitable, increasing 

confidence in correctness. 

 

 

1. Introduction 

The finite state machine is a widely used abstraction 

for describing and reasoning about distributed algo-

rithms [1]. Here we address the problem of developing 

a finite state machine formulation for an algorithm 

whose generality precludes its expression as a single 

state machine. Instead, the algorithm may be character-

ised as a family of related state machines, each corre-

sponding to particular values of some parameters to the 

general algorithm. Although family members differ in 

their individual states and transitions, they share a 

common structure dictated by the general algorithm. 

Our approach is to develop a meta-model that cap-

tures the common architecture of the family of state 

machines. This can be executed with chosen parameter 

values to generate any particular member of the state 

machine family. The output of the meta-model is a 

state machine representation, from which various con-

crete artefacts may be generated. These include textual 

state machine descriptions, state machine diagrams and 

specialised source-level algorithm implementations. 

We describe this approach via the example of a 

Byzantine-fault-tolerant (BFT) commit algorithm—

originally motivating the work. We think that the tech-

nique could also be applied to development of other 

fault-tolerant protocols, making it directly relevant to 

the area of architecting critical infrastructures. 

2. Background 

The motivation for this work arose during develop-

ment of a particular algorithm within a distributed stor-

age system [2]. The aim of the ASA project is to de-

velop a resilient, logically ubiquitous storage infra-

structure with the following attributes: 

 data can be accessed efficiently and securely from 

any physical location 

 data is stored resiliently 

 an historical record of data is available 

The requirements include the following: 

 it must provide a logical file system that appears 

the same regardless of the physical machine from 

which it is accessed 

 files stored in the file system must be resilient to 

the failure and/or malicious behaviour of individ-

ual machines 

 it must provide a historical record 

The ASA infrastructure provides a single distributed 

abstract file system, which is built on a generic distrib-

uted storage layer. For scalability, this storage layer is 

itself implemented on a peer-to-peer (P2P) key-based 

routing infrastructure. The storage layer provides resil-

ience by replicating data and meta-data on multiple 

P2P nodes, and actively maintaining those replicas as 

nodes fail, misbehave or leave the P2P overlay. 

The aspect of interest here is the commit algorithm 

used to record a new version of a logical data item in 

the distributed storage layer. The algorithm is executed 

by all members of the set of P2P nodes on which that 

data item’s version history is replicated. The member-

ship of this set can change dynamically as the topology 

of the P2P network changes. 

The purpose of the algorithm is to enable the node 

set to agree a global ordering of the (potentially con-

current) updates to the version history of a particular 

data item. The algorithm ensures that the same version 



 

history is stored on each of the replica sites. Hence, a 

subsequent query over the history will yield a consis-

tent response, regardless of which replica site is used. 

The algorithm is also required to be BFT, meaning 

that it operates correctly in the face of faulty behaviour 

exhibited by some subset of the nodes storing the his-

tory replicas. Faulty behaviour may include responding 

slowly, failing completely, or arbitrary malicious ac-

tions. As is well known, the theoretical limit on all 

BFT schemes is that at least 3f+1 participants are 

needed to give tolerance to f failures [3]. Hence for a 

replication factor r, yielding r replicas of each version 

history, the algorithm tolerates at most floor((r-1)/3) 

faulty participants. 

Background processes run to regenerate missing 

replicas and to replace faulty nodes, thus here the limit 

applies to the duration of a particular execution of the 

algorithm, rather than to the lifetime of the system
1
. 

Additional replicas need to be generated whenever the 

set of nodes storing replicas of a given data item is 

temporarily reduced. This may occur due to fail-stop 

faults, which are straightforwardly detected through 

timeouts, or due to the detection of malicious nodes. 

Such nodes are eventually detected with high probabil-

ity using periodic cross-checks between replica nodes. 

3. General approach 

Initially, we designed a single generic algorithm 

that appeared to meet the requirements outlined in the 

previous section, parameterised by the replication fac-

tor. In an effort to gain greater insight into its opera-

tion, we then developed a finite state machine model 

for a selected replication factor—four, being the sim-

plest scheme to yield a BFT algorithm. Although nei-

ther the algorithm (about 500 lines of pseudo-code) nor 

the state machine (33 states with 3-4 transitions from 

each) were especially complex, they were non-trivial. 

We then faced the problem that there was no strong 

correlation between the code and the state machine. 

Thus even though we were satisfied (informally) that 

the state machine was correct, its creation achieved 

little in terms of building confidence in the algorithm. 

The main reason for the disparity between the state 

machine and the algorithm was that the former was 

specific to a fixed replication factor, while the algo-

rithm was generic. The individual states in the state 

machine correspond to the counts of messages that 

have been sent and received at particular points during 

the algorithm’s execution. The maximum values of 

these counts vary with the replication factor, thus the 

number of states in the machine also varies. By the 

same argument, it is not possible to construct a single 
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state machine that captures the generic algorithm. 

