arXiv:1006.3463v1 [cs.DC] 17 Jun 2010

Applying Constraint Solving to the Management
of Distributed Applications

Andrew J. McCarthy, Alan Dearle and Graham Kirby

School of Computer Science, University of St Andrews, Jack Cole Building, North
Haugh, St Andrews, Fife, KY16 9SX
{ajm,al,graham}@cs.st-andrews.ac.uk

Abstract. We present our approach for deploying and managing dis-
tributed component-based applications. A Desired State Description (DSD),
written in a high-level declarative language, specifies requirements for
a distributed application. Our infrastructure accepts a DSD as input,
and from it automatically configures and deploys the distributed appli-
cation. Subsequent violations of the original requirements are detected
and, where possible, automatically rectified by reconfiguration and rede-
ployment of the necessary application components. A constraint solving
tool is used to plan deployments that meet the application requirements.

1 Introduction

Distributed applications are ubiquitous and are used to provide crucial capabil-
ities in a wide range of fields. In commerce, business processes are increasingly
manifested as distributed graphs of co-operating services. In the data centre, web
applications are generally designed and deployed as distributed three-tier appli-
cations. Wireless sensor networks form distributed applications, used to measure
and monitor various phenomena in a range of environments. Such distributed
applications require considerable expertise and effort to design, build, deploy
and manage, resulting in high costs.

All of the tasks in application development are challenging and complex,
from deciding on the appropriate abstractions and the architectural design to
the implementation and testing of the business logic. The development task is
further complicated when the application is distributed and comprises many
different co-operating components executing on different hosts. The developer
must:

— decide how the application should be partitioned into a set of components
which will execute over a collection of hosts

— provide mechanisms for binding components and services

— consider the additional failure modes which are possible due to the applica-
tion’s distributed nature

During development, an application is usually tested continuously. Unit test-
ing of components may be straightforward. Integration testing of the application

as a whole is often more challenging, since its distributed nature must be taken
into account. The developer will usually need to fully deploy the application in
a test setting before shipping it to a production environment.

After an application has been developed and tested it must be deployed. This
involves choosing an execution site for each component, arranging delivery of
code to each execution site, and orchestrating the instantiation of the distributed
application as a graph of interdependent components.

Once deployed, an application must be managed. This requires that the appli-
cation is monitored to ensure that it is operating as intended and that corrective
action is taken when a failure occurs. There are many issues to consider when
managing a distributed application; possible problems include loss of network
connectivity, over-demand for network bandwidth or application services, fail-
ure of components, failure of computational resources and unbalanced resource
utilization. For a system administrator, diagnosing such failures or conditions
and creating a recovery plan is a complex, difficult and time-consuming task.
Eventually, new functionality will be introduced into the application, perhaps in
response to changing operating conditions or to fix a bug, requiring the imple-
mentation of the application to be upgraded. This may involve introducing new
components, upgrading existing components, utilizing new hardware or provi-
sioning for a changed level of demand for the application.

In this paper we present an approach which addresses the problems and is-
sues described above. Our approach is based on Desired State Management, a
declarative approach to the problems of deploying, managing and maintaining a
distributed application. An application administrator describes the properties of
a desired state for a distributed application; the runtime system then configures,
deploys and manages the application in an attempt to ensure that it conforms
to that desired state. An application may be maintained or evolved by rewrit-
ing appropriate parts of the desired state description, perhaps to utilize a new
implementation of a component, and the runtime system makes the appropri-
ate changes to the deployed application. We present a proof of concept of our
approach by introducing our Java implementation, the Deladas Runtime.

2 Related Work

A number of languages have been developed to describe software architectures,
including [T2I3]. Typical of these is Acme [4], which is intended to fulfil three
roles: to provide an architectural interchange format for design tools, to provide
a foundation for the design of new tools and to support architectural mod-
elling. The Acme language supports the description of components joined via
connectors, providing a variety of communication styles. Components and con-
nectors may be annotated with properties that specify various attributes. Acme
also supports a logical formalism based on relations and constraints that per-
mits computational or run-time behaviour to be associated with the description
of architectures. Acme does not, however, support the deployment of systems

from the architectural descriptions, nor does it express constraints on physical
resources.

The SmartFrog framework [5] is similar to this work in its motivation, to ad-
dress the problems of describing, deploying and managing complex, distributed
assemblies of software components. SmartFrog consists of a declarative language
for describing component collections and component configuration parameters,
and a runtime environment which activates and manages the components to de-
liver and maintain running systems. In SmartFrog each component transitions
through life-cycle states in lock-step with all other components in the deploy-
ment. The SmartFrog life-cycle/service model is similar to [6] which also utilizes
constraint-based deployment. However, they advocate propagative deployment
and maintain global constraints through the use of a consensus algorithm.

