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Abstract

There are three main wave types present in the Sun’s atm@sphbBvén waves and fast and slow mag-
netoacoustic waves. Alén waves are purely magnetic and would not exist if it was potttie Sun’s
magnetic field. The fast and slow magnetoacoustic wavesoanarmed due to their relative phase speeds.
As the magnetic field tends to zero, the slow wave goes to zetioeafast wave becomes the sound wave.
When a resonance occurs energy may be transferred betwediffdrent modes, causing one to increase
in amplitude whilst the other decreases. This is known asawadiversion. Mode conversion of fast and
slow magnetoacoustic waves takes place when the chastitigrave speeds, the sound and &lfvspeeds,
are equal. This occurs in regions where the ratio of the gasspire to the magnetic pressure, known as the
plasmag, is approximately unity.

In this thesis we investigate the conversion of fast and stagnetoacoustic waves as they propagate
from low- to high{3 plasma. This investigation uses a combination of anallygind numerical techniques
to gain a full understanding of the process. The MacCormamtefdifference method is used to model
a wave as it undergoes mode conversion. Complementingrihigtacal techniques are employed to find
the wave behaviour at, and distant from, the mode-conuensigion. These methods are described in
Chapter 2.

The simple, one-dimensional model of an isothermal atmesppermeated by a uniform magnetic field
is studied in Chapter 3. Gravitational acceleration isudeld to ensure that mode conversion takes place.
Driving a slow magnetoacoustic wave on the upper boundanyersion takes place as the wave passes
from low- to highs3 plasma. This is expanded upon in Chapter 4 where the efféeson-isothermal
temperature profile are examinedt&nh profile is selected to mimic the steep temperature gradamtd
in the transition region. In Chapter 5 the complexity is #msed by allowing for a two-dimensional model.
For this purpose we choose a radially-expanding magnetit\itbich is representative of a coronal hole.
In this instance the slow magnetoacoustic wave is drivenangsvfrom the surface, again travelling from
low to highg. Finally, in Chapter 6 we investigate mode conversion neéamadimensional, magnetic null
point. At the null the plasm& becomes infinitely large and a wave propagating towards algaint will
experience mode conversion.

The methods used allow conversion of fast and slow waves tebkeribed in the various model at-
mospheres. The amount of transmission and conversion &elai@d and matched across the mode-
conversion layer giving a full description of the wave bebav.
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This cartoon shows the many layers of the Sun from the, ¢breugh the radiative zone
to the convective zone, and out into the atmosphere. Sonteedetatures which may be
observed at different heights in the atmosphere are alssrsho
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This image taken by Hinode’s Solar Optical Telescopevshbe solar surface. Energy is
transported to the solar surface by convection and it issthestions that make the granular
structure seen at the surface. The lighter areas are whasenglis rising from below and

the darker lanes show where it sinks back downwards.

Credit: Hinode JAXA/NASA/PPARC. . . . . . . . e e e e

The changing temperature from the solar surface outl@@orona. A minimum of about
4300 K is reached in the photosphere. The temperature thesto about 20 000 K at the
top of the chromosphere, before surging to over a milliorréegin the corona.

Credit: MSU. . . . . . .

Left: The solar corona viewed from the top of Mauna Kea, Hawaiirdu®a total solar
eclipse in 1991. The corona can be seen streaming out aslérersiod from the coronal
holes, with helmet streamers on either side.

Credit: NASA Astronomy Picture of the Day Collection. HAO &M\R.

Right: The solar corona as viewed by the LASCO C2 coronagraph ondo®@&HO on

2 June 1998 at 13:31 UT. In this image a bright CME is presetit &n enormous erupting
prominence.

Credit: Courtesy of SOHO/LASCO consortium. SOHO is a prb@dnternational coop-
eration between ESAand NASA. . . . . . . . . . e

An active region seen by the satellite TRACE in the é?dandpass on 19 May 1998. The
image shows coronal loops connecting two active regiongwshow up due to the plasma
lying along the magnetic field lines.

Credit: The Transition and Coronal Region Explorer, TRA@E mission of the Stanford-
Lockheed Institute for Space Research (a joint program eLitckheed-Martin Technol-
ogy Centre’s Solar and Astrophysics Laboratory and Statg@olar Observatory’s Group)
and part of the NASA Small Explorer Program. . . . . . . . . . .. . ... ... ...
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This image of a sunspot group was taken by the Swedish 1lar $elescope on the

15 July 2002. The SST is the largest optical solar telescogeurope and can observe
details as small as 70 km on the solar surface. In this imageamesee the tops of the
granular cells that cover the photosphere and a sunspopgirowhich the dark umbra and
surrounding penumbra are clearly visible.

Credit: Gdran Scharmer, ISP. Image processing: Mdit&lahl, ISP; Royal Swedish Academy
of Sciences. . . . . . 7

The changing Sun from solar maximum to solar minimum. s€h¥-ray images of the
solar corona were taken by Yohkoh at 120 day increments lgetd891 and 1995. As the
solar cycle wanes from maximum to minimum we can see the eocbange from having

a complex structure to a more simple configuration with arraleecrease in brightness

by 100 times.

Credit: G.L. Slater and G.A. Linford. The solar X-ray imagee taken from the Yohkoh
mission of ISAS, Japan. The X-ray telescope was preparedhdy vckheed Palo Alto
Research Laboratory, the National Astronomical ObseryaibJapan, and the University

of Tokyo with the support of NASAand ISAS. . . . . . . . . .. . . . ... ... 8

This image was taken by SOHO’s EIT instrument in the A0gassband on 5 Decem-
ber 1998. It shows the upper chromosphere at a temperat@ @0 K and some elon-
gated prominences may be seen in the upper left-hand corner.

Credit: Courtesy of SOHO/EIT consortium. SOHO is a projdéhternational cooperation
between ESAand NASA. . . . . . . . . e e 10

Left: The phase speeds for the Aéfiw wave and the fast and slow magnetoacoustic waves.
Right: The group velocities for the Aln wave and the fast and slow magnetoacoustic
waves.

The top row have:; < v4, the middle rowe, = v4, and the bottom rows > v4. In all

cases the magnetic field is aligned with the vertical digettthe horizontal axis gives the
z-direction, and the vertical axis thedirection. . . . . . . . ... ... ... ... .... 24

This figure shows how a domain may be broken down into aeSiart grid for solution
by a suitable finite difference scheme. The subscripénd ¢ refer thex andy indices
respectively, and the valuésx and Ay are the distances between cell boundaries. . . . . . 43

Numerical stencil for the Lax and Lax-Wendroff methodibe red dot indicates the point
that we start from (which is not used in the Lax method) andgtteen that for which we

are trying to find the value. The blue spots indicate the otiogles that are required in the
calculation of thisvalue. . . . . . . .. . . .. .. e 50

Numerical stencil for the Midpoint Leapfrog method. Tieel cross shows the starting
point, there is no dot as it is not part of the calculation. §heen dot is the point that we
are trying to find a value for and the blues are all the poingét #re needed to get to the
solution. . . . . . . e e e 51
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the predictor method, and the solid dots are those for thectar step. The red dots show
the starting point, the green dots the finishing point, aredlttue dots the points needed
alongtheway. . . . . . . . . . e 53

3.1 Cartoon of the model atmosphere with uniform verticagnedic field. Thez-axis points
upwards (opposite to gravity) and a slow wave is driven onujyger boundary travelling
down towards the mode-conversionlayepat 1. . . . . ... .. .. ... ... .... 56

3.2 Results of the numerical simulation with= 27v/6 andk, = 7 att = 13.5 Alfvén times.
The plots show the horizontal and vertical velocity, theiramtal and vertical magnetic
field, pressure and density respectively from top left tadmotright. The red dashed line
indicateSWhere, = v4. . . . . . . 0 o 0 e e e e 62

3.3 Results of the numerical simulation with= 27v/6 andk, = = att = 13.5 Alfv én times.
The plots show a transformation of the horizontal and valtielocity, the horizontal and
vertical magnetic field, pressure and density respectiiretn top left to bottom right. The
red dashed line indicateswhere=v4. . . . . . . . . . . . 0o 62

3.4 Surface plot of the horizontal velocity far = 271/6 andk, = w. The red dashed line
shows the position of the acoustic mode, the green dashethinposition of the magnetic
mode, and the blue dashed line the position of the slowmode.. . . . . ... ... .. 63

3.5 Transformed vertical velocity fay = 271/6 att = 13.5 Alfv én times. The plots show the
results fork, = 0, 0.25, 7/10, 1, 7/2, 2, w, 5 and7 respectively from top left to bottom
right. The dashed red line indicateswhege=v4. . . . . . . . . .. .. .. ... .... 65

3.6 Transformed vertical velocity fot, = = at¢ = 13.5 Alfvén times. The plots show the
results forw = 2m, 27v/6 and47/6 respectively from left to right. The dashed red line
indicateSWhere, = v4. . . . . . . o o i e e e 65

3.7 \Vertical velocity as predicted by Equation (3.85) with= 47/6 andk, = 7. The vertical
red dashed line denotes where= v 4; the horizontal dashed line to the right of this shows
the predicted amplitude of the incident wave and to the hedtpredicted amplitude of the
transmitted wave. . . . . . . . . . e e e e 71

3.8 Left: Ratio of the transmitted and incident wave amplitudes.

Right: Logarithm of the ratio of the transmitted and incident wawgpéitudes.

In both cases) = 47+/6 and the solid line is that predicted by Equation (3.86) ardstiars

are the values calculated from the numericaldata. . . . . . ... .. ... ... ... 72
3.9 Top Left: The variation ofd with &, for w = 27/6.

Top Right: The variation ofB with k, for w = 27/6.

Bottom Left:The variation of4 with w for &, = .

Bottom Right:The variation ofBwithwfork, ==. . . . ... ... .. ... ... ... 72

3.10 The cutoff frequenc§ shown across the computational domain. . . . . . . . ... .. 74

3.11 Vertical velocity for driving frequency = 4mv/6 and wavenumbek, = 407 att =
13.5 Alfvén times. The solid line shows the numerical simulation &eddashed line the
amplitude predicted by Equation (3.102). . . . . . . . .. ... e 75

Vi



3.12 Horizontal velocity for driving frequenay = 47+/6 and wavenumbekt, = 40r att =
13.5 Alfv én times. The solid line shows the numerical simulation &eddashed line the
amplitude predicted by Equations (3.92)and (3.102). . . ...... . . ... ....... 16

3.13 Transformed vertical velocity,, for driving frequencyw = 47/6 and wavenumbei, =
407 att = 13.5 Alfv én times. The solid line shows the numerical simulation aediashed
line the amplitude predicted by Equation (3.102). . . . . . ... .. ... 76

3.14 The numerical and analytical horizontal velocity amel humerical and analytical vertical
velocity respectively from top left to bottom right. In allgts w = 476, k, = = and
t=135Afventimes. . . . . . . . .. 80

3.15 The numerical and analytical transformed verticabe@y for w = 47v/6, k, = 7 and
t=135Alfventimes. . . . . . . . .. e 80

3.16 The absolute error between the results of the WKB aisadysl the numerical simulations
zoomed in around = 0 (wherec, = v4). The dashed line shows= +1/w demonstrating
that the WKB analysis only breaks down very close to the cmiwe region. . . . . . .. 81

4.1 The chosen temperature profile has the fdtm= a + btanh (dz/H) and is chosen to
mimic the steep gradient of the transition region. Here weetseta = 0.55, b = 0.45 and
d = 1.0. The dashed line indicateswhere=v,4. . . .. ... ... ... ... ..... 90

4.2 This plot shows how the sound and Adfvspeeds vary across the computational domain.
The mode-conversion region liesat 0 where these speedsareequal. . . . . ... ... 91

4.3 Results of the numerical simulation with = 27v/6./73,/2 andk, = = att = 7.2
Alfv én times. The plots show the horizontal and vertical vejottie horizontal and vertical
magnetic field, pressure and density respectively from &ptd bottom right. The red
dashed line indicateswhete =v4. . . . . . . . . . . e 93

4.4 Results of the numerical simulation with= 27v/6+/700/2 andk, = 7 att = 7.2 Alfvén
times. The plots show a transformation of the horizontahatical velocity, the horizontal
and vertical magnetic field, pressure and density respsgtivtom top left to bottom right.
The red dashed line indicateswhete=v4. . . . . . . . . . .. . ... ... ... . 93

4.5 Surface plot of the transformed horizontal velocity for= 27v/6+/v50/2, k, = 7 and
d = 1. The red dashed line shows the position of the acoustic nibdegreen dashed line
the position of the magnetic mode, and the blue dashed lepdhkition of the slow mode. 95

4.6 Transformed vertical velocity far = 271/6+/v3,/2 andk, = 7. The plots showd = 0.5,
1 and1.5 respectively from left to right. The dashed red line indesatvhere:; = v4. .. 96

4.7 The transformed vertical velocity far = 27\/v53/2, k., = m andd = 1.5. The plots
showt = 1.2, 3.6, 5.9 and 9.5 Alf&én times respectively from left to right. The red dashed
linedenoteswhere, =va. . . . . . . L e 96

4.8 Transformed vertical velocity fat = 1 andw = 27v/6+/70/2 att = 7.2 Alfvén times.
The plots show the results fér, = 0, 0.25,7/10, 1, 7/2, 2,7, 5 and 7 respectively from
top left to bottom right. The dashed red line indicates whgre vs. . . .. . ... ... 98

Vi



4.9 Transformed vertical velocity faf = 1 andk, = 7 at¢ = 7.2 Alfvén times. The plots

showw = 2m+/760/2, 27v/6+/730/2 and4r+/6/78,/2 respectively from left to right.

The dashed red line indicateswhete=v4. . . . . . . . . . . i v i i v i v i 98

4.10 Vertical velocity as predicted by Equation (4.116)wit = 47v/61/75,/2 andk, = .
The vertical red dashed line denotes where- v 4; the horizontal dashed lines to the right
of this show the predicted amplitude of the incident wavel, tiwse to the left the predicted
amplitude of the transmitted wave. . . . . . . . . . . . ... e 104

4.11 Left: Ratio of the transmitted and incident wave amplitudes.
Right: Logarithm of the ratio of the transmitted and incident wawgéitudes.
In both cases) = 47v/6+/700/2 and the solid line is that predicted by Equation (4.117)
and the stars are the values calculated from the numeritalda. . . . . . ... ... .. 105

4.12 Top Left: The variation of A withk,, for w = 27v/6+/750/2.
Top Right: The variation of B withk, for w = 27v/6/75/2.
Bottom Left:The variation of A withw for k, = .
Bottom Right:The variation ofBwithwfork, ==. . . . ... ... ... ... ..... 105

4.13 The numerical and analytical horizontal velocity anel tumerical and analytical vertical
velocity respectively from top left to bottom right. In allgts w = 47v/6+/700/2, ke = 7
andt = 7.2 Alfventimes. . . . . . . . . e 110

4.14 The numerical and analytical transformed verticaboiy for w = 47v/6/730/2, ky = 7
andt = 7.2 Alfventimes. . . . . . . .. 110

4.15 The absolute error between the results of the WKB aisadysl the numerical simulations
zoomed in around = 0 (wherec, = v4). The dashed line shows= —1/w demonstrating
that the WKB analysis only breaks down very close to the cioe region. . . . . . .. 111

5.1 Image of the equilibrium magnetic field. The field lines faut radially from the surface
located at- = 1. A wave driven at the surface will propagate upwards pasomg low-
to high+3 plasma. The mode-conversion region wheye= v 4 is indicated by a dashed line. 115

5.2 These plots show how the sound and Alfvspeeds vary across the numerical domain. In
the left-hand plot the variation with bothand6 is shown. The right-hand plot shows a cut
taken along constamt- thec, = v 4 region is denoted by the dotted line, to the left of this
the plasma is lows and to the rightitishigls. . . .. .. .. .. ... ... ....... 118

5.3 Results of the numerical simulation with = 167, m = 3 andf = n/4 att = 4.3
Alfvén times. The plots show the radial and azimuthal velodity,radial and azimuthal
magnetic field, and the pressure respectively from top teftdttom right. The red dashed
lineindicates Where, = v4. . . . . . . . . e e e e 122

5.4 Results of the numerical simulation with= 167, m = 3 andf = = /4 at¢ = 4.3 Alfvén
times. The plots show a transformation of the radial and attiad velocity, the radial and
azimuthal magnetic field, and the pressure respectivety fi@p left to bottom right. The
red dashed line indicateswhere=v4. . . . . . . . . . . . o 122



5.5 Surface plot of the transformed azimuthal velocity glér= 7/5 for w = 167 andm = 3.
The red dashed line shows the position of the acoustic mbeegteen dashed line the
position of the magnetic mode, and the blue dashed line thigiguo of the slow mode. . . 123

5.6 Left: A contour plot of the radial velocity fav = 327 andm = 3 att = 4.3 Alfv én times.
Right: The variation of the transmission withfor a numerical simulation withv = 327
andm = 3. . .. 124

5.7 Transformed radial velocity alorfg= 117 /60 for w = 167 att = 4.3 Alfvén times. The
plots show the results fon = 1, 2, 3, 4, 5 and 6 respectively from top left to bottom right.
The dashed red line indicates whete=v4. . . . . . . . . . . . v v ... 125

5.8 Transformed radial velocity alorty= 117/60 for m = 3 att = 4.3 Alfvén times. The
plots showw = 167, 247 and32x respectively from left to right. The dashed red line
indicateS Where, = v4. . . . v . v v v o e e e e e e e e 125

5.9 Radial velocity as predicted by Equation (5.101) with- 327 andm = 3 atd = n/4. The
vertical red dashed line denotes where= v 4; the horizontal lines to the left of this show
the predicted amplitude of the incident wave, and thosedaitiht the predicted amplitude
ofthetransmittedwave. . . . . . . . . . . . . . . . e 131

5.10 Left: Ratio of the transmitted and incident wave amplitudes.
Right: Logarithm of the ratio of the transmitted and incident waxgpétudes.
In both casesy = 16w, § = 117/60, the solid line is that predicted by Equation (5.102)
and the stars are the values calculated from the numeritalda. . . . ... ... .. .. 133

5.11 Top Left: The variation ofA with m for w = 167.
Top Right: The variation ofB with m for w = 167.
Bottom Left:The variation ofA with w for m = 3.
Bottom Right:The variation ofBwithwform =3. . ... ... .. ... ... ..... 133

5.12 The variation of the transmission wighfor a numerical simulation withv = 327 and
m = 3. The dashed line overplotted shows the amount of transomgsiedicted by Equa-
tion (5.102). . . . . . e 134

5.13 The numerical and analytical radial velocity and thenatical and analytical azimuthal
velocity respectively from top left to bottom right. In allqts w = 327, m = 3,60 = 7 /5
andt = 4.3 Alfvéntimes. . . . . . . .. 138

5.14 The numerical and analytical transformed radial vigldor w = 327, m = 3,0 = 7/5
andt = 4.3 Alfventimes. . . . . . . . . e 138

6.1 The equilibrium magnetic field for the two-dimensionallrpoint model. The null point
is depicted by the blue cross in the centre and the greerechaws where the sound and
Alfv én speeds are equal. A wave driven on the upper boundary plagate towards the
null point crossing the mode-conversion regionasitdoesso . . . . . ... ... ... 142



6.2 These plots show how the sound and Alfvspeeds vary withr andz. The sound speed
is constant withe and z, whilst the Alfvén speed varies with position. The left-hand plot
shows the speed variation in two dimensions. The right-hdots takes a cut along = 0
- thec; = w4 region is denoted by the dotted lines, in between these timeplasma is
highg and outside itislows. . . . . . . . . .. . . 145

6.3 Contour plots of the perpendicular velocity componentf = 167 att = 0.5, 1.0 and
1.5 Alfvén times respectively from left to right. The black circleosls the position where
¢s = v4 and the null point lies at the origin in the centre of thiskgrc. . . . . . . . . .. 148

6.4 Results of the numerical simulation with= 167 att = 2.3 Alfvén times for a cut taken
alongz = 0. The plots show the parallel and perpendicular velocitg, ltbrizontal and
vertical magnetic field, and the pressure respectively fropeft to bottom right. The red
dashed line indicates the regionswhere=v4. . . . .. .. .. ... ... .. ..... 149

6.5 Surface plot of the perpendicular velocity for= 167 alongx = 0. The red dashed line
shows the position of the acoustic mode, the green dashethkénposition of the magnetic
mode, and the blue dashed line the position of the fastmode. .. . . . ... .. ... 150

6.6 Top Perpendicular velocity at= 2.3 Alfvén times forw = 47, 10r and 16t respectively
from left to right.
Bottom Parallel velocity at = 2.3 Alfvén times forw = 4, 107 and 16r respectively
from left to right.
The red dashed lines indicate whete=v4. . . . . . . . . . . . . v o 152

6.7 Contour plots of the parallel velocity componentdoe 167 att = 1.48, 2.97 and 4.46
Alfv én times respectively from left to right. The black circleogls the position where
cs = v4 and the null point lies at the origin in the centre of thiskgrc. . . . . . .. ... 153

6.8 Contour plot of the parallel velocity component drivéong the magnetic field lines. The
plots are shown for a simulation with driving frequency= 167 att = 1.48, 2.97 and
4.46 Alfvén times respectively from left to right. The black circleals the position where
¢s = v4 and the null point lies at the origin in the centre of thiskgrc. . . . . . . . . .. 155

6.9 Results of driving the parallel velocity along the maiméeld lines with a driving fre-
guencyw = 167 att = 4.6 Alfvén times for a cut taken along = 0. The plots show
the parallel and perpendicular velocity, the horizontal &artical magnetic field, and the
pressure respectively from top left to bottom right. Thedadhed line indicates the regions
WHEIEC, = VA, « v v o e e e e e e e e e e e e 155

6.10 Surface plot of the parallel velocity when driven alting magnetic field lines fav = 167
alongz = 0. The red dashed line shows the position of the acoustic ntbegreen dashed
line the position of the magnetic mode, and the blue dasimedtie position of the slow
MOTE. . . . e 561

6.11 Parallel velocity component driven along the magrfetid lines att = 4.6 Alfvén times
for w = 4m, 107 and 167 respectively from left to right. The red dashed lines inthca
WHEIEC, = VA, + v o v o e e e e e e e e e e 157



6.12 The path of the fast wave for various starting pointsaiglthe z-axis. The green circle
denotes where, = v4 and the magnetic null point lies at the origin in the centrehis
circle. The paths marked in red indicate those paths whigtotloross the mode-conversion
region during the simulation. . . . . . . ... .. ... .. ... ... .. .. .. 160

6.13 Contour plots of the perpendicular velocity for driyifrequencyw = 47 att = 0, 0.28,
0.58, 0.86, 1.14, 1.42, 1.72, 2.00 and 2.28 Alitimes respectively from top left to bottom
right. The green circle denotes whete= v4 and the magnetic null point lies at the origin
in the centre of this circle. The red lines follow the frontidale and back of the fast wave
pulse and the blue lines follow the front, middle and backhefslow wave pulse. . . . . . 161

6.14 The path of the slow wave for various starting pointsglthez-axis. The green circle
denotes where, = v, and the magnetic null point lies at the origin in the centréhef
circle. The paths marked in red indicate those paths whicbrdss the mode-conversion
FEOION. . . . o o o e 163

6.15 Contour plots of the parallel velocity driven along thagnetic field lines with driving
frequencyw = 47 att = 0, 0.46, 0.93, 1.39, 1.85, 2.30, 2.76, 3.23 and 3.69 &iftimes
respectively from top left to bottom right. The green cirdienotes where, = v4 and the
magnetic null point lies at the origin in the centre of thiect®. The blue lines follow the
front, middle and back of the slow wave pulse and the red fiokd®swv the front, middle and
back of the fastwave pulse. . . . . . . . . . . . 164

Xi



Chapter 1

Introduction

1.1 The Sun

This thesis aims to investigate waves in the Sun’s atmospli@m Earth acoustic waves are important in the
lower atmosphere. The presence of a magnetic field modifeadbustic waves in the solar atmosphere
giving slow and fast magnetoacoustic waves, named acaptdiriheir relative speeds of propagation.

We investigate how energy may transfer from one wave modedthar through a process called mode
conversion. Before this is examined in more detail we firsklat some of the Sun’s basic properties.

The Sun has been studied for many centuries. As long ago dsR00eclipses were studied by the
Chinese, who recorded them and predicted subsequent evdrsGreeks also studied these phenomena
from around 600 BC. It was a Greek, Theophrastus, a pupil cftéite, who observed sunspots with the
naked eye in 350 BC. Sunspots were then systematically by the Chinese from 23 BC right through
to the Middle Ages. In the West Galileo was among the first teehabserved sunspots, using the newly
invented telescope in the early 1600s. In 1666 the law ofiton was devised by Newton, who then
applied it to the motion of the planets around the Sun. Therththat the planets revolve around the Sun
in concentric circles had first been put forward by Copersiic1530.

The Sun is our closest star at a distance of approximately ifi®@mmiles, or 150 million kilometres,
from the Earth. This distance is given the name of one astnicad unit, or 1 AU, and was given correctly
by Euler in 1770. It takes 8 minutes for light from the Sun #/&rse this distance to the Earth. The age of
the Sun is about 4.5 billion years old, it has a mags = 1.99 x 10%° kg and radiusR, = 6.96 x 108 m.
These values are 330 000 and 109 times larger than the Earétss and radius respectively. At a value
of 1.4 x 10% kg m—3 the Sun’s mean density is roughly equivalent to the meaniiyenisthe Earth. The
surface pressure, however, is much smaller - only 0.2 of t#m¢his pressure at sea level. The gravity at
the surface of the Sug,, = 274 m s~2, is 27 times that of the Earth. These facts may be found irsPrie
(1982), Golub and Pasachoff (2001), Lang (2001) and Goeddmd Poedts (2004) for example, and are
summarised in Section 1.1.4.

The Sun is made up of a giant ball of plasma. In fact most mittée Universe exists in a plasma state;
the Earth and its lower atmosphere is one exception. A plasmgas in which many of the electrons are no
longer bound to the nuclei. There are enough of these fregetigarticles in a plasma that the dynamics
are dominated by electromagnetic forces (Boyd and Sande?2883). This is true of the Sun where much
of the observed structure is due to the presence of the nmadiet. The magnetic field influences the
plasma in many ways. It can exert a force which may supporbprence material against gravity or propel
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Figure 1.1: This cartoon shows the many layers of the Sun fratore, through the radiative zone to the
convective zone, and out into the atmosphere. Some of therésawhich may be observed at different
heights in the atmosphere are also shown.

Credit: SOHO (ESA & NASA).

material from the Sun at high speeds, for example. It mayestoergy; this could provide a source of
heating or be released explosively as a solar flare. The niadiedd also provides thermal insulation
allowing cool plasma to exist alongside hotter material,in prominences or cool loop cores. The plasma
in the Sun is composed of approximately 90% hydrogen, 10%imehnd 0.1% carbon, nitrogen, oxygen
and heavier elements (iron, for example, is responsiblerfoch of the coronal emissions) held together
and compressed under its own gravitational attraction.

Many distinct regions are present in the Sun, as shown inr€ifjul. The interior of the Sun is made
up of the core, the radiative zone, and the convection zdwelatter two layers named after the mode of
energy transport present. Then moving up into the atmosphdrere the magnetic field is dominant, there
is the photosphere, the chromosphere and the corona, wkiiehds out to the Earth and beyond. We now
go on to describe the processes and features that are piesaich of these layers.

1.1.1 Solar Interior

At the centre of the Sun lies the core which extends out to &haa R. The temperature of.6 x 107 K

and density ofl.6 x 10° kg m—3 are high enough for thermonuclear reactions to take plabés ifivolves

the fusion of hydrogen into helium, and the energy produseie source of the Sun’s luminosity and all of
the physics of the outer layers. Most of the energy passdstmgpace; although the photons are absorbed
and re-emitted so many times that it takes thidh years to travel from the core to the surface (Lang,
2001). The caollisions during this process increase the leagth from gamma rays in the core to visible
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Figure 1.2: This image taken by Hinode’s Solar Optical Tedbge shows the solar surface. Energy is
transported to the solar surface by convection and it issthestions that make the granular structure seen
at the surface. The lighter areas are where plasma is rigimg lbelow and the darker lanes show where it
sinks back downwards.

Credit: Hinode JAXA/NASA/PPARC.

light at the solar surface.

The radiative zone extends out @67 R and the temperature drops to approximatgly 10° K at
this point. Beyond this radius electrons recombining witheo particles allow photons to be absorbed
more easily, decreasing the radiative conductivity andgasing the opacity. This causes an increase in the
temperature gradient which becomes so large that the ctivwéastability sets in. This marks the start of
the convection zone where turbulent motions are dominaattih to the lower photosphere. At this point
the opacity decreases and the material becomes convgdtable again. Figure 1.2 shows the photosphere
where the top of these convection cells can be seen. Thetérigantres mark the upward-flowing, hotter
material and the dark boundaries are where the cooler rahteridescending. These motions are highly
dynamic and granular cells have a typical lifetime of 10 nbésu

1.1.2 Solar Atmosphere

The solar atmosphere is characterised by its magneticenalisr lowest layer is the photosphere. Across
this layer the material changes from being completely opaquadiation to being transparent, allowing

energy to escape into space. This is the visible surfaceedtim as it emits photons in the visible spectrum.
This layer is very thin, with a thickness of about 500 km. Aswiened above and shown in Figure 1.2, the
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Figure 1.3: The changing temperature from the solar surfaténto the corona. A minimum of about
4300 K is reached in the photosphere. The temperature teea to about 20 000 K at the top of the
chromosphere, before surging to over a million degreeserctrona.

Credit: MSU.

surface of the photosphere is covered by the top of the gaaaells which extend up from the convection
zone. There are also larger cells, called supergranulagts, which are approximately 30 000 km across
and have a lifetime of 1-2 days. As the material flows upwandhé centre of the cells and outwards
towards the boundaries it drags the magnetic field with itusTtihe magnetic field is weak at the centre of
the supergranule cells and is concentrated at the bousdarie

The photospheric magnetic field is made up of different negiioln addition to the supergranulation
fields there are also sunspots (as in Figure 1.6), plagensglarge scale unipolar areas, and ephemeral
regions. In ephemeral regions numerous tiny bipoles arsepitegiving a salt and pepper effect on solar
magnetograms. These newly emerging regions of magneti¢affi¥or about four to six hours on average.
As suggested by the name large scale unipolar areas cofgairms of predominantly one polarity. These
can extend over hundreds of kilometres in both longitudelatidide and are remarkably long lived, with
a lifetime of a year or more. The polar field is believed to l@ae these unipolar regions. Next there
are sunspots where the magnetic field is highly concentrafédse are examined in more detail in Sec-
tion 1.1.3. There are then the plage regions which are madé lye part of an active region found outside
of sunspots, where the mean magnetic field has values of alfedréd gauss.

The temperature in the photosphere falls to a minimum of 4R0@here it unexpectedly begins to
rise again, marking the boundary between the photosphet¢henchromosphere. The temperature rises
monotonically in the chromosphere with rapid increaseshatlioundary between the photosphere and
chromosphere, and again at the transition region betweeahtftomosphere and the corona. This dramatic
change in temperature is depicted in Figure 1.3. The heighthéch these temperature gradients lie is
highly variable. The chromosphere may be viewed inWwhich shows up the network of supergranulation
boundaries. The chromosphere may also be observed at theolirthe Sun as plasma jets known as
spicules.
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Figure 1.4:Left: The solar corona viewed from the top of Mauna Kea, Hawaiirdpd total solar eclipse in
1991. The corona can be seen streaming out as the solar windlie coronal holes, with helmet streamers
on either side.

Credit: NASA Astronomy Picture of the Day Collection. HAO &MR.

Right: The solar corona as viewed by the LASCO C2 coronagraph ondb®@&HO on 2 June 1998 at
13:31 UT. In this image a bright CME is present with an enormewpting prominence.

Credit: Courtesy of SOHO/LASCO consortium. SOHO is a prbggdnternational cooperation between
ESA and NASA.

The solar corona extends out from the top of the transitigiorewhere the temperature jumps to 1—
2 million degrees. The question of how the corona is heatedésof the biggest mysteries in solar physics.
Some of the proposed heating mechanisms suggest that theadsrheated by reconnection (Sweet, 1958;
Parker, 1963; Priest and Forbes, 1986) causing flares wiainkiort energy out through the corona. Others
suggest that waves are the dominant heating mechanismxdanme, by the dissipation of shear Adfw
waves (Heyvaerts and Priest, 1983) or by the damping of slagmetoacoustic waves or high-frequency
fast magnetoacoustic waves (Porter et al., 1994). Despteyrngears of research on this topic the true
cause of coronal heating is still under debate. In the ouwera the temperature slowly falls as the corona
expands out as the solar wind. This is also true of the demdiigh is of the ordern0'* m=2 in quiet
regions, but between 5- 20 times larger within coronal loops

The corona only used to be visible as a faint halo during ar sllipse (left-hand image, Figure 1.4)
as it is normally masked by the brightness of the photospiviieh is a million times brighter. But with
the invention of the coronagraph by Lyot at the Pic du Midi @atory in 1930, the corona could be
viewed at any time. The coronagraph is a telescope whichirediies the glare of the photosphere with an
occulting disc, illustrated in the right-hand image of Figu.4. The corona may also be viewed in soft
X-rays as it emits thermally at this wavelength; any conittidin from the lower atmosphere is negligible.
The shape of the corona varies greatly during the solar cyleing solar maximum streamers extend out
in all directions, whereas during minimum these tend to ha&fined to the equatorial regions with polar
plumes fanning out from the poles.

Coronal streamers are roughly radial features which exfeord a height of 0.5-1 R to 10 R; and
have a density enhancement of between 3 and 10 times tha¢ siittounding plasma. They are named
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Figure 1.5: An active region seen by the satellite TRACE i 1A bandpass on 19 May 1998. The
image shows coronal loops connecting two active regionsciwshow up due to the plasma lying along
the magnetic field lines.

Credit: The Transition and Coronal Region Explorer, TRA@Ea mission of the Stanford-Lockheed In-
stitute for Space Research (a joint program of the Lockhdadin Technology Centre’'s Solar and As-
trophysics Laboratory and Stanford’s Solar ObservatoBfeup) and part of the NASA Small Explorer
Program.

depending on the type of structure which they lie above; bébtreamers lie above prominences and active
region streamers above active regions. A streamer cormdiats arcade of closed field lines surrounded by
a blade of open field lines. Polar plumes are ray-like stmestfiound near the poles and in coronal holes.
These are especially noticeable at solar minimum.

There are two distinct types of region in the corona (Aschieam 2004). Where the field lines are
predominantly open the corona appears dark; these regietkeawn as coronal holes. They have a density
3 times lower than the background corona and are also at a l@ngerature. The corona continually
expands outwards from these regions giving the solar wirgdk@?, 1958). Most of this outflow comes
from the coronal holes, especially those at the poles, butay also originate from areas of open field
above active regions. The flow speed increases as the saldiflivs out from the corona reaching speeds
of 400—800 km s! near the Earth. The high speed streams tend to originate éamonal holes and
are more uniform than the slower streams which come from diedts above active regions. Where the
magnetic field is mainly closed many coronal loops can berbseas in Figure 1.5. The complex structure
of these features is created by the magnetic field. In fadr@irloops are made up of plasma outlining
the magnetic field lines. There are numerous types of collongl Between active regions (described in
Section 1.1.3) interconnecting loops are found, these reaypto 700 000 km long and tend to be rooted
in strong magnetic field at the edges of active regions. Qegibn loops do not connect active regions,
and are much cooler at a temperature of 1.5xA® K compared to 2—-310° K. Loops may also be
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Figure 1.6: This image of a sunspot group was taken by the Stell m Solar Telescope on the
15 July 2002. The SST is the largest optical solar telescogeurope and can observe details as small
as 70 km on the solar surface. In this image we can see the tdips granular cells that cover the photo-
sphere and a sunspot group, in which the dark umbra and sutirmy penumbra are clearly visible.

Credit: Gdran Scharmer, ISP. Image processing: Maifdhahl, ISP; Royal Swedish Academy of Sciences.

found within active regions; these tend to be smaller witigtés from tens to hundreds of thousands of
kilometres and a wide range of different temperatures.

1.1.3 Solar Features

There are many other features that exist on the Sun and disalace described here. All of these features
are different ways that the Sun’s magnetic field influencestilar plasma. Active regions typically consist
of a pair of sunspots appearing withi80° of the equator connected by a system of loops which expand
out into the corona. After a few days an active region can lea séth a bright R plage, below this will

lie the sunspot group surrounded by photospheric faculdeabove there will be an X-ray enhancement.
It takes 10 to 15 days for the maximum activity to be reachatlthe decay is much slower and is marked
by the dispersal of magnetic flux until the active region évatly disappears.

Sunspots appear as dark regions in the photosphere bebaysaé¢ cooler than the surrounding plasma.
The observed light comes from a greater depth because tepatia more transparent than the surrounding
plasma. In November and December 1769, whilst observingya lsunspot, Wilson found that a sunspot
is a saucer-like depression extending 500 to 700 km belowhbéosphere (Wilson and Maskelyne, 1774);
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Figure 1.7: The changing Sun from solar maximum to solar mimh. These X-ray images of the solar
corona were taken by Yohkoh at 120 day increments betweeh 488 1995. As the solar cycle wanes
from maximum to minimum we can see the corona change fromngaaicomplex structure to a more
simple configuration with an overall decrease in brightriss$00 times.

