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Abstract

There are three main wave types present in the Sun’s atmosphere: Alfvén waves and fast and slow mag-

netoacoustic waves. Alfvén waves are purely magnetic and would not exist if it was not for the Sun’s

magnetic field. The fast and slow magnetoacoustic waves are so named due to their relative phase speeds.

As the magnetic field tends to zero, the slow wave goes to zero as the fast wave becomes the sound wave.

When a resonance occurs energy may be transferred between the different modes, causing one to increase

in amplitude whilst the other decreases. This is known as mode conversion. Mode conversion of fast and

slow magnetoacoustic waves takes place when the characteristic wave speeds, the sound and Alfvén speeds,

are equal. This occurs in regions where the ratio of the gas pressure to the magnetic pressure, known as the

plasmaβ, is approximately unity.

In this thesis we investigate the conversion of fast and slowmagnetoacoustic waves as they propagate

from low- to high-β plasma. This investigation uses a combination of analytical and numerical techniques

to gain a full understanding of the process. The MacCormack finite-difference method is used to model

a wave as it undergoes mode conversion. Complementing this analytical techniques are employed to find

the wave behaviour at, and distant from, the mode-conversion region. These methods are described in

Chapter 2.

The simple, one-dimensional model of an isothermal atmosphere permeated by a uniform magnetic field

is studied in Chapter 3. Gravitational acceleration is included to ensure that mode conversion takes place.

Driving a slow magnetoacoustic wave on the upper boundary conversion takes place as the wave passes

from low- to high-β plasma. This is expanded upon in Chapter 4 where the effects of a non-isothermal

temperature profile are examined. Atanh profile is selected to mimic the steep temperature gradient found

in the transition region. In Chapter 5 the complexity is increased by allowing for a two-dimensional model.

For this purpose we choose a radially-expanding magnetic field which is representative of a coronal hole.

In this instance the slow magnetoacoustic wave is driven upwards from the surface, again travelling from

low to highβ. Finally, in Chapter 6 we investigate mode conversion near atwo-dimensional, magnetic null

point. At the null the plasmaβ becomes infinitely large and a wave propagating towards the null point will

experience mode conversion.

The methods used allow conversion of fast and slow waves to bedescribed in the various model at-

mospheres. The amount of transmission and conversion are calculated and matched across the mode-

conversion layer giving a full description of the wave behaviour.
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40π att = 13.5 Alfv én times. The solid line shows the numerical simulation and the dashed

line the amplitude predicted by Equation (3.102). . . . . . . . .. . . . . . . . . . . . . . 76

3.14 The numerical and analytical horizontal velocity and the numerical and analytical vertical

velocity respectively from top left to bottom right. In all plots ω = 4π
√

6, kx = π and
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Chapter 1

Introduction

1.1 The Sun

This thesis aims to investigate waves in the Sun’s atmosphere. On Earth acoustic waves are important in the

lower atmosphere. The presence of a magnetic field modifies the acoustic waves in the solar atmosphere

giving slow and fast magnetoacoustic waves, named according to their relative speeds of propagation.

We investigate how energy may transfer from one wave mode to another through a process called mode

conversion. Before this is examined in more detail we first look at some of the Sun’s basic properties.

The Sun has been studied for many centuries. As long ago as 2000 BC eclipses were studied by the

Chinese, who recorded them and predicted subsequent events. The Greeks also studied these phenomena

from around 600 BC. It was a Greek, Theophrastus, a pupil of Aristotle, who observed sunspots with the

naked eye in 350 BC. Sunspots were then systematically observed by the Chinese from 23 BC right through

to the Middle Ages. In the West Galileo was among the first to have observed sunspots, using the newly

invented telescope in the early 1600s. In 1666 the law of gravitation was devised by Newton, who then

applied it to the motion of the planets around the Sun. The theory that the planets revolve around the Sun

in concentric circles had first been put forward by Copernicus in 1530.

The Sun is our closest star at a distance of approximately 93 million miles, or 150 million kilometres,

from the Earth. This distance is given the name of one astronomical unit, or 1 AU, and was given correctly

by Euler in 1770. It takes 8 minutes for light from the Sun to traverse this distance to the Earth. The age of

the Sun is about 4.5 billion years old, it has a massM⊙ = 1.99× 1030 kg and radiusR⊙ = 6.96× 108 m.

These values are 330 000 and 109 times larger than the Earth’smass and radius respectively. At a value

of 1.4 × 103 kg m−3 the Sun’s mean density is roughly equivalent to the mean density of the Earth. The

surface pressure, however, is much smaller - only 0.2 of the Earth’s pressure at sea level. The gravity at

the surface of the Sun,g⊙ = 274 m s−2, is 27 times that of the Earth. These facts may be found in Priest

(1982), Golub and Pasachoff (2001), Lang (2001) and Goedbloed and Poedts (2004) for example, and are

summarised in Section 1.1.4.

The Sun is made up of a giant ball of plasma. In fact most matterin the Universe exists in a plasma state;

the Earth and its lower atmosphere is one exception. A plasmais a gas in which many of the electrons are no

longer bound to the nuclei. There are enough of these free charged particles in a plasma that the dynamics

are dominated by electromagnetic forces (Boyd and Sanderson, 2003). This is true of the Sun where much

of the observed structure is due to the presence of the magnetic field. The magnetic field influences the

plasma in many ways. It can exert a force which may support prominence material against gravity or propel

1



1.1 The Sun 2

Figure 1.1: This cartoon shows the many layers of the Sun fromthe core, through the radiative zone to the
convective zone, and out into the atmosphere. Some of the features which may be observed at different
heights in the atmosphere are also shown.
Credit: SOHO (ESA & NASA).

material from the Sun at high speeds, for example. It may store energy; this could provide a source of

heating or be released explosively as a solar flare. The magnetic field also provides thermal insulation

allowing cool plasma to exist alongside hotter material,i.e. in prominences or cool loop cores. The plasma

in the Sun is composed of approximately 90% hydrogen, 10% helium and 0.1% carbon, nitrogen, oxygen

and heavier elements (iron, for example, is responsible formuch of the coronal emissions) held together

and compressed under its own gravitational attraction.

Many distinct regions are present in the Sun, as shown in Figure 1.1. The interior of the Sun is made

up of the core, the radiative zone, and the convection zone; the latter two layers named after the mode of

energy transport present. Then moving up into the atmosphere, where the magnetic field is dominant, there

is the photosphere, the chromosphere and the corona, which extends out to the Earth and beyond. We now

go on to describe the processes and features that are presentin each of these layers.

1.1.1 Solar Interior

At the centre of the Sun lies the core which extends out to about 0.25 R⊙. The temperature of1.6 × 107 K

and density of1.6 × 105 kg m−3 are high enough for thermonuclear reactions to take place. This involves

the fusion of hydrogen into helium, and the energy produced is the source of the Sun’s luminosity and all of

the physics of the outer layers. Most of the energy passes outinto space; although the photons are absorbed

and re-emitted so many times that it takes them107 years to travel from the core to the surface (Lang,

2001). The collisions during this process increase the wavelength from gamma rays in the core to visible
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Figure 1.2: This image taken by Hinode’s Solar Optical Telescope shows the solar surface. Energy is
transported to the solar surface by convection and it is these motions that make the granular structure seen
at the surface. The lighter areas are where plasma is rising from below and the darker lanes show where it
sinks back downwards.
Credit: Hinode JAXA/NASA/PPARC.

light at the solar surface.

The radiative zone extends out to0.7 R⊙ and the temperature drops to approximately5 × 105 K at

this point. Beyond this radius electrons recombining with other particles allow photons to be absorbed

more easily, decreasing the radiative conductivity and increasing the opacity. This causes an increase in the

temperature gradient which becomes so large that the convective instability sets in. This marks the start of

the convection zone where turbulent motions are dominant through to the lower photosphere. At this point

the opacity decreases and the material becomes convectively stable again. Figure 1.2 shows the photosphere

where the top of these convection cells can be seen. The brighter centres mark the upward-flowing, hotter

material and the dark boundaries are where the cooler material is descending. These motions are highly

dynamic and granular cells have a typical lifetime of 10 minutes.

1.1.2 Solar Atmosphere

The solar atmosphere is characterised by its magnetic nature. Its lowest layer is the photosphere. Across

this layer the material changes from being completely opaque to radiation to being transparent, allowing

energy to escape into space. This is the visible surface of the Sun as it emits photons in the visible spectrum.

This layer is very thin, with a thickness of about 500 km. As mentioned above and shown in Figure 1.2, the
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Figure 1.3: The changing temperature from the solar surfaceout into the corona. A minimum of about
4300 K is reached in the photosphere. The temperature then rises to about 20 000 K at the top of the
chromosphere, before surging to over a million degrees in the corona.
Credit: MSU.

surface of the photosphere is covered by the top of the granular cells which extend up from the convection

zone. There are also larger cells, called supergranulationcells, which are approximately 30 000 km across

and have a lifetime of 1 – 2 days. As the material flows upwards in the centre of the cells and outwards

towards the boundaries it drags the magnetic field with it. Thus the magnetic field is weak at the centre of

the supergranule cells and is concentrated at the boundaries.

The photospheric magnetic field is made up of different regions. In addition to the supergranulation

fields there are also sunspots (as in Figure 1.6), plage regions, large scale unipolar areas, and ephemeral

regions. In ephemeral regions numerous tiny bipoles are present giving a salt and pepper effect on solar

magnetograms. These newly emerging regions of magnetic fluxlast for about four to six hours on average.

As suggested by the name large scale unipolar areas contain elements of predominantly one polarity. These

can extend over hundreds of kilometres in both longitude andlatitude and are remarkably long lived, with

a lifetime of a year or more. The polar field is believed to lie above these unipolar regions. Next there

are sunspots where the magnetic field is highly concentrated. These are examined in more detail in Sec-

tion 1.1.3. There are then the plage regions which are made upof the part of an active region found outside

of sunspots, where the mean magnetic field has values of a few hundred gauss.

The temperature in the photosphere falls to a minimum of 4300K where it unexpectedly begins to

rise again, marking the boundary between the photosphere and the chromosphere. The temperature rises

monotonically in the chromosphere with rapid increases at the boundary between the photosphere and

chromosphere, and again at the transition region between the chromosphere and the corona. This dramatic

change in temperature is depicted in Figure 1.3. The height at which these temperature gradients lie is

highly variable. The chromosphere may be viewed in Hα which shows up the network of supergranulation

boundaries. The chromosphere may also be observed at the limb of the Sun as plasma jets known as

spicules.
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Figure 1.4:Left: The solar corona viewed from the top of Mauna Kea, Hawaii during a total solar eclipse in
1991. The corona can be seen streaming out as the solar wind from the coronal holes, with helmet streamers
on either side.
Credit: NASA Astronomy Picture of the Day Collection. HAO & NCAR.
Right: The solar corona as viewed by the LASCO C2 coronagraph on board SOHO on 2 June 1998 at
13:31 UT. In this image a bright CME is present with an enormous erupting prominence.
Credit: Courtesy of SOHO/LASCO consortium. SOHO is a project of international cooperation between
ESA and NASA.

The solar corona extends out from the top of the transition region where the temperature jumps to 1 –

2 million degrees. The question of how the corona is heated isone of the biggest mysteries in solar physics.

Some of the proposed heating mechanisms suggest that the corona is heated by reconnection (Sweet, 1958;

Parker, 1963; Priest and Forbes, 1986) causing flares which transport energy out through the corona. Others

suggest that waves are the dominant heating mechanism; for example, by the dissipation of shear Alfvén

waves (Heyvaerts and Priest, 1983) or by the damping of slow magnetoacoustic waves or high-frequency

fast magnetoacoustic waves (Porter et al., 1994). Despite many years of research on this topic the true

cause of coronal heating is still under debate. In the outer corona the temperature slowly falls as the corona

expands out as the solar wind. This is also true of the densitywhich is of the order1014 m−3 in quiet

regions, but between 5 – 20 times larger within coronal loops.

The corona only used to be visible as a faint halo during a solar eclipse (left-hand image, Figure 1.4)

as it is normally masked by the brightness of the photospherewhich is a million times brighter. But with

the invention of the coronagraph by Lyot at the Pic du Midi Observatory in 1930, the corona could be

viewed at any time. The coronagraph is a telescope which eliminates the glare of the photosphere with an

occulting disc, illustrated in the right-hand image of Figure 1.4. The corona may also be viewed in soft

X-rays as it emits thermally at this wavelength; any contribution from the lower atmosphere is negligible.

The shape of the corona varies greatly during the solar cycle. During solar maximum streamers extend out

in all directions, whereas during minimum these tend to be confined to the equatorial regions with polar

plumes fanning out from the poles.

Coronal streamers are roughly radial features which extendfrom a height of 0.5 – 1 R⊙ to 10 R⊙ and

have a density enhancement of between 3 and 10 times that of the surrounding plasma. They are named
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Figure 1.5: An active region seen by the satellite TRACE in the 171Å bandpass on 19 May 1998. The
image shows coronal loops connecting two active regions, which show up due to the plasma lying along
the magnetic field lines.
Credit: The Transition and Coronal Region Explorer, TRACE,is a mission of the Stanford-Lockheed In-
stitute for Space Research (a joint program of the Lockheed-Martin Technology Centre’s Solar and As-
trophysics Laboratory and Stanford’s Solar Observatory’sGroup) and part of the NASA Small Explorer
Program.

depending on the type of structure which they lie above; helmet streamers lie above prominences and active

region streamers above active regions. A streamer consistsof an arcade of closed field lines surrounded by

a blade of open field lines. Polar plumes are ray-like structures found near the poles and in coronal holes.

These are especially noticeable at solar minimum.

There are two distinct types of region in the corona (Aschwanden, 2004). Where the field lines are

predominantly open the corona appears dark; these regions are known as coronal holes. They have a density

3 times lower than the background corona and are also at a lower temperature. The corona continually

expands outwards from these regions giving the solar wind (Parker, 1958). Most of this outflow comes

from the coronal holes, especially those at the poles, but itmay also originate from areas of open field

above active regions. The flow speed increases as the solar wind flows out from the corona reaching speeds

of 400 – 800 km s−1 near the Earth. The high speed streams tend to originate fromcoronal holes and

are more uniform than the slower streams which come from openfields above active regions. Where the

magnetic field is mainly closed many coronal loops can be observed, as in Figure 1.5. The complex structure

of these features is created by the magnetic field. In fact coronal loops are made up of plasma outlining

the magnetic field lines. There are numerous types of coronalloop. Between active regions (described in

Section 1.1.3) interconnecting loops are found, these may be up to 700 000 km long and tend to be rooted

in strong magnetic field at the edges of active regions. Quietregion loops do not connect active regions,

and are much cooler at a temperature of 1.5 – 2.1×106 K compared to 2 – 3×106 K. Loops may also be



1.1 The Sun 7

Figure 1.6: This image of a sunspot group was taken by the Swedish 1 m Solar Telescope on the
15 July 2002. The SST is the largest optical solar telescope in Europe and can observe details as small
as 70 km on the solar surface. In this image we can see the tops of the granular cells that cover the photo-
sphere and a sunspot group, in which the dark umbra and surrounding penumbra are clearly visible.
Credit: G̈oran Scharmer, ISP. Image processing: Mats Löfdahl, ISP; Royal Swedish Academy of Sciences.

found within active regions; these tend to be smaller with lengths from tens to hundreds of thousands of

kilometres and a wide range of different temperatures.

1.1.3 Solar Features

There are many other features that exist on the Sun and a selection are described here. All of these features

are different ways that the Sun’s magnetic field influences the solar plasma. Active regions typically consist

of a pair of sunspots appearing within±30◦ of the equator connected by a system of loops which expand

out into the corona. After a few days an active region can be seen with a bright Hα plage, below this will

lie the sunspot group surrounded by photospheric faculae and above there will be an X-ray enhancement.

It takes 10 to 15 days for the maximum activity to be reached, but the decay is much slower and is marked

by the dispersal of magnetic flux until the active region eventually disappears.

Sunspots appear as dark regions in the photosphere because they are cooler than the surrounding plasma.

The observed light comes from a greater depth because the sunspot is more transparent than the surrounding

plasma. In November and December 1769, whilst observing a large sunspot, Wilson found that a sunspot

is a saucer-like depression extending 500 to 700 km below thephotosphere (Wilson and Maskelyne, 1774);
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Figure 1.7: The changing Sun from solar maximum to solar minimum. These X-ray images of the solar
corona were taken by Yohkoh at 120 day increments between 1991 and 1995. As the solar cycle wanes
from maximum to minimum we can see the corona change from having a complex structure to a more
simple configuration with an overall decrease in brightnessby 100 times.
Credit: G.L. Slater and G.A. Linford. The solar X-ray imagesare taken from the Yohkoh mission of ISAS,
Japan. The X-ray telescope was prepared by the Lockheed PaloAlto Research Laboratory, the National
Astronomical Observatory of Japan, and the University of Tokyo with the support of NASA and ISAS.

this is known as the Wilson effect. Most sunspots will disappear within a few days, but larger sunspots may

last much longer decaying over a period of a few months (Bray and Loughhead, 1964). A nice example of

a sunspot is shown in Figure 1.6. The dark central part is known as the umbra and has typical sizes ranging

from 10 000 – 20 000 km. The magnetic field in the umbra has a strength of 2 000 – 3 000 G and the field

lines are vertical in the centre and begin to fan outwards towards the penumbra. The penumbra is the region

surrounding the umbra consisting of light and dark radial filaments (Muller, 1973). These take the form of

a comb of vertical and horizontal magnetic field lines respectively. Radial motions in these filaments were

discovered by Evershed (1909). There is a continuous outward flow along the dark filaments with speeds of

6 to 7 km s−1. A slower inflow is also present in the bright penumbral filaments. Higher in the atmosphere

the Evershed outflow slows until it reverses direction in thechromosphere.

As mentioned previously sunspots appear within a belt surrounding the equator. The average latitude at

which they appear depends on the solar cycle. Early in the cycle sunspots emerge at higher latitudes and

as the cycle progresses this emergence latitude decreases.The cycle has an approximate 11 year period

discovered by Schwabe (1843) through observations of sunspots. The solar cycle is variable; the rise from

maximum is generally steeper than the subsequent decline, and sometimes it may disappear altogether.

This occurred in 1645, a time known as the Maunder Minimum, when no sunspots were observed for

70 years. Sunspots are governed by certain rules. Sunspot groups are tilted with the leading spot lying

closer to the equator than the following spots (Hale et al., 1919). During the solar cycle the polarity of all

leading sunspots in the northern hemisphere is the same. Those in the southern hemisphere will have the

opposite polarity to those in the north. These polarities will reverse at the onset of the new solar cycle (Hale
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and Nicholson, 1925). The Sun thus takes two cycles to returnto the same magnetic state; this 22 year

periodicity is known as the Hale Cycle. The dramatic change in the Sun between solar maximum and

minimum is demonstrated by Figure 1.7 where a huge decrease in activity is apparent.

Other phenomena that exist on the Sun include solar prominences. These are large, cool and dense

structures which are located in the solar corona. Their temperature is 100 times lower than coronal values

and their density between 100 and 1000 times greater (Tandberg-Hanssen, 1974). Prominences appear as

bright structures on the limb of the Sun, as shown in Figure 1.8. Against the disk prominences appear as

thin, dark ribbons and are referred to as filaments. There aretwo main types of prominence: quiescent and

active prominences. Quiescent prominences have a magneticfield of strength of 5 – 10 G which makes a

small angle to their long axis. Their active equivalents areabout 100 G with the field approximately aligned

with the prominence. Quiescent prominences are highly stable and may last for many months. They start

out along a polarity inversion line, perhaps between activeregions or at the edge of an active region. As

the active region disperses the prominence will grow longerand thicker, all the while moving polewards.

A typical quiescent prominence may have a length of 200 000 km, a height of 50 000 km, and a width

of 6 000 km. Active region prominences tend to be three or fourtimes smaller than this and as suggested

by the name are located within active regions. These are moredynamic than the quiescent prominences,

lasting only minutes or hours, and when they erupt are often associated with flares.

Both active and quiescent prominences may exhibit large-scale motions. The prominence can become

lighter or darker (depending on whether it is viewed on the limb or against the disk) and grow larger. This

behaviour may simply fade away or it can lead to an eruption. In this case the prominence will ascend

and eventually disappear, with some material escaping fromthe Sun and the rest descending into the chro-

mosphere. The cause of these eruptions is unknown, but is sometimes associated with a disturbance from

an emerging flux region or a solar flare. A solar flare consists of a rapid brightening in Hα accompanied

by a simultaneous ejection of high energy particles and plasma into the solar wind. There are two main

stages to this process: the flash phase when the increase in intensity takes place (lasting 5 minutes), and the

main phase during which this intensity slowly declines overabout an hour. The energy released by these

solar flares can heat overlying coronal loops to tens of millions of degrees. Although this will contribute to

coronal heating, it is not the only factor.

1.1.4 Solar Facts

Here we summarise some general properties of the Sun.

Age 4.5 × 109 years,
Mass M⊙ = 1.99 × 1030 kg,
Radius R⊙ = 696 Mm,
Mean Density 1.4 × 103 kg m−3,
Mean Distance from Earth 1 AU = 1.5 × 1011 m = 215R⊙,
Surface Gravity g⊙ = 274 m s−2,
Equatorial Rotation Period 26 days,
Effective Temperature 5785 K.

Table 1.1: Solar facts (Priest, 1982).
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Figure 1.8: This image was taken by SOHO’s EIT instrument in the 304Å passband on 5 December 1998.
It shows the upper chromosphere at a temperature of 60 000 K and some elongated prominences may be
seen in the upper left-hand corner.
Credit: Courtesy of SOHO/EIT consortium. SOHO is a project of international cooperation between ESA
and NASA.
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1.2 MHD Equations

The Magnetohydrodynamic (MHD) equations are used to model the Sun, where the ionised gas is treated

as a continuous plasma. The electric and magnetic fields are determined by Maxwell’s equations, which

combined with Ohm’s Law and the equations of fluid mechanics describe the plasma behaviour. These

equations may be derived from the Boltzmann equations for electrons and protons by taking moments as

described in Boyd and Sanderson (1969). The equations of continuity, momentum and energy for each

species are found from the zeroth, first and second velocity moments respectively. However, we shall start

with the equations in a single fluid format (Priest, 1982).

1.2.1 Maxwell’s Equations

Maxwell’s equations describe how the magnetic field (B) and the electric field (E) vary due to the presence

of electric currents (j) and the density of charges (ρc).

∇× B = µj +
1

c2
∂E

∂t
, (1.1)

∇ · B = 0, (1.2)

∇× E = −∂B
∂t
, (1.3)

∇ · E =
ρc
ǫ
, (1.4)

where for a vacuum or a low-density plasma

j = σ (E + v × B) . (1.5)

The speed of light in a vacuum is given byc = (µ0ǫ0)
−1/2 whereµ0 = 4π × 10−7 H m−1 andǫ0 ≈

8.854 × 10−12 F m−1 are the vacuum values of the magnetic permeability (µ) and the permittivity of free

space (ǫ), andσ is the electrical conductivity.

Equation (1.1) is known as Ampére’s Law and states that magnetic fields may be produced by electric

currents or time-varying electric fields, Equation (1.2) isthe Solenoidal Condition which implies that there

are no magnetic monopoles, Equation (1.3) is Faraday’s Law of Induction and Equation (1.4) is Gauss’s

Law which states that charge is conserved. Equations (1.3) and (1.4) also imply that either time-varying

magnetic fields or electric charges may give rise to an electric field. Equation (1.5) is Ohm’s Law. The

right-hand side of Equation (1.4) may be set to zero if the plasma is assumed to be quasi-neutral, so

∇ · E = 0. (1.6)

This is not generally used in MHD as∇ · E can be found by taking the divergence of Ohm’s Law (1.5).
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If we carry out a dimensional analysis on Equations (1.1) – (1.4) wherev0 = l0/t0 is a characteristic

plasma speed, withl0 andt0 giving a typical lengthscale and timescale, then Faraday’sLaw (1.3) suggests

E0

l0
≈ B0

t0
, (1.7)

whereE0 andB0 are typical values ofE andB. Now considering Amṕere’s Law (1.1) the final term may

be approximated as

E0

c2t0
≈ B0l0

c2t20
=
v2
0

c2
B0

l0
. (1.8)

Since one of the fundamental assumptions of MHD states that motions are non-relativistic, sov0 << c,

this term may then be neglected in comparison with the left-hand side of Amṕere’s Law to give

j =
1

µ
(∇× B) . (1.9)

N.B.It is possible to use relativistic MHD but it is not considered here.

In solar MHD the primary variables are generally consideredto bev andB. We eliminateE andj by

combining Equations (1.9), (1.3) and (1.5)

∂B

∂t
= ∇× (v × B) − η∇× (∇× B) , (1.10)

where we have assumed that the magnetic diffusivityη = 1/ (µσ) is uniform. This is the Induction equa-

tion. We may then use the vector identity

∇× (∇× B) = ∇ (∇ · B) − (∇ · ∇)B = −∇2B, (1.11)

to find

∂B

∂t
= ∇× (v × B) + η∇2B, (1.12)

which is the form of the Induction equation we use.

Thus, if v is known we may findB subject to Equation (1.2). It is worth noting that if we take the

divergence of Equation (1.10) we obtain

∂

∂t
(∇ · B) = 0, (1.13)

since the divergence of a curl is automatically zero. Thus ifEquation (1.2) is satisfied initially it will remain

true for all time. The current density and the electric field follow from Ampére’s Law

j =
1

µ
(∇× B) , (1.14)
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and Ohm’s Law

E = −v × B +
j

σ
. (1.15)

If we take a closer look at the MHD Induction equation (1.12),then we may see that the first term on

the right-hand side represents changes ofB in time due to advective motions and the second term due to

diffusion. Taking the ratio of these terms we obtain a dimensionless parameter known as the magnetic

Reynolds number

Rm =
l0v0
η
. (1.16)

If Rm << 1 then the advective term may be neglected in comparison with the diffusive term and the

Induction equation becomes

∂B

∂t
= η∇2B. (1.17)

This has the form of a simple diffusion equation, and describes how the magnetic field may slip through the

plasma. This occurs only for some very small-scale phenomena in the solar atmosphere such as thin current

sheets. IfRm >> 1, as is the case for the majority of the solar atmosphere, thenthe induction equation

may be approximated by

∂B

∂t
= ∇× (v × B) . (1.18)

In this limit Alfv én’s frozen flux theorem applies (Alfvén, 1943) which tells us that:In a perfectly conduct-

ing fluid (Rm → ∞), magnetic field lines move with the fluid: the field lines are ‘frozen’ into the plasma.

A textbook version of this proof is given in Priest (1982). Weassume that we are working with a perfectly

conducting fluid throughout.

1.2.2 Equations of Fluid Mechanics

The velocityv, the gas densityρ and the pressurep evolve according to the equations of fluid mechanics.

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p+ ρg + ν∇2v, (1.19)

∂ρ

∂t
+ ∇ · (ρv) = 0, (1.20)

p = Rρ
T

µ̃
, (1.21)

where|g| = 274 m s−2 is the surface gravitational acceleration,ν is the coefficient of kinematic viscosity,

R is the universal gas constant, andµ̃ is the mean molecular weight (this takes the value 0.5 in a fully ionised

hydrogen plasma, and 0.6 in the solar corona due to the contribution from helium ions). Equation (1.19)

is known as the Equation of Motion, Equation (1.20) is the Continuity Equation and Equation (1.21) is
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the Ideal Gas Law which is a good approximation for high temperature, low density gases. We consider

viscosity to be negligible and this term is therefore neglected from the Equation of Motion.

Because we are dealing with an ionised plasma an additional magnetic forcej×B per unit volume will

be experienced. This is known as the Lorenz Force. The Equation of Motion (1.19) thus becomes

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p+ j × B + ρg. (1.22)

Now the Lorenz Force may be written

j × B =
1

µ
(∇× B) × B, (1.23)

using the triple vector product this reduces to

j × B =
1

µ
(B · ∇)B −∇

(
B2

2µ

)
. (1.24)

The first term in this equation represents a magnetic tensionacting parallel to the magnetic field with

magnitudeB2/µ. This will only have an effect when the field lines are curved.The second term gives a

magnetic pressure force when the magnetic field varies with position. In contrast to the magnetic tension

force this acts in all directions.

To complete this set of equations we also require an energy equation.

ργ

γ − 1

D

Dt

(
p

ργ

)
= −L, (1.25)

whereγ is the ratio of specific heats (generallyγ = 5/3 in the corona) andL is the energy loss function

which represents the net effect of all sinks and sources of energy. We consider an adiabatic energy equation

so that the loss function vanishes,i.e.L = 0, as the effects of thermal conduction, radiative cooling and

ohmic heating are neglected. This has the consequence that entropy (S = Cv log (p/ργ) + const, where

Cv is the specific heat at a constant volume) is conserved. The Energy Equation is then

D

Dt

(
p

ργ

)
= 0, (1.26)

or alternatively

∂p

∂t
+ (v · ∇) p =

γp

ρ

(
∂ρ

∂t
+ (v · ∇) ρ

)
= −γp (∇ · v) . (1.27)
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1.2.3 Summary of MHD Equations and Assumptions

The fundamental MHD equations we use throughout this thesisare then:

The Equation of Mass Continuity

∂ρ

∂t
+ ∇ · (ρv) = 0. (1.28)

The Equation of Motion

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p+ j × B + ρg. (1.29)

The Induction Equation

∂B

∂t
= ∇× (v × B) . (1.30)

The Adiabatic Energy Equation

∂p

∂t
+ (v · ∇) p =

γp

ρ

(
∂ρ

∂t
+ (v · ∇) ρ

)
. (1.31)

The Ideal Gas Law

p = Rρ
T

µ̃
. (1.32)

These equations are generally coupled together, and can be solved to determinev, B, p, ρ andT . Addi-

tionally, the secondary variablesj andE may be calculated from Ampére’s Law

j =
1

µ
(∇× B) , (1.33)

and Ohm’s Law

E = −v × B +
j

σ
. (1.34)

Finally B must also satisfy the Solenoidal Condition

∇ · B = 0. (1.35)

In this form we have already assumed that viscous and diffusive terms are negligible, and variations inp, ρ

andT take place on a timescale much smaller than that of radiation, conduction or heating.

More generally the MHD equations must satisfy the followingassumptions (Priest, 1982; Boyd and

Sanderson, 1969, 2003). The plasma is assumed to be collisional which means it may be treated as a

continuum. This is valid provided that the collision timescale (τc) is very much shorter than the typical

plasma timescale (t0), τc << t0. This allows the particle distribution function to relax toa Maxwellian. It is

also required that the mean free path of the ions and electrons (λc) is very small compared to hydrodynamic
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lengthscalesλc << l0, and that the ion Larmor radius (rL) is very much smaller than the mean free

pathrL << λc. This means that the gyro-motions of particles may be neglected. In the solar corona a

magnetic field ofB = 10 G, temperatureT = 106 K, and densityn = 1015 m−3 give a Larmor radius

rL = 9.47 × 103 m, a collision timeτc = 0.836 s, and a mean free pathλc = 7.6 × 104 m. The mean

free path will increase for higher temperature, lower density plasmas. Taking the coronal scale height as a

typical lengthscalel0 = 60 Mm, and a typical timescale for wave motionst0 = 60 s the above constraints

are satisfied. The plasma is also assumed to satisfy the condition of quasi-neutrality,ni − ne << n, which

states that the number density of the ions (ni) minus that of the electrons (ne) is very much smaller than the

total number density (n). In other words the number of ions and electrons is approximately equal. Finally

it is assumed that the plasma motions are non-relativistic,i.e. the typical plasma velocity is much smaller

than the speed of lightv0 << c.

1.3 MHD Waves

The magnetised plasma of the solar atmosphere may support a variety of waves. As an analogy for this we

investigate the simple example of a wave propagating along astring, and then examine the complexities

added by introducing a magnetic field.

1.3.1 General Wave Properties

If we consider perturbing a one-dimensional string from itsequilibrium we would expect to see a transverse

wave, either standing or propagating along the string. The behaviour of this wave would be described by

the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
, (1.36)

where the wave speed is given by

c =

√
Tension
Density

, (1.37)

andx andy are the horizontal and vertical direction andt is the time.

We may then take Fourier components by setting

y = Aei(kx−ωt), (1.38)

wherek is the wavenumber andω is the frequency of the disturbance. These contain information about

the wave properties as the wavelength is given byλ = 2π/k and the period is2π/ω. Substituting Equa-

tion (1.38) into Equation (1.36) allows a dispersion relation to be found relatingω to k

ω2 = k2c2. (1.39)
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From the dispersion relation we may determine the phase speed

cph =
ω

k
, (1.40)

and the group velocity

cg =
dω

dk
. (1.41)

The phase speed is the speed at which a wave specified by a single wavenumber (or component of a wave

train) will travel in the direction of the wavenumberk, whereas the group velocity tells us the speed and

direction of a group or packet of waves which may have a range of wavenumbers. The phase and group

velocities are generally different and it is at the group velocity that energy is transmitted. For this problem

it turns out that the phase speed and group velocity are the same with a value of±c. We now return to solar

applications, beginning with the MHD equations.

1.3.2 Equilibrium

Before considering small amplitude waves we must discuss the equilibrium. If we consider an equilibrium,

i.e. ∂/∂t = 0 andv = 0, then the MHD Equations (1.28) – (1.32) are greatly reduced leaving only the

equilibrium Equation of Motion and the Ideal Gas Law

∇p0 =
1

µ
(∇× B0) × B0 + ρ0g, (1.42)

p0 = Rρ0
T0

µ̃
, (1.43)

where the zero subscripts signify that we are dealing with equilibrium quantities, and gravity acts vertically

downwards, opposite to thez-axis. The MHD equations may then be linearised about the equilibrium.

1.3.3 Linearised MHD Equations

We may linearise Equations (1.28) – (1.35) for general equilibria (given by setting∂/∂t = 0 andv0 = 0)

by taking each term and adding a small perturbation (denotedby subscript 1)

B = B0 + B1 (x, z, t) , v = v1 (x, z, t) , p = p0 + p1 (x, z, t) ,

ρ = ρ0 + ρ1 (x, z, t) , T = T0 + T1 (x, z, t) , (1.44)

where the equilibrium quantities (denoted by subscript 0) may vary withx andz. For the sake of our

investigation all quantities are assumed to be invariant iny. These are then substituted back into the MHD

equations; to complete the linearisation products of perturbed quantities and squares are neglected. This

process yields the Linearised MHD equations:

∂ρ1

∂t
+ ∇ · (ρ0v1) = 0, (1.45)
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ρ0
∂v1

∂t
= −∇p1 +

1

µ
(∇× B1) × B0 +

1

µ
(∇× B0) × B1 + ρ1g, (1.46)

∂B1

∂t
= ∇× (v1 × B0) , (1.47)

∂p1

∂t
+ (v1 · ∇) p0 =

γp0

ρ0

(
∂ρ1

∂t
+ (v1 · ∇) ρ0

)
, (1.48)

p1

p0
=
ρ1

ρ0
+
T1

T0
, (1.49)

∇ · B1 = 0. (1.50)

Henceforth the subscripts on perturbed variables are dropped and it is assumed that we are working with

the Linearised MHD equations. Here the equations are in their most general form but they may be applied

to specific equilibria; say a constant, vertical backgroundmagnetic field directed along thez-axis.

B0 = (0, 0, B0) , v0 = 0. (1.51)

Applying the equilibrium values (1.51) to the Linearised MHD Equations (1.45) – (1.48) we obtain

∂ρ

∂t
+ ∇ · (ρ0v) = 0, (1.52)

ρ0
∂v

∂t
= −∇p+

1

µ
(∇× B) × B0 + ρg, (1.53)

∂B

∂t
= ∇× (v × B0) , (1.54)

∂p

∂t
= − (v · ∇) p0 − γp0 (∇ · v) . (1.55)

Equations (1.52) – (1.55) can be manipulated into a pair of wave equations. First we differentiate the Equa-

tion of Motion (1.53) with respect tot to give

ρ0
∂2v

∂t2
= −∇∂p

∂t
+

1

µ

(
∇× ∂B

∂t

)
× B0 +

∂ρ

∂t
g, (1.56)

we may then substitute for∂p/∂t and∂B/∂t from Equations (1.55) and (1.54) respectively to obtain

ρ0
∂2v

∂t2
= ∇ (v · ∇) p0 + γ∇ (p0 (∇ · v)) +

1

µ
(∇× (∇× (v × B0))) × B0 +

∂ρ

∂t
g. (1.57)

Finally we can substitute for∂ρ/∂t from the Mass Continuity Equation (1.52)

ρ0
∂2v

∂t2
= ∇ (v · ∇) p0 + γ∇ (p0 (∇ · v)) +

1

µ
(∇× (∇× (v × B0))) × B0 −∇ · (ρ0v)g. (1.58)

This is the general form of the wave equation.
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1.3.4 Sound Waves (ZeroB)

To obtain an equation for pure sound waves we must neglect both the magnetic field and the gravitational

acceleration. Taking the equilibrium pressure and densityto be constant the Linearised MHD equations

reduce to

∂ρ

∂t
+ ρ0 (∇ · v) = 0, (1.59)

ρ0
∂v

∂t
= −∇p, (1.60)

and the Energy Equation may be written

p = c2sρ, (1.61)

wherecs =
√
γp0/ρ0 is the sound speed. In the solar corona the sound speed will typically take a value of

approximately 150 km s−1.

We may then eliminatev andp to obtain a wave equation inρ. If we first differentiate Equation (1.59)

with respect to t,

∂2ρ

∂t2
= −ρ0

(
∇ · ∂v

∂t

)
, (1.62)

then substitute from Equations (1.60) and (1.61) we find the wave equation

∂2ρ

∂t2
= c2s∇2ρ. (1.63)

Taking the Fourier component

ρ = Aei(k·r−ωt), (1.64)

wherek = (kx, ky, kz) andr = (x, y, z) we obtain the dispersion relation

ω2 = k2c2s, (1.65)

wherek2 = k2
x + k2

y + k2
z . From this we can see that disturbances travel at the sound speedcs. This is a

purely acoustic wave which we can see is compressible in nature (∇ · v 6= 0) as it will cause compressions

and rarefactions in the plasma as it propagates.

1.3.5 Alfvén Waves (Zeroβ)

Remembering back to the Lorenz Force (1.24) there is a magnetic tension force. So if we consider the mag-

netic field lines to act like strings, then in analogy with Section 1.3.1 we expect to see waves propagating

transverse to the magnetic field. From Equation (1.37) we would then expect such disturbances to travel at
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a speed

vA =

√
B2

0/µ

ρ0
=

B0√
µρ0

. (1.66)

This is known as the Alfv́en speed and is named after Hannes Alfvén who first predicted the existence

of these waves in 1942. A typical value for the Alfvén speed in the solar corona is 1000 km s−1. The

dispersion equation for these waves can be derived as follows.

The equilibrium pressure is set to zero,p0 = 0, in order to avoid the complication of including sound

waves. Additionally we takeg = 0, a uniform magnetic fieldB0 = (0, 0, B0), and assume that there are

no variations in pressure or density. From the Continuity Equation (1.52) we have

∇ · v = 0, (1.67)

which means that the plasma is incompressible.

Applying the equilibrium conditions to the general wave equation (1.58) gives

ρ0
∂2v

∂t2
=

1

µ
[∇× (∇× (v × B0))] × B0. (1.68)

Taking the Fourier component

v = ṽei(k·r−ωt), (1.69)

the wave equation reduces to

ρ0ω
2v =

1

µ
[k × (k × (v × B0))] × B0. (1.70)

Note that we have∇ · v = 0 and from the above equationv · B0 = 0. This tells us that the wave motions

are perpendicular to both the direction of propagation and the equilibrium magnetic field, so Alfv́en waves

are transverse waves. Using vector identities we see that

ρ0ω
2v =

1

µ
(k · B0)

2
v, (1.71)

giving the dispersion relation

ω2 = k2
zv

2
A = k2v2

A cos2 θ, (1.72)

whereθ is the angle between the wave vector (k) and the magnetic field (B0) which is orientated parallel

to thez-axis. From this we may calculate the phase speed

cph = ±vA cos θ, (1.73)



1.3 MHD Waves 21

and the group velocity

cg = ±vAẑ. (1.74)

These are both shown on the polar plots in Figure 1.9. As we cansee Alfv́en waves cannot propagate across

the magnetic field lines and energy flows along the field at the Alfv én speed. We shall not discuss Alfvén

waves any further here as these are not studied in this thesis.