Hein and Ritter [7] describe a model driven system for the evaluation of global
constraints in a distributed system. In their work an application is developed
as a collection of CORBA components. Their system introspects each of the
components to discover their state and structure. This information is used to
create a snapshot of the application which is checked for consistency against the
model.

The system described in this paper is most like [§] which is an environment for
a adapting distributed applications to heterogeneous environments. The frame-
work relies on declarative specifications (like Deladas), a runtime environment
called Smock and an AI planner (described below). The specifications contain
descriptions of components that specify the required and implemented inter-
faces and conditions that must hold for component instances. The Smock run-
time provides three distinct pieces of functionality: a proxy mechanism, wrapper
components on each host and cache coherence mechanisms. The proxy mecha-
nism causes requests for services to be sent to the AI planner which decides on
the appropriate selection and placement of components. The wrapper abstracts
over node specifics allowing (Java) components to be loaded onto nodes in a
generic manner. The cache coherency mechanisms provide directory level cache
coherence amongst nodes sharing replicated data.

Another paper by some of the same authors [9] focuses on the problem of
initial placement, which they call the Component Placement Problem (CPP).
The authors describe an Al planning algorithm called Sekitei for solving the
CPP which is defined to have five elements: the network topology, the component
deployment behaviour, the application framework, the link crossing behaviour
and the CPP goal. The network topology is described as a set of links between
nodes; the application is defined as sets of interfaces and components. The link
crossing behaviour is defined by functions which describe properties of inter-
machine links. Finally, the CPP goal describes the desired state of the system
with respect to placement. The Sekitei algorithm utilises Al planning techniques
to reduce the size of the search space in order to achieve scalability. Sekitei is
implemented as a pluggable component of the Smock framework described above.

[10] exploits a planner to generate workflows for Grid applications. The plan-
ner searches alternative deployment plans using heuristics to attempt to find high
quality deployment solutions.

3 Approach

Our general approach is to apply declarative and generative techniques to the
deployment and management of distributed component-based software. Our goal
is for application administrators to specify their deployment and management
requirements for a distributed application declaratively and concisely in a high-
level domain specific language. From this description, appropriate infrastructural
elements are generated which are used to configure, deploy, monitor and manage
the administrator’s distributed application.

Administrator-led
evolution

Constraint model

No—
: Omp\'le
Desired State [~ T sop
Description (DSD) Solutions
___npy
gvolve psD /
; ian of m,
on violatio Wt
constraints %o,
|
s Current I
e : Configuration | Configurations
F e e 3
i
l‘ monitor %@/
\ ,‘\d‘)
\\ X ‘/0
Tee Deployed Desired
Application e—enact— Configuration

Fig. 1. Approach Overview.

In Figure [I] we show an overview of our approach. The initial input to the
process is a human readable desired state description (DSD). A DSD is a specifi-
cation of the hardware and software resources available, plus a set of constraints
on the deployed software, and optionally an optimization function expressed in
terms of the desirable characteristics of the deployment. The constraints address
aspects such as component connection topology, component instance placement
on physical hosts, and choice of component implementations/versions.

The DSD is compiled into a lower-level domain-neutral constraint satisfaction
problem (CSP). A CSP is expressed by declaring a set of variables whose values

are drawn from a set of discrete domains, satisfying a set of given constraints.
An example of a variable is an integer v1, the value of which should be assigned
from the continuous domain of 0..10. Constraints are typically binary relations,
for example, the constraint that the value of one variable v1 is greater than the
value of another variable v2. Solving a CSP requires finding a set of consistent
value assignments for the variables that satisfies all of the constraints. Each
domain-neutral candidate solution is re-mapped into the specification domain
to produce a set of candidate Configuration Description Documents (CDDs). A
CDD describes a particular mapping of components to hosts and interconnection
topology that satisfies the DSD. The most suitable candidate configuration is
chosen and enacted to produce a deployment.

When a configuration is enacted, bundles are generated, encapsulating each
component’s implementation; these are sent to and instantiated on the appro-
priate hosts. Each bundle is an XML-encoded closure containing the code and
data necessary to instantiate the component on a host. The bundle also includes
custom probes and remote management interfaces to support monitoring and
management of the deployed component. Implementations of these are gener-
ated as a side effect of the DSD compilation process described above. The man-
agement interfaces permit the manipulation of inter-component bindings during
distributed application instantiation and maintenance.

As the application executes, it is monitored using the generated probes, which
update a conceptually centralized (but physically distributed) model of the cur-
rent configuration. This model is periodically compared to the desired state
description. If it is detected that the model has ceased to satisfy the constraints
specified in the DSD, the DSD is evolved to take account of the currently avail-
able hardware and software resources, and the solving cycle is repeated. This
may occur as a result of failures of components or hosts within the deployment.
Evolution may also be initiated by a human administrator, allowing compo-
nents in the distributed application to be upgraded, or new components to be
introduced.