Credit: G.L. Slater and G.A. Linford. The solar X-ray images taken from the Yohkoh mission of ISAS,
Japan. The X-ray telescope was prepared by the LockheedARal&esearch Laboratory, the National
Astronomical Observatory of Japan, and the University dybowith the support of NASA and ISAS.

this is known as the Wilson effect. Most sunspots will diszgopwithin a few days, but larger sunspots may
last much longer decaying over a period of a few months (Brad/laoughhead, 1964). A nice example of
a sunspot is shown in Figure 1.6. The dark central part is knasithe umbra and has typical sizes ranging
from 10 000-20 000 km. The magnetic field in the umbra has agtineof 2 000—-3 000 G and the field
lines are vertical in the centre and begin to fan outwardstda/the penumbra. The penumbra is the region
surrounding the umbra consisting of light and dark radiahfients (Muller, 1973). These take the form of
a comb of vertical and horizontal magnetic field lines retipely. Radial motions in these filaments were
discovered by Evershed (1909). There is a continuous odtfi@aw along the dark filaments with speeds of
6to 7 km s L. A slower inflow is also present in the bright penumbral filawse Higher in the atmosphere
the Evershed outflow slows until it reverses direction incheomosphere.

As mentioned previously sunspots appear within a belt suding the equator. The average latitude at
which they appear depends on the solar cycle. Early in thke sunspots emerge at higher latitudes and
as the cycle progresses this emergence latitude decredkescycle has an approximate 11 year period
discovered by Schwabe (1843) through observations of susisphe solar cycle is variable; the rise from
maximum is generally steeper than the subsequent declmesametimes it may disappear altogether.
This occurred in 1645, a time known as the Maunder Minimumervho sunspots were observed for
70 years. Sunspots are governed by certain rules. Sunspapgare tilted with the leading spot lying
closer to the equator than the following spots (Hale et &81,9). During the solar cycle the polarity of all
leading sunspots in the northern hemisphere is the sameseTihahe southern hemisphere will have the
opposite polarity to those in the north. These polaritidsreverse at the onset of the new solar cycle (Hale
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and Nicholson, 1925). The Sun thus takes two cycles to rétuthe same magnetic state; this 22 year
periodicity is known as the Hale Cycle. The dramatic changéé Sun between solar maximum and
minimum is demonstrated by Figure 1.7 where a huge decraassivity is apparent.

Other phenomena that exist on the Sun include solar prorogsenThese are large, cool and dense
structures which are located in the solar corona. Their tratpre is 100 times lower than coronal values
and their density between 100 and 1000 times greater (Tagdenssen, 1974). Prominences appear as
bright structures on the limb of the Sun, as shown in Figu Against the disk prominences appear as
thin, dark ribbons and are referred to as filaments. Theréwayenain types of prominence: quiescent and
active prominences. Quiescent prominences have a madiddiof strength of 5—10 G which makes a
small angle to their long axis. Their active equivalentsadyeut 100 G with the field approximately aligned
with the prominence. Quiescent prominences are highlestatd may last for many months. They start
out along a polarity inversion line, perhaps between aatdggons or at the edge of an active region. As
the active region disperses the prominence will grow loraget thicker, all the while moving polewards.
A typical quiescent prominence may have a length of 200 00p&imeight of 50 000 km, and a width
of 6 000 km. Active region prominences tend to be three or fones smaller than this and as suggested
by the name are located within active regions. These are thoramic than the quiescent prominences,
lasting only minutes or hours, and when they erupt are oftsociated with flares.

Both active and quiescent prominences may exhibit largéeswotions. The prominence can become
lighter or darker (depending on whether it is viewed on thablior against the disk) and grow larger. This
behaviour may simply fade away or it can lead to an eruptionthis case the prominence will ascend
and eventually disappear, with some material escaping fhensun and the rest descending into the chro-
mosphere. The cause of these eruptions is unknown, but istsnes associated with a disturbance from
an emerging flux region or a solar flare. A solar flare consié @pid brightening in 4 accompanied
by a simultaneous ejection of high energy particles andnmdamto the solar wind. There are two main
stages to this process: the flash phase when the increadensity takes place (lasting 5 minutes), and the
main phase during which this intensity slowly declines caeout an hour. The energy released by these
solar flares can heat overlying coronal loops to tens of am#liof degrees. Although this will contribute to
coronal heating, it is not the only factor.

1.1.4 Solar Facts

Here we summarise some general properties of the Sun.

Age 4.5 x 10° years,

Mass Mg = 1.99 x 10%° kg,

Radius Re = 696 Mm,

Mean Density 1.4 x 103 kg m~3,

Mean Distance from Earth 1 AU=1.5 x 10! m=215R,
Surface Gravity go = 274ms 2,

Equatorial Rotation Period 26 days,

Effective Temperature 5785 K.

Table 1.1: Solar facts (Priest, 1982).
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Figure 1.8: This image was taken by SOHO's EIT instrumenh&304A passband on 5 December 1998.

It shows the upper chromosphere at a temperature of 60 00Glk@me elongated prominences may be
seen in the upper left-hand corner.

Credit: Courtesy of SOHO/EIT consortium. SOHO is a projddhternational cooperation between ESA

and NASA.
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1.2 MHD Equations

The Magnetohydrodynamic (MHD) equations are used to md@eBun, where the ionised gas is treated
as a continuous plasma. The electric and magnetic fieldsedegndined by Maxwell's equations, which
combined with Ohm’s Law and the equations of fluid mechan&scdbe the plasma behaviour. These
equations may be derived from the Boltzmann equations fmtedns and protons by taking moments as
described in Boyd and Sanderson (1969). The equations dincitly, momentum and energy for each
species are found from the zeroth, first and second veloaityents respectively. However, we shall start
with the equations in a single fluid format (Priest, 1982).

1.2.1 Maxwell's Equations

Maxwell's equations describe how the magnetic fid] &nd the electric fieldiy) vary due to the presence
of electric currentsjj and the density of chargeg.j.

1 OE
B=pyj+—-— 11
V x M+ g0 (1.1)
V-B =0, (1.2)
0B
v.E=" (1.4)
€
where for a vacuum or a low-density plasma
j=c(E+vxB). (1.5)

The speed of light in a vacuum is given by= (ugeo) /% wherepy = 4r x 10-7 H m~! andey ~
8.854 x 10712 F m~! are the vacuum values of the magnetic permeabililyapnd the permittivity of free
space ), ando is the electrical conductivity.

Equation (1.1) is known as Angpe’s Law and states that magnetic fields may be producedelsyriel
currents or time-varying electric fields, Equation (1.2)he Solenoidal Condition which implies that there
are no magnetic monopoles, Equation (1.3) is Faraday’s Lfalmduction and Equation (1.4) is Gauss’s
Law which states that charge is conserved. Equations (h@)h4) also imply that either time-varying
magnetic fields or electric charges may give rise to an etefield. Equation (1.5) is Ohm’s Law. The
right-hand side of Equation (1.4) may be set to zero if theplais assumed to be quasi-neutral, so

V-E=0. (1.6)

This is not generally used in MHD &8 - E can be found by taking the divergence of Ohm’s Law (1.5).
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If we carry out a dimensional analysis on Equations (1.1)4)(vherevy = ly/t, is a characteristic
plasma speed, withy andt, giving a typical lengthscale and timescale, then Faradagys (1.3) suggests
EQ B()
=0 20 1.7
LR (1.7)
whereE, and By are typical values off and B. Now considering Amgre’s Law (1.1) the final term may
be approximated as

EO - Bolo o 1]8 BO
CZtQ - CZt(Q) o c? l() '

(1.8)

Since one of the fundamental assumptions of MHD states th&bns are non-relativistic, s@y << c,
this term may then be neglected in comparison with the leftehside of Ampre’s Law to give

j:%(VxB). (1.9)

N.B.It is possible to use relativistic MHD but it is not conside teere.

In solar MHD the primary variables are generally considdeetlev andB. We eliminateE andj by
combining Equations (1.9), (1.3) and (1.5)

B
aa—t:Vx(va)—an(VxB), (1.10)
where we have assumed that the magnetic diffusiyity 1/ (o) is uniform. This is the Induction equa-

tion. We may then use the vector identity

Vx(VxB)=V(V-B)—(V-V)B=-V’B, (1.11)
to find
%—]:’ =V x (v x B) +7V?B, (1.12)

which is the form of the Induction equation we use.

Thus, if v is known we may findB subject to Equation (1.2). It is worth noting that if we take t
divergence of Equation (1.10) we obtain

0

5 (V-B)=0, (1.13)

since the divergence of a curl is automatically zero. Thiggjifiation (1.2) is satisfied initially it will remain
true for all time. The current density and the electric fiatddw from Ampére’s Law

i— %(V < B), (1.14)
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and Ohm’s Law

E=-vxB+3 (1.15)
g

If we take a closer look at the MHD Induction equation (1.1Bgn we may see that the first term on
the right-hand side represents change®dh time due to advective motions and the second term due to
diffusion. Taking the ratio of these terms we obtain a dinm@miess parameter known as the magnetic
Reynolds number

l
R, — Yo% (1.16)
n

If R,, << 1 then the advective term may be neglected in comparison \Wwehdtffusive term and the
Induction equation becomes

oB

— =nV?B. 1.17

5 (1.17)
This has the form of a simple diffusion equation, and dessritoow the magnetic field may slip through the
plasma. This occurs only for some very small-scale phenariretihe solar atmosphere such as thin current
sheets. IfR,, >> 1, as is the case for the majority of the solar atmosphere, tieimduction equation
may be approximated by

OB
E—VX(VXB). (1.18)

In this limit Alfv én’s frozen flux theorem applies (A0, 1943) which tells us thaln a perfectly conduct-
ing fluid (R,, — o0), magnetic field lines move with the fluid: the field lines dreZen’ into the plasma
A textbook version of this proof is given in Priest (1982). W&sume that we are working with a perfectly
conducting fluid throughout.

1.2.2 Equations of Fluid Mechanics

The velocityv, the gas density and the pressurgevolve according to the equations of fluid mechanics.

0
p (a +V-V) v =—Vp+pg+vViv, (1.19)
0
AV (V) =0, (1.20)
T
p= RPE’ (1.22)

where|g| = 274 m s~2 is the surface gravitational accelerationis the coefficient of kinematic viscosity,
Ris the universal gas constant, gint the mean molecular weight (this takes the value 0.5 inlgifuhised

hydrogen plasma, and 0.6 in the solar corona due to the batitbn from helium ions). Equation (1.19)
is known as the Equation of Motion, Equation (1.20) is the @ity Equation and Equation (1.21) is
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the Ideal Gas Law which is a good approximation for high terapee, low density gases. We consider
viscosity to be negligible and this term is therefore netgddrom the Equation of Motion.

Because we are dealing with an ionised plasma an additioaghetic forcg x B per unit volume will
be experienced. This is known as the Lorenz Force. The ExjuefiMotion (1.19) thus becomes

0
p<§+v-v>v:—Vp+j><B+pg. (1.22)

Now the Lorenz Force may be written
] 1
jxB=—(VxB)xB, (1.23)
n

using the triple vector product this reduces to

] 1 B?
jxB=—(B-V)B-V | —|. (1.24)
1% 2
The first term in this equation represents a magnetic tensatimg parallel to the magnetic field with
magnitudeB? /. This will only have an effect when the field lines are curvathe second term gives a
magnetic pressure force when the magnetic field varies vatitipn. In contrast to the magnetic tension

force this acts in all directions.

To complete this set of equations we also require an enernggte.

7" D
P2 (2= (1.25)
v—1Dt \ p¥
where~ is the ratio of specific heats (generafly= 5/3 in the corona) and is the energy loss function
which represents the net effect of all sinks and sourcesafgnWe consider an adiabatic energy equation
so that the loss function vanishes. £ = 0, as the effects of thermal conduction, radiative coolind an

ohmic heating are neglected. This has the consequencentape (S = C, log (p/p”) + const, where
C, is the specific heat at a constant volume) is conserved. ThegifEquation is then

D /(p\
Di (p_’Y> =0, (1.26)

or alternatively

B = (P4 5) = i, a2
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1.2.3 Summary of MHD Equations and Assumptions

The fundamental MHD equations we use throughout this ttagsishen:
The Equation of Mass Continuity

ap B
% +V-(pv) =0. (1.28)

The Equation of Motion

0
p<§+v-v>v:—Vp+j><B+pg. (1.29)

The Induction Equation

OB

E—VX(VXB). (1.30)

The Adiabatic Energy Equation

Op _ o (9p

8t+(v V)p= ) <8t+(v V)p). (1.31)
The Ideal Gas Law

p= R,o%. (1.32)

These equations are generally coupled together, and caolh\mxido determines, B, p, p andT. Addi-
tionally, the secondary variabl¢®@ndE may be calculated from Angpe’s Law

1
j= 2 (VxB), (1:39)
7]
and Ohm'’s Law
E=-vxB+2 (1.34)
g
Finally B must also satisfy the Solenoidal Condition
V-B=0. (1.35)

In this form we have already assumed that viscous and diffiteirms are negligible, and variationsginoe
andT take place on a timescale much smaller than that of radiatimmduction or heating.

More generally the MHD equations must satisfy the followsmsumptions (Priest, 1982; Boyd and
Sanderson, 1969, 2003). The plasma is assumed to be awdlisihich means it may be treated as a
continuum. This is valid provided that the collision timak (r.) is very much shorter than the typical
plasma timescalé(), 7. << to. This allows the particle distribution function to relaxadlaxwellian. Itis
also required that the mean free path of the ions and elec{iohis very small compared to hydrodynamic
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lengthscales\. << [y, and that the ion Larmor radius () is very much smaller than the mean free
pathr;, << .. This means that the gyro-motions of particles may be néggdecin the solar corona a
magnetic field ofB = 10 G, temperaturd” = 10° K, and density» = 10'®> m~3 give a Larmor radius
rr, = 9.47 x 10® m, a collision timer. = 0.836 s, and a mean free path = 7.6 x 10* m. The mean
free path will increase for higher temperature, lower dgnsiasmas. Taking the coronal scale height as a
typical lengthscalé, = 60 Mm, and a typical timescale for wave motiofys= 60 s the above constraints
are satisfied. The plasma is also assumed to satisfy thetmondf quasi-neutralityp; — n. << n, which
states that the number density of the iong fninus that of the electrons() is very much smaller than the
total number densityr). In other words the number of ions and electrons is appratéfy equal. Finally

it is assumed that the plasma motions are non-relativisticthe typical plasma velocity is much smaller
than the speed of lighty << c.

1.3 MHD Waves

The magnetised plasma of the solar atmosphere may suppariesyof waves. As an analogy for this we
investigate the simple example of a wave propagating alosigirzg, and then examine the complexities
added by introducing a magnetic field.

1.3.1 General Wave Properties

If we consider perturbing a one-dimensional string froreisiilibrium we would expect to see a transverse
wave, either standing or propagating along the string. Téteabiour of this wave would be described by
the wave equation

829 2 aQy

where the wave speed is given by

Tension
= —— 1.37
¢ \/ Density’ (1.37)

andx andy are the horizontal and vertical direction ahis the time.
We may then take Fourier components by setting
y = Ae'kr=wt) (1.38)

wherek is the wavenumber and is the frequency of the disturbance. These contain infdomatbout
the wave properties as the wavelength is givem\by 27 /k and the period i€ /w. Substituting Equa-
tion (1.38) into Equation (1.36) allows a dispersion relatio be found relating to &

w? = k22, (1.39)
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From the dispersion relation we may determine the phasealspee

w
Cph = E, (140)

and the group velocity

dw

& (1.41)

Cg
The phase speed is the speed at which a wave specified by a simgtnumber (or component of a wave
train) will travel in the direction of the wavenumbgy whereas the group velocity tells us the speed and
direction of a group or packet of waves which may have a rariggawenumbers. The phase and group
velocities are generally different and it is at the grouppedl that energy is transmitted. For this problem
it turns out that the phase speed and group velocity are the gath a value oftc. We now return to solar
applications, beginning with the MHD equations.

1.3.2 Equilibrium

Before considering small amplitude waves we must discusedfuilibrium. If we consider an equilibrium,
i.e.9/0t = 0 andv = 0, then the MHD Equations (1.28)—(1.32) are greatly redueadihg only the
equilibrium Equation of Motion and the Ideal Gas Law

1
Vpo = i (V x Bg) x Bo + pog, (1.42)

T
Po = Rpo fo ; (1.43)

where the zero subscripts signify that we are dealing witildgium quantities, and gravity acts vertically
downwards, opposite to theaxis. The MHD equations may then be linearised about thdiledum.

1.3.3 Linearised MHD Equations

We may linearise Equations (1.28)— (1.35) for general duyidl (given by setting /0t = 0 andvy = 0)
by taking each term and adding a small perturbation (denwmyesiibscript 1)

B:B0+B1($7zat)7 V:V1(I7Z,t)7 p:p0+p1($azvt)a
pP=po+p1 (Z,Z,t), T:TO+T1 (xasza (144)

where the equilibrium quantities (denoted by subscript @ymary withz andz. For the sake of our
investigation all quantities are assumed to be invariapt ifhese are then substituted back into the MHD
equations; to complete the linearisation products of pleed quantities and squares are neglected. This
process yields the Linearised MHD equations:

9p1

ot + V- (p()V1) = 0, (145)
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ov 1 1
po—atl =—_Vp + m (VxB1)xBg+ " (V xBo) x B1 + 18, (1.46)
B
9B1 _ g (v1 x Bo), (1.47)
ot
Op1 vpo (Op1
i3 . - 7P . 1.4
5 T (vi-V)po o ot +(v1-V)po |, (1.48)
T
p_ P, oL (1.49)
po po To
V.B; =0. (1.50)

Henceforth the subscripts on perturbed variables are éeppd it is assumed that we are working with
the Linearised MHD equations. Here the equations are im thest general form but they may be applied
to specific equilibria; say a constant, vertical backgromagynetic field directed along theaxis.

Bo = (0707 BQ) s Vo = 0. (151)

Applying the equilibrium values (1.51) to the Linearised MHEquations (1.45) —(1.48) we obtain

ap B

Fn + V- (pov) =0, (1.52)
0 1

po= = —Vp+ — (V x B) x By + pg, (1.53)
ot 7

0B

—at =V x (V X :B())7 (154)

Ip

% (v-V)po—po (V- v). (1.55)

Equations (1.52) — (1.55) can be manipulated into a pair ebvesuations. First we differentiate the Equa-
tion of Motion (1.53) with respect tbto give

PoE = Vo

v ap 1 0B dp

we may then substitute fdlp/0t andoB /0t from Equations (1.55) and (1.54) respectively to obtain

0%v

Pz = T T)p0-495 0 (7)) + (7 (7 x (v x Ba) x Ba+ 57 (157)

E
Finally we can substitute fa?p/0t from the Mass Continuity Equation (1.52)

2
Po% =V©v-V)po+9V(po (V-V)) + % (Vx(Vx(vxBg)))xBg—V-(pv)g. (1.58)

This is the general form of the wave equation.
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1.3.4 Sound Waves (Zerd)

To obtain an equation for pure sound waves we must neglebtthetmagnetic field and the gravitational
acceleration. Taking the equilibrium pressure and dertsitye constant the Linearised MHD equations
reduce to

ap B

&t (¥ v) =0, (1.59)
ov

pOE = —Vp, (1.60)

and the Energy Equation may be written
p=cip, (1.61)

wherec; = \/vpo/po is the sound speed. In the solar corona the sound speed pidhtly take a value of
approximately 150 kms'.

We may then eliminate andp to obtain a wave equation i If we first differentiate Equation (1.59)
with respect to t,

9?p ov
20— 0o <v . E) , (1.62)

then substitute from Equations (1.60) and (1.61) we find theanequation

82
asz = 2v?p. (1.63)

Taking the Fourier component

p = AeitkT—wt), (1.64)
wherek = (k;, ky, k.) andr = (z,y, z) we obtain the dispersion relation

Wt = k22, (1.65)

wherek? = k2 + k2 + k2. From this we can see that disturbances travel at the sowtisp This is a
purely acoustic wave which we can see is compressible imfe&u- v £ 0) as it will cause compressions
and rarefactions in the plasma as it propagates.

1.3.5 Alfven Waves (Zerop)

Remembering back to the Lorenz Force (1.24) there is a mageesion force. So if we consider the mag-
netic field lines to act like strings, then in analogy with @t 1.3.1 we expect to see waves propagating
transverse to the magnetic field. From Equation (1.37) weldvthien expect such disturbances to travel at
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a speed
vy = M:ﬂ, (1.66)
Po vV HPo

This is known as the Alfén speed and is named after Hannes &ifwvho first predicted the existence
of these waves in 1942. A typical value for the Adfv speed in the solar corona is 1000 kmnt.s The
dispersion equation for these waves can be derived as f®llow

The equilibrium pressure is set to zegg, = 0, in order to avoid the complication of including sound
waves. Additionally we takg = 0, a uniform magnetic field, = (0,0, By), and assume that there are
no variations in pressure or density. From the Continuitu&apn (1.52) we have

V.-v=0, (1.67)
which means that the plasma is incompressible.

Applying the equilibrium conditions to the general wave &tipn (1.58) gives

Pv 1
pow = E [V X (V X (V X B()))] X B(). (168)

Taking the Fourier component
v = vellkr—wh) (1.69)
the wave equation reduces to

2

PowW vV = [k X (k X (V X Bo))] X BQ. (170)

1
0]
Note that we hav&/ - v = 0 and from the above equation- By = 0. This tells us that the wave motions
are perpendicular to both the direction of propagation &edsquilibrium magnetic field, so Alen waves
are transverse waves. Using vector identities we see that

1
pow’v = i (k-Bg)’ v, (1.71)
giving the dispersion relation
w? = k‘ﬁvi = k‘zvi cos? 0, (1.72)

whered is the angle between the wave vectk) &nd the magnetic field&y) which is orientated parallel
to thez-axis. From this we may calculate the phase speed

Cph = £v4 cos b, (1.73)
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and the group velocity
Cg = FvAZ. (1.74)

These are both shown on the polar plots in Figure 1.9. As weseai\If\en waves cannot propagate across
the magnetic field lines and energy flows along the field at tiieéh speed. We shall not discuss Aifv
waves any further here as these are not studied in this thesis

1.3.6 General Uniform Medium

Next we look at a uniform, isothermal medium by taking theiiopium given by (1.51) with the additional
constraint of taking the gravitational acceleration to beoz

Bo=(0,0,B0), vo=0, po=po, po=po, g=0. (1.75)

Applying these equilibrium values (1.75) to the Linearidé¢dD Equations (1.45) —(1.48) they become

dp

a7 T o (V-v)=0, (1.76)
N Yp+i(VxB)xB 1.77)

o ot - p 1 0> .

9B ¢ x(vxBy), (1.78)

ot

Op _ 7o Op

5= ot (1.79)

We may then follow the method used in Section 1.3.3 to obtavae equation.

82

1
po s = P02V (V- V) + (7 (VX (v x Bo)) x Bo. (1.80)

As the magnetic field is only in the-direction and the variables are all invariantjnit is fairly easy to
show that

(V x (V x (v xByg))) x By = BiV?0,%, (1.812)

and so we can separate Equation (1.58) inte iéhdz components

0%v, 0%v, 0%v, 8%v,

atQ = (CS + ’Ui) axz + Cg 9x0z U,24 822 ) (182)
0%v, 0%v,  O%vu,

oz £ (5‘15‘2 oz ) ’ (1.83)

The variables), andv, denote different components of the same wave mode in eactiequ
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If we take Fourier components so that
Uy (T, 2,1) = vzoei("’t+k”+kzz), (1.84)
v, (x,2,t) = v et Witherthsz) (1.85)
Equations (1.82) and (1.83) reduce down to
(w? = (¢ +04) k2 — vik2) vao = Ckakzvs0, (1.86)

(w2 — (’fkﬁ) Vo = cikxkszo. (1.87)

Equations (1.86) and (1.87) may then be combined to obtairitpersion relation for magnetoacoustic
waves as discussed by Roberts (1985)

wh — (2 +v7}) Kw? + c2oikZk* = 0, (1.88)

wherek = \/k2 + k2 is the magnitude of the wave vectkr= (k,,0, k). This is a quadratic in? and
has two solutions

2

k
W= [(oi T 0%) £ /(2 03— 4o cos? ] (1.89)

where the plus sign gives the higher frequency fast wavdisaland the minus sign the lower frequency
slow wave. These wave modes are named fast and slow waves thegrtrelative speeds. These waves are
driven by both tension and pressure forces.

For the fast wave the phase speed is given by

1
= \/— {(cf +v3) + \/(Cf +02)% — 4c20? cos? 4. (1.90)

d
k 2

If 8 = 0 then the phase speed depends on the relative sizes of the aodAIfven speeds.

ol
k

_ ) va if cs < wa, (1.91)
ce ifes>wv4. '

However, ifd = /2 then the phase speed takes only one value

= (2 +13)"? = ¢, (1.92)

=&

wherec; is the fast speed.
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The group velocity may be written in terms of its compone(ng%, 0, 8%“’)

sin 0 <c2 +v4 + [(340%)7 ~2¢203 cos? 6] )
S

c%+v2 2—4c§v2 cos?2 0
o = ) 7 (1.99
’ 2\/ } [( 03) + /(2 +0)? — 4204 cos? 9}
9 9 [(cz+v?4)2f2c§'u?4 sin? 074c§vi cos? 9]
cosf | c; +v4 + -~
dw \/(C§+U,24) —4c2v? cos? 6
o ) (1.94)
QV } [<c3 F03) + /(2 +03)7 — 4e20? cos? 9}
Now, whend = 0 we have
Ow
o 1.
ok 0, (1.95)
if
Oow _ ) va I cs < Va4, (1.96)
Ok, cs Ifcs > w4
If 6 = 7/2 the group speed is given by
Ow
_— = 1.97
ok~ (1.97)
Ow
=0. 1.98
AR 0 (1.98)
These results are clearly depicted in Figure 1.9.
We may carry out a similar analysis for the slow wave. The pls®eed is given by
w 1 2
7= \/2 {(cf +v3) — \/(cf +v%)" — 4c2v? cos?0|. (1.99)
If & = 0then
S f S K
w_) & Tesua (1.100)
k va ifece >v4.
If = 7/2then
w
—=0. 1.101
S =0 (1.101)
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Fast Slow™\[,

[ )
low

Alfven

Figure 1.9:Left: The phase speeds for the Adfiv wave and the fast and slow magnetoacoustic waves.
Right: The group velocities for the Alfen wave and the fast and slow magnetoacoustic waves.

The top row have; < v4, the middle rowe; = v4, and the bottom row, > v4. In all cases the magnetic
field is aligned with the vertical direction, the horizongiis gives thec-direction, and the vertical axis the
z-direction.
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The group velocity may again be given by its component pattbough this time we must take the
binomial expansion of the terms inside the larger square roo

1 s 0
\/ : [(cz T+ 02) — (@ +12)? — 46203 cos? e} ~ % (1.102)
cg T vy
otherwise the solution cannot be evaluated in the limit /2.
So we obtain
0 1
81:) = sin 9\/5 {(cg +0v3) — \/(cg + vi)Q — 4c2v? cos? 9} _
—sin 26 Cova (¢4 05) - (1.103)
2\/(03 +03)% — 4c20% cos?
1
88: = cos 9\/5 [(c§ +v%) — \/(cg + ”,24)2 — 4c2v? cos? 9] +
1/2
g CraldHva) . (1.104)
\/(cg +12)% — 4c2v? cos?
If 6 = 0then
ow
=0, 1.105
Bk, ( )
S f S < k)
Ow _ ) oo Tea<ua (1.106)
Ok, va ifcg >va.
If = 7/2then
ow
=0, 1.107
Bk, ( )
Oow CsUA
Ok: (2 +v3)"/? T, ( )

wherecr is the tube speed (see Roberts and Webb (1978)). The clristictgpeeds are ordered such that

cr < Cs, VA < Cf.

We can see these results for the phase and group velocittbe erious MHD modes in Figure 1.9.
From these plots it is clear that both the slow and Atfwvaves are unable to propagate across the magnetic
field. While the Alfven wave may only carry energy along the field, the group vilqaots show that for
the slow wave energy flow is confined to close to the magneti. fla contrast, the fast wave is roughly
isotropic although it does travel slightly faster across tiragnetic field.
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1.3.7 Acoustic-Gravity Case

A slightly more complicated case includes gravitationalederation in the isothermal atmosphere, but the
magnetic field By) is taken to be zero and so the Adfw speed is also zero. It can be seen from the
equilibrium that the pressure and density now vary with

d
% = —pog- (1.109)
z

This can be solved using the Ideal Gas Law (1.50) Withonstant to give
po(2) =po (0) e ", pg(z) = po (0) e */H, (1.110)

whereH = po/ (pog) is the scale height. This tells us the typical scale over iwgiavity has a significant
effect. If the typical lengthscales in a problem are very msimaller than the scale height then gravity may
be neglected.

As in the uniform case we may substitute the equilibriumalalgs (1.110) into the Linearised MHD
equations to obtain

dp

ov
PO = —Vp + g, (1.112)
op _ o (Op
()= 22 ( P v V)m). (1.113)

As before these equations may be combined to form a pair ofwguations:

0%v, o [(%v,  O%v, v,

oz % (83:2 * 31“32) "9 (1.114)
0%v, o [(0%v,  O%v, vy ov,

gz <8m8z 922 > — =D =95, (1.115)

Since the coefficients are constant in space we may repeaigtied used for the uniform case and take
Fourier components in Equations (1.114) and (1.115) toimbta

(w2 - ciki) Vg = (cikmkz + z‘kzg) V50, (1.116)

(w? = 3k2 — ik.yg) va0 = (Skaks + ik (v — 1) g) vao, (1.117)

which may then be combined to find the dispersion relation

wh — (c§k2 + ik.vg) Wk (y-1)g*=0. (1.118)
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As before we have a quadratic i?, but if we wishw to be real we must allovk, to be imaginary.
Substitutingk, = k., + ik.; the dispersion relation becomes

wh — (2 (k2 4+ k2,) — kai (Chzi + 7v9) +4 (2¢2ksi +79) kar) 0 + k2 (v — 1) g* = 0. (1.119)

For this to be entirely real we must choose

ko= — ;c% (1.120)

and the dispersion relation takes the form

7292
wt — <c§k2 + F) k2 (y-1)g¢*=0, (1.121)

where we have sét = k2 +k2,. This is in agreement with the dispersion relation found ab&ts (1985)
although a slightly different technique has been used. ifiaig be solved to give

1 g 72\
2 _ 21.2
w- = 5 (Csk + 4C§ + Cng + H — 4](5% (’}/ — 1)92 . (1122)

The plus and minus signs give solutions for the fast and slosustic-gravity waves respectively. As
g — 0 the plus root gives the sound wave? = k?c2, and the negative root gives the buoyancy wave,
w? = N2k2 /K2, whereN = (y — 1)"/? g/c, is the Brunt-\aisala frequency.

Note that by setting 4 = 0 in the uniform case and neglecting gravity in the acoust#/gy case,
Equations (1.82) and (1.83) and Equations (1.114) and %) rfetluce down to the same pair of equations.

1.4 MHD Mode Conversion

MHD mode conversion in the solar atmosphere has been a prnadflénterest for many years; however,
it is still not well understood. The process involves thevarion of one wave mode into another as it
propagates through the mode-conversion region. This soghere the sound and ABwn speeds are of
equal magnitude, or equivalently where the plasi@he ratio of gas pressure to magnetic pressure) is
approximately unity. Both of these descriptions are usddeatify where mode conversion occurs. Away
from this complex regionife.in the low+3 plasma high in the atmosphere, and the highlasma low down

in the atmosphere) the fast and slow waves are effectivalguf@ed. When this is the case one mode will
behave like an acoustic wave and the other will display axglsomagnetic nature. A good understanding
of the mode-conversion process will be highly useful in margas of solar physics, for example, in the
chromospheric network and inter-network, in sunspot apheges, and in the vicinity of magnetic null
points. Although evidence of mode conversion has been vbddry way of decreased wavelet durations
above the magnetic canopy, indicating a loss of wave end@tpo(nfield et al., 2006) most work in the
area has been done analytically or numerically.
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1.4.1 Analytical Studies

A full and detailed study of mode conversion was presente&teyn (1971). In this model, gravity is
neglected and mode conversion occurs due to propagatioessadensity step. The reflection, transmission
and conversion coefficients were found for fast, slow ands/&if waves using the dispersion relations
and boundary conditions. The different ways in which thesel@s are coupled to each other was then
described.

Zhugzhda and Dzhalilov wrote a series of papers throughatgedeventies to the eighties analytically
investigating mode conversion of magneto-acoustic-tyavaves. In this case mode conversion is a result
of the inclusion of gravitational stratification. These pepbegan by investigating wave propagation in
an isothermal atmosphere with a uniform, vertical magrfetid (Zhugzhda, 1979) where a solution was
found in terms of HypergeometrigFs functions, and the equivalent Meijer-G functions. An asyotip
solution was also given in the limit of a weak fielde( a highs plasma). This study was extended in
Zhugzhda and Dzhalilov (1981) where an asymptotic solutias found for the strong field (loy) limit.
With these solutions reflection, transmission and conearsbefficients were found for all wave modes.
It was also discovered that the extent of mode conversiorpgdent on the inclination of the wavefront
to the magnetic field, often referred to as #htack angle The authors then moved on to consider the
effect of tunnelling through the region in which the georitetiptics conditions are violated (Zhugzhda
and Dzhalilov, 1982a,b) again with transmission and caigercoefficients calculated. This work was
extended by Cally (2001) who noted that the Hypergeomefricfunctions are much easier to work with
than the equivalent Meijer-G functions. Using this form altlitional set of conversion coefficients was
found to those listed in Zhugzhda and Dzhalilov (1982a).

Having carried out a complete study with a vertical magniéid Zhugzhda and Dzhalilov then relaxed
their model to include an obligue magnetic field (Zhugzhdd Bazhalilov, 1983, 1984a,b). In this case
propagation was assumed to be from high- to leygtasma, representative of waves travelling upwards
from a sunspot atmosphere. Similarly to their previous papthe solutions in terms of the Meijer-G
functions were used to find conversion coefficients. Thisthevas then used to model running penum-
bral waves (Zhugzhda and Dzhalilov, 1984c) finding that theythe result of the conversion of trapped
5-minute waves from the convection zone in a near horizantanetic field. The problem of a fully hori-
zontal magnetic field (Zhugzhda and Dzhalilov, 1986) wadahketo be investigated in this series of papers.
More recently, Zhugzhda has looked at a model consistingwfitothermal layers taking into account lin-
ear and nonlinear effects. It was found that the spectrumsoillations seen in the chromosphere and
transition region of sunspot atmospheres is due to a cortibinaf chromospheric resonance, the cutoff
frequency at the temperature minimum, and nonlinear dtgaton of the sunspot atmosphere (Zhugzhda,
2007).

Another way of studying mode-conversion problems is thfrougve mechanical and ray tracing the-
ory. These methods have been utilised by Cally (2005, 2006)Szhunker and Cally (2006) to study the
propagation and transmission of acoustic fast waves aspitupagate up from the surface through active
regions. It was argued that the method of wave tracing isepable to the WKB method in the case of
mode-conversion problems (Cally, 2005). Cally then wentamshow that there is no reflection associ-
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ated with theequipartition depthwhere the sound and Alén speeds are equal, and that transmission is
likely to be strong in regions of strong magnetic field but #mount of transmission will decrease with
decreasing frequency. This was extended in Cally (2006)evtiee effect of a strong magnetic field in
the conversion region was investigated for a two-dimeraiadiabatic polytrope. The dispersion diagrams
showed two types of avoided crossing, which identify wheyaversion occurs; one at the equipartition
depth and another higher up occurring due to the acoustaffdaéquency. It was noted that this split-
ting of the acoustic wave may cause defocusing of imagesshadld thus be taken into account in both
time-distance helioseismology and acoustic holographys Theory was then applied to a more realistic
model of the solar atmosphere (Schunker and Cally, 2006)wa&dimensional version of the Model S
atmosphere, modified to include a magnetic field, was usedttefran active region. The attack angle at
the equipartition depth was found to influence the trandomssf acoustic waves into the atmosphere, with
a small range of fairly weak angles greatly enhancing caigar It was suggested that this will affect the
acoustic signals transmitted up to observable heightssimtimosphere.

1.4.2 Numerical Investigations

The work mentioned previously was purely analytical, hosramany numerical studies have also been car-
ried out on this topic in various areas of solar physics. Yatld Bogdan (1997) investigated the interaction
of f- andp-modes within a vertical slab of sunspot strength. The sitimhs were run in a two-dimensional
geometry using a Lax-Wendroff style finite difference scle®trong evidence of mode conversion within
sunspot atmospheres was found, with b@thand p-modes being converted into slow magnetoacoustic
gravity waves and carried away from the convection zone. gFheodes were also seen to partially mix
with f-modes of similar frequency as they exit the magnetic fluxceotration. Numerical modelling of
MHD mode conversion and refraction has also been carriebpu¢homenko and Collados (2006). A
thick flux tube in two-and-a-half dimensions with the magméeld inclined to the vertical was used as a
sunspot model. The modes seen were found to depend not othig aound and Alfén speeds being equal
but also on the inclination of the magnetic fielé. the attack angle, similar to Zhugzhda and Dzhalilov
(1981) and Schunker and Cally (2006). Above the region witeresound and Alfgn speeds are equal the
fast waves were refracted back down towards the photospiviereas the slow waves were channelled
upwards along the magnetic field into the chromosphere.

