

Generating a Family of Byzantine-Fault-Tolerant Protocol Implementations

Using a Meta-Model Architecture

Graham NC Kirby, Alan Dearle & Stuart J Norcross

School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SX, Scotland

{graham, al, stuart}@cs.st-andrews.ac.uk

Abstract

We describe an approach to modelling a Byzantine-

fault-tolerant distributed algorithm as a family of re-

lated finite state machines, generated from a single

meta-model. Various artefacts are generated from each

state machine, including diagrams and source-level

protocol implementations. The approach allows a state

machine formulation to be applied to problems for

which it would not otherwise be suitable, increasing

confidence in correctness.

1. Introduction

The finite state machine is a widely used abstraction

for describing and reasoning about distributed algo-

rithms [1]. Here we address the problem of developing

a finite state machine formulation for an algorithm

whose generality precludes its expression as a single

state machine. Instead, the algorithm may be character-

ised as a family of related state machines, each corre-

sponding to particular values of some parameters to the

general algorithm. Although family members differ in

their individual states and transitions, they share a

common structure dictated by the general algorithm.

Our approach is to develop a meta-model that cap-

tures the common architecture of the family of state

machines. This can be executed with chosen parameter

values to generate any particular member of the state

machine family. The output of the meta-model is a

state machine representation, from which various con-

crete artefacts may be generated. These include textual

state machine descriptions, state machine diagrams and

specialised source-level algorithm implementations.

We describe this approach via the example of a

Byzantine-fault-tolerant (BFT) commit algorithm—

originally motivating the work. We think that the tech-

nique could also be applied to development of other

fault-tolerant protocols, making it directly relevant to

the area of architecting critical infrastructures.

2. Background

The motivation for this work arose during develop-

ment of a particular algorithm within a distributed stor-

age system [2]. The aim of the ASA project is to de-

velop a resilient, logically ubiquitous storage infra-

structure with the following attributes:

 data can be accessed efficiently and securely from

any physical location

 data is stored resiliently

 an historical record of data is available

The requirements include the following:

 it must provide a logical file system that appears

the same regardless of the physical machine from

which it is accessed

 files stored in the file system must be resilient to

the failure and/or malicious behaviour of individ-

ual machines

 it must provide a historical record

The ASA infrastructure provides a single distributed

abstract file system, which is built on a generic distrib-

uted storage layer. For scalability, this storage layer is

itself implemented on a peer-to-peer (P2P) key-based

routing infrastructure. The storage layer provides resil-

ience by replicating data and meta-data on multiple

P2P nodes, and actively maintaining those replicas as

nodes fail, misbehave or leave the P2P overlay.

The aspect of interest here is the commit algorithm

used to record a new version of a logical data item in

the distributed storage layer. The algorithm is executed

by all members of the set of P2P nodes on which that

data item’s version history is replicated. The member-

ship of this set can change dynamically as the topology

of the P2P network changes.

The purpose of the algorithm is to enable the node

set to agree a global ordering of the (potentially con-

current) updates to the version history of a particular

data item. The algorithm ensures that the same version

history is stored on each of the replica sites. Hence, a

subsequent query over the history will yield a consis-

tent response, regardless of which replica site is used.

The algorithm is also required to be BFT, meaning

that it operates correctly in the face of faulty behaviour

exhibited by some subset of the nodes storing the his-

tory replicas. Faulty behaviour may include responding

slowly, failing completely, or arbitrary malicious ac-

tions. As is well known, the theoretical limit on all

BFT schemes is that at least 3f+1 participants are

needed to give tolerance to f failures [3]. Hence for a

replication factor r, yielding r replicas of each version

history, the algorithm tolerates at most floor((r-1)/3)

faulty participants.

Background processes run to regenerate missing

replicas and to replace faulty nodes, thus here the limit

applies to the duration of a particular execution of the

algorithm, rather than to the lifetime of the system
1
.

Additional replicas need to be generated whenever the

set of nodes storing replicas of a given data item is

temporarily reduced. This may occur due to fail-stop

faults, which are straightforwardly detected through

timeouts, or due to the detection of malicious nodes.

Such nodes are eventually detected with high probabil-

ity using periodic cross-checks between replica nodes.