3.1 Specifying Desired State

DSDs are specified in the declarative Deladas language, similar in style to ar-
chitecture description languages. The language’s universe of discourse includes
interfaces, component types, templates, hosts and constraint sets.

An interface specifies the contract for interaction with a particular service.
It does not describe individual methods as in languages such as CORBA IDL.
Instead, it defines a URI specifying a concrete language-level interface, and the
location of its implementation.

A component type describes a coarse-grain software entity. The definition
includes the location of an implementation, and specifies the interfaces that it
provides to other components and requires from other components. A component
type may include a number of named properties, either constant with a defined
value, or dynamic with a value determined at execution time.

Templates are used to factor out details that are common to multiple compo-
nent types. A template defines provided and required interfaces, and, optionally,
properties. A component definition may extend a template. Templates allow ab-
stract, reusable, component-based architectural patterns and styles [I1] to be
described. Such patterns and styles typically represent well understood, tried
and tested architectures for component-based systems. Patterns and styles may
also describe rules of a regulatory or compliance nature, for example, to restrict
where certain classes of computation can take place.

A host definition describes a physical machine capable of executing compo-
nents, with a number of constant or dynamic properties.

A constraint [I2] set contains predicates defined over various characteristics
of a deployed application. When all the predicates hold, the application is said
to be compliant with the constraint set, which constrains the manner in which
the application is deployed—for example, with regard to the mapping of com-
ponents to hosts, or the inter-component connection topology. Constraint sets
are used to yield an initial satisfactory configuration for deployment, and also
to detect desired state violations by a deployed application. The constraint al-
gebra includes universal and existential quantifiers over components, templates
and hosts, predicates over component connection topology, and expressions over
properties.

We now introduce the syntax and expressibility of the Deladas language
through a simple example application, a Maths service, which allows users to
invoke simple mathematical operations. The service is implemented by one or
more equivalent components, each of which in turn requires references to other
components that provide multiplication and division services. Once the applica-
tion has been deployed, a user can access it by locating one of the main service
components and invoking its interface. Figure [2] shows an example DSD that
describes the desired structure of the application.

Interfaces Three interfaces are declared: IMathsService, IMultiplicationService
and [AdditionService. The implementation type of each interface is Java; each
specifies a concrete interface in the form of a Java interface name, and the
location of a definition of that interface.

Templates The template MathsService Template is introduced to illustrate the
language construct, though it is not strictly necessary for this example. The
provides and requires clauses state that the interface IMathsService is provided
to clients, and that the interfaces IMultiplicationService and IAdditionService
are required by the template. The template also declares the properties vendor
and queriesPerSecond.

Component types The component type MathsService extends MathsService Tem-
plate, with the following consequences:

interface IMathsService (
type = "java"
specification = "com.math.IMathsService"
implementation = "http://www.cs.st-andrews.ac.uk/deladas/mathsService.jar"

)

interface IMultiplicationService (
type = "java"
specification = "com.math.IMultiplicationService"
implementation = "http://www.cs.st-andrews.ac.uk/deladas/multiplicationService.jar"

)

interface IAdditionService (
type = "java"
specification = "com.math.IAdditionService"
implementation = "http://www.cs.st-andrews.ac.uk/deladas/additionService.jar"

)

template MathsServiceTemplate (
provides interface IMathsService
requires IMultiplicationService multiplication, IAdditionService addition
properties (
constant string vendor
dynamic int queriesPerSecond

)

component type MathsService extends MathsServiceTemplate (

implementation "http://www.cs.st-andrews.ac.uk/deladas/mathsService.jar"
instantiate mathsServiceImpl with com.math.MathsService("hello")
satisfy IMathsService using mathsServiceImpl
bind multiplication with mathsServiceImpl.setMultiplyService()
bind addition with mathsServiceImpl.setAdditionService()
initialise mathsServiceImpl.init()
destroy mathsServiceImpl.shutdown()
properties (

vendor = "CalculusSoftware"

queriesPerSecond providedBy mathsServiceImpl.qgps()

accuracy = 2

)

component type MultiplicationService (
provides interface IMultiplicationService
implementation "http://www.cs.st-andrews.ac.uk/deladas/multiplicationService.jar"
instantiate multServiceImpl with com.math.MultiplicationService()
satisfy IMultiplicationService using multServiceImpl

component type AdditionService (
provides interface IAdditionService
implementation "http://www.cs.st-andrews.ac.uk/deladas/additionService. jar"
instantiate addServiceImpl with com.math.AdditionService()
satisfy IAdditionService using addServicelImpl

Fig. 2. Interface, Template and Component Declarations.

— The component must satisfy each of the provided interfaces declared by the
template, in this case only IMathsService. This means that the component
type must specify how the provided interfaces are implemented.

— The component will be provided with each of the required interfaces declared
by the template, in this case IMultiplicationService and [AdditionService.