1.3.6 General Uniform Medium

Next we look at a uniform, isothermal medium by taking the equilibrium given by (1.51) with the additional

constraint of taking the gravitational acceleration to be zero.

B0 = (0, 0, B0) , v0 = 0, p0 = p0, ρ0 = ρ0, g = 0. (1.75)

Applying these equilibrium values (1.75) to the LinearisedMHD Equations (1.45) – (1.48) they become

∂ρ

∂t
+ ρ0 (∇ · v) = 0, (1.76)

ρ0
∂v

∂t
= −∇p+

1

µ
(∇× B) × B0, (1.77)

∂B

∂t
= ∇× (v × B0) , (1.78)

∂p

∂t
=
γp0

ρ0

∂ρ

∂t
. (1.79)

We may then follow the method used in Section 1.3.3 to obtain awave equation.

ρ0
∂2v

∂t2
= ρ0c

2
s∇ (∇ · v) +

1

µ
(∇× (∇× (v × B0))) × B0. (1.80)

As the magnetic field is only in thez-direction and the variables are all invariant iny, it is fairly easy to

show that

(∇× (∇× (v × B0))) × B0 = B2
0∇2vxx̂, (1.81)

and so we can separate Equation (1.58) into itsx andz components

∂2vx
∂t2

=
(
c2s + v2

A

) ∂2vx
∂x2

+ c2s
∂2vz
∂x∂z

+ v2
A

∂2vx
∂z2

, (1.82)

∂2vz
∂t2

= c2s

(
∂2vx
∂x∂z

+
∂2vz
∂z2

)
. (1.83)

The variablesvx andvz denote different components of the same wave mode in each equation.
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If we take Fourier components so that

vx (x, z, t) = vx0e
i(ωt+kxx+kzz), (1.84)

vz (x, z, t) = vz0e
i(ωt+kxx+kzz), (1.85)

Equations (1.82) and (1.83) reduce down to

(
ω2 −

(
c2s + v2

A

)
k2
x − v2

Ak
2
z

)
vx0 = c2skxkzvz0, (1.86)

(
ω2 − c2sk

2
z

)
vz0 = c2skxkzvx0. (1.87)

Equations (1.86) and (1.87) may then be combined to obtain the dispersion relation for magnetoacoustic

waves as discussed by Roberts (1985)

ω4 −
(
c2s + v2

A

)
k2ω2 + c2sv

2
Ak

2
zk

2 = 0, (1.88)

wherek =
√
k2
x + k2

z is the magnitude of the wave vectork = (kx, 0, kz). This is a quadratic inω2 and

has two solutions

ω2 =
k2

2

[(
c2s + v2

A

)
±
√

(c2s + v2
A)

2 − 4c2sv
2
A cos2 θ

]
, (1.89)

where the plus sign gives the higher frequency fast wave solution and the minus sign the lower frequency

slow wave. These wave modes are named fast and slow waves due to their relative speeds. These waves are

driven by both tension and pressure forces.

For the fast wave the phase speed is given by

ω

k
=

√
1

2

[
(c2s + v2

A) +

√
(c2s + v2

A)
2 − 4c2sv

2
A cos2 θ

]
. (1.90)

If θ = 0 then the phase speed depends on the relative sizes of the sound and Alfvén speeds.

ω

k
=

{
vA if cs < vA,

cs if cs > vA.
(1.91)

However, ifθ = π/2 then the phase speed takes only one value

ω

k
=
(
c2s + v2

A

)1/2
= cf , (1.92)

wherecf is the fast speed.
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The group velocity may be written in terms of its components
(
∂ω
∂kx

, 0, ∂ω∂kz

)

∂ω

∂kx
=

sin θ

(
c2s + v2

A +

h

(c2s+v2A)
2

−2c2sv
2

A cos2 θ
i

q

(c2s+v2
A)2

−4c2sv
2

A
cos2 θ

)

2

√
1
2

[
(c2s + v2

A) +

√
(c2s + v2

A)
2 − 4c2sv

2
A cos2 θ

] , (1.93)

∂ω

∂kz
=

cos θ

(
c2s + v2

A +

h

(c2s+v2A)2
−2c2sv

2

A sin2 θ−4c2sv
2

A cos2 θ
i

q

(c2s+v2
A)2

−4c2sv
2

A
cos2 θ

)

2

√
1
2

[
(c2s + v2

A) +

√
(c2s + v2

A)
2 − 4c2sv

2
A cos2 θ

] . (1.94)

Now, whenθ = 0 we have

∂ω

∂kx
= 0, (1.95)

∂ω

∂kz
=

{
vA if cs < vA,

cs if cs > vA.
(1.96)

If θ = π/2 the group speed is given by

∂ω

∂kx
= cf , (1.97)

∂ω

∂kz
= 0. (1.98)

These results are clearly depicted in Figure 1.9.

We may carry out a similar analysis for the slow wave. The phase speed is given by

ω

k
=

√
1

2

[
(c2s + v2

A) −
√

(c2s + v2
A)

2 − 4c2sv
2
A cos2 θ

]
. (1.99)

If θ = 0 then

ω

k
=

{
cs if cs < vA,

vA if cs > vA.
(1.100)

If θ = π/2 then

ω

k
= 0. (1.101)
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Figure 1.9:Left: The phase speeds for the Alfvén wave and the fast and slow magnetoacoustic waves.
Right: The group velocities for the Alfv́en wave and the fast and slow magnetoacoustic waves.
The top row havecs < vA, the middle rowcs = vA, and the bottom rowcs > vA. In all cases the magnetic
field is aligned with the vertical direction, the horizontalaxis gives thex-direction, and the vertical axis the
z-direction.
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The group velocity may again be given by its component parts;although this time we must take the

binomial expansion of the terms inside the larger square root

√
1

2

[
(c2s + v2

A) −
√

(c2s + v2
A)

2 − 4c2sv
2
A cos2 θ

]
≈ csvA cos θ

(c2s + v2
A)

1/2
, (1.102)

otherwise the solution cannot be evaluated in the limitθ → π/2.

So we obtain

∂ω

∂kx
= sin θ

√
1

2

[
(c2s + v2

A) −
√

(c2s + v2
A)

2 − 4c2sv
2
A cos2 θ

]
−

− sin 2θ
csvA

(
c2s + v2

A

)1/2

2

√
(c2s + v2

A)
2 − 4c2sv

2
A cos2 θ

, (1.103)

∂ω

∂kz
= cos θ

√
1

2

[
(c2s + v2

A) −
√

(c2s + v2
A)

2 − 4c2sv
2
A cos2 θ

]
+

+ sin2 θ
csvA

(
c2s + v2

A

)1/2
√

(c2s + v2
A)

2 − 4c2sv
2
A cos2 θ

. (1.104)

If θ = 0 then

∂ω

∂kx
= 0, (1.105)

∂ω

∂kz
=

{
cs if cs < vA,

vA if cs > vA.
(1.106)

If θ = π/2 then

∂ω

∂kx
= 0, (1.107)

∂ω

∂kz
=

csvA

(c2s + v2
A)

1/2
= cT , (1.108)

wherecT is the tube speed (see Roberts and Webb (1978)). The characteristic speeds are ordered such that

cT < cs, vA < cf .

We can see these results for the phase and group velocities ofthe various MHD modes in Figure 1.9.

From these plots it is clear that both the slow and Alfvén waves are unable to propagate across the magnetic

field. While the Alfv́en wave may only carry energy along the field, the group velocity plots show that for

the slow wave energy flow is confined to close to the magnetic field. In contrast, the fast wave is roughly

isotropic although it does travel slightly faster across the magnetic field.
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1.3.7 Acoustic-Gravity Case

A slightly more complicated case includes gravitational acceleration in the isothermal atmosphere, but the

magnetic field (B0) is taken to be zero and so the Alfvén speed is also zero. It can be seen from the

equilibrium that the pressure and density now vary withz

dp0

dz
= −ρ0g. (1.109)

This can be solved using the Ideal Gas Law (1.50) withT constant to give

p0 (z) = p0 (0) e−z/H , ρ0 (z) = ρ0 (0) e−z/H , (1.110)

whereH = p0/ (ρ0g) is the scale height. This tells us the typical scale over which gravity has a significant

effect. If the typical lengthscales in a problem are very much smaller than the scale height then gravity may

be neglected.

As in the uniform case we may substitute the equilibrium variables (1.110) into the Linearised MHD

equations to obtain

∂ρ

∂t
+ ∇ · (ρ0v) = 0, (1.111)

ρ0
∂v

∂t
= −∇p+ ρg, (1.112)

∂p

∂t
+ (v · ∇) p0 =

γp0

ρ0

(
∂ρ

∂t
+ (v · ∇) ρ0

)
. (1.113)

As before these equations may be combined to form a pair of wave equations:

∂2vx
∂t2

= c2s

(
∂2vx
∂x2

+
∂2vz
∂x∂z

)
− g

∂vz
∂x

, (1.114)

∂2vz
∂t2

= c2s

(
∂2vx
∂x∂z

+
∂2vz
∂z2

)
− (γ − 1) g

∂vx
∂x

− γg
∂vz
∂z

. (1.115)

Since the coefficients are constant in space we may repeat themethod used for the uniform case and take

Fourier components in Equations (1.114) and (1.115) to obtain

(
ω2 − c2sk

2
x

)
vx0 =

(
c2skxkz + ikxg

)
vz0, (1.116)

(
ω2 − c2sk

2
z − ikzγg

)
vz0 =

(
c2skxkz + ikx (γ − 1) g

)
vx0, (1.117)

which may then be combined to find the dispersion relation

ω4 −
(
c2sk

2 + ikzγg
)
ω2 + k2

x (γ − 1) g2 = 0. (1.118)
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As before we have a quadratic inω2, but if we wishω to be real we must allowkz to be imaginary.

Substitutingkz = kzr + ikzi the dispersion relation becomes

ω4 −
(
c2s
(
k2
x + k2

zr

)
− kzi

(
c2skzi + γg

)
+ i
(
2c2skzi + γg

)
kzr
)
ω2 + k2

x (γ − 1) g2 = 0. (1.119)

For this to be entirely real we must choose

kzi = − γg

2c2s
, (1.120)

and the dispersion relation takes the form

ω4 −
(
c2sk

2 +
γ2g2

4c2s

)
ω2 + k2

x (γ − 1) g2 = 0, (1.121)

where we have setk2 = k2
x+k2

zr. This is in agreement with the dispersion relation found in Roberts (1985)

although a slightly different technique has been used. Thismay be solved to give

ω2 =
1

2



(
c2sk

2 +
γ2g2

4c2s

)
±

√(
c2sk

2 +
γ2g2

4c2s

)2

− 4k2
x (γ − 1) g2


 . (1.122)

The plus and minus signs give solutions for the fast and slow acoustic-gravity waves respectively. As

g → 0 the plus root gives the sound wave,ω2 = k2c2s, and the negative root gives the buoyancy wave,

ω2 = N2k2
x/k

2, whereN = (γ − 1)1/2 g/cs is the Brunt-V̈ais̈alä frequency.

Note that by settingvA = 0 in the uniform case and neglecting gravity in the acoustic-gravity case,

Equations (1.82) and (1.83) and Equations (1.114) and (1.115) reduce down to the same pair of equations.

1.4 MHD Mode Conversion

MHD mode conversion in the solar atmosphere has been a problem of interest for many years; however,

it is still not well understood. The process involves the conversion of one wave mode into another as it

propagates through the mode-conversion region. This occurs where the sound and Alfvén speeds are of

equal magnitude, or equivalently where the plasmaβ (the ratio of gas pressure to magnetic pressure) is

approximately unity. Both of these descriptions are used toidentify where mode conversion occurs. Away

from this complex region (i.e. in the low-β plasma high in the atmosphere, and the high-β plasma low down

in the atmosphere) the fast and slow waves are effectively decoupled. When this is the case one mode will

behave like an acoustic wave and the other will display a strongly magnetic nature. A good understanding

of the mode-conversion process will be highly useful in manyareas of solar physics, for example, in the

chromospheric network and inter-network, in sunspot atmospheres, and in the vicinity of magnetic null

points. Although evidence of mode conversion has been observed by way of decreased wavelet durations

above the magnetic canopy, indicating a loss of wave energy (Bloomfield et al., 2006) most work in the

area has been done analytically or numerically.



1.4 MHD Mode Conversion 28

1.4.1 Analytical Studies

A full and detailed study of mode conversion was presented byStein (1971). In this model, gravity is

neglected and mode conversion occurs due to propagation across a density step. The reflection, transmission

and conversion coefficients were found for fast, slow and Alfvén waves using the dispersion relations

and boundary conditions. The different ways in which these modes are coupled to each other was then

described.

Zhugzhda and Dzhalilov wrote a series of papers through the late seventies to the eighties analytically

investigating mode conversion of magneto-acoustic-gravity waves. In this case mode conversion is a result

of the inclusion of gravitational stratification. These papers began by investigating wave propagation in

an isothermal atmosphere with a uniform, vertical magneticfield (Zhugzhda, 1979) where a solution was

found in terms of Hypergeometric2F3 functions, and the equivalent Meijer-G functions. An asymptotic

solution was also given in the limit of a weak field (i.e. a high-β plasma). This study was extended in

Zhugzhda and Dzhalilov (1981) where an asymptotic solutionwas found for the strong field (lowβ) limit.

With these solutions reflection, transmission and conversion coefficients were found for all wave modes.

It was also discovered that the extent of mode conversion is dependent on the inclination of the wavefront

to the magnetic field, often referred to as theattack angle. The authors then moved on to consider the

effect of tunnelling through the region in which the geometric-optics conditions are violated (Zhugzhda

and Dzhalilov, 1982a,b) again with transmission and conversion coefficients calculated. This work was

extended by Cally (2001) who noted that the Hypergeometric2F3 functions are much easier to work with

than the equivalent Meijer-G functions. Using this form an additional set of conversion coefficients was

found to those listed in Zhugzhda and Dzhalilov (1982a).

Having carried out a complete study with a vertical magneticfield Zhugzhda and Dzhalilov then relaxed

their model to include an oblique magnetic field (Zhugzhda and Dzhalilov, 1983, 1984a,b). In this case

propagation was assumed to be from high- to low-β plasma, representative of waves travelling upwards

from a sunspot atmosphere. Similarly to their previous papers, the solutions in terms of the Meijer-G

functions were used to find conversion coefficients. This theory was then used to model running penum-

bral waves (Zhugzhda and Dzhalilov, 1984c) finding that theyare the result of the conversion of trapped

5-minute waves from the convection zone in a near horizontalmagnetic field. The problem of a fully hori-

zontal magnetic field (Zhugzhda and Dzhalilov, 1986) was thelast to be investigated in this series of papers.

More recently, Zhugzhda has looked at a model consisting of four isothermal layers taking into account lin-

ear and nonlinear effects. It was found that the spectrum of oscillations seen in the chromosphere and

transition region of sunspot atmospheres is due to a combination of chromospheric resonance, the cutoff

frequency at the temperature minimum, and nonlinear antireflection of the sunspot atmosphere (Zhugzhda,

2007).

Another way of studying mode-conversion problems is through wave mechanical and ray tracing the-

ory. These methods have been utilised by Cally (2005, 2006) and Schunker and Cally (2006) to study the

propagation and transmission of acoustic fast waves as theypropagate up from the surface through active

regions. It was argued that the method of wave tracing is preferable to the WKB method in the case of

mode-conversion problems (Cally, 2005). Cally then went onto show that there is no reflection associ-
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ated with theequipartition depth, where the sound and Alfvén speeds are equal, and that transmission is

likely to be strong in regions of strong magnetic field but theamount of transmission will decrease with

decreasing frequency. This was extended in Cally (2006) where the effect of a strong magnetic field in

the conversion region was investigated for a two-dimensional adiabatic polytrope. The dispersion diagrams

showed two types of avoided crossing, which identify where conversion occurs; one at the equipartition

depth and another higher up occurring due to the acoustic cutoff frequency. It was noted that this split-

ting of the acoustic wave may cause defocusing of images, andshould thus be taken into account in both

time-distance helioseismology and acoustic holography. This theory was then applied to a more realistic

model of the solar atmosphere (Schunker and Cally, 2006). A two-dimensional version of the Model S

atmosphere, modified to include a magnetic field, was used to model an active region. The attack angle at

the equipartition depth was found to influence the transmission of acoustic waves into the atmosphere, with

a small range of fairly weak angles greatly enhancing conversion. It was suggested that this will affect the

acoustic signals transmitted up to observable heights in the atmosphere.

1.4.2 Numerical Investigations

The work mentioned previously was purely analytical, however many numerical studies have also been car-

ried out on this topic in various areas of solar physics. Cally and Bogdan (1997) investigated the interaction

of f - andp-modes within a vertical slab of sunspot strength. The simulations were run in a two-dimensional

geometry using a Lax-Wendroff style finite difference scheme. Strong evidence of mode conversion within

sunspot atmospheres was found, with bothf - andp-modes being converted into slow magnetoacoustic

gravity waves and carried away from the convection zone. Thep-modes were also seen to partially mix

with f -modes of similar frequency as they exit the magnetic flux concentration. Numerical modelling of

MHD mode conversion and refraction has also been carried outby Khomenko and Collados (2006). A

thick flux tube in two-and-a-half dimensions with the magnetic field inclined to the vertical was used as a

sunspot model. The modes seen were found to depend not only onthe sound and Alfv́en speeds being equal

but also on the inclination of the magnetic field,i.e. the attack angle, similar to Zhugzhda and Dzhalilov

(1981) and Schunker and Cally (2006). Above the region wherethe sound and Alfv́en speeds are equal the

fast waves were refracted back down towards the photosphere, whereas the slow waves were channelled

upwards along the magnetic field into the chromosphere.

Moving up in the atmosphere conversion has also been studiedin the chromospheric network and inter-

network. Rosenthal et al. (2002) solved the two-dimensional, nonlinear, compressible MHD equations

to study wave propagation in a gravitationally stratified atmosphere. Various magnetic structures were

considered. Magnetic fields that are significantly inclinedto the vertical were found to result in the total

internal reflection of waves at a surface highly variable with altitude. In near vertical magnetic fields the

waves were seen to continue upwards, guided by the field, but otherwise unaffected by it. This study was

continued by Bogdan et al. (2003) in which themagnetic canopy, defined as the area where the sound and

Alfv én speeds are of comparable magnitude, was found to be the region where mode conversion occurs. It

was concluded that the wave behaviour is complex and sensitive not only to the orientation of the magnetic

canopy but also to its location. Carlsson and Bogdan (2006) took this investigation up to three dimensions

simulating acoustic waves, generated by convective motions, as they pass through the magnetic canopy.
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Realistic configurations were used in which the wavelength of the waves is similar to the lengthscales of

the magnetic field. This system was found to be highly dependent on the attack angle. For an angle under

30◦ the fast wave was transmitted as a slow wave along the magnetic field lines. At larger angles the

majority of the fast wave was either refracted or totally internally reflected, causing complex interference

patterns between the upward and downward propagating waves. The complexity seen, even for this simple

configuration, suggests that more realistic models will be highly difficult to interpret.

MHD wave propagation in the vicinity of two-dimensional magnetic null points has been studied in

detail by McLaughlin and Hood (2004, 2005) and by Fruit and Craig (2006) who looked at Alfv́en wave

dissipation in the same topology. In moving from zero- to finite-β plasma it was found that mode conversion

is introduced into the problem (McLaughlin and Hood, 2006).The non-zero sound speed has no effect on

the Alfvén speed, and so the coupling takes place between the fast andslow magnetoacoustic modes. In

this case a fast wave was considered to be travelling throughlow-β plasma towards the null. As before

conversion occurs as the wave passes through the layer wherethe sound and Alfv́en speeds are equal. The

converted part of the wave continues through the null point as a high-β fast wave, and the transmitted part

is now a high-β slow wave which spreads out along the separatrices.

1.5 Outline of Thesis

This thesis aims to further the understanding of mode conversion in the solar corona. The focus is on

the conversion between slow and fast magnetoacoustic wavesin an MHD regime. In all of the research

chapters a combination of analytical and numerical techniques are used to investigate mode conversion;

these are outlined in Chapter 2. The analytical approximations described are the WKB method, Charpit’s

method, and a method developed specifically for mode conversion by Cairns and Lashmore-Davies (1983).

Section 2.3 gives an introduction to finite difference schemes, stability, and initial and boundary conditions.

Examples are then given for specific schemes including the MacCormack method which is used throughout

the thesis.

We begin our investigation of mode conversion with a simple model in Chapter 3. A one-dimensional

model is used with a vertical, background magnetic field in a gravitationally-stratified, isothermal atmo-

sphere. A slow magnetoacoustic wave is driven downwards passing from low- to high-β plasma triggering

mode conversion in the process. A range of analytical techniques is used to find the wave behaviour as

the wave propagates across the mode-conversion region. This allows coefficients to be calculated which

describe the proportion of the incident wave that is transmitted and converted. Coupled with the results of

the WKB method this gives a complete description of the wave behaviour across the domain. The analytical

results are supported by the numerical simulations.

In Chapter 4 the model described above is extended to allow for the inclusion of a non-isothermal tem-

perature profile. The temperature profile chosen has atanh profile. This is chosen to mimic the steep

temperature gradient which is found at the transition region. As before a slow wave is driven on the upper

boundary. Using the same analytical and numerical techniques as the previous chapter we investigate the

effect of this temperature profile, if any, on the mode-conversion process.
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A more complex topology is examined in Chapter 5 as the model is extended to two dimensions. A

radially-expanding magnetic field is used to represent a coronal hole. Due to the geometry of the model

spherical polar coordinates are used throughout this chapter. The investigation neglects gravitational effects.

A slow wave is driven on the lower boundary propagating upwards from low- to high-β plasma. The same

techniques are used as before to try and give a description ofthe wave behaviour as it propagates across the

mode-conversion region.

In Chapter 6 we investigate mode conversion around a two-dimensional magnetic null point. As before

we examine propagation from low- to high-β plasma by driving both a slow wave and a fast wave towards

the null point. As has been done throughout the thesis a combination of analytical and numerical techniques

are used to describe the mode conversion.

Finally we summarise our findings in Chapter 7, looking at howmode conversion is affected by various

magnetic topologies and other such complexities. Possibleextensions of the work are also considered.



Chapter 2

Analytical Approximations and

Numerical Techniques

2.1 Introduction

The MHD equations are highly complex and it is not possible tosolve them exactly, except in very special

cases. This is true even after they have been simplified by neglecting more complex terms and non-linear

effects. This is a common problem in applied mathematics. Inorder to progress approximations may be

used, giving an approximate solution to the problem. These approximations may be either analytical, using

known analytical functions, or numerical, using finite difference schemes to solve the differential equations

for example. We use both analytical and numerical techniques.

2.2 Analytical Approximations

A number of analytical approximations are employed in this thesis. We go over some of these in detail

here showing how they work in general terms. We begin by goingover the WKB method and Charpit’s

equations. Then we look at a method developed by Cairns and Lashmore-Davies (1983) specifically for

mode-conversion problems.

2.2.1 WKB Method

The WKB method is named after Wentzel, Kramers and Brillouinwho popularised it in the field of quantum

mechanics around 1926. The theory has actually been around for much longer and was developed by

Liouville (1837), Green (1837), Rayleigh (1912) and Jeffreys (1924). The WKB method is useful for

solving problems which cannot be solved by matched asymptotic expansions or similar methods because

they are globally singular. A good description of this technique is given in White (2005) and Nayfeh (1981),

for example.

Consider a second-order, linear, ordinary differential equation with a large parameterλ

d2y

dx2
+ λ2G0 (x) y = 0, (2.1)

32
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for λ ≡ 1/
√
ǫ→ ∞ asǫ→ 0. Asλ→ ∞ the equation becomes

G0 (x) y = 0, (2.2)

which yields the trivial solution. This is why the equation cannot be solved using a series expansion.

Letting

y = eλY (x;λ), (2.3)

so

dy

dx
= λeλY

dY

dx
, (2.4)

and

d2y

dx2
= λ2eλY

(
dY

dx

)2

+ λeλY
d2Y

dx2
. (2.5)

Equation (2.1) thus becomes

1

λ

d2Y

dx2
+

(
dY

dx

)2

+G0 (x) = 0, (2.6)

asλ→ ∞.

We may then expand the new variable Y in inverse powers ofλ

Y = Y0 +
1

λ
Y1 + . . . , (2.7)

which is valid forλ−1 → 0. Substituting this expansion into Equation (2.6) gives

1

λ

{
d2Y0

dx2
+

1

λ

d2Y1

dx2
+ . . .

}
+

{(
dY0

dx

)2

+
2

λ

dY0

dx

dY1

dx
+ . . .

}
+G0 (x) = 0. (2.8)

To obtain a solution, we collect together powers ofλ−1 to give a series of differential equations. The

leading order terms give

(
dY0

dx

)2

+G0 (x) = 0, (2.9)

which can be solved to give

dY0

dx
=

{
±iG1/2

0 if G0 > 0,

± (−G0)
1/2 if G0 < 0.

(2.10)
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There are two possible solutions depending on whetherG0 is positive or negative. There are also two

possible solutions given by the plus and minus signs as we would expect for a second-order, linear differ-

ential equation. Integrating we find

Y0 =

{
±i
∫
G

1/2
0 dx if G0 > 0,

±
∫

(−G0)
1/2

dx if G0 < 0.
(2.11)

We may neglect constants of integration here as they would simply modify the arbitrary constants later on.

If convenient, it is also possible to include a constant in the limit of the integration without altering the final

solution.

To find the solution forY1 we turn to the first order equationO (1/λ)

d2Y0

dx2
+ 2

dY0

dx

dY1

dx
= 0, (2.12)

or

dY1

dx
= −d2Y0/dx

2

2dY0/dx
. (2.13)

Integrating

Y1 = −1

2
ln

{
dY0

dx

}
= ln

{(
dY0

dx

)−1/2
}
. (2.14)

Finally we can substitute from Equation (2.10) to give

Y1 =





ln
{
G

−1/4
0

}
if G0 > 0,

ln
{

(−G0)
−1/4

}
if G0 < 0.

(2.15)

To find further terms in the expansion we need only look at higher order terms.

So the WKB approximation to Equation 2.1 is given by

y = eλY = eλY0+Y1+O(1/λ) = eλY0eY1eO(1/λ). (2.16)

ForG0 > 0

y =
A

G
1/4
0

exp

(
iλ

∫
G

1/2
0 dx

)
+

B

G
1/4
0

exp

(
−iλ

∫
G

1/2
0 dx

)
+ O (1/λ) , (2.17)

alternatively this may be written in terms of trigonometricfunctions

y =
A

G
1/4
0

cos

(
λ

∫
G

1/2
0 dx

)
+

B

G
1/4
0

sin

(
λ

∫
G

1/2
0 dx

)
+ O (1/λ) . (2.18)
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ForG0 < 0

y =
C

(−G0)
1/4

exp

(
λ

∫
(−G0)

1/2
dx

)
+

D

(−G0)
1/4

exp

(
−λ
∫

(−G0)
1/2

dx

)
+O (1/λ) , (2.19)

and we have growing and decaying exponentials rather than trigonometric functions.

It is worth noting that the WKB approximations are local solutions as they are not valid in the vicinity

of a zero ofG0. These regions where the approximation breaks down are known as turning or transition

points, and they mark a change between oscillatory and exponential behaviour. It is necessary to match the

solutions across layers such as these in terms of Airy functions.

Note that Equation (2.1) does not have a first derivative term. If the equation in question is not already

in this form the first derivative term can always be eliminated. Consider the equation

d2y

dx2
+ a (x; a)

dy

dx
+ b (x; a) y = 0. (2.20)

This may be reduced to standard form by making a simple transformation

y (x) = u (x) z (x) , (2.21)

whereu is chosen to eliminate the first derivative term inz. It can be shown that

lnu = −1

2

∫
adx, (2.22)

and the full equation reduces to the form

d2z

dx2
+

{
1

u

d2u

dx2
− a2

2
+ b

}
z = 0. (2.23)

From this point the WKB approximation may be implemented.

2.2.2 Charpit’s Method

When we are dealing with a first-order, partial differentialequation which has two independent variables

a solution can be found using Charpit’s method, outlined in Piaggio (1942) and Chester (1971). This

technique is partly due to Lagrange but it was Charpit who perfected it. The work was presented at the

Paris Academy of Sciences in 1784, but Charpit died soon afterwards and his memoir was never published.

We start with the first-order, partial differential equation which in its most general form may be written

F (x, z, u, p, q) = 0, (2.24)

where the dependent variableu = u (x, z), andp = ∂u/∂x = ux andq = ∂u/∂z = uz.
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Assuming that the variables depend on an independent parameters such that

dx

ds
= Fp, (2.25)

dz

ds
= Fq, (2.26)

we have the equation

p
dx

ds
+ q

dz

ds
=

du

ds
. (2.27)

This yields the characteristic equations

dx

Fp
=

dz

Fq
=

du

pFp + qFq
= ds, (2.28)

which can be written

dx

ds
= Fp, (2.29)

dz

ds
= Fq, (2.30)

du

ds
= pFp + qFq. (2.31)

Equations (2.29) – (2.31) describe the characteristic curves of Equation (2.24). Along these characteris-

ticsF is constant; this will not necessarily be the same constant on different characteristic curves. Here we

have only three equations but five unknowns. We need two more equations to complete the set, and it is

natural to look fordp/ds anddq/ds. Remembering thatp = p(x, z) andq = q(x, z), we have

dp

ds
= px

dx

ds
+ pz

dz

ds
= pxFp + pzFq, (2.32)

and

dq

ds
= qx

dx

ds
+ qz

dz

ds
= qxFp + qzFq. (2.33)

Differentiating Equation (2.24) with respect tox andz respectively we find

Fx + pFu + pxFp + qxFq = 0, (2.34)

Fz + qFu + pzFp + qzFq = 0. (2.35)

Noting thatpz = qx andpx = qz we obtain the equations we are looking for

dp

ds
= −Fx − pFu, (2.36)

dq

ds
= −Fz − qFu. (2.37)
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There are now five ordinary differential equations for five unknown functions,x, z, u, p andq, summarised

below.

dx

ds
= Fp, (2.38)

dz

ds
= Fq, (2.39)

du

ds
= pFp + qFq, (2.40)

dp

ds
= −Fx − pFu, (2.41)

dq

ds
= −Fz − qFu. (2.42)

Alternatively these may be written in ratio form

dx

Fp
=

dz

Fq
=

du

pFp + qFq
=

dp

−Fx − pFu
=

dq

−Fz − qFu
. (2.43)

Charpit’s method allows a complete integral of Equation (2.24) to be found and this is usually sufficient

to find a solution. Suppose that we can find an integral of the Characteristic Equations (2.43)

Φ (x, z, u, p, q) = α. (2.44)

Furthermore, suppose that we can solve Equation (2.44) and the given Partial Differential Equation (2.24)

for p andq in terms ofx, z, u andα, sayp = P (x, z, u, α) andq = Q(x, z, u, α). It can be shown that

du = Pdx+Qdz, (2.45)

is exact, and integration of this expression will yield a second constantβ. The result is a solutionu(x, z, α, β)

which is a complete integral as it depends only upon two parameters.

2.2.3 Cairns and Lashmore-Davies Method

Mode conversion is a problem which arises in many different forms and in many different areas. For

example, problems in ion and electron cyclotron regimes in plasma physics and wave transformation in

magnetohydrodynamics. It is this last problem in which we are interested; specifically the conversion

between fast and slow magnetoacoustic waves which is discussed in detail in this thesis. All of these

problems are treated by varied methods which are often very mathematically complex.

The paper by Cairns and Lashmore-Davies (1983) discusses a method which can be applied to all of

these different problems. It works by using the dispersion relation at the mode-conversion region to find

differential equations describing the coupled mode amplitudes. These differential equations give the en-

ergy conservation in the absence of any damping. Solving theequations analytically gives a solution for

the transmission and conversion coefficients. This solution is in terms of parameters which govern the
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behaviour of the local dispersion relation.

Here we describe the method applicable to general mode-conversion problems, as outlined in Cairns and

Lashmore-Davies (1983). Imagine that the dispersion relation around the mode-conversion region is given

by

(ω − ω1) (ω − ω2) = η, (2.46)

whereω1 andω2, both functions of the wavenumberkx andx, are the frequencies of the two uncoupled

modes. The parameterη is significant only in the neighbourhood of the mode-conversion region. If a

wave of frequencyω0 propagates through the plasma then coupling will take placeat x0, where for the

appropriatekx = k0, ω0 = ω1 (k0, x0) = ω2 (k0, x0) and there is a resonance. We expand about this point

by writing

kx = k0 + δ, x = x0 + ξ, (2.47)

and letting

ω1 = ω0 + aδ + bξ, ω2 = ω0 + fδ + gξ, (2.48)

wherea, b, f andg are the appropriate partial derivatives ofω1 andω2. Considering Equation (2.46) around

(k0, x0) gives

(ω0 − ω1) (ω0 − ω2) = η0, (2.49)

and substituting from Equations(2.47) and (2.48) this becomes

(akx − ak0 + bξ) (fkx − fk0 + gξ) = η0, (2.50)

whereη0 is simply the value ofη evaluated at(k0, x0).

The next step is to associate this dispersion relation, valid at the mode-conversion region, with a differ-

ential equation. To do this we set

kx = −i d

dξ
, (2.51)

and substituting this into Equation (2.50) gives

(
d

dξ
− i

(
k0 −

b

a
ξ

))(
d

dξ
− i

(
k0 −

g

f
ξ

))
= − η0

af
. (2.52)

As we are considering two coupled wave modes we introduce twowave amplitudesφ1 andφ2. These are

then described by the first-order differential equations
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dφ1

dξ
− i

(
k0 −

b

a
ξ

)
φ1 = iλφ2, (2.53)

dφ2

dξ
− i

(
k0 −

g

f
ξ

)
φ2 = iλφ1, (2.54)

whereλ = (η0/af)
1/2.

At this point we show that energy is conserved. Multiplying Equation (2.53) by its complex conjugate

we obtain

φ̄1
dφ1

dξ
− i

(
k0 −

b

a
ξ

)
φ̄1φ1 = iλφ̄1φ2, (2.55)

and taking the complex conjugate of this gives

φ1
dφ̄1

dξ
+ i

(
k0 −

b

a
ξ

)
φ1φ̄1 = −iλφ1φ̄2. (2.56)

Adding Equations (2.55) and (2.56) we find

d

dξ

(
|φ1|2

)
= iλ

(
φ̄1φ2 − φ1φ̄2

)
. (2.57)

Performing a similar analysis on Equation (2.54) gives Equations (2.58) and (2.59)

φ̄2
dφ2

dξ
− i

(
k0 −

g

f
ξ

)
φ̄2φ2 = −λφ̄2φ2, (2.58)

φ2
dφ̄2

dξ
+ i

(
k0 −

g

f
ξ

)
φ2φ̄2 = −iλφ2φ̄1, (2.59)

which may be added to obtain

d

dξ

(
|φ2|2

)
= iλ

(
φ1φ̄2 − φ̄1φ2

)
. (2.60)

Adding together Equations (2.57) and (2.60) we find

d

dξ

(
|φ1|2 + |φ2|2

)
= 0, (2.61)

and so energy is conserved.

Returning to Equations (2.53) and (2.54), these may be combined to give a second-order differential

equation in terms ofφ1

d2φ1

dξ2
− 2

(
ik0 −

i

2

b

a
ξ − i

2

g

f
ξ

)
dφ1

dξ
+

(
ib

a
− k2

0 +
b

a
k0ξ +

g

f
k0ξ −

bg

af
ξ2 + λ2

)
φ1 = 0. (2.62)
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To progress from this point the following transformation ismade

φ1 (ξ) = exp

(
ik0ξ −

i

4

b

a
ξ2 − i

4

g

f
ξ2
)
ψ (ξ) , (2.63)

and upon substitution into Equation (2.62) we find

d2ψ

dξ2
+

(
η0
af

− i

2

(
ag − bf

af

)
+

1

4

(
ag − bf

af

)2

ξ2

)
ψ = 0. (2.64)

Finally we make the transformation

ζ =

(
ag − bf

af

)1/2

ξ exp

(
3iπ

4

)
, (2.65)

so that

ξ2 = i

(
af

ag − bf

)
ζ2, dξ2 = i

(
af

ag − bf

)
dζ2. (2.66)

Assuming that(ag − bf) /af > 0, this results in the equation

d2ψ

dζ2
+

(
iη0

ag − bf
+

1

2
− 1

4
ζ2

)
ψ = 0, (2.67)

which is an exact result. The case(ag − bf) /af < 0 is not considered in this thesis. The solution to this

equation is given by the parabolic cylinder functionDn (ζ). The asymptotic solution forφ1 depends onξ.

For ξ < 0 it is

φ1 (ξ) ∼
(
ag − bf

af

)iβ/2
exp

(
πβ

4

)
|ξ|iβ exp

(
ik0ξ −

i

2

b

a
ξ2
)
, (2.68)

and forξ > 0 we have

φ1 (ξ) ∼
(
ag − bf

af

)iβ/2
exp

(
−3πβ

4

)
ξiβ exp

(
ik0ξ −

i

2

b

a
ξ2
)
−

− (2π)1/2

Γ (−iβ)
exp

(
−πβ

4

)(
ag − bf

af

)−iβ/2−1/2

ξ−iβ−1 exp

(
ik0ξ −

i

2

g

f
ξ2 − 3iπ

4

)
, (2.69)

whereβ = η0/ (ag − bf).