Our goal at this point was to unify the state machine 

model and the generic algorithm, by generalising the 

state machine in some way. The key insight that made 

this possible was to identify how both the state space 

and the state transitions were determined by the repli-

cation factor. The state space was defined straightfor-

wardly by the various combinations of the possible 

message counts, themselves bounded by the replication 

factor. For transitions, the important point was that 

some denoted simple increments in message counts, 

whereas others denoted actions to be performed 

(termed phase transitions). By identifying where in the 

state diagram phase transitions occurred, and relating 

these to the replication factor, it was possible to pro-

duce a generic description defining a family of related 

state machines. We then proceeded as follows: 

 We developed a meta-model that captured the com-

mon structure among the members of the state ma-

chine family. 

 We executed the meta-model with a replication fac-

tor of four to generate an abstract representation of a 

specific state machine, which we then checked for 

consistency with the original state machine. 

 Once satisfied with the correctness of the meta-

model, we developed tools to generate various state 

machine artefacts, including diagrams and source-

level implementations. 

3.1. Generation process 

The overall generation process is illustrated in Fig-

ure 1. 

 

Figure 1. State machine generation scheme 

The meta-model describes the components of the 

states, the rules for state update on message receipt, 

and the actions to be carried out when particular state 

transitions occur. The meta-model is implemented in 

Java by a class MetaModel. Its constructor takes the 

replication factor as a parameter, thus each instance of 



 

MetaModel is specialised to that replication factor. The 

method generateStateMachine() performs the genera-

tion of the corresponding state machine. This returns 

an abstract state machine representation in the form of 

an instance of class StateMachine. The state machine 

contains a collection of states linked by transitions. 

Both states and transitions may be annotated for docu-

mentation purposes. Transitions also refer to associated 

actions to be performed by the state machine. These 

classes are outlined in Figure 2. 

class MetaModel { 

 MetaModel(int replication_factor) {… 

 StateMachine generateStateMachine(); 

} 

class StateMachine { 

 String[] messages; 

 State[] states; 

 State start_state; 

 State finish_state; 

} 

class State { 

 String state_name; 

 Transition[] transitions; 

 String[] annotations; 

} 

class Transition { 

 State resultant_state; 

 String[] actions; 

 String[] annotations; 

} 

Figure 2. Corresponding Java classes 

Figure 3 shows how a particular state machine may 

be generated and rendered in a textual format. 

MetaModel meta_model_4 = new MetaModel(4); 

StateMachine machine_4 = 

 meta_model.generateStateMachine(); 

 

println(new TextRenderer().render(machine_4)); 

Figure 3. Generating a state machine 

3.2. Defining the meta-model 

In general terms, the meta-model is a model of the 

structure common to all members of the state machine 

family. The steps involved in the generation of a par-

ticular member of the family—an instance of State-

Machine—are as follows: 

1. generate a data structure containing representations 

of all possible states 

2. for each state, generate the transitions resulting 

from all possible messages, and record in the data 

structure 

3. prune any unreachable states 

4. combine any sets of equivalent states 

The final data structure forms the resulting State-

Machine instance. Of these steps, 1, 3 and 4 can be 

performed fairly mechanically, whereas step 2 embod-

ies the core logic of the algorithm. 

3.2.1. Generating possible states. To generate all pos-

sible states, the state space must be defined in terms of 

the problem parameters—in our case, the replication 

factor. The BFT commit algorithm involves five mes-

sages that may be received by a participating node: 

put, vote, commit, free, not free 

In brief, the client sends a put message to each of 

the servers. A vote message is sent by a server to the 

others when it believes that this update should be next 

in the global ordering. A commit message is sent to 

indicate that enough votes have been received to pro-

ceed with the update. The algorithm works by counting 

the messages sent and received, yielding a state com-

prising the union of the following variables: 

boolean put_received, vote_sent, commit_sent 

int votes_received, commits_received 

Two other boolean variables, could_choose and 

has_chosen, are used by the algorithm to track the free 

and not free messages. The upper bound on both 

votes_received and commits_received is one less than 

the number of participants, which itself is given by the 

replication factor. Thus in total there are five boolean 

variables and two integer variables that range from 0 to 

r-1 for replication factor r. Hence the space of possible 

states, containing all combinations of values, has the 

size 2
5
r

2
. This gives 512 states for the smallest sensible 

value of r=4. The generateStateMachine() operation 

iterates through all of these combinations, generating a 

list of State objects. A simplified example of the data 

structure at this stage is shown in Figure 4. 