— The component type must specify how values are associated with each of
the properties declared in the template, in this case vendor and queriesPer-
Second.

The first line in the body of the component type declaration specifies the lo-
cation of a Java implementation. This implementation is consulted during com-
pilation of the DSD to facilitate type checking and generation of appropriate glue
code. Next, an instantiate construct specifies that each instance of the compo-
nent type should instantiate the implementation class com.math. MathsService
using the constructor taking the single given string parameter. The implementa-
tion object is referenced as mathsServiceImpl in the remainder of the declaration.
The next line specifies that the provided interface IMathsService should be imple-
mented by that implementation object. The following two lines describe how the
component binds to its required interfaces. The first bind clause states that the
interface multiplication, which is inherited from MathsServiceTemplate, should
be bound to the implementation object by calling its method setMultiplyService().

The initialise clause specifies that when a component is initialised the method
init() should be called on the implementation object. The destroy construct
specifies that the method shutdown() should be called on the implementation
object before the component is destroyed. Finally, the component’s properties
are defined. Constant values are specified for vendor and accuracy, while the
value of queriesPerSecond is calculated dynamically by calling the method g¢ps()
on the implementation object.

Figure [3| continues the DSD specification for the Maths service. This part of
the DSD defines the available hosts and a constraint set.

This example illustrates the use of host templates to capture properties com-
mon to a set of hosts. The host templates Blade and CloudBlade define different
values for the host property speed. Five instances of each host template are de-
clared. The constraints specify that:

— every component of type MathsService must be located on a host with a
speed of at least 2000.

— no component of type AdditionService may have more than two other com-
ponents connected to it.

— no host may have more than one component located on it.

— there must be at least three components of type MathsService.

4 Implementation

The Deladas Runtime is our prototype Java implementation of this approach. It
builds on the CINGAL deployment framework [13I14] and our initial work using
constraints as a tool for autonomic management [I5].

host template Blade (speed = 1000)
host template CloudBlade (speed = 3000)

host hl extends CloudBlade (address = "server5.deladas.com")
host h2 extends CloudBlade (address = "server6.deladas.com")
host h10 extends Blade (address = "serverl4.deladas.com")

constraintSet mathsServiceCons (

forall MathsService mathsComponent in deployment (
getHost (mathsComponent) . speed >= 2000

)

and

forall AdditionService additionComponent in deployment (
card(connections(additionComponent.IAdditionService)) <= 2

)

and

forall host h in deployment (card(getComponents(h)) <= 1)

and

card(instances0f (MathsService in deployment)) >= 3

Fig. 3. Constraints for the Maths Service.

4.1 Implementation of Compilation and Solving Mechanisms

A DSD contains the specification of the hardware and software resources avail-
able, plus a set of high-level constraints on the deployed application. The DSD
is compiled into a lower-level domain-neutral constraint satisfaction problem
(CSP), which is then solved to yield a number of domain-neutral solutions. These
solutions are then mapped back to the DSD domain to yield a number of can-
didate configurations.

A constraint solver comprises a notation for modeling a CSP and one or more
algorithms, such as backtracking and constraint propagation, that are used to
solve the CSP. We have built a framework for compiling and solving DSDs built
on ILOG’s JSolver [16]. Other available constraint solvers include MINION [17]
and Cream [18]. JSolver is a Java library that provides an object model for
modeling CSPs and a collection of solving algorithms. A CSP is modeled by
constructing a graph of Java objects in which each node is a constrained integer
or boolean variable, and the arcs are constraints over those variables. Constraints
include basic binary constraints and complex constraints over collections of vari-
ables, such as all different. The solving process performs a search over the graph
and assigns a values to each variable that is consistent with the specified con-
straints.

There is a wide gap between the level of abstraction used to model CSPs in
tools such as JSolver and the abstractions used by an application administrator
to express desired state descriptions in Deladas. Similarly, the result of solving a
CSP, namely a set of assignments to integer and boolean variables, is far removed
from the architectural configurations required for application deployment. Thus,
a DSD must be compiled into a CSP, and a CSP solution must be mapped back
into a deployment configuration.

Our solving framework has three main parts:

— A single general CSP, which models the general class of problem described
by DSDs:
e the number of instances of each component type to be instantiated
e the mapping of component instances to physical hosts
e the interconnection topology between component instances
— A CSP generator, which generates a new CSP for each DSD, based on the
general CSP.
— An API providing a bridge between the constrained variables in the general
CSP and the constraints expressed in a DSD.

General CSP The general CSP models the common parts of the configuration
problem that must be solved for every DSD. It consists of a set of constrained
variables and a set of default constraints over these variables. The CSP is the
union of two sub-problems; the first models the number of instances of each
component type and the hosts on which they are placed; the second models
the component connection topology. The sub-problems are linked by constraints
which reference each other.