3. General approach

Initially, we designed a single generic algorithm

that appeared to meet the requirements outlined in the

previous section, parameterised by the replication fac-

tor. In an effort to gain greater insight into its opera-

tion, we then developed a finite state machine model

for a selected replication factor—four, being the sim-

plest scheme to yield a BFT algorithm. Although nei-

ther the algorithm (about 500 lines of pseudo-code) nor

the state machine (33 states with 3-4 transitions from

each) were especially complex, they were non-trivial.

We then faced the problem that there was no strong

correlation between the code and the state machine.

Thus even though we were satisfied (informally) that

the state machine was correct, its creation achieved

little in terms of building confidence in the algorithm.

The main reason for the disparity between the state

machine and the algorithm was that the former was

specific to a fixed replication factor, while the algo-

rithm was generic. The individual states in the state

machine correspond to the counts of messages that

have been sent and received at particular points during

the algorithm’s execution. The maximum values of

these counts vary with the replication factor, thus the

number of states in the machine also varies. By the

same argument, it is not possible to construct a single

1
 Details are available at http://asa.cs.st-andrews.ac.uk/metamodel/.

state machine that captures the generic algorithm.

Our goal at this point was to unify the state machine

model and the generic algorithm, by generalising the

state machine in some way. The key insight that made

this possible was to identify how both the state space

and the state transitions were determined by the repli-

cation factor. The state space was defined straightfor-

wardly by the various combinations of the possible

message counts, themselves bounded by the replication

factor. For transitions, the important point was that

some denoted simple increments in message counts,

whereas others denoted actions to be performed

(termed phase transitions). By identifying where in the

state diagram phase transitions occurred, and relating

these to the replication factor, it was possible to pro-

duce a generic description defining a family of related

state machines. We then proceeded as follows:

 We developed a meta-model that captured the com-

mon structure among the members of the state ma-

chine family.

 We executed the meta-model with a replication fac-

tor of four to generate an abstract representation of a

specific state machine, which we then checked for

consistency with the original state machine.

 Once satisfied with the correctness of the meta-

model, we developed tools to generate various state

machine artefacts, including diagrams and source-

level implementations.

3.1. Generation process

The overall generation process is illustrated in Fig-

ure 1.

Figure 1. State machine generation scheme

The meta-model describes the components of the

states, the rules for state update on message receipt,

and the actions to be carried out when particular state

transitions occur. The meta-model is implemented in

Java by a class MetaModel. Its constructor takes the

replication factor as a parameter, thus each instance of

MetaModel is specialised to that replication factor. The

method generateStateMachine() performs the genera-

tion of the corresponding state machine. This returns

an abstract state machine representation in the form of

an instance of class StateMachine. The state machine

contains a collection of states linked by transitions.

Both states and transitions may be annotated for docu-

mentation purposes. Transitions also refer to associated

actions to be performed by the state machine. These

classes are outlined in Figure 2.

class MetaModel {

 MetaModel(int replication_factor) {…

 StateMachine generateStateMachine();

}

class StateMachine {

 String[] messages;

 State[] states;

 State start_state;

 State finish_state;

}

class State {

 String state_name;

 Transition[] transitions;

 String[] annotations;

}

class Transition {

 State resultant_state;

 String[] actions;

 String[] annotations;

}

Figure 2. Corresponding Java classes

Figure 3 shows how a particular state machine may

be generated and rendered in a textual format.

MetaModel meta_model_4 = new MetaModel(4);

StateMachine machine_4 =

 meta_model.generateStateMachine();

println(new TextRenderer().render(machine_4));

Figure 3. Generating a state machine

3.2. Defining the meta-model

In general terms, the meta-model is a model of the

structure common to all members of the state machine

family. The steps involved in the generation of a par-

ticular member of the family—an instance of State-

Machine—are as follows:

1. generate a data structure containing representations

of all possible states

2. for each state, generate the transitions resulting

from all possible messages, and record in the data

structure

3. prune any unreachable states

4. combine any sets of equivalent states

The final data structure forms the resulting State-

Machine instance. Of these steps, 1, 3 and 4 can be

performed fairly mechanically, whereas step 2 embod-

ies the core logic of the algorithm.