Equation (2.69) contains terms arising both from the coupled and uncoupled modes, and the equation

for φ2 is of a similar form. To interpret Equations (2.68) and (2.69) we consider what is happening away

from the mode-conversion region. By setting the right-handside of Equations (2.53) and (2.54) to zero we

find a first approximation toφ1 andφ2

φ1 = A exp

(
ik0ξ −

ibξ2

2a

)
, (2.70)
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φ2 = B exp

(
ik0ξ −

igξ2

2f

)
. (2.71)

To obtain a correction to these approximations they can be substituted back into the original equations.

dφ1

dξ
− i

(
k0 −

b

a
ξ

)
φ1 = iλB exp

{
ik0ξ −

i

2

g

f
ξ2
}
, (2.72)

has an integration factor

exp

{
−ik0ξ +

i

2

b

a
ξ2
}
, (2.73)

and may be written

d

dξ

(
φ1 exp

{
−ik0ξ +

i

2

b

a
ξ2
})

= iλB exp

{
− i

2

(
ag − bf

af

)
ξ2
}
. (2.74)

This may be solved to give

φ1 = − λaf

(ag − bf)

B

ξ
exp

{
ik0ξ −

i

2

g

f
ξ2
}

+ O
(

1

ξ2

)
. (2.75)

Performing the same steps on Equation (2.54) gives

φ2 =
λaf

(ag − bf)

A

ξ
exp

{
ik0ξ −

i

2

b

a
ξ2
}

+ O
(

1

ξ2

)
. (2.76)

These approximations ofφ1 andφ2 can again be substituted into Equations (2.53) and (2.54) tofind a more

accurate solution. The equation forφ1 then becomes

dφ1

dξ
− i

(
k0 −

b

a
ξ

)
φ1 =

iλ2af

(ag − bf)

A

ξ
exp

{
ik0ξ −

i

2

b

a
ξ2
}
. (2.77)

This has the integration factor

exp

{
−ik0ξ +

i

2

b

a
ξ2
}
, (2.78)

which reduces the equation to

d

dξ

(
φ1 exp

{
−ik0ξ +

i

2

b

a
ξ2
})

=
iλ2af

(ag − bf)

A

ξ
. (2.79)

Solving this equation,

φ1 ≈ Aξiβ exp

{
ik0ξ −

i

2

b

a
ξ2
}
, (2.80)

and we have a correction to the amplitudeA found in Equation (2.70). Doing the same forφ2 we find

φ2 ≈ Bξ−iβ exp

{
ik0ξ −

i

2

g

f
ξ2
}
. (2.81)
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Substituting this back into Equation (2.53) a final time gives usφ1 to the accuracy we need.

dφ1

dξ
− i

(
k0 −

b

a
ξ

)
φ1 = iλBξ−iβ exp

{
ik0ξ −

i

2

g

f
ξ2
}
, (2.82)

may be written

d

dξ

(
φ1 exp

{
−ik0ξ +

i

2

b

a
ξ2
})

= iλBξ−iβ exp

{
− i

2

(
ag − bf

af

)
ξ2
}
. (2.83)

The solution to this is

φ1 = − λaf

(ag − bf)
Bξ−iβ−1 exp

{
ik0ξ −

i

2

g

f
ξ2
}
. (2.84)

We now have two linearly independent solutions to the ordinary differential equation. These may be added

together to give

φ1 = Aξiβ exp

{
ik0ξ −

i

2

b

a
ξ2
}
− λaf

(ag − bf)
Bξ−iβ−1 exp

{
ik0ξ −

i

2

g

f
ξ2
}
, (2.85)

which is correct toO
(
1/ξ2

)
. This solution corresponds to that found from the paraboliccylinder function

solution, and comparison of these two equations yields amplitudesA andB of the transmitted and converted

waves. Specifically we must first divide Equation (2.69) by the factorexp (πβ/4) which comes from

Equation (2.68) to give

φ1 ∼
(
ag − bf

af

)iβ/2
exp (−πβ)ξiβ exp

(
ik0ξ −

i

2

b

a
ξ2
)
−

− (2π)
1/2

Γ (−iβ)
exp

(
−πβ

2

)(
ag − bf

af

)−iβ/2−1/2

ξ−iβ−1 exp

(
ik0ξ −

i

2

g

f
ξ2 − 3iπ

4

)
. (2.86)

This may then be compared directly to Equation (2.85) to give

A = exp (−πβ), (2.87)

B =
(2π)1/2

β1/2
exp

(
−πβ

2

)
1

Γ (−iβ)
. (2.88)

Noting that

|Γ (−iβ)|2 =
π

β sinh (πβ)
, (2.89)

the formula forB reduces to

B =
√

1 − exp (−2πβ). (2.90)

At this point we may also note that

A2 +B2 = 1, (2.91)
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Figure 2.1: This figure shows how a domain may be broken down into a Cartesian grid for solution by a
suitable finite difference scheme. The subscriptsp andq refer thex andy indices respectively, and the
values∆x and∆y are the distances between cell boundaries.

illustrating the conservation of energy.

Here we have shown step by step how the Cairns and Lashmore-Davies method for mode conversion is

derived. The two coefficients obtained at the end tell us how much of the incident wave will be transmitted

across the conversion region, and how much will be convertedto another mode. This solution can be linked

with a WKB analysis of the regions away from the conversion point, giving a complete picture of the

problem.

2.3 Numerical Techniques

Not all problems can be solved easily using analytical approximations. In this case one can look for a

numerical solution instead. It is most useful to use numerical simulations alongside analytical approxima-

tions or observations in order to verify the results. Numerical simulations also have the advantage that the

parameters are easily varied, and so it is simple to test the sensitivity of the solution to the parameters in the

model. Here we concentrate on the use of finite difference methods which work by replacing the derivatives

by ratios of finite differences. Imagine a regularly spaced Cartesian grid, as shown in Figure 2.1, where

subscriptsp andq refer to thex, y indices and superscriptsn refer to the time steps. We solve the finite-

difference equation at each point on the grid, and if the gridspacing is small enough this will be a good

approximation to a smooth function. The method used often depends on the type of partial differential

equation so next we look at how these may be classified.
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2.3.1 Classification of Partial Differential Equations

The classification of a partial differential equation depends only on the value of the highest derivatives.

Given a second-order, partial differential equation

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
= f, (2.92)

whereA, B, C andf may themselves be functions ofx, y, u, ux anduy, a classification may be made by

noting that with

d (ux) = uxxdx+ uxydy, (2.93)

d (uy) = uxydx+ uyydy, (2.94)

we have the linear system




A B C

dx dy 0

0 dx dy







uxx

uxy

uyy


 =




f

d (ux)

d (uy)


 . (2.95)

This matrix equation will have a unique solution, except in the case when its determinant is equal to zero

A (dy)
2 −Bdxdy + C (dx)

2
= 0, (2.96)

which defines the characteristics of the partial differential equation. It is the roots of the characteristic

equation that will allow the equation to be classified.

B2 − 4AC > 0 Two Real Roots Hyperbolic Equation,

B2 − 4AC = 0 Single Real Repeated Root Parabolic Equation,

B2 − 4AC < 0 Complex Conjugate Roots Elliptic Equation.

(2.97)

In addition to this it is also possible to classify systems offirst-order partial differential equations. Fol-

lowing Hoffman and Chiang (1993) we consider the model equation

A
∂φ

∂x
+B

∂φ

∂y
= 0, (2.98)

whereφ is a vector containing the unknown variables, andA andB are matrices containing the coefficients.

As before these may be functions ofx andy with

φ =

(
u

v

)
, A =

(
a1 a2

b1 b2

)
, B =

(
a3 a4

b3 b4

)
. (2.99)
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If we considern to represent the normal to the characteristic surfaces, fortwo-dimensional Cartesian

problems

n = nxi + nyj. (2.100)

A solution may be obtained for the system if

|T | = 0, (2.101)

where

T = Anx +Bny, (2.102)

or

T =

(
a1nx a2nx

b1nx b2nx

)
+

(
a3ny a4ny

b3ny b4ny

)
=

(
a1nx + a3ny a2nx + a4ny

b1nx + b3ny b2nx + b4ny

)
. (2.103)

The determinant is then given by

|T | = (a3b4 − b3a4)n
2
y + (a1b2 − a2b1)n

2
x + (a1b4 + a3b2 − a2b3 − b1a4)nxny = 0. (2.104)

Dividing by n2
x we obtain

(a3b4 − b3a4)

(
ny
nx

)2

+ (a1b4 + a3b2 − a2b3 − b1a4)

(
ny
nx

)
+ (a1b2 − a2b1) = 0. (2.105)

Writing this as

Q

(
ny
nx

)2

+R

(
ny
nx

)
+ P = 0, (2.106)

we can solve to get

(
ny
nx

)
=

−R ±
√
R2 − 4PQ

2Q
. (2.107)

This gives a similar set of conditions to those we had previously

R2 − 4PQ > 0 Two Real Roots Hyperbolic Equation,

R2 − 4PQ = 0 Single Real Repeated Root Parabolic Equation,

R2 − 4PQ < 0 Complex Conjugate Roots Elliptic Equation.

(2.108)

This method will also work when the system of equations is greater than two (quadratic goes up to cubic

etc.).
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2.3.2 Derivation of Finite Difference Formulae via Taylor Expansion

There are a number of methods for finding finite difference equations, such as polynomial fitting and integral

methods, but we concentrate here on the use of Taylor series expansion (Roache, 1998). Starting with a

functionu the first derivative can be derived by expanding

up+1,q = up,q +
∂u

∂x

∣∣∣∣
p,q

(xp+1,q − xp,q) +
1

2

∂2u

∂x2

∣∣∣∣
p,q

(xp+1,q − xp,q)
2 + . . . , (2.109)

which may equivalently be written

up+1,q = up,q +
∂u

∂x

∣∣∣∣
p,q

∆x+
1

2

∂2u

∂x2

∣∣∣∣
p,q

∆x2 + . . . . (2.110)

Denoting the finite-difference form of∂u/∂x by δu/δx, the forward difference approximation is given by

δu

δx

∣∣∣∣
p,q

=
up+1,q − up,q

∆x
, (2.111)

and has a truncation error of order∆x. This is therefore a first-order accurate term. In the same way it is

possible to find a backward-difference approximation

δu

δx

∣∣∣∣
p,q

=
up,q − up−1,q

∆x
. (2.112)

A centred-difference approximation may be found by subtracting Equation (2.112) from Equation (2.111)

to obtain

up+1,q − up−1,q = 2
∂u

∂x

∣∣∣∣
p,q

∆x+
1

3

∂3u

∂x3

∣∣∣∣
p,q

∆x3 + . . . , (2.113)

which can be solved to give

δu

δx

∣∣∣∣
p,q

=
up+1,q − up−1,q

2∆x
. (2.114)

In contrast to the forward- and backward-difference approximations this is second order accurate. This

means that the solution will improve in accuracy much fasteras the grid size decreases. Note that adding

Equations (2.111) and (2.112) gives a centred-difference approximation toδ2u/δx2

δ2u

δx2

∣∣∣∣
p,q

=
up+1,q − 2up,q + up−1,q

∆x2
, (2.115)

which is also second-order accurate. If required approximations with a higher accuracy may be derived in

a similar manner.

Taking a partial differential equation, a finite differenceequation is simply found by using combinations

of these finite difference expressions for the partial derivatives. There are certain conditions which must

be met to ensure that the finite difference scheme will converge to the desired solution. It must be con-
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sistent, meaning that the finite difference equation reduces to the partial differential equation as the grid

size approaches zero. Secondly it must be stable, meaning that any error introduced in the finite difference

equation does not grow with the solution of that finite difference equation. Finally it must be convergent,

meaning that the solution of the finite difference equation approaches that of the partial differential equation

as the grid size approaches zero. Conveniently it is only required to check the first two conditions, as the

Lax equivalence theorem states that for a finite difference equation that approximates a well-posed, linear,

initial value problem the necessary and sufficient condition for convergence is that the finite difference

equation must be stable and consistent (Lax and Richtmyer, 1956). One method for checking stability is

the von Neumann stability analysis.

2.3.3 The von Neumann Stability Analysis

This method was developed by John von Neumann at the Los Alamos National Laboratory in the 1940s.

It was first published by Crank and Nicolson in 1947, and laterby von Neumann himself (Charney et al.,

1950); it is now the most commonly used method for stability analysis. The idea behind the method is

to use a finite Fourier series expansion on the finite difference equation, and then consider the decay or

amplification of each mode separately in order to determine whether or not the method is stable.

As an example consider Euler’s FTCS method when applied to the first order wave equation

∂u

∂t
= −a∂u

∂x
a > 0, (2.116)

which is a linear equation for constanta. Euler’s FTCS method uses forward differencing for the time

derivative and central differencing for the spatial derivative (hence the name) giving the finite difference

equation

un+1
p − unp

∆t
= −a

unp+1 − unp−1

2∆x
, (2.117)

which is first-order accurate in time, and second-order accurate in space. To perform the stability analysis

each Fourier component is written

unp = V neikx(p∆x), (2.118)

whereV n is the amplitude at time-stepn of the component, whose wavenumber iskx, andi =
√
−1.

Boundary effects are not included as the spatial domain is considered to be infinite. Defining the phase

angle asθ = kx∆x, the Fourier components are given by

unp = V neipθ. (2.119)

Substituting this into Equation (2.116) gives

V n+1eipθ = V neipθ − c

2
V n
(
ei(p+1)θ − ei(p−1)θ

)
, (2.120)
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wherec = a∆t/∆x is the Courant number, named after Richard Courant (1888 – 1972) whose work in the

analysis of numerical methods and nonlinear partial differential equations laid much of the groundwork for

modern computational fluid dynamics. Dividing through byeipθ gives

V n+1 = V n (1 − ic sin θ) . (2.121)

We may write this as

V n+1 = GV n, (2.122)

whereG is the amplification factor. This will generally depend onθ, and so will vary for each individual

Fourier component. If we wish the solution to remain boundedthen we require

G Real |G| ≤ 1 ∀θ,
G Complex |G|2 ≤ 1 ∀θ.

(2.123)

In this case the stability requirement is given by

|1 − ic sin θ|2 ≤ 1, (2.124)

or

1 + c2 sin2 θ ≤ 1. (2.125)

This condition is false for allc and so this method is unconditionally unstable.

For more general finite difference equations involving three or more time levels the amplification factor

takes a matrix form. The stability condition is then appliedto the eigenvalues,λ, and must be satisfied for

the largest of these

λ Real |λ| ≤ 1,

λ Complex |λ|2 ≤ 1.
(2.126)

There are some standard values that are used for determiningthe stability criteria for one-dimensional

problems which hold for the majority of explicit formulations

Courant Number c ≤ 1,

Diffusion Number d ≤ 0.5,
(2.127)

where the diffusion number is defined asd = a∆t/∆x2. The von Neumann stability analysis can also

be easily applied to systems of linear, partial differential equations and multi-dimensional problems. If

the latter of these have equal grid spacing in all directionsthen the standard values for stability are usually

adjusted by dividing by the number of dimensions. This may bedemonstrated by considering the linearised,

constant coefficient, two-dimensional transport equation

∂u

∂t
= −a∂u

∂x
− b

∂u

∂y
+ α△2u, (2.128)
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which may be discretised as

un+1
p,q − unp,q

∆t
= −a

unp+1,q − unp−1,q

2∆x
− b

unp,q+1 − unp,q−1

2∆y
+

+ α

(
unp+1,q − 2unp,q + unp−1,q

∆x2
+
unp,q+1 − 2unp,q + unp,q−1

∆y2

)
. (2.129)

In two-dimensions the Fourier components are given by

unp,q = V nei(kxp∆x+kyq∆y), (2.130)

and as beforeV n is the amplitude function at time-stepn of the component whosex andy wavenumbers

are given bykx andky respectively andi =
√
−1. Defining thex andy phase angles to beθx = kx∆x and

θy = ky∆y we have

unp,q = V nei(pθx+qθy). (2.131)

Furthermore we define the dimensional counterparts of the Courant number as

cx =
a∆t

∆x
, cy =

b∆t

∆y
, (2.132)

and the counterparts of the diffusion number as

dx =
α∆t

∆x2
, dy =

α∆t

∆y2
. (2.133)

Substituting all of these values into Equation (2.129) we find that the amplification factor is given by

G = 1 − 2 (dx + dy) + 2dx cos θx + 2dy cos θy − i (cx sin θx + cy sin θy) . (2.134)

The necessary conditions for|G|2 ≤ 1 are then

dx + dy ≤ 1

2
, cx + cy ≤ 1, (2.135)

and it is easy to see that for the special case wheredx = dy = d we required ≤ 1/4, and similarly

for cx = cy = c we needc ≤ 1/2. So as stated above, the conditions are twice as restrictiveas for the

one-dimensional case.

2.3.4 Initial and Boundary Conditions

In addition to a convergent, finite difference equation a setof supplementary equations is needed to find a

unique solution to the partial differential equation. These are needed to determine the arbitrary functions

which result from integration of the partial differential equation. Such equations are known as boundary or

initial conditions. As suggested by the name, an initial condition gives the value of the dependent variable

at some initial time. A boundary condition specifies the value of the dependent variable or its derivative,
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n

n+1

p−1 p p+1

Figure 2.2: Numerical stencil for the Lax and Lax-Wendroff methods. The red dot indicates the point that
we start from (which is not used in the Lax method) and the green that for which we are trying to find the
value. The blue spots indicate the other nodes that are required in the calculation of this value.

but on the boundary of the domain of the partial differentialequation.

There are a number of different types of boundary condition.If the dependent variable itself is specified

along the boundary then it is described as a Dirichlet type condition. If it is the normal gradient of the

dependent variable which is given it is a Neumann boundary condition. It is possible to have a linear

combination of Dirichlet and Neumann type boundary conditions, which is known as a Robin boundary

condition. In a more complex situation the boundary condition may take on different characteristics on

different parts of the boundary calling for a mixed boundarycondition. Having looked at the general theory

behind finite difference methods let us now look at some specific techniques and their application to the

one-dimensional wave equation, as outlined in Hoffman and Chiang (1993).

2.3.5 The Lax Method

The Lax method (Lax, 1954) is related to Euler’s FTCS method (Equation (2.117)) which we used to

demonstrate the von Neumann stability analysis. The difference is that this method uses an average value

of unp , giving

un+1
p =

1

2

(
unp+1 + unp−1

)
− c

2

(
unp+1 − unp−1

)
. (2.136)

Figure 2.2 shows the numerical stencil for this method. Thisgraphically illustrates the points that are

necessary to progress with each step of the numerical solution. So this method requires information from

the point in question and those on either side. Performing the von Neumann stability analysis on this

equation gives

G = cos θ − ic sin θ, (2.137)
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Figure 2.3: Numerical stencil for the Midpoint Leapfrog method. The red cross shows the starting point,
there is no dot as it is not part of the calculation. The green dot is the point that we are trying to find a value
for and the blues are all the points that are needed to get to the solution.

yielding the stability criterion

c ≤ 1. (2.138)

Therefore, unlike Euler’s FTCS method which was unconditionally unstable, this method is of practical

use. It is, however, still only first-order accurate.

2.3.6 The Midpoint Leapfrog Method

A more accurate method is given by the Midpoint Leapfrog method which uses central differencing of the

second order for both the time and space derivatives. Applied to Equation (2.116) it gives

un+1
p − un−1

p

2∆t
= −a

unp+1 − unp−1

2∆x
. (2.139)

This is shown pictorially in Figure 2.3 which demonstrates that the method skips over the point we are

sitting at and uses those surrounding it to calculate the value at the next time step. Hence the nameleapfrog.

The values of the dependent variable are required at time stepsn andn−1 in order to calculate the value at

n + 1. This means that two initial conditions are required to get the method started. A starter solution can

be used for this, in which case another method is used for the initial time step. However, this will affect the

accuracy of the method.

Performing a stability analysis we find

V n+1 = −2ic sin θV n + V n−1, (2.140)
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and letting

V n = V n + (0)V n−1, (2.141)

gives the matrix equation

(
V n+1

V n

)
=

(
−2ic sin θ 1

1 0

)(
V n

V n−1

)
. (2.142)

The amplification factor is then given by the matrix

G =

(
−2ic sin θ 1

1 0

)
, (2.143)

whose eigenvalues are given by

λ1,2 = −ic sin θ ±
√

1 − c2 sin2 θ. (2.144)

Note that these eigenvalues may also be found by multiplyingEquation (2.140) through byV 1−n giving a

quadratic equation inV .

Now, if c2 sin2 θ ≤ 1 then

|λ1,2|2 = c2 sin2 θ +
(
1 − c2 sin2 θ

)
= 1, (2.145)

and the stability requirement is satisfied. The most restrictive constraint occurs whensin2 θ = 1 giving

c ≤ 1. If c2 sin2 θ > 1 then

|λ1,2|2 = 2c2 sin2 θ ± 2c sin θ
√
c2 sin2 θ − 1 − 1. (2.146)

Taking the positive root the condition|λ1,2|2 ≤ 1 cannot be satisfied. Thus the stability condition is given

by c ≤ 1.

2.3.7 The Lax-Wendroff Method

The Lax-Wendroff method is also second-order accurate in time and space, but has the advantage that it does

not need a starter solution (Lax and Wendroff, 1960). It may be derived from the Taylor series expansion

of the dependent variable as follows

un+1
p = unp +

∂u

∂t
∆t+

∂2u

∂t2
(∆t)

2

2
+ O (∆t)3 . (2.147)

Taking the derivative of the first-order wave equation with respect tot we obtain

∂2u

∂t2
= a2 ∂

2u

∂x2
. (2.148)
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Figure 2.4: The numerical stencil for the MacCormack method. The shaded dots denote the stencil for the
predictor method, and the solid dots are those for the corrector step. The red dots show the starting point,
the green dots the finishing point, and the blue dots the points needed along the way.

Substituting this into the Taylor series expansion gives

un+1
p = unp − a∆t

∂u

∂x
+
a2 (∆t)2

2

∂2u

∂x2
. (2.149)

Using central differencing of the second order for the spatial derivatives we obtain the finite difference

equation

un+1
p = unp − c

2

(
unp+1 − unp−1

)
+
c2

2

(
unp+1 − 2unp + unp−1

)
. (2.150)

The stencil for this method is the same as that for the Lax method, shown in Figure 2.2, but this method has

a higher order of accuracy.

The von Neumann stability analysis shows this method to havean amplification factor of

G = 1 − c2 (1 − cos θ) − ic sin θ, (2.151)

and the method is stable forc ≤ 1.

2.3.8 The MacCormack Method

The final method which we demonstrate here is the MacCormack method (MacCormack, 1969) which

is the method we utilise throughout this thesis. This is a multi-step method which uses a predictor and

corrector step. These have the advantage that unlike the methods discussed previously, they work well

with nonlinear hyperbolic problems. The first step calculates a temporary value for the dependent variable,
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which is corrected in the second step to provide the final value for the dependent variable.

This method uses forward differencing for the initial step.For the first-order wave equation this gives

u∗p − unp
∆t

= −a
unp+1 − unp

∆x
, (2.152)

where∗ represents a temporary prediction for the dependent variable at time stepn+ 1. The corrector step

uses backward differencing

un+1
p − u

n+ 1

2

p

1
2∆t

= −a
u∗p − u∗p−1

∆x
. (2.153)

The value ofu
n+ 1

2

p is then replaced by an average

u
n+ 1

2

p =
1

2

(
unp + u∗p

)
, (2.154)

to give

Predictor Step u∗p = unp − c
(
unp+1 − unp

)
,

Corrector Step un+1
p = 1

2

[(
unp + u∗p

)
− c

(
u∗p − u∗p−1

)]
.

(2.155)

This is illustrated in Figure 2.4, in which the predictor step is shown by the shaded dots and the correc-

tor step by the solid dots. It is also possible to reverse the order of differencing at each step,i.e. for-

ward/backward, backward/forward. This method is second order accurate in both time and space and has

the standard stability conditionc ≤ 1. Note that this method is related to the Lax-Wendroff methodas it

reduces to this form for linear equations.

2.4 Summary

In the first half of this chapter we have summarised some of theanalytical techniques which are employed

throughout this thesis, from the WKB method and Charpit’s equations to a method for quantifying mode

conversion - a problem central to this thesis. In the remaining chapters we shall demonstrate how using

a combination of these techniques we can fully examine mode conversion in different atmospheric and

topological situations.

The analytical approximations are combined with the use of numerical simulations. These are carried out

using the MacCormack finite-difference scheme. This style of numerical technique is described in detail in

the latter part of this chapter, looking at how these methodsmay be derived and how to test for the stability

of a finite difference equation. Finally some specific methods were detailed, building up from Lax’s method,

through the Midpoint Leapfrog and Lax-Wendroff methods, tothe MacCormack method. The numerical

simulations run using this method can be used alongside the results of the analytical approximations to gain

real insight into the mode-conversion problem.



Chapter 3

MHD Mode Conversion in a

Stratified Isothermal Atmosphere

3.1 Introduction

In this chapter we examine mode conversion in an isothermal atmosphere. The model we have chosen

and the basic equations are described in Section 3.2. In Section 3.3 we describe the numerical simulations

which are supported by the analytical approximations detailed in Section 3.4. Finally we summarise our

findings in Section 3.5. The results of this chapter have beenpublished in McDougall and Hood (2007).

3.2 Isothermal Model

We begin the investigation into mode conversion by looking at a very simple one-dimensional model con-

sisting of a uniform vertical magnetic field within a gravitationally stratified, isothermal atmosphere as

shown in Figure 3.1. A slow wave is sent in from above which then propagates from low- to high-β plasma

passing through the mode-conversion region as it does so. Wechoose such a simple model with the hope of

gaining a deeper understanding of the complex physical processes involved in mode conversion. Previous

more complicated models have included too many factors to truly and clearly determine exactly what is

occurring. It is much easier to see how mode conversion occurs in this simple model.

3.2.1 Ideal MHD Equations

We shall be using the ideal form of the MHD equations throughout so the field lines are assumed frozen

in to the plasma, with resistivity and viscosity neglected.These are given by (Equations (1.28) – (1.33)

and (1.35)):

∂ρ

∂t
+ ∇ · (ρv) = 0, (3.1)

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p+ j × B + ρg, (3.2)

∂B

∂t
= ∇× (v × B) , (3.3)

55
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β = 1

β > 1

z

g

β < 1

Figure 3.1: Cartoon of the model atmosphere with uniform vertical magnetic field. Thez-axis points
upwards (opposite to gravity) and a slow wave is driven on theupper boundary travelling down towards the
mode-conversion layer atβ ≈ 1.

(
∂

∂t
+ v · ∇

)
p =

γp

ρ

(
∂

∂t
+ v · ∇

)
ρ, (3.4)

p = Rρ
T

µ̃
, (3.5)

j =
1

µ
(∇× B) , (3.6)

∇ · B = 0. (3.7)

In these equationsρ is the mass density,v the fluid velocity,p the gas pressure,j the current density,B the

magnetic induction,g the gravitational acceleration, andT the temperature.

3.2.2 Linearised MHD Equations

Under the equilibrium condition of a uniform, vertical magnetic field Equations (3.1) – (3.7) give

∇p0 = ρ0g, (3.8)

and

p0 = Rρ0
T0

µ̃
. (3.9)
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By settingB = B0 + B1 (x, z, t), v = v1 (x, z, t), p = p0 + p1 (x, z, t), ρ = ρ0 + ρ1 (x, z, t) and

T = T0 + T1 (x, z, t) and neglecting small quantities we obtain the Linearised MHD equations.

∂ρ1

∂t
+ ∇ · (ρ0v1) = 0, (3.10)

ρ0
∂v1

∂t
= −∇p1 +

1

µ
(∇× B1) × B0 + ρ1g, (3.11)

∂B1

∂t
= ∇× (v1 × B0) , (3.12)

∂p1

∂t
+ (v1 · ∇) p0 =

γp0

ρ0

(
∂ρ1

∂t
+ (v1 · ∇) ρ0

)
, (3.13)

p1

p0
=
ρ1

ρ0
+
T1

T0
, (3.14)

∇ · B1 = 0. (3.15)

Henceforth the subscripts on perturbed variables are dropped and it is assumed that we are working with

the Linearised MHD equations. We may now apply equilibrium conditions specific to the problem.

3.2.3 Uniform Medium Stratified by Gravity

The equilibrium state consists of a gravitationally stratified, isothermal atmosphere permeated by a uniform

vertical magnetic field (Figure 3.1). Examining the Momentum Equation (3.11) under these conditions,

with the use of the equilibrium Gas Law (3.9), we obtain the same equilibrium condition as we found for

the acoustic-gravity case (1.109), so we have

p0 (z) = p0 (0) e−z/H , ρ0 (z) = ρ0 (0) e−z/H . (3.16)

The plasmaβ is defined as the ratio of the gas pressure to the magnetic pressure,

β =
2µp0

B2
0

=
2c2s
γv2
A

. (3.17)

The effect of including gravitational stratification in themodel is that it causes the plasmaβ to be dependent

on z. This ensures that the waves will propagate across the region wherec2s = v2
A, the layer that we wish

to investigate.

We may combine the full Linearised MHD Equations (3.10) – (3.13) into a pair of wave equations with

a little manipulation

∂2vx
∂t2

=
(
c2s + v2

A

) ∂2vx
∂x2

+ c2s
∂2vz
∂x∂z

+ v2
A

∂2vx
∂z2

− g
∂vz
∂x

, (3.18)

∂2vz
∂t2

= c2s

(
∂2vx
∂x∂z

+
∂2vz
∂z2

)
− (γ − 1) g

∂vx
∂x

− γg
∂vz
∂z

. (3.19)
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These wave equations are in agreement with Ferraro and Plumpton (1958) and are valid for general tem-

peratureT (z), in which case both the sound and Alfvén speeds will vary with height. Note that we are

working with an isothermal atmosphere so in this case only the Alfvén speed varies with height. There are

a number of additional checks that we may perform to ensure that no errors have been made in the calcu-

lation of these equations. First of all it is easy to see that the equations have the correct dimensions. Next

we should check that the equations correctly reduce down to the uniform and acoustic gravity cases under

the correct conditions. Settingg = 0 the equations do indeed reduce down to Equations (1.82) and (1.83)

of the uniform case. Finally by settingvA = 0, Equations (3.18) and (3.19) become Equations (1.114)

and (1.115) of the acoustic gravity case.

3.2.3.1 x-Dependence

Equations (3.18) and (3.19) depend on bothx andz and are thus two dimensional. To reduce this down to

one dimension, as we have in the model (Figure 3.1), we must make some assumption about the form of

x-dependence for the variables. We choose an oscillatory dependence given by trigonometric functions of

kxx, wherekx is the horizontal wavenumber.

v = (vx (z, t) sin kxx, 0, vz (z, t) cos kxx) ,

B = (Bx (z, t) sin kxx, 0, Bz (z, t) cos kxx) , (3.20)

ρ = ρ (z, t) cos kxx,

p = p (z, t) cos kxx.

Under this assumption the Linearised MHD equations take theform

ρ0
∂vx
∂t

− B0

µ

∂Bx
∂z

= kxp+
B0kx
µ

Bz, (3.21)

ρ0
∂vz
∂t

+
∂p

∂z
= −ρg, (3.22)

∂Bx
∂t

−B0
∂vx
∂z

= 0, (3.23)

∂Bz
∂t

= −kxB0vx, (3.24)

∂ρ

∂t
+ ρ0

∂vz
∂z

=
ρ0

H
vz − kxρ0vx, (3.25)

∂p

∂t
+ γp0

∂vz
∂z

= ρ0gvz − γp0kxvx. (3.26)

The wave equations (3.18) and (3.19) then become

∂2vx
∂t2

= v2
A

∂2vx
∂z2

− kxc
2
s

∂vz
∂z

− k2
x

(
c2s + v2

A

)
vx + kxgvz, (3.27)

∂2vz
∂t2

= c2s
∂2vz
∂z2

+ kxc
2
s

∂vx
∂z

− γg
∂vz
∂z

− kx (γ − 1) gvx, (3.28)
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which are dependent only onz andt.

3.2.3.2 Non-Dimensionalisation

In order to simplify the numerical side of the modelling we non-dimensionalise the variables by settingv =

v0v̄, B = B0B̄, p = p00p̄, ρ = ρ00ρ̄, p0 = p00p̄0, ρ0 = ρ00ρ̄0, z = Lz̄, t = τ t̄, andkx = k̄x/L, where

a bar denotes a dimensionless quantity andv0, B0, p00, ρ00, L andτ are constants with the dimensions of

the variable they are scaling.

Under this system we may choosep00 = p0 (0) andρ00 = ρ0 (0) so

p̄0 = ρ̄0 = e−Lz̄/H . (3.29)

The sound and Alfv́en speeds may also be non-dimensionalised,i.e. c2s = c2s0c̄
2
s andv2

A = v2
0 v̄

2
A where

c̄2s = 1 andv̄2
A = 1/ρ̄0, and the plasmaβ may be writtenβ = β0β̄ whereβ̄ = p̄0 and

β0 =
2c2s0
γv2

0

. (3.30)

We are then free to setc2s0 = v2
0 = 1 so we havec2s = v2

A at z = 0, and from Equation (3.30)β0 = 2/γ =

1.2. If v0 = L/τ then the speed is measured in units ofv0, which represents a constant background Alfvén

speed. Under these scalingst̄ = 1 (for example) refers tot = τ = L/v0; i.e. the time taken for a wave to

travel a distanceL at the reference background Alfvén speed. Note that we can writeg = c2s/ (γH). The

bar on quantities is now dropped and it is understood that we are working with dimensionless values.

The dimensionless Linearised MHD equations are

1

v2
A

∂vx
∂t

− ∂Bx
∂z

=
kxc

2
s

γ
p+ kxBz, (3.31)

1

v2
A

∂vz
∂t

+
c2s
γ

∂p

∂z
= −Lc

2
s

γH
ρ, (3.32)

∂Bx
∂t

− ∂vx
∂z

= 0, (3.33)

∂Bz
∂t

= −kxvx, (3.34)

v2
A

∂ρ

∂t
+
∂vz
∂z

=
L

H
vz − kxvx, (3.35)

v2
A

∂p

∂t
+ γ

∂vz
∂z

=
L

H
vz − γkxvx. (3.36)

These give rise to the wave equations

(
v2
A

∂2

∂z2
−
(
c2s + v2

A

)
k2
x −

∂2

∂t2

)
vx = kxc

2
s

(
∂

∂z
− L

γH

)
vz, (3.37)



3.3 Numerical Simulations 60

(
c2s
∂2

∂z2
− Lc2s

H

∂

∂z
− ∂2

∂t2

)
vz = −kxc2s

(
∂

∂z
− L

γH
(γ − 1)

)
vx. (3.38)

When written in this form the equations are much easier to analyse using the WKB method (Section 3.4.3).

3.3 Numerical Simulations

We solve Equations (3.31) – (3.36) numerically using the MacCormack method. This is a finite difference

scheme which uses two steps to solve the equations at each time step. The first of these is a predictor step

giving the solution at half a time step, the second step corrects the solution at the full time step; this gives

the method its name of a predictor-corrector method. This scheme is second-order accurate in both time

and space and, for linear harmonic waves, not strongly affected by numerical dispersion or diffusion. We

have selected to use backward differencing for the predictor steps and forward differencing for the corrector

steps (although this may be reversed). By doing it this way weare using the more accurate corrected values

on the upper boundary where we are driving a wave into the system. The lower boundary is less important

as we terminate the simulation before the wavefront reachesthis point to eliminate reflection effects. The

conditions specified on the boundaries are:

Bx = − 1

kx

∂Bz
∂z

,
∂Bz
∂t

= −kxvx,
∂p

∂z
= 0,

∂ρ

∂z
= 0. (3.39)

In addition to these we have the conditions on the velocity which differ on the upper and lower boundaries

Upper Boundary: vx = 0, vz = sinωt. (3.40)

Lower Boundary:
∂vx
∂z

= 0, vz = 0. (3.41)

Imposingvz on the upper boundary means that we are predominantly driving a slow wave. Since the slow

wave also has a small component ofvx the conditionvx = 0 means that there is a small component of

the fast mode generated; however this mode is evanescent anddoes not propagate into the computational

domain. The simulations are run for−8 ≤ z ≤ 6 and0 ≤ t ≤ 13.5 whereδz = 0.003 andδt = 0.0002;

as mentioned above the end time is chosen just before the wavefront reaches the lower boundary. In all

simulations we chooseL equal to the coronal scale height (H) so thatz = 1 corresponds to one coronal

scale height≈ 60 Mm. Having set this value, we are left with two free parameters: the driving frequency

(ω) and the wavenumber in thex-direction (kx). By altering these parameters we can make comparisons

between the results and different analytical models. In this chapter we useω = 2π, 2π
√

6, and4π
√

6

which correspond in real terms to frequencies of 0.1 s−1, 0.26 s−1 and 0.51 s−1 and periods of 60 s, 24.5 s

and 12.3 s respectively. In the corona the acoustic cutoff frequency is given byΩac = 0.001 s−1 with a

corresponding periodPac = 91.7 minutes (Roberts, 2004). This acoustic cutoff frequency ismuch smaller

than those driven on the upper boundary and so does not affectthe simulations.
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High β Low β

Slow Wave Speed≈ vA Speed≈ cs
Transverse Wave Longitudinal Wave

Fast Wave Speed≈ cs Speed≈ vA
Longitudinal Wave Transverse Wave

Table 3.1: Speed and preferential direction of propagationfor magnetoacoustic waves in high- and low-β
plasma.

3.3.1 Wave Properties

We wish to investigate the wave behaviour across theβ ≈ 1 layer but it is also important to know the

properties of waves away from this region. Table 3.1 shows the typical speed and direction of propagation

for slow and fast magnetoacoustic waves in high- and low-β plasma. From this table it is clear that the

high-β slow wave shares its properties with the low-β fast wave, and similarly the low-β slow wave and

high-β fast wave have common properties. So an uncoupled slow magnetoacoustic wave (kx = 0 limit)

propagating through low-β plasma will change its behaviour to that of a fast magnetoacoustic wave as it

passes into high-β plasma. Similarly an uncoupled fast wave will change its behaviour to that of a slow

wave as it travels from low- to high-β plasma. Despite this change in terminology the wave mode is the

same - no mode conversion has occurred. Thus, when we discussmode conversion the slow wave driven on

the upper boundary retains the properties of a slow wave as itpropagates down into high-β plasma. We do

not see any evidence of upward-propagating fast waves from the mode-conversion region. The transmitted

component of the incident slow wave will continue into the high-β plasma as a fast wave.

In the numerical simulation it is clear that something is happening to the wave as it crosses the region

wherecs = vA (Figure 3.2) especially in the horizontal velocity, and thehorizontal and vertical magnetic

field. This change displays itself as a change in the phase andthe behaviour of the amplitude. It is not

easy to pick out what is happening, however, as all of the plots display a strong exponential nature which

is disguising other underlying effects. We can uncover these by making a simple transformation:vx →
ṽxe

−z/2, vz → ṽze
z/2, Bx → B̃xe

−z/2, Bz → B̃ze
−z/2, p → p̃e−z/2, andρ → ρ̃e−z/2. The data

resulting from this transformation is shown in Figure 3.3. In the low-β plasma to the right of the dashed

red line only one wave mode is present - this is the slow mode which we are driving. To the left of the red

dashed line both the fast and slow modes are present. The converted slow mode is clearly visible in the

plots of the horizontal velocity and the horizontal and vertical magnetic field, where we can see that the

wavefront has slowed right down. The transmitted fast mode is apparent in the plots of the vertical velocity,

pressure and density, where we can see it has almost reached the edge of the computational domain. The

slow mode is also present in these plots and can be seen as interference with the fast mode just to the left

of the red dashed line.

It is possible to predict the position of these different modes at any given time. The position of the

acoustic mode (slow in lowβ, fast in highβ) may be found from

dz

dt
= −cs, (3.42)

z = 6 − cst, (3.43)
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Figure 3.2: Results of the numerical simulation withω = 2π
√

6 andkx = π at t = 13.5 Alfv én times.
The plots show the horizontal and vertical velocity, the horizontal and vertical magnetic field, pressure and
density respectively from top left to bottom right. The red dashed line indicates wherecs = vA.

Figure 3.3: Results of the numerical simulation withω = 2π
√

6 andkx = π at t = 13.5 Alfv én times.
The plots show a transformation of the horizontal and vertical velocity, the horizontal and vertical magnetic
field, pressure and density respectively from top left to bottom right. The red dashed line indicates where
cs = vA.
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Figure 3.4: Surface plot of the horizontal velocity forω = 2π
√

6 andkx = π. The red dashed line shows
the position of the acoustic mode, the green dashed line the position of the magnetic mode, and the blue
dashed line the position of the slow mode.

which tells us that att = 13.5 Alfv én times the fast wave should have reachedz ≈ −7.5. Similarly the

position of the magnetic mode (the slow wave in highβ) may be found from

dz

dt
= −vA, (3.44)

z = −2 ln

(
t

2
+ 1 − 3

cs

)
, (3.45)

so the slow mode will have reachedz ≈ −3.1 at t = 13.5 Alfv én times. This is in agreement with the

simulations shown in Figure 3.3. We may also use the equation

dz

dt
= −cT , (3.46)

wherecT = csvA/
√
c2s + v2

A is the tube speed. This is easier to solve in terms oft

t = 2

(
1

cT
− 1

cT (6)

)
+

1

cs
ln

∣∣∣∣
(cs − cT ) (cs + cT (6))

(cs + cT ) (cs − cT (6))

∣∣∣∣ . (3.47)

This equation models the behaviour of the slow mode throughout the computational domain, following the

incident slow wave in the low-β plasma and the converted slow wave in the high-β plasma. Figure 3.4 shows

the horizontal velocity viewed from above, overplotted on this are the paths predicted by Equations (3.43),

(3.45) and (3.47). The path of the acoustic mode is modelled well by Equation (3.43) and the path of the

magnetic mode (given by Equation (3.45)) also agrees afterz = 0, which is unsurprising as the magnetic

mode is not present before the conversion point. Equation (3.47) does not seem to agree as well with the

simulations as the others; but as the magnitude ofkx is increased in comparison toω, it turns out that this

prediction improves and that given by Equation (3.45) actually worsens.
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3.3.2 Effect of Varying the Model Parameters

We have already noted that there are two free parameters in the model setup - the horizontal wavenumber

and the driving frequency. We now investigate the effect of varying these parameters on mode conversion.