Model I: Instance instantiation and placement This model contains con-
strained variables representing all possible combinations of component and tem-
plate instances on hosts. Each variable has a discrete domain of 0,1 with 1
indicating presence of an instance. For example, the model for the Maths ser-
vice includes a constrained variable corresponding to host h3, component type
MathsService and component count 4. If, in a solution, this variable has the
value 1, this indicates that the deployed application should locate 4 instances of
MathsService on host h3.

Model II: Interconnection topology This model contains constrained vari-
ables representing all possible connections between component instances. For
example, the model for the Maths service includes a constrained variable corre-
sponding to the provided interface IMultiplicationService of the second instance
of MultiplicationService on host h2 and the required interface multiplication of
the third instance of MathsService on host hd. If, in a solution, this variable has
the value 1, this indicates that a connection should be established between the
corresponding component instances.

To improve solving efficiency, some basic pruning is performed to avoid cre-
ating variables corresponding to impossible connections, for example where in-
terfaces are incompatible. A number of default constraints are placed on the
variables in this model, some of which also reference variables in Model I. These
capture the following;:

— a connection between two component instances may only exist in a configu-
ration if both component instances also exist

— each of a component’s required interfaces must be connected to exactly one
provided interface

API The API is intended to bridge between the problem-independent general
CSP and the problem-specific CSP generated from the DSD. It provides a set
of abstractions modelling entities in the DSD’s universe of discourse and a set
of functions, operating over those abstractions, modeling Deladas functional-
ity. Thus the API provides the abstractions hosts, components and templates. It
also supports the abstractions potential-instance, modeling a component instance
that may be placed on a host, and potential-connection, modeling a connection
which may or may not exist between two components. Each abstraction sup-
ports appropriate operations—for example, potential-instance permits the host,
component and template type of the potential component it represents to be
discovered.

The API functions permit sets of entities to be constructed, manipulated
and constrained. The use of the API can be illustrated through the use of a
simple example, utilizing four functions from the API: components(), card(),
lessThanEquals() and addConstraint(). The components() function accepts one
parameter of type Host and returns the set of all potential-instances which may
exist on that host in some configuration. The card() function accepts one pa-
rameter which is a set of potential-instances and returns an expression which
represents the cardinality of the provided set. The lessThanFEquals() function
returns a constraint which constrains the value of an expression to be less than
or equal to a given integer. The addConstraint() function registers the provided
constraint with the solver.

Using these functions a simple constraint set written in Deladas may be
compiled into a problem-specific CSP extending the general CSP provided by the
framework. The following Deladas example, specifying that the host h1 should
have at most two components placed on it for execution:

// Deladas specification
constraintSet structuralCons (
card(components(hl)) <= 2

)

may be transformed into the following Java code:

// Java CSP specification
public class SpecializedCSP extends GeneralCSP {
protected void structuralCons() {
addConstraint (lessThanEquals (card(components(
getHostByName ("h1"))),2));
}
}

The generated Java class Specialized CSP extends the class GeneralCSP, which
implements the functions in the Deladas API, giving the generated code access
to the API functions through Java inheritance. The host hl referred to in the
Deladas specification is manifested in the generated code by a look-up which
extracts a set of potential-instance variables that may exist on host h1 from the
constraint model. The constraints operate over this set of potential-instances.
The structuralCons() method adds a single constraint to the solver expressing
the constraint expressed in Deladas. The API functions mirror those found in
the Deladas specification and manipulate the data structures contained in the
model to achieve the appropriate semantics. This syntactic trick enables bridging
from the Deladas domain to the low-level domain of the constraint solver.

When Specialized CSP is invoked, and some solution is found, the components
assigned to the host h! may be determined by calling the components() function
described above. Configuration details may be extracted in a similar manner from
the other types of variables. Thus the assignments made in the solver’s domain
may be translated back into the high-level domain of the Deladas specification
and a configuration description created.

CDD generation The solving framework generates a new CSP for each DSD.
The generated classes are dynamically loaded into the solving framework and
instantiated. The solver is then invoked to yield a set of solutions for the gen-
erated CSP. As described above, solutions to the CSP must be mapped back
into the problem domain to yield architecture configurations. This is achieved
by iterating over each constrained variable in Model I & II that represents a po-
tential instance or potential connection. The assignment of the value of 1 to such
a variable indicates that an instance or connection should be manifested in the
deployment. Architecture configurations are represented as XML Configuration
Description Documents (CDD).

Picking a configuration Once a set of candidate CDDs has been generated,
one must be chosen and enacted. If the user has specified an optimization func-
tion, the generated configurations will already be in order of user preference.
One possible action for the picker is to simply choose to enact the first and
most preferred configuration. However, it is possible that a better decision can
be made—for example, if the application is already deployed and the solver has
been invoked in response to a DSD violation arising from a host failure. In this
case, the first candidate configuration might require that the existing application

deployment be considerably evolved. A better choice would be for the picker to
select a candidate configuration which is closer to the current deployment, re-
ducing the re-deployment required. The picker is configurable with respect to
such policies.