 

Figure 4. Data structure after step 1 

3.2.2. Generating transitions. The core of the meta-

model defines the transitions between states. For any 

given state, it determines the effects of each of the pos-

sible messages, in terms of actions performed and the 

resulting state. Given that a transition from one state to 

another represents a change in the variables tracking 

the messages sent and received, a transition can be 



 

categorised as either a simple state transition or a phase 

transition. 

On a simple state transition, the sole effect is to in-

crement one of the received message counts; no action 

is performed. A phase transition occurs when the re-

ceipt of a message causes some threshold to be 

crossed, triggering an action. For example, in the 

commit algorithm, when the total number of votes sent 

and received reaches the number of non-faulty nodes, a 

commit message is sent to all the nodes. 

The second step in the generation of a state machine 

is to iterate over each of the state representations in the 

data structure generated during the first step. For each 

state, the meta-model determines which transitions 

would result from each of the possible messages, if 

received by the running state machine in that state. 

Each transition, along with any corresponding actions, 

is recorded in the state machine data structure. 

Figure 5 shows the operation generateTransitio-

nOnVote(), defined within the meta-model, determin-

ing the transitions from any given state on receipt of a 

vote message
2
. The control decisions that would be 

taken dynamically in a generic algorithm are here be-

ing taken at generation time. 

generateTransitionOnVote(State s) { 

 initialise state variables from s 

 increment votes_received 

 if total votes >= threshold(r): 

  if !vote_sent: 

   if could_choose: 

    set has_chosen 

    record action: 

     send not free message 

   record action: send vote message 

   set vote_sent 

   unset could_choose,  

  if commit_sent: 

   record action: send commit message 

   set commit_sent 

 derive new state s1 from state variables 

 record transition s->s1 in data structure 

} 

Figure 5. Meta-model for vote message 

Figure 6 shows the data structure after representa-

tions of the state transitions have been generated. 

3.2.3. Pruning unreachable states. Once the complete 

transition graph has been generated, a reachability 

analysis is performed. Depending on the application, 

there may exist states that could never be reached via 

transitions from the start state. For example, the com-

mit algorithm completes as soon as f+1 commit mes-

sages have been received, thus there are no reachable 

states where the commit count exceeds f. For simplic-

ity, such states are removed from the generated model. 

With a replication factor of 4, this step reduces the 

state space from its initial size of 512 to 48. 
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 Similar logic in the meta-model generates documentation describ-

ing the states and the rationale for each transition. 

 

Figure 6. Data structure after step 2 

Figure 7 illustrates the result of pruning. 

 

Figure 7. Data structure after step 3 

3.2.4. Combining equivalent states. The generated 

state machine may be further simplified by identifying 

and combining sets of states that are equivalent, in the 

sense that the outgoing transitions from each perform 

the same actions and lead to the same destination state. 

Since this step may result in further states becoming 

unreachable, the previous step and this one are re-

peated alternately until no further reduction in the state 

space occurs. With a replication factor of 4, this proc-

ess eventually results in 33 states. Figure 8 illustrates 

the result of this step. 

3.3. State machine artefacts 

The abstract representation of a state machine gen-

erated by the meta-model can be rendered to yield 

various concrete artefacts, including: 

 a simple textual representation 

 a state transition diagram 

 source code for an implementation of the corre-

sponding protocol 



 

 

Figure 8. Data structure after step 4 

Figure 9 shows the textual representation of a par-

ticular state and its outgoing transitions. The name of 

the state encodes the variable values (put_received, 

votes_sent etc) in that state. Note that the commentary 

describing the state in terms of the generic algorithm 

has been entirely automatically generated. 

state: T/2/F/0/F/F/F 

 

Have received initial put from client. Have not 

voted since another update has already been voted 

for. Have received 2 votes and no commits. Have not 

sent a commit since neither the vote threshold (3) 

nor the external commit threshold (2) has been 

reached. May not choose since another ongoing update 

has been voted for. Have not chosen this update 

since another ongoing update has been chosen. Wait-

ing for 1 further vote (including local vote if any) 

before sending commit. Waiting for 2 further exter-

nal commits to finish. 

 

Transitions: 

 

 message: VOTE 

  action: send vote message 

  action: send commit message 

  transition to: T/3/T/0/T/F/F 

 

 message: COMMIT 

  transition to: T/2/F/1/F/F/F 

 

 message: FREE 

  action: send vote message 

  action: send commit message 

  action: send not free message 

  transition to: T/2/T/0/T/T/T 

Figure 9. Example generated state description 

A state machine may be rendered as a state diagram 

by generating an XML diagram representation that can 

be imported into a diagramming tool (in this case, To-

gether [4]). An example is available online at the ad-

dress given previously. 