3.2.1. Generating possible states. To generate all pos-

sible states, the state space must be defined in terms of

the problem parameters—in our case, the replication

factor. The BFT commit algorithm involves five mes-

sages that may be received by a participating node:

put, vote, commit, free, not free

In brief, the client sends a put message to each of

the servers. A vote message is sent by a server to the

others when it believes that this update should be next

in the global ordering. A commit message is sent to

indicate that enough votes have been received to pro-

ceed with the update. The algorithm works by counting

the messages sent and received, yielding a state com-

prising the union of the following variables:

boolean put_received, vote_sent, commit_sent

int votes_received, commits_received

Two other boolean variables, could_choose and

has_chosen, are used by the algorithm to track the free

and not free messages. The upper bound on both

votes_received and commits_received is one less than

the number of participants, which itself is given by the

replication factor. Thus in total there are five boolean

variables and two integer variables that range from 0 to

r-1 for replication factor r. Hence the space of possible

states, containing all combinations of values, has the

size 2
5
r

2
. This gives 512 states for the smallest sensible

value of r=4. The generateStateMachine() operation

iterates through all of these combinations, generating a

list of State objects. A simplified example of the data

structure at this stage is shown in Figure 4.

Figure 4. Data structure after step 1

3.2.2. Generating transitions. The core of the meta-

model defines the transitions between states. For any

given state, it determines the effects of each of the pos-

sible messages, in terms of actions performed and the

resulting state. Given that a transition from one state to

another represents a change in the variables tracking

the messages sent and received, a transition can be

categorised as either a simple state transition or a phase

transition.

On a simple state transition, the sole effect is to in-

crement one of the received message counts; no action

is performed. A phase transition occurs when the re-

ceipt of a message causes some threshold to be

crossed, triggering an action. For example, in the

commit algorithm, when the total number of votes sent

and received reaches the number of non-faulty nodes, a

commit message is sent to all the nodes.

The second step in the generation of a state machine

is to iterate over each of the state representations in the

data structure generated during the first step. For each

state, the meta-model determines which transitions

would result from each of the possible messages, if

received by the running state machine in that state.

Each transition, along with any corresponding actions,

is recorded in the state machine data structure.

Figure 5 shows the operation generateTransitio-

nOnVote(), defined within the meta-model, determin-

ing the transitions from any given state on receipt of a

vote message
2
. The control decisions that would be

taken dynamically in a generic algorithm are here be-

ing taken at generation time.

generateTransitionOnVote(State s) {

 initialise state variables from s

 increment votes_received

 if total votes >= threshold(r):

 if !vote_sent:

 if could_choose:

 set has_chosen

 record action:

 send not free message

 record action: send vote message

 set vote_sent

 unset could_choose,

 if commit_sent:

 record action: send commit message

 set commit_sent

 derive new state s1 from state variables

 record transition s->s1 in data structure

}

Figure 5. Meta-model for vote message

Figure 6 shows the data structure after representa-

tions of the state transitions have been generated.

3.2.3. Pruning unreachable states. Once the complete

transition graph has been generated, a reachability

analysis is performed. Depending on the application,

there may exist states that could never be reached via

transitions from the start state. For example, the com-

mit algorithm completes as soon as f+1 commit mes-

sages have been received, thus there are no reachable

states where the commit count exceeds f. For simplic-

ity, such states are removed from the generated model.

With a replication factor of 4, this step reduces the

state space from its initial size of 512 to 48.

2
 Similar logic in the meta-model generates documentation describ-

ing the states and the rationale for each transition.

Figure 6. Data structure after step 2

Figure 7 illustrates the result of pruning.

Figure 7. Data structure after step 3

3.2.4. Combining equivalent states. The generated

state machine may be further simplified by identifying

and combining sets of states that are equivalent, in the

sense that the outgoing transitions from each perform

the same actions and lead to the same destination state.

Since this step may result in further states becoming

unreachable, the previous step and this one are re-

peated alternately until no further reduction in the state

space occurs. With a replication factor of 4, this proc-

ess eventually results in 33 states. Figure 8 illustrates

the result of this step.