Enacting a chosen configuration Enactment is the process of taking a chosen
CDD and creating a running deployment. Enactment of a CDD is a complex task
[14], requiring the following:

— Each component is packaged for transmission.

— Each component package is signed and sent to the appropriate hosts for
execution.

— Upon arrival at a host, each component is verified to ensure that the signer

has the appropriate rights to execute a component on that host.

Once verified, each component is instantiated in its own address spacdﬂ

— Each component is provided with its required interfaces.

Once a CDD has been chosen, the components it describes must be deployed
onto the appropriate hosts. This requires that the hosts have the appropriate
infrastructure already deployed on them, and that the components are appro-
priately packaged to support life-cycle management.

To provide a dynamic deployment capability, we have developed a thin server
architecture [I3], which is used as a hosting platform for dynamically deploying
components. Each thin server is essentially a light-weight daemon supporting a
single operation fire(), which permits a bundle to be instantiated on it, provided
that appropriate credentials are presented.

In order to facilitate deployment, each component is packaged into a bundle
which may be sent to a thin server. To support life-cycle management, the bundle
includes a Component Manager, which encapsulates the functionality required
to perform deployment, undeployment, monitoring, initialization, destruction,
querying of properties, and injection and substitution of service references re-
quired by the component. This management functionality, exposed through a
set of standard interfaces, is used to monitor and manage each component and
thus collectively, the entire deployment.

Life-cycle management In order to execute correctly, components must be
provided with references to the services on which they depend. The Deladas
Runtime injects such references into components using setter injection [19]. To
facilitate this, all inter-component references are made via an automatically gen-
erated smart-prozy located in the same address space as the caller. If a compo-
nent attempts to use a service before a reference has been bound, or during
configuration evolution, the call blocks in the smart-proxy until a reference is

! For the purposes of this paper we assume that each component executes in its own
address space—however, it is possible to deploy multiple components in a single
address space with our implementation.

injected. This mechanism decouples the management of the distributed system
from the management of an individual component. The benefits are that com-
ponents are not aware of which other components they are bound to, and that
bindings between executing components can be dynamically evolved.

The Component Manager carries out a number of actions when instantiating
its component:

— it creates appropriate instances of the component’s classes, as prescribed in
the DSD;

— it instantiates and records a smart-proxy for each of the required services;

— it deploys each of the component’s provided services to make them available
to external clients;

— if the DSD specifies one or more initialization methods, it calls them to run
the component.

When a Component Manager is requested to undeploy its component, it
first disables each of the component’s provided services, allowing any ongoing
requests to complete. The component’s required services are disabled via their
smart-proxies, preventing further outgoing calls from being made. Next, it calls
the component’s destroy life-cycle methods declared in the DSD, to allow any
necessary cleanup actions to be performed. The final action is to indicate to the
thin server that it may terminate any processes required by the component.

5 Solver Performance

Table [I] shows the performance of the solver on a variety of DSDs expressed
in Deladas. Performance data was gathered on a single 3GHz Pentium 4 work-
station with 1GB RAM running Windows XP (SP2). Each DSD was compiled
and solved three times to produce an average of the time required to find all
solutions. The times indicated are the CPU time for the Deladas compiler, as
reported by the class java.lang.management. Thread M X Bean.

Column 1 contains the experiment number. Columns 2 and 3 contain the
number of component types and hosts in the DSD. Columns 4 and 5 show the
number of low-level variables and constraints contained in the generated CSP.
Column 6 shows the number of different solutions to the CSP found by the solver.
Columns 7-9 show the times to find the first solution, the first 1000 solutions,
and all solutions.

The table shows the results for four groups of experiments, each demonstrat-
ing different facets of the solver’s performance. In experiments 1-5, solutions for
the deployment of a single instance of a single component type are found, with
the number of hosts ranging from 1 to 16. Since every variable in the CSP has
a domain of 0,1, the solution space is exponential in the number of variables, as
demonstrated in the numbers of candidate solutions found.