Moving up in the atmosphere conversion has also been stirdiég chromospheric network and inter-
network. Rosenthal et al. (2002) solved the two-dimendjomanlinear, compressible MHD equations
to study wave propagation in a gravitationally stratifiechasphere. Various magnetic structures were
considered. Magnetic fields that are significantly inclinedhe vertical were found to result in the total
internal reflection of waves at a surface highly variablehwattitude. In near vertical magnetic fields the
waves were seen to continue upwards, guided by the field,thatwise unaffected by it. This study was
continued by Bogdan et al. (2003) in which tmagnetic canopydefined as the area where the sound and
Alfv én speeds are of comparable magnitude, was found to be tloa ieere mode conversion occurs. It
was concluded that the wave behaviour is complex and sensitit only to the orientation of the magnetic
canopy but also to its location. Carlsson and Bogdan (208, this investigation up to three dimensions
simulating acoustic waves, generated by convective mstiaa they pass through the magnetic canopy.
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Realistic configurations were used in which the wavelendtih® waves is similar to the lengthscales of
the magnetic field. This system was found to be highly depetale the attack angle. For an angle under
30° the fast wave was transmitted as a slow wave along the magiieltd lines. At larger angles the
majority of the fast wave was either refracted or totallyeimally reflected, causing complex interference
patterns between the upward and downward propagating watescomplexity seen, even for this simple
configuration, suggests that more realistic models will igially difficult to interpret.

MHD wave propagation in the vicinity of two-dimensional nm&gic null points has been studied in
detail by McLaughlin and Hood (2004, 2005) and by Fruit andi@€(2006) who looked at Alfén wave
dissipation in the same topology. In moving from zero- tatéigi plasma it was found that mode conversion
is introduced into the problem (McLaughlin and Hood, 200B)e non-zero sound speed has no effect on
the Alfvéen speed, and so the coupling takes place between the fastandnagnetoacoustic modes. In
this case a fast wave was considered to be travelling thrémghs plasma towards the null. As before
conversion occurs as the wave passes through the layer Wieseund and Alfén speeds are equal. The
converted part of the wave continues through the null paira igh# fast wave, and the transmitted part
is now a highg slow wave which spreads out along the separatrices.

1.5 Outline of Thesis

This thesis aims to further the understanding of mode caiwerin the solar corona. The focus is on
the conversion between slow and fast magnetoacoustic viaaas MHD regime. In all of the research
chapters a combination of analytical and numerical teasgare used to investigate mode conversion;
these are outlined in Chapter 2. The analytical approximnatdescribed are the WKB method, Charpit’s
method, and a method developed specifically for mode coioveby Cairns and Lashmore-Davies (1983).
Section 2.3 gives an introduction to finite difference schspstability, and initial and boundary conditions.
Examples are then given for specific schemes including theddeamack method which is used throughout
the thesis.

We begin our investigation of mode conversion with a simptaded in Chapter 3. A one-dimensional
model is used with a vertical, background magnetic field irravigationally-stratified, isothermal atmo-
sphere. A slow magnetoacoustic wave is driven downwardsipgfrom low- to highg plasma triggering
mode conversion in the process. A range of analytical teghes is used to find the wave behaviour as
the wave propagates across the mode-conversion regios. allbivs coefficients to be calculated which
describe the proportion of the incident wave that is tratigdiand converted. Coupled with the results of
the WKB method this gives a complete description of the waleliour across the domain. The analytical
results are supported by the numerical simulations.

In Chapter 4 the model described above is extended to allothéinclusion of a non-isothermal tem-
perature profile. The temperature profile chosen hasnha profile. This is chosen to mimic the steep
temperature gradient which is found at the transition negis before a slow wave is driven on the upper
boundary. Using the same analytical and numerical teclesi@s the previous chapter we investigate the
effect of this temperature profile, if any, on the mode-casizn process.
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A more complex topology is examined in Chapter 5 as the malekiended to two dimensions. A
radially-expanding magnetic field is used to represent ara@rhole. Due to the geometry of the model
spherical polar coordinates are used throughout this ehaphe investigation neglects gravitational effects.
A slow wave is driven on the lower boundary propagating uglsdrom low- to highg plasma. The same
techniques are used as before to try and give a descriptithre@fave behaviour as it propagates across the
mode-conversion region.

In Chapter 6 we investigate mode conversion around a twedgional magnetic null point. As before
we examine propagation from low- to highplasma by driving both a slow wave and a fast wave towards
the null point. As has been done throughout the thesis a aatibn of analytical and numerical techniques
are used to describe the mode conversion.

Finally we summarise our findings in Chapter 7, looking at lmade conversion is affected by various
magnetic topologies and other such complexities. Possitiensions of the work are also considered.



Chapter 2

Analytical Approximations and
Numerical Techniques

2.1 Introduction

The MHD equations are highly complex and it is not possibledive them exactly, except in very special
cases. This is true even after they have been simplified biectiigg more complex terms and non-linear
effects. This is a common problem in applied mathematicsordier to progress approximations may be
used, giving an approximate solution to the problem. Thepeaximations may be either analytical, using
known analytical functions, or numerical, using finite diffince schemes to solve the differential equations
for example. We use both analytical and numerical techrsigue

2.2 Analytical Approximations

A number of analytical approximations are employed in thissis. We go over some of these in detail
here showing how they work in general terms. We begin by gower the WKB method and Charpit's

equations. Then we look at a method developed by Cairns asldnh@re-Davies (1983) specifically for

mode-conversion problems.

2.2.1 WKB Method

The WKB method is named after Wentzel, Kramers and Brillaufito popularised it in the field of quantum
mechanics around 1926. The theory has actually been aramuahdch longer and was developed by
Liouville (1837), Green (1837), Rayleigh (1912) and Jsffr€1924). The WKB method is useful for
solving problems which cannot be solved by matched asymgpt&pansions or similar methods because
they are globally singular. A good description of this teicfue is given in White (2005) and Nayfeh (1981),
for example.

Consider a second-order, linear, ordinary differentialatpn with a large parameter

d2
d_ajz + A2G() ({E) Yy = 0, (21)

32
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for A =1/,/e — oo ase — 0. As A\ — oo the equation becomes
Go(z)y=0, (2.2)
which yields the trivial solution. This is why the equaticeinmot be solved using a series expansion.

Letting
y =M (N, (2.3)

SO

dy _\ avdy

2.4
dz dz’ (2.4)

and

d2y dy\? a2y
— =2 — AN — . 2.5
da? ¢ <dx) tae daz? (2:5)

Equation (2.1) thus becomes

1d%Y (dY

2

as\ — oo.

We may then expand the new variable Y in inverse powers of
1

which is valid forA=' — 0. Substituting this expansion into Equation (2.6) gives

1 (d?Y, 14d2%Y dvp\? 24y, dy;
{ 0+ 1+...}+{<°> +01+..}+G0(x):0. (2.8)

A de2 N da? dx Adz dz

To obtain a solution, we collect together powers\of' to give a series of differential equations. The
leading order terms give

2

which can be solved to give

. ~1/2 .
Y { +iGy/ if Go > 0, (2.10)

dz | +£(=Go)"? Gy <.
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There are two possible solutions depending on whefhgeis positive or negative. There are also two
possible solutions given by the plus and minus signs as wédwmpect for a second-order, linear differ-
ential equation. Integrating we find

i (o2 it
Yoz{ i [ Gy da if Go >0, 2.11)

f G() 1/2 dz if G() < 0.

We may neglect constants of integration here as they wonlglgimodify the arbitrary constants later on.
If convenient, it is also possible to include a constant alitmit of the integration without altering the final
solution.

To find the solution foly; we turn to the first order equatiaf (1/X)

d?Y, dY¥p dYy

d2? Az Az 0 (2.12)
or
dvi _ d*¥p/da? (2.13)
dx 2dY, /dx
Integrating

i=pn{at{(®) )
Finally we can substitute from Equation (2.10) to give
y, = { }G_M if Go > 0, (2.15)
n{(=Go)*} it Go <0
To find further terms in the expansion we need only look at &igirder terms.

So the WKB approximation to Equation 2.1 is given by

y =Y = AYo+HYIHO(L/A) _ AYo Y1 ,0(1/A) (2.16)
ForGog >0
A B
v= G o (m/Gde) 73 o (—M/Gé”dx) +0(1/N), (2.17)

0

alternatively this may be written in terms of trigonomefiieictions

y = 1/4 (/GW ) 1/4sm< /Gé/2dx>+(’)(1/)\) (2.18)
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ForGog <0

Y= ﬁ exp (A/(—Go)l/2 dx) 4 ﬁ exp (—)\/(—Go)l/z dx) +O1/)), (2.19)

and we have growing and decaying exponentials rather tigontsmetric functions.

It is worth noting that the WKB approximations are local dimos as they are not valid in the vicinity
of a zero ofGGy. These regions where the approximation breaks down are &k@®Aurning or transition
points, and they mark a change between oscillatory and exyiah behaviour. It is necessary to match the
solutions across layers such as these in terms of Airy fansti

Note that Equation (2.1) does not have a first derivative tdfrthe equation in question is not already
in this form the first derivative term can always be elimimat€onsider the equation

d? d
dTLera(:c;a)d—erb(x;a)y:O. (2.20)

This may be reduced to standard form by making a simple toamsftion
y(z) =u(x)z(z), (2.21)
whereu is chosen to eliminate the first derivative terninlt can be shown that
1
Inu = ~3 /adx, (2.22)

and the full equation reduces to the form

d?z 1d%u  a?
@4‘{;@—?—&-17}2:0. (2.23)

From this point the WKB approximation may be implemented.

2.2.2 Charpit's Method

When we are dealing with a first-order, partial differenggjuation which has two independent variables
a solution can be found using Charpit’s method, outlined iegfio (1942) and Chester (1971). This
technique is partly due to Lagrange but it was Charpit whdgméed it. The work was presented at the
Paris Academy of Sciences in 1784, but Charpit died soonvedtels and his memoir was never published.

We start with the first-order, partial differential equatiehich in its most general form may be written
F(x7 Z)u7p7 Q) = 07 (224)

where the dependent variable= « (, z), andp = 0u/dz = u, andq = du/0z = u,.
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Assuming that the variables depend on an independent paasrsaich that

dx
— =F 2.25
ds P ( )
dz
— =F 2.26
ds kX ( )

we have the equation

dx dz du
— —_—= . 2.27
pds + qu ds ( )

This yields the characteristic equations

dx dz du

dr _ & du g (2.28)
F, F,  pF,+qF,

which can be written
dx
— =F 2.29
ds b ( )
dz
Z_F 2.30
ds £ ( )
du
i ply, + qfy. (2.31)

Equations (2.29) —(2.31) describe the characteristicesiof Equation (2.24). Along these characteris-
tics I is constant; this will not necessarily be the same constauiféerent characteristic curves. Here we
have only three equations but five unknowns. We need two nouat®ns to complete the set, and it is
natural to look fordp/ds anddg/ds. Remembering that = p(z, z) andq = ¢(z, z), we have

dp dz dz

= =p,— . — =p,F LFy 2.32

ds pds+pds Palp + P=tlq ( )
and

dgq dz

dz

Differentiating Equation (2.24) with respecttoandz respectively we find
Fx+pFu+ppr+quq:07 (234)
Fz+un+szp+Qqu:0~ (235)

Noting thatp, = ¢, andp, = ¢, we obtain the equations we are looking for

dp

= —F, —pFy, (2.36)
ds

dg

=—-F, —qF,. (2.37)
ds
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There are now five ordinary differential equations for fiv&kknown functionsg, z, u, p andg, summarised
below.

dx

— =F, 2.38
ds P ( )
dz
— =F, 2.39
ds © ( )
du
P pFp + qFy, (2.40)
@ =—F, —pF,, (2.41)
ds
d
Y g 4R, (2.42)
ds

Alternatively these may be written in ratio form
K ——— (2.43)
F, F, pF,+qFy, —F, —pF, —F, —qFy,

Charpit's method allows a complete integral of Equatio242to be found and this is usually sufficient
to find a solution. Suppose that we can find an integral of ther&tteristic Equations (2.43)

S (z,z,u,p,q) = a. (2.44)

Furthermore, suppose that we can solve Equation (2.44)renditen Partial Differential Equation (2.24)
for p andq in terms ofz, z, v ande, sayp = P(z, z,u, «) andg = Q(z, z, u, «). It can be shown that

du = Pdz + Qdz, (2.45)

is exact, and integration of this expression will yield as@&tconstant. The resultis a solution(z, z, a, 3)
which is a complete integral as it depends only upon two patars.

2.2.3 Cairns and Lashmore-Davies Method

Mode conversion is a problem which arises in many differemtns and in many different areas. For
example, problems in ion and electron cyclotron regimeslasma physics and wave transformation in
magnetohydrodynamics. It is this last problem in which we iterested; specifically the conversion
between fast and slow magnetoacoustic waves which is disduis detail in this thesis. All of these
problems are treated by varied methods which are often vathematically complex.

The paper by Cairns and Lashmore-Davies (1983) discussestteochwhich can be applied to all of
these different problems. It works by using the dispersilation at the mode-conversion region to find
differential equations describing the coupled mode amgés. These differential equations give the en-
ergy conservation in the absence of any damping. Solvingthuations analytically gives a solution for
the transmission and conversion coefficients. This saluisoin terms of parameters which govern the
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behaviour of the local dispersion relation.

Here we describe the method applicable to general modeecsion problems, as outlined in Cairns and
Lashmore-Davies (1983). Imagine that the dispersionicelaround the mode-conversion region is given

by
(w—w1) (w—ws) =m, (2.46)

wherew; andws, both functions of the wavenumbgy, andz, are the frequencies of the two uncoupled
modes. The parameteris significant only in the neighbourhood of the mode-coneersegion. If a
wave of frequencyvy propagates through the plasma then coupling will take pédog, where for the
appropriatek, = ko, wo = w1 (ko, zo) = w2 (ko, zo) and there is a resonance. We expand about this point
by writing

ky = ko + 0, T = w0+ &, (2.47)
and letting
w1 = wp + ad + b, wo =wp + [0+ g, (2.48)

wherea, b, f andg are the appropriate partial derivativesgfandw,. Considering Equation (2.46) around
(k(), .’I}()) gives

(wo — w1) (wo — w2) = 70, (2.49)
and substituting from Equations(2.47) and (2.48) this bez®

(aky — ako + b) (fkz — fko + g€) = 1o, (2.50)
whererny is simply the value of) evaluated atkg, xo).

The next step is to associate this dispersion relationg\althe mode-conversion region, with a differ-
ential equation. To do this we set

d

ko = —igg (2.51)

and substituting this into Equation (2.50) gives

b k= 2V (L i (k= Ge)) = -0 (2.52)
(e (m=29)) (Ge = (m-7¢)) =35

As we are considering two coupled wave modes we introducenswe amplitudes); andg¢,. These are
then described by the first-order differential equations
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O;%l —1 (ko — g§> D1 = iAP2, (2.53)
dd% i (ko - %5) by = NG, (2.54)

where = (no/af)"/?.

At this point we show that energy is conserved. Multiplyinguition (2.53) by its complex conjugate
we obtain

&1% —1 (ko - 95) b11 = iNp12, (2.55)
I3 a

and taking the complex conjugate of this gives
dey b . N T
¢1dig +i (ko - ag) G161 = —iAG1 6. (2.56)

Adding Equations (2.55) and (2.56) we find
diﬁ (|¢1|2) =i\ (¢102 — P192) . (2.57)

Performing a similar analysis on Equation (2.54) gives Haoguoa (2.58) and (2.59)

&2% —1 (ko - %f) Pap2 = —Agaa, (2.58)
%% +1 (ko - ?f) Pap2 = —iXpa1, (2.59)

which may be added to obtain
4 o] ) = ix (P12 — P162) . (2.60)
dg

Adding together Equations (2.57) and (2.60) we find

d 2 2\
i (1 +12) =0, (2.61)
and so energy is conserved.

Returning to Equations (2.53) and (2.54), these may be awenbio give a second-order differential
equation in terms of,
d*¢

e 2 (z’ko - %gg — %%g) %’? - (% — kg + gk‘o§ + %kof - 2—?52 + AQ) ¢1=0. (2.62)
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To progress from this point the following transformatiomisde

01 (€)= o (it — 1262~ 156 )0 (6). (2.63)
and upon substitution into Equation (2.62) we find

d%y no i (ag—0bf 1 (ag—0bf\? 2 _

Te*(ﬁi< ) ra(Mgt) e )e=o *59
Finally we make the transformation

~ (ag—bf 1/2 3im

C( of ) §exp (T) (2.65)
so that

2 _ . af 2 2 _ af 2

£ _z<ag—bf>c’ d¢ _Z<ag—bf>dg' (2.66)
Assuming thafag — bf) /af > 0, this results in the equation

de ’i’l]()

A et RS LD (267

which is an exact result. The cagey — bf) /af < 0 is not considered in this thesis. The solution to this
equation is given by the parabolic cylinder functibr (¢). The asymptotic solution fop; depends of.
For¢ < 0itis

_ iB8/2 ‘ ,
01(6) ~ (“ga = ) exp (%) 61" exp (ikof - 5252), (2.68)

and for¢ > 0 we have

_ i8/2
61 () ~ (“gafbf> exp( ST 5>£lﬁexp (Zkof— s )

(27‘(‘)1/2 78\ (ag—bf —iB/2=1/2 i 3im
D) exp <_T> ( o ) £ lexp (zkof - 5?6 T)’ (2.69)

whereg = 19/ (ag — bf).

Equation (2.69) contains terms arising both from the cadipled uncoupled modes, and the equation
for ¢- is of a similar form. To interpret Equations (2.68) and (3.6@ consider what is happening away
from the mode-conversion region. By setting the right-hsité of Equations (2.53) and (2.54) to zero we
find a first approximation te; andg,

52
¢1 = Aexp (zkoé‘ - —a> (2.70)
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s 2
¢ = Bexp (ikog - %). (2.71)
2f

To obtain a correction to these approximations they can bstdguted back into the original equations.

don (o 0 _ Toe— L9

G i (ko af) ¢1 = iABexp {zk()§ 5 f§ }, (2.72)
has an integration factor

) ib o
exp § —tko§ + 5 =& ¢, (2.73)
2a

and may be written

d » b o) i fag=bf\

i ((blexp{ 2k0§—|—2a§ })—MBexp{ 2( i )5 . (2.74)
This may be solved to give

Xaf B { ig 2} < 1 )
=———— ——expikoé — == +0|=). 2.75

¢1 (ag — bf) € p 0§ 2f§ €2 ( )

Performing the same steps on Equation (2.54) gives
_Aaf A ) b 1
o= i o {ime- ee o (). (270

These approximations af; andg, can again be substituted into Equations (2.53) and (2.5%)da more
accurate solution. The equation ¥y then becomes

dep; . b _iNaf A _ ib o
d—é_ —1 (ko - E§> ¢1 = mz exp 'Lkog — 555 . (277)
This has the integration factor
. ib o
exp s —iko + =—&“ ¢, (2.78)
2a
which reduces the equation to
d ) ib o\ iNaf A
ie (oo 30)) = i @
Solving this equation,
i3 . ib 2
P1 = AL exp § iko& — 555 , (2.80)

and we have a correction to the amplituddound in Equation (2.70). Doing the same foy we find

b9 ~ BE exp {ikof - %?g?}. (2.81)
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Substituting this back into Equation (2.53) a final time givs¢, to the accuracy we need.

dd% —i (ko - 35) ¢1 = iIABE P exp {ikof - %?52}, (2.82)

may be written

d% <¢1 exp {—ikof + 2252}) — iABE™P exp {—% (“ga_fbf) 52}. (2.83)

The solution to this is

Aaf

b1 = ~(ag —bf)

Be~ PV exp {ik:of - %%52}. (2.84)
We now have two linearly independent solutions to the omgilifferential equation. These may be added
together to give

Aaf

~ip-1 e~ L9
ot pe e kg - 962}, (2:85)

o1 = A6 exp ikag — 262} - 5

which is correct taD (1/52). This solution corresponds to that found from the parabmti;nder function
solution, and comparison of these two equations yields imaglsA and B of the transmitted and converted
waves. Specifically we must first divide Equation (2.69) bg fhctorexp (7/3/4) which comes from
Equation (2.68) to give

B iB/2 ‘ .
b1 ~ <a9 bf ) exp (—73)€P exp (ikog _ %g&) -

af
(27)1/2 3 ag—bf TR —if—1 . 19,9 3T
() () (e e ) e
This may then be compared directly to Equation (2.85) to give
A =exp (—mp), (2.87)
B (27T)1/2 0 1
Noting that
. 2 ™
T (=iB)|" = Feimh (75" (2.89)

the formula forB reduces to
B =+/1—exp(—27f3). (2.90)
At this point we may also note that

A%+ B? =1, (2.91)
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%A K=
g+l
Ay
l ® (p.a) ;
y
q-1
x p-1 p p+l

Figure 2.1: This figure shows how a domain may be broken dowmnadrCartesian grid for solution by a
suitable finite difference scheme. The subscriptnd ¢ refer thexz andy indices respectively, and the
valuesAzx andAy are the distances between cell boundaries.

illustrating the conservation of energy.

Here we have shown step by step how the Cairns and LashmaiedDaethod for mode conversion is
derived. The two coefficients obtained at the end tell us hawehrof the incident wave will be transmitted
across the conversion region, and how much will be convéaediother mode. This solution can be linked
with a WKB analysis of the regions away from the conversiompagiving a complete picture of the
problem.

2.3 Numerical Techniques

Not all problems can be solved easily using analytical axprations. In this case one can look for a
numerical solution instead. It is most useful to use nuna¢samulations alongside analytical approxima-
tions or observations in order to verify the results. Nur@rsimulations also have the advantage that the
parameters are easily varied, and so it is simple to testhsitvity of the solution to the parameters in the
model. Here we concentrate on the use of finite differencéaustwhich work by replacing the derivatives
by ratios of finite differences. Imagine a regularly spacedit€sian grid, as shown in Figure 2.1, where
subscriptgp andgq refer to thezx, y indices and superscriptsrefer to the time steps. We solve the finite-
difference equation at each point on the grid, and if the gpdcing is small enough this will be a good
approximation to a smooth function. The method used oftqredés on the type of partial differential
equation so next we look at how these may be classified.
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2.3.1 Classification of Partial Differential Equations

The classification of a partial differential equation degieionly on the value of the highest derivatives.
Given a second-order, partial differential equation
0%u 0*u 0%u

A—+B — = 2.92
8x2+ 8x8y+08y2 5 (2.92)

whereA, B, C and f may themselves be functions ©fy, u, u, andu,, a classification may be made by
noting that with

d (uy) = ugydz + uy,dy, (2.94)

we have the linear system

A B C Ugs f
de dy O Ugy | = | d(ug) |- (2.95)
0 dr dy Uyy d (uy)

This matrix equation will have a unique solution, exceptia tase when its determinant is equal to zero
A (dy)? — Bdazdy + C (dz)* = 0, (2.96)

which defines the characteristics of the partial differ@néiquation. It is the roots of the characteristic
equation that will allow the equation to be classified.

B? —4AC >0 Two Real Roots Hyperbolic Equation
B? —4AC =0 Single Real Repeated Root Parabolic Equation (2.97)
B? —4AC <0 Complex Conjugate Roots Elliptic Equation

In addition to this it is also possible to classify systeméinst-order partial differential equations. Fol-
lowing Hoffman and Chiang (1993) we consider the model égoat

A2+ BZZ =, (2.98)

whereg is a vector containing the unknown variables, ahdnd B are matrices containing the coefficients.
As before these may be functionsxofindy with

B (3 o a; a N az Qa4
() (o) () -
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If we considem to represent the normal to the characteristic surfaceswordimensional Cartesian
problems

n = ngi+ nyj. (2.100)

A solution may be obtained for the system if

|T| =0, (2.101)
where
T = Ang + Bny, (2.102)
or
a1Ng agNg a3Ny G4y ANy + A3Ny  A2Ng + G4Ny
T= + ’ ’ = ’ ’ . (2.103)
bing  bang bsny  bany bing +bany  bang + bany

The determinant is then given by
|T| = ((13b4 — bg(l4) nz —+ (a1b2 — agbl) ’fli —+ ((11b4 —+ a3b2 — a2b3 — b1a4) nmny = O (2104)

Dividing by n2 we obtain

2
(a3b4 — b3a4) <ny) + (a1b4 + agbg — agbg — b1a4) (Zy> + (albg — agbl) = 0. (2105)
Writing this as
n 2 n
Q (n—“) +R(n—y) +P=0, (2.106)

we can solve to get

<%> _—h=+ V;z; —4PQ (2.107)

This gives a similar set of conditions to those we had presliou

R? —4PQ >0 Two Real Roots Hyperbolic Equation
R? —4PQ =0 Single Real Repeated Root Parabolic Equation (2.108)
R? —4PQ <0 Complex Conjugate Roots Elliptic Equation

This method will also work when the system of equations iamethan two (quadratic goes up to cubic
etc.).
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2.3.2 Derivation of Finite Difference Formulae via Taylor Expansion

There are a number of methods for finding finite differenceagigns, such as polynomial fitting and integral
methods, but we concentrate here on the use of Taylor seqemsion (Roache, 1998). Starting with a
functionw the first derivative can be derived by expanding

2
Uptig = Upg + 5 (Tpt1,g = Tpg) + 2 92 (Tpt1.9 = Tpg)” + -, (2.109)
p,q p.q
which may equivalently be written
ou 1 0%u
Up_;'_Lq :up,q+ a_x quJj 5 W qul'Q —+ ..., (2110)

Denoting the finite-difference form @fu/0x by du/dx, the forward difference approximation is given by

ou

Up+1,q Up,q
ox ’ ( )

pyq Az

and has a truncation error of ordarz. This is therefore a first-order accurate term. In the samgeitia
possible to find a backward-difference approximation

ou

Up,qg — Up—1,4
— =24 -4 2.112
5 ( )

pyq Az

A centred-difference approximation may be found by suliingcEquation (2.112) from Equation (2.111)
to obtain

ou A3y

1
Upp1q —Up-14 =2 o—| Ax+ 5 —— Az’ + .., (2.113)
oz, , 3 Ox3 v
which can be solved to give
du Uptl,q — Up-1gq
— = ’ 4 2.114
ox v 2Ax ( )

In contrast to the forward- and backward-difference appnations this is second order accurate. This
means that the solution will improve in accuracy much faatethe grid size decreases. Note that adding
Equations (2.111) and (2.112) gives a centred-differeppecximation tas?u /52>

#u
ox?

_ Uptlqg — 2Up g + Up—1,q (2.115)
g Ax? ’ '

which is also second-order accurate. If required approtiona with a higher accuracy may be derived in
a similar manner.

Taking a partial differential equation, a finite differereguation is simply found by using combinations
of these finite difference expressions for the partial dgies. There are certain conditions which must
be met to ensure that the finite difference scheme will caqe¢o the desired solution. It must be con-
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sistent, meaning that the finite difference equation regicehe partial differential equation as the grid
size approaches zero. Secondly it must be stable, mearahgrtk error introduced in the finite difference

equation does not grow with the solution of that finite diélece equation. Finally it must be convergent,
meaning that the solution of the finite difference equatippraaches that of the partial differential equation
as the grid size approaches zero. Conveniently it is onlyired to check the first two conditions, as the
Lax equivalence theorem states that for a finite differeripeagon that approximates a well-posed, linear,
initial value problem the necessary and sufficient condifior convergence is that the finite difference
equation must be stable and consistent (Lax and Richtm986)1 One method for checking stability is

the von Neumann stability analysis.

2.3.3 The von Neumann Stability Analysis

This method was developed by John von Neumann at the Los Aldational Laboratory in the 1940s.
It was first published by Crank and Nicolson in 1947, and laievon Neumann himself (Charney et al.,
1950); it is now the most commonly used method for stabilitplgsis. The idea behind the method is
to use a finite Fourier series expansion on the finite diffeeeequation, and then consider the decay or
amplification of each mode separately in order to determihetier or not the method is stable.

As an example consider Euler's FTCS method when appliedetdingt order wave equation

ou ou
% —aa a >0, (2.116)

which is a linear equation for constamt Euler's FTCS method uses forward differencing for the time
derivative and central differencing for the spatial detiiva (hence the name) giving the finite difference
equation

unJrl — ul 11— un_l
BT TV @117)

which is first-order accurate in time, and second-order eteun space. To perform the stability analysis
each Fourier component is written

u;rnL _ ‘/"rLeikw(pAac)7 (2.118)

where V" is the amplitude at time-step of the component, whose wavenumbetkis andi = /—1.
Boundary effects are not included as the spatial domainnsidered to be infinite. Defining the phase
angle a9 = k,Ax, the Fourier components are given by

ut = Ve, (2.119)
Substituting this into Equation (2.116) gives

yrien? —yneint — Syn (i) gio-10) (2.120)
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wherec = aAt/Ax is the Courant number, named after Richard Courant (18882)®hose work in the
analysis of numerical methods and nonlinear partial défféial equations laid much of the groundwork for
modern computational fluid dynamics. Dividing throughd®/ gives

Vil = v (1 —dcsind) . (2.121)
We may write this as
vl = qvn, (2.122)

whereG is the amplification factor. This will generally depend érand so will vary for each individual
Fourier component. If we wish the solution to remain bountthesh we require

giiiplex :g:;gll zz’ (2123)
In this case the stability requirement is given by

|1 —icsing)® <1, (2.124)
or

1+c%sin?6 < 1. (2.125)

This condition is false for alt and so this method is unconditionally unstable.

For more general finite difference equations involving ¢hoe more time levels the amplification factor
takes a matrix form. The stability condition is then appliedhe eigenvaluesy, and must be satisfied for
the largest of these

A Real Al <1,

5 (2.126)
A Complex |A\” <1.

There are some standard values that are used for deterntimngtability criteria for one-dimensional
problems which hold for the majority of explicit formulatie

Courant Number ¢ < 1,

o (2.127)
Diffusion Number d < 0.5,

where the diffusion number is defined ds= aAt/Az2. The von Neumann stability analysis can also
be easily applied to systems of linear, partial differdngiquations and multi-dimensional problems. If
the latter of these have equal grid spacing in all directitves the standard values for stability are usually
adjusted by dividing by the number of dimensions. This magidraonstrated by considering the linearised,
constant coefficient, two-dimensional transport equation

ou ou ou

ou _ _ ou _,ou 2
5 aax baeraA u, (2.128)
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which may be discretised as

n+l _ . n n _am n _n
Upg " Upq _ _aum—l,q Up—1,4 bup,tﬁ-l Upg—1 I
At 2Ax 2Ay
n _ n n n _ n n
Upti,q 2“1141 + Up—1,4 Up,g+1 2“1)7!1 + Up,g—1
+ « 5 + 5 . (2.129)
Ax Ay

In two-dimensions the Fourier components are given by

up g = V0elkeparthyaly), (2.130)

and as beford™ is the amplitude function at time-stepof the component whose andy wavenumbers
are given byk, andk, respectively and = v/—1. Defining thex andy phase angles to lge. = k,Ax and
0, = ky,Ay we have

u? = Vet (PPatady) (2.131)

b,q

Furthermore we define the dimensional counterparts of the&@d number as

alt bAt
— — 2.132
Cg Az’ Cy Ay , ( 3 )
and the counterparts of the diffusion number as
alAt alt

Substituting all of these values into Equation (2.129) wd flmt the amplification factor is given by
G=1-2(dy +dy)+ 2d, cos by + 2d, cos by — i (cysinby + ¢y sinby) . (2.134)
The necessary conditions fi|* < 1 are then

de+dy <5, cxtey <1, (2.135)

DN | =

and it is easy to see that for the special case whgre= d, = d we required < 1/4, and similarly
for ¢, = ¢, = cwe needc < 1/2. So as stated above, the conditions are twice as restriasifer the
one-dimensional case.

2.3.4 |Initial and Boundary Conditions

In addition to a convergent, finite difference equation acfetupplementary equations is needed to find a
unique solution to the partial differential equation. Th@se needed to determine the arbitrary functions
which result from integration of the partial differentiaj@ation. Such equations are known as boundary or
initial conditions. As suggested by the name, an initialditan gives the value of the dependent variable
at some initial time. A boundary condition specifies the eatfi the dependent variable or its derivative,
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n+1

p-1 p p+l

Figure 2.2: Numerical stencil for the Lax and Lax-Wendro#tmods. The red dot indicates the point that
we start from (which is not used in the Lax method) and themtbat for which we are trying to find the
value. The blue spots indicate the other nodes that arereshjui the calculation of this value.

but on the boundary of the domain of the partial differergiqliation.

There are a number of different types of boundary conditibthe dependent variable itself is specified
along the boundary then it is described as a Dirichlet typeditmn. If it is the normal gradient of the
dependent variable which is given it is a Neumann boundandition. It is possible to have a linear
combination of Dirichlet and Neumann type boundary condii which is known as a Robin boundary
condition. In a more complex situation the boundary conditmay take on different characteristics on
different parts of the boundary calling for a mixed boundeopdition. Having looked at the general theory
behind finite difference methods let us now look at some $igeeichniques and their application to the
one-dimensional wave equation, as outlined in Hoffman amd@) (1993).

2.3.5 The Lax Method

The Lax method (Lax, 1954) is related to Euler's FTCS methBdu@tion (2.117)) which we used to
demonstrate the von Neumann stability analysis. The diffee is that this method uses an average value
of uy, giving

1 c
up =5 (e Fup) — 5 (g —upa) (2.136)

Figure 2.2 shows the numerical stencil for this method. Tdregphically illustrates the points that are
necessary to progress with each step of the numerical @nlu8o this method requires information from
the point in question and those on either side. Performimgvttn Neumann stability analysis on this
equation gives

G = cosf —icsinb, (2.137)
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n+1

n-1

p-1 p pt+l
Figure 2.3: Numerical stencil for the Midpoint Leapfrog mmed. The red cross shows the starting point,

there is no dot as it is not part of the calculation. The gremrigithe point that we are trying to find a value
for and the blues are all the points that are needed to geetsdtution.

yielding the stability criterion
c<1. (2.138)

Therefore, unlike Euler's FTCS method which was unconddity unstable, this method is of practical
use. Itis, however, still only first-order accurate.

2.3.6 The Midpoint Leapfrog Method

A more accurate method is given by the Midpoint Leapfrog radtivhich uses central differencing of the
second order for both the time and space derivatives. ApplidEquation (2.116) it gives

n+l _ ., n—1
’LLp u

ul,  —ul_
Mtp - _a P“mxp L (2.139)

This is shown pictorially in Figure 2.3 which demonstratkattthe method skips over the point we are
sitting at and uses those surrounding it to calculate theaval the next time step. Hence the ndeapfrog
The values of the dependent variable are required at tinpsstandn — 1 in order to calculate the value at
n + 1. This means that two initial conditions are required to getmethod started. A starter solution can
be used for this, in which case another method is used fonitialitime step. However, this will affect the
accuracy of the method.

Performing a stability analysis we find

V’n-‘rl — —2csin ev’n + V’n—l’ (2140)
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and letting
Vr=V" 4+ (0) VT (2.141)

gives the matrix equation

n+1 _2' L 1 n
1% ) _ icsin 6 12_1 . (2.142)
1% 1 0 Vv

The amplification factor is then given by the matrix

“2icsing 1
G:( wlsm 0), (2.143)

whose eigenvalues are given by
A2 = —icsind £ V1 — ¢2sin® 6. (2.144)

Note that these eigenvalues may also be found by multipliigation (2.140) through by ' —" giving a
quadratic equation iW.

Now, if ¢2 sin® @ < 1 then
|)\172|2 =c?sin® 0+ (1 - ?sin®0) =1, (2.145)

and the stability requirement is satisfied. The most resteconstraint occurs whesin®# = 1 giving
¢ <1.If ?sin?0 > 1then

|)\172|2 = 2¢%sin? 0 4 2csin 0V c2sin?0 — 1 — 1. (2.146)

Taking the positive root the conditiqm,2|2 < 1 cannot be satisfied. Thus the stability condition is given
byc<1.

2.3.7 The Lax-Wendroff Method

The Lax-Wendroff method is also second-order accurateria ind space, but has the advantage that it does

not need a starter solution (Lax and Wendroff, 1960). It maybrived from the Taylor series expansion

of the dependent variable as follows
du 9%u (At)?

ntl _ ,n AL i
Y T T ST e

+0(At). (2.147)

Taking the derivative of the first-order wave equation wekpect ta we obtain

Pu 0%
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n+1

p-1 p p+l

Figure 2.4: The numerical stencil for the MacCormack methidte shaded dots denote the stencil for the
predictor method, and the solid dots are those for the curestep. The red dots show the starting point,
the green dots the finishing point, and the blue dots the poie¢ded along the way.

Substituting this into the Taylor series expansion gives

ou  a®(At)? 0%u
n+l _ ,n _
up ™ = uy aAt—ax + 5 Pa2 (2.149)

Using central differencing of the second order for the spaterivatives we obtain the finite difference
equation

2
1 n c
up ™ =y — 3 (up1 —up_y) + b (U1 = 2up +up_y) - (2.150)

The stencil for this method is the same as that for the Lax atktshown in Figure 2.2, but this method has
a higher order of accuracy.

The von Neumann stability analysis shows this method to havemplification factor of
G=1-c*(1—cosh) —icsin, (2.151)

and the method is stable for< 1.

2.3.8 The MacCormack Method

The final method which we demonstrate here is the MacCormasthad (MacCormack, 1969) which
is the method we utilise throughout this thesis. This is atistép method which uses a predictor and
corrector step. These have the advantage that unlike thieoaediscussed previously, they work well
with nonlinear hyperbolic problems. The first step calcesed temporary value for the dependent variable,
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which is corrected in the second step to provide the finalevédu the dependent variable.

This method uses forward differencing for the initial st€pr the first-order wave equation this gives

Uy, — Uy Uppq — Uy
=— 2.152
At Az ( )

where* represents a temporary prediction for the dependent aratliime step: + 1. The corrector step
uses backward differencing

unJrl o un+% ut — u*
P p P p—1
= - : 2.153
IAt Az (2.153)

n-‘r%

The value ofu, ' 2 is then replaced by an average

ntd _
up ° =

(ug + u;) , (2.154)

N =

to give

Predictor Step u = u?? — ¢ (u',, —u}),

Corrector Step ™! = & [(ull +up) — ¢ (uf —up_)] -

(2.155)

This is illustrated in Figure 2.4, in which the predictorstis shown by the shaded dots and the correc-
tor step by the solid dots. It is also possible to reverse tideroof differencing at each stepe. for-
ward/backward, backward/forward. This method is seconigioaccurate in both time and space and has
the standard stability condition < 1. Note that this method is related to the Lax-Wendroff methedt
reduces to this form for linear equations.