3.3.2.1 Varying the Wavenumber

Firstly we consider the effect of varying the wavenumber on the simulations. To do this we fix the value

of ω so that the effects seen are purely due to the variations inkx. The driving frequency we have chosen,

ω = 2π
√

6, corresponds to driving a wave with a period of approximately 0.4 Alfvén times, or 24.5 s.

Figure 3.5 shows the transformed vertical velocity (ṽz) for a range of values forkx. We know from the

wave equations (3.37) and (3.38) that whenkx = 0 the fast and slow magnetoacoustic modes are completely

decoupled. It is therefore no surprise that we do not see a change in the amplitude of the slow wave as it

travels across the domain forkx = 0. Even for very small values ofkx, such askx = 0.25 andkx = π/10,

the mode conversion is so insignificant that it is not at all visible in the plots. It is only forkx = 1 that

we begin to see a change in amplitude as the wavefront crossescs = vA (denoted by the red dashed line).

This change in amplitude becomes more significant as the value ofkx increases, with more and more of the

incident wave being converted into a slow wave. The plots ofkx = 5 andkx = 7 show the slow wave quite

clearly, as the amplitude of the transmitted fast wave has significantly decreased. This allows us to observe

that the wavelength of the converted slow wave is decreasingas the wave progresses.

3.3.2.2 Varying the Driving Frequency

We have already seen that the amount of conversion increaseswith increasingkx. Next we look at what

happens if we fix the wavenumber atkx = π and vary the driving frequencyω. We have three different

values of the frequency,ω = 2π, 2π
√

6 and4π
√

6, corresponding to periods of 60 s, 24.5 s and 12.3 s

respectively. Figure 3.6 shows the transformed vertical velocity (ṽx) at these frequencies. It is easy to see

from these plots that asω increases, the transmission increases and so the conversion is decreasing; this

is in agreement with Cally (2005). Thus the amount of mode conversion increases with increasingkx but

decreases with increasingω.

3.4 Analytical Approximations

Using the numerical solution we have described qualitatively what is occurring. For the remainder of this

investigation we try to quantify what is happening by calculating the amplitudes of the transmitted and

converted waves and finding the change in phase as the incident slow mode undergoes conversion. We plan

to do this using analytical techniques and approximations.
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Figure 3.5: Transformed vertical velocity forω = 2π
√

6 at t = 13.5 Alfv én times. The plots show the
results forkx = 0, 0.25, π/10, 1, π/2, 2, π, 5 and7 respectively from top left to bottom right. The dashed
red line indicates wherecs = vA.

Figure 3.6: Transformed vertical velocity forkx = π at t = 13.5 Alfv én times. The plots show the results
for ω = 2π, 2π

√
6 and4π

√
6 respectively from left to right. The dashed red line indicates wherecs = vA.
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3.4.1 Smallk
x

Limit

Much of the literature concerning mode conversion may be found in the field of plasma physics, particularly

relating to ion cyclotron heating in tokamaks. In this area Cairns and Lashmore-Davies (1983, 1986) and

Cairns and Fuchs (1989) developed a method of solving mode-conversion problems. Firstly they derived

differential equations describing the coupled mode amplitudes from the local dispersion relation. These

equations could then be solved analytically to find the transmission and conversion coefficients. In relation

to the simulations this method can be applied whenkx is small, andω sufficiently large in comparison to

kx (ω ≫ kxcs).

Starting with the wave equations (3.37) and (3.38) we may assume that the time variation behaves as

eiωt so that∂/∂t = iω

(
v2
A

d2

dz2
−
(
c2s + v2

A

)
k2
x + ω2

)
vx = kxc

2
s

(
d

dz
− 1

γ

)
vz, (3.48)

(
c2s

d2

dz2
− c2s

d

dz
+ ω2

)
vz = −kxc2s

(
d

dz
− 1

γ
(γ − 1)

)
vx. (3.49)

Making the substitutionvz = iez/2Vz/cs removes the first derivative on the left-hand side of Equa-

tion (3.49). We may then neglect terms involvingkx in comparison to those involvingω; also, askx is

small we may neglectvx andvz in comparison to their first derivatives with respect toz, and so on. Thus

Equations (3.48) and (3.49) reduce down to

(
v2
A

d2

dz2
+ ω2

)
vx = ikxcsvA

dVz
dz

, (3.50)

(
c2s

d2

dz2
+ ω2

)
Vz =

ikxc
3
s

vA

dvx
dz

. (3.51)

These equations may be written as

(
d

dz
+
iω

vA

)(
d

dz
− iω

vA

)
vx =

ikxcs
vA

dVz
dz

, (3.52)

(
d

dz
+
iω

cs

)(
d

dz
− iω

cs

)
Vz =

ikxcs
vA

dvx
dz

, (3.53)

so that the coefficients multiplying the derivative on the right-hand side of each equation are now identical

and the pair of brackets on the left-hand side represent two waves, one travelling upwards and the other

downwards for each equation. The equation forvx is driven by theVz that is driven on the upper boundary.

This inhomogeneous term has a wavenumber inz given byω/cs and atzc, wherevA (zc) = cs, there is

a resonance between the downward travelling waves and the amplitude ofvx increases rapidly while the

amplitude ofVz is reduced. This is mode conversion.

Expandingz = zc + ξ around the mode-conversion region (i.e. for the downward propagating waves

described by the brackets containing minus signs) we haved/dz = d/dξ and

vA = ezc/2eξ/2 = cse
ξ/2. (3.54)
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Using the Taylor expansion of the exponential term this becomes

vA = cs

(
1 +

ξ

2
+ . . .

)
, (3.55)

where we may take as many terms as we require. For the remaining terms we may replaced/dz by iω/cs.

The equations may thus be written

dvx
dξ

− i

(
ω

cs
− ω

2cs
ξ

)
vx =

ikx
2
Vz, (3.56)

dVz
dξ

− iω

cs
Vz =

ikx
2
vx. (3.57)

Using Equations (3.56) and (3.57) we may show that energy is conserved in this system. If we begin

with Equation (3.56) and multiply through by its complex conjugatev̄x we obtain

v̄x
dvx
dξ

− i

(
ω

cs
− ω

2cs
ξ

)
v̄xvx =

ikx
2
v̄xVz, (3.58)

and taking the complex conjugate

vx
dv̄x
dξ

+ i

(
ω

cs
− ω

2cs
ξ

)
vxv̄x = − ikx

2
vxV̄z. (3.59)

Adding Equations (3.58) and (3.59) we find

d

dξ

(
|vx|2

)
=
ikx
2

(
v̄xVz − vxV̄z

)
. (3.60)

Performing a similar analysis on Equation (3.57) we may add Equations (3.61) and (3.62)

V̄z
dVz
dξ

− iω

cs
V̄zVz =

ikx
2
V̄zvx, (3.61)

Vz
dV̄z
dξ

+
iω

cs
VzV̄z = − ikx

2
Vz v̄x, (3.62)

to obtain

d

dξ

(
|Vz|2

)
= − ikx

2

(
v̄xVz − vxV̄z

)
. (3.63)

If we then add Equations (3.60) and (3.63) we find

d

dξ

(
|vx|2 + |Vz|2

)
= 0, (3.64)

and so energy is conserved.
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Returning to Equation (3.56) we may eliminatevx using Equation (3.57) to find a second order differen-

tial equation forVz

d2Vz
dξ2

+
iω

cs

(
ξ

2
− 2

)
dVz
dξ

+

(
ω2

c2s

(
ξ

2
− 1

)
+
k2
x

4

)
Vz = 0. (3.65)

By making the substitution

Vz (ξ) = exp

(
iω

cs
ξ − iω

8cs
ξ2
)
ψ (ξ) , (3.66)

the first derivative term in Equation (3.65) drops out to leave

d2ψ

dξ2
+

(
ω2

16c2s
ξ2 − iω

4cs
+
k2
x

4

)
ψ = 0. (3.67)

Finally we make the substitution

ζ =

(
ω

2cs

)1/2

e3iπ/4ξ, (3.68)

to obtain

d2ψ

dζ2
−
(
ζ2

4
− 1

2
− ik2

xcs
2ω

)
ψ = 0. (3.69)

The advantage of writing Equation (3.65) in this form is thatthe solution is known in terms of the Parabolic

Cylinder functionU (a, ζ) where

a = −1

2
− ik2

xcs
2ω

. (3.70)

The asymptotic behaviour of these functions is described indetail in Abramowitz and Stegun (1964). Tak-

ing the asymptotic solutions used in Cairns and Lashmore-Davies (1983), in low-β plasma (ξ > 0)

Vz (ξ) ∼
(
ω

2cs

)ik2

xcs/(4ω)

exp

(
πk2

xcs
8ω

)
|ξ|ik

2

xcs/(2ω)
exp

(
iω

cs
ξ

)
, (3.71)

and in high-β plasma (ξ < 0)

Vz (ξ) ∼
(
ω

2cs

)ik2

xcs/(4ω)

exp

(
−3πk2

xcs
8ω

)
ξikxcs/(2ω) exp

(
iω

cs
ξ

)
− (2π)1/2

Γ (−ik2
xcs/ (2ω))

×

× exp

(
−πk

2
xcs

8ω

)(
ω

2cs

)−(ik2

xcs/(4ω))−1/2

ξ−(ik2

xcs/(2ω))−1 exp

(
iω

cs
ξ − iω

4cs
ξ2 − 3iπ

4

)
. (3.72)

Remembering the assumption thatω ≫ kxcs we may utilise the WKB method to find approximations

to the transmitted and converted components ofVz. To find an expression for the transmitted wave we may
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assume thatvx is small in comparison toVz so

vx =
Vx0
ω

exp

(
ωφ0 +

φ1

ω

)
, (3.73)

Vz = B exp

(
ωφ0 +

φ1

ω

)
, (3.74)

whereωφ0 ≫ φ1/ω, Vx0/ω.

Substituting these expansions into Equations (3.56) and (3.57) we obtain the expressions

Vx0φ
′
0 +

V ′
x0

ω
+
Vx0
ω2

φ′1 −
i

cs
Vx0 +

i

2cs
ξVx0 =

ikx
2
B, (3.75)

Bωφ′0 +
Bφ′1
ω

− Biω

cs
=
ikx
2ω

Vx0. (3.76)

Equating the various powers ofω we find that

φ0 =
i

cs
ξ, Vx0 =

Bkxcs
ξ

, φ1 =
ik2
xcs
2

ln ξ. (3.77)

Substituting these values back into Equation (3.74) we havean expression for the transmitted component

of Vz

Vz = Bξik
2

xcs/(2ω) exp

(
iω

cs
ξ

)
. (3.78)

To find the converted portion ofVz we may follow the same process, this time assuming thatVz is small

in comparison tovx

vx = A exp

(
ωφ0 +

φ1

ω

)
, (3.79)

Vz =
Vz0
ω

exp

(
ωφ0 +

φ1

ω

)
, (3.80)

whereωφ0 ≫ φ1/ω, Vz0/ω. Substituting these into Equations (3.56) and (3.57) we find

Aωφ′0 +
Aφ′1
ω

− Aiω

cs
+
Aiω

2cs
ξ =

ikx
2ω

Vz0, (3.81)

Vz0φ
′
0 +

V ′
z0

ω
+
Vz0
ω2

φ′1 −
i

cs
Vz0 =

Aikx
2

. (3.82)

Again examining the powers ofω we find values for the unknown coefficients

φ0 =
i

cs
ξ − i

4cs
ξ2, Vz0 = −Akxcs

ξ
, φ1 = − ik

2
xcs
2

ln ξ. (3.83)
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Substituting these values back into Equation (3.80) we havean expression for the converted part ofVz

Vz = −kxcs
ω

Aξ−(ik2

xcs/(2ω))−1 exp

(
iω

cs
ξ − iω

4cs
ξ2
)
. (3.84)

As Equations (3.78) and (3.84) are both solutions to the samelinear, ordinary differential equation they

may be added together, so

Vz ∼ Bξik
2

xcs/(2ω) exp

(
iω

cs
ξ

)
− kxcs

ω
Aξ−(ik2

xcs/(2ω))−1 exp

(
iω

cs
ξ − iω

4cs
ξ2
)

+ O
(

1

ξ2

)
, (3.85)

which corresponds to the asymptotic expansion found from the Parabolic Cylinder function solution.

We may compare Equations (3.71), (3.72) and (3.85) to find thevalues ofA andB, which give the

amplitude of the converted wave and the transmitted wave in comparison to the incident wave respectively.

If we take the coefficient multiplying theξik
2

xcs/(2ω) exp (iωξ/cs) term in Equations (3.71) and (3.72) and

divide the high-β equation by the low-β one, thenB must take the value

B = exp

(
−πk

2
xcs

2ω

)
. (3.86)

Similarly by comparing the relevant terms in Equations (3.72), (3.71) and (3.85) we find

A =
2 (2π)1/2

kxΓ (−ik2
xcs/ (2ω))

exp

(
−πk

2
xcs

4ω

)(
ω

2cs

)1/2

exp

(
−3iπ

4

)(
ω

2cs

)−ik2

xcs/(2ω)

. (3.87)

Since we are interested only in the amplitude at this point, the last two imaginary terms may be neglected

as they only effect the phase. We may then note that (Gradshteyn and Ryzhik, 1981)

|Γ (iy)|2 = |Γ (−iy)|2 =
π

y sinh (πy)
, (3.88)

so the equation may be solved to give

A =

√
1 − exp

(
−πk

2
xcs
ω

)
. (3.89)

Thus if we know the amplitude of the incident wave then we may calculate the amplitude of the transmit-

ted and converted waves after the mode-conversion region. Substituting Equations (3.86) and (3.89) into

Equation (3.85) we may calculateVz for anyω andkx. Figure 3.7 showsVz as a function ofz given for

ω = 4π
√

6 andk = π, and is in good agreement with the numerical simulations. More rigorously, if we

take the ratio of the transmitted wave (dashed line to the left of z = 0) to the incident wave (dashed line

to the right ofz = 0) for numerical simulations with various values ofkx we may determine how well the

predicted transmitted wave ratios correspond to the numerical data (Figure 3.8).
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Figure 3.7: Vertical velocity as predicted by Equation (3.85) with ω = 4π
√

6 andkx = π. The vertical
red dashed line denotes wherecs = vA; the horizontal dashed line to the right of this shows the predicted
amplitude of the incident wave and to the left the predicted amplitude of the transmitted wave.

Figure 3.8 shows the agreement between the predicted amplitude ratio of the transmitted fast wave to

the incident slow wave (solid line) and the numerical data (stars) forω = 4π
√

6. The plot on the left

demonstrates near perfect agreement; however, in the righthand plot, we can see by taking the logarithm of

the ratios that askx becomes large in comparison toω the data do not agree so well with the prediction. This

is hardly surprising as it violates the assumption thatω ≫ kxcs in the calculation of Equation (3.86). Thus,

in the limit of smallkx, we have found a highly accurate prediction for the amplitude of the transmitted

wave. It is more difficult to perform such a comparison for theconverted slow wave as we cannot get rid of

the interference due to the fast wave, but we may assume that Equation (3.89) also gives a good amplitude

prediction.

In support of Section 3.3.2 Figure 3.9 shows that askx increases, conversion increases and transmission

decreases, and asω increases, conversion decreases and transmission increases. We may also note that

the change withω is much more gradual than that withkx, so the horizontal wavenumber has the stronger

effect as we would expect from Equations (3.86) and (3.89).
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Figure 3.8:Left: Ratio of the transmitted and incident wave amplitudes.
Right: Logarithm of the ratio of the transmitted and incident wave amplitudes.
In both casesω = 4π

√
6 and the solid line is that predicted by Equation (3.86) and the stars are the values

calculated from the numerical data.

Figure 3.9:Top Left:The variation ofA with kx for ω = 2π
√

6.
Top Right:The variation ofB with kx for ω = 2π

√
6.

Bottom Left:The variation ofA with ω for kx = π.
Bottom Right:The variation ofB with ω for kx = π.
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3.4.2 Largek
x

Limit

For largekx we may compare the numerical simulations with an analyticalapproximation derived by

Roberts (2006). In that paper the slow mode was extracted from the MHD equations by scaling the vari-

ables, allowing a description of the slow mode to be found in terms of the Klein-Gordon equation. Starting

with the wave equations (3.37) and (3.38)

(
v2
A

∂2

∂z2
−
(
c2s + v2

A

)
k2
x −

∂2

∂t2

)
vx = kxc

2
s

(
∂

∂z
− 1

γ

)
vz, (3.90)

(
c2s
∂2

∂z2
− c2s

∂

∂z
− ∂2

∂t2

)
vz = −kxc2s

(
∂

∂z
− 1

γ
(γ − 1)

)
vx, (3.91)

we may assume thatkx is large so Equation (3.90) reduces down to

(
c2s + v2

A

)
kxvx + kxc

2
s

(
∂

∂z
− 1

γ

)
vz = 0. (3.92)

This may then be used to eliminatevx from Equation (3.91) which reduces to

∂2vz
∂t2

− c2T
∂2vz
∂z2

+
c4T
c2s

∂vz
∂z

+
c2sc

2
T

γv2
A

(
c2T
c2s

−
(

1

γ
− 1

))
vz = 0, (3.93)

after a little manipulation. If we introduce

Q (z, t) =

(
ρ0c

2
T

ρ0 (0) c2T (0)

)1/2

vz (z, t) , (3.94)

then the first derivative drops out and Equation (3.93) may bewritten in the form of the Klein-Gordon

equation

∂2Q

∂t2
− c2T

∂2Q

∂z2
+ Ω2Q = 0, (3.95)

where

Ω2 = c2T

{
1

4

c4T
c4s

− c4T
2c2sv

2
A

+
c2s
γv2
A

(
c2T
c2s

−
(

1

γ
− 1

))}
, (3.96)

is a cutoff frequency.

As we can see from Figure 3.10 the maximum value of the cutoff frequency isΩ ≈ 0.5235, so as long as

the driving frequency we choose is much larger than this the term involvingΩ may be neglected. Assuming

that this is the case we may solve Equation (3.95) using the formal WKB method (as described in Bender

and Orszag (1978)) to find a leading order solution forQ (z, t) valid for largeω to get
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Figure 3.10: The cutoff frequencyΩ shown across the computational domainz.

Q (z, t) ∼ C1

(
− 1

c2T

)−1/4

exp

{
ω

[
it+

∫ z

zm

(
− 1

c2T

)1/2

dẑ

]}
+

+C2

(
− 1

c2T

)−1/4

exp

{
−ω

[
it+

∫ z

zm

(
− 1

c2T

)1/2

dẑ

]}
, (3.97)

whereC1 andC2 are arbitrary constants which may be determined from the initial or boundary conditions

andzm is the maximum value ofz. It is fairly easy to show that

(
− 1

c2T

)−1/4

= i−1/2c
1/2
T , (3.98)

and

∫ z

zm

(
− 1

c2T

)1/2

dẑ = ±i
∫ z

zm

1

cT
dẑ. (3.99)

Using Equations (3.98) and (3.99) we may rewrite Equation (3.97) in the form

Q (z, t) ∼ Cc
1/2
T sin

{
ω

[
t+

∫ z

zm

1

cT
dẑ

]}
, (3.100)

whereC is a new arbitrary constant. It makes sense to write the equation in this form as we drive a sine

wave invz on the upper boundary. Performing the necessary integration we find that
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Figure 3.11: Vertical velocity for driving frequencyω = 4π
√

6 and wavenumberkx = 40π at t = 13.5
Alfv én times. The solid line shows the numerical simulation and the dashed line the amplitude predicted
by Equation (3.102).

Q (z, t) ∼ Cc
1/2
T sin

{
ω

[
t+

1

cs
ln

∣∣∣∣
(cT + cs) (cT (zm) − cs)

(cT − cs) (cT (zm) + cs)

∣∣∣∣ −

−2

(
1

cT
− 1

cT (zm)

)]}
. (3.101)

Using Equation (3.94) and the upper boundary condition onvz (3.40) we obtain an expression forvz

vz (z, t) =
c
1/2
T (zm) vA

vA (zm) c
1/2
T

sin

{
ω

[
t+

1

cs
ln

∣∣∣∣
(cT + cs) (cT (zm) − cs)

(cT − cs) (cT (zm) + cs)

∣∣∣∣ −

−2

(
1

cT
− 1

cT (zm)

)]}
. (3.102)

Figure 3.11 shows the amplitude predicted by Equation (3.102) overplotted on the results of the numer-

ical simulations. By eye these seem to be in prefect agreement. We may then use Equation (3.92) along

with Equation (3.102) to find an analytical approximation tovx. The amplitude predicted from this approx-

imation is shown in Figure 3.12 in comparison to the numerical data. At the top end of the domain the

two seem to be in good agreement; however asz decreases, particularly once we passz = 0, the analytical

approximation deviates from the numerical solution. This is surprising considering how well the approxi-

mation forvz performed, at least until we look at the transformed vertical velocity (Figure 3.13). We can

then see that the analytical approximation tovz also deviates from the numerical solution asz decreases -

previously it was masked by the strong exponential nature ofthe velocity. This discrepancy between the

analytical and numerical data does decrease with increasing kx, but it seems thatkx must be much, much

larger thanω in order to obtain a high level of agreement. This is due to thefact that the secondz derivative
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Figure 3.12: Horizontal velocity for driving frequencyω = 4π
√

6 and wavenumberkx = 40π at t = 13.5
Alfv én times. The solid line shows the numerical simulation and the dashed line the amplitude predicted
by Equations (3.92) and (3.102).

Figure 3.13: Transformed vertical velocity,ṽz, for driving frequencyω = 4π
√

6 and wavenumberkx =
40π at t = 13.5 Alfv én times. The solid line shows the numerical simulation and the dashed line the
amplitude predicted by Equation (3.102).
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in Equation (3.90) becomes large asz → −∞ and it is no longer negligible.

3.4.3 WKB Analysis away from the Conversion Region

Having looked in detail at what is occurring around the mode-conversion region whereβ ≈ 1, we move on

to consider the behaviour of the system in high- and low-β plasma. We do this using a WKB style analysis

which is valid for largeω.

We begin with the wave equations (3.37) and (3.38) with∂/∂t = iω

(
v2
A

d2

dz2
−
(
c2s + v2

A

)
k2
x + ω2

)
vx = kxc

2
s

(
d

dz
− 1

γ

)
vz, (3.103)

(
c2s

d2

dz2
− c2s

d

dz
+ ω2

)
vz = −kxc2s

(
d

dz
− 1

γ
(γ − 1)

)
vx. (3.104)

Then under the assumption thatω ≫ kxcs we expandvx andvz in inverse powers ofω. To find equations

which will model the incident and transmitted waves we make the assumption thatvx is small compared to

vz

vx =
Vx0
ω

exp (ωφ0 + φ1 + φ2/ω), (3.105)

vz = exp (ωφ0 + φ1 + φ2/ω), (3.106)

whereωφ0 ≫ φ1 ≫ φ2/ω, Vx0/ω.

Substituting these back into the wave equations we obtain

ω
(
1 + v2

A (φ′0)
2
)
Vx0 = ωkxc

2
sφ

′
0 + O (1) , (3.107)

and

ω2
(
1 + c2s (φ′0)

2
)

+ ωc2s (φ′′0 + 2φ′0φ
′
1 − φ′0) + c2s

(
φ′′1 + (φ′1)

2
+ 2φ′0φ

′
2 − φ′1

)
=

= −kc2sφ′0Vx0 + O
(

1

ω

)
, (3.108)

where′ = d/dz.

From theO
(
ω2
)

terms in Equation (3.108) we haveφ′0 = i/cs soφ0 = iz/cs andφ′′0 = 0. We may

substitute these back into theO (ω) equations to find

φ1 =
z

2
, (3.109)

Vx0 = − ikxc
3
s

(v2
A − c2s)

. (3.110)
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These may then be substituted into theO (1) equation from which we obtain

φ2 =
ik2
xcs
2

ln

∣∣∣∣
v2
A − c2s
v2
A

∣∣∣∣−
ics
8
z. (3.111)

Returning to Equations (3.105) and (3.106) we have

vx = − ikxc
3
se
z/2

ω (v2
A − c2s)

exp

(
iω

cs
z +

i

ω

(
k2
xcs
2

ln

∣∣∣∣1 − c2s
v2
A

∣∣∣∣−
cs
8
z

))
, (3.112)

vz = ez/2 exp

(
iω

cs
z +

i

ω

(
k2
xcs
2

ln

∣∣∣∣1 − c2s
v2
A

∣∣∣∣−
cs
8
z

))
, (3.113)

which may also be written in the form

vx = − kxc
3
se
z/2

ω (v2
A − c2s)

cos

(
ωz

cs
+

1

ω

(
k2
xcs
2

ln

∣∣∣∣1 − c2s
v2
A

∣∣∣∣−
cs
8
z

))
, (3.114)

vz = ez/2 sin

(
ωz

cs
+

1

ω

(
k2
xcs
2

ln

∣∣∣∣1 − c2s
v2
A

∣∣∣∣−
cs
8
z

))
. (3.115)

In low-β plasma Equations (3.114) and (3.115) represent the incident slow wave and in high-β plasma

they represent the transmitted fast wave. Depending on whether we are considering the incident or trans-

mitted wave there will be a different constant amplitude multiplying the equations which may be calculated

from Equation (3.86).

Now to find an equation which gives the behaviour of the converted wave we must assume thatvz is

small in comparison tovx

vx = exp (ωφ0 + φ1 + φ2/ω), (3.116)

vz =
Vz0
ω

exp (ωφ0 + φ1 + φ2/ω), (3.117)

whereωφ0 ≫ φ1 ≫ φ2/ω, Vz0/ω.

As before, these may be substituted back into Equations (3.103) and (3.104) to find

ω2
(
1 + v2

A (φ′0)
2
)

+ ωv2
A (φ′′0 + 2φ′0φ

′
1) +

(
v2
Aφ

′′
1 + v2

A (φ′1)
2

+ 2v2
Aφ

′
0φ

′
2−

−
(
c2s + v2

A

)
k2
x

)
= kxc

2
sφ

′
0Vz0 + O

(
1

ω

)
, (3.118)

and

ω
(
1 + c2s (φ′0)

2
)
Vz0 = −ωkxc2sφ′0 + O (1) . (3.119)
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TheO
(
ω2
)

equation tells us thatφ′0 = i/vA. So we haveφ′′0 = −i/ (2vA) and, integrating between0

andz, φ0 = 2i/cs − 2i/vA. We may substitute these back into theO (ω) equations to find

φ1 =
z

4
, (3.120)

Vz0 = − ikxc
2
svA

(v2
A − c2s)

. (3.121)

These may then be substituted into theO (1) equation from which we obtain

φ2 = ik2
xcs tanh−1

(
vA
cs

)
+
ivA
16

− ik2
xvA. (3.122)

Returning to Equations (3.116) and (3.117) we have

vx = ez/4 exp

(
2iω

cs
− 2iω

vA
+
i

ω

(
k2
xcs tanh−1

(
vA
cs

)
+
vA
16

− k2
xvA

))
, (3.123)

vz = − ikxc
2
svAe

z/4

ω (v2
A − c2s)

exp

(
2iω

cs
− 2iω

vA
+
i

ω

(
k2
xcs tanh−1

(
vA
cs

)
+
vA
16

− k2
xvA

))
, (3.124)

which may also be written in the form

vx = ez/4 cos

(
2ω

cs
− 2ω

vA
+

1

ω

(
k2
xcs tanh−1

(
vA
cs

)
+
vA
16

− k2
xvA

))
, (3.125)

vz = −kxc
2
svAe

z/4

ω (v2
A − c2s)

sin

(
2ω

cs
− 2ω

vA
+

1

ω

(
k2
xcs tanh−1

(
vA
cs

)
+
vA
16

− k2
xvA

))
. (3.126)

In this casevx andvz are both zero in the low-β plasma as the fast wave is evanescent there. In the high-β

plasma Equations (3.125) and (3.126) represent the converted slow wave, which will again have a constant

coefficient multiplying both equations; this can be calculated from Equation (3.89).

To summarise we have:

Low β: Inc. vx = −a kxc
3
se
z/2

ω (v2
A − c2s)

cos

(
ωz

cs
+

1

ω

(
k2
xcs
2

ln

∣∣∣∣1 − c2s
v2
A

∣∣∣∣−
cs
8
z

))
,

vz = aez/2 sin

(
ωz

cs
+

1

ω

(
k2
xcs
2

ln

∣∣∣∣1 − c2s
v2
A

∣∣∣∣−
cs
8
z

))
,

High β: Trans. vx = −aB kxc
3
se
z/2

ω (v2
A − c2s)

cos

(
ωz

cs
+

1

ω

(
k2
xcs
2

ln

∣∣∣∣1 − c2s
v2
A

∣∣∣∣−
cs
8
z

))
,

vz = aBez/2 sin

(
ωz

cs
+

1

ω

(
k2
xcs
2

ln

∣∣∣∣1 − c2s
v2
A

∣∣∣∣−
cs
8
z

))
,

Conv. vx = aAez/4 cos

(
2ω

cs
− 2ω

vA
+

1

ω

(
kxc

2
s tanh−1

(
vA
cs

)
+
vA
16

− k2
xvA

))
,

vz = −aAkxc
2
svAe

z/4

ω (v2
A − c2s)

sin

(
2ω

cs
− 2ω

vA
+

1

ω

(
kxc

2
s tanh−1

(
vA
cs

)
+
vA
16

− k2
xvA

))
,

wherea = e−zm/2, andA andB are as defined by Equations (3.86) and (3.89).
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Figure 3.14: The numerical and analytical horizontal velocity and the numerical and analytical vertical
velocity respectively from top left to bottom right. In all plots ω = 4π

√
6, kx = π andt = 13.5 Alfv én

times.

Figure 3.15: The numerical and analytical transformed vertical velocity for ω = 4π
√

6, kx = π and
t = 13.5 Alfv én times.
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Figure 3.16: The absolute error between the results of the WKB analysis and the numerical simulations
zoomed in aroundz = 0 (wherecs = vA). The dashed line showsz = ±1/ω demonstrating that the WKB
analysis only breaks down very close to the conversion region.

In Figure 3.14 we have used the above information, along withthe knowledge of the positions of the

various wavefronts from Equations (3.43) and (3.45), to construct analytical plots of the horizontal and

vertical velocity (right-hand side). These are shown next to plots of the equivalent numerical simulations

(left-hand side). The agreement between these plots is excellent, although the strong exponential nature in

the plots of the vertical velocity could disguise any deviation in the results. To ensure this is not the case

we also checked the agreement in the absence of the exponential (Figure 3.15).

Using the WKB method to find the wave behaviour away from the conversion region and then matching

the amplitudes across this region using the method developed by Cairns and Lashmore-Davies has been

very successful. The WKB analysis has predicted the phase and amplitude behaviour accurately, and using

the transmission and conversion coefficients we have been able to predict the correct amplitudes for the

different modes. The only place where the analytical prediction suffers is at the mode-conversion point,

z = 0, ascs = vA and the transmittedvx and convertedvz both have a zero in the denominator and thus

grow very large. However the effect of this singularity is restricted to a very small area. This is because

the singularity is multiplied by a factor of1/ω in all cases and asω is assumed to be large the effect of

the singularity is thus reduced. This is clear in Figure 3.16which shows the difference between the WKB

and numerical results. The error clearly grows at the mode-conversion region, but at a distance of only1/ω

from this point it has reduced back to its previous magnitude.

It is fairly straightforward to show how the results of this section link in with those of Section 3.4.1 as

the mode-conversion region is approached. We may do this by assumingz is small and expanding about the

mode-conversion region, soz = ξ andvA is as defined in Equation (3.55). Remembering thatvz ≈ ez/2Vz
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the transmitted wave may be written

Vz ≈ B exp

(
iω

cs
ξ +

ik2
xcs
2ω

ln ξ

)
, (3.127)

where small terms have been omitted. This may also be written

Vz ≈ Bξik
2

xcs/(2ω) exp

(
iω

cs
ξ

)
. (3.128)

Following the same process for the converted wave

Vz ≈ −kxcs
ωξ

A exp

(
iω

cs
ξ − iω

4cs
ξ2 +

ik2
xcs
2ω

ln ξ−1

)
, (3.129)

or

Vz ≈ −kxcs
ω

Aξ−ik
2

xcs/(2ω)−1 exp

(
iω

cs
ξ − iω

4cs
ξ2
)
. (3.130)

Adding Equations (3.128) and (3.130) we obtain

Vz ≈ Bξik
2

xcs/(2ω) exp

(
iω

cs
ξ

)
− kxcs

ω
Aξ−ik

2

xcs/(2ω)−1 exp

(
iω

cs
ξ − iω

4cs
ξ2
)
, (3.131)

and we have obtained the same result found in Equation (3.85), so we can see how these two solutions

match onto each other at the conversion region.

3.5 Conclusions

In this chapter we have considered the downward propagationof linear waves through an isothermal at-

mosphere permeated by a vertical background magnetic field,shown in Figure 3.1. More specifically we

concentrated on the region where the wave passes from a low-β to a high-β plasma. As expected the simu-

lations show mode conversion occurring as the wave passes through this region at the point where the sound

and Alfvén speeds are equal (Figure 3.2), but this behaviour is masked by the strongly exponential nature of

the variables. This may be removed by making a simple transformation, and the conversion acrosscs = vA

is then much clearer (Figure 3.3). In this figure we can see thetransmitted fast wave propagating out in front

of the converted slow wave, which has a decreasing wavelength. In Section 3.3.1 we also calculated the

exact position of the various wavefronts using the fact thatin the high-β plasma the fast wave propagates

at approximatelycs and the slow wave approximatelyvA. We then looked at what happens when we vary

the free parameters in the model individually, beginning with the horizontal wavenumberkx. Figure 3.5

shows thatkx has a strong effect on the amount of mode conversion. Forkx = 0 the two modes are com-

pletely decoupled and no conversion occurs. Then askx increases so does the degree of mode conversion.

In Sections 3.4.1 and 3.4.2 we investigated what happens in the limit of small and largekx respectively.

The second free parameter is the driving frequencyω. The effect of varying this parameter is shown in

Figure 3.6. Here we note that the amount of conversion decreases with increasingω, in agreement with
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Cally (2005).

In the limit of smallkx we used a method developed by Cairns and Lashmore-Davies (1983) to find that

the velocity may be modelled by Parabolic Cylinder functions. These have links to Hypergeometric func-

tions (see Abramowitz and Stegun (1964)) which have been used previously in mode-conversion problems

by Zhugzhda (1979); Zhugzhda and Dzhalilov (1982a); and Cally (2001). The asymptotic behaviour of

these Parabolic Cylinder functions was then used to find transmission and conversion coefficients valid for

smallkx. The transmission and conversion coefficients, given by Equations (3.86) and (3.89), back up the

observations from the simulations that the extent of conversion will increase with increasing wavenumber

and decreasing driving frequency. The equations do suggestthatkx has the stronger effect of the two pa-

rameters. The amplitude of the transmitted wave predicted from Equation (3.86) also agrees very well with

the numerical data (Figure 3.8).

For largekx we followed an analysis carried out by Roberts (2006). From this we found a WKB solution

for vz valid for largeω (Equation (3.102)). This in turn was used to find an analytical solution forvx using

Equation (3.92). Figure 3.11 suggests that we have good agreement between the analytical and numerical

results forvz; however once we remove the exponential behaviour we can seethat asz decreases the fit

of the analytical approximation worsens, particularly past the conversion point (Figure 3.12). Figure 3.13

shows that this is also the case for the horizontal velocity.The fit does improve askx increases, but it is still

not significantly better even for very largekx.

Finally we performed a WKB analysis to find the behaviour in low- and high-β plasmas. These solutions

were then matched across the conversion region using the transmission and conversion coefficients (3.86)

and (3.89) which were calculated in Section 3.4.1. Using this method we managed to create a highly

accurate replica of the numerical results, shown in Figure 3.14. As can be seen we have managed to capture

both changes to the phase and the amplitude as the wavefront propagates across the mode-conversion region,

even though the WKB approximation does not hold at the location wherecs = vA.

A thorough investigation of this very simple one-dimensional model has yielded some very interesting

results, giving us some insight into the mode-conversion problem. We have been able to accurately predict

how the phase and amplitude change as a slow wave propagates down from low to highβ, and also to isolate

the behaviour of the transmitted fast wave and the convertedslow wave. In the next chapter we extend this

model to include a non-isothermal atmosphere. We use a realistic profile which mimics the steep gradient

of the transition region. The methods used in this chapter are applied to this more complex model and give

some interesting results.



Chapter 4

MHD Mode Conversion in a

Stratified Non-Isothermal Atmosphere

4.1 Introduction

We expand on the work in Chapter 3 by allowing for the inclusion of a variable temperature profile. By using

analytical approximations to model the behaviour both at, and distant from, the mode-conversion region

combined with numerical simulations, we may compare the results directly with those for the isothermal

atmosphere. Some of the results in this chapter have been published in McDougall and Hood (2008).

4.2 Non-Isothermal Model

We work with the same general set up as Chapter 3 (as shown in Figure 3.1). Since variations are now

allowed in the temperature profile things are complicated slightly as both the sound and Alfvén speeds will

now vary with height. As before we begin with the Ideal MHD equations.

4.2.1 Ideal MHD Equations

The Ideal MHD equations are as given by Equations (1.28) – (1.35).

∂ρ

∂t
+ ∇ · (ρv) = 0, (4.1)

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p+ j × B + ρg, (4.2)

∂B

∂t
= ∇× (v × B) , (4.3)

(
∂

∂t
+ v · ∇

)
p =

γp

ρ

(
∂

∂t
+ v · ∇

)
ρ, (4.4)

p = Rρ
T

µ̃
, (4.5)

j =
1

µ
(∇× B) , (4.6)

84
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∇ · B = 0, (4.7)

whereρ is the mass density,v the fluid velocity,p the gas pressure,j the current density,B the magnetic

induction,g the gravitational acceleration andT the temperature.

4.2.2 Equilibrium

We now consider the equilibrium conditions for a gravitationally-stratified atmosphere permeated by a

uniform, vertical magnetic field with a non-isothermal temperature profile. The equilibrium Momentum

Equation is

dp0

dz
= −ρ0g, (4.8)

and from the equilibrium Ideal Gas Law

p0 = Rρ0
T0

µ̃
, (4.9)

this can be written

dp0

dz
= − µ̃p0

RT0
g. (4.10)

Note that the temperature is now a function of height and so the scale height will also vary with height. We

define this as

Λ (z) =
RT0

µ̃g
=

p0

gρ0
. (4.11)

Thus

dp0

dz
= −p0

Λ
, (4.12)

which may be solved to give

p0 (z) = p0 (0) exp

(
−
∫

1

Λ
dz

)
. (4.13)

Defining

n (z) =

∫ z

0

dz′

Λ (z′)
, (4.14)

this may be written as

p0 (z) = p0 (0) e−n(z). (4.15)
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Using the equilibrium Ideal Gas Law (4.9),ρ0 (z) is then

ρ0 (z) =
p0 (0)

gΛ (z)
e−n(z), (4.16)

or

ρ0 (z) = ρ0 (0)
Λ (0)

Λ (z)
e−n(z). (4.17)

4.2.3 Linearised MHD Equations

The MHD Equations (4.1) – (4.7) may be linearised about the equilibrium by adding a small perturbation

(denoted by subscript 1) to each term

B = B0 + B1 (x, z, t) , v = v1 (x, z, t) , p = p0 + p1 (x, z, t) ,

ρ = ρ0 + ρ1 (x, z, t) , T = T0 + T1(x, z, t). (4.18)

Substituting these back into the MHD equations and neglecting small quantities we find the Linearised

MHD equations:

∂ρ1

∂t
+ ∇ · (ρ0v1) = 0, (4.19)

ρ0
∂v1

∂t
= −∇p1 +

1

µ
(∇× B1) × B0 + ρ1g, (4.20)

∂B1

∂t
= ∇× (v1 × B0) , (4.21)

∂p1

∂t
+ (v1 · ∇) p0 =

γp0

ρ0

(
∂ρ1

∂t
+ (v1 · ∇) ρ0

)
, (4.22)

p1

p0
=
ρ1

ρ0
+
T1

T0
, (4.23)

∇ · B1 = 0. (4.24)

We may now drop the subscripts on perturbed variables and assume that we are working with the linearised

equations from this point.