The effect of constraints on the solution space is demonstrated in experiments
6 and 7. These describe deployments containing client and server components, in
which every client requires a single interface provided by a server. In experiment 6

DSD|Comp.|Hosts| CSP CSP CSP First 1000 All
Types Variables| Cons. | Solutions [Solution(s)|Solutions(s)|Solutions(s)
1 1 1 1 1 2 1.8 - 1.8
2 1 2 2 2 4 1.6 - 1.6
3 1 4 4 4 16 2.0 - 2.0
4 1 8 8 8 256 1.7 - 1.7
5 1 16 16 16 65,536 1.7 1.8 2.0
6 2 4 80 152 123,763,041 2.1 2.1 1,200
7 2 4 80 156 104 2.3 - 2.3
8 2 16 288 592 |>180,000,000 2.4 2.5 >1,800
9 2 128 | 16,650 | 33,408 - 3.7 6.9 -
10 2 512 | 263,168 (527,872 - 41.0 85.2 -
11 3 10 230 481 5,634,300 2.9 2.9 76.7

Table 1. Solver Performance

the DSD permits up to two instances of every component type to be deployed on
each host. Experiment 7 adds a further constraint that at most one component
may be placed on any host. The additional constraint results in a very large
reduction in the solution space, and consequently the time taken to find all
solutions.

Experiments 8, 9 and 10 show the efficacy of the solver for larger numbers of
hosts. From this it can be observed that it is impractical to wait for all candidate
solutions to be found. However, in every case a first solution is found reasonably
quickly. It may not be necessary to wait for all solutions to a DSD in order to
receive an acceptable configuration. The use of optimization functions permits
an administrator or a process to specify desirable aspects of a deployment. We
anticipate that this will reduce the number of solutions a solver finds and increase
the quality of those solutions. We intend to investigate mechanisms to trade off
the number of solutions generated with the time taken to produce those solutions.
One promising policy is to use optimization functions to specify the qualities of
a good solution, and to specify an upper bound on search time—and select the
best candidate configuration found within this bound. This work is ongoing.

Experiment 11 shows the time to solve the Maths service example. Despite
having a realistic number of component types, hosts and constraints, 5 million
solutions are found in a little over a minute.

6 Status and Future Work

The implementation of our approach is in progress. As of June 2008, we have im-
plemented the language parser, solvers, code generators, and deployment mech-
anisms. Consequently, we can can deploy distributed (Java) applications. The
deployed code includes the component managers, probes and smart-proxies de-
scribed above.

We are concerned about the number of solutions that are generated by the
constraint solver. This may be addressed by adding optimization functions to
the DSD, permitting users to specify desirable characteristics of the deployment.
Optimization functions permit the constraint solver’s search space to be reduced
and allow the ranking of solutions.

We are currently building a distributed monitoring infrastructure to collect
probe data and events occurring in the deployment. Our current framework
has a set of standard probes which monitor aspects of a deployment such as
component life-cycle (failure/shutdown), host resource levels and host failure.
Assertion probes embodying constraints in the DSD ensure that assertions and
constraints hold for the component or host they are monitoring. Such events
will be reported to a Realm Manager responsible for monitoring and managing
components and hosts. We observe that the runtime detection of constraint
violations is a different activity to constraint solving. In the runtime currently
under construction, the detection of violations will be the responsibility of the
Realm Manager, which will dynamically invoke the constraint solver to determine
new configurations as shown in Figure [T}

The utility of a configuration may be characterised both in terms of its fit
for purpose at some instant and its ability to continue to perform well in the
future. The latter may be expressed in terms of robustness and stability. A
robust solution is one that requires minimal alterations in deployment in the
face of changes in workload, server failure, network congestion, etc. The nature
of these changes may be more or less understood depending on the nature of
the deployment environment. Understanding the robustness of a solution gives
a measure of the flexibility of the solution. Stability characterises the trade-off
between the benefit of deploying a solution and the overall cost of deployment. In
some cases, a (re)deployment may deliver high value, while in others the benefit
may be outweighed by the cost.

In order for a solver to take account of stability, it would need to model
both the cost of enacting a candidate configuration, and the benefit gained by
doing so. To take account of robustness, the solver would need to be able to
predict the likelihood of future events, and be able to model the impact of the
reconfigurations required by those events.

7 Conclusions

We believe that automatic management of distributed application deployment
will become essential as the scale and complexity of applications grow. This paper
has outlined a framework to support the initial deployment and subsequent
evolution of distributed applications in the face of perturbations such as host
and link failure, temporary bandwidth problems, etc. The knowledge required
for automatic management is specified in the form of a set of available hardware
and software resources and sets of constraints over their deployment.

We have demonstrated that it is possible to apply constraint satisfaction
techniques to the problem of finding deployments that are compliant with a

declarative specification. The approach we have taken involves the creation of a
generic constraint satisfaction problem which describes the general problem of
component placement and component interconnection. This general problem is
specialised by generating a domain-specific constraint problem from the speci-
fication. We have shown that constraint solvers can produce solutions quickly
even in cases where the number of potential solutions are extremely high. We
hypothesise that when optimisation functions are used the solution space will be
considerably reduced.

We have also described how components can be generated that contain the
infrastructure needed to control the entire component life-cycle including instan-
tiation, destruction, monitoring and evolution. This is achieved by incorporating
a Component Manager along with non-invasive smart-proxies into the deployed
code. The smart-proxies permit inter-component bindings to be changed within
an executing components and hence the distributed application to be evolved.