3.3. State machine artefacts

The abstract representation of a state machine gen-

erated by the meta-model can be rendered to yield

various concrete artefacts, including:

 a simple textual representation

 a state transition diagram

 source code for an implementation of the corre-

sponding protocol

Figure 8. Data structure after step 4

Figure 9 shows the textual representation of a par-

ticular state and its outgoing transitions. The name of

the state encodes the variable values (put_received,

votes_sent etc) in that state. Note that the commentary

describing the state in terms of the generic algorithm

has been entirely automatically generated.

state: T/2/F/0/F/F/F

Have received initial put from client. Have not

voted since another update has already been voted

for. Have received 2 votes and no commits. Have not

sent a commit since neither the vote threshold (3)

nor the external commit threshold (2) has been

reached. May not choose since another ongoing update

has been voted for. Have not chosen this update

since another ongoing update has been chosen. Wait-

ing for 1 further vote (including local vote if any)

before sending commit. Waiting for 2 further exter-

nal commits to finish.

Transitions:

 message: VOTE

 action: send vote message

 action: send commit message

 transition to: T/3/T/0/T/F/F

 message: COMMIT

 transition to: T/2/F/1/F/F/F

 message: FREE

 action: send vote message

 action: send commit message

 action: send not free message

 transition to: T/2/T/0/T/T/T

Figure 9. Example generated state description

A state machine may be rendered as a state diagram

by generating an XML diagram representation that can

be imported into a diagramming tool (in this case, To-

gether [4]). An example is available online at the ad-

dress given previously.

Figure 10 shows a fragment of generated code, deal-

ing with the receipt of a vote message. Each state is

represented by a generated variable of the form S-F-0-

F-0-F-F-F. Although the structure embodied in the

generated code is equivalent to that shown in Figure 9,

its organisation differs in that all possible states are

grouped under each message, rather than vice-versa.

void receiveVote() {

 switch (getState()) {

 case (S-F-0-F-0-F-F-F) : {

 setState(S-F-1-F-0-F-F-F);

 }

 case (S-F-0-F-0-F-F-T) : {

 setState(S-F-1-F-0-F-F-F);

 }

 ...

 case (S-T-1-T-1-F-T-T) : {

 sendCommit();

 setState(S-T-2-T-1-T-T-T);

 }

 ...

}

Figure 10. Example generated source code

Commentary on states and transitions, as illustrated

in Figure 9, is also included in the generated code.

4. Use in practice

We have incorporated the meta-model for the dis-

tributed commit algorithm into the ASA infrastructure.

Since the replication factor is expected to change only

rarely, we executed the meta-model with the default

replication factor, generated source code from the re-

sulting state machine, and copied that into the code-

base. The benefit of this approach is that the imple-

mentation is tightly coupled with its state machine de-

scription, giving us confidence in its correctness.

Should we wish in future to support dynamic

change to the replication factor, this may be achieved

by dynamically generating implementations, compiling

them and loading the resulting classes [5]. So long as

new replication factors are not presented at high fre-

quency, this approach is quite feasible; Table 1 shows

approximate wall-clock times taken to generate state

machines of various complexities on an Apple

MacBook Pro (3GB, 2.33GHz Intel Core 2 Duo).

Table 1. Times to generate state machines

f r initial

states

final

states

generation

time (s)

1 4 512 33 0.10

2 7 1568 85 0.12

4 13 5408 261 0.38

8 25 20000 901 2.2

15 46 67712 2945 19.1

Since completing the meta-modelling process for

the ASA distributed commit algorithm we have refined

the infrastructure to make it applicable to other prob-

lems. As steps 1, 3 and 4 described in section 3.2 are

largely independent of the details of the algorithm, the

implementation of these steps was separated into an

abstract superclass, from which problem-specific meta-

models can be derived. Rather than containing hard-

wired definitions of the state components and mes-

sages, these are now represented by a data structure

with which the generic meta-model is initialised. Fig-

ure 11 shows how the original meta-model is now con-

figured. Each instance of IntComponent defines the

maximum value of the corresponding state component.