Assuming that all perturbations vary inx, z andt alone the Linearised MHD Equations (4.19) – (4.22)

reduce to

∂ρ

∂t
+ ρ0

∂vx
∂x

+ ρ0
∂vz
∂z

+ vz
dρ0

dz
= 0, (4.25)

ρ0
∂vx
∂t

= −∂p
∂x

+
B0

µ

(
∂Bx
∂z

− ∂Bz
∂x

)
, (4.26)

ρ0
∂vz
∂t

= −∂p
∂z

− ρg, (4.27)
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∂Bx
∂t

= B0
∂vx
∂z

, (4.28)

∂Bz
∂t

= −B0
∂vx
∂x

, (4.29)

∂p

∂t
+ vz

dp0

dz
= c2s (z)

(
∂ρ

∂t
+ vz

dρ0

dz

)
, (4.30)

where

c2s =
γp0 (z)

ρ0 (z)
=

γp0 (0)

ρ0 (0) Λ (0)
Λ (z) . (4.31)

As can be seen from the above equation the squared sound speedis proportional to the scale height, which

is in turn proportional to the temperature.

This set of equations may be combined to give a pair of wave equations

∂2vx
∂t2

=
(
c2s + v2

A

) ∂2vx
∂x2

+ c2s
∂2vz
∂x∂z

+ v2
A

∂2vx
∂z2

− g
∂vz
∂x

, (4.32)

∂2vz
∂t2

= c2s

(
∂2vx
∂x∂z

+
∂2vz
∂z2

)
− (γ − 1) g

∂vx
∂x

− γg
∂vz
∂z

, (4.33)

wherev2
A = B2

0/ (µρ0) is the square of the Alfv́en speed. As expected these are identical to those listed in

Equations (3.18) and (3.19), which are valid for a general temperature profileT (z) (Ferraro and Plumpton,

1958).

4.2.3.1 x-Dependence

To reduce these equations from two dimensions to one dimension, we assume that thex-dependence has a

trigonometric form depending on the horizontal wavenumberkx:

v = (vx (z, t) sin kxx, 0, vz (z, t) cos kxx) ,

B = (Bx (z, t) sin kxx, 0, Bz (z, t) cos kxx) , (4.34)

ρ = ρ (z, t) cos kxx,

p = p (z, t) cos kxx.

Noting thatn′ (z) = 1/Λ (z),

dp0

dz
= −p0

Λ
, (4.35)

and

dρ0

dz
= −ρ0 (0)Λ (0)

e−n(z)

Λ (z)

(
n′ (z) +

Λ′ (z)

Λ (z)

)
, (4.36)
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or

dρ0

dz
= −ρ0 (z)

Λ (z)
(1 + Λ′ (z)) . (4.37)

We may then use the above information to rewrite the Linearised MHD equations:

ρ0
∂vx
∂t

− B0

µ

∂Bx
∂z

= kxp+ kx
B0

µ
Bz, (4.38)

ρ0
∂vz
∂t

+
∂p

∂z
= −ρg, (4.39)

∂Bx
∂t

−B0
∂vx
∂z

= 0, (4.40)

∂Bz
∂t

= −kxB0vx, (4.41)

∂p

∂t
+ γp0

∂vz
∂z

= ρ0gvz − γp0kxvx, (4.42)

∂ρ

∂t
+ ρ0

∂vz
∂z

=
ρ0

Λ
(1 + Λ′) vz − kxρ0vx. (4.43)

As before these may be combined to give a pair of wave equations

∂2vx
∂t2

= v2
A

∂2vx
∂z2

− c2skx
∂vz
∂z

−
(
c2s + v2

A

)
k2
xvx + kxgvz , (4.44)

∂2vz
∂t2

= c2s
∂2vz
∂z2

+ c2skx
∂vx
∂z

− γg
∂vz
∂z

− (γ − 1) gkxvx, (4.45)

which are dependent only onz andt. To make these equations easier to model numerically they are made

dimensionless.

4.2.3.2 Non-Dimensionalisation

We setv = v0v̄, B = B0B̄, p = p00p̄, ρ = ρ00ρ̄, T0 = T00Λ̄, p0 = p00p̄0, ρ0 = ρ00ρ̄0, z = Lz̄, t = τ t̄,

andkx = k̄x/L. Under this system a bar denotes dimensionless quantities and the constantsv0, B0, p00,

ρ00, T00, L andτ have the dimensions of the quantity that they are scaling.

Choosingp00 = p0 (0) andρ00 = ρ0 (0) we find

p̄0 = exp

(
− L

H

∫
dz̄

Λ̄

)
, (4.46)

and

ρ̄0 =
1

Λ̄
exp

(
− L

H

∫
dz̄

Λ̄

)
=
p̄0

Λ̄
, (4.47)

whereH = RT00/ (µg) = Λ (0) andΛ = HΛ̄.



4.2 Non-Isothermal Model 89

We may then consider the sound and Alfvén speeds. Settingc2s0 = γp00/ρ00 we have

c̄2s = Λ̄, (4.48)

andv2
A0 = B2

0/ (µρ00) gives

v̄2
A =

1

ρ̄0
. (4.49)

The plasmaβ may then be written as

β =
2c2s
γv2
A

= β0β̄, (4.50)

whereβ0 = 2c2s0/
(
γv2
A0

)
and β̄ = p̄0. At this point we may choose to setv0 = vA0 = 1, giving

c2s0 = γβ0/2.

If we wish to set the region where the sound and Alfvén speeds are equal to lie atz = 0 then the

following relation must be satisfied

p̄0|z=0 =
γβ0

2
. (4.51)

Note that this is dependent on the chosen temperature profileand so the chosen value forβ0 will differ from

case to case.

The linearised dimensionless equations are given by

ρ̄0
∂v̄x
∂t̄

− ∂B̄x
∂z̄

=
β0

2
k̄xp̄+ k̄xB̄z, (4.52)

ρ̄0
∂v̄z
∂t̄

+
β0

2

∂p̄

∂z̄
= − L

H

β0

2
ρ̄, (4.53)

∂B̄x
∂t̄

− ∂v̄x
∂z̄

= 0, (4.54)

∂B̄z
∂t̄

= −k̄xv̄x, (4.55)

1

p̄0

∂p̄

∂t̄
+ γ

∂v̄z
∂z̄

=
L

H

v̄z
Λ̄

− γk̄xv̄x, (4.56)

1

ρ̄0

∂ρ̄

∂t̄
+
∂v̄z
∂z̄

=
v̄z
Λ̄

(
L

H
+ Λ̄′

)
− k̄xv̄x, (4.57)

where it has been noted thatg = c2s0/γH. These may then be combined to give the wave equations

(
v̄2
A

∂2

∂z̄2
−
(
γβ0

2
c̄2s + v̄2

A

)
k̄2
x −

∂2

∂t̄2

)
v̄x =

γβ0

2
k̄x

(
c̄2s
∂

∂z̄
− L

γH

)
v̄z, (4.58)

(
γβ0

2
c̄2s
∂2

∂z̄2
− L

H

γβ0

2

∂

∂z̄
− ∂2

∂t̄2

)
v̄z = −γβ0

2
k̄x

(
c̄2s
∂

∂z̄
− L

γH
(γ − 1)

)
v̄x. (4.59)
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Figure 4.1: The chosen temperature profile has the formΛ = a + b tanh (dz/H) and is chosen to mimic
the steep gradient of the transition region. Here we have seta = 0.55, b = 0.45 andd = 1.0. The dashed
line indicates wherecs = vA.

Henceforth the bars on normalised values are dropped and it is assumed that we are working with dimen-

sionless quantities unless otherwise stated.

4.2.4 Temperature Profile

The temperature profile that we use is atanh profile, given by

Λ = a+ b tanh (dz). (4.60)

This is chosen because of its steep temperature gradient reflective of that seen in the transition region. As

shown in Figure 4.1, away from the gradient the temperature is constant. So in these regions the results

would be the same as for an isothermal atmosphere. For this reason we choose to set the region where the

sound and Alfv́en speeds are equal atz = 0 in the centre of the steep gradient. In order to do this we need

to know the value ofp0. For this we require the expression

∫
dz

Λ
=

ln (tanh (dz) + 1)

2d (a− b)
− ln (tanh (dz) − 1)

2d (a+ b)
− b ln (a+ b tanh (dz))

d (a2 − b2)
. (4.61)

Noting that

tanh (dz) =
e2dz − 1

e2dz + 1
, (4.62)
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Figure 4.2: This plot shows how the sound and Alfvén speeds vary across the computational domain. The
mode-conversion region lies atz = 0 where these speeds are equal.

this may be written

∫
dz

Λ
=

b

d (a2 − b2)
ln

(
2

(a+ b) e2dz + (a− b)

)
+

z

(a− b)
. (4.63)

From Equation (4.46) this givesp0 as

p0 =

(
(a+ b) e2dz + (a− b)

2

) Lb

Hd(a2
−b2)

exp

(
− Lz

H (a− b)

)
, (4.64)

and to satisfy the conditioncs = vA atz = 0 (Equation (4.51)) we require

β0 =
2

γ
a
− Lb

Hd(a2
−b2) . (4.65)

The mode-conversion region will then lie atz = 0, as shown in Figure 4.2, and we are free to define

γ = 5/3 andL = H. So, as for the isothermal case,L is equal to the scale heightH defined atz = 0. We

also seta = 0.55 andb = 0.45 leaving the parameterd free to vary the steepness of the slope.

4.3 Numerical Simulations

Equations (4.52) – (4.57) are solved numerically using the MacCormack method as was done in Chapter 3.

As described in Section 2.3.8 the MacCormack method is a finite difference scheme which uses a predictor

and corrector step to advance the solution. Either forward/backward or backward/forward differencing may

be chosen for the predictor and corrector steps respectively. We choose to use forward differencing for the

predictor steps and backward differencing for the corrector steps. This means that we are using the more
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accurate corrected values on the upper boundary where a slowwave is driven. The lower boundary is less

important as the simulation is terminated before this boundary is reached to eliminate reflection effects.

The boundary conditions are given by

Bx = − 1

kx

∂Bz
∂z

,
∂Bz
∂t

= −kxvx,
∂p

∂z
= 0,

∂ρ

∂z
= 0. (4.66)

In addition to these we have the conditions on the velocity which vary on the upper and lower boundaries.

Upper Boundary: vx = 0, vz = sinωt. (4.67)

Lower Boundary:
∂vx
∂z

= 0, vz = 0. (4.68)

As for the isothermal case, by drivingvz on the upper boundary we are predominantly driving a slow

wave. There will be a small component of the fast wave introduced because we have setvx = 0, but we

need not worry about this as the fast wave is evanescent in thelow-β plasma. The simulations are run for

−8 ≤ z ≤ 6 and0 ≤ t ≤ 7.2 with δz = 0.003 andδt = 0.0013, where the end time is chosen just prior

to the wavefront hitting the lower boundary. We are then freeto choose the values of the parametersd,

which varies the steepness of the slope of the temperature profile, and the parametersω andkx which will

alter the driving frequency and wavenumber respectively. The slow wave is driven on the upper boundary

for frequencies ofω = 2π
√
γβ0/2, 2π

√
6
√
γβ0/2 and4π

√
6
√
γβ0/2 which correspond in real terms to

frequencies of 0.20 s−1, 0.49 s−1 and 0.98 s−1 and periods of 31.3 s, 12.8 s and 6.4 s respectively. In

calculating these values we have assumed a typical lengthscale of 6 Mm and sound speed of 50 km s−1

in the transition region. UsingΩac = γg/2cs (Roberts, 2004) the acoustic cutoff frequency is given by

Ωac = 0.004 s−1, which is much smaller than the driving frequencies.

4.3.1 Wave Properties

As we are driving a slow wave on the upper boundary we would expect to see similar behaviour to that

demonstrated in the isothermal case. Thus, in the absence ofany mode conversion (kx = 0) the low-β

slow wave should propagate as a fast wave once it crosses intothe high-β plasma. Forkx 6= 0 some mode

conversion will occur, and we would expect some component ofthe slow mode to be visible in the high-β

plasma. At this point we also note that as the wavelength is given by

λ =
2π

ω

√
γβ0

2
cs, (4.69)

which varies with the sound speed, we would expect the wavelength of the incident wave to vary as it

crosses the steep temperature gradient atz = 0.

Figure 4.3 shows the horizontal and vertical velocity, horizontal and vertical magnetic field, pressure and

density resulting from the numerical simulation withd = 1, ω = 2π
√

6
√
γβ0/2 andkx = π at t = 7.2

Alfv én times. There does appear to be some mode conversion occurring; this is clearest in the plots of

horizontal velocity and the horizontal and vertical magnetic field, where a change in behaviour is seen in

the amplitude. As in the isothermal case this is masked by a strong amplitude variation. By using the WKB
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Figure 4.3: Results of the numerical simulation withω = 2π
√

6
√
γβ0/2 andkx = π at t = 7.2 Alfv én

times. The plots show the horizontal and vertical velocity,the horizontal and vertical magnetic field, pres-
sure and density respectively from top left to bottom right.The red dashed line indicates wherecs = vA.

Figure 4.4: Results of the numerical simulation withω = 2π
√

6
√
γβ0/2 andkx = π at t = 7.2 Alfv én

times. The plots show a transformation of the horizontal andvertical velocity, the horizontal and vertical
magnetic field, pressure and density respectively from top left to bottom right. The red dashed line indicates
wherecs = vA.
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method as shown in Section 4.4.2 it is possible to find a transformation which will give a constant amplitude

for the incident and transmitted waves. These transformations are given by

vx → ṽx
c3sΛ

1/4

(v2
A − c2s) p

1/2
0

, Bx → B̃x
c3sΛ

1/4

(v2
A − c2s) p

1/2
0

, Bz → B̃z
c3sΛ

1/4

(v2
A − c2s) p

1/2
0

,

vz → ṽz
Λ1/4

p
1/2
0

, p→ p̃
p
1/2
0

Λ1/4
, ρ→ ρ̃

p
1/2
0

Λ5/4
. (4.70)

The plots resulting from these transformations are shown inFigure 4.4. The conversion is now much clearer

across thecs = vA layer (indicated by the red dashed line). The vertical velocity, pressure and density show

the transmitted wave propagating out ahead, which has a shorter wavelength as predicted. The converted

wave is present behind as interference to the left of the red dashed line, and is also visible in the plots of

horizontal velocity, and horizontal and vertical magneticfield.

It is possible to calculate exactly how these wavefronts will progress with time. The position of the

acoustic wave is given by

dz

dt
= −cs = −

√
γβ0

2

√
a+ b tanh (dz). (4.71)

Making the substitution

u =
√
a+ b tanh (dz), (4.72)

this may be written

2b

d

∫
du(

b2 − (u2 − a)2
) = −

√
γβ0

2
t+ C. (4.73)

Solving using partial fractions along with the initial condition t = 0, z = 6 gives

t =
1

d

√
2

γβ0

[
1√
a+ b

tanh−1

(√
a+ b tanh (6d)√

a+ b

)
− 1√

a− b
coth−1

(√
a+ b tanh (6d)√

a− b

)
−

− 1√
a+ b

tanh−1

(√
a+ b tanh (dz)√

a+ b

)
+

1√
a− b

coth−1

(√
a+ b tanh (dz)√

a− b

)]
. (4.74)

From this we can see that att = 7.2 Alfv én times the acoustic wave will have reachedz ≈ −7.5.

The position of the magnetic and slow modes are given by

dz

dt
= −vA = − 1

ρ0
, (4.75)

and

dz

dt
= −cT = − csvA√

c2s + v2
A

, (4.76)



4.3 Numerical Simulations 95

Figure 4.5: Surface plot of the transformed horizontal velocity for ω = 2π
√

6
√
γβ0/2, kx = π andd = 1.

The red dashed line shows the position of the acoustic mode, the green dashed line the position of the
magnetic mode, and the blue dashed line the position of the slow mode.

respectively. These are not easily solved analytically buta numerical solution may be found using a fourth

order Runge-Kutta method. The slow mode solution is solved under the initial condition thatz = 6 at

t = 0. The magnetic mode is not present until the slow mode has passed through the conversion region.

Using Equation (4.74) we find that this occurs att ≈ 1.6 Alfv én times, and so the initial condition for the

magnetic mode is given byz = 0 at t = 1.6. The results of these calculations are shown in Figure 4.5. In

this figure the transformed horizontal velocity is viewed from above, and overplotted are the paths predicted

by Equations (4.74), (4.75) and (4.76). The acoustic mode gives the path of the slow wave in the low-β

plasma and the fast wave in the high-β plasma. The magnetic mode is only present in the high-β plasma

and gives the position of the slow wave in this region. The solution to Equation (4.76) gives the path of the

slow mode and is valid as it passes from the low- to high-β plasma.

4.3.2 Effect of Varying the Model Parameters

We now investigate the effect of varying the three free parametersd, kx andω on mode conversion, and

compare this to the results of the previous chapter.

4.3.2.1 Varying the Slope

By varying the value of the parameterd we may vary the steepness of the slope representing the transition

region. To do this we fix the driving frequency to beω = 2π
√

6
√
γβ0/2 and the wavenumber to bekx = π.

The time at which to stop each simulation was calculated using Equation (4.74), and the plots in Figure 4.6

are shown fort = 1.8, 7.2, and 11.5 Alfv́en times respectively from left to right. So, the steeper theslope
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Figure 4.6: Transformed vertical velocity forω = 2π
√

6
√
γβ0/2 andkx = π. The plots showd = 0.5, 1

and1.5 respectively from left to right. The dashed red line indicates wherecs = vA.

Figure 4.7: The transformed vertical velocity forω = 2π
√
γβ0/2, kx = π andd = 1.5. The plots show

t = 1.2, 3.6, 5.9 and 9.5 Alfv́en times respectively from left to right. The red dashed linedenotes where
cs = vA.

the longer it takes for the wavefront to reach the left hand boundary. Although the timescale is affected by

the slope the mode conversion seems to be unchanged. Each plot in Figure 4.6 shows the same proportion

of the incident wave being transmitted across thecs = vA layer.

It should be noted that the value ofω is chosen as it gives a wavelength ofλ ≈ 0.2 in the low-β plasma.

This is much smaller than the width of the gradient in the temperature profile in all three cases. If this is not

the case then some of the incident wave will be reflected back into the low-β plasma from the conversion

region. This is demonstrated in Figure 4.7, which shows a slow mode pulse being driven on the upper

boundary with frequencyω = 2π
√
γβ0/2 (giving a wavelengthλ = 1 in the low-β plasma), wavenumber

kx = π and sloped = 1.5. The incident pulse is clearly seen approaching thecs = vA layer, denoted by the

dashed red line. As this wave crosses the mode-conversion layer it splits into a converted and transmitted

wave. But as these travel through the high-β plasma, another wave can be seen in the low-β plasma to the

right of the dashed red line. This wave has been reflected due to the slope of the temperature profile. As

we are not concerned with the reflection, we ensure that a highenough driving frequency is chosen to give

a wavelength much smaller than the width of the temperature gradient. This does limit the applicability of

the model as it has been shown that reflection is important fortypical frequencies (Fedun et al., 2009).

4.3.2.2 Varying the Wavenumber

From Chapter 3 we would expect the amount of mode conversion to increase as the wavenumberkx in-

creases. We examine the same range of values forkx, Figure 4.8 showskx = 0, 0.25,π/10, 1, π/2, 2,

π, 5 and 7 respectively from top left to bottom right. In all cases the slope is fixed atd = 1, the driving
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frequency atω = 2π
√

6
√
γβ0/2, and the time ist = 7.2 Alfv én times. As we had expected, the mode

conversion increases and the transmission decreases as thevalue of the wavenumber increases; just as it

did in the isothermal case. Forkx = 0 there is no mode conversion. Whilstkx remains small the amount

of mode conversion is negligible and cannot be seen in the plots representingkx = 0.25, π/10, 1 orπ/2.

Oncekx grows beyond this point, the mode conversion can be seen in the plots clearly as the amount of

transmission decreases. If we compare these plots to those shown in Section 3.3.2 we can see that the

increase in mode conversion is slower in this case. Due to thesimilarities in behaviour we would expect to

find similar equations to those found in Section 3.4.1 to describe the transmission and conversion.

4.3.2.3 Varying the Driving Frequency

The final free parameter left for us to examine is the driving frequency. From the work done by Cally (2005)

and from Section 3.3.2 we expect the mode conversion to decrease with increasing frequency. We examine

the frequenciesω = 2π
√
γβ0/2, ω = 2π

√
6
√
γβ0/2 andω = 4π

√
6
√
γβ0/2. These are shown from left

to right in Figure 4.9, in which the slope is given byd = 1 and the wavenumber bykx = π at t = 7.2

Alfv én times. The transmission clearly increases as the frequency increases and therefore the conversion

decreases, as we suspected it should.

4.4 Analytical Approximations

As was done in Chapter 3 these predictions from the numericalsimulations can be backed up using analyt-

ical techniques. We use the Cairns and Lashmore-Davies (1983) method and the WKB method to describe

the wave behaviour across the domain.

4.4.1 Smallk
x

Limit

First we use the method by Cairns and Lashmore-Davies (1983)to find the behaviour at the mode-conversion

region itself. Beginning with Equations (4.58) and (4.59) we assume that the time dependence has the form

eiωt so that∂/∂t = iω

(
v2
A

d2

dz2
−
(
γβ0

2
c2s + v2

A

)
k2
x + ω2

)
vx =

γβ0

2
kx

(
c2s

d

dz
− 1

γ

)
vz, (4.77)

(
γβ0

2
c2s

d2

dz2
− γβ0

2

d

dz
+ ω2

)
vz = −γβ0

2
kx

(
c2s

d

dz
− 1

γ
(γ − 1)

)
vx. (4.78)

Making the substitution

vz = i
vA
cs

√
2

γβ0
Vz, (4.79)
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Figure 4.8: Transformed vertical velocity ford = 1 andω = 2π
√

6
√
γβ0/2 at t = 7.2 Alfv én times. The

plots show the results forkx = 0, 0.25,π/10, 1, π/2, 2, π, 5 and 7 respectively from top left to bottom
right. The dashed red line indicates wherecs = vA.

Figure 4.9: Transformed vertical velocity ford = 1 andkx = π at t = 7.2 Alfv én times. The plots show
ω = 2π

√
γβ0/2, 2π

√
6
√
γβ0/2 and4π

√
6
√
γβ0/2 respectively from left to right. The dashed red line

indicates wherecs = vA.
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and assuming thatkx ≪ ω/cs and that variables may be neglected in comparison to their derivatives, these

equations become

(
v2
A

d2

dz2
+ ω2

)
vx = i

γβ0

2
vAcskx

dVz
dz

, (4.80)

(
γβ0

2
c2s

d2

dz2
+ ω2

)
Vz = i

(
γβ0

2

)3/2
c3s
vA
kx

dvx
dz

. (4.81)

The wave equations then reduce down to

(
d

dz
+ i

ω

vA

)(
d

dz
− i

ω

vA

)
vx = i

√
γβ0

2

cs
vA
kx

dVz
dz

, (4.82)

(
d

dz
+ i

√
2

γβ0

ω

cs

)(
d

dz
− i

√
2

γβ0

ω

cs

)
Vz = i

√
γβ0

2

cs
vA
kx

dvx
dz

. (4.83)

Written in this form each wave equation separates the upwardand downward travelling waves. Note that

although we drive onlyVz on the upper boundary, this in turn drives the right-hand side of the wave equation

for vx. At the mode-conversion layer we havevA =
√
γβ0/2cs and there is a resonance between the

downward propagating waves. This is what allows energy to transfer from one wave mode to another.

Expanding about the mode-conversion region by settingz = 0 + ξ + . . . we haved/dz = d/dξ. Then

taking a linear expansion ofΛ we have

Λ ≈ a+ bdξ, (4.84)

so

p0 = (a+ bdξ)
−1/bd

. (4.85)

Note that lettinga→ 1 andb→ 0 and using the limit definition of the exponential function

(ex = limn→∞ (1 + x/n)n) we return to the isothermal case.

This means that

γβ0

2
= a−1/bd, (4.86)

and we may write

1

vA
≈
√

2

γβ0

1

cs

(
1 − ξ

2a

)
. (4.87)

For the waves travelling upwards, away from the mode-conversion region, we may simply setd/dz =

i
√

2/γβ0ω/cs. Equations (4.82) and (4.83) then become

dvx
dξ

− i

(√
2

γβ0

ω

cs
−
√

2

γβ0

ω

2acs
ξ

)
vx =

ikx
2
Vz, (4.88)
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dVz
dξ

− i

√
2

γβ0

ω

cs
Vz =

ikx
2
vx. (4.89)

Equations (4.88) and (4.89) may be shown to satisfy energy conservation. If we multiply Equation (4.88)

by its complex conjugate to give

v̄x
dvx
dξ

− i

(√
2

γβ0

ω

cs
−
√

2

γβ0

ω

2acs
ξ

)
v̄xvx =

ikx
2
v̄xVz, (4.90)

and taking its complex conjugate

vx
dv̄x
dξ

+ i

(√
2

γβ0

ω

cs
−
√

2

γβ0

ω

2acs
ξ

)
vxv̄x = − ikx

2
vxV̄z. (4.91)

Adding these together gives

d

dξ

(
|vx|2

)
=
ikx
2

(
v̄xVz − vxV̄z

)
. (4.92)

The same process may be performed on Equation (4.89) giving

V̄z
dVz
dξ

− i

√
2

γβ0

ω

cs
V̄zVz =

ikx
2
V̄zvx, (4.93)

and

Vz
dV̄z
dξ

+ i

√
2

γβ0

ω

cs
VzV̄z = − ikx

2
Vz v̄x, (4.94)

which may be added to give

d

dξ

(
|Vz|2

)
=
ikx
2

(
V̄zvx − Vz v̄x

)
. (4.95)

Taking Equation (4.92) and adding it to Equation (4.95) we obtain

d

dξ

(
|vx|2 + |Vz|2

)
= 0, (4.96)

and so we see that energy is indeed conserved.

Looking back to Equations (4.88) and (4.89)vx may be eliminated to give a second-order differential

equation forVz

d2Vz
dξ2

+ i

√
2

γβ0

ω

cs

(
ξ

2a
− 2

)
dVz
dξ

+

(
2ω2

γβ0c2s

(
ξ

2a
− 1

)
+
k2
x

4

)
Vz = 0. (4.97)

To eliminate the first derivative term we make the substitution

Vz (ξ) = exp

(
−i
√

2

γβ0

ω

2

∫
1

cs

(
ξ

2a
− 2

)
dξ

)
ψ (ξ) , (4.98)
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treating the sound speed as constant at the mode-conversionregion, this gives

d2ψ

dξ2
+

(
2ω2

16a2γβ0c2s
ξ2 − i

√
2

γβ0

ω

4acs
+
k2
x

4

)
ψ = 0. (4.99)

Making a second substitution

ζ =

(√
2

γβ0

ω

2acs

)1/2

e3iπ/4ξ, (4.100)

the second-order differential equation may be written

d2ψ

dζ2
−
(
ζ2

4
− 1

2
− i

√
γβ0

2

k2
xacs
2ω

)
ψ = 0. (4.101)

The advantage to writing the equation in this form is that thesolution is known in terms of the Parabolic

Cylinder functionU (f, ζ), where

f = −1

2
− i

√
γβ0

2

k2
xacs
2ω

. (4.102)

A full description of these functions and their behaviour may be found in Abramowitz and Stegun (1964).

On comparison with the results in Cairns and Lashmore-Davies (1983) we may write down the asymp-

totic behaviour in the low-β plasma (ξ > 0)

Vz ∼
(√

2

γβ0

ω

2acs

)i√γβ0/2k
2

xacs/(4ω)

exp

(√
γβ0

2

πk2
xacs
8ω

)
ξi
√
γβ0/2k

2

xacs/(2ω) ×

× exp

(
i

√
2

γβ0

ω

cs
ξ

)
, (4.103)

and in the high-β plasma (ξ < 0)

Vz ∼
(√

2

γβ0

ω

2acs

)i√γβ0/2k
2

xacs/(4ω)

exp

(
−
√
γβ0

2

3πk2
xacs

8ω

)
|ξ|i

√
γβ0/2k

2

xacs/(2ω) ×

× exp

(
i

√
2

γβ0

ω

cs
ξ

)
− (2π)1/2

Γ

(
−i
√

γβ0

2
k2

xacs

2ω

) exp

(
−
√
γβ0

2

πk2
xacs
8ω

)
×

×
(√

2

γβ0

ω

2acs

)−
“

i
√
γβ0/2k

2

xacs/(4ω)
”

−1/2

|ξ|−
“

i
√
γβ0/2k

2

xacs/(2ω)
”

−1 ×

× exp

(
i

√
2

γβ0

ω

cs
ξ − i

√
γβ0

2

ω

4acs
ξ2 − 3iπ

4

)
. (4.104)

To find an expression for the transmission and conversion coefficients from these equations we use the

WKB method. Assuming thatvx is small in comparison toVz will give us information about the transmitted
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wave. So we set

vx =
Vx0
ω

exp

(
ωφ0 +

φ1

ω

)
, (4.105)

Vz = B exp

(
ωφ0 +

φ1

ω

)
, (4.106)

whereωφ0 ≫ φ1/ω, Vx0/ω. Substituting these into Equations (4.88) and (4.89) we find

(
φ′0 − i

√
2

γβ0

1

cs

(
1 − ξ

2a

))
Vx0 +

V ′
x0

ω
+
Vx0
ω
φ′1 =

ikx
2
B, (4.107)

ω

(
φ′0B − i

√
2

γβ0

B

cs

)
+
φ′1
ω
B =

ikx
2

Vx0
ω
. (4.108)

Equating the various powers ofω we find

φ0 =
i

cs

√
2

γβ0
ξ, Vx0 =

√
γβ0

2

kxacs
ξ

B, φ1 = i

√
γβ0

2

k2
xacs
2

ln ξ, (4.109)

wherecs has been treated as a constant. This assumption is valid as weare only concerned with the mode-

conversion region atz = 0 wherecs =
√

0.55. These give the transmitted component as

Vz = Bξi
√
γβ/2k2

xacs/(2ω) exp

(
i

√
γβ0

2

ω

cs
ξ

)
. (4.110)

To find an expression for the converted component ofVz we follow the same process, this time assuming

thatVz is small in comparison tovx

vx = A exp

(
ωφ0 +

φ1

ω

)
, (4.111)

Vz =
Vz0
ω

exp

(
ωφ0 +

φ1

ω

)
, (4.112)

whereωφ0 ≫ φ1/ω, Vz0/ω. Substituting these into Equations (4.88) and (4.89) yields

ω

(
φ′0A− i

√
2

γβ0

A

cs

(
1 − ξ

2a

))
+
φ′1
ω
A =

ikx
2ω

Vz0. (4.113)

Equating powers ofω we find

φ0 =
i

cs

√
2

γβ0

(
ξ − ξ2

4a

)
, Vz0 = −

√
γβ0

2

kxacs
ξ

A, φ1 = −i
√
γβ0

2

k2
xacs
2

ln ξ, (4.114)

wherecs has again been assumed constant. The converted component isthen

Vz = −
√
γβ0

2

kxacs
ω

Aξ
−

“

i
√
γβ0/2k

2

xacs/(2ω)
”

−1
exp

(
i

√
2

γβ0

ω

cs

(
ξ − ξ2

4a

))
. (4.115)
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Equations (4.110) and (4.115) may be added together to give

Vz ∼ Bξi
√
γβ0/2k

2

xacs/(2ω) exp

(
i

√
2

γβ0

ω

cs
ξ

)
−

−
√
γβ0

2

kxacs
ω

Aξ
−

“

i
√
γβ0/2k

2

xacs/(2ω)
”

−1
exp

(
i

√
2

γβ0

ω

cs

(
ξ − ξ2

4a

))
. (4.116)

Comparing this to Equations (4.103) and (4.104) we may deduce the values of the conversion and transmis-

sion coefficients,A andB. Dividing the high-β equation by the low-β equation and comparing the result

to Equation (4.116) gives

B = exp

(
−
√
γβ0

2

πk2
xacs
2ω

)
, (4.117)

A =
2 (2π)1/2

kxΓ

(
−i
√

γβ0

2
k2

xacs

2ω

)
(√

2

γβ0

ω

2acs

)1/2

exp

(
−
√
γβ0

2

πk2
xacs
4ω

)
, (4.118)

where imaginary terms have been neglected as these influenceonly the phase, not the amplitude. Noting

that

|Γ (iy)|2 = |Γ (−iy)|2 =
π

y sinh (πy)
, (4.119)

(Gradshteyn and Ryzhik, 1981) the conversion coefficient simplifies to

A =

√√√√1 − exp

(
−
√
γβ0

2

πk2
xacs
ω

)
. (4.120)

Equations (4.117) and (4.120) tell us what proportion of theincident wave we would expect to be trans-

mitted and converted across the mode-conversion region. Substituting these coefficients back into Equa-

tion (4.116) we have a description of the vertical velocity across the domain. This is shown in Figure 4.10

for ω = 4π
√

6
√
γβ0/2 andkx = π. Overplotted on this figure is the amplitude we would expect to see

for the incident wave once the amplitude dependence is removed, and to the left of the red dashed line

the amplitude predicted for the transmitted wave by Equation (4.117). We may compare this result to the

numerical simulations by taking the ratio of the transmitted wave to the incident wave for various values of

kx. The results of this are shown in Figure (4.11).

In Figure 4.11 we can see excellent agreement between the analytical prediction for the transmission

(solid line) and the numerical simulations (stars). As for the isothermal case this is true even as the hori-

zontal wavenumber becomes large, violating the assumptions. When taking the logarithm of the amplitude

ratio (shown on the right-hand side) the numerical results can be seen to deviate away from the numerical

prediction askx becomes large. However this deviation is small, and Equation (4.117) gives an excellent

prediction for the amount of transmission. It is more difficult to make a direct comparison for the conver-

sion coefficient due to the interference of the fast wave. It is easily shown thatA2 + B2 = 1 however, and

so we can also have confidence in the values predicted from Equation (4.120).
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Figure 4.10: Vertical velocity as predicted by Equation (4.116) withω = 4π
√

6
√
γβ0/2 andkx = π. The

vertical red dashed line denotes wherecs = vA; the horizontal dashed lines to the right of this show the
predicted amplitude of the incident wave, and those to the left the predicted amplitude of the transmitted
wave.

The transmission and conversion coefficients are dependenton both the horizontal wavenumber (kx)

and the driving frequency (ω). Their variation with these parameters is shown in Figure 4.12. As for the

isothermal case the amount of conversion increases with increasingkx, and decreases with increasingω;

hence the transmission will decrease or increase respectively. This result is in agreement with Section 4.3.2

and we can see that the variation with the horizontal wavenumber is the stronger effect.

Looking back to the transmission and conversion coefficients found in the isothermal case, Equations (3.86)

and (3.89), we can see that the inclusion of a non-isothermaltemperature profile has no effect as long as

reflection effects may be neglected. To retrieve the isothermal results we simply need to seta = 1 and

b = 0 in the expression forΛ and takeγβ0/2 = 1. In the more general form that we have here in Equa-

tions (4.117) and (4.120) the transmission and conversion coefficients may be found for any temperature

profile.
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Figure 4.11:Left: Ratio of the transmitted and incident wave amplitudes.
Right: Logarithm of the ratio of the transmitted and incident wave amplitudes.
In both casesω = 4π

√
6
√
γβ0/2 and the solid line is that predicted by Equation (4.117) and the stars are

the values calculated from the numerical data.

Figure 4.12:Top Left:The variation of A withkx for ω = 2π
√

6
√
γβ0/2.

Top Right:The variation of B withkx for ω = 2π
√

6
√
γβ0/2.

Bottom Left:The variation of A withω for kx = π.
Bottom Right:The variation ofB with ω for kx = π.
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4.4.2 WKB Analysis away from the Conversion Region

The smallkx approximation gives the wave behaviour at the mode-conversion region. To study the be-

haviour away from this region we use the WKB method. This works under the assumption thatω is large,

and will give the amplitude dependence and phase in both the high- and low-β plasma.

We begin with the wave equations (4.58) and (4.59) with∂/∂t = iω

(
v2
A

∂2

∂z2
−
(
γβ0

2
c2s + v2

A

)
k2
x + ω2

)
vx =

γβ0

2
kx

(
c2s
∂

∂z
− 1

γ

)
vz, (4.121)

(
γβ0

2
c2s
∂2

∂z2
− γβ0

2

∂

∂z
+ ω2

)
vz = −γβ0

2
kx

(
c2s
∂

∂z
− 1

γ
(γ − 1)

)
vx. (4.122)

Assuming thatω ≫ kxcs we may expand the horizontal and vertical velocities,vx andvz, in inverse powers

of ω. In order to find equations describing the incident and transmitted waves we make the assumption that

vx is small in comparison tovz.

vx =
Vx0
ω

exp

(
ωφ0 + φ1 +

φ2

ω

)
, (4.123)

vz = exp

(
ωφ0 + φ1 +

φ2

ω

)
, (4.124)

whereωφ0 ≫ φ1 ≫ φ2/ω, Vx0/ω.

Substituting these into the wave equations we obtain

ω
(
Vx0 (φ′0)

2
v2
A + Vx0

)
+ v2

A (2V ′
x0φ

′
0 + Vx0φ

′′
0 + 2Vx0φ

′
0φ

′
1) +

+
1

ω

(
v2
AV

′′
x0 + 2v2

AV
′
x0φ

′
1 + v2

AVx0φ
′′
1 + 2v2

AVx0φ
′
0φ

′
2 + v2

AVx0 (φ′1)
2 −

−
(
γβ0

2
c2s + v2

A

)
k2
xVx0

)
= ω

γβ0

2
kxc

2
sφ

′
0 +

(
γβ0

2
kxc

2
sφ

′
1 −

β0

2
kx

)
+

+
1

ω

γβ0

2
kxc

2
sφ

′
2 + O

(
1

ω2

)
, (4.125)

and

ω2

(
γβ0

2
c2s (φ′0)

2
+ 1

)
+ ω

(
γβ0

2
c2s (φ′′0 + 2φ′0φ

′
1) −

γβ0

2
φ′0

)
+

+

(
γβ0

2
c2s

(
φ′′1 + 2φ′0φ

′
2 + (φ′1)

2
)
− γβ0

2
φ′1

)
= −γβ0

2
kxc

2
sVx0φ

′
0 + O

(
1

ω

)
, (4.126)

where′ = d/dz.

From theO
(
ω2
)

terms we find

φ′0 = i

√
2

γβ0

1

cs
, (4.127)
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so

φ0 = i

√
2

γβ0

∫
dz

cs
, φ′′0 = −i

√
2

γβ0

c′s
c2s
. (4.128)

Substituting these values back into theO (ω) terms we find

Vx0 = −ikx
(
γβ0

2

)3/2
c3s

(v2
A − γβ0/2c2s)

, (4.129)

and

φ1 = ln

∣∣∣∣∣
Λ1/4

p
1/2
0

∣∣∣∣∣ . (4.130)

These may then be substituted into theO (1) equations giving

φ′2 = i
k2
x

2

(
γβ0

2

)3/2
c3s

(v2
A − γβ0/2c2s)

+
i

4

√
γβ0

2
c′′s −

i

8

√
γβ0

2

1

c3s
− i

8

√
γβ0

2

(
c′s
cs

)2

−

− i

2

√
γβ0

2

c′s
c2s
, (4.131)

but due to the fact thatcs is dependent onz this is very messy to integrate analytically. It is possible,

however, to solve for this value numerically using a fourth order Runge-Kutta scheme.