2.4 Summary

In the first half of this chapter we have summarised some oattadytical techniques which are employed
throughout this thesis, from the WKB method and Charpitsaippns to a method for quantifying mode

conversion - a problem central to this thesis. In the remgimhapters we shall demonstrate how using
a combination of these techniques we can fully examine maodeession in different atmospheric and

topological situations.

The analytical approximations are combined with the useloierical simulations. These are carried out
using the MacCormack finite-difference scheme. This sti/leumerical technique is described in detail in
the latter part of this chapter, looking at how these methmodyg be derived and how to test for the stability
of a finite difference equation. Finally some specific methwedre detailed, building up from Lax’s method,
through the Midpoint Leapfrog and Lax-Wendroff methodstite MacCormack method. The numerical
simulations run using this method can be used alongsidesthéts of the analytical approximations to gain
real insight into the mode-conversion problem.



Chapter 3

MHD Mode Conversion in a
Stratified Isothermal Atmosphere

3.1 Introduction

In this chapter we examine mode conversion in an isothertmabsphere. The model we have chosen
and the basic equations are described in Section 3.2. 0868 we describe the numerical simulations
which are supported by the analytical approximations tktdn Section 3.4. Finally we summarise our
findings in Section 3.5. The results of this chapter have Ipedatished in McDougall and Hood (2007).

3.2 Isothermal Model

We begin the investigation into mode conversion by lookihg gery simple one-dimensional model con-
sisting of a uniform vertical magnetic field within a gratitmally stratified, isothermal atmosphere as
shown in Figure 3.1. A slow wave is sent in from above whicmtpepagates from low- to high-plasma
passing through the mode-conversion region as it does seh@ése such a simple model with the hope of
gaining a deeper understanding of the complex physicalgss®s involved in mode conversion. Previous
more complicated models have included too many factorsuly &nd clearly determine exactly what is
occurring. Itis much easier to see how mode conversion gdatthis simple model.

3.2.1 Ideal MHD Equations

We shall be using the ideal form of the MHD equations througtsm the field lines are assumed frozen
in to the plasma, with resistivity and viscosity neglect&these are given by (Equations (1.28)—(1.33)
and (1.35)):

dp

B +V-(pv) =0, (3.1)
0 .

p(E—FV-V)V:—Vp—I—,]XB—I—pg, (3.2)

%—?sz(va), (3.3)

55
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y4
B<1
SR ) N ) B: 1
B>1

g

Figure 3.1: Cartoon of the model atmosphere with uniformtigal magnetic field. The:-axis points
upwards (opposite to gravity) and a slow wave is driven orugiyger boundary travelling down towards the
mode-conversion layer @t~ 1.

0 _yp [0
<§+V-V>p—7(a—|—v-v>p, (3.4)
T
]
.1
j=—(VxB), (3.6)
1
V-B=0. (3.7

In these equationsis the mass density, the fluid velocity,p the gas pressurg the current density3 the
magnetic inductiong the gravitational acceleration, afitthe temperature.

3.2.2 Linearised MHD Equations

Under the equilibrium condition of a uniform, vertical magic field Equations (3.1) - (3.7) give

Vpo = pog, (3.8)

and

T
Po = Rpo fo . (3.9)
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By settingB = By + B (, 2,t), v = vi (z,2,t), p = po + p1(,2,t), p = po + p1(z,2,t) and
T =Ty + Ti (, z,t) and neglecting small quantities we obtain the LinearisedMiduations.

0
L4V - (pov1) =0, (3.10)
ot
o 1
Po% =—Vp1 + — (V x By) x Bg + p1g, (3.11)
¢ 1
B _ v (vi x By), (3.12)
ot
Ip1 _po (Opa
5 T (Vi V)po= oo Wt (vi-V)po ), (3.13)
po_p B (3.14)
po  po  To
V-B; =0. (3.15)

Henceforth the subscripts on perturbed variables are @éwppd it is assumed that we are working with
the Linearised MHD equations. We may now apply equilibriuznditions specific to the problem.

3.2.3 Uniform Medium Stratified by Gravity

The equilibrium state consists of a gravitationally sfrati, isothermal atmosphere permeated by a uniform
vertical magnetic field (Figure 3.1). Examining the Momentiquation (3.11) under these conditions,
with the use of the equilibrium Gas Law (3.9), we obtain theasaquilibrium condition as we found for
the acoustic-gravity case (1.109), so we have

po(2) =po(0)e " py(2) = po(0)e /. (3.16)
The plasmas is defined as the ratio of the gas pressure to the magnetisysegs

2upo _ 2¢3
B=—"Fs =3
By TUA

(3.17)

The effect of including gravitational stratification in thredel is that it causes the plasm#o be dependent
on z. This ensures that the waves will propagate across therregherec? = v%, the layer that we wish
to investigate.

We may combine the full Linearised MHD Equations (3.10) 483.into a pair of wave equations with
a little manipulation

821}$ 2 2 82% 2 82Uz 2 (92’035 ov,

= — g 1
ot? (c5 +v4) Ox? +e 0x0z A 9.2 Yoz (3.18)
827}2 2 82’0:13 82,1)2 vy ov,

= —(r=Dg5-— : 3.19
oz~ <8x8z rE ) 1 -Nog, ~ 1%, (3.19)
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These wave equations are in agreement with Ferraro and Banp958) and are valid for general tem-
peratureT (z), in which case both the sound and Afv speeds will vary with height. Note that we are
working with an isothermal atmosphere so in this case ordyAtlivén speed varies with height. There are
a number of additional checks that we may perform to enswaertb errors have been made in the calcu-
lation of these equations. First of all it is easy to see thatequations have the correct dimensions. Next
we should check that the equations correctly reduce downeganiform and acoustic gravity cases under
the correct conditions. Setting= 0 the equations do indeed reduce down to Equations (1.82) &188)(

of the uniform case. Finally by settings = 0, Equations (3.18) and (3.19) become Equations (1.114)
and (1.115) of the acoustic gravity case.

3.2.3.1 z-Dependence

Equations (3.18) and (3.19) depend on bottindz and are thus two dimensional. To reduce this down to
one dimension, as we have in the model (Figure 3.1), we muké mame assumption about the form of
z-dependence for the variables. We choose an oscillatorgraggmce given by trigonometric functions of
k.x, wherek,, is the horizontal wavenumber.

v = (vz (2,t)sinkyz, 0, v, (2,t) cos kzx) ,
B = (B; (#,t)sinkgx, 0, B, (2,t) cos kyx) , (3.20)
p=p(z,t)coskyz,
p=p(zt)coskx.
Under this assumption the Linearised MHD equations takédim

avz BO aBz o BO km

M5 T T 0e kup + TBZ, (3.21)
Po aav: + % = —py, (3.22)
aaz? _ B %L; o (3.23)
2D — —huBove, (3.24)
% + po a;; = %Uz — kypova, (3.25)
% + vpo% = pogvz = YPoka Vs (3.26)

The wave equations (3.18) and (3.19) then become

0%v, 5 0%, 20V, 9/ 9 9

_ _ _ .27
92 v 5.2 kycs P k; (cS + vA) Vg + kzgu., (3.27)
Pv. _ 2Pz g 200 vz (v —1) g (3.28)
Ot2 s 022 zts 02 9 Oz z \Y 9V, .
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which are dependent only anandt.

3.2.3.2 Non-Dimensionalisation

In order to simplify the numerical side of the modelling wewrdimensionalise the variables by setting-
vV, B = BB, p = poop, p = poops Po = Poobo, Po = poopo, 2 = Lz, t = 71, andk, = k, /L, where

a bar denotes a dimensionless quantity and3y, poo. poo, L andr are constants with the dimensions of
the variable they are scaling.

Under this system we may choos® = po (0) andpgo = po (0) SO
Po=po =e /M, (3.29)

The sound and Alfén speeds may also be non-dimensionalised¢? = ¢2,¢2 andvy = v3v%4 where
¢z = 1 andv? = 1/py, and the plasmg may be written3 = 3,3 where = p, and

2
2¢5

2
TV

Bo = . (3.30)
We are then free to set, = v2 = 1 so we have? = v atz = 0, and from Equation (3.30%, = 2/y =
1.2. If vg = L/7 then the speed is measured in unites@fwhich represents a constant background éifv
speed. Under these scalings- 1 (for example) refers té = 7 = L/vy; i.e. the time taken for a wave to
travel a distancd at the reference background Aéfa speed. Note that we can wrije= ¢2/ (yH). The
bar on quantities is now dropped and it is understood thatrevgvarking with dimensionless values.

The dimensionless Linearised MHD equations are

1 - B, er
O 0By _ St B, (3.31)

R T

1ov, c20p L2

ot yor AHD (3:32)
85% - %L; =0, (3.33)
a£Z = —kyvg, (3.34)
vi% a;; - évz — kv, (3.35)

2P = Lo (3.36)

Ao T8, T H
These give rise to the wave equations

52 o? 0 L
(Ui@ - (Cg +’U124) ka% - w) Uy = kzcg (% - '7_H> Uz, (337)
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0> L 0 02 0 L
2- sz - L 2 _ _
(CS 022 H 0z 8t2> vz hacs (6‘z vyH (v 1)) Ve (3-38)

When written in this form the equations are much easier tdyapaising the WKB method (Section 3.4.3).

3.3 Numerical Simulations

We solve Equations (3.31) —(3.36) numerically using the ®@mack method. This is a finite difference
scheme which uses two steps to solve the equations at eaelstiéq. The first of these is a predictor step
giving the solution at half a time step, the second step ctarthe solution at the full time step; this gives
the method its name of a predictor-corrector method. Thiesee is second-order accurate in both time
and space and, for linear harmonic waves, not strongly t&ffelsy numerical dispersion or diffusion. We
have selected to use backward differencing for the predatéps and forward differencing for the corrector
steps (although this may be reversed). By doing it this wapmeusing the more accurate corrected values
on the upper boundary where we are driving a wave into theesysThe lower boundary is less important
as we terminate the simulation before the wavefront reatttispoint to eliminate reflection effects. The
conditions specified on the boundaries are:

10B. 0B, ap ap

o o - v 5,700

B, =
0z

0. (3.39)

In addition to these we have the conditions on the velocitictvdiffer on the upper and lower boundaries

Upper Boundary: v, =0, v, = sinwt. (3.40)
Oy

Lower Boundary: 5 = 0, wv,=0. (3.41)
z

Imposingv, on the upper boundary means that we are predominantly dravislow wave. Since the slow
wave also has a small componentwgfthe conditionv, = 0 means that there is a small component of
the fast mode generated; however this mode is evanescerto@schot propagate into the computational
domain. The simulations are run fer8 < z < 6 and0 < ¢ < 13.5 wheredz = 0.003 anddt = 0.0002;

as mentioned above the end time is chosen just before thefnwaveeaches the lower boundary. In all
simulations we choosgé equal to the coronal scale heighif) so thatz = 1 corresponds to one coronal
scale heightz 60 Mm. Having set this value, we are left with two free parameténe driving frequency
(w) and the wavenumber in thedirection ). By altering these parameters we can make comparisons
between the results and different analytical models. |a thiapter we use = 2x, 276, and47/6
which correspond in real terms to frequencies of 0:1,9.26 s and 0.51 5! and periods of 60 s, 24.5 s
and 12.3 s respectively. In the corona the acoustic cuteffifency is given bf2,. = 0.001 s~! with a
corresponding perio@,. = 91.7 minutes (Roberts, 2004). This acoustic cutoff frequeneyigh smaller
than those driven on the upper boundary and so does not #ffestmulations.
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| I High 3 | Low 3 |
Slow Wave Speedr vy Speedx ¢,
Transverse Wave| Longitudinal Wave
Fast Wave Speedx ¢, Speedx vy
Longitudinal Wave| Transverse Wave

Table 3.1: Speed and preferential direction of propagdtiormagnetoacoustic waves in high- and Igw-
plasma.

3.3.1 Wave Properties

We wish to investigate the wave behaviour across@he 1 layer but it is also important to know the
properties of waves away from this region. Table 3.1 showsypical speed and direction of propagation
for slow and fast magnetoacoustic waves in high- and foplasma. From this table it is clear that the
high-G slow wave shares its properties with the Igiffast wave, and similarly the low-slow wave and
high-3 fast wave have common properties. So an uncoupled slow reapwstic wavek, = 0 limit)
propagating through low# plasma will change its behaviour to that of a fast magnetostimwave as it
passes into higl# plasma. Similarly an uncoupled fast wave will change itsawibur to that of a slow
wave as it travels from low- to high-plasma. Despite this change in terminology the wave modeeis t
same - no mode conversion has occurred. Thus, when we dismgssconversion the slow wave driven on
the upper boundary retains the properties of a slow wavemsjitagates down into highplasma. We do
not see any evidence of upward-propagating fast waves fnermibde-conversion region. The transmitted
component of the incident slow wave will continue into thghis plasma as a fast wave.

In the numerical simulation it is clear that something isegng to the wave as it crosses the region
wherec, = v, (Figure 3.2) especially in the horizontal velocity, and Hwizontal and vertical magnetic
field. This change displays itself as a change in the phasehenidehaviour of the amplitude. It is not
easy to pick out what is happening, however, as all of thespl@tplay a strong exponential nature which
is disguising other underlying effects. We can uncoverehas making a simple transformation;, —
Ope % v, — 0,e?/2, B, — Bye %% B, — B,e %% p — pe */2, andp — pe*/2. The data
resulting from this transformation is shown in Figure 3.8.the low3 plasma to the right of the dashed
red line only one wave mode is present - this is the slow modehwive are driving. To the left of the red
dashed line both the fast and slow modes are present. Thertedslow mode is clearly visible in the
plots of the horizontal velocity and the horizontal and ioaft magnetic field, where we can see that the
wavefront has slowed right down. The transmitted fast medgparent in the plots of the vertical velocity,
pressure and density, where we can see it has almost redehedde of the computational domain. The
slow mode is also present in these plots and can be seen derigtee with the fast mode just to the left
of the red dashed line.

It is possible to predict the position of these different m®dt any given time. The position of the
acoustic mode (slow in low, fast in highg) may be found from

dz
- _ 42
dt CS7 (3 )

z =6 — cst, (3.43)
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Figure 3.2: Results of the numerical simulation with= 271/6 andk, = 7 att = 13.5 Alfvén times.
The plots show the horizontal and vertical velocity, theiramtal and vertical magnetic field, pressure and
density respectively from top left to bottom right. The reasted line indicates whetg = v 4.
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Figure 3.3: Results of the numerical simulation with= 27v/6 andk, = = att = 13.5 Alfvén times.
The plots show a transformation of the horizontal and vattielocity, the horizontal and vertical magnetic
field, pressure and density respectively from top left tadrotright. The red dashed line indicates where
Cs = VA.
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Figure 3.4: Surface plot of the horizontal velocity for= 271/6 andk, = 7. The red dashed line shows
the position of the acoustic mode, the green dashed linedkitign of the magnetic mode, and the blue
dashed line the position of the slow mode.

which tells us that at = 13.5 Alfvén times the fast wave should have reached —7.5. Similarly the
position of the magnetic mode (the slow wave in higlrmay be found from

dz
= —_ 44
dt UA7 (3 )

t 3

z=—2ln <—+1——) , (3.45)
2 Cs

so the slow mode will have reached~ —3.1 at¢t = 13.5 Alfvén times. This is in agreement with the

simulations shown in Figure 3.3. We may also use the equation

dz

T =-er, (3.46)

wherecr = csva/+/c2 + v2A is the tube speed. This is easier to solve in terms of

t=2 if L +iln
o er ey (6) Cs

This equation models the behaviour of the slow mode througtn® computational domain, following the
incident slow wave in the low# plasma and the converted slow wave in the highlasma. Figure 3.4 shows
the horizontal velocity viewed from above, overplotted bis tare the paths predicted by Equations (3.43),
(3.45) and (3.47). The path of the acoustic mode is modelieliby Equation (3.43) and the path of the
magnetic mode (given by Equation (3.45)) also agrees after0, which is unsurprising as the magnetic
mode is not present before the conversion point. Equatigtvj3loes not seem to agree as well with the
simulations as the others; but as the magnitude,dé increased in comparison tq it turns out that this
prediction improves and that given by Equation (3.45) dbtweorsens.

(cs —cr) (cs + cr (6))
(cs+er)(cs—er(6)]

(3.47)
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3.3.2 Effect of Varying the Model Parameters

We have already noted that there are two free parameterg imtidlel setup - the horizontal wavenumber
and the driving frequency. We now investigate the effectarfing these parameters on mode conversion.

3.3.2.1 Varying the Wavenumber

Firstly we consider the effect of varying the wavenumber fom simulations. To do this we fix the value
of w so that the effects seen are purely due to the variatios.ifThe driving frequency we have chosen,
w = 2m/6, corresponds to driving a wave with a period of approximate$ Alfvén times, or 24.5 s.
Figure 3.5 shows the transformed vertical velocity)(for a range of values fok,. We know from the
wave equations (3.37) and (3.38) that whgn= 0 the fast and slow magnetoacoustic modes are completely
decoupled. It is therefore no surprise that we do not see ageha the amplitude of the slow wave as it
travels across the domain fby = 0. Even for very small values df,, such as, = 0.25 andk, = 7 /10,

the mode conversion is so insignificant that it is not at adible in the plots. It is only fok, = 1 that
we begin to see a change in amplitude as the wavefront crogses 4 (denoted by the red dashed line).
This change in amplitude becomes more significant as the lk, increases, with more and more of the
incident wave being converted into a slow wave. The plots,of 5 andk, = 7 show the slow wave quite
clearly, as the amplitude of the transmitted fast wave tgsifitantly decreased. This allows us to observe
that the wavelength of the converted slow wave is decreasirthe wave progresses.

3.3.2.2 Varying the Driving Frequency

We have already seen that the amount of conversion increégemcreasingk,. Next we look at what
happens if we fix the wavenumber/at = = and vary the driving frequency. We have three different
values of the frequency, = 2, 27v/6 and47/6, corresponding to periods of 60 s, 24.5 s and 12.3 s
respectively. Figure 3.6 shows the transformed verticlaity (0,,) at these frequencies. It is easy to see
from these plots that as increases, the transmission increases and so the convéssiecreasing; this

is in agreement with Cally (2005). Thus the amount of modeversion increases with increasitg but
decreases with increasing

3.4 Analytical Approximations

Using the numerical solution we have described qualitbtiwdat is occurring. For the remainder of this
investigation we try to quantify what is happening by cadtinlg the amplitudes of the transmitted and
converted waves and finding the change in phase as the incidgnmode undergoes conversion. We plan
to do this using analytical techniques and approximations.
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results fork, = 0, 0.25, 7/10, 1, 7/2, 2, m, 5 and7 respectively from top left to bottom right. The dashed
red line indicates where, = v 4.
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3.4.1 Smallk, Limit

Much of the literature concerning mode conversion may beddu the field of plasma physics, particularly
relating to ion cyclotron heating in tokamaks. In this aredr@s and Lashmore-Davies (1983, 1986) and
Cairns and Fuchs (1989) developed a method of solving modeecsion problems. Firstly they derived
differential equations describing the coupled mode amgédis from the local dispersion relation. These
equations could then be solved analytically to find the trsiasion and conversion coefficients. In relation
to the simulations this method can be applied wheris small, andv sufficiently large in comparison to
ky (W > kycs).

Starting with the wave equations (3.37) and (3.38) we mayraesthat the time variation behaves as
et so thatd /ot = iw

o & 2, 2\ 1.2 2 ofd 1
vigz — (@ +vd) k4w’ o =keel (- 5 ) v (3.48)
d? d d 1
2 24 9 e Ly . 4
(cs 25T +w ) v, kec (dz 5 (v )) Vg (3.49)

Making the substitutiorv, = z‘eZ/QVZ/cS removes the first derivative on the left-hand side of Equa-
tion (3.49). We may then neglect terms involvikg in comparison to those involving; also, ask,, is
small we may negleat, andv, in comparison to their first derivatives with respecttand so on. Thus
Equations (3.48) and (3.49) reduce down to

d2 dv,
(vi@ + w2) Uy = tkpCs¥ A P (3.50)
d? ikyc dv
> 2y, _ ihact dvs 3.51
<CS dz? T > v va dz (3:51)

These equations may be written as

d iw d iw ikycs AV,

— ) (== = : .52
<dz+v,4> <dz UA>% vqg dz’ (3.52)

d iw d iw ikycs dug

—+ =) [=== ). = i 3.53
<dz * cs) (dz cs> v vg dz ( )

so that the coefficients multiplying the derivative on ttghtihand side of each equation are now identical
and the pair of brackets on the left-hand side represent texes; one travelling upwards and the other
downwards for each equation. The equationfpis driven by theV, that is driven on the upper boundary.
This inhomogeneous term has a wavenumber given byw/c, and atz., wherevy (z.) = cs, there is

a resonance between the downward travelling waves and tpétade of v, increases rapidly while the
amplitude ofV, is reduced. This is mode conversion.

Expandingz = z. + £ around the mode-conversion regidre(for the downward propagating waves
described by the brackets containing minus signs) we Hade = d/d¢ and

vg = e*/2e8/? = ¢ €82, (3.54)
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Using the Taylor expansion of the exponential term this bez®

UA:cS(l—l—g—i—...), (3.55)

where we may take as many terms as we require. For the rergaenims we may replacg/dz by iw/c;.
The equations may thus be written

dv, . [w w iky
dv, iw kg

Using Equations (3.56) and (3.57) we may show that energgrisarved in this system. If we begin

with Equation (3.56) and multiply through by its complex payatev, we obtain

dv, . [w w iky _
g~ — - = IxUy = zVz, 3.58
U i@ Z<Cs 2085)1}1} 5 V. ( )

and taking the complex conjugate

dv, . iky
”wd_vg +i <Cﬁ - %g) gy = — 2y V. (3.59)

Adding Equations (3.58) and (3.59) we find

d ik ;
i (l0) = 5 (Ve = 0aV2). (3.60)

Performing a similar analysis on Equation (3.57) we may agdaEons (3.61) and (3.62)

-dV,  iw - tky -
dV, iw_, - iky .
- — Vv .62
V. i + . V.V, 5 V. Ug, (3.62)
to obtain
d 9 tky , _ -

If we then add Equations (3.60) and (3.63) we find
(el + VL) = 0 (3.64)
d€ x z )

and so energy is conserved.
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Returning to Equation (3.56) we may eliminateusing Equation (3.57) to find a second order differen-
tial equation forV,

d?V, iw (¢ dv, w? (¢ k2
e (52 a (G )we=o (369

By making the substitution

_ W, W
Vo = (e~ 2w, (3.66)
the first derivative term in Equation (3.65) drops out to keav
&y SN A
de2 <16c25 ¢, 4> v=0 (3.67)

Finally we make the substitution

w /2
(= (26 ) et/ (3.68)
to obtain
d2 21 ik2c,
%‘(%_5_ 2Z>¢:0' (3.69)

The advantage of writing Equation (3.65) in this form is tthegt solution is known in terms of the Parabolic
Cylinder functionU (a, ¢) where

1 ik2cs

The asymptotic behaviour of these functions is describettail in Abramowitz and Stegun (1964). Tak-
ing the asymptotic solutions used in Cairns and Lashmonrgd341983), in lows plasma § > 0)

1% w | TRZCs | | ¢ikZes/(20) iw 3.71
=)~ | 5, exp | g~ [3 exp { —¢€ ), (3.71)

and in highg plasma £ < 0)

ik2cs/(4w) 2 . 1/2
w\ 3mkzcs \ cikc. /(2w iw (2m
v () e (SR e e () - i

2 —(ik2es/(4w))—1/2 L .
X exp (_ Fkxcs) ( w ) 5—(zkwc3/(2w))—1 exp (Zcﬂg _ € _ 32_77) (372)

8w 2¢c, 4ecg

Remembering the assumption thats> k,cs we may utilise the WKB method to find approximations
to the transmitted and converted componentB,ofTo find an expression for the transmitted wave we may
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assume that, is small in comparison t&, so

Vg = Vao exp (w¢0 + ﬂ), (3.73)
w w
V. = Bexp (quo n ‘i) (3.74)

Wherewd)o > ¢1/w, Vzo/w.

Substituting these expansions into Equations (3.56) aid)3ve obtain the expressions

V! Ve ) i Ky
Vaodh + —22 + 20 — LV, + =—EVag = Z2B, (3.75)
w w Cs 2¢cy 2
B¢, Bi Ky
Bugl + B0 _ Blw ke y, (3.76)
w Cs 2w
Equating the various powers ofwe find that
i Bk,cs ik2c,
$o = c—fa Vio = Tx, ¢1 = #éhlf- (3.77)

Substituting these values back into Equation (3.74) we laavexpression for the transmitted component
of V,

S

V, = Bgikies/(29) oy (’Cﬂg) (3.78)

To find the converted portion df, we may follow the same process, this time assuminglthad small
in comparison ta,,

vy = Aexp (wqbo + %), (3.79)

b= 0 (1), 80
w w

wherewdy > ¢1/w, V,o/w. Substituting these into Equations (3.56) and (3.57) we find

Ay Aiw | Aiw ik,

Awd) = —V, 3.81
woo + w Cs 2¢s ¢ 2w Vo, ( )
! V, ) Aik,
Viodh + -2 4 220 Ly = 2 (3.82)
w w? Cs 2

Again examining the powers of we find values for the unknown coefficients

A TS ) 2 S
T A 13 (3:83)

) )
%225_405 ¢
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Substituting these values back into Equation (3.80) we havwexpression for the converted partlaf

V, = _kacs Ag—(ikics/(%))—l exp (Zﬂg — ﬂgQ). (3.84)
w Cs 4deg

As Equations (3.78) and (3.84) are both solutions to the damear, ordinary differential equation they
may be added together, so

62 w kzCs o o (ik2c. /(20)) — w w 1
Vz ~ BflkmCS/(Qw) exp <C_§) _ TA&- (kT s/ (2 )) 1exp <C_€ _ e 52) +0 (5_2> 7 (385)

which corresponds to the asymptotic expansion found fraaPdrabolic Cylinder function solution.

We may compare Equations (3.71), (3.72) and (3.85) to findvithees of A and B, which give the
amplitude of the converted wave and the transmitted wavenmparison to the incident wave respectively.
If we take the coefficient multiplying thg/*z¢/(2) exp (iw€/cs) term in Equations (3.71) and (3.72) and
divide the highg equation by the low3 one, thenB must take the value

2
B = exp (_’;_) (3.86)
w

Similarly by comparing the relevant terms in Equations 23,73.71) and (3.85) we find

)
2 (27r)1/2 7k2c, w \ /2 3in w \ ~ikies/(2w)
Tk I : .87

koD (—ik2es/ (20) TP\ Tdw ) \2¢, ) P01 ) \ae, (3.87)

Since we are interested only in the amplitude at this poiré,last two imaginary terms may be neglected
as they only effect the phase. We may then note that (Gragshted Ryzhik, 1981)

A:

\r (13/)|2 =T (—iy)\Q = m7 (3.88)

so the equation may be solved to give

2
A= \/1—exp (—”—xc> (3.89)
w

Thus if we know the amplitude of the incident wave then we malgdate the amplitude of the transmit-
ted and converted waves after the mode-conversion regiohstiuting Equations (3.86) and (3.89) into
Equation (3.85) we may calculaié for anyw andk,. Figure 3.7 show¥/, as a function of: given for

w = 476 andk = m, and is in good agreement with the numerical simulationsreMigorously, if we
take the ratio of the transmitted wave (dashed line to theolef = 0) to the incident wave (dashed line
to the right ofz = 0) for numerical simulations with various values/of we may determine how well the
predicted transmitted wave ratios correspond to the nualediata (Figure 3.8).
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Figure 3.7: Vertical velocity as predicted by Equation 8.8ith w = 47v/6 andk, = w. The vertical
red dashed line denotes whete= v 4; the horizontal dashed line to the right of this shows theljoted
amplitude of the incident wave and to the left the predicteglitude of the transmitted wave.

Figure 3.8 shows the agreement between the predicted aapliatio of the transmitted fast wave to
the incident slow wave (solid line) and the numerical datar§ forw = 47/6. The plot on the left
demonstrates near perfect agreement; however, in thehagid plot, we can see by taking the logarithm of
the ratios that as, becomes large in comparisoniddhe data do not agree so well with the prediction. This
is hardly surprising as it violates the assumption that- k,c, in the calculation of Equation (3.86). Thus,
in the limit of smallk,, we have found a highly accurate prediction for the ampétoflthe transmitted
wave. It is more difficult to perform such a comparison for toeverted slow wave as we cannot get rid of

the interference due to the fast wave, but we may assume thettien (3.89) also gives a good amplitude
prediction.

In support of Section 3.3.2 Figure 3.9 shows that.agcreases, conversion increases and transmission
decreases, and asincreases, conversion decreases and transmission iasredée may also note that

the change witlv is much more gradual than that wikh, so the horizontal wavenumber has the stronger
effect as we would expect from Equations (3.86) and (3.89).
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Figure 3.8:Left: Ratio of the transmitted and incident wave amplitudes.

Right: Logarithm of the ratio of the transmitted and incident waxpéitudes.

In both cases) = 471/6 and the solid line is that predicted by Equation (3.86) amdstiars are the values
calculated from the numerical data.
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Figure 3.9:Top Left: The variation of4 with &, for w = 27/6.
Top Right: The variation ofB with k,, for w = 27/6.

Bottom Left:The variation ofA4 with w for k,, = 7.

Bottom Right:The variation ofB with w for k, = .
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3.4.2 Largek, Limit

For largek, we may compare the numerical simulations with an analytggiroximation derived by
Roberts (2006). In that paper the slow mode was extracted fr@ MHD equations by scaling the vari-
ables, allowing a description of the slow mode to be foun@éims of the Klein-Gordon equation. Starting
with the wave equations (3.37) and (3.38)

82 82 0 1
(Ui@ - (Cg _|_,0124> kz’ - ﬁ) Uy = kxcz (E - _> Uz, (390)

0? o o 0 1
<C§6Z2 - Cg& - @) Uy = *kzcg <$ - ; (7 - 1)> Vg, (391)

we may assume that, is large so Equation (3.90) reduces down to

(cz + 1)124) kyv, + kmcz (% — %) v, = 0. (3.92)

This may then be used to eliminatg from Equation (3.91) which reduces to

v, 5, 0%, chOv, EE [ 1
— T 5 T _ (21 , =0, 3.93
oz~ Tz T c? 0z * Y3 (cg (7 )) Y (3.93)

after a little manipulation. If we introduce
2 1/2
pPocr
Q(z,t) = <) v, (2,1), (3.94)
C0=oam) =B

then the first derivative drops out and Equation (3.93) mayk#en in the form of the Klein-Gordon
equation

0?2 0?2
8—5 — 0%763 +0%Q =0, (3.95)
where
164 cA c2 2 1
2_ 2 )i  Cp s (¢r (L1
W=er {4 of T2l (CE <7 1)) } ’ (3.96)

is a cutoff frequency.

As we can see from Figure 3.10 the maximum value of the cutedfifency i) ~ 0.5235, so as long as
the driving frequency we choose is much larger than thiseha involving$2 may be neglected. Assuming
that this is the case we may solve Equation (3.95) using tmediWKB method (as described in Bender
and Orszag (1978)) to find a leading order solution@a(z, ¢) valid for largew to get
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Figure 3.10: The cutoff frequendy shown across the computational domain

2 1\ /2
it+/ - dz| » +
om \ €T
1\ /4 2 1\ /2
+Cs <—2> exp{w it+/ (—2> dé] }, (3.97)
Cr Zm ‘r

whereC; andCs are arbitrary constants which may be determined from th&lror boundary conditions
andz,, is the maximum value of. It is fairly easy to show that

1\ /4
Q(2,t) ~Cy <——) exp {w

2
Cr

—1/4
1 /:rWWZ (3.98)
% T

and

z 1\Y2 = q
=) dz==+i [ —ds (3.99)
2
. Cr 2m CT

Zm m

Using Equations (3.98) and (3.99) we may rewrite Equatio®qBin the form

Q (z,t) ~ C’c;/2 sin {w [t + /Z Cidi} }, (3.100)
2 CT

where(C' is a new arbitrary constant. It makes sense to write the @xuat this form as we drive a sine
wave inv, on the upper boundary. Performing the necessary integratefind that
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Figure 3.11: Vertical velocity for driving frequenay = 47+/6 and wavenumbek, = 407 att = 13.5
Alfv én times. The solid line shows the numerical simulation dweddashed line the amplitude predicted
by Equation (3.102).

1
Q (z,t) ~ Cc;/Qsin{w {t—i— —In

(er +¢s) (er (2m) —

(cr —cs) (c (z:) +

SR}

Using Equation (3.94) and the upper boundary conditiom.0¢8.40) we obtain an expression faoy

1/2

ooy T Gmva f T (et es) (er (2m) — )|
=0 va (2m) C;“/Q { l:t - Cs ! (cr — ¢s) (er (2m) + ¢s)

Gl e

Figure 3.11 shows the amplitude predicted by Equation @.b0erplotted on the results of the numer-
ical simulations. By eye these seem to be in prefect agreenvéa may then use Equation (3.92) along
with Equation (3.102) to find an analytical approximation{o The amplitude predicted from this approx-
imation is shown in Figure 3.12 in comparison to the numénzda. At the top end of the domain the
two seem to be in good agreement; however decreases, particularly once we pass 0, the analytical
approximation deviates from the numerical solution. Tkisurprising considering how well the approxi-
mation forv, performed, at least until we look at the transformed vehiedocity (Figure 3.13). We can
then see that the analytical approximatiorvicalso deviates from the numerical solutionzadecreases -
previously it was masked by the strong exponential natuth@fvelocity. This discrepancy between the
analytical and numerical data does decrease with incrgasinbut it seems that,, must be much, much
larger tharw in order to obtain a high level of agreement. This is due tddleethat the secongdderivative
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Figure 3.12: Horizontal velocity for driving frequency= 47+/6 and wavenumbek, = 407 att = 13.5
Alfv én times. The solid line shows the numerical simulation dweddashed line the amplitude predicted
by Equations (3.92) and (3.102).
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Figure 3.13: Transformed vertical velocity,, for driving frequencyw = 47+/6 and wavenumbet, =
407 att = 13.5 Alfvén times. The solid line shows the numerical simulation deddashed line the
amplitude predicted by Equation (3.102).
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in Equation (3.90) becomes largeas- —oo and it is no longer negligible.

3.4.3 WKB Analysis away from the Conversion Region

Having looked in detail at what is occurring around the modaversion region wherg ~ 1, we move on
to consider the behaviour of the system in high- and [pplasma. We do this using a WKB style analysis
which is valid for largew.

We begin with the wave equations (3.37) and (3.38) Witht = iw

02 —d2 — (02 + 02 ) k2 + w? ) v, = kyc? —d — —1 v (3.103)
A 22 s A) Mz z %\ dz v Z) ’
d? d d 1
2 2 2 _ 2
<CS@ - Cs@ +w ) Vy = *kzcs (a - ; (Py - 1)) Vg (3104)

Then under the assumption that> k,c, we expand, andv, in inverse powers af. To find equations
which will model the incident and transmitted waves we mdieeassumption that, is small compared to

Uz
Va:()

U = exp (wWoo + P1 + P2 /w), (3.105)

v, = exp (woo + ¢1 + ¢2/w), (3.106)
wherewgg > ¢1 > ¢o/w, Vi /w.

Substituting these back into the wave equations we obtain

w (1 + 0% (%)2) Vo = wkpcigp + O (1), (3.107)
and

w? (14 €2 (04)%) +we? (6 + 20405 — 0%) + 2 (&1 + (6))° + 260} — 1) =

1
— kEPyVao + O (w) , (3.108)

where’ = d/dz.

From theO (w?) terms in Equation (3.108) we hay§ = i/c, SO¢y = iz/c, andg] = 0. We may
substitute these back into tii&(w) equations to find

¢ == (3.109)

ket (3.110)
v
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These may then be substituted into hé1) equation from which we obtain

2 2
Va— 6

2
VA

ik2cq
9= =2 In

- %z. (3.111)

Returning to Equations (3.105) and (3.106) we have

ikyc3e?/? w i (k2 c2 c
= — — — ([ ZZ - = -=2 , 3.112
w=smg e (e (- 3-%) 3412
) ) k2 S 2 S
v, = e*/? exp <Ez+i <z—cln 1-— C—; — c—z>>, (3.113)
Cs w 2 vy 8
which may also be written in the form
kycie?/? wz 1 (ke c2 Cs
= cos| —+—(ZZInll-=|-=2 3.114
Ve w (v} —c2) A ol vi| 8 ) ) ( )
1 k2 s 2 s
v, = e*/?sin (% + — (x_c In|1— c—; - C—z)) . (3.115)
cs W 2 vy 8

In low-3 plasma Equations (3.114) and (3.115) represent the inc&lew wave and in high# plasma
they represent the transmitted fast wave. Depending onhghete are considering the incident or trans-
mitted wave there will be a different constant amplitudetiplyling the equations which may be calculated
from Equation (3.86).

Now to find an equation which gives the behaviour of the caeebwave we must assume thatis
small in comparison to,,

vy = exp (wdo + P1 + da2/w), (3.116)
02 = 220 exp (o + 61 + 6a/), (3.117)

wherewgg > ¢1 > ¢ /w, Voo /w.