StateComponent[] state_components = {

 new IntComponent("votes_received",

 replication_factor - 1),

 new IntComponent("commits_received",

 replication_factor - 1),

 new BooleanComponent("put_received"),

 new BooleanComponent("vote_sent"),

 new BooleanComponent("commit_sent"),

 new BooleanComponent("could_choose"),

 new BooleanComponent("has_chosen")};

String[] messages = {"put", "vote",

 "commit", "free", "not_free"};

initMetaModel(state_components, messages);

Figure 11. Initialising generic meta-model

5. Related work

This work is obviously strongly related to the exten-

sive literature on finite state machines, for example [1,

6]. Traditionally, state machines are used to model

computations with fixed numbers of states, whereas

our generative approach allows greater flexibility.

Architectural style languages [7, 8] allow families

of related systems to be characterised in terms of their

shared high level system structure, and specialised to

produce particular instances. The work described here

is less general since it focuses explicitly on the state

machine paradigm; the generic meta-model could be

thought of as one particular architectural style.

We have previously used generative techniques to

build generic object browsers [9] and to support highly

generic strongly typed code [5].

An alternative strategy is to apply formal specifica-

tion and verification techniques to fault-tolerant algo-

rithms. For example, in [10] a protocol is specified as

logical assertions and verified using an interactive

proof checker. In [11] an extended actor algebra is

used to specify fault-tolerant software architectures.

These approaches offer the possibility of formal

proofs, whereas here we intend to provide a less formal

aid to understanding, at significantly lower cost.

6. Conclusions

We have outlined an approach to generating a fam-

ily of related state machines and corresponding proto-

col implementations from a unifying meta-model. In

the ASA project this has allowed us to produce a state

machine style description of our original BFT distrib-

uted commit algorithm. This has increased our confi-

dence in the correctness of the algorithm; indeed sev-

eral errors in the original version were identified dur-

ing the process. We are currently investigating possi-

bilities for performing more rigorous checking on the

state machine formulation.

Although we have applied this approach to a spe-

cific BFT distributed algorithm, the approach should

be applicable to other critical infrastructure problems

involving protocols where the number of states is de-

pendent on a set of parameters.

7. Acknowledgments

This work was supported by EPSRC grant

GR/S44501/01 and by a Royal Society of Edinburgh /

Scottish Executive Support Research Fellowship. Mar-

kus Tauber and Rob MacInnis contributed to the de-

velopment of the distributed commit algorithm.

8. References

[1] L. M. Minsky, Computation: Finite and Infinite Ma-

chines: Prentice Hall, 1967.

[2] G. N. C. Kirby, A. Dearle, S. J. Norcross, M. Tauber,

and R. Morrison, “Secure Location-Independent Sto-

rage Architectures (ASA)”, 2004 http://www-

systems.dcs.st-and.ac.uk/asa/

[3] L. Lamport, R. Shostak, and M. Pease, “The Byzantine

Generals Problem”, ACM ToPLaS, vol. 4 no. 3, pp.

382-401, 1982.

[4] “Borland Together”, 2007 http://www.borland.com/

[5] G. N. C. Kirby, R. Morrison, and D. W. Stemple, “Lin-

guistic Reflection in Java”, Software - Practice & Ex-

perience, vol. 28 no. 10, pp. 1045-1077, 1998.

[6] D. Brand and P. Zafiropulo, “On Communicating Fi-

nite-State Machines”, Journal of the ACM, vol. 30 no.

2, pp. 323-342, 1983.

[7] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting

Style in Architectural Design Environments”, Proc. 2nd

SIGSOFT Symposium on Foundations of Software En-

gineering, New Orleans, USA, pp. 175-188, 1994.

[8] N. Medvidovic and R. N. Taylor, “A Classification and

Comparison Framework for Software Architecture De-

scription Languages”, IEEE Transactions on Software

Engineering, vol. 26 no. 1, pp. 70-93, 2000.

[9] A. Dearle and A. L. Brown, “Safe Browsing in a

Strongly Typed Persistent Environment”, Computer

Journal, vol. 31 no. 6, pp. 540-544, 1988.

[10] J. Hooman, “Verification of Distributed Real-Time and

Fault-Tolerant Protocols”, in Lecture Notes in Com-

puter Science 1349, Springer, pp. 261-275, 1997.

[11] N. Dragoni and M. Gaspari, “An Object Based Algebra

for Specifying a Fault Tolerant Software Architecture”,

Journal of Logic and Algebraic Programming, vol. 63,

pp. 271-297, 2005.