Returning to Equations (4.123) and (4.124) we have

vx = −ikx
(
γβ0

2

)3/2
c3s

ω (v2
A − γβ0/2c2s)

exp

(
iω

√
2

γβ0

∫
dz

Λ1/2
+ ln

∣∣∣∣∣
Λ1/4

p
1/2
0

∣∣∣∣∣+
φ2

ω

)
, (4.132)

vz = exp

(
iω

√
2

γβ0

∫
dz

Λ1/2
+ ln

∣∣∣∣∣
Λ1/4

p
1/2
0

∣∣∣∣∣+
φ2

ω

)
, (4.133)

which may alternatively be written in trigonometric form as

vx = −kx
(
γβ0

2

)3/2
c3sΛ

1/4

ω (v2
A − γβ0/2c2s) p

1/2
0

cos

(
ω

√
2

γβ0

∫
dz

Λ1/2
+
φ2

ω

)
, (4.134)

vz =
Λ1/4

p
1/2
0

sin

(
ω

√
2

γβ0

∫
dz

Λ1/2
+
φ2

ω

)
. (4.135)

Equations (4.134) and (4.135) represent the incident wave in the low-β plasma and the transmitted wave in

the high-β plasma. The transmitted wave will be multiplied by a constant, which may be calculated from

Equation (4.117), telling us the proportion of the incidentwave that has passed into the high-β plasma.
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It then remains to find equations describing the converted wave. To do this we assume thatvz is small in

comparison tovx by setting

vx = exp

(
ωφ0 + φ1 +

φ2

ω

)
, (4.136)

vz =
Vz0
ω

exp

(
ωφ0 + φ1 +

φ2

ω

)
, (4.137)

where, as before,ωφ0 ≫ φ1 ≫ φ2/ω, Vz0/ω. On substitution into Equations (4.58) and (4.59) we find

ω2
(
v2
A (φ′0)

2
+ 1
)

+ ωv2
A (φ′′0 + 2φ′0φ

′
1) +

(
v2
Aφ

′′
1 + 2v2

Aφ
′
0φ

′
2 + v2

A (φ′1)
2 −

−
(
γβ0

2
c2s + v2

A

)
k2
x

)
=
γβ0

2
kxc

2
sVz0φ

′
0 + O

(
1

ω

)
, (4.138)

and

ω

(
γβ0

2
c2sVz0 (φ′0)

2
+ Vz0

)
+

(
γβ0

2
c2s (2V ′

z0φ
′
0 + Vz0φ

′′
0 + 2Vz0φ

′
0φ

′
1) −

γβ0

2
Vz0φ

′
0

)
=

= −γβ0

2
kxc

2
sωφ

′
0 +

γβ0

2
kx

(
1

γ
(γ − 1) − c2sφ

′
1

)
+ O

(
1

ω

)
. (4.139)

TheO
(
ω2
)

terms give

φ′0 =
i

vA
, (4.140)

which may be solved to give

φ0 = i

∫
dz

vA
, φ′′0 = −iv

′
A

v2
A

. (4.141)

Substituting these values into theO (ω) equations we find

Vz0 = −ikx
γβ0

2

c2svA
(v2
A − γβ0/2c2s)

, (4.142)

and

φ1 =
1

2
ln |vA| . (4.143)

Finally to find a value forφ2 we turn to theO (1) equations.

φ′2 = −i k
2
x

2vA

(
γβ0

2

)2
c4s

(v2
A − γβ0c2s/2)

− i
k2
x

2vA

(
γβ0

2
c2s + v2

A

)
+
i

4
v′′A − i

8

(v′A)
2

vA
. (4.144)

Again, this is not easy to solve analytically but may be foundnumerically using a fourth order Runge-Kutta

scheme.
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Putting these values back into Equations (4.136) and (4.137) we find

vx = v
1/2
A exp

(
iω

∫
dz

vA
+
φ2

ω

)
, (4.145)

vz = −ikx
γβ0

2

c2sv
3/2
A

ω (v2
A − γβ0c2s/2)

exp

(
iω

∫
dz

vA
+
φ2

ω

)
. (4.146)

These may also be written

vx = v
1/2
A cos

(
ω

∫
dz

vA
+
φ2

ω

)
, (4.147)

vz = −kx
γβ0

2

c2sv
3/2
A

ω (v2
A − γβ0c2s/2)

sin

(
ω

∫
dz

vA
+
φ2

ω

)
. (4.148)

Equations (4.147) and (4.148) describe the converted slow wave in the high-β plasma. These equations

need to be multiplied by a constant, given by Equation (4.120), which describes the proportion of the

incident wave which is converted. In the low-β plasma these equations will be zero as the fast wave is

evanescent in that region.

In summary we have

Low β: Inc. vx = −αkx
(
γβ0

2

)3/2
c3sΛ

1/4

ω (v2
A − γβ0c2s/2) p

1/2
0

cos

(
ω

√
2

γβ0

∫
dz

Λ1/2
+
φ2

ω

)
,

vz = α
Λ1/4

p
1/2
0

sin

(
ω

√
2

γβ0

∫
dz

Λ1/2
+
φ2

ω

)
,

High β: Trans. vx = −αBkx
(
γβ0

2

)3/2
c3sΛ

1/4

ω (v2
A − γβ0c2s/2) p

1/2
0

cos

(
ω

√
2

γβ0

∫
dz

Λ1/2
+
φ2

ω

)
,

vz = αB
Λ1/4

p
1/2
0

sin

(
ω

√
2

γβ0

∫
dz

Λ1/2
+
φ2

ω

)
,

Conv. vx = αAv
1/2
A cos

(
ω

∫
dz

vA
+
φ2

ω

)
,

vz = −αAkx
γβ0

2

c2sv
3/2
A

ω (v2
A − γβ0c2s/2)

sin

(
ω

∫
dz

vA
+
φ2

ω

)
,

whereA andB are as defined by Equations (4.120) and (4.117) and

α =
p
1/2
0

Λ1/4

∣∣∣∣∣
z=zm

. (4.149)

From Equations (4.74) and (4.75) we know that att = 7.2 Alfv én times the fast wave will have reached

z ≈ −7.5 and the slow wave will have reachedz ≈ −1.6. Using this information along with the above

equations and the transmission and conversion coefficientscalculated from Equations (4.117) and (4.120),

we may create analytical predictions of how the horizontal and vertical velocity behave across the domain.

The results of this are shown in Figure 4.13 which shows the numerical simulations alongside for com-
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Figure 4.13: The numerical and analytical horizontal velocity and the numerical and analytical vertical
velocity respectively from top left to bottom right. In all plotsω = 4π

√
6
√
γβ0/2, kx = π andt = 7.2

Alfv én times.

Figure 4.14: The numerical and analytical transformed vertical velocity forω = 4π
√

6
√
γβ0/2, kx = π

andt = 7.2 Alfv én times.
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Figure 4.15: The absolute error between the results of the WKB analysis and the numerical simulations
zoomed in aroundz = 0 (wherecs = vA). The dashed line showsz = −1/ω demonstrating that the WKB
analysis only breaks down very close to the conversion region.

parison. The analytical prediction for the converted wave does not quite capture the correct amplitude

dependence, although the phase looks to be in good agreement. The predicted vertical velocity is in ex-

cellent agreement with the numerical simulations, which iseven clearer when looking at the transformed

vertical velocity shown in Figure 4.14. The analytical prediction has captured both the change in amplitude

and phase across the mode-conversion region.

The analytical predictions do break down atz = 0 as there is a singularity in the equations for the

incident and transmitted horizontal velocities, and the converted vertical velocity at this point. These terms

are multiplied by a factor of1/ω and, asω is assumed to be large, the singularity does not have a strong

effect on the results. In fact looking at Figure 4.15, which shows the difference between the analytical and

numerical velocities, we see that outwith1/ω of z = 0 the effects of the singularity are gone. So, using a

combination of the Cairns and Lashmore-Davies method and the WKB method we have a good description

of the wave behaviour across the domain.

4.5 Conclusions

In this chapter we have extended upon the model used in Chapter 3 by allowing for the inclusion of a

temperature profile that varies with height. Apart from thisthe set-up remained the same as for the pre-

vious chapter, and so we examined the downward propagation of a slow magnetoacoustic wave through a

gravitationally stratified atmosphere permeated by a uniform, vertical magnetic field (Figure 3.1). For the

temperature atanh profile was chosen as it reflects the steep gradient found at the transition region (Fig-

ure 4.1). To ensure that the model was sufficiently differentfrom that of the previous chapter thecs = vA
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layer, where mode conversion occurs, was placed in the centre of this gradient. Away from this region the

temperature becomes constant and we would expect to find the same results as for the isothermal model.

As demonstrated in Figure 4.2 the inclusion of a non-isothermal temperature profile complicates matters as

both the sound and Alfv́en speeds now vary with height.

This process was simulated numerically using a MacCormack finite difference scheme, the results of

which are shown in Figure 4.3. As before the waves have a strong amplitude dependence that masks

what is happening at the mode-conversion region. Using the WKB method we uncovered the nature of

this amplitude dependence (Section 4.4.2) allowing it to beremoved. The mode conversion is then much

clearer (Figure 4.4). The plots of the vertical velocity, the pressure and the density all show a decrease

in amplitude of the wave transmitted across thecs = vA layer. The converted slow wave is visible in

the plots of the horizontal velocity, and the horizontal andvertical magnetic field behind the transmitted

fast wave. In Section 4.3.1 we calculated exactly how the positions of the various wavefronts vary with

time, given by Equations (4.74) and (4.75), and shown in Figure 4.5. There were three free parameters

in the numerical simulations: the sloped, the horizontal wavenumberkx, and the driving frequencyω.

In Section 4.3.2 we studied the effect of varying these modelparameters. The steepness of the slope was

found to have no effect on the conversion as long as the wavelength was sufficiently less than the width of

the slope to avoid reflection. The effects of varying the wavenumber and the horizontal driving frequency

were found to be the same as for the isothermal case. For a horizontal wavenumber ofkx = 0 there is

no mode conversion and the incident wave is fully transmitted across thecs = vA layer. As the value of

kx increases, the conversion increases and less of the incident wave is simply transmitted into the high-β

plasma (Figure 4.8). Varying the frequency has the oppositeeffect; as the driving frequency increases the

conversion decreases (Figure 4.9).

In Section 4.4 we used analytical techniques to derive transmission and conversion coefficients and to

determine the wave behaviour throughout the domain. We began by looking at the method developed by

Cairns and Lashmore-Davies (1983) which is valid for smallkx. This method is only valid at the mode-

conversion region and uses the local dispersion relations to find differential equations describing the coupled

mode amplitudes. This results in a solution given in terms ofParabolic Cylinder functions (see Abramowitz

and Stegun (1964)) which are linked to the Meijer-G and Hypergeometric functions that have previously

been used to describe mode conversion (Zhugzhda, 1979; Zhugzhda and Dzhalilov, 1982a; Cally, 2001).

This method has the advantage that an exact analytical solution need not be known in order to determine

the transmission and conversion coefficients, given by Equations (4.117) and (4.120) respectively. From

these we can see that the dependence onkx andω is as we predicted in Section 4.3.2 and the effect of the

horizontal wavenumber is dominant (Figure 4.12). In Figure4.11 we can see that the agreement between

the numerical simulations and the analytical prediction for the transmission is excellent. So good that no

difference may be seen between the two without taking the logarithm of the amplitude ratio. In doing this

we see that the prediction does deviate from the numerical solution askx becomes large.

A WKB analysis was used to find the wave behaviour in the low- and high-β plasma away from the

conversion region. These solutions were then matched across the mode-conversion region using the trans-

mission and conversion coefficients calculated in Section 4.4.1. As seen in Figure 4.13 the analytical

predictions reproduce the results of the numerical simulations well. The amplitude dependence of the con-

verted slow wave does not agree with the numerical simulation, and there is a small discrepancy atz = 0
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where the WKB method breaks down. However this is only the case over a very small area, as shown

in Figure 4.15. It is easier to see just how well the analytical and numerical simulations agree when the

transformed vertical velocity is examined (Figure 4.14). Here we see that the WKB method has captured

the phase and amplitude dependence excellently.

Having studied mode conversion in a non-isothermal atmosphere we have found that we obtain the same

behaviour as in the isothermal case. In fact, we may return tothis case simply by settingΛ = 1 and letting

γβ0/2 = 1. Thus the temperature profile itself does not effect the mode-conversion process. Next we shall

investigate a more complex two-dimensional model with an expanding magnetic field, representative of a

coronal hole.



Chapter 5

MHD Mode Conversion in a Coronal Hole

5.1 Introduction

As a starting point for investigating mode conversion in a two-dimensional model we look at a radially-

expanding magnetic field. As with the previous chapters a combination of analytical and numerical tech-

niques are used to capture the wave behaviour at the mode-conversion region and also in the rest of the

domain. The same techniques are utilised as in Chapters 3 and4, but these have been extended to cope with

a two-dimensional problem.

5.2 Zero Gravity Model

The expanding field model is illustrated in Figure 5.1 and is representative of a coronal hole. Due to the

geometry of the set up we use spherical coordinates,(r, θ, φ) - see Schey (2005). To reduce the problem to

two dimensions all variables are assumed invariant inφ. Gravity is taken to be zero. A slow wave driven

at the surface, located atr = 1, will propagate upwards passing from low- to high-β plasma as it does so.

When it crosses the layer where the sound and Alfvén speeds are equal, indicated by the dashed line, the

slow wave will undergo mode conversion. Some proportion of the incident wave will be transmitted into

the high-β plasma as a fast wave and any remainder will be converted intoa slow wave.

5.2.1 Ideal MHD Equations

We use the ideal form of the MHD equations

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p+

1

µ
(∇× B) × B, (5.1)

∂ρ

∂t
+ ∇ · (ρv) = 0, (5.2)

∂B

∂t
= ∇× (v × B) , (5.3)

(
∂

∂t
+ v · ∇

)
p =

γp

ρ

(
∂

∂t
+ v · ∇

)
ρ, (5.4)

114
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Figure 5.1: Image of the equilibrium magnetic field. The fieldlines fan out radially from the surface located
at r = 1. A wave driven at the surface will propagate upwards passingfrom low- to high-β plasma. The
mode-conversion region wherecs = vA is indicated by a dashed line.

p = Rρ
T

µ̃
, (5.5)

∇ · B = 0, (5.6)

whereρ is the mass density,v is the fluid velocity,p is the gas pressure,µ is the magnetic permeability,B

is the magnetic induction,R is the universal gas constant,T is the temperature and̃µ is the mean molecular

weight.

5.2.2 Equilibrium

If we consider the equilibrium conditions of a radially-expanding magnetic field,B0 =
(
B0a

2/r2, 0, 0
)
, in

an isothermal atmosphere Equation (5.1) gives

∇p0 = 0, (5.7)

and Equation (5.5) gives

p0 = Rρ0
T0

µ̃
. (5.8)

Thus the equilibrium pressure is constant. As we are assuming the equilibrium temperature is isothermal

Equation (5.5) tells us that the equilibrium density must also be constant.
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5.2.3 Linearised MHD Equations

Equations (5.1) – (5.6) may be linearised by adding a small perturbation to the variables

ρ = ρ0 + ρ1 (r, θ, t) , v = v1 (r, θ, t) , p = p0 + p1 (r, θ, t) ,

B = B0 + B1 (r, θ, t) , T = T0 + T1 (r, θ, t) , (5.9)

where the subscript 0 denotes an equilibrium value and subscript 1 denotes a perturbation. To complete the

linearisation process these are substituted into the IdealMHD equations and products of perturbed values

are neglected

ρ0
∂v1

∂t
= −∇p1 +

1

µ
(∇× B1) × B0, (5.10)

∂ρ1

∂t
+ ∇ · (ρ0v1) = 0, (5.11)

∂B1

∂t
= ∇× (v1 × B0) , (5.12)

∂p1

∂t
= − (v1 · ∇) p0 − γp0 (∇ · v1) , (5.13)

p1

p0
=
ρ1

ρ0
+
T1

T0
, (5.14)

∇ · B1 = 0. (5.15)

From this point on the subscripts on the perturbed terms are dropped and it is assumed that we are working

with the linearised equations.

The Linearised MHD equations, under the assumption that∂/∂φ = 0, then reduce to

ρ0
∂vr
∂t

= −∂p
∂r
, (5.16)

ρ0
∂vθ
∂t

= −1

r

∂p

∂θ
+
Br0
µr

∂ (rBθ)

∂r
− Br0

µr

∂Br
∂θ

, (5.17)

ρ0
∂vφ
∂t

=
Br0
µr

∂ (rBφ)

∂r
, (5.18)

∂Br
∂t

= − Br0
r sin θ

∂ (vθ sin θ)

∂θ
, (5.19)

∂Bθ
∂t

=
1

r

∂ (rBr0vθ)

∂r
, (5.20)

∂Bφ
∂t

=
1

r

∂ (rBr0vφ)

∂r
, (5.21)

∂p

∂t
= −γp0

r2
∂
(
r2vr

)

∂r
− γp0

r sin θ

∂ (vθ sin θ)

∂θ
, (5.22)

∂ρ

∂t
= −ρ0

r2
∂
(
r2vr

)

∂r
− ρ0

r sin θ

∂ (vθ sin θ)

∂θ
. (5.23)
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It should be noted that none of Equations (5.16) – (5.22) are dependent onρ, thus Equation (5.23) may be

considered separately. The remaining equations may be combined to give wave equations by differentiating

Equations (5.16) – (5.18) with respect tot and substituting from the remaining equations. This results in

the equations

∂2vr
∂t2

= c2s
∂

∂r

(
1

r2
∂
(
r2vr

)

∂r
+

1

r sin θ

∂ (vθ sin θ)

∂θ

)
, (5.24)

∂2vθ
∂t2

=
c2s
r2

∂

∂θ

(
1

r

∂
(
r2vr

)

∂r
+

1

sin θ

∂ (vθ sin θ)

∂θ

)
+

+
Br0
µρ0r

(
∂2 (rBr0vθ)

∂r2
+
Br0
r

∂

∂θ

(
1

sin θ

∂ (vθ sin θ)

∂θ

))
, (5.25)

∂2vφ
∂t2

=
Br0
µρ0r

∂2 (rBr0vφ)

∂r2
, (5.26)

wherec2s = γp0/ρ0 is the square of the sound speed.

Notice that Equation (5.26) is completely decoupled from the other wave equations. This is because it

is derived from Equations (5.18) and (5.21), which themselves are independent from the other equations.

This describes the Alfv́en wave and may be written

∂2 (rBr0vφ)

∂t2
= v2

A

∂2 (rBr0vφ)

∂r2
, (5.27)

wherev2
A = B2

r0/ (µρ0) is the squared Alfv́en speed. Equations (5.24) and (5.25) describe the fast and

slow magnetoacoustic waves. As we are only interested in thecoupling between the fast and slow waves

we shall not consider Equation (5.27) further here.

5.2.3.1 Non-Dimensionalisation

We non-dimensionalise these equations in order to make the numerical simulations easier. This is done by

settingr = ar̄, t = τ t̄, v = v0v̄, B = B0B̄, B0 = B0B̄0, p = p0p̄, p0 = p̄0, ρ0 = ρ̄0, andθ = θ̄. The

typical lengthscales against which the variables have beenmade dimensionless are related byv0 = a/τ .

Note that we have the relations

B̄0 =

(
1

r̄2
, 0, 0

)
, (5.28)

and

c2s =
γp̄0

ρ̄0
, v2

A =
B2

0

µρ̄0

1

r̄4
. (5.29)
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Figure 5.2: These plots show how the sound and Alfvén speeds vary across the numerical domain. In the
left-hand plot the variation with bothr andθ is shown. The right-hand plot shows a cut taken along constant
θ - thecs = vA region is denoted by the dotted line, to the left of this the plasma is lowβ and to the right it
is highβ.

Definingc2s0 = γp̄0/ρ̄0, andv2
0 = B2

0/ (µρ̄0) = 1 the dimensionless sound and Alfvén speeds are given by

c̄2s = 1, v̄2
A =

1

r̄4
. (5.30)

The plasmaβ, which is the ratio of the gas to the magnetic pressure, may bewritten

β =
2c2s
γv2
A

. (5.31)

This is non-dimensionalised by setting

β0 =
2c2s0
γ
, β̄ = r̄4. (5.32)

The mode-conversion region where the sound and Alfvén speeds are equal is then found where

γβ0

2
=

1

r̄4
, (5.33)

and we can define the parameterβ0 according to where we wish to locate the mode-conversion region. If

we choose to set the mode-conversion region to lie atrc = 1.5, then the sound and Alfvén speeds vary as

shown in Figure 5.2.

Under these assumptions the dimensionless equations are

∂v̄r
∂t̄

= −β0

2

∂p̄

∂r̄
, (5.34)

∂v̄θ
∂t̄

= −β0

2r̄

∂p̄

∂θ̄
+

1

r̄3
∂
(
r̄B̄θ

)

∂r̄
− 1

r̄3
∂B̄r
∂θ̄

, (5.35)
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∂B̄r
∂t̄

= − 1

r̄3 sin θ̄

∂
(
v̄θ sin θ̄

)

∂θ̄
, (5.36)

∂B̄θ
∂t̄

=
1

r̄

∂

∂r̄

( v̄θ
r̄

)
, (5.37)

∂p̄

∂t̄
= − γ

r̄2
∂
(
r̄2v̄r

)

∂r̄
− γ

r̄ sin θ̄

∂
(
v̄θ sin θ̄

)

∂θ̄
. (5.38)

Equations (5.34) – (5.38) may be combined to give a pair of dimensionless wave equations describing

the fast and slow magnetoacoustic waves.

∂2v̄r
∂t̄2

= c2s0
∂

∂r̄

(
1

r̄2
∂
(
r̄2v̄r

)

∂r̄
+

1

r̄ sin θ̄

∂
(
v̄θ sin θ̄

)

∂θ̄

)
, (5.39)

∂2v̄θ
∂t̄2

=
c2s0
r̄3

∂2
(
r̄2v̄r

)

∂r̄∂θ̄
+ r̄v̄2

A

∂2

∂r̄2

( v̄θ
r̄

)
+

(
c2s0 + v̄2

A

)

r̄2
∂

∂θ̄

(
1

sin θ̄

∂
(
v̄θ sin θ̄

)

∂θ̄

)
. (5.40)

Henceforth the bars on dimensionless values are dropped andit is assumed that we are working with the

dimensionless equations.

5.3 Numerical Simulations

We solve Equations (5.34) – (5.38) numerically using the MacCormack method as was done in Chapters 3

and 4, although here it has been extended to deal with a two-dimensional problem. This works in two

steps; the first predicts the solution at the next time step, this is then corrected at the next stage. This

predictor/corrector method may use either forward or backward finite differencing. We choose to utilise

forward differencing for the predictor steps and backward differencing for the corrector steps. This means

that the more accurate, corrected values are being used on the lower radial boundary where a slow wave is

driven.

We are drivingvr on the lower boundary in the low-β plasma so this is a slow magnetoacoustic wave.

The simulations are run for1 ≤ r ≤ 3, π/6 ≤ θ ≤ π/3 and0 ≤ t ≤ 4.3, whereδr = δθ = 0.001

andδt = 0.0002. The end time is chosen to terminate the simulation just before the transmitted fast wave

hits the upper boundary. The free parameters remaining in the model are then given bym andω. These

describe the azimuthal wavenumber and driving frequency respectively, which are introduced through the

lower boundary conditions. In a coronal hole the typical lengthscale may be taken as the solar radius,

R⊙ = 696 Mm, and a typical Alfv́en speed in the corona is 1000 km s−1. We drive a slow wave on the

lower boundary with frequencies ofω = 16π, 24π and32π which correspond in real terms to frequencies of

0.07 s−1, 0.11 s−1 and 0.14 s−1 and periods of 87 s, 58 s and 43.5 s respectively. These driving frequencies

are much larger than the acoustic cutoff frequency,Ωac = 0.001 s−1 (Roberts, 2004), and so are unaffected

by it.

On examining the Wave Equations (5.39) and (5.40) we can see that if vθ = 0 on the lower boundary,

andvr is independent ofθ, thenvθ will remain zero throughout the simulation as the fast and slow magne-
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toacoustic waves are decoupled. Thus to observe mode conversionvr must have someθ dependence. So

on the lower radial boundary we choose

vr = sinωt sin (m [6θ − π]), vθ = 0, (5.41)

wherem must be an integer. Thusvr will be zero on bothθ boundaries and the value ofm will dictate the

number of nodes across the wave. Equation (5.36) would then suggest thatBr = 0. The condition for the

pressure is given by Equation (5.34)

∂p

∂r
= − 2

β0
ω cosωt sin (m [6θ − π]). (5.42)

Finally a condition is required forBθ. If we solely consider ther derivatives in Equation (5.35) then it

would suggest that we select

∂ (rBθ)

∂r
= 0. (5.43)

The boundary conditions on the upper radial boundary are less important as we terminate the simulation

before it reaches this point. Thus we simply choose open boundary conditions for all variables on the upper

boundary.

As previously mentionedvr = 0 on theθ boundaries. Equation (5.34) then suggests thatp = 0 which

then implies that

∂ (vθ sin θ)

∂θ
= 0, (5.44)

from Equation (5.38). This in turn givesBr = 0 and it only remains to find a condition forBθ. SinceBθ
is in phase withVθ we select

∂ (Bθ sin θ)

∂θ
= 0. (5.45)

To summarise the boundary conditions on the lower radial boundary are given by

vr = sinωt sin (m [6θ − π]),
∂p

∂r
= − 2

β0
ω cosωt sin (m [6θ − π]), (5.46)

vθ = 0, Br = 0,
∂ (rBθ)

∂r
= 0. (5.47)

The side boundary conditions are given by

vr = 0, Br = 0, p = 0, (5.48)

∂ (vθ sin θ)

∂θ
= 0,

∂ (Bθ sin θ)

∂θ
= 0, (5.49)
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and the upper radial boundary conditions are

∂vr
∂r

= 0,
∂vθ
∂r

= 0,
∂Br
∂r

= 0,
∂Bθ
∂r

= 0,
∂p

∂r
= 0. (5.50)

5.3.1 Wave Properties

As for the one-dimensional models we are driving a slow wave from low to highβ. In this case that means

that we are drivingvr on the lower radial boundary. As noted above, if the slow waveis notθ dependent

then there is no coupling between the wave modes and we would not expect to see any mode conversion.

The slow wave would then pass from the low-β plasma into the high-β plasma as a fast wave. Ifvr does

have aθ dependence then some proportion of the incident slow wave will be converted as it passes through

the mode-conversion region and propagate as a slow wave in the high-β plasma.

Figure 5.3 shows the radial and azimuthal velocity, the radial and azimuthal magnetic field, and the

pressure respectively. These are the results of a numericalsimulation with driving frequencyω = 16π and

azimuthal wavenumberm = 3 at t = 4.3 Alfv én times. Evidence of mode conversion can be seen in the

plots of the azimuthal velocity, and the radial and azimuthal magnetic field. Once the wave train passes the

mode-conversion region, denoted by the red dashed line, a change in the phase and amplitude dependence

can be seen. This signifies the converted slow wave. The plotsof the azimuthal velocity and magnetic

field also show a transmitted fast wave propagating out aheadof the converted wave. This cannot be seen

in the plots of the radial velocity or pressure due to the amplitude dependence. It is possible to transform

the variables in such a way that the amplitude dependence of the incident wave is removed. The required

transformations are calculated using the WKB method, as detailed in Section 5.4, and are given by

vr →
ṽr
r
, vθ →

ṽθ
r2 (v2

A − γβ0c2s/2)
, Br →

B̃r
r2 (v2

A − γβ0c2s/2)
,

Bθ →
B̃θ

r2 (v2
A − γβ0c2s/2)

, p→ p̃

r
. (5.51)

The plots resulting from these transformations are shown inFigure 5.4. The mode conversion can now

clearly be seen in the plots of the transformed radial velocity and pressure. The amplitude of the incident

wave decreases when it crosses the mode-conversion region.The transmitted wave also now has a constant

amplitude and the converted portion is visible as interference to the right of the dashed line. As before the

converted wave may also be seen propagating ahead in the plots of the transformed azimuthal velocity, and

the transformed radial and azimuthal magnetic field.

It is possible to calculate the positions of the various wavefronts in the simulation. The position of the

acoustic mode, which is the slow wave in lowβ and the fast wave in highβ, is given by the differential

equation

dr

dt
=

√
γβ0

2
cs, (5.52)
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Figure 5.3: Results of the numerical simulation withω = 16π, m = 3 andθ = π/4 at t = 4.3 Alfv én
times. The plots show the radial and azimuthal velocity, theradial and azimuthal magnetic field, and the
pressure respectively from top left to bottom right. The reddashed line indicates wherecs = vA.

Figure 5.4: Results of the numerical simulation withω = 16π, m = 3 andθ = π/4 at t = 4.3 Alfv én
times. The plots show a transformation of the radial and azimuthal velocity, the radial and azimuthal
magnetic field, and the pressure respectively from top left to bottom right. The red dashed line indicates
wherecs = vA.
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Figure 5.5: Surface plot of the transformed azimuthal velocity alongθ = π/5 for ω = 16π andm = 3. The
red dashed line shows the position of the acoustic mode, the green dashed line the position of the magnetic
mode, and the blue dashed line the position of the slow mode.

which may be solved to give

r =

√
γβ0

2
t+ 1. (5.53)

Thus forγβ0/2 = 16/81, at t = 4.3 Alfv én times, the fast wave will have reachedr ≈ 2.9. Similarly the

position of the magnetic mode, which is the slow wave in highβ, may be found from the equation

dr

dt
= vA. (5.54)

Using the initial conditionr = 1.5 at t = 9/8 this has the solution

r3 = 3t, (5.55)

and so the converted wave will have reachedr ≈ 2.35 whent = 4.3 Alfv én times. These predictions are in

excellent agreement with the numerical simulations shown in Figures 5.3 and 5.4. To calculate the position

of the slow mode throughout the domain the equation

dr

dt
= cT =

√
γβ0

2

vA√
γβ0/2 + v2

A

, (5.56)

may be solved. We do this numerically using a fourth-order, Runge-Kutta scheme.

Figure 5.5 shows the transformed azimuthal velocity alongθ = π/5 for driving frequencyω = 16π

and wavenumberm = 3. Overplotted are the paths predicted by Equations (5.53), (5.55) and (5.56).

The acoustic mode is the slow wave in the low-β plasma and the fast wave in the high-β plasma. The
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Figure 5.6:Left: A contour plot of the radial velocity forω = 32π andm = 3 at t = 4.3 Alfv én times.
Right: The variation of the transmission withθ for a numerical simulation withω = 32π andm = 3.

magnetic mode is only present in the high-β plasma and is the slow wave in this region. The last path is

that predicted by the tube speed,cT , which follows the slow wave throughout the domain. This does not

predict the position of the slow wave as well as Equations (5.53) and (5.55).

5.3.2 Effect of Varying the Model Parameters

As previously mentioned there are two free parameters in thenumerical simulations: the azimuthal wavenum-

ber (m) and the driving frequency (ω). In this section we examine the effect varying these parameters has

on the proportion of the incident wave that is transmitted and converted.

We do this in each case along a fixed value ofθ. This is acceptable as the amount of conversion and

transmission does not depend onθ. We do not expect it to, since the sound speed is constant and the Alfvén

speed varies withr alone. This can be seen in the left-hand plot of Figure 5.6 which shows a contour plot

of the radial velocity forω = 32π andm = 3 at t = 4.3 Alfv én times. The velocity goes to zero at each of

the nodes in theθ-direction, but this does not change the transmission and conversion occurring atr = 1.5.

This is demonstrated in the right-hand plot of Figure 5.6, which shows the variation of the transmission

with θ for a numerical simulation withω = 32π andm = 3. This is calculated by taking the amplitude

ratio of the transformed radial velocity in high- and low-β plasma, which is why it grows where the velocity

goes to zero at the nodes. Other than this the transmission isfairly constant.

5.3.2.1 Varying the Wavenumber

To examine the effect of varying the azimuthal wavenumber wefix the frequency atω = 16π and run

numerical simulations for different values ofm. The results of this are shown in Figure 5.7 where the

transformed radial velocity is plotted alongθ = 11π/60 for m = 1, 2, 3, 4, 5, and 6. As we would have

expected from the results of the previous chapters the amount of transmission decreases as the azimuthal
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Figure 5.7: Transformed radial velocity alongθ = 11π/60 for ω = 16π at t = 4.3 Alfv én times. The plots
show the results form = 1, 2, 3, 4, 5 and 6 respectively from top left to bottom right. The dashed red line
indicates wherecs = vA.

Figure 5.8: Transformed radial velocity alongθ = 11π/60 for m = 3 at t = 4.3 Alfv én times. The plots
showω = 16π, 24π and32π respectively from left to right. The dashed red line indicates wherecs = vA.
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wavenumber increases. Form = 1 there is so little conversion that it is barely visible and the incident wave

appears to be fully transmitted into the high-β plasma. Asm increases from 2 to 4 the amount of transmis-

sion decreases rapidly from plot to plot before levelling off by m = 6. Due to the similarities between this

figure and Figures 3.5 and 4.8 we would expect to find similar equations describing the transmission and

conversion coefficients.

5.3.2.2 Varying the Driving Frequency

Considering these similarities we would also expect the transmission to increase with increasingω as be-

fore. As may be seen in Figure 5.8 this is indeed the case. In these plots we have fixedm = 3 and looked

at the transformed radial velocity alongθ = 11π/60 at t = 4.3 Alfv én times for driving frequencies of

ω = 16π, 24π and32π. This effect is clearly much weaker than that of varying the wavenumber.

5.4 Analytical Approximations

Having seen the similarities between the numerical simulations with a radially-expanding field and those in

Chapters 3 and 4, we use the same analytical methods to uncover the behaviour throughout the domain. In

Section 5.4.1 the Cairns and Lashmore-Davies (1983) methodis used to find transmission and conversion

coefficients valid at the conversion region. The WKB method is then used to find the wave behaviour away

from the mode-conversion layer in Section 5.4.2.

5.4.1 Limit of m ≪ ∂/∂r

As in Chapter 4 we begin with the method by Cairns and Lashmore-Davies (1983) to approximate the

behaviour at the mode-conversion region. We begin with the Wave Equations (5.39) and (5.40) written in

their expanded form

∂2vr
∂t2

=
γβ0

2
c2s

(
∂2vr
∂r2

+
1

r

∂2vθ
∂r∂θ

+
2

r

∂vr
∂r

+
1

r tan θ

∂vθ
∂r

− 1

r2
∂vθ
∂θ

− 2

r2
vr −

1

r2 tan θ
vθ

)
, (5.57)

∂2vθ
∂t2

=
γβ0

2

c2s
r

∂2vr
∂r∂θ

+ v2
A

∂2vθ
∂r2

+

(
γβ0c

2
s/2 + v2

A

)

r2
∂2vθ
∂θ2

+ 2
γβ0

2

c2s
r2
∂vr
∂θ

+

+

((
v2
A

)′
+ 2

v2
A

r

)
∂vθ
∂r

+

(
γβ0c

2
s/2 + v2

A

)

r2 tan θ

∂vθ
∂θ

+

+

((
v2
A

)′

r
+Br0B

′′
r0 −

(
γβ0c

2
s/2 + v2

A

)

r2 sin2 θ

)
vθ. (5.58)
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Assuming that∂/∂t = iω, and that derivatives are large, so thatvr andvθ may be neglected in comparison

to their first derivatives and so on,i.e. ∂/∂θ ≫ 1, these equations reduce to

−ω2vr =
γβ0

2
c2s
∂2vr
∂r2

+
γβ0

2

c2s
r

∂2vθ
∂r∂θ

, (5.59)

−ω2vθ =
γβ0

2

c2s
r

∂2vr
∂r∂θ

+ v2
A

∂2vθ
∂r2

+

(
γβ0c

2
s/2 + v2

A

)

r2
∂2vθ
∂θ2

. (5.60)

Finally, by making the assumption that∂/∂θ is small, these equations may be written

(
∂2

∂r2
+

2

γβ0

ω2

c2s

)
vr = −1

r

∂2vθ
∂r∂θ

, (5.61)

(
∂2

∂r2
+
ω2

v2
A

)
vθ = −γβ0

2

c2s
rv2
A

∂2vr
∂r∂θ

. (5.62)

Or alternatively

(
∂

∂r
+ i

√
2

γβ0

ω

cs

)(
∂

∂r
− i

√
2

γβ0

ω

cs

)
vr = −1

r

∂2vθ
∂r∂θ

, (5.63)

(
∂

∂r
+ i

ω

vA

)(
∂

∂r
− i

ω

vA

)
vθ = −γβ0

2

c2s
rv2
A

∂2vr
∂r∂θ

, (5.64)

where the brackets on the left-hand side of each equation represent the upward and downward propagating

waves respectively.

The next step is to expand about the mode-conversion region for waves travelling up towards this region.