As before, these may be substituted back into Equation833dnd (3.104) to find
W? (1405 (84)° ) +wod (6 +20461) + (vl + 0% (6))° + 2036~
1
(24 VA) R2) = ka6 Vio + O (w) , (3.118)

and

W (1 + e (¢g)2) Vio = —wko 2 + O (1). (3.119)
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The O (w?) equation tells us that), = i/v4. So we have)] = —i/ (2v4) and, integrating betweeh
andz, ¢g = 2i/cs — 2i/v4. We may substitute these back into tB€w) equations to find

o1 = 7 (3.120)
Vg = haciva (3.121)
G '
These may then be substituted into 1) equation from which we obtain
¢ = ik2cotanh ™t (YA ) 4 A p2y (3.122)
Cs 16
Returning to Equations (3.116) and (3.117) we have
/4 2w 2w 1, _1{va vA 9
vy = e*/ % exp — — + — | kics tanh — |+ = —kiva) |, (3.123)
Cs o w Cs 16
kr 2 z/4 % % .
vy = —% exp e + k2c,tanh ™! UA) A k£UA> , (3.124)
w(vy —c2) Cs v4 w Cs 16
which may also be written in the form
2 2 1
vy = /% cos w_ + — kicS tanh ™! oA + oA _ kivA , (3.125)
Cs VA W Cs 16
kyc2vae*/4 2w 2w 1
v, = 7% sin (w - + — <k§cs tanh ™! <UA> + va _ kfch>) . (3.126)
w (v —c2) Cs U4 W Cs 16

In this casey, andv, are both zero in the loy# plasma as the fast wave is evanescent there. In theigh-
plasma Equations (3.125) and (3.126) represent the cau/eldw wave, which will again have a constant
coefficient multiplying both equations; this can be caltedsfrom Equation (3.89).

To summarise we have:

ks 3,.2/2 1 /K2 s
Lowps: Inc. w, = _ac;ieQ cos <w_z + — (z_c In|1— &
w(vg —c2) s W

1 k2 ; 2
(xTCln’lc—s

2

 (wz
v, = ae”/?sin | == +
VA

Cs w

. kgcle®/? 1 (k2c,
High8: Trans. v, = —aB—22"— cos (“’—Z T (f—cln 1—
w(vy —c2) s w

1 (k3¢ 2
vzzaBez/2sin<W+<x;ln‘ -5

cs W V5
/4 2w 2w 1 9 _1{va VA 9
Conv. v, =ade**cos| — — — + — [ kpci tanh — |+ —=—-kval]),
Cs Va4 W Cs 16
kpc2vae*/4 2w 2w 1 1 {va va
v, = —aA-2522" _gin [ = - = 4 Z (kyZtanh [ £ R ,
i w (v} —c2) Cs ’UA+OJ e Cs +16 et

wherea = e=*m/2, andA andB are as defined by Equations (3.86) and (3.89).
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Error

Figure 3.16: The absolute error between the results of theBVEKalysis and the numerical simulations
zoomed in around = 0 (wherec; = v4). The dashed line shows= +1/w demonstrating that the WKB
analysis only breaks down very close to the conversion regio

In Figure 3.14 we have used the above information, along thighknowledge of the positions of the
various wavefronts from Equations (3.43) and (3.45), tostautt analytical plots of the horizontal and
vertical velocity (right-hand side). These are shown nexplbts of the equivalent numerical simulations
(left-hand side). The agreement between these plots idlertalthough the strong exponential nature in
the plots of the vertical velocity could disguise any dewiatn the results. To ensure this is not the case
we also checked the agreement in the absence of the expair(@igure 3.15).

Using the WKB method to find the wave behaviour away from thevecsion region and then matching
the amplitudes across this region using the method dewelbpeCairns and Lashmore-Davies has been
very successful. The WKB analysis has predicted the phasarmaplitude behaviour accurately, and using
the transmission and conversion coefficients we have belentalpredict the correct amplitudes for the
different modes. The only place where the analytical ptesticsuffers is at the mode-conversion point,
z = 0, ascy, = v4 and the transmitted,. and converted, both have a zero in the denominator and thus
grow very large. However the effect of this singularity istricted to a very small area. This is because
the singularity is multiplied by a factor df/w in all cases and as is assumed to be large the effect of
the singularity is thus reduced. This is clear in Figure 3utfich shows the difference between the WKB
and numerical results. The error clearly grows at the manfesersion region, but at a distance of ofljw
from this point it has reduced back to its previous magnitude

It is fairly straightforward to show how the results of thiscsion link in with those of Section 3.4.1 as
the mode-conversion region is approached. We may do thisdyming: is small and expanding about the
mode-conversion region, so= ¢ andv is as defined in Equation (3.55). Remembering that e*/2V,
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the transmitted wave may be written

. .k2 <
V, ~ Bexp (iﬁg 4! Qf 1ng>, (3.127)

where small terms have been omitted. This may also be written

V, ~ Betkios/(29) oy <ZC”§) (3.128)

S

Following the same process for the converted wave

ki Cs ' ' ks
V, o =220 foxp [ We = g2 | Wby 1) (3.129)
wé Cs 4c, 2w
or
ka’ S —1 — ] .
Ve B gemiiten o1 o, (Eg - Zig?). (3.130)
w Cs 4cg

Adding Equations (3.128) and (3.130) we obtain

V. = Bfikicﬁ/@“) exp <iw

Cs

kxCs o ke /(20)— W w

and we have obtained the same result found in Equation (3s85)ve can see how these two solutions
match onto each other at the conversion region.

3.5 Conclusions

In this chapter we have considered the downward propagafidinear waves through an isothermal at-
mosphere permeated by a vertical background magnetic fibtayn in Figure 3.1. More specifically we
concentrated on the region where the wave passes from & lova highs plasma. As expected the simu-
lations show mode conversion occurring as the wave passagththis region at the point where the sound
and Alfven speeds are equal (Figure 3.2), but this behaviour is rddskihe strongly exponential nature of
the variables. This may be removed by making a simple tramsftion, and the conversion acrass= v4

is then much clearer (Figure 3.3). In this figure we can se&#@msmitted fast wave propagating out in front
of the converted slow wave, which has a decreasing wavdiergtSection 3.3.1 we also calculated the
exact position of the various wavefronts using the fact thdhe high# plasma the fast wave propagates
at approximately:; and the slow wave approximatedy;. We then looked at what happens when we vary
the free parameters in the model individually, beginninghvihe horizontal wavenumbér,. Figure 3.5
shows that;,, has a strong effect on the amount of mode conversionkEet 0 the two modes are com-
pletely decoupled and no conversion occurs. Theh,aacreases so does the degree of mode conversion.
In Sections 3.4.1 and 3.4.2 we investigated what happenifirhit of small and large:,. respectively.
The second free parameter is the driving frequencyThe effect of varying this parameter is shown in
Figure 3.6. Here we note that the amount of conversion deerewith increasing, in agreement with
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Cally (2005).

In the limit of smallk, we used a method developed by Cairns and Lashmore-Davi@3)(fi®find that
the velocity may be modelled by Parabolic Cylinder funcsiohese have links to Hypergeometric func-
tions (see Abramowitz and Stegun (1964)) which have beeth prswiously in mode-conversion problems
by Zhugzhda (1979); Zhugzhda and Dzhalilov (1982a); andyGaD01). The asymptotic behaviour of
these Parabolic Cylinder functions was then used to finéiméssion and conversion coefficients valid for
smallk,.. The transmission and conversion coefficients, given byaqns (3.86) and (3.89), back up the
observations from the simulations that the extent of casivarwill increase with increasing wavenumber
and decreasing driving frequency. The equations do sudfgaist, has the stronger effect of the two pa-
rameters. The amplitude of the transmitted wave predicted £quation (3.86) also agrees very well with
the numerical data (Figure 3.8).

For largek, we followed an analysis carried out by Roberts (2006). Froiswe found a WKB solution
for v, valid for largew (Equation (3.102)). This in turn was used to find an analyscéution forv,, using
Equation (3.92). Figure 3.11 suggests that we have goodiamgnet between the analytical and numerical
results forv,; however once we remove the exponential behaviour we caths¢@s:z decreases the fit
of the analytical approximation worsens, particularlytghs conversion point (Figure 3.12). Figure 3.13
shows that this is also the case for the horizontal velo@ine fit does improve ak, increases, but it is still
not significantly better even for very largg.

Finally we performed a WKB analysis to find the behaviour iwd@and high# plasmas. These solutions
were then matched across the conversion region using theniasion and conversion coefficients (3.86)
and (3.89) which were calculated in Section 3.4.1. Using thethod we managed to create a highly
accurate replica of the numerical results, shown in Figutd 3As can be seen we have managed to capture
both changes to the phase and the amplitude as the wavefopaigates across the mode-conversion region,
even though the WKB approximation does not hold at the looatiherec, = v 4.

A thorough investigation of this very simple one-dimensibmodel has yielded some very interesting
results, giving us some insight into the mode-conversiablem. We have been able to accurately predict
how the phase and amplitude change as a slow wave propagate$rdm low to highs, and also to isolate
the behaviour of the transmitted fast wave and the conveftadwave. In the next chapter we extend this
model to include a non-isothermal atmosphere. We use a&tieghrofile which mimics the steep gradient
of the transition region. The methods used in this chapteppplied to this more complex model and give
some interesting results.



Chapter 4

MHD Mode Conversion in a
Stratified Non-Isothermal Atmosphere

4.1 Introduction

We expand on the work in Chapter 3 by allowing for the inclasiba variable temperature profile. By using
analytical approximations to model the behaviour both af distant from, the mode-conversion region
combined with numerical simulations, we may compare thalteslirectly with those for the isothermal
atmosphere. Some of the results in this chapter have bedisipeddin McDougall and Hood (2008).

4.2 Non-Isothermal Model

We work with the same general set up as Chapter 3 (as showrging=8.1). Since variations are now
allowed in the temperature profile things are complicateghtlly as both the sound and Alwn speeds will
now vary with height. As before we begin with the Ideal MHD atjans.

4.2.1 Ideal MHD Equations

The Ideal MHD equations are as given by Equations (1.2835}§1.

ap B
E-&-V'(PV)—O» (41)
0 .
p(E—f—v-V)V:—Vp—i-JxB—kpg, 4.2)
%—]?:VX(VXB), 4.3)
4 _w (9
<at+v~v>p p (8t+v V)p, (4.4)
T
1
.1
_]Z;(VXB), (4.6)

84
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V-B=0, (4.7)

wherep is the mass density; the fluid velocity,p the gas pressurg,the current densityB the magnetic
induction,g the gravitational acceleration afidithe temperature.

4.2.2 Equilibrium

We now consider the equilibrium conditions for a gravitaidly-stratified atmosphere permeated by a
uniform, vertical magnetic field with a non-isothermal tesmgture profile. The equilibrium Momentum
Equation is

dpo

0 4.
dz P09, ( 8)

and from the equilibrium Ideal Gas Law
T
Po = RPOﬁO, (4.9)

this can be written

dpo _ fipo

_ , 4.1
dz RT,” (4.10)

Note that the temperature is now a function of height and esdtlale height will also vary with height. We
define this as

_ BT _ po

A (2) —° = ) (4.11)
ng gpo

Thus

dpo _bo

Epaiai (4.12)
which may be solved to give

1

po (2) = po (0) exp < / Adz). (4.13)

Defining
z dZ/
n(z) = Y 4.14
2) o A(Z) ( )

this may be written as

po (2) = po (0) e ), (4.15)
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Using the equilibrium Ideal Gas Law (4.9 () is then

po (2) = 5 /0\((?) e "), (4.16)
or
o0 (2) = po (0) LY o) (4.17)

4.2.3 Linearised MHD Equations

The MHD Equations (4.1)—(4.7) may be linearised about thelisgum by adding a small perturbation
(denoted by subscript 1) to each term

B:BO+B1($7Zat)7 V:V1($7Z,t)7 p:p0+p1($azvt)a

p=po+p1(v,zt), T=To+Ti(z,z1). (4.18)

Substituting these back into the MHD equations and neglgaimall quantities we find the Linearised
MHD equations:

0
Py (pov1) =0, (4.19)
ot
ov 1
ﬂoa—tl = —Vp1 + u (V xB1) xBo + p18g, (4.20)
91 _ 9 (vi xBy), (4.21)
ot
Ip1 Ypo [ Op1
B . - 07t . 4.22
gr +(vi-V)po o \ ot +(vi-V)po ), ( )
p_pn b (4.23)
Po Po To
V.B; =0. (4.24)

We may now drop the subscripts on perturbed variables andrasthat we are working with the linearised
equations from this point.

Assuming that all perturbations vary in =z andt alone the Linearised MHD Equations (4.19)—(4.22)
reduce to
dp vy v, dpo

“F 7 4.2
8t+p081’ +poaz+vzdz 0, (4.25)

P08 T or T n

ov,  Op
PO =5, ~ PY; (4.27)

(4.26)

dv,  0Op By 8Bx_8BZ
0z ox )’
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8? _ B, % 7 (4.28)

aaBtZ __B, %?7 (4.29)

R Al AL (430
where

2o 0@ (0 (4.31)

* po(2)  po(0)A(0)

As can be seen from the above equation the squared soundisgeegortional to the scale height, which
is in turn proportional to the temperature.

This set of equations may be combined to give a pair of wavatians

82Ux 2 2 82% 2 82Uz 2 (92’035 ov,

= —gos 4.32
ot? <Cs + UA) Oz TG 00z VA 922 oz’ (4.32)
0%v, 9 v, v, Oy ov,

= —(y-1go- - 4.33
TR <8m82 = > 1 -Nag, ~19%, (4.33)

wherev = B3/ (upo) is the square of the Alfen speed. As expected these are identical to those listed in
Equations (3.18) and (3.19), which are valid for a generaperature profild (z) (Ferraro and Plumpton,
1958).

4.2.3.1 xz-Dependence

To reduce these equations from two dimensions to one dimmensie assume that thedependence has a
trigonometric form depending on the horizontal wavenuniher

v = (vg (2,t)sinkyx, 0, v, (2,1) cos kyx) ,

B = (B, (z,t)sink,x, 0, B, (z,t) cos k), (4.34)
p=p(z,t)cosk,x,

p=p(zt)cosk,x.

Noting thatn' (z) = 1/A (z),

dpo  po

FEi (4:35)
and

dpo e ’ A (2)

PR (0)A(0) D) <” (2) + A(z)) ; (4.36)
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or

~—

dpo _ po (2 /
o =" /{’(z) (1+ A (2)). (4.37)

We may then use the above information to rewrite the Linedr/dHD equations:

poE %aai © —kpt k%B (4.38)
po gz + 2 = —pg, (439)
% B, %L; —0, (4.40)
83% = —ks Bova, (4.41)
% + ’Ypo% = Pogvz — YPoka Vs, (4.42)
O 0% = B (14 N v — kapova (4.43)

As before these may be combined to give a pair of wave equation

2 2
0“0, 0%vy 9, OV,

o2 = U,24 022 — CsRg 92 - (Cg + 1}124) kgvz + krgvza (444)
0%v, 5 0%, 5, OUy Ov,
atz = Cg (922 + Cskwg -9 82 - (,7 - 1) gk$vx7 (445)

which are dependent only anand¢. To make these equations easier to model numerically treeynade
dimensionless.

4.2.3.2 Non-Dimensionalisation

We setv = yyv, B = BO:B, P = PooPs P = PoopP; Ty = TooA, Po = PooPo, Po = Po0LO, Z = Lz, t = 7-{,
andk, = k,/L. Under this system a bar denotes dimensionless quantitiéthe constantsy, By, poo,
poos Too, L andt have the dimensions of the quantity that they are scaling.

Choosingpgo = po (0) andpgo = po (0) we find

_ L [dz

Po = €Xp <E / 7)7 (446)
and

1 L [dz\ o

perXp( H//_\>[_\7 (447)

whereH = RTyo/ (1g) = A (0) andA = HA.
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We may then consider the sound and Alfvspeeds. Setting, = vpoo/poo We have

e =A, (4.48)
andv}, = B§/ (1poo) gives
W=~ (4.49)
Po
The plasma may then be written as
2c2 -
B=—5 =P, (4.50)
YV

where 8y = 2¢%,/ (yv%,) and3 = po. At this point we may choose to sef = vao = 1, giving
2
Cs0 = ’YﬁO/Q

If we wish to set the region where the sound and Affvspeeds are equal to lie at= 0 then the
following relation must be satisfied

_ B
Pol,_o = % (4.51)

Note that this is dependent on the chosen temperature paofilso the chosen value f6§ will differ from
case to case.

The linearised dimensionless equations are given by

_ v, 0B, _ oy

P gy ~ gz = g keP T haBs, (4.52)

_ 00,  [oOp L By _

2 Podp L fo 4.
Por T e mal (4.53)
0B, 0v,
9On O _ 4.54

ot 0z 0, ( )
0B, -

A 4.55
5 ki (4.55)

1op  ov. Lo, -

e/ — 2% ko, 4.56
ot ez HA Y (4.56)
19p 0o, o, (L < _

—_F E=2Z2 (= 4N — k0, 4.57
0l 0z A (H+ ) v (4.57)

where it has been noted that= ¢2,/vH. These may then be combined to give the wave equations

2 _ 2 . L
<u2 LA (77608 + ui) k2 — 8—) Ty = ”Tﬁokm (CQQ - —) v, (4.58)

0? L o 0%\ _ = [ 50 L _
(5egm 5 am) ™=k (g g 00 e (4.59)
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Figure 4.1: The chosen temperature profile has the farm a + btanh (dz/H) and is chosen to mimic
the steep gradient of the transition region. Here we have set).55, b = 0.45 andd = 1.0. The dashed
line indicates where, = v4.

Henceforth the bars on normalised values are dropped aa@d#sumed that we are working with dimen-
sionless quantities unless otherwise stated.

4.2.4 Temperature Profile

The temperature profile that we use isaah profile, given by
A = a + btanh (dz). (4.60)

This is chosen because of its steep temperature gradiesttiedl of that seen in the transition region. As
shown in Figure 4.1, away from the gradient the temperamienstant. So in these regions the results
would be the same as for an isothermal atmosphere. For ts®newe choose to set the region where the
sound and Alfén speeds are equalat= 0 in the centre of the steep gradient. In order to do this we need
to know the value opy. For this we require the expression

dz _ In(tanh(dz) +1) In(tanh(dz) —1) bln(a+ btanh (dz))

@ _ 4.61
A 2d (a — b) 2d (a + b) d (a2 — b?) (4.61)
Noting that
2dz __
fanh (dz) = &2 (4.62)

e2dz + 1’
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Figure 4.2: This plot shows how the sound and Alivspeeds vary across the computational domain. The
mode-conversion region lies at= 0 where these speeds are equal.

this may be written

dz b ) 5
K_d(a2—b2)1n<(a+b)ezdz+(a—b)>+(a—b)' (4.63)
From Equation (4.46) this givas as
Lb
[ (a+Db)e* 4 (a— b)) 7227 Lz
bo = ( 9 exp Hla—b (a — b) ) (4.64)

and to satisfy the conditior, = v4 atz = 0 (Equation (4.51)) we require

2 _ Lb
Bo = —a HA2=07) (4.65)
v
The mode-conversion region will then lie at= 0, as shown in Figure 4.2, and we are free to define
v=5/3andL = H. So, as for the isothermal cadejs equal to the scale heighf defined at = 0. We

also setv = 0.55 andb = 0.45 leaving the parametetfree to vary the steepness of the slope.

4.3 Numerical Simulations

Equations (4.52) —(4.57) are solved numerically using tlee®brmack method as was done in Chapter 3.
As described in Section 2.3.8 the MacCormack method is &fitifference scheme which uses a predictor
and corrector step to advance the solution. Either forimachiward or backward/forward differencing may
be chosen for the predictor and corrector steps respegtiwg choose to use forward differencing for the
predictor steps and backward differencing for the cornesteps. This means that we are using the more
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accurate corrected values on the upper boundary where axgoe is driven. The lower boundary is less
important as the simulation is terminated before this bauypds reached to eliminate reflection effects.
The boundary conditions are given by

10B. 0B. ap o

TR o v 5,700 5=

B, =
0z

0. (4.66)
In addition to these we have the conditions on the velocitictvkary on the upper and lower boundaries.
Upper Boundary: v, =0, v, = sinwt. (4.67)

Lower Boundary: aa& =0, v,=0. (4.68)
z

As for the isothermal case, by driving, on the upper boundary we are predominantly driving a slow
wave. There will be a small component of the fast wave intoedubecause we have sgt = 0, but we
need not worry about this as the fast wave is evanescent ilowhe plasma. The simulations are run for
-8 <z <6and0 <t < 7.2with §z = 0.003 anddt = 0.0013, where the end time is chosen just prior
to the wavefront hitting the lower boundary. We are then fieeehoose the values of the parametérs
which varies the steepness of the slope of the temperatafiéepand the parametegsandk, which will
alter the driving frequency and wavenumber respectivehe $low wave is driven on the upper boundary
for frequencies ofv = 27/73/2, 27v/6+/750/2 and4m+/6/~3,/2 which correspond in real terms to
frequencies of 0.208, 0.49 s'! and 0.98 s! and periods of 31.3 s, 12.8 s and 6.4 s respectively. In
calculating these values we have assumed a typical lerai¢he€ 6 Mm and sound speed of 50 km's

in the transition region. Usin@,. = vg/2¢s (Roberts, 2004) the acoustic cutoff frequency is given by
Q4. = 0.004 s~1, which is much smaller than the driving frequencies.

4.3.1 Wave Properties

As we are driving a slow wave on the upper boundary we wouldelkfo see similar behaviour to that
demonstrated in the isothermal case. Thus, in the absermeyainode conversiork{ = 0) the lows
slow wave should propagate as a fast wave once it crossethintugh plasma. Fok, # 0 some mode
conversion will occur, and we would expect some componett@Elow mode to be visible in the high-
plasma. At this point we also note that as the wavelengthvesngby

2
_om ik (4.69)
w 2
which varies with the sound speed, we would expect the wagéheof the incident wave to vary as it
crosses the steep temperature gradient-ato0.

Figure 4.3 shows the horizontal and vertical velocity, hontal and vertical magnetic field, pressure and
density resulting from the numerical simulation with= 1, w = 27v/6+/700/2 andk, = 7 att = 7.2
Alfv én times. There does appear to be some mode conversioniageuhis is clearest in the plots of
horizontal velocity and the horizontal and vertical magméeld, where a change in behaviour is seen in
the amplitude. As in the isothermal case this is masked bypagamplitude variation. By using the WKB
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Figure 4.3: Results of the numerical simulation with= 271/6+/70,/2 andk, = « att = 7.2 Alfvén
times. The plots show the horizontal and vertical velodhg horizontal and vertical magnetic field, pres-
sure and density respectively from top left to bottom rigftie red dashed line indicates where= v 4.
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Figure 4.4: Results of the numerical simulation with= 271/6+/73,/2 andk, = 7 att = 7.2 Alfvén
times. The plots show a transformation of the horizontal eexdical velocity, the horizontal and vertical
magnetic field, pressure and density respectively fromefigd bottom right. The red dashed line indicates
wherec, = v4.
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method as shown in Section 4.4.2 it is possible to find a toansdtion which will give a constant amplitude
for the incident and transmitted waves. These transfoomatare given by

3AL/4 3A1/4 3A1/4
- csA oA ~ coA

U$_)Uwﬁ’ B, — wﬁ’ BzHBzﬁ7
(v4 —2)py (v —c2)py (vi — <) po

Al/4 1/2 Np(l)/2

~ Do
p1/27 p*)pAl/4’ pHpA5/4
0

(4.70)

Vy — Uy

The plots resulting from these transformations are shovirignre 4.4. The conversion is now much clearer
across the, = v4 layer (indicated by the red dashed line). The vertical vigfppressure and density show

the transmitted wave propagating out ahead, which has aeshwavelength as predicted. The converted
wave is present behind as interference to the left of the emthed line, and is also visible in the plots of
horizontal velocity, and horizontal and vertical magnéiédd.

It is possible to calculate exactly how these wavefronts pribgress with time. The position of the
acoustic wave is given by

d —cs = — 7760\/11 + btanh (dz). (4.71)

T
Making the substitution

u = y/a+ btanh (dz), (4.72)

this may be written

2 du 3

Solving using partial fractions along with the initial catidn ¢ = 0, z = 6 gives
h h
. 1 /2 1 tanh-! Va+btanh(6d)\ 1 coth-! a+ btanh (6d) |
dV vBo [Va+b va+b va—b>b va—>b

tanh ™! < a+ batinl})l (dz)) + —a1, b coth™! < ot b_atin: (dz) >] . (4.74)

1
va+b
From this we can see that&at= 7.2 Alfv én times the acoustic wave will have reached —7.5.

The position of the magnetic and slow modes are given by

dz 1

= g4 = —— 4.75
dt UA pO’ ( )
and
dz CsUA
— = —— 574 4.76
dt cT cg T ’[)1247 ( )
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Figure 4.5: Surface plot of the transformed horizontal eijofor w = 27v/6+/v60/2, k., = 7 andd = 1.
The red dashed line shows the position of the acoustic mbaegrteen dashed line the position of the
magnetic mode, and the blue dashed line the position of therslode.

respectively. These are not easily solved analyticallysbotimerical solution may be found using a fourth
order Runge-Kutta method. The slow mode solution is solvegkeuthe initial condition that = 6 at

t = 0. The magnetic mode is not present until the slow mode hasgdahsough the conversion region.
Using Equation (4.74) we find that this occurg at 1.6 Alfv én times, and so the initial condition for the
magnetic mode is given by = 0 at¢ = 1.6. The results of these calculations are shown in Figure 4.5. |
this figure the transformed horizontal velocity is vieweahfrabove, and overplotted are the paths predicted
by Equations (4.74), (4.75) and (4.76). The acoustic modesgihe path of the slow wave in the law-
plasma and the fast wave in the higlplasma. The magnetic mode is only present in the Wgilasma
and gives the position of the slow wave in this region. Thetsoh to Equation (4.76) gives the path of the
slow mode and is valid as it passes from the low- to highlasma.

4.3.2 Effect of Varying the Model Parameters

We now investigate the effect of varying the three free patansd, k, andw on mode conversion, and
compare this to the results of the previous chapter.

4.3.2.1 Varying the Slope

By varying the value of the parametéwe may vary the steepness of the slope representing thétimans
region. To do this we fix the driving frequency to be= 27‘(\/6\/’W and the wavenumber to lig = .
The time at which to stop each simulation was calculatedguSguation (4.74), and the plots in Figure 4.6
are shown fort = 1.8, 7.2, and 11.5 Alfén times respectively from left to right. So, the steepersope
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Figure 4.7: The transformed vertical velocity for= 27+/v50/2, k., = = andd = 1.5. The plots show
t = 1.2, 3.6, 5.9 and 9.5 Alfén times respectively from left to right. The red dashed tieaotes where
Cs = VA.

the longer it takes for the wavefront to reach the left handroary. Although the timescale is affected by
the slope the mode conversion seems to be unchanged. Eadh Bigure 4.6 shows the same proportion
of the incident wave being transmitted acrossdhe- v 4 layer.

It should be noted that the value ofis chosen as it gives a wavelength)of 0.2 in the lows3 plasma.
This is much smaller than the width of the gradient in the terafure profile in all three cases. If this is not
the case then some of the incident wave will be reflected batokthe low# plasma from the conversion
region. This is demonstrated in Figure 4.7, which shows & sfmde pulse being driven on the upper
boundary with frequency = 27+/780/2 (giving a wavelengtt\ = 1 in the low-3 plasma), wavenumber
k., = mand slopel = 1.5. The incident pulse is clearly seen approachingthe v 4 layer, denoted by the
dashed red line. As this wave crosses the mode-convergjenitassplits into a converted and transmitted
wave. But as these travel through the hjglplasma, another wave can be seen in the foplasma to the
right of the dashed red line. This wave has been reflectedaltieetslope of the temperature profile. As
we are not concerned with the reflection, we ensure that admngligh driving frequency is chosen to give
a wavelength much smaller than the width of the temperattadignt. This does limit the applicability of
the model as it has been shown that reflection is importartyfical frequencies (Fedun et al., 2009).

4.3.2.2 Varying the Wavenumber

From Chapter 3 we would expect the amount of mode conversianctease as the wavenumbier in-
creases. We examine the same range of values,foFigure 4.8 showg, = 0, 0.25,7/10, 1, 7/2, 2,
m, 5 and 7 respectively from top left to bottom right. In all eaghe slope is fixed at = 1, the driving
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frequency atv = 2mv/6+/700/2, and the time ig = 7.2 Alfvén times. As we had expected, the mode
conversion increases and the transmission decreases ealtieeof the wavenumber increases; just as it
did in the isothermal case. Fér, = 0 there is no mode conversion. Whilst remains small the amount
of mode conversion is negligible and cannot be seen in this pdpresenting,, = 0.25, 7/10, 1 orx /2.
Oncek, grows beyond this point, the mode conversion can be seereipltts clearly as the amount of
transmission decreases. If we compare these plots to tthasensin Section 3.3.2 we can see that the
increase in mode conversion is slower in this case. Due tsithéarities in behaviour we would expect to
find similar equations to those found in Section 3.4.1 to diesc¢he transmission and conversion.

4.3.2.3 Varying the Driving Frequency

The final free parameter left for us to examine is the driviregifiency. From the work done by Cally (2005)
and from Section 3.3.2 we expect the mode conversion to deemith increasing frequency. We examine
the frequencies = 271/73/2, w = 21v6+/750/2 andw = 47/6/v53,/2. These are shown from left
to right in Figure 4.9, in which the slope is given by= 1 and the wavenumber by, = 7 att = 7.2
Alfvén times. The transmission clearly increases as the freguanreases and therefore the conversion
decreases, as we suspected it should.

4.4 Analytical Approximations

As was done in Chapter 3 these predictions from the numesigallations can be backed up using analyt-
ical techniques. We use the Cairns and Lashmore-Davie8]188thod and the WKB method to describe
the wave behaviour across the domain.

4.4.1 Smallk, Limit

First we use the method by Cairns and Lashmore-Davies (1688 the behaviour at the mode-conversion
region itself. Beginning with Equations (4.58) and (4.59) assume that the time dependence has the form
et so thatd /ot = iw

> (9B B0 d 1
2 & (7YPo 2 22 2 _ Ybo 2d 1
(UAdZQ ( 5 vy | ki tw | v, 5 k| c: &5 Vs, (4.77)
YBo o d? 5o d 2 Y50 2 d 1
Y2 IS = (S - 1)) . 4.78
< 2 “dz? 2 derw Y 2 “dz 7(7 ))v (4.78)
Making the substitution
2
v, =iA Ly, (4.79)

Cs ’Yﬁo
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Figure 4.8: Transformed vertical velocity fdr= 1 andw = 27v/6+/78,/2 att = 7.2 Alfvén times. The
plots show the results fdt, = 0, 0.25,7/10, 1, 7/2, 2, 7, 5 and 7 respectively from top left to bottom
right. The dashed red line indicates whege= v 4.
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Figure 4.9: Transformed vertical velocity fdr= 1 andk, = 7 att = 7.2 Alfvén times. The plots show

w = 21\/7B0/2, 2V 6+/vBo /2 and4n/6+/v30 /2 respectively from left to right. The dashed red line
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and assuming that, < w/c, and that variables may be neglected in comparison to thewradies, these

equations become

d? , dv,
(qu@ +w2) Vg = Z%%UAcskwE7

2 3/2 3
(’V_ﬁogd_ +w2) V., =i (7_50) € p, dva

2 *dz? 2 va Tdz

The wave equations then reduce down to

e (L e, — gy 2P0l dVe
dz ZUA dz wa/) " 2 vy “dz’

d 2 w d 2 w . [vBo ¢s , dug
— iy —— — =iy —— | V. =iy —— "k, .
<dz+Z vBo cs> <dz ! vBo CS)V ‘ 2 vy @ dz

(4.80)

(4.81)

(4.82)

(4.83)

Written in this form each wave equation separates the upaadddownward travelling waves. Note that
although we drive only’, on the upper boundary, this in turn drives the right-hané sithe wave equation
for v,. At the mode-conversion layer we havg = \/'yﬁT/%s and there is a resonance between the
downward propagating waves. This is what allows energyaiodfer from one wave mode to another.

Expanding about the mode-conversion region by setting0 + £ + ... we haved/dz = d/d¢. Then

taking a linear expansion of we have
A~ a+ bdg,
SO

po = (a+ bd&)fl/bd '

Note that letting: — 1 andb — 0 and using the limit definition of the exponential function

(e® =lim,, .o (1 +z/n)") we return to the isothermal case.

This means that

5o — g1/
2

and we may write

L2 1/ ¢
ENV%E<_%)'

(4.84)

(4.85)

(4.86)

(4.87)

For the waves travelling upwards, away from the mode-caioarregion, we may simply set/dz =

iv/2/vBow/cs. Equations (4.82) and (4.83) then become

drUI_i( iﬁ_ i
d¢ VABocs V5

w ik
T = _‘/tza
2ac, 6) ! 2

(4.88)
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dV. 2 w ik..
2 _ =V, = Zu,. 4.89
& Voke P2 (4.89)

Equations (4.88) and (4.89) may be shown to satisfy energgarvation. If we multiply Equation (4.88)
by its complex conjugate to give

dvx / [ 2 w _ iky _
———& | Vv = — 0, V5, 4.90
( ’Yﬂo es V8o 2acs 5) 2 (4.90)

and taking its complex conjugate

d’l)z 2 w _ iky -
— & |V = —— v, V. 4.91
< V 50 VB0 2ac, 5) 2 (4.91)

Adding these together gives

d iky =
i (l0e) = 5= @V =0 V2). (4.92)
The same process may be performed on Equation (4.89) giving
_dv, | 2 kz -
V. V V. = —V.u,, 4.93
& "Vime E (4.99)
and
dv, 2 iky
g i Yy, = -2y, 4.94
BT 2 (499

which may be added to give

d 2\ Zkr 7 _

g (V=) = 52 (Ve = vim). (4.95)
Taking Equation (4.92) and adding it to Equation (4.95) weawb

d 2 2\

ge (ool +1V:I7) =0, (4.96)

and so we see that energy is indeed conserved.

Looking back to Equations (4.88) and (4.89) may be eliminated to give a second-order differential
equation forV,

2V, . [2 w/[¢ dv, 20?2 £ k2 B
i Wame (3 2) 5t (e (s 1)+ ) v @90

To eliminate the first derivative term we make the substiuti

v =ew (- 2% [ 2 (5-2)a)ve), 4.99
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treating the sound speed as constant at the mode-conveegiom, this gives

d%y 2w? 9 [ 2 w k2
Y - R S -z =0. 4.99
dg? - (16a27ﬂoc§£ ! B0 4acs Ty > v=0 (4.99)

Making a second substitution

5 w 1/2
= (/= Sim/4 4.100
= ({Fms) e (4.100)
the second-order differential equation may be written
d*y ¢ 1 V6o kzacs
P e P A =0. 4.101
acz ( T2 Wy oy Y0 (4.101)

The advantage to writing the equation in this form is thatsbkition is known in terms of the Parabolic
Cylinder functionU (f, ¢), where

1 . [vBo K2acs
___ zPts 4.102
f 2 ‘ 2 2w ( )

A full description of these functions and their behaviounyrba found in Abramowitz and Stegun (1964).

On comparison with the results in Cairns and Lashmore-Ba{@i®83) we may write down the asymp-
totic behaviour in the low3 plasma § > 0)

i B /2k§ac‘s/(4w)
. 2w V" exp [ /2P0 Thzacs giv/ABo 2Kz ac. /(20)
* ~vBo 2acs 2 8w
2
X exp (i«/—if), (4.103)
P)/ﬂO Cs

and in the highs plasma § < 0)

in/7vBo/2k2acs [ (4w)
Lo VB0 oo [ - |60 3nkzacs |£|i\/mkiacs/(2w) «
? vBo 2acs 2 8w
5 o) 1/2 20¢,
X exp (i, / —if) — (27) exp | —4/ L@)ﬂkmac X
B0 ¢s T (—i /Lgo k%acs) 2 8w
w
—(in/~Bo/2k2acs ) (4w)) —1/2
» ( i w > ( TPo ) |§|_(i,/750/2k§ac5/(2w))—1 %
V 700 2ac,

2w By w5 BT

To find an expression for the transmission and conversiofficieats from these equations we use the
WKB method. Assuming that, is small in comparison t&, will give us information about the transmitted
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wave. So we set

Vp = Vao exp <w¢>o + ﬁ), (4.105)
w w
V., = Bexp (w¢0 + %), (4.106)

wherewdy > ¢1/w, V,o/w. Substituting these into Equations (4.88) and (4.89) we find

a2 _& Vi | Vao o _ ke
<¢O Woge (1 gr) ) Veo b 224 200 = 578, (4.107)

/ ,
w(onp—i ) 2B) 4 g ke Voo (4.108)
B0 cs w 2 w

Equating the various powers ofwe find

7 2 YL 30 kwacs . )//30 k‘Q(ICS
(bO Cs BO gv z0 \) 2 é. ) (bl 1 \) 2 2 gv ( 09)

wherec, has been treated as a constant. This assumption is valid asvealy concerned with the mode-
conversion region at = 0 wherec;, = 1v/0.55. These give the transmitted component as

V, = BEVB/2R acs/(2) gy (i, /72@;5), (4.110)

To find an expression for the converted componerit.ofve follow the same process, this time assuming
thatV, is small in comparison to,,

v, = Aexp (wqbo + %), (4.111)

L (w% n ﬁ), (4.112)
w w

wherewg > ¢1 /w, V.o/w. Substituting these into Equations (4.88) and (4.89) gield

/ /2 A £ ¢y, ik

Equating powers of we find

_ i 2 52 _ Vﬁo kxacs o . ’Yﬁo kfcacs
$o = C_s\/ % (5_ @) ;o Vo= -\ N ¢ A, o1 =1y 5 "5 Iné, (4.114)

wherec; has again been assumed constant. The converted compotiesnt is

V.= — /’Y_&)%Agf(i\/%30/21631105/(20.)))71exp (Z /iﬂ <§' _ g)) (4115)
2 w 'YﬁO Cs 4a
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Equations (4.110) and (4.115) may be added together to give

V, ~ BB R0, /(26) g (l /l£5> _
YBo ¢s

[P0 kaacs A{(imkiacs/@w))fl exp (Z | 2w (5 - ﬁ)) (4.116)
2 w YBo Cs 4a

Comparing this to Equations (4.103) and (4.104) we may detheevalues of the conversion and transmis-
sion coefficientsA and B. Dividing the high# equation by the lows equation and comparing the result
to Equation (4.116) gives

2
B = exp <—, /250 Thzacs ) (4.117)
2 2w
1/2 1/2 2
A= 2(27) (, /7%—2;"0 ) exp (-,/%%”kiﬁc‘“), (4.118)
kmF <Z /% kzacs> 0 s

2w

where imaginary terms have been neglected as these inflaehcéhe phase, not the amplitude. Noting
that

N N m
T (iy)|” = | (—iy)| =m7 (4.119)

(Gradshteyn and Ryzhik, 1981) the conversion coefficianpéfies to

A:\ll—exp <—,/%ﬁ‘“#> (4.120)

Equations (4.117) and (4.120) tell us what proportion ofitteédent wave we would expect to be trans-
mitted and converted across the mode-conversion regiohstiButing these coefficients back into Equa-
tion (4.116) we have a description of the vertical velocitycss the domain. This is shown in Figure 4.10
for w = 47v/6/73,/2 andk, = w. Overplotted on this figure is the amplitude we would expectde
for the incident wave once the amplitude dependence is rethand to the left of the red dashed line
the amplitude predicted for the transmitted wave by Equafib117). We may compare this result to the
numerical simulations by taking the ratio of the transndittéave to the incident wave for various values of
k.. The results of this are shown in Figure (4.11).