We have sketched how constraint satisfaction may be used at run-time to
control the evolution of applications. We are actively working on the next stage
of implementation which will support constraint-led evolution of distributed ap-
plications and hope to be able to report on this in the near future.

8 Acknowledgements

This work was supported by EPSRC Grants GR/M78403 Supporting Internet
Computation in Arbitrary Geographical Locations, GR/R51872 Reflective Ap-
plication Framework for Distributed Architectures and EP/C014782/1 Design,
Implementation and Adaptation of Sensor Networks through Multi-dimensional
Co-design.

References

1. Moriconi, M., Qian, X., Riemenschneider, R.A.: Correct architecture refinement.
IEEE Transactions on Software Engineering 21(4) (1995) 356-372

2. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software
evolution. In: International Conference on Software Engineering (ICSE 98), IEEE
(1998) 177-186

3. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.: Ab-
stractions for software architecture and tools to support them. IEEE Transactions
on Software Engineering 21(4) (1995) 314-335

4. Garlan, D., Monroe, R., Wile, D.: Acme: An architecture description interchange
language. In: Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON’97). (1997) 169-183

5. Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P.: Smartfrog:
Configuration and automatic ignition of distributed applications. In: HP OVUA.
(2003)

6. Hoareau, D., Maheo, Y.: Distribution of a hierarchical component in a non-
connected environment. In: EUROMICRO ’05: Proceedings of the 31st EUROMI-
CRO Conference on Software Engineering and Advanced Applications, Washing-
ton, DC, USA, IEEE Computer Society (2005) 143-151

10.

11.

12.

13.

14.

15.

16.
17.
18. :

19.

Hein, C., Ritter, T.: Global constraint checking at run-time. In: 8th International
Symposium on Autonomous Decentralized Systems (ISADS ’07). (2007) 59-68
Ivan, A.A., Harman, J., Allen, M., Karamcheti, V.: Partitionable services: A frame-
work for seamlessly adapting distributed applications to heterogeneous environ-
ments. In: HPDC ’02: Proceedings of the 11th IEEE International Symposium
on High Performance Distributed Computing, Washington, DC, USA, IEEE Com-
puter Society (2002) 103

Kichkaylo, T., Ivan, A., Karamcheti, V.: Constrained component deployment in
wide-area networks using Al planning techniques. In: IPDPS ’03: Proceedings of
the 17th International Symposium on Parallel and Distributed Processing, Wash-
ington, DC, USA, IEEE Computer Society (2003) 3.1

Blythe, J., Deelman, E., Gil, Y., Kesselman, C., Agarwal, A., Mehta, G., Vahi, K.:
The role of planning in grid computing. In Giunchiglia, E., Muscettola, N., Nau,
D.S., eds.: ICAPS, AAAT (2003) 153-163

Garlan, D., Allen, R., Ockerbloom, J.: Exploiting style in architectural design en-
vironments. In: Proceedings of the ACM SIGSOFT ’94 Symposium on the Foun-
dations of Software Engineering. (1994) 175-188

Freuder, E.C., Mackworth, A.K.: Handbook of Constraint Programming. Elsevier
(2006)

Diaz y Carballo, J.C., Dearle, A., Connor, R.C.H.: Thin servers - an architecture
to support arbitrary placement of computation in the internet. In Piattini, M.,
Filipe, J., Braz, J., eds.: 4th International Conference on Enterprise Information
Systems (ICEIS 2002), ICEIS Press (2002) 1080-1085

Dearle, A., Kirby, G.N.C., McCarthy, A., Diaz y Carballo, J.C.: A flexible and
secure deployment framework for distributed applications. In Emmerich, W., Wolf,
A.L., eds.: 2nd International Working Conference on Component Deployment (CD
2004). Lecture Notes in Computer Science 3083, Springer (2004) 219-233

Dearle, A., Kirby, G.N.C., McCarthy, A.J.: A framework for constraint-based
deployment and autonomic management of distributed applications. In: ICAC
’04: Proceedings of the First International Conference on Autonomic Computing,
Washington, DC, USA, IEEE Computer Society (2004) 300-301

: ILOG constraint programming. http://www.ilog.com/products/cp/ (2008)

: MINION. http://minion.sourceforge.net/| (2008)

Cream: Class library for constraint programming in Java. http://bach.istc.
kobe-u.ac. jp/cream/| (2008)

Fowler, M.: Inversion of control containers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html| (2004)

http://www.ilog.com/products/cp/
http://minion.sourceforge.net/
http://bach.istc.kobe-u.ac.jp/cream/
http://bach.istc.kobe-u.ac.jp/cream/
http://www.martinfowler.com/articles/injection.html

	Applying Constraint Solving to the Management of Distributed Applications
	Andrew J. McCarthy, Alan Dearle and Graham Kirby