We do this by letting

r = rc − ξ + . . . ,
∂

∂r
= − ∂

∂ξ
+ . . . . (5.65)

At the conversion region the sound and Alfvén speeds are equal so

√
γβ0

2
cs =

1

r2c
= vA (rc) , (5.66)

whererc is the radius at the mode-conversion region. The Alfvén speed may then be written

vA =
1

r2c (1 − 2ξ/rc + ξ2/r2c )
≈ 1

r2c (1 − 2ξ/rc)
, (5.67)

asξ ≪ 1. Thus

vA ≈
√
γβ0

2

cs
(1 + 2ξ/rc)

. (5.68)

Away from the mode-conversion region we simply let

∂

∂r
= −i

√
2

γβ0

ω

cs
. (5.69)
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Equations (5.63) and (5.64) then become

∂vr
∂ξ

− i

√
2

γβ0

ω

cs
vr =

1

2rc

∂vθ
∂θ

, (5.70)

∂vθ
∂ξ

− i

(√
2

γβ0

ω

cs
−
√

2

γβ0

2ω

rccs
ξ

)
vθ =

1

2rc

∂vr
∂θ

. (5.71)

Based on the boundary conditions of the numerical simulations, we then let∂/∂θ = 6im, giving

dvr
dξ

− i

√
2

γβ0

ω

cs
vr =

3im

rc
vθ, (5.72)

dvθ
dξ

− i

(√
2

γβ0

ω

cs
−
√

2

γβ0

2ω

rccs
ξ

)
vθ =

3im

rc
vr. (5.73)

It may be shown that these satisfy the conservation of energy. Multiplying Equation (5.72) by its complex

conjugate we obtain

v̄r
dvr
dξ

− i

√
2

γβ0

ω

cs
v̄rvr =

3im

rc
v̄rvθ, (5.74)

taking the complex conjugate of this gives

vr
dv̄r
dξ

+ i

√
2

γβ0

ω

cs
vr v̄r = −3im

rc
vr v̄θ. (5.75)

Adding these together we are left with

d

dξ

(
|vr|2

)
=

3im

rc
(v̄rvθ − vr v̄θ) . (5.76)

Repeating this for Equation (5.73) we may add

v̄θ
dvθ
dξ

− i

(√
2

γβ0

ω

cs
−
√

2

γβ0

2ω

rccs
ξ

)
v̄θvθ =

3im

rc
v̄θvr, (5.77)

and

vθ
dv̄θ
dξ

+ i

(√
2

γβ0

ω

cs
−
√

2

γβ0

2ω

rccs
ξ

)
vθv̄θ = −3im

rc
vθ v̄r, (5.78)

to give

d

dξ

(
|vθ|2

)
=

3im

rc
(v̄θvr − vθ v̄r) . (5.79)

Adding Equations (5.76) and (5.79) we see that energy is conserved

d

dξ

(
|vr|2 + |vθ|2

)
= 0. (5.80)
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Returning to Equations (5.72) and (5.73)vθ may be eliminated to give a second-order, ordinary differ-

ential equation forvr.

d2vr
dξ2

+ i

√
2

γβ0

ω

cs

(
2

rc
ξ − 2

)
dvr
dξ

+

(
9m2

r2c
− 2

γβ0

ω2

c2s

(
1 − 2

rc
ξ

))
vr = 0. (5.81)

To eliminate the first derivative we make the substitution

vr (ξ) = exp

(
−i
√

2

γβ0

ω

cs

(
ξ2

2rc
− ξ

))
ψ (ξ) , (5.82)

to give

d2ψ

dξ2
+

(
2

γβ0

ω2

c2s

ξ2

r2c
− i

√
2

γβ0

ω

rccs
+

9m2

r2c

)
ψ = 0. (5.83)

Finally we make the substitution

ζ =

(√
2

γβ0

2ω

rccs

)1/2

e3iπ/4ξ, (5.84)

yielding

d2ψ

dζ2
−
(
ζ2

4
− 1

2
− i

√
γβ0

2

9m2cs
2ωrc

)
. (5.85)

The advantage of writing the equation in this form is that thesolutions are known in terms of the Parabolic

Cylinder functionU (a, ζ) where

a = −1

2
− i

√
γβ0

2

9m2cs
2ωrc

, (5.86)

as described in Abramowitz and Stegun (1964). Using the asymptotic expansion,vr is given in lowβ

(ξ > 0) by

vr ∼
(√
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γβ0

2ω

rccs

)i√γβ0/29m
2cs/(4ωrc)
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(√
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ξi
√
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ω

cs
ξ

)
, (5.87)

and in highβ (ξ < 0) by

vr ∼
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)i√γβ0/29m
2cs/(4ωrc)

exp

(
−
√
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√
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×
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√
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ω
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√
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γβ0

ω

rccs
ξ2 − 3iπ

4

)
. (5.88)

The WKB method is used to find transmission and conversion coefficients from these equations. We first

assume thatvθ is small in comparison tovr to find an expression for the transmitted component. We let

vr = B exp

(
ωφ0 +

φ1

ω

)
, (5.89)

vθ =
Vθ0
ω

exp

(
ωφ0 +

φ1

ω

)
, (5.90)

whereω is assumed to be large andωφ0 ≫ Vθ0/ω, φ1/ω. These are substituted into Equations (5.72)

and (5.73) to obtain

(
ωφ′0 +

φ′1
ω

)
B − i

√
2

γβ0

ω

cs
B =

3im

rc

Vθ0
ω
, (5.91)

V ′
θ0

ω
+ Vθ0φ

′
0 + Vθ0

φ′1
ω2

− i

√
2

γβ0

1

cs

(
1 − 2

rc
ξ

)
Vθ0 =

3im

rc
B. (5.92)

By equating the coefficients ofω we find that

φ0 = i

√
2

γβ0

ξ

cs
, Vθ0 =

√
γβ0

2

3mcs
2ξ

B, φ1 = i

√
γβ0

2

9m2cs
2rc

ln ξ. (5.93)

These give the transmitted component ofvr as

vr = Bξi
√
γβ0/29m

2cs/(2ωrc) exp

(
i

√
2

γβ0

ω

cs
ξ

)
. (5.94)

Similarly to find the converted component we assume thatvr is small compared tovθ by letting

vr =
Vr0
ω

exp

(
ωφ0 +

φ1

ω

)
, (5.95)

vθ = A exp

(
ωφ0 +

φ1

ω

)
, (5.96)

whereωφ0 ≫ Vr0/ω, φ1/ω. Substituting these into Equations (5.72) and (5.73) we obtain

V ′
r0

ω
+ Vr0φ

′
0 + Vr0

φ′1
ω

− i

√
2

γβ0

1

cs
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A, (5.97)

(
ωφ′0 +

φ′1
ω

)
A− i

√
2

γβ0

ω
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(
1 − 2

rc
ξ

)
A =

3im

rc

Vr0
ω
. (5.98)
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Figure 5.9: Radial velocity as predicted by Equation (5.101) with ω = 32π andm = 3 at θ = π/4. The
vertical red dashed line denotes wherecs = vA; the horizontal lines to the left of this show the predicted
amplitude of the incident wave, and those to the right the predicted amplitude of the transmitted wave.

Equating coefficients ofω we find that

φ0 = i

√
2

γβ0

1

cs

(
ξ − ξ2

rc

)
, Vr0 = −

√
γβ0

2

3mcs
2ξ
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√
γβ0

2

9m2cs
2rc

ln ξ. (5.99)

These give the converted component as

vr = −
√
γβ0

2

3mcs
2ω

Aξ
−
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2cs/(2ωrc)
”
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. (5.100)

Equations (5.94) and (5.100) may be added together to give

vr ∼ Bξi
√
γβ0/29m

2cs/(2ωrc) exp

(
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√
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γβ0
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)
−
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))
. (5.101)

Taking the high-β approximation tovr, given by Equation (5.88), and dividing by the low-β approxi-

mation, Equation (5.87), we may find transmission and conversion coefficients by comparison with Equa-

tion (5.101). Doing so we obtain the transmission coefficient

B = exp

(
−
√
γβ0

2

9πm2cs
2ωrc

)
, (5.102)



5.4 Analytical Approximations 132

and the expression

A =
rc (2π)

1/2

3mΓ

(
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√

γβ0

2
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2ωrc

)
(√

2

γβ0

2ω
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(
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√
γβ0

2

9πm2cs
4ωrc

)
, (5.103)

for the conversion coefficient. Using the fact that

|Γ (iy)|2 = |Γ (−iy)|2 =
π

y sinh (πy)
, (5.104)

from Gradshteyn and Ryzhik (1981), the conversion coefficient may be simplified to

A =

√√√√1 − exp

(
−
√
γβ0

2

9πm2cs
ωrc

)
. (5.105)

Equations (5.102) and (5.105) describe the proportion of the incident wave that is transmitted and con-

verted as it crosses the mode-conversion region. Substituting these values back into Equation (5.101) gives

a description of the radial velocity across the mode-conversion region. This is shown in Figure 5.9 for

ω = 32π, andm = 3 at θ = π/4. Overplotted on this figure is the amplitude we would expect to see

for the incident wave once the amplitude dependence is removed, and to the right of the red dashed line

the amplitude predicted for the transmitted wave by Equation (5.102). We may compare this result to the

numerical simulations by taking the ratio of the transmitted wave to the incident wave for various values of

m. The results of this are shown in Figure 5.10.

In each of the images in Figure 5.10 the driving frequency isω = 16π andθ = 11π/60, the solid line

shows the amount of transmission predicted by Equation (5.102) and the stars overplotted are the amount

of transmission seen in the numerical simulations. The left-hand image shows good agreement; there is

some deviation of the numerical results from the analyticalprediction but the points do follow the curve.

This small deviation may be attributed to the additional complexity of this model. Taking the logarithm

of these values, as shown in the right-hand figure, we can see that the difference between the numerical

and analytical results really is small. As expected it does begin to get larger as the value of the azimuthal

wavenumber increases in violation of the initial assumptions.

On comparison with Equations (3.86) and (3.89), and (4.117)and (4.120), we see that the form of

the coefficients is very similar to those for an isothermal and non-isothermal atmosphere permeated by a

uniform vertical magnetic field. As in these previous cases the coefficients are dependent on both the driving

frequency and on the azimuthal wavenumber. The nature of this dependence is shown in Figure 5.11. As

before the amount of transmission decreases with increasing wavenumber and increases with increasing

driving frequency. The opposite is true of the amount of conversion.

Figure 5.12 also shows how the predicted transmission compares to that seen in the numerical simu-

lations. As before the amount of transmission is calculatedby taking the ratio of the transmitted to the

incident wave. In this case we see how the transmission varies with θ for the azimuthal wavenumber and

driving frequency fixed atm = 3 andω = 32π respectively. The dashed line overplotted on this is the
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Figure 5.10:Left: Ratio of the transmitted and incident wave amplitudes.
Right: Logarithm of the ratio of the transmitted and incident wave amplitudes.
In both casesω = 16π, θ = 11π/60, the solid line is that predicted by Equation (5.102) and thestars are
the values calculated from the numerical data.

Figure 5.11:Top Left:The variation ofA with m for ω = 16π.
Top Right:The variation ofB with m for ω = 16π.
Bottom Left:The variation ofA with ω for m = 3.
Bottom Right:The variation ofB with ω for m = 3.
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Figure 5.12: The variation of the transmission withθ for a numerical simulation withω = 32π andm = 3.
The dashed line overplotted shows the amount of transmission predicted by Equation (5.102).

transmission predicted by Equation (5.102). Ignoring the regions where the radial component goes to zero

the transmission is approximately constant and the prediction is a fairly good one.

5.4.2 WKB Analysis away from the Conversion Region

The above method has described the proportion of the incident wave transmitted and converted across the

conversion region. It does not, however, tell us about the wave behaviour away from this region. To find

this out we use the WKB method, as described in Chapter 2, beginning with the wave equations. Under the

assumption that the time dependence may be written∂/∂t = iω these become

(
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vθ, (5.106)
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Assuming thatω ≫ cs∂/∂θ we expandvr andvθ in inverse powers ofω. To find equations describing

the incident and transmitted waves we assume thatvθ is small in comparison tovr

vr = exp (ωφ0 + φ1), (5.108)

vθ =
Vθ0
ω

exp (ωφ0 + φ1), (5.109)

whereωφ0 ≫ φ1 ≫ Vθ0/ω and the variablesφ0, φ1, andVθ0 may all be functions of bothr andθ.

Substituting these back into Equations (5.106) and (5.107)we may then equate coefficients ofω to solve

for the unknowns. TheO
(
ω2
)

equations are given by

γβ0

2
c2s
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+ 1 = 0, (5.110)

and
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2
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∂φ0

∂θ
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These may be solved to give
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√
2
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cs
. (5.112)

From theO (ω) terms we find the equations

∂φ1

∂r
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r
= 0, (5.113)

and
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∂θ
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Using the boundary conditions these yield the results

φ1 = − ln r + im (6θ − π) , (5.115)

and

Vθ0 = −6m

(
γβ0

2

)3/2
c3s

r (v2
A − γβ0c2s/2)

. (5.116)

Substituting these values back into Equations (5.108) and (5.109) we have

vr =
1

r
exp

(
iω

√
2

γβ0

(r − 1)

cs
+ im (6θ − π)

)
, (5.117)
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vθ = −6m

ω
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Alternatively these may be written in trigonometric form
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1
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(
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√
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γβ0
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)
sin (m (6θ − π)), (5.119)
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(
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√
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Equations (5.119) and (5.120) describe the behaviour of theincident and transmitted waves in the low- and

high-β plasma respectively. The transmitted wave must be multiplied by the transmission coefficient found

in the previous section to get the correct amplitude.

To find the behaviour of the converted wave we must assume thatvr is small in comparison tovθ, so we

let

vr =
Vr0
ω

exp (ωφ0 + φ1), (5.121)

vθ = exp (ωφ0 + φ1), (5.122)

where, as before,ωφ0 ≫ φ1 ≫ Vr0/ω andφ0, φ1 andVr0 are functions of bothr andθ.

On substitution into the Wave Equations (5.106) and (5.107)theO
(
ω2
)

terms give
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It is the∂φ0/∂θ term which must be equal to zero in the first equation, thus thesecond equation gives

φ0 = i

(
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3
− 9

8

)
. (5.125)

We may then look to theO (ω) equations
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v2
A

(
∂2φ0

∂r2
+ 2

∂φ0

∂r

∂φ1

∂r

)
+

((
v2
A

)′
+ 2

v2
A

r

)
∂φ0

∂r
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These may be solved to give

φ1 = r2 + ln r−2 + im (6θ − π) , (5.128)



5.4 Analytical Approximations 137

and

Vr0 =
γβ0

2

rc2sv
2
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(
6m− i

tan θ

)
. (5.129)

Noting that6m≫ 1/ tan θ the second term in the bracket may be neglected.

Substituting these values into Equations (5.108) and (5.109) the converted component of the wave is

described by
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As before these may also be written in trigonometric form
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Equations (5.132) and (5.133) describe the converted wave in the high-β plasma. As with the transmitted

wave these must be multiplied by the corresponding conversion coefficient from the previous section to get

the correct amplitude. The fast wave is negligible in the low-β plasma and so these solutions will be zero

in this region.

In summary we have
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whereA andB are as defined by Equations (5.102) and (5.105).
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Figure 5.13: The numerical and analytical radial velocity and the numerical and analytical azimuthal ve-
locity respectively from top left to bottom right. In all plotsω = 32π,m = 3, θ = π/5 andt = 4.3 Alfv én
times.

Figure 5.14: The numerical and analytical transformed radial velocity forω = 32π, m = 3, θ = π/5 and
t = 4.3 Alfv én times.
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We know that the fast wave will have reachedr ≈ 2.9, and the slow waver ≈ 2.35, after t = 4.3

Alfv én times from Equations (5.53) and (5.55). Along with the transmission and conversion coefficients

calculated from Equations (5.102) and (5.105) this information may be used to give analytical predictions

of the behaviour of the radial and azimuthal velocities across the computational domain. The results of

this are shown in Figure 5.13. On the left-hand side of this figure the numerical simulations for the radial

and azimuthal velocity are displayed for frequencyω = 32π and wavenumberm = 3 at θ = π/5 and

t = 4.3 Alfv én times. On the right-hand side are the analytical predictions found using the WKB method.

It is immediately clear that these predictions are not as accurate as the simpler one-dimensional cases in

Chapters 3 and 4. Whilst the transmitted component of the wave seems to agree well with the numerical

simulation, the amplitude of the converted component is over estimated. This suggests that energy is not

conserved in this case.

This is especially clear once the amplitude dependence is removed from the radial velocity, as shown

in Figure 5.14. The amplitude dependence for the incident and transmitted waves is clearly in excellent

agreement as both are now constant. It is also clear that the amount of transmission predicted by Equa-

tion (5.102) is accurate. Additionally the phase is in good agreement for the incident, transmitted and

converted components. However, the predicted amplitude ofthe converted wave does not agree. This may

be due to the fact that the frequency is not sufficiently larger than the wavenumber, in violation of the initial

assumptions. Thus combining the Cairns and Lashmore-Davies method and the WKB method models the

behaviour of the incident and transmitted wave components well, but does not capture the correct amplitude

of the converted wave.

5.5 Conclusions

Building upon the previous chapters we have examined mode conversion in a two-dimensional atmosphere

with a radially-expanding magnetic field, representative of a coronal hole. Due to the geometry of the prob-

lem spherical coordinates were used and it was assumed that all variables are invariant in theφ direction.

In the interest of simplicity gravitational acceleration was neglected in the model. This set-up is shown in

Figure 5.1. In keeping with the previous studies a slow wave was driven from low- to high-β plasma, thus

travelling upwards in this case. As the model is isothermal the sound speed remains constant but the Alfvén

speed decreases as the wave propagates away from the surface(Figure 5.2).

The MacCormack method was used to numerically model the wavebehaviour, the results of which are

shown in Figure 5.3. Mode conversion clearly occurs as the incident wave passes through the region where

the sound and Alfv́en speeds are equal. Even with the amplitude variation a reduction in the amplitude

of the transmitted wave is noticeable in the radial velocityand pressure. The converted component may

be seen in the plots of the azimuthal velocity, and radial andazimuthal magnetic field. Using the WKB

method (as described in Section 5.4.2) the amplitude dependence of the incident and transmitted waves was

eliminated. The results of these transformations are shownin Figure 5.4. The mode conversion is much

more obvious in this figure, particularly due to the amplitude decrease acrosscs = vA seen in the plots

of the radial velocity and pressure. Again the converted component is seen in the plots of the azimuthal

velocity, and the radial and azimuthal magnetic field. In Section 5.3.1 the position of the fast and slow
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wavefronts was calculated. These are given by Equations (5.53) and (5.55) and are shown against one of

the numerical simulations in Figure 5.5. The free parameters in the model are the azimuthal wavenumber

m, and the driving frequencyω. The effect of varying these parameters for a fixed value ofθ was studied

in Section 5.3.2. As shown in Figure 5.6 this is a valid approach as the value ofθ has no effect on the mode

conversion. Whenm is small the majority of the incident wave is transmitted into the high-β plasma. As

m increases the transmission decreases as more of the incident wave is converted into a high-β slow wave

(Figure 5.7). The effect of varying the frequency is much less pronounced (Figure 5.8) and in this case the

transmission increases as the frequency increases. These results are as expected based on previous chapters.

Section 5.4 concentrated on the use of analytical methods tofind conversion and transmission coeffi-

cients and the wave behaviour throughout the domain. Firstly the conversion and transmission coefficients

were found using the method developed by Cairns and Lashmore-Davies (1983), valid for smallm. This

method focuses on the mode-conversion region itself and uses differential equations derived from the lo-

cal dispersion relations to describe the wave behaviour. The differential equations are combined to give a

second-order differential equation, the solutions of which are known in terms of Parabolic Cylinder func-

tions (see Abramowitz and Stegun (1964)). Thus the transmission and conversion coefficients, given by

Equations (5.102) and (5.105), can be found without knowingan exact solution. These coefficients are

similar in form to those found in Sections 3.4.1 and 4.4.1. Inagreement with the numerical simulations

these do indeed vary with bothm andω, illustrated in Figure 5.11. The agreement between the numeri-

cal simulations and analytical predictions is good, as shown in Figure 5.10. The amount of transmission

calculated from the numerical simulations does not sit exactly on the predicted curve but these definitely

follow the correct shape as long asm remains small. Looking at the variation of transmission with θ in the

numerical simulations we see that the analytical prediction is good excepting the regions where the radial

velocity falls to zero (Figure 5.12).

The WKB method was then used to find the wave behaviour away from the conversion region. Using

the transmission and conversion coefficients given by Equations (5.102) and (5.105) the WKB solutions

were matched across the mode-conversion region, giving a description of the entire domain. Figure 5.13

shows both the numerical and analytical results side by side. From these we can see that the incident and

transmitted components of the wave have been captured well by the analytical approximations. But, whilst

the phase of the converted component looks good, the amplitude is too large. This is especially clear when

the amplitude dependence is removed from the plots of the radial velocity (Figure 5.14). This discrepancy

is most likely due to the fact that the frequency is not sufficiently large in comparison to the wavenumber.

All the methods used to investigate mode conversion in one dimension have transferred well to two

dimensions, particularly the Cairns and Lashmore-Davies method. We expand on this in the next chapter

by looking at the more complex magnetic topology of a two-dimensional magnetic null point.



Chapter 6

MHD Mode Conversion around a

2D Magnetic Null Point

6.1 Introduction

In this chapter we investigate mode conversion in the vicinity of a two-dimensional magnetic null point.

This extends the results of the previous chapter as we are looking at a more complex magnetic topology.

As before, a combination of analytical approximations and numerical simulations is used. Wave behaviour

around a two-dimensional null point has previously been studied by McLaughlin and Hood (2004). In a

zero-β plasma a fast wave was driven towards a null point; as the waveapproached the null it wrapped

around it causing a build up of current. This was extended in McLaughlin and Hood (2006) which included

a finite β allowing mode conversion to occur. In this case when drivinga fast wave toward the null the

effects of refraction and mode conversion were in competition with one another. The smaller the value of

β0 the more dominant the refraction effect. We are interested only in mode conversion, and in this chapter

we look at the conversion of both slow and fast magnetoacoustic waves and the behaviour of all wave

components is found.

6.2 2D Magnetic Null Point Model

The model atmosphere used for a two-dimensional null point is shown in Figure 6.1. The magnetic field

lines are shown in black with the direction indicated on the field lines. The null point lies in the centre of the

plot and is denoted by the blue cross. The green circle surrounding this shows where the sound and Alfvén

speed are equal. A wave driven on the upper boundary will propagate towards the null point, passing from

low- to high-β plasma as it does so. When the wave crosses this boundary modeconversion will take place.

6.2.1 Ideal MHD Equations

We use the ideal form of the MHD equations as given by Equations (1.28) – (1.35)

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p+

1

µ
(∇× B) × B, (6.1)

141
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Figure 6.1: The equilibrium magnetic field for the two-dimensional null point model. The null point is
depicted by the blue cross in the centre and the green circle shows where the sound and Alfvén speeds
are equal. A wave driven on the upper boundary will propagatetowards the null point crossing the mode-
conversion region as it does so.

∂ρ

∂t
+ ∇ · (ρv) = 0, (6.2)

∂B

∂t
= ∇× (v × B) , (6.3)

(
∂

∂t
+ v · ∇

)
p =

γp

ρ

(
∂

∂t
+ v · ∇

)
ρ, (6.4)

p = Rρ
T

µ̃
, (6.5)

∇ · B = 0, (6.6)

where gravity has been neglected for simplicity. In these equationsρ is the mass density,v is the fluid

velocity,p is the gas pressure,µ is the magnetic permeability,B is the magnetic induction,γ is the ratio of

specific heats,R is the universal gas constant,T is the temperature and̃µ is the mean molecular weight.

6.2.2 Equilibrium

The equilibrium magnetic field of a two-dimensional null point is given byB0 = B00

L (x, 0,−z) and the

pressure and density are taken as constants. Under the equilibrium conditions of∂/∂t = 0 andv = 0 the

Equation of Motion becomes
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1

µ
(∇× B0) × B0 = 0. (6.7)

Thus the current density is zero and the magnetic field is potential.

6.2.3 Linearised MHD Equations

Equations (6.1) – (6.6) may be linearised about the above equilibrium by adding a small perturbation to

each variable

ρ = ρ0 + ρ1 (x, z, t) , v = v1 (x, z, t) , p = p0 + p1 (x, z, t) ,

B = B0 + B1 (x, z, t) , T = T0 + T1 (x, z, t) , (6.8)

where subscript 0 denotes equilibrium values and subscript1 denotes perturbed values. These may then

be substituted into the Ideal MHD equations; neglecting products of perturbed values gives the Linearised

MHD equations.

ρ0
∂v

∂t
= −∇p+

1

µ
(∇× B) × B0, (6.9)

∂ρ

∂t
+ ∇ · (ρ0v) = 0, (6.10)

∂B

∂t
= ∇× (v × B0) , (6.11)

∂p

∂t
+ (v · ∇) p0 =

γp0

ρ0

(
∂ρ

∂t
+ (v · ∇) ρ0

)
, (6.12)

p1

p0
=
ρ1

ρ0
+
T1

T0
, (6.13)

∇ · B1 = 0. (6.14)

From this point onwards subscripts on perturbed variables are dropped and it is assumed that we are working

with the linearised equations.

Assuming that all variables vary withx, z andt alone, Equations (6.9) – (6.12) may be written

ρ0
∂vx
∂t

= −∂p
∂x

− B00

µL
z

(
∂Bx
∂z

− ∂Bz
∂x

)
, (6.15)

ρ0
∂vz
∂t

= −∂p
∂z

+
B00

µL
x

(
∂Bz
∂x

− ∂Bx
∂z

)
, (6.16)

∂Bx
∂t

= −B00

L
z
∂vx
∂z

− B00

L
vx −

B00

L
x
∂vz
∂z

, (6.17)

∂Bz
∂t

=
B00

L
x
∂vz
∂x

+
B00

L
vz +

B00

L
z
∂vx
∂x

, (6.18)
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∂p

∂t
= −γp0

(
∂vx
∂x

+
∂vz
∂z

)
. (6.19)

As none of the above equations depend explicitly on the perturbed density the equation describing the

variation of density with respect to time (Equation (6.10))may be neglected.

The above equations may be combined to give a pair of wave equations by differentiating Equations (6.15)

and (6.16) with respect tot and substituting from the remaining equations. This yieldsthe equations

∂2vx
∂t2

=

(
c2s +

B2
00

µρ0L2
z2

)
∂2vx
∂x2

+
B2

00

µρ0L2
z2 ∂

2vx
∂z2

+
B2

00

µρ0L2
xz
∂2vz
∂x2

+ c2s
∂2vz
∂x∂z

+

+
B2

00

µρ0L2
xz
∂2vz
∂z2

+ 2
B2

00

µρ0L2
z
∂vx
∂z

+ 2
B2

00

µρ0L2
z
∂vz
∂x

, (6.20)

∂2vz
∂t2

=
B2

00

µρ0L2
xz
∂2vx
∂x2

+ c2s
∂2vx
∂x∂z

+
B2

00

µρ0L2
xz
∂2vx
∂z2

+
B2

00

µρ0L2
x2 ∂

2vz
∂x2

+

+

(
c2s +

B2
00

µρ0L2
x2

)
∂2vz
∂z2

+ 2
B2

00

µρ0L2
x
∂vx
∂z

+ 2
B2

00

µρ0L2
x
∂vz
∂x

, (6.21)

wherec2s = γp0/ρ0 is the square of the sound speed.

6.2.3.1 Non-Dimensionalisation

To aid with the numerical simulations the above equations are made dimensionless. This is done by setting

x = Lx̄, z = Lz̄, t = τ t̄, ρ0 = ρ̄0, p0 = B2
00p̄0/ (2µ), B0 = B00B̄0, p = B2

00p̄/ (2µ), v = v0v̄, and

B = B00B̄. The lengthscales against which the variables have been made dimensionless are related by

v0 = L/τ . Note that we have the relations

B̄0 = (x̄, 0,−z̄) , (6.22)

and

c2s =
γB2

00

2µρ0
p̄0, v2

A =
B2

00

µρ0

(
x̄2 + z̄2

)
. (6.23)

Definingv2
0 = B2

00/ (µρ0) = c2s0 the dimensionless sound and Alfvén speeds are then given by the equa-

tions

c̄2s =
γ

2
p̄0, v̄2

A = x̄2 + z̄2. (6.24)

The plasmaβ, given by the ratio of the gas pressure to the magnetic pressure, is then

β̄ =
p̄0

(x̄2 + z̄2)
. (6.25)
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Figure 6.2: These plots show how the sound and Alfvén speeds vary withx andz. The sound speed is
constant withx andz, whilst the Alfvén speed varies with position. The left-hand plot shows the speed
variation in two dimensions. The right-hand plots takes a cut alongx = 0 - thecs = vA region is denoted
by the dotted lines, in between these lines the plasma is highβ and outside it is lowβ.

The sound and Alfv́en speeds are equal whenβ̄ = 2/γ (= 6/5) and the radius,̄r, at which this occurs may

be chosen by setting

p̄0 =
2

γ
r̄2, (6.26)

wherer̄2 = x̄2 + z̄2. If we choose to set the mode-conversion region at a radius ofr = 1.5 then the sound

and Alfvén speeds vary as shown in Figure 6.2.

Substituting the non-dimensionalised variables into Equations (6.15) – (6.19) the dimensionless, Lin-

earised MHD equations are given by

∂v̄x
∂t̄

= −1

2

∂p̄

∂x̄
− z̄

(
∂B̄x
∂z̄

− ∂B̄z
∂x̄

)
, (6.27)

∂v̄z
∂t̄

= −1

2

∂p̄

∂z̄
+ x̄

(
∂B̄z
∂x̄

− ∂B̄x
∂z̄

)
, (6.28)

∂B̄x
∂t̄

= −z̄ ∂v̄x
∂z̄

− v̄x − x̄
∂v̄z
∂z̄

, (6.29)

∂B̄z
∂t̄

= x̄
∂v̄z
∂x̄

+ v̄z + z̄
∂v̄x
∂x̄

, (6.30)

∂p̄

∂t̄
= −γp̄0

(
∂v̄x
∂x̄

+
∂v̄z
∂z̄

)
. (6.31)

As before, Equations (6.27) – (6.31) may be combined to give apair of dimensionless wave equations by

differentiating Equations (6.27) and (6.28) with respect to t and substituting from the remaining equations.
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The dimensionless wave equations are

∂2v̄x
∂t̄2

=
(
c̄2s + z̄2

) ∂2v̄x
∂x̄2

+ z̄2 ∂
2v̄x
∂z̄2

+ x̄z̄
∂2v̄z
∂x̄2

+ c̄2s
∂2v̄z
∂x̄∂z̄

+ x̄z̄
∂2v̄z
∂z̄2

+ 2z̄
∂v̄x
∂z̄

+ 2z̄
∂v̄z
∂x̄

, (6.32)

∂2v̄z
∂t̄2

= x̄z̄
∂2v̄x
∂x̄2

+ c̄2s
∂2v̄x
∂x̄∂z̄

+ x̄z̄
∂2v̄x
∂z̄2

+ x̄2 ∂
2v̄z
∂x̄2

+
(
c̄2s + x̄2

) ∂2v̄z
∂z̄2

+ 2x̄
∂v̄x
∂z̄

+ 2x̄
∂v̄z
∂x̄

. (6.33)

Henceforth the bars on dimensionless quantities are dropped and it is assumed that we are working with the

dimensionless equations.

6.3 Numerical Simulations

Equations (6.27) – (6.31) are solved numerically using the MacCormack method in two dimensions, as was

done in Chapter 5. This method uses a combination of predictor and corrector steps; we choose to use

backward differencing for the predictor steps and forward differencing for the corrector steps. This ensures

that we are using the more accurate corrected values on the upper boundary where the wave is driven into

the system.

We drive waves on the upper boundary with frequencies ofω = 4π, 10π and16π which correspond in

real terms to frequencies of 0.21 s−1, 0.52 s−1 and 0.84 s−1 and periods of 30 s, 12 s and 7.5 s respectively.

In calculating these values we have assumed the typical lengthscale of 10 Mm to be the distance between

the null point and the conversion region and the typical Alfvén speed to be 1000 km s−1. As for the

previous chapters the driving frequencies are much larger than the coronal acoustic cutoff frequency,Ωac =

0.001 s−1 (Roberts, 2004), so this does not affect the simulations.

6.3.1 Velocity Parallel and Perpendicular to the Magnetic Field

At this point it is useful to note that in the low-β plasma a slow wave will travel parallel to the magnetic

field and a fast wave perpendicular to the magnetic field. Thus, in order to drive a pure slow or fast wave,

we need to work with the velocity components parallel and perpendicular to the magnetic field rather than

usingvx andvz. If

v = v‖

(
B0√

B0 · B0

)
− v⊥

( ∇A0√
B0 · B0

)
, (6.34)

whereA = (0, A0, 0) is the vector potential, thenA0 = −xz and the parallel and perpendicular compo-

nents of the velocity are given by

v‖ =
xvx − zvz√
x2 + z2

, (6.35)

and

v⊥ =
zvx + xvz√
x2 + z2

. (6.36)
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By driving eitherv‖ or v⊥ on the upper boundary we may drive either a slow wave or a fast wave towards

the magnetic null point.

It is possible to rewrite Equations (6.27) – (6.31) in terms of the variablesv⊥ andv‖

∂v‖

∂t
= − 1

2
√
x2 + z2

(
x
∂p

∂x
+ z

∂p

∂z

)
, (6.37)

∂v⊥
∂t

= − 1

2
√
x2 + z2

(
z
∂p

∂x
+ x

∂p

∂z

)
+
√
x2 + z2

(
∂Bz
∂x

− ∂Bx
∂z

)
, (6.38)

∂Bx
∂t

= −
√
x2 + z2

∂v⊥
∂z

− z√
x2 + z2

v⊥, (6.39)

∂Bz
∂t

=
√
x2 + z2

∂v⊥
∂x

+
x√

x2 + z2
v⊥, (6.40)

∂p

∂t
= −γp0

(
x√

x2 + z2

∂v‖

∂x
− z√

x2 + z2

∂v‖

∂z
−

(
x2 − z2

)

(x2 + z2)
3/2

v‖ +
z√

x2 + z2

∂v⊥
∂x

+

+
x√

x2 + z2

∂v⊥
∂z

− 2xz

(x2 + z2)3/2
v⊥

)
. (6.41)

In terms of the parallel and perpendicular velocity components the wave equations are given by

∂2v‖
∂t2

= c2s

(
x2

(x2 + z2)

∂2v‖
∂x2

− 2xz

(x2 + z2)

∂2v‖
∂x∂z

+
z2

(x2 + z2)

∂2v‖
∂z2

− x
(
x2 − 3z2

)

(x2 + z2)
2

∂v‖
∂x

+

+
z
(
3x2 − z2

)

(x2 + z2)
2

∂v‖
∂z

+

(
x4 − 10x2z2 + z4

)

(x2 + z2)
3 v‖ +

xz

(x2 + z2)

∂2v⊥
∂x2

+

+

(
x2 − z2

)

(x2 + z2)

∂2v⊥
∂x∂z

− xz

(x2 + z2)

∂2v⊥
∂z2

− 4x2z

(x2 + z2)
2

∂v⊥
∂x

+

+
4xz2

(x2 + z2)2
∂v⊥
∂z

+
6xz

(
x2 − z2

)

(x2 + z2)3
v⊥

)
, (6.42)

∂2v⊥
∂t2

=
c2sxz

(x2 + z2)

∂2v‖
∂x2

+
c2s
(
x2 − z2

)

(x2 + z2)

∂2v‖
∂x∂z

− c2sxz

(x2 + z2)

∂2v‖
∂z2

− 2c2sz
(
x2 − z2

)

(x2 + z2)2
∂v‖
∂x

−

−2c2sx
(
x2 − z2

)

(x2 + z2)
2

∂v‖
∂z

+
6c2sxz

(
x2 − z2

)

(x2 + z2)
3 v‖ +

(
c2sz

2

(x2 + z2)
+ v2

A

)
∂2v⊥
∂x2

+

+
2c2sxz

(x2 + z2)

∂2v⊥
∂x∂z

+

(
c2sx

2

(x2 + z2)
+ v2

A

)
∂2v⊥
∂z2

+

(
c2sx

(
x2 − 3z2

)

(x2 + z2)2
+ 2x

)
∂v⊥
∂x

−

−
(
c2sz
(
3x2 − z2

)

(x2 + z2)
2 − 2z

)
∂v⊥
∂z

−
(

2c2s
(
x4 − 4x2z2 + z4

)

(x2 + z2)
3 + 1

)
v⊥. (6.43)
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Figure 6.3: Contour plots of the perpendicular velocity component forω = 16π at t = 0.5, 1.0 and 1.5
Alfv én times respectively from left to right. The black circle shows the position wherecs = vA and the
null point lies at the origin in the centre of this circle.

6.3.2 Driving v⊥

To drive the perpendicular velocity component, which is predominantly a fast wave, on the upper boundary

we setv⊥ = sinωt andv‖ = 0. The simulations are run for−6 ≤ x ≤ 6, −6 ≤ z ≤ 4 and0 ≤ t ≤ 2.3

Alfven times, whereδx = δz = 0.013 andδt = 0.0005. The only free parameter in this case is the driving

frequency (ω) which is introduced through the conditions on the upper boundary. The boundary conditions

on the upper boundary are given by

vx =
z√

x2 + z2
sinωt, vz =

x√
x2 + z2

sinωt, (6.44)

and using Equations (6.29) – (6.31) the remaining conditions are given by

Bx =
z

ω
√
x2 + z2

(cosωt− 1) , Bz =
x

ω
√
x2 + z2

(1 − cosωt) , p =
2γp0xz

ω (x2 + z2)
3/2

. (6.45)

For the side boundaries we simply choose to use open boundaryconditions

∂vx
∂x

= 0,
∂vz
∂x

= 0,
∂Bx
∂x

= 0,
∂Bz
∂x

= 0,
∂p

∂x
= 0. (6.46)

The boundary conditions on the lower boundary are less important, as the simulation is terminated before

any reflection effects from this boundary can affect the incoming waves. On this boundary the conditions

are given by

∂vx
∂z

= 0,
∂vz
∂z

= 0,
∂Bx
∂z

= 0, Bz = 0,
∂p

∂z
= 0. (6.47)

6.3.2.1 Wave Properties

We are driving a fast wave on the upper boundary which propagates from low- to high-β plasma. As can

be seen in Figure 6.3 the wave slows as it approaches the magnetic null point, where the Alfv́en speed goes

to zero. The edges of the wavefront propagate faster than thecentre causing it to wrap around the null
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Figure 6.4: Results of the numerical simulation withω = 16π at t = 2.3 Alfv én times for a cut taken along
x = 0. The plots show the parallel and perpendicular velocity, the horizontal and vertical magnetic field,
and the pressure respectively from top left to bottom right.The red dashed line indicates the regions where
cs = vA.

(as found in McLaughlin and Hood (2004)). This means that only a portion of the wavefront will actually

cross the mode-conversion region. To observe the mode conversion a cut is taken alongx = 0 where the

wavefront hits the conversion region tangentially.

As the incident fast wave hits the mode-conversion region itwill split into a transmitted slow wave and

a converted fast wave in the high-β plasma. This is shown in Figure 6.4 where we see the parallel and

perpendicular velocity, the horizontal and vertical magnetic field, and the pressure respectively. These are

the results of a numerical simulation with driving frequency ω = 16π shown att = 2.3 Alfv én times. In the

plots of the perpendicular velocity, and horizontal and vertical magnetic field two distinct waves can be seen

in the high-β plasma. The two modes may be distinguished by their different amplitude dependencies and

phase behaviour. The mode in front is the converted fast wavecomponent and behind this is the transmitted

slow wave. Both waves are also present in the plots of the parallel velocity and pressure, but the slow wave

is only visible as interference with the fast wave. There is also a wave seen in the low-β plasma in the

left-hand side of each plot. This is has been introduced intothe system by boundary effects on the lower

boundary and can be ignored as the simulation has been stopped before this causes any interference.
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Figure 6.5: Surface plot of the perpendicular velocity forω = 16π alongx = 0. The red dashed line shows
the position of the acoustic mode, the green dashed line the position of the magnetic mode, and the blue
dashed line the position of the fast mode.

It is possible to calculate the position of the various wavefronts in the simulation. In the low-β plasma

the fast wave will travel at approximately the Alfvén speed

dz

dt
= −vA = −

√
x2 + z2. (6.48)

Focusing along the cutx = 0, this reduces to

dz

dt
= −z. (6.49)

Using the initial conditionz = 4 whent = 0 gives the solution

z = 4e−t. (6.50)

This tells us that the fast wave will reach the mode-conversion region whent = 1 Alfv én time, and at

t = 2.3 Alfv én times the high-β slow wave will have reachedz ≈ 0.41. Similarly the position of the fast

wave in the high-β plasma will be given by the equation

dz

dt
= −cs, (6.51)

which has the solution

z = cs

(
ln

8

3
− t

)
+ 1.5, (6.52)

and so the converted wave will have reachedz ≈ −0.45 at t = 2.3 Alfv én times. These predictions are in

excellent agreement with the numerical simulations shown in Figure 6.4.



6.3 Numerical Simulations 151

To calculate the position of the fast mode throughout the domain we use the equation

dz

dt
= −cf = −

√
c2s + v2

A. (6.53)

Along x = 0 this simplifies to

dz

dt
= −

√
c2s + z2, (6.54)

which has the solution

t = ln

∣∣∣∣∣
4 +

√
c2s + 16

z +
√
c2s + z2

∣∣∣∣∣. (6.55)

Figure 6.5 shows the perpendicular velocity for a numericalsimulation with driving frequencyω = 16π.

Overplotted are the paths predicted by Equations (6.50), (6.52) and (6.55). The magnetic mode is the fast

wave in the low-β plasma and the slow wave in the high-β plasma. The acoustic mode is only present once

the incident wave passes into the high-β plasma and is the fast wave in this region. The final path is that

predicted by the fast speed,cf , which follows the fast wave throughout the domain. The pathpredicted

by the fast speed does not follow the actual wave behaviour aswell as those predicted by Equations (6.50)

and (6.52).

6.3.2.2 Effect of Varying the Driving Frequency

The only free parameter in the numerical simulation in this case is the driving frequency. In this section we

examine the effect that variation of this parameter has on the amount of the incident wave that is transmitted

and converted into the high-β plasma. To do this we run the simulation for three different values ofω: 4π,

10π and 16π. The results of these simulations att = 2.3 Alfv én times are shown in Figure 6.6. Without

knowing the amplitude dependence of the incoming wave it is difficult to determine the wave behaviour.