In Figure 4.11 we can see excellent agreement between ttgiealaprediction for the transmission
(solid line) and the numerical simulations (stars). As fog tsothermal case this is true even as the hori-
zontal wavenumber becomes large, violating the assungtigtinen taking the logarithm of the amplitude
ratio (shown on the right-hand side) the numerical resdtslze seen to deviate away from the numerical
prediction ask, becomes large. However this deviation is small, and Equg#adl17) gives an excellent
prediction for the amount of transmission. It is more diffidd make a direct comparison for the conver-
sion coefficient due to the interference of the fast waves #dsily shown thati? + B2 = 1 however, and
so we can also have confidence in the values predicted froratBgu4.120).
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Figure 4.10: Vertical velocity as predicted by Equatiorl(8) withw = 47/6+/v3,/2 andk, = =. The
vertical red dashed line denotes whege= v 4; the horizontal dashed lines to the right of this show the
predicted amplitude of the incident wave, and those to tfie¢He predicted amplitude of the transmitted
wave.
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The transmission and conversion coefficients are deperatebbth the horizontal wavenumbék,.|
and the driving frequency.(). Their variation with these parameters is shown in Figufe?4 As for the
isothermal case the amount of conversion increases witkasigk,., and decreases with increasiag
hence the transmission will decrease or increase respéctithis result is in agreement with Section 4.3.2
and we can see that the variation with the horizontal wavdoaurns the stronger effect.

Looking back to the transmission and conversion coeffisiémind in the isothermal case, Equations (3.86)
and (3.89), we can see that the inclusion of a non-isothetenaperature profile has no effect as long as
reflection effects may be neglected. To retrieve the isatlaéresults we simply need to set= 1 and
b = 0 in the expression foA and takeyS,/2 = 1. In the more general form that we have here in Equa-
tions (4.117) and (4.120) the transmission and conversigfficients may be found for any temperature
profile.
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Figure 4.11:Left: Ratio of the transmitted and incident wave amplitudes.

Right: Logarithm of the ratio of the transmitted and incident waxkgétudes.

In both cases) = 47v/6+/78/2 and the solid line is that predicted by Equation (4.117) dwedstars are
the values calculated from the numerical data.

<q Q
0 5 10 15 20 25 30 0 5 10 15 20 25 30
k.H koH
7.01 ‘ ‘ ‘ ‘ ‘ ] 1.07
0.8} : 0.8 ]
0.6} ] 0.6 :
< I ] @ — ]
0.4 ] 0.4r N
0.2} : 0.2} :
000 00t/
0 20 40 60 80 100 120 0 20 40 60 80 100 120
WwT wT

Figure 4.12:Top Left: The variation of A withk,, for w = 2mv/6+/v50/2.

Top Right:The variation of B withk,, for w = 27v/6+/~50/2.
Bottom Left:The variation of A withw for k, = 7.
Bottom Right:The variation ofB with w for k, = .
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4.4.2 WKB Analysis away from the Conversion Region

The smallk, approximation gives the wave behaviour at the mode-coiverggion. To study the be-
haviour away from this region we use the WKB method. This warkder the assumption thatis large,
and will give the amplitude dependence and phase in bothigine &nd low# plasma.

We begin with the wave equations (4.58) and (4.59) Wwitht =

9 7Bo Wﬁo 1
2 07 [P0 2 22 2 o 1
(vA 5.2 ( 5 Ca + ’UA> kI +w ) Vs = 75 ks <cs P 7) Vs, (4.121)
’)//30 2 82 ")//30 0 2 o "}//30 2 0 1
< 2 922 2 0: V)T T ha | & 0z vy (=1)) v (4122

Assuming thak > k,c, we may expand the horizontal and vertical velocitiesanduv., in inverse powers
of w. In order to find equations describing the incident and aEtied waves we make the assumption that
v, 1S small in comparison to, .

Vp = % exp (w¢0 + o1+ (b?) (4.123)

v = exp (oo +01+ 2), (4.124)
wherewgy > ¢1 > da/w, Vio/w.
Substituting these into the wave equations we obtain
w (Vao (66)° v + Vo ) + 02 (2Vioh + Vaodf + 2Vsos06h) +

1
7 (Ui 1+ 203 Vigdh + 13 Vaod! + 203 Vaodydh + 03 Vao (67)° —
- () ) =Tk + (ke - P ) +

2
+%750 ¢2+0< ) (4.125)
and
w (75“ ¢ (65)" + )w(’f" 2 (¢ +20401) — %%)
(250 (ot + 20005 + (60)%) - 5201 ) = = kec2iag + 0 (1) (4.126)
where’ = d/dz.

From theO (w?) terms we find

2 1

i ]2 L 4.127
2 o . (4.127)
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{0
]2 dz ” 2
=iy — [ =, = _ 4.128
%o vBo / Cs 0 750 02 ( )
Substituting these values back into Béw) terms we find
3/2 3
. 7650 Cg
Voo = —iky | — —_— 4.129
o= () s @129
and
A1/4
¢$1=In|— (4.130)
172
Do
These may then be substituted into hé1) equations giving
o = 7Bo 52 /Wo ,,__ /Wo___ /’Yﬁo _’s
2 2 (& —50/2¢2) 'yﬂo /2c2 2
750 Cs
2 5 (4.131)

but due to the fact that, is dependent on this is very messy to integrate analytically. It is possible

however, to solve for this value numerically using a founties Runge-Kutta scheme.

¢_)
w

Returning to Equations (4.123) and (4.124) we have

vBo 3/2
= —ik, ( 5 > ( 750/202 exp <7w1/ /A1/2 In
| 2 P2
v, = exp (zw / A1/2 + w)’

which may alternatively be written in tngonometric form as

, B} ( 30>3/2 3@1/4 < ,—/ )
‘ ’ 2 w( —v60/2¢2) p Y50 1‘1/2

1/4 i + _2
V, = (1)/25111 w1/70 1/2

A1/4
2

A1/4

2

(4.132)

(4.133)

(4.134)

(4.135)

Equations (4.134) and (4.135) represent the incident watkes lows plasma and the transmitted wave in
the high# plasma. The transmitted wave will be multiplied by a constaich may be calculated from
Equation (4.117), telling us the proportion of the incidestve that has passed into the higiplasma.
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It then remains to find equations describing the convertagew&o do this we assume thatis small in
comparison ta,, by setting

vy = exp (wgso + ¢y + ¢2) (4.136)

V.
v, = 70 exp (w% +¢1+ ¢2) (4.137)
where, as beforeygy > &1 > ¢o/w, V.o/w. On substitution into Equations (4.58) and (4.59) we find
w? (v (64)° +1) +wrd (6] +2050) + (V307 + 203606% + 03 (61)° -

_ (775%2 )18) 750 Voo + O (i) (4.138)

and
<760 Vi () + Vz0> + <760 2 (2V0eh + Ve + 2Vaodp9h) — 760 ZO%) -

_ 750 ol + 750 ky (7(7_1)—c§¢3> +O<w>. (4.139)

TheO (w?) terms give
by = —, (4.140)

which may be solved to give

dz Ky
bo —z/ o = —zv—g‘. (4.141)
A A

Substituting these values into tli¥(w) equations we find

760 civa
Vz() - Zk:v 2 ( 750/202) (4142)
and
1
o1 = §ln|v,4|. (4.143)

Finally to find a value fokp; we turn to theO (1) equations.

k2 (5o i kE (B0 o ) i (v))?
& i) _ e 4.144
¢ = 2UA < 2 ) (v4 —vPoc?/2) Z2UA 2 tua )+ 4UA 8 wa ( )

Again, this is not easy to solve analytically but may be fonndherically using a fourth order Runge-Kutta
scheme.
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Putting these values back into Equations (4.136) and (3487ind

d
Vg = vi‘/z exp (Zw/ & + @), (4.145)
VA w
3/2
7B sy < / dz ¢2>
= —ik, exp | iw [ —+ — ). 4.146
2 w (v —vBoc2/2) P va  w ( )
These may also be written
d
Uy = v114/2 cos (w/ d + @>, (4.147)
A w
3/2
7Bo vy : ( / dz ¢2>
V, = —kgp—— sin|w [ —+—= ). 4.148
2 w(vy —v6oc2/2) VA W ( )

Equations (4.147) and (4.148) describe the converted slavewn the high3 plasma. These equations
need to be multiplied by a constant, given by Equation (4, 12bich describes the proportion of the
incident wave which is converted. In the lgfvplasma these equations will be zero as the fast wave is
evanescent in that region.

In summary we have

BAL/A
Low 3 Inc. v, = —ak, <760) A ( / / L _)
2 — YB0c2/2) py/* 8o ) AV
A1/4
Vz =075 1/2 Sm( \/ /A1/2 _>
BAL/A
High 8: Trans. v, = —aBk, (75‘)> A ( [ 2 / L _)
2 — 160c2/2)p 160 J AV
A1/4
pé“ sm( V“/ﬂo/Al/Q )
Conv. vz:aAvA cos (w/—er@),
vA w
3/2
750 vy : /% b2
v, = —aAk, 5 w( ’Yﬂocg/2)sm<w UA+w ,

whereA andB are as defined by Equations (4.120) and (4.117) and

1/2
po/

AL/4

Z=Zm

o (4.149)

From Equations (4.74) and (4.75) we know that at 7.2 Alfv én times the fast wave will have reached
—7.5 and the slow wave will have reached~ —1.6. Using this information along with the above

equations and the transmission and conversion coefficiahtslated from Equations (4.117) and (4.120),

we may create analytical predictions of how the horizontal gertical velocity behave across the domain.
The results of this are shown in Figure 4.13 which shows thaarical simulations alongside for com-
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Figure 4.13: The numerical and analytical horizontal viéjoand the numerical and analytical vertical
velocity respectively from top left to bottom right. In allgts w = 47v/6+/760/2, k. = m andt = 7.2
Alfv én times.
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Error

Figure 4.15: The absolute error between the results of theBVEKalysis and the numerical simulations
zoomed in around = 0 (wherec; = v4). The dashed line shows= —1/w demonstrating that the WKB
analysis only breaks down very close to the conversion regio

parison. The analytical prediction for the converted wawvesinot quite capture the correct amplitude
dependence, although the phase looks to be in good agreememtpredicted vertical velocity is in ex-
cellent agreement with the numerical simulations, whickvien clearer when looking at the transformed
vertical velocity shown in Figure 4.14. The analytical gotidn has captured both the change in amplitude
and phase across the mode-conversion region.

The analytical predictions do break downzat= 0 as there is a singularity in the equations for the
incident and transmitted horizontal velocities, and thevested vertical velocity at this point. These terms
are multiplied by a factor of /w and, asv is assumed to be large, the singularity does not have a strong
effect on the results. In fact looking at Figure 4.15, whibbws the difference between the analytical and
numerical velocities, we see that outwitfw of z = 0 the effects of the singularity are gone. So, using a
combination of the Cairns and Lashmore-Davies method antMKB method we have a good description
of the wave behaviour across the domain.

4.5 Conclusions

In this chapter we have extended upon the model used in Qh3yig allowing for the inclusion of a
temperature profile that varies with height. Apart from ttfie set-up remained the same as for the pre-
vious chapter, and so we examined the downward propagatiarslow magnetoacoustic wave through a
gravitationally stratified atmosphere permeated by a umifosertical magnetic field (Figure 3.1). For the
temperature aanh profile was chosen as it reflects the steep gradient founceatdhsition region (Fig-
ure 4.1). To ensure that the model was sufficiently diffefesrn that of the previous chapter thg = v4
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layer, where mode conversion occurs, was placed in theecehthis gradient. Away from this region the
temperature becomes constant and we would expect to fincathe gesults as for the isothermal model.
As demonstrated in Figure 4.2 the inclusion of a non-isattatemperature profile complicates matters as
both the sound and Alen speeds now vary with height.

This process was simulated numerically using a MacCormanite fdifference scheme, the results of
which are shown in Figure 4.3. As before the waves have a gtaonplitude dependence that masks
what is happening at the mode-conversion region. Using tik@Whethod we uncovered the nature of
this amplitude dependence (Section 4.4.2) allowing it tedmoved. The mode conversion is then much
clearer (Figure 4.4). The plots of the vertical velocitye thressure and the density all show a decrease
in amplitude of the wave transmitted across the= v,4 layer. The converted slow wave is visible in
the plots of the horizontal velocity, and the horizontal aedtical magnetic field behind the transmitted
fast wave. In Section 4.3.1 we calculated exactly how thétipas of the various wavefronts vary with
time, given by Equations (4.74) and (4.75), and shown in féigu5. There were three free parameters
in the numerical simulations: the slojge the horizontal wavenumbér,.,, and the driving frequency.

In Section 4.3.2 we studied the effect of varying these mpdehmeters. The steepness of the slope was
found to have no effect on the conversion as long as the wagtidevas sufficiently less than the width of
the slope to avoid reflection. The effects of varying the wanaber and the horizontal driving frequency
were found to be the same as for the isothermal case. For aomtaed wavenumber of, = 0 there is

no mode conversion and the incident wave is fully transmiteross the, = v4 layer. As the value of

k. increases, the conversion increases and less of the inci@e® is simply transmitted into the high-
plasma (Figure 4.8). Varying the frequency has the oppediezt; as the driving frequency increases the
conversion decreases (Figure 4.9).

In Section 4.4 we used analytical techniques to derive égson and conversion coefficients and to
determine the wave behaviour throughout the domain. Werbbgdooking at the method developed by
Cairns and Lashmore-Davies (1983) which is valid for srkall This method is only valid at the mode-
conversion region and uses the local dispersion relatmfisd differential equations describing the coupled
mode amplitudes. This results in a solution given in termBartibolic Cylinder functions (see Abramowitz
and Stegun (1964)) which are linked to the Meijer-G and Hgpemetric functions that have previously
been used to describe mode conversion (Zhugzhda, 1979zAtHagnd Dzhalilov, 1982a; Cally, 2001).
This method has the advantage that an exact analyticai@ola¢ed not be known in order to determine
the transmission and conversion coefficients, given by Eous (4.117) and (4.120) respectively. From
these we can see that the dependenck,andw is as we predicted in Section 4.3.2 and the effect of the
horizontal wavenumber is dominant (Figure 4.12). In Figli®El we can see that the agreement between
the numerical simulations and the analytical predictiontf@ transmission is excellent. So good that no
difference may be seen between the two without taking tharithagn of the amplitude ratio. In doing this
we see that the prediction does deviate from the numeridatiso ask, becomes large.

A WKB analysis was used to find the wave behaviour in the lowd bigh5 plasma away from the
conversion region. These solutions were then matched atliesnode-conversion region using the trans-
mission and conversion coefficients calculated in Sectignl4 As seen in Figure 4.13 the analytical
predictions reproduce the results of the numerical sinutatwell. The amplitude dependence of the con-
verted slow wave does not agree with the numerical simulaod there is a small discrepancyzat 0
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where the WKB method breaks down. However this is only the @a®r a very small area, as shown

in Figure 4.15. It is easier to see just how well the analyticad numerical simulations agree when the
transformed vertical velocity is examined (Figure 4.14erélwe see that the WKB method has captured
the phase and amplitude dependence excellently.

Having studied mode conversion in a non-isothermal atmagpive have found that we obtain the same
behaviour as in the isothermal case. In fact, we may retuthisacase simply by setting = 1 and letting
~vB0/2 = 1. Thus the temperature profile itself does not effect the rmm®ersion process. Next we shall
investigate a more complex two-dimensional model with guaexling magnetic field, representative of a
coronal hole.



Chapter 5

MHD Mode Conversion in a Coronal Hole

5.1 Introduction

As a starting point for investigating mode conversion in a-timensional model we look at a radially-
expanding magnetic field. As with the previous chapters abioation of analytical and numerical tech-
nigues are used to capture the wave behaviour at the modersion region and also in the rest of the
domain. The same techniques are utilised as in Chapters 8, &utithese have been extended to cope with
a two-dimensional problem.

5.2 Zero Gravity Model

The expanding field model is illustrated in Figure 5.1 ancejgresentative of a coronal hole. Due to the
geometry of the set up we use spherical coordingies, ¢) - see Schey (2005). To reduce the problem to
two dimensions all variables are assumed invariant.ifGravity is taken to be zero. A slow wave driven
at the surface, located at= 1, will propagate upwards passing from low- to higtplasma as it does so.
When it crosses the layer where the sound and&ifgpeeds are equal, indicated by the dashed line, the
slow wave will undergo mode conversion. Some proportiorhefincident wave will be transmitted into
the high# plasma as a fast wave and any remainder will be convertedhistow wave.

5.2.1 Ideal MHD Equations

We use the ideal form of the MHD equations

p(ngv-V)vaJrl(VxB)xB, (5.1)
ot 1

dp B

§+V~(pv)—07 (5.2)
%—]?:VX(VXB), (5.3)
4 _w (9

<at+v~v>p p <8t+v V)p, (5.4)
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Figure 5.1: Image of the equilibrium magnetic field. The fiaieés fan out radially from the surface located
atr = 1. A wave driven at the surface will propagate upwards paskom low- to highg plasma. The
mode-conversion region wheeg = v 4 is indicated by a dashed line.

T
v
V.B=0, (5.6)

wherep is the mass density; is the fluid velocity,p is the gas pressurg,is the magnetic permeabilita
is the magnetic inductiorR is the universal gas constafit,s the temperature andis the mean molecular
weight.

5.2.2 Equilibrium

If we consider the equilibrium conditions of a radially-exuling magnetic field3, = (BOaQ/rQ, 0, O), in
an isothermal atmosphere Equation (5.1) gives

Vpo =0, (5.7)
and Equation (5.5) gives
T
Po = RPO%- (5.8)

Thus the equilibrium pressure is constant. As we are assuthimequilibrium temperature is isothermal
Equation (5.5) tells us that the equilibrium density musbdle constant.
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5.2.3 Linearised MHD Equations

Equations (5.1) - (5.6) may be linearised by adding a smailiggation to the variables
P:PO+P1(Ta9at)7 V:V1(T,9,t), p:p0+p1(r59>t)a

B=By+B; (T,@,t), T=Ty+ T (r,@,t), (5.9

where the subscript 0 denotes an equilibrium value and sipbdcdenotes a perturbation. To complete the
linearisation process these are substituted into the Mé&HD equations and products of perturbed values
are neglected

0 1
ot = —Vpi + — (V x By) x By, (5.10)
ot 7
0
IPL LY (povi) = O, (5.11)
ot
IBi _ ¢ (vi x Bo). (5.12)
ot
Ip1
ot =—(v1-V)po—po (V-v1), (5.13)
po_p, 4 (5.14)
po  po To
V.B; =0. (5.15)

From this point on the subscripts on the perturbed termsiangpeéd and it is assumed that we are working
with the linearised equations.

The Linearised MHD equations, under the assumptiondiét = 0, then reduce to

2 681;: _ _%, (5.16)

po% _ %w, (5.18)

aaBtg _ % 3(?‘?;0119)’ (5.20)

a£¢ _ % 30“?;0%)7 (5.21)
) .

R 62

p _ pod(r*v:)  po O (vgsin 9)' (5.23)

ot r2  or rsin 0 00
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It should be noted that none of Equations (5.16) — (5.22) epeddent op, thus Equation (5.23) may be
considered separately. The remaining equations may beinethto give wave equations by differentiating
Equations (5.16) —(5.18) with respecti#@nd substituting from the remaining equations. This resinlt
the equations

(5.24)

v, g l@(r vy) N 1 O (vpsind)
a2~ “or or rsinf 90 ’

o2 r2o0 \r  or + sin 6 00

+
By (0% (rBrovg) Bpg O 1 9( ’U@ sm@
— 2
+up0r ( or? + r 06 \sind (5-25)

82’1)(;5 _ BT() 82 (TBT()U¢)
ot2 1PoT or? ’

PPvg 5 0 (15(7“2%) 1 9 (vg sm@))
- AE

(5.26)
wherec? = vpg/po is the square of the sound speed.

Notice that Equation (5.26) is completely decoupled from ether wave equations. This is because it
is derived from Equations (5.18) and (5.21), which themselare independent from the other equations.
This describes the Alién wave and may be written

82 (’I"BT()’U(b) _ /1)2 (92 (T’Br()’l)(b)
o2 AT oz

(5.27)

wherevy = B2,/ (upo) is the squared Alfgn speed. Equations (5.24) and (5.25) describe the fast and
slow magnetoacoustic waves. As we are only interested icdbpling between the fast and slow waves
we shall not consider Equation (5.27) further here.

5.2.3.1 Non-Dimensionalisation

We non-dimensionalise these equations in order to makeuthiencal simulations easier. This is done by
settingr = a7, t = 7, v = vov, B = ByB, Bg = ByBg, p = pop, Po = Po, po = po, andd = 6. The
typical lengthscales against which the variables have besle dimensionless are relatedd®y= a/7.
Note that we have the relations

_ 1
BO = (_—27070) 5 (528)
T
and
D B2 1
=200 2 _ 20 - (5.29)
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Figure 5.2: These plots show how the sound and &ifgpeeds vary across the numerical domain. In the
left-hand plot the variation with bothand@ is shown. The right-hand plot shows a cut taken along cohstan
0 - thec;, = v 4 region is denoted by the dotted line, to the left of this thespta is lows and to the right it

is highg.

Definingc?, = vpo/po, andv3d = B2/ (upo) = 1 the dimensionless sound and Adfv speeds are given by

1

The plasmas, which is the ratio of the gas to the magnetic pressure, mayriteen

2c2
8= o (5.31)
A

This is non-dimensionalised by setting

2
Go= 20 G (5.32)
Y

The mode-conversion region where the sound andéxfspeeds are equal is then found where

Yo _ 1

<

and we can define the paramefigraccording to where we wish to locate the mode-conversioionedf
we choose to set the mode-conversion region to lie at 1.5, then the sound and Alén speeds vary as
shown in Figure 5.2.

Under these assumptions the dimensionless equations are

0v, _ foOp

ot~ 2 o (5.34)
v D 0 (7B B..

0vy _ Podp  10(rBg) 10B, (5.35)

ot 2700 v or 90
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0B, B 1 0 (179 sin 5)

ot sind a0 (5-36)

839 . 10 /79

o o () (537
_ 9 )

o 718 (7“ v,.) v 0 (1}9 sin 9) ' (5.38)

ot~ 2 9F  Fsin@® 00

Equations (5.34) —(5.38) may be combined to give a pair ofedisionless wave equations describing
the fast and slow magnetoacoustic waves.

%5, o O (if)(f%) 1 3(17981119))7 (5.39)

2 = %o\ 2 o T rsmd o0
Pvg %) 02 (Fv,) o 02 o9\ (2 +9%4) 8 [ 1 O (vesind)

_ 07 N0 7T w52 2 (28 s _ _ _ . 4
o2~ oran g ( *) 2 00 \snd 00 (5.40)

Henceforth the bars on dimensionless values are dropped andssumed that we are working with the
dimensionless equations.

5.3 Numerical Simulations

We solve Equations (5.34) —(5.38) numerically using the ®tarenack method as was done in Chapters 3
and 4, although here it has been extended to deal with a tmertiional problem. This works in two
steps; the first predicts the solution at the next time stieig, is then corrected at the next stage. This
predictor/corrector method may use either forward or baakixfinite differencing. We choose to utilise
forward differencing for the predictor steps and backwaffikoencing for the corrector steps. This means
that the more accurate, corrected values are being useaddoviier radial boundary where a slow wave is
driven.

We are drivingv,- on the lower boundary in the low-plasma so this is a slow magnetoacoustic wave.
The simulations are run for < r < 3, 7/6 < 6 < 7/3 and0 < t < 4.3, wheredr = 6 = 0.001
anddét = 0.0002. The end time is chosen to terminate the simulation justreefee transmitted fast wave
hits the upper boundary. The free parameters remainingemtbdel are then given by, andw. These
describe the azimuthal wavenumber and driving frequenspeetively, which are introduced through the
lower boundary conditions. In a coronal hole the typicalgnscale may be taken as the solar radius,
R, = 696 Mm, and a typical Alfien speed in the corona is 1000 km's We drive a slow wave on the
lower boundary with frequencies af = 167, 247 and327 which correspond in real terms to frequencies of
0.07s!,0.11s!and 0.14 s! and periods of 87 s, 58 s and 43.5 s respectively. These drfiséquencies
are much larger than the acoustic cutoff frequefity, = 0.001 s~! (Roberts, 2004), and so are unaffected
by it.

On examining the Wave Equations (5.39) and (5.40) we cantsgéftyy = 0 on the lower boundary,
andv, is independent of, thenvy will remain zero throughout the simulation as the fast ao#shagne-
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toacoustic waves are decoupled. Thus to observe mode cimvey must have somé dependence. So
on the lower radial boundary we choose

vy = sinwt sin (m [66 — 7)), vg =0, (5.41)

wherem must be an integer. Thus will be zero on both¥ boundaries and the value of will dictate the
number of nodes across the wave. Equation (5.36) would thegest that3,, = 0. The condition for the
pressure is given by Equation (5.34)
2
% = —Ew coswt sin (m [66 — 7). (5.42)
Finally a condition is required foBy. If we solely consider the derivatives in Equation (5.35) then it
would suggest that we select

0 (rBy)

5 =0. (5.43)

The boundary conditions on the upper radial boundary areilaportant as we terminate the simulation
before it reaches this point. Thus we simply choose opendmmyrconditions for all variables on the upper
boundary.

As previously mentioned,. = 0 on thef boundaries. Equation (5.34) then suggests phat 0 which
then implies that

0 (vg sin )

20 =0, (5.44)

from Equation (5.38). This in turn giveB,. = 0 and it only remains to find a condition fd#y. SinceBy
is in phase with/y we select

0 (Bgpsinfl)
SR =0, (5.45)

To summarise the boundary conditions on the lower radiahtdacy are given by

v, = sinwt sin (m [60 — 7)), ? = fﬁzw coswt sin (m [660 — 7)), (5.46)
r 0
0 (rBy)
or

The side boundary conditions are given by

7)920, BTZO,

=0. (5.47)

v = 0, B, =0, p=0, (5.48)

0 (vg sin 9)
00 B

0 (Bgsin6)

o =0, (5.49)
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and the upper radial boundary conditions are

31)T avg aBT o 8B9 o ap o
a0 5 =0 =0 =0 5o=0 (5.50)

5.3.1 Wave Properties

As for the one-dimensional models we are driving a slow wawmflow to high/s. In this case that means
that we are drivingy,. on the lower radial boundary. As noted above, if the slow wiawgot§ dependent
then there is no coupling between the wave modes and we wotlleipect to see any mode conversion.
The slow wave would then pass from the Igixplasma into the higl# plasma as a fast wave. df. does
have & dependence then some proportion of the incident slow walig/converted as it passes through
the mode-conversion region and propagate as a slow wave imgh+3 plasma.

Figure 5.3 shows the radial and azimuthal velocity, thealadnd azimuthal magnetic field, and the
pressure respectively. These are the results of a numerialation with driving frequency = 167 and
azimuthal wavenumben = 3 att = 4.3 Alfvén times. Evidence of mode conversion can be seen in the
plots of the azimuthal velocity, and the radial and azimuthagnetic field. Once the wave train passes the
mode-conversion region, denoted by the red dashed lineaggehin the phase and amplitude dependence
can be seen. This signifies the converted slow wave. The pfdtse azimuthal velocity and magnetic
field also show a transmitted fast wave propagating out abé#we converted wave. This cannot be seen
in the plots of the radial velocity or pressure due to the dnnhé dependence. It is possible to transform
the variables in such a way that the amplitude dependendeahtident wave is removed. The required
transformations are calculated using the WKB method, aalddtin Section 5.4, and are given by

177“ v 69 B Br
Vp — —, — , = ,
r T (0] — 4B /2) r2 (v] — 7Boc2/2)
By D
B, —. 5.51
" E ey P 5-51)

The plots resulting from these transformations are showrigure 5.4. The mode conversion can now
clearly be seen in the plots of the transformed radial vejaand pressure. The amplitude of the incident
wave decreases when it crosses the mode-conversion rddieriransmitted wave also now has a constant
amplitude and the converted portion is visible as interfeesto the right of the dashed line. As before the
converted wave may also be seen propagating ahead in tisegplibte transformed azimuthal velocity, and
the transformed radial and azimuthal magnetic field.

It is possible to calculate the positions of the various Viiewrds in the simulation. The position of the
acoustic mode, which is the slow wave in Igivand the fast wave in highi, is given by the differential
equation

dr _ 750

SRR (5.52)
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Figure 5.3: Results of the numerical simulation with= 167, m = 3 andd = = /4 att = 4.3 Alfvén
times. The plots show the radial and azimuthal velocity,ritéal and azimuthal magnetic field, and the
pressure respectively from top left to bottom right. The daghed line indicates whetg = v 4.

Radial Velocity
T T

T
|
|
0.5 |

17r/ Vo
S
)
=

-0.5

1l I I
1.0 1.5 2.0 2.5 3.0
/0
Azimuthal Magnetic Field
T T

0.02¢

Bo/Bo

-0.01p

|
|
|
|
|
|
0.00 A ‘
|
|
|
|
|

-0.02¢
1.0 1.5 2.0 2.5 3.0
/0

Azimuthal Velocity
T

0.0z J ' El

0.00¢

Es/va

-0.01f

-0.02F

.
1.0 1.5 2.0 2.5 3.0
r/a

Pressure
T

]N’/Pﬂ
S
=

| .
1.0 1.5 2.0 2.5 3.0
r/a

Radial Magnetic Field
T T

0.01¢

0.00

B,/Bo

-0.01

—0.02¢

7.0 1.5 2.0 2.5 3.0
r/a
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Figure 5.5: Surface plot of the transformed azimuthal vigadongé = = /5 for w = 16w andm = 3. The
red dashed line shows the position of the acoustic mode réenglashed line the position of the magnetic
mode, and the blue dashed line the position of the slow mode.

which may be solved to give

r= 775% 4L (5.53)

Thus fory5,/2 = 16/81, att = 4.3 Alfvén times, the fast wave will have reachee: 2.9. Similarly the
position of the magnetic mode, which is the slow wave in higimay be found from the equation

dr

— =4. 554

at -~ (5.54)
Using the initial condition- = 1.5 at¢ = 9/8 this has the solution

31, (5.55)

and so the converted wave will have reached 2.35 whent = 4.3 Alfv én times. These predictions are in
excellent agreement with the numerical simulations shawfigures 5.3 and 5.4. To calculate the position
of the slow mode throughout the domain the equation

dr R VA (5.56)

— =cp =,
a " 2 \/vBo/2+ 02

may be solved. We do this numerically using a fourth-ordemde-Kutta scheme.

Figure 5.5 shows the transformed azimuthal velocity aléng /5 for driving frequencyw = 167
and wavenumbem = 3. Overplotted are the paths predicted by Equations (5.53%5] and (5.56).
The acoustic mode is the slow wave in the Igwplasma and the fast wave in the highplasma. The
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Figure 5.6:Left: A contour plot of the radial velocity fap = 327 andm = 3 att = 4.3 Alfvén times.
Right: The variation of the transmission withfor a numerical simulation withy = 327 andm = 3.

magnetic mode is only present in the higiplasma and is the slow wave in this region. The last path is
that predicted by the tube speed,, which follows the slow wave throughout the domain. Thissloet
predict the position of the slow wave as well as Equations3pand (5.55).

5.3.2 Effect of Varying the Model Parameters

As previously mentioned there are two free parameters intineerical simulations: the azimuthal wavenum-
ber (m) and the driving frequency.. In this section we examine the effect varying these pataradas
on the proportion of the incident wave that is transmitted eonverted.

We do this in each case along a fixed valugdofThis is acceptable as the amount of conversion and
transmission does not depend@nVe do not expect it to, since the sound speed is constanharmlfivén
speed varies with alone. This can be seen in the left-hand plot of Figure 5.@&Wwkhows a contour plot
of the radial velocity forw = 327 andm = 3 att = 4.3 Alfvén times. The velocity goes to zero at each of
the nodes in thé-direction, but this does not change the transmission andersion occurring at = 1.5.
This is demonstrated in the right-hand plot of Figure 5.6jclshows the variation of the transmission
with 6 for a numerical simulation withh = 327 andm = 3. This is calculated by taking the amplitude
ratio of the transformed radial velocity in high- and Igiplasma, which is why it grows where the velocity
goes to zero at the nodes. Other than this the transmissfainljsconstant.

5.3.2.1 Varying the Wavenumber

To examine the effect of varying the azimuthal wavenumbefiwehe frequency atv = 167 and run
numerical simulations for different values of. The results of this are shown in Figure 5.7 where the
transformed radial velocity is plotted alofg= 117/60 for m = 1, 2, 3, 4, 5, and 6. As we would have
expected from the results of the previous chapters the atrafitransmission decreases as the azimuthal
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wavenumber increases. Far= 1 there is so little conversion that it is barely visible and thcident wave
appears to be fully transmitted into the higiplasma. Asn increases from 2 to 4 the amount of transmis-
sion decreases rapidly from plot to plot before levellinftof m = 6. Due to the similarities between this
figure and Figures 3.5 and 4.8 we would expect to find similalaéqns describing the transmission and
conversion coefficients.

5.3.2.2 Varying the Driving Frequency

Considering these similarities we would also expect thesimgission to increase with increasiags be-
fore. As may be seen in Figure 5.8 this is indeed the case.eBetplots we have fixed = 3 and looked
at the transformed radial velocity alolg= 117 /60 at¢ = 4.3 Alfvén times for driving frequencies of
w = 16w, 247 and32r. This effect is clearly much weaker than that of varying trevenumber.

5.4 Analytical Approximations

Having seen the similarities between the numerical sirariatwith a radially-expanding field and those in
Chapters 3 and 4, we use the same analytical methods to urtbeMeehaviour throughout the domain. In
Section 5.4.1 the Cairns and Lashmore-Davies (1983) mathasked to find transmission and conversion
coefficients valid at the conversion region. The WKB metisthen used to find the wave behaviour away
from the mode-conversion layer in Section 5.4.2.

5.4.1 Limitof m < 8/0r

As in Chapter 4 we begin with the method by Cairns and LashiDerdes (1983) to approximate the
behaviour at the mode-conversion region. We begin with tlaed\Equations (5.39) and (5.40) written in
their expanded form

9%v, vBo - 9%v, 1 9%y 2 Ov, 1 Ovg 1 Ovg 2 1
R ( o7 roro8 v or rtanfor 206 2 Ptang tane”9> + (357)
0%vy Vﬁo c 0? vr (’75002/2 JFUA) D?vp i 2’Y_ﬁoc_avr n
a2 2 ror 00 3 72 002 2 r2 00
ovg  (vBoc?/2+ ”A) Ovg
< ) or + r2tan 6 8— *
)

(5.58)

(v3 ) YBock/2 + v}
+ | BBy, - WRG/2Hv5)
< r 0o r2sin? 6
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Assuming that /ot = iw, and that derivatives are large, so thaandvy may be neglected in comparison
to their first derivatives and so one. 9/96 >> 1, these equations reduce to

2, _ B0 280, ’Y_ﬁoé &vg

T T Ty ST T Ty 9rae’ (5.59)
Finally, by making the assumption thatod is small, these equations may be written

Or alternatively

0 2 w o /2 w 1 9%y

0 o, 0 LW b 2 0%,
(Eﬁ”a>(af”a)w——irm3mw’ (5.64)
where the brackets on the left-hand side of each equatiorsept the upward and downward propagating
waves respectively.