Figure 10 shows a fragment of generated code, deal-

ing with the receipt of a vote message. Each state is 

represented by a generated variable of the form S-F-0-

F-0-F-F-F. Although the structure embodied in the 

generated code is equivalent to that shown in Figure 9, 

its organisation differs in that all possible states are 

grouped under each message, rather than vice-versa. 

void receiveVote() { 

 

  switch (getState()) { 

    

    case (S-F-0-F-0-F-F-F) : { 

      setState(S-F-1-F-0-F-F-F); 

    } 

   

    case (S-F-0-F-0-F-F-T) : { 

      setState(S-F-1-F-0-F-F-F); 

    } 

    ...  

    case (S-T-1-T-1-F-T-T) : { 

      sendCommit(); 

      setState(S-T-2-T-1-T-T-T); 

    } 

    ... 

} 

Figure 10. Example generated source code 

Commentary on states and transitions, as illustrated 

in Figure 9, is also included in the generated code. 

4. Use in practice 

We have incorporated the meta-model for the dis-

tributed commit algorithm into the ASA infrastructure. 

Since the replication factor is expected to change only 

rarely, we executed the meta-model with the default 

replication factor, generated source code from the re-

sulting state machine, and copied that into the code-

base. The benefit of this approach is that the imple-

mentation is tightly coupled with its state machine de-

scription, giving us confidence in its correctness. 

Should we wish in future to support dynamic 

change to the replication factor, this may be achieved 

by dynamically generating implementations, compiling 

them and loading the resulting classes [5]. So long as 

new replication factors are not presented at high fre-

quency, this approach is quite feasible; Table 1 shows 

approximate wall-clock times taken to generate state 

machines of various complexities on an Apple 

MacBook Pro (3GB, 2.33GHz Intel Core 2 Duo). 

Table 1. Times to generate state machines 

f r initial 

states 

final 

states 

generation 

time (s) 

1 4 512 33 0.10 

2 7 1568 85 0.12 

4 13 5408 261 0.38 

8 25 20000 901 2.2 

15 46 67712 2945 19.1 

Since completing the meta-modelling process for 

the ASA distributed commit algorithm we have refined 

the infrastructure to make it applicable to other prob-

lems. As steps 1, 3 and 4 described in section 3.2 are 

largely independent of the details of the algorithm, the 

implementation of these steps was separated into an 

abstract superclass, from which problem-specific meta-

models can be derived. Rather than containing hard-



 

wired definitions of the state components and mes-

sages, these are now represented by a data structure 

with which the generic meta-model is initialised. Fig-

ure 11 shows how the original meta-model is now con-

figured. Each instance of IntComponent defines the 

maximum value of the corresponding state component. 

StateComponent[] state_components = { 

 new IntComponent("votes_received", 

  replication_factor - 1), 

 new IntComponent("commits_received", 

  replication_factor - 1), 

 new BooleanComponent("put_received"), 

 new BooleanComponent("vote_sent"), 

 new BooleanComponent("commit_sent"), 

 new BooleanComponent("could_choose"), 

 new BooleanComponent("has_chosen")}; 

   

String[] messages = {"put", "vote", 

 "commit", "free", "not_free"}; 

   

initMetaModel(state_components, messages); 

Figure 11. Initialising generic meta-model 

5. Related work 

This work is obviously strongly related to the exten-

sive literature on finite state machines, for example [1, 

6]. Traditionally, state machines are used to model 

computations with fixed numbers of states, whereas 

our generative approach allows greater flexibility. 

Architectural style languages [7, 8] allow families 

of related systems to be characterised in terms of their 

shared high level system structure, and specialised to 

produce particular instances. The work described here 

is less general since it focuses explicitly on the state 

machine paradigm; the generic meta-model could be 

thought of as one particular architectural style. 

We have previously used generative techniques to 

build generic object browsers [9] and to support highly 

generic strongly typed code [5]. 

An alternative strategy is to apply formal specifica-

tion and verification techniques to fault-tolerant algo-

rithms. For example, in [10] a protocol is specified as 

logical assertions and verified using an interactive 

proof checker. In [11] an extended actor algebra is 

used to specify fault-tolerant software architectures. 

These approaches offer the possibility of formal 

proofs, whereas here we intend to provide a less formal 

aid to understanding, at significantly lower cost. 

6. Conclusions 

We have outlined an approach to generating a fam-

ily of related state machines and corresponding proto-

col implementations from a unifying meta-model. In 

the ASA project this has allowed us to produce a state 

machine style description of our original BFT distrib-

uted commit algorithm. This has increased our confi-

dence in the correctness of the algorithm; indeed sev-

eral errors in the original version were identified dur-

ing the process. We are currently investigating possi-

bilities for performing more rigorous checking on the 

state machine formulation. 

Although we have applied this approach to a spe-

cific BFT distributed algorithm, the approach should 

be applicable to other critical infrastructure problems 

involving protocols where the number of states is de-

pendent on a set of parameters. 
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