But the amount of conversion does seem to be decreasing asω increases suggesting that the transmission is

increasing. This agrees with our findings in Chapters 3, 4 and5.

6.3.3 Driving v‖

Another option is to drive a slow wave on the upper boundary. This can be done by driving the parallel

component of the velocity,v‖ = sinωt, and setting the perpendicular component to zero,v⊥ = 0. As for

the previous case the simulations are run for−6 ≤ x ≤ 6, −6 ≤ z ≤ 4 and0 ≤ t ≤ 4.6 Alfv én times.

The driving frequency is the only free parameter, which is introduced through the conditions imposed on

the upper boundary. These are given by

vx =
x√

x2 + z2
sinωt, vz = − z√

x2 + z2
sinωt, (6.56)
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Figure 6.6:Top: Perpendicular velocity att = 2.3 Alfv én times forω = 4π, 10π and 16π respectively
from left to right.
Bottom: Parallel velocity att = 2.3 Alfv én times forω = 4π, 10π and 16π respectively from left to right.
The red dashed lines indicate wherecs = vA.

and through a process of trial and error we choose the remaining boundary conditions to be

∂Bx
∂z

= 0, Bz = 0,
∂p

∂z
= 0. (6.57)

On the side boundaries we simply choose to use open boundary conditions

∂vx
∂x

= 0,
∂vz
∂x

= 0,
∂Bx
∂x

= 0,
∂Bz
∂x

= 0,
∂p

∂x
. (6.58)

The boundary conditions on the lower boundary are less important as the simulation is terminated before

the wave reaches this point in order to eliminate reflection effects. On this boundary the conditions are

given by

∂vx
∂z

= 0,
∂vz
∂z

= 0,
∂Bx
∂z

= 0, Bz = 0,
∂p

∂z
= 0. (6.59)

When drivingv‖ on the upper boundary components of both the slow and fast wave are introduced, as

may be seen in Figure 6.7. This is because the wave driven on the upper boundary does not propagate

exactly along the magnetic field lines. In order to drive a pure slow magnetoacoustic wave the wavefront
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Figure 6.7: Contour plots of the parallel velocity component for ω = 16π at t = 1.48, 2.97 and 4.46 Alfv́en
times respectively from left to right. The black circle shows the position wherecs = vA and the null point
lies at the origin in the centre of this circle.

driven on the upper boundary must be curved, so as to travel along the field lines.

From Section 6.3.1 we know that the magnetic field lines are given by constant values ofA0 = −xz.
Using the Cauchy-Riemann equations we find that the orthogonal curves toA0 are given by

φ = −1

2

(
x2 − z2

)
, (6.60)

whereφ is constant. We know that whent = 0 at x = 0 we will havez = 4, this allows us to calculate

φ = 8. Rearranging Equation (6.60) we find an expression forz0

z0 =
√

16 + x2
0. (6.61)

If we want to know how a point on the wavefront evolves then it will have a constant value ofA0, thus

xz = x0z0. (6.62)

In order to drive a wavefront that will pass throughz = 4 we must have

x0 = ±2

√√
x2 + 4 − 2. (6.63)

To drive a wave which is constant along the field lines we must calculate the time at whichz = 4 for

each value ofx0. This may be done using Charpit’s method. This finds a system of ordinary differential

equations describing the wave behaviour along the characteristic curves for the partial differential equation

F (ψ, p, q, ω, x, z, t) = 0, (6.64)

wherep = ∂ψ/∂x and q = ∂ψ/∂z, as described in Section 6.4.1. If the parallel and perpendicular

wavenumbers are given by

k‖ =
xp− zq√
x2 + z2

and k⊥ =
zp+ xq√
x2 + z2

, (6.65)
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we may note thatp2 + q2 = k2
‖ + k2

⊥ andxp− zq = vAk‖. Letting the perpendicular wavenumber initially

be zero Equation (6.80) gives the initial fast wave solution

2ω2 −
(
c2s + v2

A0

)
k2
‖0 +

√
(c2s + v2

A0)
2
k4
‖0 − 4c2sv

2
A0k

4
‖0 = 0. (6.66)

Whens = 0 we lett0 = 0 andψ = 0 so we havet = 2ωs. The initial conditions forx0 andz0 are given

by Equations (6.63) and (6.61) and from Equation (6.66) we obtain

k‖0 = −
√√√√

2ω2

c2s + x2
0 + z2

0 −
√

(c2s + x2
0 + z2

0)
2 − 4c2s (x2

0 + z2
0)
, (6.67)

which gives the initial condition fork‖ for a downward propagating wave. The remaining equations must

be solved numerically under the above initial conditions using a fourth-order Runge-Kutta scheme.

6.3.3.1 Wave Properties

In Figure 6.8 we can see that by driving the parallel velocitycomponent along the magnetic field lines only

a slow wave is initially introduced. This propagates downwards at a constant speed until the front of the

wave hits the mode-conversion region. At this point the portion of the wave that crosses into the high-β

plasma undergoes mode conversion, and both the transmittedfast wave and a converted slow wave are

present. To examine the mode conversion a cut is again taken along x = 0 where the wavefront hits the

conversion region tangentially.

Figure 6.9 shows the parallel and perpendicular velocity components, the horizontal and vertical mag-

netic field and the pressure for a cut taken alongx = 0 at t = 4.6 Alfv én times of a numerical simulation

with driving frequencyω = 16π. In the region to the far right of each plot only the incident slow mode

is present. As this wave crosses into the high-β plasma between the red dashed lines some portion of the

wave is converted to a slow wave and the rest is transmitted asa fast wave. It is difficult to make out the

separate fast and slow wave components in the high-β region due to the interference.

The position of the different wavefronts in time may be calculated analytically. In the low-β plasma the

slow wave travels at approximately the sound speed

dz

dt
= −cs, (6.68)

so its position varies according to

z = 4 − cst. (6.69)

The slow wave will therefore reach the mode-conversion region atz = 1.5 whent ≈ 1.67 Alfv én times,

and att = 4.6 Alfv én times the high-β fast wave will have passed back into the low-β plasma as a slow

wave and reachedz ≈ −2.85.
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Figure 6.8: Contour plot of the parallel velocity componentdriven along the magnetic field lines. The
plots are shown for a simulation with driving frequencyω = 16π at t = 1.48, 2.97 and 4.46 Alfv́en times
respectively from left to right. The black circle shows the position wherecs = vA and the null point lies at
the origin in the centre of this circle.

Figure 6.9: Results of driving the parallel velocity along the magnetic field lines with a driving frequency
ω = 16π att = 4.6 Alfv én times for a cut taken alongx = 0. The plots show the parallel and perpendicular
velocity, the horizontal and vertical magnetic field, and the pressure respectively from top left to bottom
right. The red dashed line indicates the regions wherecs = vA.
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Figure 6.10: Surface plot of the parallel velocity when driven along the magnetic field lines forω = 16π
alongx = 0. The red dashed line shows the position of the acoustic mode,the green dashed line the
position of the magnetic mode, and the blue dashed line the position of the slow mode.

The position of the slow mode in the high-β plasma will be given by the equation

dz

dt
= −vA = −

√
x2 + z2. (6.70)

Along x = 0 this reduces to

dz

dt
= −z, (6.71)

which, usingz = 3/2 whent = 5/3 from Equation (6.69), has the solution

z =
3

2
e5/3e−t. (6.72)

Thus the converted slow mode will only have reachedz ≈ 0.08. The position of the transmitted wave

agrees well with the numerical simulations, but it is difficult to see the position of the converted wave in

order to compare the results. The position of the slow mode throughout the simulation may be predicted by

the tube speed, given by the equation

dz

dt
= −cT = − csz√

c2s + z2
, (6.73)

alongx = 0. This is not easily solved analytically but the fourth-order Runge-Kutta method may be used

to find a solution numerically.

Figure 6.10 shows the parallel velocity driven along the magnetic field lines for a numerical simulation

with driving frequencyω = 16π. Overplotted are the paths predicted by Equations (6.69), (6.72) and (6.73).

The acoustic mode is the slow wave in the low-β plasma and the fast mode in the high-β plasma. The
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Figure 6.11: Parallel velocity component driven along the magnetic field lines att = 4.6 Alfv én times for
ω = 4π, 10π and16π respectively from left to right. The red dashed lines indicate wherecs = vA.

magnetic mode is only present after the incident slow wave crosses into the high-β plasma, and is the slow

wave in this region. The third path plotted is that predictedby the tube speed,cT , which follows the slow

mode throughout the domain. This path does not follow the observed wave behaviour as well as those

predicted by Equations (6.69) and (6.72) but the agreement is better distant from the conversion region.

The ridges appearing ahead of the slow wave are due to a small component of the fast wave being driven

on the boundary, but this is effect has been vastly reduced bydriving v‖ along the magnetic field lines.

6.3.3.2 Effect of Varying the Driving Frequency

Again the only free parameter in the numerical simulation isthe driving frequency. In this section we

examine the effect that varying this parameter has on the proportion of transmission and conversion ob-

served. Figure 6.11 shows the parallel velocity component at t = 4.6 Alfv én times forω = 4π, 10π and

16π respectively from left to right. The converted slow wave cannot be seen below the transmitted fast

wave. Although the amplitude dependence of the incident andtransmitted waves has not been removed

from these plots it can still be seen that the amount of transmission is decreasing asω increases, in line with

the previous chapters.

6.4 Analytical Approximations

In Section 6.3.3 we touched on how Charpit’s method could be used to determine when to drive the parallel

velocity component on the upper boundary so that it was directed along the magnetic field lines. In this

section we look at Charpit’s method in more detail and show that it may be used to track the positions of

the different wavefronts as they propagate through the domain.
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6.4.1 Charpit’s Method

Charpit’s method results in a system of ordinary differential equations describing the behaviour along a

characteristic curves. To obtain these equations we begin with the wave equations,as given by Equa-

tions (6.32) and (6.33)

∂2vx
∂t2

=
(
c2s + z2

) ∂2vx
∂x2

+ z2 ∂
2vx
∂z2

+ xz
∂2vz
∂x2

+ c2s
∂2vz
∂x∂z

+ xz
∂2vz
∂z2

+ 2z
∂vx
∂z

+ 2z
∂vz
∂x

, (6.74)

∂2vz
∂t2

= xz
∂2vx
∂x2

+ c2s
∂2vx
∂x∂z

+ xz
∂2vx
∂z2

+ x2 ∂
2vz
∂x2

+
(
c2s + x2

) ∂2vz
∂z2

+ 2x
∂vx
∂z

+ 2x
∂vz
∂x

. (6.75)

Assuming that we may write the velocity components in terms of their Fourier components,vx = aeiψ(x,z,t)

andvz = beiψ(x,z,t), whereψ ≫ 1 these equations reduce to

((
∂ψ

∂t

)2

−
(
c2s + z2

)(∂ψ
∂x

)2

− z2

(
∂ψ

∂z

)2
)
vx −

−
(
xz

(
∂ψ

∂x

)2

+ c2s

(
∂ψ

∂x

)(
∂ψ

∂z

)
+ xz

(
∂ψ

∂z

)2
)
vz = 0, (6.76)

−
(
xz

(
∂ψ

∂x

)2

+ c2s

(
∂ψ

∂x

)(
∂ψ

∂z

)
+ xz

(
∂ψ

∂z

)2
)
vx +

+

((
∂ψ

∂t

)2

− x2

(
∂ψ

∂x

)2

−
(
c2s + x2

)(∂ψ
∂z

)2
)
vz = 0. (6.77)

For a non-trivial solution we require

(
∂ψ

∂t

)4

−
(
c2s + v2

A

)
((

∂ψ

∂x

)2

+

(
∂ψ

∂z

)2
)(

∂ψ

∂t

)2

+ c2s

((
∂ψ

∂x

)2

+

(
∂ψ

∂z

)2
)

×

×
(
x
∂ψ

∂x
− z

∂ψ

∂z

)2

= 0. (6.78)

Lettingω = ∂ψ/∂t, p = ∂ψ/∂x, andq = ∂ψ/∂z, we may set

F (ψ, p, q, ω, x, z, t) =
1

2

(
ω4 −

(
c2s + v2

A

) (
p2 + q2

)
ω2 + c2s

(
p2 + q2

)
(xp− zq)

2
)

= 0. (6.79)

This equation can be solved to give

2ω2 =
(
c2s + v2

A

) (
p2 + q2

)
±
√

(c2s + v2
A)

2
(p2 + q2)

2 − 4c2s (p2 + q2) (xp− zq)
2
, (6.80)

where the positive root gives the fast wave solution, and thenegative root gives the slow wave solution.
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Referring to Section 2.2.2 on Charpit’s method, the fast wave solution is given by the system of equations

dψ

ds
= 0, (6.81)

dω

ds
= 0, (6.82)

dt

ds
= 2ω, (6.83)

dp

ds
= x

(
p2 + q2

)
+
x
(
p2 + q2

)2 (
c2s + v2

A

)
− 2pc2s

(
p2 + q2

)
(xp− zq)√

(c2s + v2
A)

2
(p2 + q2)

2 − 4c2s (p2 + q2) (xp− zq)
2
, (6.84)

dq

ds
= z

(
p2 + q2

)
+
z
(
p2 + q2

)2 (
c2s + v2

A

)
+ 2qc2s

(
p2 + q2

)
(xp− zq)√

(c2s + v2
A)

2
(p2 + q2)2 − 4c2s (p2 + q2) (xp− zq)2

, (6.85)

dx

ds
= −p

(
c2s + v2

A

)
− p

(
p2 + q2

) (
c2s + v2

A

)2 − 2pc2s (xp− zq)2 − 2xc2s
(
p2 + q2

)
(xp− zq)√

(c2s + v2
A)

2
(p2 + q2)

2 − 4c2s (p2 + q2) (xp− zq)
2

,

(6.86)

dz

ds
= −q

(
c2s + v2

A

)
− q

(
p2 + q2

) (
c2s + v2

A

)2 − 2qc2s (xp− zq)
2

+ 2zc2s
(
p2 + q2

)
(xp− zq)√

(c2s + v2
A)

2
(p2 + q2)

2 − 4c2s (p2 + q2) (xp− zq)
2

.

(6.87)

Similarly the slow wave solution is given by the system of equations

dψ

ds
= 0, (6.88)

dω

ds
= 0, (6.89)

dt

ds
= 2ω, (6.90)

dp

ds
= x

(
p2 + q2

)
− x

(
p2 + q2

)2 (
c2s + v2

A

)
− 2pc2s

(
p2 + q2

)
(xp− zq)√

(c2s + v2
A)

2
(p2 + q2)2 − 4c2s (p2 + q2) (xp− zq)2

, (6.91)

dq

ds
= z

(
p2 + q2

)
− z

(
p2 + q2

)2 (
c2s + v2

A

)
+ 2qc2s

(
p2 + q2

)
(xp− zq)√

(c2s + v2
A)

2
(p2 + q2)2 − 4c2s (p2 + q2) (xp− zq)2

, (6.92)

dx

ds
= −p

(
c2s + v2

A

)
+
p
(
p2 + q2

) (
c2s + v2

A

)2 − 2pc2s (xp− zq)2 − 2xc2s
(
p2 + q2

)
(xp− zq)√

(c2s + v2
A)

2
(p2 + q2)

2 − 4c2s (p2 + q2) (xp− zq)
2

,

(6.93)
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Figure 6.12: The path of the fast wave for various starting points along thex-axis. The green circle denotes
wherecs = vA and the magnetic null point lies at the origin in the centre ofthis circle. The paths marked
in red indicate those paths which do not cross the mode-conversion region during the simulation.

dz

ds
= −q

(
c2s + v2

A

)
+
q
(
p2 + q2

) (
c2s + v2

A

)2 − 2qc2s (xp− zq)2 + 2zc2s
(
p2 + q2

)
(xp− zq)√

(c2s + v2
A)

2
(p2 + q2)2 − 4c2s (p2 + q2) (xp− zq)2

.

(6.94)

From both sets of equations we can immediately note thatψ andω are constant, and ift = 0 whens = 0

thent = 2ωs.

6.4.1.1 Drivingv⊥

When driving the perpendicular velocity on the upper boundary the fast wave solution will follow the

incident wave in the low-β plasma and the converted wave in the high-β plasma. The initial conditions,

taken whens = 0, are given by

ψ = 0, t = 0, x = x0, z = 4 and p = 0. (6.95)

Thus Equation (6.80) is initially given by

2ω2 −
(
c2s + x2

0 + 16
)
q20 +

√
(c2s + x2

0 + 16)
2
q40 − 64c2sq

4
0 = 0. (6.96)

Solving this forq0, the positive root will give the downward solution

q0 =

√√√√
2ω2

c2s + x2
0 + 16 −

√
(c2s + x2

0 + 16)
2 − 64c2s

. (6.97)
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Figure 6.13: Contour plots of the perpendicular velocity for driving frequencyω = 4π at t = 0, 0.28, 0.58,
0.86, 1.14, 1.42, 1.72, 2.00 and 2.28 Alfvén times respectively from top left to bottom right. The green
circle denotes wherecs = vA and the magnetic null point lies at the origin in the centre ofthis circle. The
red lines follow the front, middle and back of the fast wave pulse and the blue lines follow the front, middle
and back of the slow wave pulse.

Using these initial conditions Equations (6.84) – (6.87) may be solved numerically using the fourth-order

Runge-Kutta method to follow the incident and converted waves.

Figure 6.12 shows the characteristic paths of the fast wave for various starting points along thex-axis.

This demonstrates the way that the fast wave wraps around themagnetic null point. It is also clear that the

edges of the wavefront have travelled further than the centre in the same time, as these are moving faster.

The green circle shows where the sound and Alfvén speeds are equal. Not all of the fast wave will cross this

mode-conversion region into the high-β region before the end of the simulation. Those paths that remain

in the low-β plasma are indicated in red.

To follow the transmitted slow wave the slow wave solution must be used. From Section 6.3.2.1 we know

that the incident fast wave will reach the mode-conversion region atz = 1.5 whent = ln (8/3) ≈ 0.98

Alfv én times; therefore these are the initial conditions for theslow wave solution. The conditions forp, q

andx are taken to be the same as those for the fast wave solution.
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The results of using Charpit’s method to follow the fast and slow waves are shown in Figure 6.13. Each

plot shows a contour plot of the numerical perpendicular velocity for a driving frequency ofω = 4π as time

progresses. Overplotted on these are the position of the front, middle and back of the fast wave pulse in red

and the position of the front, middle and back of the slow wavepulse in blue. The green circle shows where

the sound and Alfv́en speeds are equal. The slow wave solution is introduced at this point as this is where

mode conversion occurs. The agreement between the numerical simulations and the analytical predictions

is excellent.

Concentrating on the cut alongx = 0 (with p = 0) Equations (6.80), (6.85) and (6.87) reduce down to

2ω2 = q2
((
c2s + z2

)
+
∣∣c2s − z2

∣∣) , (6.98)

dq

ds
= zq2

(
1 +

(
z2 − c2s

)

|z2 − c2s|

)
, (6.99)

dz

ds
= −q

((
c2s + z2

)
+
∣∣c2s − z2

∣∣) . (6.100)

In the low-β region, wherez2 > c2s

ω2 = z2q2,
dq

ds
= 2zq2 and

dz

ds
= −2z2q, (6.101)

which may be solved to find

z = 4e−t, (6.102)

as predicted by Equation (6.50).

In the high-β region, wherez2 < c2s

ω2 = q2c2s,
dq

ds
= 0 and

dz

ds
= −2qc2s, (6.103)

which may be solved to find

z = C − cst. (6.104)

From Equation (6.102) we know thatt = ln (8/3) atz = 1.5, so this may be written

z = 1.5 + cs

(
ln

(
8

3

)
− t

)
, (6.105)

as predicted by Equation (6.52).
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Figure 6.14: The path of the slow wave for various starting points along thex-axis. The green circle denotes
wherecs = vA and the magnetic null point lies at the origin in the centre ofthe circle. The paths marked
in red indicate those paths which do cross the mode-conversion region.

6.4.1.2 Drivingv‖

We may do the same thing for the simulations driving the parallel velocity component along the magnetic

field lines. The slow wave solution will then follow the incident wave in the low-β plasma, and the converted

wave in the high-β plasma. The initial conditions, taken whens = 0, are

ψ = 0, t = 0, x0 = ±2

√√
x2 + 4 − 2, z0 =

√
16 + x2

0, k⊥ = 0, (6.106)

and from Equation (6.67)

k‖0 = −
√√√√

2ω2

c2s + x2
0 + z2

0 −
√

(c2s + x2
0 + z2

0)
2 − 4c2s (x2

0 + z2
0)
. (6.107)

The values forp andq may be found from Equation (6.65). Using these initial conditions Equations (6.91) –

(6.94) may be solved numerically using the fourth-order Runge-Kutta method to follow the incident and

converted waves.

Figure 6.14 shows the path of the slow wave for various starting points along thex-axis. From this

we can see that the slow wave follows the magnetic field lines and the wave stretches out away from the

magnetic null point. Due to this only a small portion of the wavefront will cross the mode-conversion layer.

This part of the wave is located in the centre of the wavefrontand is depicted in the figure by the red paths.

For this reason the fast wave is only introduced along those points where the slow wave enters the high-β

region.
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Figure 6.15: Contour plots of the parallel velocity driven along the magnetic field lines with driving fre-
quencyω = 4π at t = 0, 0.46, 0.93, 1.39, 1.85, 2.30, 2.76, 3.23 and 3.69 Alfvén times respectively from
top left to bottom right. The green circle denotes wherecs = vA and the magnetic null point lies at the
origin in the centre of this circle. The blue lines follow thefront, middle and back of the slow wave pulse
and the red lines follow the front, middle and back of the fastwave pulse.

To follow the transmitted fast wave Equations (6.84) – (6.87) must be used. From Section 6.3.3.1 we

know that the incident slow wave will reach the mode-conversion region atz = 1.5 whent = 5/3 ≈ 1.67

Alfv én times. These are used as the initial conditions for the fast wave solution. Thex-position is taken

from a cut along constantz = 1.5, andp andq are taken to be equal to the values of the slow wave solution.

The results of using Charpit’s method to follow the slow and fast waves are shown in Figure 6.15. Each

plot shows a contour plot of the numerical parallel velocitydriven along the magnetic field lines with a

frequencyω = 4π as time progresses. Overplotted on these are the positions of the front, middle and back

of the slow wave pulse in blue and the positions of the front, middle and back of the fast wave pulse in

red. The green circle shows where the sound and Alfvén speeds are equal and mode conversion takes place

so the fast wave solution is introduced here. The agreement between the numerical simulations and the

analytical predictions is excellent, although the simulation is stopped before the fast wave leaves the high-β

region as the behaviour changes again at this point.
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Concentrating on the cut alongx = 0 (with p = 0) Equations (6.80), (6.92) and (6.94) reduce down to

2ω2 = q2
((
c2s + z2

)
−
∣∣c2s − z2

∣∣) , (6.108)

dq

ds
= zq2

(
1 −

(
z2 − c2s

)

|z2 − c2s|

)
, (6.109)

dz

ds
= −q

((
c2s + z2

)
−
∣∣c2s − z2

∣∣) . (6.110)

In the low-β region, wherez2 > c2s

ω2 = q2c2s,
dq

ds
= 0 and

dz

ds
= −2qc2s, (6.111)

which may be solved to find

z = 4 − cst, (6.112)

as predicted by Equation (6.69).

In the high-β plasma, wherez2 < c2s

ω2 = q2z2,
dq

ds
= 2zq2 and

dz

ds
= −2qz2, (6.113)

which may be solved to find

z = Ae−t. (6.114)

From Equation (6.112) we know thatt = 5/3, so this may be written

z = 1.5e5/3e−t, (6.115)

as predicted by Equation (6.72).

The results of this section have been published in McDougalland Hood (2009).

6.5 Conclusions

This chapter has looked at MHD mode conversion of fast and slow magnetoacoustic waves in the vicinity of

a two-dimensional null point (Figure 6.1). At the null pointthe Alfvén speed goes to zero so a wave prop-

agating towards the null passes from low- to high-β plasma, as demonstrated in Figure 6.2. For simplicity

gravitational acceleration was neglected.

In Section 6.3 we used the MacCormack method to simulate a wave propagating towards the null point.

In order to drive fast and slow waves the velocity componentsperpendicular and parallel to the magnetic

field were calculated. To drive a fast wave the perpendicularvelocity component was driven on the up-
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per boundary whilst the parallel component was held at zero.The results of this are shown in Figure 6.3.

As mentioned by McLaughlin and Hood (2004) as the fast wave propagates downwards the centre of the

wavefront slows and the wave wraps around the magnetic null point. Looking at a cut of the numerical

simulation, taken alongx = 0, evidence of mode conversion may be seen as the incident fastwave crosses

cs = vA (Figure 6.4). This is especially clear in the plot of the horizontal magnetic field, in which the con-

verted slow wave can be observed propagating out ahead of thetransmitted slow wave. In Section 6.3.2.1

the variation of the position of the wavefronts in time was calculated using the characteristic speeds. These

positions are given by Equations (6.50) and (6.52) and are shown against one of the numerical simulations

in Figure 6.5. The only free parameter in these numerical simulations was the driving frequency (ω). The

effect of varying the driving frequency is small and difficult to see without first removing the amplitude

dependence. It is possible, however, to note that the amountof conversion decreases with increasing fre-

quency, and so the amount of transmission must subsequentlyincrease (Figure 6.6) as expected based on

the previous chapters.

In Section 6.3.3 we ran similar numerical simulations, thistime driving a slow wave on the upper bound-

ary. In order to do this the velocity component parallel to the magnetic field was driven on the upper

boundary whilst the perpendicular component was held at zero. When drivingv‖ straight across the upper

boundary some component of the fast wave is also introduced resulting in interference between the two

modes (Figure 6.7). To avoid thisv‖ was driven along the magnetic field lines where the time at which

to start the wave was calculated using Charpit’s method. Figure 6.8 shows that this stops any component

of the fast wave being introduced on the upper boundary. As the slow wave propagates downwards it is

curved along the magnetic field lines. When it hits thecs = vA layer the incident slow wave is transmitted

through the high-β plasma as a fast wave. This may also be seen when a cut of the numerical simulations

is taken alongx = 0 (Figure 6.9). It is difficult to make out the converted slow wave in these simulations

as it is masked by the transmitted fast wave. In Section 6.3.3.1 the position of the wavefronts in time was

calculated using the characteristic wave speeds. These aregiven by Equations (6.69) and (6.72) and are

shown against one of the numerical simulations in Figure 6.10. Finally the effect of varying the driving

frequency was investigated (Figure 6.11). Although the amplitude dependence has not been removed it is

clear that the amount of transmission decreases as the frequency increases, and thus the conversion must

decrease. Again this agrees with previous results.

In Section 6.4 we looked back at Charpit’s method, which was briefly touched upon during the previ-

ous section. This was used to describe the behaviour of the fast and slow magnetoacoustic waves along a

characteristic curves. The systems of ordinary differential equations resultingfrom this were then solved

to find how the waves travel throughout the domain. Figure 6.12 shows the how the position of the fast

wavefront varies with time for different starting points inthex-direction. This captures the way that the

fast wave slows as it approaches the magnetic null point, causing the wavefront to wrap around the null.

Charpit’s method was then used to predict the position of thefast wave as it propagates downwards (as

in McLaughlin and Hood (2006)) and additionally the slow wave from the mode-conversion region (Fig-

ure 6.13). These were plotted over one of the numerical simulations in order to compare the results, which

are in excellent agreement. By concentrating on the cut along x = 0 it was shown that Charpit’s method

predicted the same wave positions as Equations (6.50) and (6.52).
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Charpit’s method was then used to examine the wave positionswhen driving the parallel velocity com-

ponent along the magnetic field lines in Section 6.4.1.2. Figure 6.14 demonstrates that the slow wave

stretches out along the magnetic field lines as it propagatesdownwards and only a small proportion of the

wavefront passes into the mode-conversion region. The position of the slow wave and the transmitted fast

wave were calculated and compared to the numerical simulations (Figure 6.15). As only a small section

of the slow wave passes into the high-β plasma the fast wave is only modelled along this section. These

predictions agree very well with the numerical simulations. As for Section 6.4.1.1, the positions predicted

using Charpit’s method were shown to agree with those found by Equations (6.69) and (6.72) alongx = 0.

In this chapter we have developed a good understanding of howfast and slow magnetoacoustic waves

behave in the region of a two-dimensional magnetic null point. Using a combination of analytical and

numerical techniques we have shown that mode conversion is present when driving both a slow and fast

wave toward the null point. In all cases it has been possible to track the incident wave up to the mode-

conversion region, and the transmitted and converted components of this wave after it passed into the

high-β plasma.



Chapter 7

Conclusions

7.1 Overview of Thesis

This thesis has investigated the mode conversion of fast andslow magnetoacoustic waves in the solar

corona. Mode conversion occurs when a resonance between thetwo wave modes is present, allowing

energy to be transferred between the different waves. This results in the amplitude of one wave mode

increasing whilst the other decreases. Mode conversion between fast and slow magnetoacoustic waves

takes place when their respective characteristic speeds are equal in size. This occurs in regions where the

plasmaβ (the ratio of the gas pressure to the magnetic pressure) is approximately unity.

Throughout this thesis a combination of analytical techniques and numerical methods have been used

in conjunction with one another. These methods are described fully in Chapter 2. Mode conversion was

modelled numerically by the MacCormack method; a two-step,predictor-corrector finite-difference scheme

using both forward and backward differencing. Conversion and transmission coefficients describing the

amount of mode conversion were calculated using a method developed by Cairns and Lashmore-Davies

(1983) and the behaviour distant from the mode-conversion region was described using a WKB analysis.

Each of these methods complements and supports the others, allowing a full description of the mode-

conversion process to be built up.

Each chapter has examined mode conversion in a different model atmosphere. Throughout all of the

research chapters mode conversion was studied for a wave propagating from low- to high-β plasma. In

each case the magnetic topology of the model progressively increased in complexity.

7.2 Summary of Results

In Chapter 3 we investigated mode conversion using a very simple, one-dimensional model. This consisted

of a uniform, vertical magnetic field within an isothermal atmosphere. Gravitational stratification was

also included in order to ensure that mode conversion took place. As mentioned above the focus was on

propagation from low- to high-β plasma and thus the waves were travelling downwards towardsthe solar

surface. This could be representative of a flare-induced blast wave, for example. A slow wave was driven

on the upper boundary. No component of the fast wave was introduced because this is evanescent in the

low-β plasma. As the slow wave crosses the mode-conversion regionthe transmitted component takes the

form of a fast wave and the converted component takes the formof a slow wave.
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Following on from this, Chapter 4 examined mode conversion in the same model. A uniform, back-

ground magnetic field was present and gravitational stratification was included, but the conditions were

relaxed to allow for a non-isothermal atmosphere. This meant that both the sound and Alfvén speeds varied

with height. Atanh profile was chosen for the temperature as this mimics the steep temperature gradient

which is found at the transition region. As before a slow wavewas driven on the upper boundary, propa-

gating downwards from low- to high-β plasma and crossing the mode-conversion region as it does so. The

transmitted component of the wave is a fast wave in the high-β plasma and the converted component a slow

wave.

In Chapter 5 a more complex two-dimensional model was examined. The main feature of this model

was a radially-expanding magnetic field which is representative of a coronal hole. Due to the geometry of

this model spherical coordinates were used in this chapter.For simplicity gravitational acceleration was

neglected, meaning that the background pressure was constant. In addition, the atmosphere was taken to be

isothermal so the background density was constant. Thus thesound speed in the model was constant whilst

the Alfvén speed varied with radial position. To investigate mode conversion a slow wave was driven on

the lower boundary propagating upwards from low- to high-β plasma.

Finally in Chapter 6 mode conversion was investigated in thevicinity of a two-dimensional magnetic

null point. At the null point the magnetic field goes to zero and so the wave propagating towards the null

passes from a low- to high-β plasma. As for the previous chapter the sound speed was constant while the

Alfv én speed varied with height. Mode conversion was investigated when driving both a fast wave and a

slow wave on the upper boundary.

In all of the above chapters the process was simulated numerically using the MacCormack finite-difference

scheme. In Chapter 5 someθ dependence had to be included in the incoming wave, otherwise the modes

would be completely decoupled and no mode conversion would take place. The fast and slow waves in

Chapter 6 were introduced by driving the velocity components perpendicular and parallel to the magnetic

field. As predicted evidence of mode conversion was observedwhen the incident wave crossed the conver-

sion region where the sound and Alfvén speeds are equal. In Chapters 3 – 5 the amplitude dependence of the

incoming wave was removed, making the conversion much clearer and allowing the amount of transmis-

sion in the simulations to be quantified. In these simulations only one wave is present in the low-β region,

and after the wave has passed into the high-β plasma both the transmitted and converted components are

present. There is a clear drop in amplitude between the incident and transmitted waves, and the converted

wave can be identified where there is interference with the transmitted wave.

Using the characteristic wave speeds it was possible to track the positions of the various waves in time.

It was found that paths predicted by the sound and Alfvén speeds were in much better agreement with

the numerical simulations than those found by the tube speedand the fast speed. However it was noted

that althoughcT andcf did not give good agreement at the mode-conversion region, they did tend to the

solutions given bycs andvA away from this area.

The parameterω, representing the driving frequency, was a free parameter in all of the numerical simu-

lations. Running the numerical simulations for a range of values ofω we found that the amount of trans-

mission decreases as the driving frequency increases, in agreement with Cally (2005). In Chapters 3 – 5
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the wavenumber was also a free parameter. When the wavenumber was equal to zero the fast and slow

waves were completely decoupled and no conversion occurred. Comparing the simulations for varying val-

ues of the wavenumber the transmission was seen to increase with increasing wavenumber. Additionally,

this effect was much stronger than that of varying the driving frequency. Chapter 4 has an additional free

parameter,d, which varies the slope of thetanh temperature profile. Provided that the wavelength of the

incoming wave is small in comparison to the width of the temperature gradient the slope has no effect on

mode conversion. If this is not the case a proportion of the incident wave will be reflected back into the

low-β plasma. The simulations in Chapter 5 were two dimensional, but the value ofθ did not influence the

mode conversion.

The results from the above numerical simulations were also combined with a number of predictions

on the wave behaviour found using various analytical techniques. Cairns and Lashmore-Davies (1983)

developed a method of quantifying mode conversion. This uses differential equations derived from the local

dispersion relations at the mode-conversion region to describe the wave behaviour. Combining these gives

a single differential equation for which the solution in known in terms of the Parabolic Cylinder function

(see Abramowitz and Stegun (1964)). This solution may then be used to find coefficients describing the

amount of transmission and conversion that takes place. It was shown that the coefficients calculated

satisfy the conservation of energy. The advantage of this method is that an exact solution does not need

to be known in order to obtain the coefficients, unlike that used in Zhugzhda and Dzhalilov (1982a). This

method was used in Chapters 3 – 5 to find transmission and conversion coefficients. In concurrence with the

numerical simulations these show that the amount of transmission and conversion depends on the square of

the wavenumber and inversely on the driving frequency. Comparing the amount of transmission predicted

with that observed in the numerical simulations showed excellent agreement, even when the value of the

wavenumber grew large in violation of the assumptions used.

In Chapter 3 a method described in Roberts (2006) was used to find the wave behaviour in the limit of

a large wavenumber. This method uses scaling of the variables to find a description of the slow mode in

terms of the Klein-Gordon equation. This was then solved using the WKB method. This agreed well with

the numerical simulations to start with, but then deviated from the numerical simulation asz → −∞. This

is because the assumptions are no longer valid in this region. Due to this fact the method was not applied

in any of the later chapters.

To find the behaviour of the various wave components away fromthe mode-conversion region the WKB

method was used in Chapters 3 – 5. This allowed the amplitude dependence and phase behaviour of the

different wave modes to be found. To obtain a full description of the wave behaviour throughout the domain

these solutions were then matched across the mode-conversion region using the transmission and conversion

coefficients found using the Cairns and Lashmore-Davies (1983) method. In Chapter 3 these analytical

descriptions are in near perfect agreement with the numerical simulations capturing both the amplitude

and phase behaviour. The amplitude dependence of the converted wave does not agree as well with the

numerical simulations in Chapter 4, but the remaining elements of the prediction are in excellent agreement.

Unfortunately, in Chapter 5 these predictions are not in such good agreement. Both the transmission and

conversion coefficients appear to have been overestimated,suggesting that energy is not conserved in this

case. However the amplitude and phase behaviour predicted by the WKB method do look correct.
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In Chapter 6 Charpit’s method was used to solve the WKB equations to find the behaviour of the fast and

slow waves along a characteristic curve. This resulted in two sets of ordinary differential equations which

were solved numerically using a fourth-order Runge-Kutta scheme. This allowed the path of incoming

wave to be found for various starting points along thex-axis. In line with the numerical simulations these

showed that the fast wave slows as it approaches the magneticnull point, causing the edges of the wave to

refract around the null point (in agreement with McLaughlinand Hood (2004)). Conversely the slow wave

was shown to stretch out along the magnetic field lines as it approaches the null point, meaning that only a

small section of the wave actually enters the mode-conversion region. The solutions found using Charpit’s

method were also used to predict the position of the incomingfast wave (as done in McLaughlin and Hood

(2006)) and slow wave, and to predict the position of the transmitted wave from the mode-conversion

region. These are in excellent agreement with the numericalsimulations. It was also shown that when

taking a cut alongx = 0 these predictions are identical to those found using the characteristic wave speeds.

In Chapters 3 and 4 the one-dimensional model with a uniform,background magnetic field was used as

a first step in building up to examine the two-dimensional coronal null point problem. In reality, the mode-

conversion region in this type of set-up is unlikely to lie inthe corona where the plasmaβ is typically very

low (O
(
10−4

)
) and is more likely to lie in the chromosphere or strong field regions in the photosphere. In

Chapter 5 a two-dimensional model representative of a coronal hole was studied. This is more physically

realistic than the model used in previous chapters, howeverits applicability is limited due to the fact that

gravitational acceleration was neglected. For this type ofmagnetic field structure the region whereβ ≈ 1

will be situated at a height of 1.2 – 1.4R⊙ (Gary, 2001). Chapter 6 concentrated on mode conversion in

the vicinity of a magnetic null point. In this situation the mode-conversion layer may be found much lower

in the corona at heights of 0.2 – 0.3R⊙ (Gary, 2001). This gives an indication of where mode conversion

may occur for different magnetic topologies in the solar atmosphere.

7.3 Future Work

There are numerous ways in which the work in this thesis couldbe extended. Due to time constraints

we were unable to apply the WKB method in Chapter 6. This method could be applied to the parallel

and perpendicular velocity components using the derivatives parallel and perpendicular to the magnetic

field. This would allow the amplitude and phase behaviour forthe different wave modes to be found.

This information could then be used to remove the amplitude dependence from the incoming wave, as was

done in Chapters 3 – 5, allowing the amount of transmission tobe quantified. Ideally this would then be

compared to transmission and conversion coefficients foundusing the Cairns and Lashmore-Davies (1983)

method. As it currently stands, the Cairns and Lashmore-Davies (1983) method may only be applied to

one-dimensional problems. As such this would need to be extended in order to cope with two dimensions.

In all cases the incoming wave is driven along the magnetic field lines. An interesting problem may

be to investigate the effect of driving a wave at an angle to the magnetic field. Other authors have found

that the angle at which the incoming wave hits the mode-conversion layer does have an affect on mode

conversion, Carlsson and Bogdan (2006) for example. It would be interesting to see whether this effect

could be quantified using the techniques utilised in this thesis.
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Another obvious extension would be to consider mode conversion in a three-dimensional model. This

would be much more realistic than the one- and two-dimensional models. In three dimensions Alfvén waves

will also be present in addition to the fast and slow magnetoacoustic waves. This introduces the possibility

of coupling between all three modes. In order to find transmission and conversion coefficients, the Cairns

and Lashmore-Davies (1983) method would have to be expandedagain to deal with three-dimensions.
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