The next step is to expand about the mode-conversion regiamdves travelling up towards this region.
We do this by letting

0 0
Pere—Eho =R (5.65)

At the conversion region the sound and Alfvspeeds are equal so

[7Bo 1
5 G = % =4 (re), (5.66)

wherer, is the radius at the mode-conversion region. The @&ffgpeed may then be written

1 1
YAT L2 (1= 26 fre + €2/12) ~ r2 (1 —2€/r.)’ (5.67)

as¢ < 1. Thus

~ 760 Cs

Away from the mode-conversion region we simply let

0 2 w
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Equations (5.63) and (5.64) then become

ov, . 2 w1 0w
% Vom0 (570

Oovg . 2 w 2 2w 1 Ov,
8_§Z<V%C_SV%TCCS€) Y o 00 (.71)

Based on the boundary conditions of the numerical simulatiore then led /96 = 6im, giving

dv, . 2 w 3tm

— iy ——v, = —p, 5.72
df ' 750 Csv Te v ( )
dvg . < [ 2 w [ 2 2w ) 3im
— — —— = — vg = V. 5.73
d§ 760 €5 vBo cCs5 0 Tec ( )

It may be shown that these satisfy the conservation of endtgitiplying Equation (5.72) by its complex
conjugate we obtain

dv, 2 w 3im
VUp —— — ) —UpU, = Ur Vg, 5.74
T o 5.74)
taking the complex conjugate of this gives
do, . 2 w 3im
r—— —_— VU, = — Vg 5.75
v £ +“/’yﬁocsv7w o V- Ug ( )

Adding these together we are left with

d 2\ 3im _ _
i ERE S (v — vry). (5.76)

Repeating this for Equation (5.73) we may add

~dug ( 2 w 2 2w ) _ 3im _
Tgp—r — i (1) —=— — 1/ — Dpvp = TpUy, 5.77
¢ df 760 Cs 750 ""ccs5 oo Te o ( )

and
dvg . 2 w 2 2w _ 3im
i’ =z _ .= = — T
Wi i (Vame Ve v = -, (5.78)
to give
d 2 3im _ _
e (|U9| ) T (Vovr — vg0;) . (5.79)

Adding Equations (5.76) and (5.79) we see that energy issatuad

d% (lorl? + uol?) = 0. (5.80)
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Returning to Equations (5.72) and (5.7%3)may be eliminated to give a second-order, ordinary differ-
ential equation fop,.

d%v, . [ 2 dv, 9m? 2 w? 2 B
& Wome (e2) T+ G a1 0¢)) =0 (581

To eliminate the first derivative we make the substitution

(@ =ew (-1 22 (5 -¢) Jvto. 582

to give

d?e 2 w2 w  9m?
© (am Wammn tor) =0 589

Finally we make the substitution

1/2
2 2(4) 3 /4
= _— v . 4
¢ (\/wo ) ¥/, (5.84)
yielding
d?e ¢ 1 B ImPe,
a (Z "2 e, ) (585

The advantage of writing the equation in this form is thatgbkitions are known in terms of the Parabolic
Cylinder functionU (a, {) where

2
o= L [P0 9mes (5.86)
2 2 2wr.

as described in Abramowitz and Stegun (1964). Using the p&tin expansiony,. is given in low 3
(€ >0) by

i\/’yﬁo/29m2cs/(4wrc) 2
vy ~ 2 2w exp 760 9rm=c, é—i\/'yﬂg/29m2cs/(2wrc) %
V B0 recs Vo2 Bwr
2
X exp (i, /—ﬂg>, (5.87)
Vﬁo Cs

and in highg (¢ < 0) by

iy/7B0/29m%c, / (dwr.) [
. i o YBo/29m=c T exp 750 277wm? Cs |§|z\/7ﬁ0/29m cé/(2wn)
r \/ Yo TeCs 2 8w7‘C
1/2 2
X exp (i\/ iﬁ&) - 2 exp | —/ 2o e, X
B0 ¢s . [9Bo 9m2c, 2 8wre
Dl =iy 20

2wre
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_(i\/yﬁo/zgm%s/(%rc))—lﬂ ,
X <\/ 22 ) |€\7(2V730/29’”2%/(2““))71 X
v

ﬁ() TcCs
xexp(,/ PRI 3”) (5.88)
’Yﬁo Cs ’Yﬁo chs

The WKB method is used to find transmission and conversiofficieats from these equations. We first
assume thaty is small in comparison te,. to find an expression for the transmitted component. We let

v, = Bexp (wqﬁo + %), (5.89)

o=V o0 (w% N ﬁ) (5.90)
w w

wherew is assumed to be large ands, > Vjo/w, ¢1/w. These are substituted into Equations (5.72)
and (5.73) to obtain

/ .
(w% 41 )B i =B = 32m@, (5.91)
w ’YﬁO Cs Te W
! 2 1 2 3
“80 4 ooy + Vo d’Q — iy = (1 - —5) Vio = 2 B. (5.92)
’YﬁO Cs Te Te

By equating the coefficients of we find that

3mes . 9Im2c,
do =i wof Voo =\ 20 D b1 =iy DRI (5.93)

These give the transmitted componenvpfs

oy = BEWABTBIM e/ (20r) o <7 /i%), (5.94)
B0 s

Similarly to find the converted component we assumethat small compared toy by letting

o= 0 e (w% + ﬁ) (5.95)
w w

vg = Aexp (quO + %), (5.96)

wherewgy > V,.0/w, ¢1/w. Substituting these into Equations (5.72) and (5.73) weaiobt

V! 4 2 1 37
0+ Viogy + Vro il — i Vo = ﬂA» (5.97)
750 Cs Te

( Wl + ¢I)A i 2 (135>A3imv’”°. (5.98)
w vBo ¢s Te Te W
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Figure 5.9: Radial velocity as predicted by Equation (5)ith w = 327 andm = 3 atd = 7/4. The
vertical red dashed line denotes whege= v4; the horizontal lines to the left of this show the predicted
amplitude of the incident wave, and those to the right thelipted amplitude of the transmitted wave.

Equating coefficients ab we find that

2 2
o = z‘,/%ci (5 - f—) Vi = \/77%3;”;%4, 61 = i\/@gg “ e (5.99)

These give the converted component as

. 2 2
oy =y 100 BMEs o= (/5B RO er)) <1 (l [2 @ (5 _ f_)) (5.100)
2 2w 7B ¢s e
Equations (5.94) and (5.100) may be added together to give
; 29m2e. /(2wr, 2w 8o 3mes
vy ~ BEIVABo/29m3es [ (2ure) ooy (] 2 W) [TP0 A x
760 Cs 2 2w

we~ (VB /2omee./(2ore)) =1 (Z [ 2w (5 N ﬁ)) (5.101)
’)/ﬂO Cs Te

Taking the highg approximation tov.., given by Equation (5.88), and dividing by the IgWapproxi-
mation, Equation (5.87), we may find transmission and camwercoefficients by comparison with Equa-
tion (5.101). Doing so we obtain the transmission coefficien

2
B = exp <_, / 7750 97;;’; ”) (5.102)
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and the expression

(2m)'2 (720 \ 2 2,
A= e (27) < w ) exp [ — Y8y 9mm=c, ’ (5.103)
3mD ( /’YT[J’O 9m255) ’Vﬂ() TcCs 2 4wr,.

¢ 2wre

for the conversion coefficient. Using the fact that

. 2 . 2 7T
T (iy)|” = [T (—iy)|” = Jsmh (79 (5.104)

from Gradshteyn and Ryzhik (1981), the conversion coefitareay be simplified to

2
A= |1—exp (—,/%ﬂ“w) (5.105)
Wre

Equations (5.102) and (5.105) describe the proportion @fitkident wave that is transmitted and con-
verted as it crosses the mode-conversion region. Sulisgttitese values back into Equation (5.101) gives
a description of the radial velocity across the mode-casiverregion. This is shown in Figure 5.9 for
w = 327, andm = 3 atd = = /4. Overplotted on this figure is the amplitude we would expectee
for the incident wave once the amplitude dependence is reth@and to the right of the red dashed line
the amplitude predicted for the transmitted wave by Equaft102). We may compare this result to the
numerical simulations by taking the ratio of the transndgitteave to the incident wave for various values of
m. The results of this are shown in Figure 5.10.

In each of the images in Figure 5.10 the driving frequenay is 167 andf = 117/60, the solid line
shows the amount of transmission predicted by Equatiordg.&nd the stars overplotted are the amount
of transmission seen in the numerical simulations. TheHafid image shows good agreement; there is
some deviation of the numerical results from the analytralliction but the points do follow the curve.
This small deviation may be attributed to the additional pterity of this model. Taking the logarithm
of these values, as shown in the right-hand figure, we canhsgdhe difference between the numerical
and analytical results really is small. As expected it dosgibto get larger as the value of the azimuthal
wavenumber increases in violation of the initial assumpio

On comparison with Equations (3.86) and (3.89), and (4.Bhd) (4.120), we see that the form of
the coefficients is very similar to those for an isothermal ann-isothermal atmosphere permeated by a
uniform vertical magnetic field. As in these previous cakesbefficients are dependent on both the driving
frequency and on the azimuthal wavenumber. The nature fippendence is shown in Figure 5.11. As
before the amount of transmission decreases with incrgagavenumber and increases with increasing
driving frequency. The opposite is true of the amount of ersion.

Figure 5.12 also shows how the predicted transmission coespa that seen in the numerical simu-
lations. As before the amount of transmission is calculditgdaking the ratio of the transmitted to the
incident wave. In this case we see how the transmissionsvauii 6 for the azimuthal wavenumber and
driving frequency fixed ain = 3 andw = 327 respectively. The dashed line overplotted on this is the
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Amplitude Ratio

Figure 5.10:Left: Ratio of the transmitted and incident wave amplitudes.
Right: Logarithm of the ratio of the transmitted and incident waxgpéitudes.

In(Amplitude Ratio)

In both cases) = 167, § = 11x/60, the solid line is that predicted by Equation (5.102) anddfaes are

the values calculated from the numerical data.
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Figure 5.11:Top Left: The variation ofA with m for w = 167.

Top Right: The variation ofB with m for w = 167.
Bottom Left:The variation ofA with w for m = 3.
Bottom Right:The variation ofB with w for m = 3.
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Figure 5.12: The variation of the transmission witfor a numerical simulation witby = 327 andm = 3.
The dashed line overplotted shows the amount of transmigsdicted by Equation (5.102).

transmission predicted by Equation (5.102). Ignoring #ggans where the radial component goes to zero
the transmission is approximately constant and the priedits a fairly good one.

5.4.2 WKB Analysis away from the Conversion Region

The above method has described the proportion of the intidave transmitted and converted across the
conversion region. It does not, however, tell us about theeviehaviour away from this region. To find
this out we use the WKB method, as described in Chapter 2nbigj with the wave equations. Under the
assumption that the time dependence may be wriiiél = iw these become

TN N RCT Y ST Y i)
5 9.9 2—__ — 4T 5 = - 2
( oz T2 o 5 sz Tw v 5
s 1 9 10
8 (_37“39  tan6 or + r oo Tta119> (5.106)

Adr2 r2 002 r2tanf 00

2\ 2 /9 2
+ ((v ) + BroB)y — —(76065/ +UA) +w2>> Vg =

r2gin? 6

_ Yo ( & 2 a> (5.107)

(2 CAELER 2 ((ay4oh) 2, (o) 0

2 r \0rdd r o6
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Assuming thatv > ¢,0/060 we expand,. andvy in inverse powers of. To find equations describing
the incident and transmitted waves we assumedtha small in comparison to,.

U = €XpP (W(b() + (bl)a (5108)

Vi
vp = % exp (woo + ¢1), (5.109)

wherewdy > ¢1 > Vpo/w and the variablegy, ¢, andVy, may all be functions of both and6.

Substituting these back into Equations (5.106) and (5.@7nay then equate coefficients.ofo solve
for the unknowns. Th® (w?) equations are given by

2
%ﬂocﬁ (%) +1=0, (5.110)
and

2

These may be solved to give

o :i,/i(’ul). (5.112)
’YﬁO Cs

From theO (w) terms we find the equations

00, 1

+-=0, (5.113)
or r
and
9o\ B0 2 D D1
2 [ 9%o _ _TJPo Cs IP0 UP1
’UA < 67’ ) VOO""%() 2 a’l“ 89 . (5114)

Using the boundary conditions these yield the results

¢1=—Ilnr+im (60 —7), (5.115)
and
3/2 3
— om [P0 cs
oo (1) Sy 6110

Substituting these values back into Equations (5.108) arid9) we have

vy = Lexp <iw 2 0= 60— 7r)>, (5.117)
r ’Yﬁo Cs
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_ 6m (5 3/2 s , 2 (r—1) .
w3 (%) FEmeme (e rmeon). e

Alternatively these may be written in trigonometric form

1 2 (r—1) . B
v = —sin (o.u / R, ) sin (m (60 — 7)), (5.119)

_ 6m (5 3/2 s 2 (r—=1)\ .
w5 (%) mmame (a mee, ea

Equations (5.119) and (5.120) describe the behaviour dhttident and transmitted waves in the low- and
high-G plasma respectively. The transmitted wave must be mudtidbly the transmission coefficient found
in the previous section to get the correct amplitude.

To find the behaviour of the converted wave we must assumethatsmall in comparison toy, so we
let

V.
vp = =2 exp (wio + d1), (5.121)

Vg = exp (W(bo + ¢1), (5.122)

where, as beforeygy > @1 > V,.o/w andey, ¢1 andV,,, are functions of both andé.

On substitution into the Wave Equations (5.106) and (5.10&9 (w?) terms give

Y80 ¢ Do Db

3 o 0 (5429
00 \* | (Woci/2+v3) (940
2 - S —_— =
v ( o ) + 3 5 ) T1=0 (5.124)
It is the d¢y /00 term which must be equal to zero in the first equation, thuséoend equation gives
39
=i{—=——=. 12
w=i(5-35) (5125)
We may then look to thé® (w) equations
1o 2 (990 _ _2Boci00 01 _3bo_ci 0o
2 O ( or Vio + Vro = 2 r Or 00 2 rtanf Or’ (5.126)
82¢0 (9¢0 6¢1 / 1}2 (9¢0
2 ~z ¥o Zrorvi 2 YA\ YO0 —
v ( 57 2% o ) + ((UA> +2- ) a5 =0 (5.127)

These may be solved to give

¢ =r>+Inr 2 +im (60 — ), (5.128)
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and

_ b i (g
Vio = 2 (v4 —Boc2/2) om tanf ) (5.129)

Noting that6m > 1/ tan 6 the second term in the bracket may be neglected.

Substituting these values into Equations (5.108) and &.1ite converted component of the wave is
described by

vBo 6mc§v124€’“2 (9 ,
_ 9 _ 1
Uy 2 o (% )2 exp (|5~ ¢ +im (60 — ) |, (5.130)
e (9 _
Vo = 5 exp (zw (? — §> +im (66 — 7T)> (5.131)

As before these may also be written in trigonometric form

_ bo 6mc§v124€7’2 . ﬁ 9 _ -
U= o g S\ g ) ) sin(m (66— m)), (5.132)
e’ 9 ,
vp =~ CoS (w <§ - §>> sin (m (60 — )). (5.133)

Equations (5.132) and (5.133) describe the converted watheei high$ plasma. As with the transmitted
wave these must be multiplied by the corresponding cormersefficient from the previous section to get
the correct amplitude. The fast wave is negligible in the-Jgwlasma and so these solutions will be zero
in this region.

In summary we have

Lows Inc. v, = %sin (wﬂ%%) sin (m (60 — )),
B B 3/2 6me’ 2 (r—1)\ .
w=-(%) e (i ) -
Highs Trans. v, = gsin (w, / %%) sin (m (60 — )),
(r=1)

3/2 3
vBo 6mc; 2 )
—_p| 2 < _a . _
vg ( 5 > o2 (% — 2 Goc22) cos <ww/ R > sin (m (60 — 7)),

vBo 6m02v§16’"2 . 9 .
Conv. v, =A— 5 — = 60 — ),
onv. v 2 o (% — A )2) sin{w | 5 =g |sin (m( 7))

Ae"” r 9 .
v = — 5 cos <w <§ - §>) sin (m (60 — m)),

whereA andB are as defined by Equations (5.102) and (5.105).
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Figure 5.13: The numerical and analytical radial velocitg ahe numerical and analytical azimuthal ve-
locity respectively from top left to bottom right. In all gkw = 327, m = 3,0 = /5 andt = 4.3 Alfvén
times.
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Figure 5.14: The numerical and analytical transformedaiaeilocity forw = 327, m = 3,0 = «/5 and
t = 4.3 Alfvén times.
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We know that the fast wave will have reacheds 2.9, and the slow wave =~ 2.35, aftert = 4.3
Alfvén times from Equations (5.53) and (5.55). Along with th@sraission and conversion coefficients
calculated from Equations (5.102) and (5.105) this infdiaramay be used to give analytical predictions
of the behaviour of the radial and azimuthal velocities asrthe computational domain. The results of
this are shown in Figure 5.13. On the left-hand side of thisréghe numerical simulations for the radial
and azimuthal velocity are displayed for frequengy= 327 and wavenumbem = 3 atf = =« /5 and
t = 4.3 Alfvén times. On the right-hand side are the analytical praatistiound using the WKB method.

It is immediately clear that these predictions are not asit@te as the simpler one-dimensional cases in
Chapters 3 and 4. Whilst the transmitted component of theevg@ems to agree well with the numerical
simulation, the amplitude of the converted component is egimated. This suggests that energy is not
conserved in this case.

This is especially clear once the amplitude dependencearisved from the radial velocity, as shown
in Figure 5.14. The amplitude dependence for the incidedtteansmitted waves is clearly in excellent
agreement as both are now constant. It is also clear thattioeirst of transmission predicted by Equa-
tion (5.102) is accurate. Additionally the phase is in gogdeament for the incident, transmitted and
converted components. However, the predicted amplitudieeofonverted wave does not agree. This may
be due to the fact that the frequency is not sufficiently latigan the wavenumber, in violation of the initial
assumptions. Thus combining the Cairns and Lashmore-Baviathod and the WKB method models the
behaviour of the incident and transmitted wave componeatk lbut does not capture the correct amplitude
of the converted wave.

5.5 Conclusions

Building upon the previous chapters we have examined moadeecsion in a two-dimensional atmosphere
with a radially-expanding magnetic field, representativa coronal hole. Due to the geometry of the prob-
lem spherical coordinates were used and it was assumedlitiatiables are invariant in the direction.

In the interest of simplicity gravitational acceleratiomswneglected in the model. This set-up is shown in
Figure 5.1. In keeping with the previous studies a slow wasse driven from low- to highs plasma, thus
travelling upwards in this case. As the model is isotherfmalsound speed remains constant but the&lfv
speed decreases as the wave propagates away from the gtiface 5.2).

The MacCormack method was used to numerically model the Wwakiaviour, the results of which are
shown in Figure 5.3. Mode conversion clearly occurs as thielént wave passes through the region where
the sound and Alfén speeds are equal. Even with the amplitude variation actietuin the amplitude
of the transmitted wave is noticeable in the radial veloeityl pressure. The converted component may
be seen in the plots of the azimuthal velocity, and radial arichuthal magnetic field. Using the WKB
method (as described in Section 5.4.2) the amplitude deperdof the incident and transmitted waves was
eliminated. The results of these transformations are shioviigure 5.4. The mode conversion is much
more obvious in this figure, particularly due to the ampléutecrease across = v4 seen in the plots
of the radial velocity and pressure. Again the converted poment is seen in the plots of the azimuthal
velocity, and the radial and azimuthal magnetic field. Int®@c5.3.1 the position of the fast and slow
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wavefronts was calculated. These are given by EquatioB8)%nd (5.55) and are shown against one of
the numerical simulations in Figure 5.5. The free paransatethe model are the azimuthal wavenumber
m, and the driving frequency. The effect of varying these parameters for a fixed valué was studied

in Section 5.3.2. As shown in Figure 5.6 this is a valid apphoas the value df has no effect on the mode
conversion. Whemn is small the majority of the incident wave is transmitteditite highg plasma. As

m increases the transmission decreases as more of the iheidea is converted into a high-slow wave
(Figure 5.7). The effect of varying the frequency is muctslpsnounced (Figure 5.8) and in this case the
transmission increases as the frequency increases. Témstsrare as expected based on previous chapters.

Section 5.4 concentrated on the use of analytical methofiadaconversion and transmission coeffi-
cients and the wave behaviour throughout the domain. ¥itlsd conversion and transmission coefficients
were found using the method developed by Cairns and LashBavees (1983), valid for smath. This
method focuses on the mode-conversion region itself angl differential equations derived from the lo-
cal dispersion relations to describe the wave behavioue differential equations are combined to give a
second-order differential equation, the solutions of whace known in terms of Parabolic Cylinder func-
tions (see Abramowitz and Stegun (1964)). Thus the trarsanisand conversion coefficients, given by
Equations (5.102) and (5.105), can be found without knovéingexact solution. These coefficients are
similar in form to those found in Sections 3.4.1 and 4.4.1admeement with the numerical simulations
these do indeed vary with both andw, illustrated in Figure 5.11. The agreement between the nume
cal simulations and analytical predictions is good, as shimwFigure 5.10. The amount of transmission
calculated from the numerical simulations does not sit #ixam the predicted curve but these definitely
follow the correct shape as long asremains small. Looking at the variation of transmissiorhwiin the
numerical simulations we see that the analytical predicisogood excepting the regions where the radial
velocity falls to zero (Figure 5.12).

The WKB method was then used to find the wave behaviour awawy fhe conversion region. Using
the transmission and conversion coefficients given by Eoost5.102) and (5.105) the WKB solutions
were matched across the mode-conversion region, givingerigéion of the entire domain. Figure 5.13
shows both the numerical and analytical results side by $tdem these we can see that the incident and
transmitted components of the wave have been captured weikbanalytical approximations. But, whilst
the phase of the converted component looks good, the amiglistoo large. This is especially clear when
the amplitude dependence is removed from the plots of thalreelocity (Figure 5.14). This discrepancy
is most likely due to the fact that the frequency is not sudfitly large in comparison to the wavenumber.

All the methods used to investigate mode conversion in oneedsion have transferred well to two
dimensions, particularly the Cairns and Lashmore-Daviethod. We expand on this in the next chapter
by looking at the more complex magnetic topology of a two-gisional magnetic null point.



Chapter 6

MHD Mode Conversion around a
2D Magnetic Null Point

6.1 Introduction

In this chapter we investigate mode conversion in the uigiof a two-dimensional magnetic null point.
This extends the results of the previous chapter as we akinlp@t a more complex magnetic topology.
As before, a combination of analytical approximations andharical simulations is used. Wave behaviour
around a two-dimensional null point has previously beedistiby McLaughlin and Hood (2004). In a
zero{3 plasma a fast wave was driven towards a null point; as the \appeoached the null it wrapped
around it causing a build up of current. This was extended@éh&tighlin and Hood (2006) which included
a finite 8 allowing mode conversion to occur. In this case when drianigst wave toward the null the
effects of refraction and mode conversion were in cometitvith one another. The smaller the value of
8o the more dominant the refraction effect. We are interestég in mode conversion, and in this chapter
we look at the conversion of both slow and fast magnetoamugtves and the behaviour of all wave
components is found.

6.2 2D Magnetic Null Point Model

The model atmosphere used for a two-dimensional null peishbwn in Figure 6.1. The magnetic field
lines are shown in black with the direction indicated on teé&liflines. The null point lies in the centre of the
plot and is denoted by the blue cross. The green circle sndiog this shows where the sound and Alfiv
speed are equal. A wave driven on the upper boundary willggate towards the null point, passing from
low- to high5 plasma as it does so. When the wave crosses this boundaryaoodersion will take place.

6.2.1 Ideal MHD Equations

We use the ideal form of the MHD equations as given by Equat{@r28) — (1.35)

0 1
P<a+V'v>va+;(VXB)XB, (6.1)

141
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0
z/L

Figure 6.1: The equilibrium magnetic field for the two-dinseamal null point model. The null point is
depicted by the blue cross in the centre and the green cinde/s where the sound and Aém speeds

are equal. A wave driven on the upper boundary will propagatards the null point crossing the mode-
conversion region as it does so.

Jdp B

5+V~(pV)70, (6.2)

%—?ZVX(VXB), (6.3)

4 _w (9,

<8t+v V)p— p <8t+v V)p, (6.4)
T

p:Rp:7 (6'5)
]

V-B=0, (6.6)

where gravity has been neglected for simplicity. In thesgatignsp is the mass density is the fluid
velocity, p is the gas pressurg,is the magnetic permeability3 is the magnetic inductiony is the ratio of
specific heatsR is the universal gas constafit,is the temperature andis the mean molecular weight.

6.2.2 Equilibrium

The equilibrium magnetic field of a two-dimensional null pbis given byB, = % (z,0,—z) and the
pressure and density are taken as constants. Under théeguil conditions ofo/0t = 0 andv = 0 the
Equation of Motion becomes
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% (V x Bg) x By = 0. (6.7)

Thus the current density is zero and the magnetic field isrpiate

6.2.3 Linearised MHD Equations

Equations (6.1)—(6.6) may be linearised about the abovéilegum by adding a small perturbation to
each variable

p:pO‘f'Pl(vavt)a V:V1($,Z7t), p:p0+p1(x7zat)7

B:BO+B1 ({E,Z,t), T:T‘()""Tl (xazat)a (68)

where subscript 0 denotes equilibrium values and substrg®notes perturbed values. These may then
be substituted into the Ideal MHD equations; neglectinglpots of perturbed values gives the Linearised
MHD equations.

1
poy = —Vp+ L (VxB) < By, (6.9)
B)

9P LV (pov) =0, (6.10)
ot

OB

5 =V * (vxBo), (6.11)
op _ o (Op

5t TV V)po = 0 \ ot +(v-V)po), (6.12)
n_ny 5, (6.13)
po  po  To

V-B; =0. (6.14)

From this point onwards subscripts on perturbed variabiesi@pped and it is assumed that we are working
with the linearised equations.

Assuming that all variables vary with, z andt alone, Equations (6.9) —(6.12) may be written

a’Um o ap B()() 8B93 aBZ
P = o uL Z( 9z  Ox ) ’ (6.19)
avz o ap BOQ 6Bz 8Bw
P or = oz u—ﬁ( o 02 ) (6.16)
0B,  Boo _Ovy  Boo Byy 0w,
o~ L o: LU %0 ©19
832 o % 87)2 + @ B()() a’l)x (618)

ot L “or LT L Zox
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op Jv,  Ov,
B —YPo < e + 9% ) . (6.19)

As none of the above equations depend explicitly on the getldensity the equation describing the
variation of density with respect to time (Equation (6.1@gy be neglected.

The above equations may be combined to give a pair of wavaieqady differentiating Equations (6.15)
and (6.16) with respect tband substituting from the remaining equations. This yi¢hdsequations

v, (5, B3 2 0, B2, 2 0?v, B2, ma%z L2 0%,
o2 \°  ppolL? 0x?  ppol?” 022 ppol? T 0x? *0x0z
B2, N 0%v, B(Q)0 v, 9 B3, 0Ov,

6.20
pol?"” 922 upol?” 9z ' “upol? ox’ (6.20)
?v, _ Bg, xza%x 2 0?v, Bg, ma%w B3, m28202 .
ot? upoL? Ox? $0x0z  ppol? T 022 ppol? Ox?
B2 0% B2, v B2, Ov
2 00 2 2 00 B 00 B
2 2 6.21
+_<CS+_upoL2x ) TN e F P A (621)

wherec? = vpg/po is the square of the sound speed.

6.2.3.1 Non-Dimensionalisation

To aid with the numerical simulations the above equatiorsv@de dimensionless. This is done by setting
r =1Lz z= Lzt =Tt Po = Po, Po = Bgoﬁo/ (Q,LL), By = BOOBO, p = Bgoﬁ/ (2/L), v = yov, and

B = ByB. The lengthscales against which the variables have beeer diatensionless are related by
vg = L/7. Note that we have the relations

]_30 = ("Ev 0, _2) ’ (622)
and
B2 B2
2= 12005 2 = 200 (324 57 (6.23)
241p0 Po

Definingv? = B3,/ (upo) = ¢, the dimensionless sound and Adfv speeds are then given by the equa-
tions

= gf)o, 4 = 2%+ 22 (6.24)

The plasmas, given by the ratio of the gas pressure to the magnetic presistthen

3 Do
B = m (6.25)
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Figure 6.2: These plots show how the sound and &ifgpeeds vary witlh andz. The sound speed is
constant withr: and z, whilst the Alfven speed varies with position. The left-hand plot shows feed
variation in two dimensions. The right-hand plots takestatongz = 0 - thec; = v 4 region is denoted
by the dotted lines, in between these lines the plasma is/hiyd outside it is lows.

The sound and Alfén speeds are equal wh@n= 2/~ (= 6/5) and the radius;, at which this occurs may
be chosen by setting

2
o = —72, (6.26)
~

wherer? = z2 + z2. If we choose to set the mode-conversion region at a radius-of..5 then the sound
and Alfvén speeds vary as shown in Figure 6.2.

Substituting the non-dimensionalised variables into Equna (6.15)—(6.19) the dimensionless, Lin-
earised MHD equations are given by

oo,  10p _ (0B, OB,

ot __5%_Z(82 B a:z)’ (627)
ov,  10p _[(0B. 0B,

ot 2&«”(893 - az>’ (6.28)
0B, _0v, _  _Ov,

o e e (6:29)
0B, _ov, _  _0u,

op  _ (0v, 00,

9 —7Po <% + 9z ) . (6.31)

As before, Equations (6.27) — (6.31) may be combined to gpa&iteof dimensionless wave equations by
differentiating Equations (6.27) and (6.28) with respedt&nd substituting from the remaining equations.
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The dimensionless wave equations are

0?1, o oy 0%V, 0%, v, 0%, 0?0, OV, ov,
— (@42 7 72 &2 vz 2% | 9z 32
o ) G T Gt gy gy Y vyt (632)
0%, v, 0%, 0?0, 5, 0%, 5 o\ 0?0, 00, v,
—— =72z C TZ T C T 20— + 2% . .
g7 =g tlgmes T T g (G HT) g s+ 2an (639)

Henceforth the bars on dimensionless quantities are dibape it is assumed that we are working with the
dimensionless equations.

6.3 Numerical Simulations

Equations (6.27) — (6.31) are solved numerically using tlee®brmack method in two dimensions, as was
done in Chapter 5. This method uses a combination of predétd corrector steps; we choose to use
backward differencing for the predictor steps and forwaffcencing for the corrector steps. This ensures
that we are using the more accurate corrected values on thex bpundary where the wave is driven into

the system.

We drive waves on the upper boundary with frequencies ef 47, 10r and 167 which correspond in
real terms to frequencies of 0.21's 0.52 s ! and 0.84 s! and periods of 30 s, 12 s and 7.5 s respectively.
In calculating these values we have assumed the typicaliscgle of 10 Mm to be the distance between
the null point and the conversion region and the typical &ffwspeed to be 1000 knTs As for the
previous chapters the driving frequencies are much lahger the coronal acoustic cutoff frequen@y,. =
0.001 s~* (Roberts, 2004), so this does not affect the simulations.

6.3.1 Velocity Parallel and Perpendicular to the Magnetic keld

At this point it is useful to note that in the low-plasma a slow wave will travel parallel to the magnetic
field and a fast wave perpendicular to the magnetic field. JTimusrder to drive a pure slow or fast wave,

we need to work with the velocity components parallel anghprdicular to the magnetic field rather than
usingv, andv,. If

By VA
VvV = ’U” \/ﬁ — VU \/ﬁ s (634)
whereA = (0, Ao, 0) is the vector potential, thed, = —zz and the parallel and perpendicular compo-

nents of the velocity are given by

TV, — 20,

Ky~ (6.39)
and
v = 2V + V2 (6.36)

Va2 + 22
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By driving eitherv or v, on the upper boundary we may drive either a slow wave or a fasewowards
the magnetic null point.

It is possible to rewrite Equations (6.27) —(6.31) in terrhthe variables); anduvj

% = —N%W <z% +x%> + Va2 + 22 (a(,f: - 86%) : (6.38)
o Va2l . (6.39)
0. 2%y L, (6.40)
dp r Oy z Oy (2% — 2%) z  Ovy
ot~ <\/m% VR 2 0 (e VEr s on

+ %Wa;—; - @ﬁ%“) . (6.41)

In terms of the parallel and perpendicular velocity compus¢he wave equations are given by

Pop _ o o Doy 2wz Py 2 Py 2(2?-32) Oy
o~ C\ @2+ 22) 02 (P +22) 000z | (21 72) 022 (a2 4 22 On
z (322 — 2%) % (z* — 102222 + 2*) o 4 % 0%v,

(@2 + 22)° 0z @2 +22)° 7 (@24 22) 0a?

(2% — 2%) 0%vy o xz 0%vy _ 4o’z vy

(22 +22) 0x0z (22 +2%) 022 (124 22)? Ox

422 vy bxz (2% —2?)
+7(x2 7 0s + eI vr |, (6.42)
Pv.  Exz Py (2P - 2%) 0Py Arz  0%v 2c2z (2 — 22) Oy
02 (a2+22) 922 | (224 22) 020z (22 +22) 922 (424 :2)° Ox

_203:3 (2% — 2?) vy N 6c2xz (22 — 2%) 222 L2 0?vy
(.%'2 + 22)2 (92 (IL‘Q + Z2>3 H ($2 + 22) A 8552

2c2rz 0%vy ( c2x? 2) d%v <c§x (x2 — 322) 2:c> v

+ v

(22 + 22) 0x0z + (22 + 22) 022 (22 + 22)2 Oz
2, (322 — 52 202 (44 — 44252 4 A
. CSZ(.’II 'z)_2z arU_L_ CS(I x23+z)—|—1 vy. (6.43)
(2?1 22) R (a2 + 22)
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Figure 6.3: Contour plots of the perpendicular velocity pmment forw = 167 at¢ = 0.5, 1.0 and 1.5
Alfv én times respectively from left to right. The black circleogls the position where, = v, and the
null point lies at the origin in the centre of this circle.

6.3.2 Drivingv,

To drive the perpendicular velocity component, which isdominantly a fast wave, on the upper boundary
we setv, = sinwt andv = 0. The simulations are runfor6 < z <6, -6 < 2z <4and0 <t < 2.3
Alfven times, wherefz = §z = 0.013 anddt = 0.0005. The only free parameter in this case is the driving
frequency ) which is introduced through the conditions on the uppemiatauy. The boundary conditions
on the upper boundary are given by

sinwt, v, =

Vp —

: < sin wt (6.44)
Va2 4 22 Va2 4 22 ’ '

and using Equations (6.29) —(6.31) the remaining conditeme given by

z x 2ypoxz

B, =——(coswt—1), B,=——(1—coswt), = 6.45
wVx? + 22 ( ) wvVx? + 22 ( ), P w (22 + 22)3/2 ( )
For the side boundaries we simply choose to use open boundadjtions
Ovy v, 0B, 0B, op
Ox T oz T Oz 0, Ox 0, Ox 0 (6.46)

The boundary conditions on the lower boundary are less itapgras the simulation is terminated before
any reflection effects from this boundary can affect the imitg waves. On this boundary the conditions
are given by

vy Ov, 0B, @ _0

0z T 0z ' ’ ? T 0z

(6.47)

6.3.2.1 Wave Properties

We are driving a fast wave on the upper boundary which projeasgeom low- to highg plasma. As can
be seen in Figure 6.3 the wave slows as it approaches the tiaguk point, where the Alfén speed goes
to zero. The edges of the wavefront propagate faster thaoehte causing it to wrap around the null
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Figure 6.4: Results of the numerical simulation with= 167 att = 2.3 Alfv én times for a cut taken along

x = 0. The plots show the parallel and perpendicular velocitg, hibrizontal and vertical magnetic field,
and the pressure respectively from top left to bottom rigtie red dashed line indicates the regions where
Cs = VA.

(as found in McLaughlin and Hood (2004)). This means thay anportion of the wavefront will actually
cross the mode-conversion region. To observe the mode omea cut is taken along = 0 where the
wavefront hits the conversion region tangentially.

As the incident fast wave hits the mode-conversion regiovilitsplit into a transmitted slow wave and
a converted fast wave in the highplasma. This is shown in Figure 6.4 where we see the paraik| a
perpendicular velocity, the horizontal and vertical magngeld, and the pressure respectively. These are
the results of a numerical simulation with driving frequgnc= 167 shown at = 2.3 Alfv én times. In the
plots of the perpendicular velocity, and horizontal andieat magnetic field two distinct waves can be seen
in the highg plasma. The two modes may be distinguished by their diftexeplitude dependencies and
phase behaviour. The mode in front is the converted fast wangonent and behind this is the transmitted
slow wave. Both waves are also present in the plots of thdlpbvalocity and pressure, but the slow wave
is only visible as interference with the fast wave. Therelé®a wave seen in the low-plasma in the
left-hand side of each plot. This is has been introducedtimosystem by boundary effects on the lower
boundary and can be ignored as the simulation has been stbgfare this causes any interference.
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Figure 6.5: Surface plot of the perpendicular velocitydos= 167 alongz = 0. The red dashed line shows
the position of the acoustic mode, the green dashed linedkitign of the magnetic mode, and the blue
dashed line the position of the fast mode.

It is possible to calculate the position of the various wemets in the simulation. In the low-plasma
the fast wave will travel at approximately the Aéw speed

e _ —vg = —V a2+ 22, (6.48)

dt

Focusing along the cut = 0, this reduces to

dz
—— 6.49
& z (6.49)

Using the initial conditiorz = 4 whent = 0 gives the solution

z=4e " (6.50)

This tells us that the fast wave will reach the mode-coneersegion whent = 1 Alfvén time, and at
t = 2.3 Alfvén times the highi slow wave will have reached =~ 0.41. Similarly the position of the fast
wave in the highs plasma will be given by the equation

dz
= —cs, 6.51
i c (6.51)

which has the solution
8
Z = cq <ln 3~ t) + 1.5, (6.52)

and so the converted wave will have reached —0.45 att = 2.3 Alfvén times. These predictions are in
excellent agreement with the numerical simulations showFfigure 6.4.
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To calculate the position of the fast mode throughout thealowe use the equation

dz

= _ — 2 2

g Y= v/ 2 +v5. (6.53)
Along x = 0 this simplifies to

dz

—_— = — 2 2 . 4

% V2 + 22, (6.54)
which has the solution

44 +/c2+16

242+ 22

t=1In . (6.55)

Figure 6.5 shows the perpendicular velocity for a numesaallation with driving frequency = 16.
Overplotted are the paths predicted by Equations (6.502]6and (6.55). The magnetic mode is the fast
wave in the lows plasma and the slow wave in the higrplasma. The acoustic mode is only present once
the incident wave passes into the higtplasma and is the fast wave in this region. The final path is tha
predicted by the fast speed;, which follows the fast wave throughout the domain. The patidicted
by the fast speed does not follow the actual wave behavioweliss those predicted by Equations (6.50)
and (6.52).

6.3.2.2 Effect of Varying the Driving Frequency

The only free parameter in the numerical simulation in tlaisecis the driving frequency. In this section we
examine the effect that variation of this parameter has emthount of the incident wave that is transmitted
and converted into the high-plasma. To do this we run the simulation for three differealties ofw: 4,

10r and 16r. The results of these simulationstat 2.3 Alfvén times are shown in Figure 6.6. Without
knowing the amplitude dependence of the incoming wave itfiicdlt to determine the wave behaviour.
But the amount of conversion does seem to be decreasingraseases suggesting that the transmission is
increasing. This agrees with our findings in Chapters 3, 4%and

6.3.3 Driving

Another option is to drive a slow wave on the upper boundatyis Tan be done by driving the parallel
component of the velocity;; = sinwt, and setting the perpendicular component to zero= 0. As for
the previous case the simulations are run4fdr < =z < 6, —6 < z < 4 and0 < ¢ < 4.6 Alfvén times.
The driving frequency is the only free parameter, which isdduced through the conditions imposed on
the upper boundary. These are given by

Vp = sin wt, v, = — sin wt, (6.56)

T z
1/‘%24,2:2 ‘/‘%24,22
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Figure 6.6: Top Perpendicular velocity at = 2.3 Alfvén times forw = 47, 107 and 16r respectively
from left to right.

Bottom Parallel velocity at = 2.3 Alfv én times forw = 4w, 107 and 16r respectively from left to right.
The red dashed lines indicate whete= v 4.

and through a process of trial and error we choose the rentaboundary conditions to be

0B,

Jp
= 07 Bz = 07 =
0z

B =

0. (6.57)

On the side boundaries we simply choose to use open boundadjtions

Ovy ov, 0B, 0B, @
or 0, or 0, or 0, or 0, ox’ (6.58)

The boundary conditions on the lower boundary are less itapbas the simulation is terminated before
the wave reaches this point in order to eliminate reflectifbaces. On this boundary the conditions are
given by

Ov, ov,, 0B, dp

=0 =0 =0 Bz:O7 e —
’ Oz

P , P , P 0. (6.59)

When drivingv; on the upper boundary components of both the slow and fast wavintroduced, as
may be seen in Figure 6.7. This is because the wave driveneonghper boundary does not propagate
exactly along the magnetic field lines. In order to drive agpsiow magnetoacoustic wave the wavefront
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Figure 6.7: Contour plots of the parallel velocity comporfenw = 167 at¢ = 1.48, 2.97 and 4.46 Alfén
times respectively from left to right. The black circle st®the position where, = v4 and the null point
lies at the origin in the centre of this circle.

driven on the upper boundary must be curved, so as to travegdhe field lines.

From Section 6.3.1 we know that the magnetic field lines avergby constant values ofy, = —xz.
Using the Cauchy-Riemann equations we find that the orthalgnmves tod, are given by

¢p=—=(a°—2%), (6.60)

where¢ is constant. We know that when= 0 atz = 0 we will havez = 4, this allows us to calculate
¢ = 8. Rearranging Equation (6.60) we find an expressiorngor

20 = 1/16 + x2. (6.61)
If we want to know how a point on the wavefront evolves theniit have a constant value oA, thus
TZ = Tp2Q- (6.62)

In order to drive a wavefront that will pass through= 4 we must have
To =2/ Va2 +4-2. (6.63)

To drive a wave which is constant along the field lines we magtutate the time at which = 4 for
each value ofty. This may be done using Charpit’s method. This finds a systieondinary differential
equations describing the wave behaviour along the chaistitecurves for the partial differential equation

F(vaaqvaxv Z)t) = 07 (6-64)

wherep = 9¢/0x andq = 0v/0z, as described in Section 6.4.1. If the parallel and permerai
wavenumbers are given by

Tp — 2q 2p + xq
k= ——== and ki = ——=, 6.65
I V2 4 22 + V2 4 22 ( )
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we may note that? + ¢> = kﬁ + k% andzp — zq = vak. Letting the perpendicular wavenumber initially
be zero Equation (6.80) gives the initial fast wave solution

2
2w? — (3 +vio) kjjo + \/(Cg +vlo)” Kjg — Acdvioki, = 0. (6.66)

Whens = 0 we letty = 0 andy = 0 so we have = 2ws. The initial conditions for:, andzy are given
by Equations (6.63) and (6.61) and from Equation (6.66) weiob

2w?

kjo = — , (6.67)

2+ ad 4 25—\ /(2 ad 4 ) — Ak (e + )

which gives the initial condition fok; for a downward propagating wave. The remaining equationstmu
be solved numerically under the above initial conditionsgs fourth-order Runge-Kutta scheme.

6.3.3.1 Wave Properties

In Figure 6.8 we can see that by driving the parallel velocignponent along the magnetic field lines only
a slow wave is initially introduced. This propagates dowrdgsaat a constant speed until the front of the
wave hits the mode-conversion region. At this point the iparbf the wave that crosses into the high-
plasma undergoes mode conversion, and both the transrfasédvave and a converted slow wave are
present. To examine the mode conversion a cut is again td&eg @a = 0 where the wavefront hits the
conversion region tangentially.

Figure 6.9 shows the parallel and perpendicular velocitpponents, the horizontal and vertical mag-
netic field and the pressure for a cut taken aleng 0 att = 4.6 Alfvén times of a numerical simulation
with driving frequencyw = 167. In the region to the far right of each plot only the incideluvws mode
is present. As this wave crosses into the higghtasma between the red dashed lines some portion of the
wave is converted to a slow wave and the rest is transmittedfast wave. It is difficult to make out the
separate fast and slow wave components in the Rigkgion due to the interference.

The position of the different wavefronts in time may be cited analytically. In the lows plasma the
slow wave travels at approximately the sound speed

dz
= = —c,, 6.68
P c (6.68)
S0 its position varies according to

2 =4 — cgt. (6.69)

The slow wave will therefore reach the mode-conversionaegitz = 1.5 when¢ ~ 1.67 Alfv én times,
and att = 4.6 Alfvén times the hight fast wave will have passed back into the Ighplasma as a slow
wave and reached~ —2.85.
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Figure 6.8: Contour plot of the parallel velocity component/en along the magnetic field lines. The
plots are shown for a simulation with driving frequency= 167 att = 1.48, 2.97 and 4.46 Alfén times

respectively from left to right. The black circle shows thesjtion wherec; = v4 and the null point lies at
the origin in the centre of this circle.
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Figure 6.9: Results of driving the parallel velocity alomg tmagnetic field lines with a driving frequency

w = 167 att = 4.6 Alfvén times for a cut taken along= 0. The plots show the parallel and perpendicular
velocity, the horizontal and vertical magnetic field, and firessure respectively from top left to bottom

right. The red dashed line indicates the regions where v 4.
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t/T

Figure 6.10: Surface plot of the parallel velocity when drivalong the magnetic field lines for= 16«
alongz = 0. The red dashed line shows the position of the acoustic mibdegreen dashed line the
position of the magnetic mode, and the blue dashed line thiti@o of the slow mode.

The position of the slow mode in the highplasma will be given by the equation

G = VET A (6.70)

Along x = 0 this reduces to

dz
_ 71
==, (6.71)

which, usingz = 3/2 whent = 5/3 from Equation (6.69), has the solution
_ 3 5/3 ¢
z=gete (6.72)

Thus the converted slow mode will only have reachee 0.08. The position of the transmitted wave
agrees well with the numerical simulations, but it is difftdo see the position of the converted wave in
order to compare the results. The position of the slow modritihout the simulation may be predicted by
the tube speed, given by the equation

dz CsZ
. S 6.73
dt cr /Cg + 227 ( )

alongx = 0. This is not easily solved analytically but the fourth-aréRunge-Kutta method may be used
to find a solution numerically.

Figure 6.10 shows the parallel velocity driven along the nedig field lines for a numerical simulation
with driving frequencyw = 167. Overplotted are the paths predicted by Equations (6.69)2] and (6.73).
The acoustic mode is the slow wave in the Iowslasma and the fast mode in the highplasma. The
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Figure 6.11: Parallel velocity component driven along thegnetic field lines at = 4.6 Alfv én times for
w = 4m, 10w and167 respectively from left to right. The red dashed lines intkoaherec, = v 4.

magnetic mode is only present after the incident slow wawes®s into the higl¥plasma, and is the slow
wave in this region. The third path plotted is that predidigdhe tube speedy, which follows the slow
mode throughout the domain. This path does not follow theetesl wave behaviour as well as those
predicted by Equations (6.69) and (6.72) but the agreensené¢tter distant from the conversion region.
The ridges appearing ahead of the slow wave are due to a somafianent of the fast wave being driven
on the boundary, but this is effect has been vastly reducettibing v along the magnetic field lines.

6.3.3.2 Effect of Varying the Driving Frequency

Again the only free parameter in the numerical simulatiothis driving frequency. In this section we
examine the effect that varying this parameter has on thpgption of transmission and conversion ob-
served. Figure 6.11 shows the parallel velocity component=a 4.6 Alfvén times forw = 4, 10r and
167 respectively from left to right. The converted slow wave mainbe seen below the transmitted fast
wave. Although the amplitude dependence of the incidentterbmitted waves has not been removed
from these plots it can still be seen that the amount of tréssion is decreasing asincreases, in line with
the previous chapters.

6.4 Analytical Approximations

In Section 6.3.3 we touched on how Charpit's method coulddeel o determine when to drive the parallel
velocity component on the upper boundary so that it was tticealong the magnetic field lines. In this
section we look at Charpit’s method in more detail and shaat ithmay be used to track the positions of
the different wavefronts as they propagate through the doma
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6.4.1 Charpit's Method

Charpit's method results in a system of ordinary differahéiquations describing the behaviour along a
characteristic curve. To obtain these equations we begin with the wave equatemgjiven by Equa-
tions (6.32) and (6.33)

0%v, o oy 0?0y 0%, v, 5 0%, 0%v, Oy v,
gr — G TE) G v E g v g, T vty (674
0%v, 8%v, 5 0%v, 0%v, 5 0%, 9 9\ 0?0, v, Ov,
2 — o T, T2 T4 5 + (¢ +2?) 922 + ZxE + Qx%. (6.75)

Assuming that we may write the velocity components in terfibeir Fourier components,, = ae’¥(*:#t)
andv, = be'¥(*#1) wheret) > 1 these equations reduce to

o\ ? o\ > o\ 2
() v (2) () -
2 2
(8 () () o (5 )

(&) () () (3))
+ ((%—f)z -z’ (g—f)Q — (2 +2?) (%f)j v, =0. (6.77)

For a non-trivial solution we require

op o\

Lettingw = 9vy/0t, p = 0 /0x, andg = 9y /Dz, we may set
1
F(¢,p.qw,3,2,1) = 5 ( P (@E40d) P+ P) P+ PP+ ) (ap - ZQ)Q) =0.  (6.79)

This equation can be solved to give

20? = (f +0v3) (0° +4°) £ \/(CE +03)7 (02 + ¢2)° — 42 (P + ¢2) (ap — 2q)°, (6.80)

where the positive root gives the fast wave solution, anddgative root gives the slow wave solution.
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Referring to Section 2.2.2 on Charpit’s method, the fastensolution is given by the system of equations

di
@ _ 81
as O (6.81)
dw
— = .82
A (6.82)
dat _ %, (6.83)
ds
2
d  (p* +q°)" (2 +v4) —2pc (p° + ¢°) (ap — 2q
d—i’ =z (P’ +¢°) + ( ) 2( A)2 ( ) )2 (6.84)
\/(C? +v3)" (P* +¢2)" — 42 (p* + ) (ap — 2q)
2
dg z(P*+¢?)" (2 +v]) +2q¢¢% (p* + ¢%) (zp — 2q) 6.85
G =)+ = - = (6.85)
\/(CS +v3)" (p? +¢2)° — 4¢2 (p* + ¢°) (ap — 2q)
de p(02+v2) p(p2+q ) (c +UA) — 2pc? (xp—zq) — 2xc? (p +q )(a:p—zq)
g — s A) ’
as \/02+”UA (p* + ¢%)% — 42 (p? + ¢2) (zp — 2q)°
(6.86)
2
dz . (02 N 1)2) q (p2 + q2) (cf + 11124) —2qc? (zp — zq) + 22¢2 (p +q ) (zp — 2q)
ET s A) :
ds \/(05 +v3)" (02 + ¢%)° = 42 (0 + ¢?) (ap — 29)°
(6.87)
Similarly the slow wave solution is given by the system of &tipns
di
w_ 6.88
s =0 (6.88)
dw
= =0 (6.89)
a_ 2w, (6.90)
ds
2
dp o o (PP +d) (€ +0vh) —2ek (p° +¢°) (xp — 2q) 601
&) - > - =, (6.91)
\/(05 +v3)" (P +¢2)° — 42 (p? + ¢2) (ap — 2q)
2
dg 5 oy 2P+ ) (G +03) + 243 (0° + ¢°) (ap — 2q)
E—Z(p +q) 3 2 27 (692)
\/(cs +v%)" (p? +¢%)" — 4e2 (p* + ¢%) (ap — 2q)
de ooy PP+ ) (B vR)” - 2pcd (wp — 2q)° — 202 (b + ¢*) (p — zq)
Tp @)+

\/ vi (P2 + )" — 42 (P + %) (ap — 2q)°
(6.93)
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Figure 6.12: The path of the fast wave for various starting{scalong thez-axis. The green circle denotes
wherec, = v4 and the magnetic null point lies at the origin in the centréhis circle. The paths marked
in red indicate those paths which do not cross the mode-esioveregion during the simulation.

dz (2 +42) + qa(P®+q%) (+ vi)z —2qc2 (zp — 2q)* + 22¢2 (p* + ¢%) (zp — zq)
Z=—q(E+v} ,
@ \/(Ci +v3) (12 + ¢2)° — 42 (02 + ¢?) (ap — 29)°

(6.94)

From both sets of equations we can immediately notethatdw are constant, and i#f = 0 whens = 0
thent = 2ws.

6.4.1.1 Drivingv,

When driving the perpendicular velocity on the upper boupdhe fast wave solution will follow the
incident wave in the lows plasma and the converted wave in the higiplasma. The initial conditions,
taken whers = 0, are given by

1 =0, t=0, T =z, z=4 and p=0. (6.95)

Thus Equation (6.80) is initially given by

2w? — (2 + 2§ + 16) ¢f + \/(cg + 22+ 16)% gd — 6422 = 0. (6.96)

Solving this forgg, the positive root will give the downward solution

2w?
o = _ . (6.97)
2+ 23 +16 — \/(cg—l—mg—I—lG) — 64c2
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Figure 6.13: Contour plots of the perpendicular velocityddving frequencyw = 4x att = 0, 0.28, 0.58,
0.86, 1.14, 1.42, 1.72, 2.00 and 2.28 Adfvtimes respectively from top left to bottom right. The gree
circle denotes where, = v4 and the magnetic null point lies at the origin in the centréhad circle. The
red lines follow the front, middle and back of the fast wavéspwand the blue lines follow the front, middle
and back of the slow wave pulse.

Using these initial conditions Equations (6.84) —(6.87)rba solved numerically using the fourth-order
Runge-Kutta method to follow the incident and convertedesav

Figure 6.12 shows the characteristic paths of the fast waedrious starting points along theaxis.
This demonstrates the way that the fast wave wraps aroungaigaetic null point. It is also clear that the
edges of the wavefront have travelled further than the eantthe same time, as these are moving faster.
The green circle shows where the sound and &tfgépeeds are equal. Not all of the fast wave will cross this
mode-conversion region into the highregion before the end of the simulation. Those paths thaaiem
in the low+3 plasma are indicated in red.

To follow the transmitted slow wave the slow wave solutiorstrhe used. From Section 6.3.2.1 we know
that the incident fast wave will reach the mode-conversegian atz = 1.5 whent = In (8/3) ~ 0.98
Alfv én times; therefore these are the initial conditions fordlogv wave solution. The conditions for ¢
andz are taken to be the same as those for the fast wave solution.
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The results of using Charpit's method to follow the fast alodvavaves are shown in Figure 6.13. Each
plot shows a contour plot of the numerical perpendiculaoei®y for a driving frequency of = 4 as time
progresses. Overplotted on these are the position of tmg frtiddle and back of the fast wave pulse in red
and the position of the front, middle and back of the slow wawise in blue. The green circle shows where
the sound and Alfén speeds are equal. The slow wave solution is introducédsapoint as this is where
mode conversion occurs. The agreement between the nufrenadations and the analytical predictions
is excellent.

Concentrating on the cut along= 0 (with p = 0) Equations (6.80), (6.85) and (6.87) reduce down to

2w? =¢* ((2+2°) + ]cg - 22]) , (6.98)
d 2_¢2

d—‘i = 22 <1 ¥ ﬁ;%) , (6.99)
dz 2 2 2 2

gf—q((chrz )+|csfz |) (6.100)

In the low-3 region, wherez? > ¢2

w? = 2%¢°, dg = 22> and dz = —22%¢, (6.101)
ds ds
which may be solved to find
2z =4e (6.102)
as predicted by Equation (6.50).
In the high#3 region, where:? < ¢2
w2 — qzci, % =0 and % — _2qc§’ (6103)
ds ds
which may be solved to find
z=C —cst. (6.104)

From Equation (6.102) we know that= In (8/3) atz = 1.5, so this may be written

z=15+c;s <ln (g) — t) , (6.105)

as predicted by Equation (6.52).
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Figure 6.14: The path of the slow wave for various startinifsoalong thez-axis. The green circle denotes
wherec, = v4 and the magnetic null point lies at the origin in the centréhefcircle. The paths marked
in red indicate those paths which do cross the mode-comrersgion.

6.4.1.2 Drivinguy
We may do the same thing for the simulations driving the plraélocity component along the magnetic

field lines. The slow wave solution will then follow the ineidt wave in the lows3 plasma, and the converted
wave in the highs plasma. The initial conditions, taken whenr= 0, are

P =0, t=0, To =2\ Va2 +4-2, 20 =1/ 16 + 22, ki

and from Equation (6.67)

0, (6.106)

2w?

k”ozf .
@t ad 2 (2 a2 Ak (o + 23)

(6.107)

The values fop andg may be found from Equation (6.65). Using these initial ctinds Equations (6.91) —
(6.94) may be solved numerically using the fourth-order i utta method to follow the incident and
converted waves.

Figure 6.14 shows the path of the slow wave for various sigrtioints along thec-axis. From this
we can see that the slow wave follows the magnetic field limesthe wave stretches out away from the
magnetic null point. Due to this only a small portion of theweBiont will cross the mode-conversion layer.
This part of the wave is located in the centre of the wavefeomt is depicted in the figure by the red paths.
For this reason the fast wave is only introduced along thasetpwhere the slow wave enters the high-
region.
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Figure 6.15: Contour plots of the parallel velocity drivdoray the magnetic field lines with driving fre-
quencyw = 4x att = 0, 0.46, 0.93, 1.39, 1.85, 2.30, 2.76, 3.23 and 3.69 &iftimes respectively from
top left to bottom right. The green circle denotes wheye= v4 and the magnetic null point lies at the
origin in the centre of this circle. The blue lines follow tfrent, middle and back of the slow wave pulse
and the red lines follow the front, middle and back of the faave pulse.

To follow the transmitted fast wave Equations (6.84)— (p.8itist be used. From Section 6.3.3.1 we
know that the incident slow wave will reach the mode-cornegrsegion at: = 1.5 whent = 5/3 ~ 1.67
Alfvén times. These are used as the initial conditions for thiewage solution. Thex-position is taken
from a cut along constant= 1.5, andp andq are taken to be equal to the values of the slow wave solution.

The results of using Charpit's method to follow the slow aast fwvaves are shown in Figure 6.15. Each
plot shows a contour plot of the numerical parallel velodtiven along the magnetic field lines with a
frequencyw = 47 as time progresses. Overplotted on these are the positidhe &ont, middle and back
of the slow wave pulse in blue and the positions of the frorifdle and back of the fast wave pulse in
red. The green circle shows where the sound andénfspeeds are equal and mode conversion takes place
so the fast wave solution is introduced here. The agreenetmtelen the numerical simulations and the
analytical predictions is excellent, although the simolats stopped before the fast wave leaves the tigh-
region as the behaviour changes again at this point.
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Concentrating on the cut along= 0 (with p = 0) Equations (6.80), (6.92) and (6.94) reduce down to

202 = ¢* ((c? + z2) — ’cg — 22

d_ o, (2-2)
as ~ 1 (1 2—c2[ )
T = —a((@+2) |- =),

In the low+3 region, wherez? > ¢2

).

dgq dz
2 2 2 —_— = —_— = —2 /2
qci, Is 0 and o qc
which may be solved to find

z =4 — cgt,

as predicted by Equation (6.69).
In the high# plasma, where? < 2

w” =q°z°, — =22¢° and — = —2qz
which may be solved to find

z = Ae”t.

From Equation (6.112) we know that= 5/3, so this may be written

z = 1.565/3€7t,

as predicted by Equation (6.72).

The results of this section have been published in McDowgallHood (2009).

6.5 Conclusions

(6.108)

(6.109)

(6.110)

(6.111)

(6.112)

(6.113)

(6.114)

(6.115)

This chapter has looked at MHD mode conversion of fast and slagnetoacoustic waves in the vicinity of
a two-dimensional null point (Figure 6.1). At the null pothe Alfvén speed goes to zero so a wave prop-
agating towards the null passes from low- to hjgiplasma, as demonstrated in Figure 6.2. For simplicity

gravitational acceleration was neglected.

In Section 6.3 we used the MacCormack method to simulate a wapagating towards the null point.
In order to drive fast and slow waves the velocity compongetpendicular and parallel to the magnetic
field were calculated. To drive a fast wave the perpendicuddmcity component was driven on the up-
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per boundary whilst the parallel component was held at Z&he results of this are shown in Figure 6.3.
As mentioned by McLaughlin and Hood (2004) as the fast waepagates downwards the centre of the
wavefront slows and the wave wraps around the magnetic wiritjp Looking at a cut of the numerical
simulation, taken along = 0, evidence of mode conversion may be seen as the incidentdastcrosses

cs = vy (Figure 6.4). This is especially clear in the plot of the korital magnetic field, in which the con-
verted slow wave can be observed propagating out ahead trattiemitted slow wave. In Section 6.3.2.1
the variation of the position of the wavefronts in time wakabated using the characteristic speeds. These
positions are given by Equations (6.50) and (6.52) and ave/slagainst one of the numerical simulations
in Figure 6.5. The only free parameter in these numericallktions was the driving frequency). The
effect of varying the driving frequency is small and diffictd see without first removing the amplitude
dependence. It is possible, however, to note that the anajwounversion decreases with increasing fre-
guency, and so the amount of transmission must subsequeatase (Figure 6.6) as expected based on
the previous chapters.

In Section 6.3.3 we ran similar numerical simulations, thite driving a slow wave on the upper bound-
ary. In order to do this the velocity component parallel te thagnetic field was driven on the upper
boundary whilst the perpendicular component was held &t 28then drivingy; straight across the upper
boundary some component of the fast wave is also introduesdtmng in interference between the two
modes (Figure 6.7). To avoid thig was driven along the magnetic field lines where the time atlvhi
to start the wave was calculated using Charpit’s methodurgi6.8 shows that this stops any component
of the fast wave being introduced on the upper boundary. Asstbw wave propagates downwards it is
curved along the magnetic field lines. When it hits the= v 4 layer the incident slow wave is transmitted
through the high3 plasma as a fast wave. This may also be seen when a cut of therinahsimulations
is taken alonge = 0 (Figure 6.9). It is difficult to make out the converted slowwean these simulations
as it is masked by the transmitted fast wave. In Section A 3l position of the wavefronts in time was
calculated using the characteristic wave speeds. Thesgivame by Equations (6.69) and (6.72) and are
shown against one of the numerical simulations in Figur®.6Hinally the effect of varying the driving
frequency was investigated (Figure 6.11). Although the laoge dependence has not been removed it is
clear that the amount of transmission decreases as theefiegincreases, and thus the conversion must
decrease. Again this agrees with previous results.

In Section 6.4 we looked back at Charpit's method, which waeflip touched upon during the previ-
ous section. This was used to describe the behaviour of stefal slow magnetoacoustic waves along a
characteristic curve. The systems of ordinary differential equations resulfiogn this were then solved
to find how the waves travel throughout the domain. Figur@ 8Hows the how the position of the fast
wavefront varies with time for different starting pointstime z-direction. This captures the way that the
fast wave slows as it approaches the magnetic null poinsicguhe wavefront to wrap around the null.
Charpit’s method was then used to predict the position offélse wave as it propagates downwards (as
in McLaughlin and Hood (2006)) and additionally the slow wdkom the mode-conversion region (Fig-
ure 6.13). These were plotted over one of the numerical sitiauls in order to compare the results, which
are in excellent agreement. By concentrating on the cutgatoa- 0 it was shown that Charpit’s method
predicted the same wave positions as Equations (6.50) a52))(6
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Charpit’s method was then used to examine the wave positbes driving the parallel velocity com-
ponent along the magnetic field lines in Section 6.4.1.2.ufeid5.14 demonstrates that the slow wave
stretches out along the magnetic field lines as it propaghlteswards and only a small proportion of the
wavefront passes into the mode-conversion region. Theiposif the slow wave and the transmitted fast
wave were calculated and compared to the numerical simuakafFigure 6.15). As only a small section
of the slow wave passes into the highplasma the fast wave is only modelled along this section.s&he
predictions agree very well with the numerical simulatioAs for Section 6.4.1.1, the positions predicted
using Charpit's method were shown to agree with those foynduations (6.69) and (6.72) along= 0.

In this chapter we have developed a good understanding offfistwand slow magnetoacoustic waves
behave in the region of a two-dimensional magnetic null poldsing a combination of analytical and
numerical techniques we have shown that mode conversioresept when driving both a slow and fast
wave toward the null point. In all cases it has been possibkeack the incident wave up to the mode-
conversion region, and the transmitted and converted caes of this wave after it passed into the
high-3 plasma.



Chapter 7

Conclusions

7.1 Overview of Thesis

This thesis has investigated the mode conversion of fastsiowd magnetoacoustic waves in the solar
corona. Mode conversion occurs when a resonance betweemwdheave modes is present, allowing
energy to be transferred between the different waves. Tgslis in the amplitude of one wave mode
increasing whilst the other decreases. Mode conversiondmst fast and slow magnetoacoustic waves
takes place when their respective characteristic speedscaral in size. This occurs in regions where the
plasmag (the ratio of the gas pressure to the magnetic pressurepi@gmately unity.

Throughout this thesis a combination of analytical techagand numerical methods have been used
in conjunction with one another. These methods are destfildy in Chapter 2. Mode conversion was
modelled numerically by the MacCormack method; a two-gpegdictor-corrector finite-difference scheme
using both forward and backward differencing. Conversiad gransmission coefficients describing the
amount of mode conversion were calculated using a methoélaleed by Cairns and Lashmore-Davies
(1983) and the behaviour distant from the mode-conversgion was described using a WKB analysis.
Each of these methods complements and supports the otllerging a full description of the mode-
conversion process to be built up.

Each chapter has examined mode conversion in a differenehadchosphere. Throughout all of the
research chapters mode conversion was studied for a wapagating from low- to highs plasma. In
each case the magnetic topology of the model progressivetgased in complexity.

7.2 Summary of Results

In Chapter 3 we investigated mode conversion using a verglsinane-dimensional model. This consisted
of a uniform, vertical magnetic field within an isothermaiatsphere. Gravitational stratification was
also included in order to ensure that mode conversion toakepl As mentioned above the focus was on
propagation from low- to high# plasma and thus the waves were travelling downwards tovthedsolar
surface. This could be representative of a flare-inducest lave, for example. A slow wave was driven
on the upper boundary. No component of the fast wave wasdated because this is evanescent in the
low-g plasma. As the slow wave crosses the mode-conversion réggamansmitted component takes the
form of a fast wave and the converted component takes the dbarslow wave.

168
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Following on from this, Chapter 4 examined mode conversiothe same model. A uniform, back-
ground magnetic field was present and gravitational stratifin was included, but the conditions were
relaxed to allow for a non-isothermal atmosphere. This rgat both the sound and Alén speeds varied
with height. Atanh profile was chosen for the temperature as this mimics the sesmperature gradient
which is found at the transition region. As before a slow waes driven on the upper boundary, propa-
gating downwards from low- to higl¥-plasma and crossing the mode-conversion region as it dodhso
transmitted component of the wave is a fast wave in the Bighasma and the converted component a slow
wave.

In Chapter 5 a more complex two-dimensional model was exathimThe main feature of this model
was a radially-expanding magnetic field which is repredemaf a coronal hole. Due to the geometry of
this model spherical coordinates were used in this chafter.simplicity gravitational acceleration was
neglected, meaning that the background pressure was otnistaddition, the atmosphere was taken to be
isothermal so the background density was constant. Thusotlned speed in the model was constant whilst
the Alfvén speed varied with radial position. To investigate moderersion a slow wave was driven on
the lower boundary propagating upwards from low- to higiptasma.

Finally in Chapter 6 mode conversion was investigated invibinity of a two-dimensional magnetic
null point. At the null point the magnetic field goes to zeral ao the wave propagating towards the null
passes from a low- to high-plasma. As for the previous chapter the sound speed wasartnghile the
Alfv én speed varied with height. Mode conversion was investithathen driving both a fast wave and a
slow wave on the upper boundary.

In all of the above chapters the process was simulated noafigrusing the MacCormack finite-difference
scheme. In Chapter 5 somialependence had to be included in the incoming wave, otherivies modes
would be completely decoupled and no mode conversion wake place. The fast and slow waves in
Chapter 6 were introduced by driving the velocity composgrdrpendicular and parallel to the magnetic
field. As predicted evidence of mode conversion was obsemeh the incident wave crossed the conver-
sion region where the sound and Adivspeeds are equal. In Chapters 3 -5 the amplitude depenafdhe
incoming wave was removed, making the conversion much efesard allowing the amount of transmis-
sion in the simulations to be quantified. In these simulationly one wave is present in the lotregion,
and after the wave has passed into the highlasma both the transmitted and converted components are
present. There is a clear drop in amplitude between theéntidnd transmitted waves, and the converted
wave can be identified where there is interference with tesmitted wave.

Using the characteristic wave speeds it was possible t& trecpositions of the various waves in time.
It was found that paths predicted by the sound and &ifépeeds were in much better agreement with
the numerical simulations than those found by the tube speddhe fast speed. However it was noted
that althoughcr andcy did not give good agreement at the mode-conversion regnay, did tend to the
solutions given by, andv 4 away from this area.

The parametew, representing the driving frequency, was a free parametall bf the numerical simu-
lations. Running the numerical simulations for a range dfi@a ofw we found that the amount of trans-
mission decreases as the driving frequency increases réemgnt with Cally (2005). In Chapters 3—-5
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the wavenumber was also a free parameter. When the wavenuvae=qual to zero the fast and slow
waves were completely decoupled and no conversion occuBeehparing the simulations for varying val-
ues of the wavenumber the transmission was seen to incradsmereasing wavenumber. Additionally,
this effect was much stronger than that of varying the dgvirequency. Chapter 4 has an additional free
parameterd, which varies the slope of thewnh temperature profile. Provided that the wavelength of the
incoming wave is small in comparison to the width of the terapge gradient the slope has no effect on
mode conversion. If this is not the case a proportion of thident wave will be reflected back into the
low-G plasma. The simulations in Chapter 5 were two dimensionsliie value of) did not influence the
mode conversion.

The results from the above numerical simulations were atsobined with a number of predictions
on the wave behaviour found using various analytical tegpines. Cairns and Lashmore-Davies (1983)
developed a method of quantifying mode conversion. This deterential equations derived from the local
dispersion relations at the mode-conversion region tordesthe wave behaviour. Combining these gives
a single differential equation for which the solution in kwoin terms of the Parabolic Cylinder function
(see Abramowitz and Stegun (1964)). This solution may theeided to find coefficients describing the
amount of transmission and conversion that takes place.a# shown that the coefficients calculated
satisfy the conservation of energy. The advantage of thihodeis that an exact solution does not need
to be known in order to obtain the coefficients, unlike thadusn Zhugzhda and Dzhalilov (1982a). This
method was used in Chapters 3-5 to find transmission and oreoefficients. In concurrence with the
numerical simulations these show that the amount of trassom and conversion depends on the square of
the wavenumber and inversely on the driving frequency. Gamng the amount of transmission predicted
with that observed in the numerical simulations showed kteagreement, even when the value of the
wavenumber grew large in violation of the assumptions used.

In Chapter 3 a method described in Roberts (2006) was useddahe wave behaviour in the limit of
a large wavenumber. This method uses scaling of the vasdblénd a description of the slow mode in
terms of the Klein-Gordon equation. This was then solvedgifie WKB method. This agreed well with
the numerical simulations to start with, but then deviatedifthe numerical simulation as— —oo. This
is because the assumptions are no longer valid in this re@ae to this fact the method was not applied
in any of the later chapters.

To find the behaviour of the various wave components away fremmode-conversion region the WKB
method was used in Chapters 3—5. This allowed the amplitegertience and phase behaviour of the
different wave modes to be found. To obtain a full descripttbthe wave behaviour throughout the domain
these solutions were then matched across the mode-camveegiion using the transmission and conversion
coefficients found using the Cairns and Lashmore-Davie83L8ethod. In Chapter 3 these analytical
descriptions are in near perfect agreement with the numlesicnulations capturing both the amplitude
and phase behaviour. The amplitude dependence of the tedwsave does not agree as well with the
numerical simulations in Chapter 4, but the remaining elasief the prediction are in excellent agreement.
Unfortunately, in Chapter 5 these predictions are not irhggmod agreement. Both the transmission and
conversion coefficients appear to have been overestimstigdesting that energy is not conserved in this
case. However the amplitude and phase behaviour predigtteebWKB method do look correct.
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In Chapter 6 Charpit'’s method was used to solve the WKB eguato find the behaviour of the fast and
slow waves along a characteristic curve. This resulted mgdets of ordinary differential equations which
were solved numerically using a fourth-order Runge-Kuttaesne. This allowed the path of incoming
wave to be found for various starting points along #haxis. In line with the numerical simulations these
showed that the fast wave slows as it approaches the maguditizoint, causing the edges of the wave to
refract around the null point (in agreement with McLaugldimd Hood (2004)). Conversely the slow wave
was shown to stretch out along the magnetic field lines asitagehes the null point, meaning that only a
small section of the wave actually enters the mode-cormerggion. The solutions found using Charpit’s
method were also used to predict the position of the incorfasgwave (as done in McLaughlin and Hood
(2006)) and slow wave, and to predict the position of thedmaitted wave from the mode-conversion
region. These are in excellent agreement with the numesicalilations. It was also shown that when
taking a cut along: = 0 these predictions are identical to those found using theacheristic wave speeds.

In Chapters 3 and 4 the one-dimensional model with a uniftwackground magnetic field was used as
a first step in building up to examine the two-dimensionaboat null point problem. In reality, the mode-
conversion region in this type of set-up is unlikely to lietire corona where the plasnsds typically very
low (O (10*4)) and is more likely to lie in the chromosphere or strong figdions in the photosphere. In
Chapter 5 a two-dimensional model representative of a @toole was studied. This is more physically
realistic than the model used in previous chapters, howitgv@pplicability is limited due to the fact that
gravitational acceleration was neglected. For this typmafnetic field structure the region whefex 1
will be situated at a height of 1.2—-1H4, (Gary, 2001). Chapter 6 concentrated on mode conversion in
the vicinity of a magnetic null point. In this situation theode-conversion layer may be found much lower
in the corona at heights of 0.2—- 03, (Gary, 2001). This gives an indication of where mode corigers
may occur for different magnetic topologies in the solar@dphere.

7.3 Future Work

There are numerous ways in which the work in this thesis chaldextended. Due to time constraints
we were unable to apply the WKB method in Chapter 6. This ntetmuld be applied to the parallel
and perpendicular velocity components using the derigatparallel and perpendicular to the magnetic
field. This would allow the amplitude and phase behaviourtfier different wave modes to be found.
This information could then be used to remove the amplitugfgeddence from the incoming wave, as was
done in Chapters 3-5, allowing the amount of transmissidoetguantified. Ideally this would then be
compared to transmission and conversion coefficients fagit the Cairns and Lashmore-Davies (1983)
method. As it currently stands, the Cairns and Lashmoreid3afd983) method may only be applied to
one-dimensional problems. As such this would need to baendettin order to cope with two dimensions.

In all cases the incoming wave is driven along the magnetid fiees. An interesting problem may
be to investigate the effect of driving a wave at an angle éorttagnetic field. Other authors have found
that the angle at which the incoming wave hits the mode-asive layer does have an affect on mode
conversion, Carlsson and Bogdan (2006) for example. It didel interesting to see whether this effect
could be quantified using the techniques utilised in thisithe
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Another obvious extension would be to consider mode coimeia a three-dimensional model. This
would be much more realistic than the one- and two-dimem@simodels. In three dimensions Afim waves
will also be present in addition to the fast and slow magreaatic waves. This introduces the possibility
of coupling between all three modes. In order to find transimisand conversion coefficients, the Cairns
and Lashmore-Davies (1983) method would have to be expaanghid to deal with three-dimensions.
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